WO2018019111A1 - Robot and joint motion control method and device therefor - Google Patents

Robot and joint motion control method and device therefor Download PDF

Info

Publication number
WO2018019111A1
WO2018019111A1 PCT/CN2017/091971 CN2017091971W WO2018019111A1 WO 2018019111 A1 WO2018019111 A1 WO 2018019111A1 CN 2017091971 W CN2017091971 W CN 2017091971W WO 2018019111 A1 WO2018019111 A1 WO 2018019111A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
target
joint
motion trajectory
trajectory
Prior art date
Application number
PCT/CN2017/091971
Other languages
French (fr)
Chinese (zh)
Inventor
刘若鹏
陈娟
Original Assignee
深圳光启合众科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启合众科技有限公司 filed Critical 深圳光启合众科技有限公司
Publication of WO2018019111A1 publication Critical patent/WO2018019111A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the present invention relates to the field of robots, and in particular to a robot and its joint motion control method and apparatus.
  • the existing joint trajectory interpolation methods are: parabolic trajectory planning, cubic polynomial or high-order polynomial, etc.; the two methods can be subdivided into over-path points. And the path point.
  • the simple use of a certain trajectory method to achieve motion must have the following limitations: First, there are many parabolic methods for passing path points. The solution does not constrain the acceleration curve. In actual use, the robot system is susceptible to shock and vibration. Second, the high-order polynomial trajectory fitting can ensure that the velocity and acceleration curves are smooth and continuous, but there are more coefficients to be solved, and the calculation is complicated.
  • the method for calculating the motion trajectory of the target joint according to the target motion type of the target joint includes: if the target motion type is continuous motion, determining the motion trajectory calculation method of the target joint is a high-order polynomial algorithm, and calculating the target by using the motion trajectory calculation method
  • the motion trajectory of the joint includes: a motion trajectory between the start position and the end position is fitted by a high-order polynomial algorithm, wherein the motion track passes through a preset path point between the start position and the end position, and the preset path point is continuous
  • controlling the movement of the target joint according to the motion trajectory includes: controlling the motion trajectory movement between the start position and the end position of the target joint fitted according to the high-order polynomial algorithm.
  • the high order polynomial algorithm is a cubic polynomial algorithm.
  • the target joint includes a first joint and a second joint
  • the target motion type of the first joint is a point motion
  • the target motion type of the second joint is a continuous motion
  • the determining unit includes: a first determining module, configured to The target motion type of one joint determines that the motion trajectory calculation method of the first joint is a parabola algorithm
  • the second determining module determines that the motion trajectory calculation method of the second joint is a high-order polynomial algorithm according to the target motion type of the second joint.
  • the invention obtains a target motion type of a target joint of a robot, wherein the target motion type is a target type of the target joint motion, the target motion type includes a point motion and a continuous motion; and the target joint motion trajectory is determined according to the target motion type of the target joint.
  • Calculation method; calculating the target joint by the motion trajectory calculation method The motion trajectory; and the control target joint movement according to the motion trajectory solves the problem of high limitation caused by the single calculation method of the joint motion trajectory of the robot, thereby achieving the effect of flexibly controlling the joint motion trajectory of the robot.
  • FIG. 1 is a flow chart of a robot joint motion control method according to an embodiment of the present invention
  • Step S102 Acquire a target motion type of the target joint of the robot.
  • Step S104 Determine a motion trajectory calculation method of the target joint according to the target motion type of the target joint.
  • the embodiment adopts a target motion type of acquiring a target joint of the robot, wherein the target motion type is a target type of the target joint motion, the target motion type includes a point motion and a continuous motion; and the target joint motion is determined according to the target motion type of the target joint.
  • Trajectory calculation method calculating the motion trajectory of the target joint by the motion trajectory calculation method; and controlling the target joint to move according to the motion trajectory, thereby solving the problem of high limitation caused by the single calculation method of the joint motion trajectory of the robot, thereby achieving the flexible control robot The effect of the joint motion trajectory.
  • the calculating unit 30 is configured to calculate a motion trajectory of the target joint by using a motion trajectory calculation method.
  • the determining unit 20 is configured to determine, when the target motion type is continuous motion, a motion trajectory calculation method of the target joint is a high-order polynomial algorithm, and the calculating unit 30 is configured to fit the start position and the end position by using a high-order polynomial algorithm.
  • a motion trajectory wherein the motion trajectory passes a preset path point between the start position and the end position, the preset path point is a path point through which the continuous motion passes
  • the control unit 40 is configured to control the target joint according to a high order polynomial algorithm The motion path motion between the starting position and the ending position of the fit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot, and a joint motion control method and device therefor. The joint motion control method for the robot comprises: acquiring target motion types for a target joint of the robot; said target motion types are destination types of a target joint motion, and said target motion types comprise a point-to-point motion and a continuous motion; according to the target motion types of the target joint, determining a motion trajectory calculation method for the target joint; calculating a motion trajectory of the target joint by using the motion trajectory calculation method; and controlling the target joint to move in accordance with the motion trajectory. By using the present method, the problem in the related art wherein the lack of variation in motion trajectory calculation methods for robot joints has brought about many limitations is solved.

Description

机器人及其关节运动控制方法和装置Robot and joint motion control method and device thereof 技术领域Technical field
本发明涉及机器人领域,具体而言,涉及一种机器人及其关节运动控制方法和装置。The present invention relates to the field of robots, and in particular to a robot and its joint motion control method and apparatus.
背景技术Background technique
轨迹规划就是根据机器人自身任务求得从运动开始位置到目标终点位置之间路径函数。在实际运动控制中,机器人运动关节的位移角度、速度和加速度约束了该运动过程,路径规划的目标是使得机器人的运动过程精确、平稳、无冲击力。The trajectory planning is to find the path function from the motion start position to the target end position according to the robot's own task. In the actual motion control, the displacement angle, velocity and acceleration of the robot's joints constrain the motion process. The goal of the path planning is to make the motion of the robot accurate, stable and impactless.
机器人的运动可以细分成快速运动和慢速运动。在慢速运动时,路径规划较为简单,只要确保运动的关节角度不超出限制即可,而快速运动时,由于关节动作较快,要求机器人运动时动作连续,不允许出现速度、加速度超出限制或者突变的情况,如果出现严重情况会损坏机械硬件,造成不必要的损失。The motion of the robot can be subdivided into fast motion and slow motion. In slow motion, the path planning is relatively simple, as long as the joint angle of the motion does not exceed the limit, and in the fast motion, because the joint movement is fast, the motion of the robot is required to be continuous, and the speed and acceleration are not allowed to exceed the limit or In the case of a sudden change, if serious conditions can damage the mechanical hardware, causing unnecessary losses.
目前,对不同机器人关节的不同运动情况都采用单一的路径规划方法,现有关节轨迹插值方法为:抛物线法轨迹规划、三次多项式或高次多项式等;两种方法可再细分为过路径点和不过路径点。在机器人运动过程中,某些关节需要实现连续路径作业,而有些关节是点位作业,单纯使用某一种轨迹方法实现运动必然有以下的局限性:第一、过路径点的抛物线法存在多解,且未对加速度曲线加以约束,在实际使用中,机器人系统容易受到冲击、产生振动。第二、高阶多项式法轨迹拟合尽管可以保证速度和加速度曲线平滑连续,但有较多系数需要求解,计算复杂。At present, a single path planning method is adopted for different motions of different robot joints. The existing joint trajectory interpolation methods are: parabolic trajectory planning, cubic polynomial or high-order polynomial, etc.; the two methods can be subdivided into over-path points. And the path point. During the movement of the robot, some joints need to achieve continuous path operation, while some joints are point operations. The simple use of a certain trajectory method to achieve motion must have the following limitations: First, there are many parabolic methods for passing path points. The solution does not constrain the acceleration curve. In actual use, the robot system is susceptible to shock and vibration. Second, the high-order polynomial trajectory fitting can ensure that the velocity and acceleration curves are smooth and continuous, but there are more coefficients to be solved, and the calculation is complicated.
针对相关技术中机器人的关节运动轨迹计算方法单一导致的局限性高的问题,目前尚未提出有效的解决方案。Aiming at the problem of high limitation caused by the single calculation method of the joint motion trajectory of the robot in the related art, an effective solution has not been proposed yet.
发明内容Summary of the invention
本发明的主要目的在于提供一种机器人及其关节运动控制方法和装置,以解决机器人的关节运动轨迹计算方法单一导致的局限性高的问题。The main object of the present invention is to provide a robot and an articulation control method and apparatus thereof, which solve the problem of high limitation caused by a single calculation method of the joint motion trajectory of the robot.
为了实现上述目的,根据本发明的一个方面,提供了一种机器人关节运动控制方法,该方法包括:获取机器人的目标关节的目标运动类型,其中,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动;根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法;通过运动轨迹计算方法计算目标关节 的运动轨迹;以及控制目标关节按照运动轨迹运动。In order to achieve the above object, according to an aspect of the present invention, a robot joint motion control method is provided, the method comprising: acquiring a target motion type of a target joint of the robot, wherein the target motion type is a target type of the target joint motion, and the target The motion type includes point motion and continuous motion; the motion trajectory calculation method of the target joint is determined according to the target motion type of the target joint; the target joint is calculated by the motion trajectory calculation method The motion trajectory; and the control target joint moves according to the motion trajectory.
进一步地,根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法包括:如果目标运动类型为点位运动,则确定目标关节的运动轨迹计算方法为抛物线算法,通过运动轨迹计算方法计算目标关节的运动轨迹包括:通过抛物线算法拟合起始位置和终点位置之间的运动轨迹,控制目标关节按照运动轨迹运动包括:控制目标关节按照抛物线算法拟合的起始位置和终点位置之间的运动轨迹运动。Further, the method for calculating the motion trajectory of the target joint according to the target motion type of the target joint includes: if the target motion type is the point motion, determining the motion trajectory calculation method of the target joint is a parabolic algorithm, and calculating the target joint by the motion trajectory calculation method The motion trajectory includes: fitting the motion trajectory between the start position and the end position by a parabola algorithm, and controlling the movement of the target joint according to the motion trajectory includes: controlling the motion between the start position and the end position of the target joint according to the parabolic algorithm. Trajectory movement.
进一步地,通过抛物线算法拟合起始位置和终点位置之间的运动轨迹包括:拟合第一运动轨迹为抛物线,其中,第一运动轨迹为通过起始位置起第一预设时间段内以及到达终点位置前的第二预设时间段内的运动轨迹;拟合第二运动轨迹为直线,其中,第二运动轨迹为第一预设时间段的终点与第二预设时间段的起点之间的运动轨迹。Further, fitting the motion trajectory between the start position and the end position by the parabola algorithm includes: fitting the first motion trajectory to a parabola, wherein the first motion trajectory is within a first preset time period from the start position, and a motion trajectory in a second preset time period before reaching the end position; fitting the second motion trajectory to a straight line, wherein the second motion trajectory is an end point of the first preset time period and a start point of the second preset time period The trajectory between the two.
进一步地,根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法包括:如果目标运动类型为连续运动,则确定目标关节的运动轨迹计算方法为高阶多项式算法,通过运动轨迹计算方法计算目标关节的运动轨迹包括:通过高阶多项式算法拟合起始位置和终点位置之间的运动轨迹,其中,运动轨迹经过起始位置和终点位置之间的预设路径点,预设路径点为连续运动经过的路径点,控制目标关节按照运动轨迹运动包括:控制目标关节按照高阶多项式算法拟合的起始位置和终点位置之间的运动轨迹运动。Further, the method for calculating the motion trajectory of the target joint according to the target motion type of the target joint includes: if the target motion type is continuous motion, determining the motion trajectory calculation method of the target joint is a high-order polynomial algorithm, and calculating the target by using the motion trajectory calculation method The motion trajectory of the joint includes: a motion trajectory between the start position and the end position is fitted by a high-order polynomial algorithm, wherein the motion track passes through a preset path point between the start position and the end position, and the preset path point is continuous The path point through which the motion passes, controlling the movement of the target joint according to the motion trajectory includes: controlling the motion trajectory movement between the start position and the end position of the target joint fitted according to the high-order polynomial algorithm.
进一步地,高阶多项式算法为三次多项式算法。Further, the high order polynomial algorithm is a cubic polynomial algorithm.
进一步地,三次多项式算法的运动轨迹表达式为:θ(t)=a0+a1t+a2t2+a3t3,其中,a0表示第一系数,a1表示第二系数,a2表示第三系数,a3表示第四系数,t表示时间,θ(t)表示关节运动的角度,通过运动轨迹计算方法计算目标关节的运动轨迹包括:通过预设的约束条件计算第一系数、第二系数、第三系数和第四系数,通过运动轨迹表达式计算目标关节的运动轨迹。Further, the motion trajectory expression of the cubic polynomial algorithm is: θ(t)=a 0 +a 1 t+a 2 t 2 +a 3 t 3 , where a 0 represents the first coefficient and a 1 represents the second coefficient a 2 denotes a third coefficient, a 3 denotes a fourth coefficient, t denotes time, θ(t) denotes an angle of joint motion, and a motion trajectory calculation method calculates a motion trajectory of the target joint includes: calculating by a preset constraint condition A coefficient, a second coefficient, a third coefficient, and a fourth coefficient calculate a motion trajectory of the target joint by a motion trajectory expression.
进一步地,目标关节包括第一关节和第二关节,第一关节的目标运动类型为点位运动,第二关节的目标运动类型为连续运动,根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法包括:根据第一关节的目标运动类型确定第一关节的运动轨迹计算方法为抛物线算法,根据第二关节的目标运动类型确定第二关节的运动轨迹计算方法为高阶多项式算法。Further, the target joint includes a first joint and a second joint, the target motion type of the first joint is a point motion, and the target motion type of the second joint is a continuous motion, and the motion trajectory of the target joint is determined according to the target motion type of the target joint. The calculation method comprises: determining a motion trajectory calculation method of the first joint according to the target motion type of the first joint as a parabolic algorithm, and determining a motion trajectory calculation method of the second joint according to the target motion type of the second joint as a high-order polynomial algorithm.
为了实现上述目的,根据本发明的另一方面,还提供了一种机器人关节运动控制装置,该装置包括:获取单元,用于获取机器人的目标关节的目标运动类型,其中,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动;确定单元,用于根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法;计 算单元,用于通过运动轨迹计算方法计算目标关节的运动轨迹;以及控制单元,用于控制目标关节按照运动轨迹运动。In order to achieve the above object, according to another aspect of the present invention, a robot joint motion control apparatus is further provided, the apparatus comprising: an acquisition unit for acquiring a target motion type of a target joint of the robot, wherein the target motion type is a target The purpose type of joint motion, the target motion type includes point motion and continuous motion; the determining unit is configured to determine a motion trajectory calculation method of the target joint according to the target motion type of the target joint; The calculation unit is configured to calculate a motion trajectory of the target joint by using a motion trajectory calculation method; and a control unit is configured to control the target joint to move according to the motion trajectory.
进一步地,确定单元用于在目标运动类型为点位运动时,确定目标关节的运动轨迹计算方法为抛物线算法,计算单元用于通过抛物线算法拟合起始位置和终点位置之间的运动轨迹,以及控制单元用于控制目标关节按照抛物线算法拟合的起始位置和终点位置之间的运动轨迹运动。Further, the determining unit is configured to determine a motion trajectory calculation method of the target joint as a parabolic algorithm when the target motion type is a point motion, and the calculating unit is configured to fit the motion trajectory between the start position and the end position by a parabola algorithm. And the control unit is configured to control the movement track movement between the starting position and the ending position of the target joint according to the parabolic algorithm.
进一步地,计算单元包括:第一拟合模块,用于拟合第一运动轨迹为抛物线,其中,第一运动轨迹为通过起始位置起第一预设时间段内以及到达终点位置前的第二预设时间段内的运动轨迹;以及第二拟合模块,用于拟合第二运动轨迹为直线,其中,第二运动轨迹为第一预设时间段的终点与第二预设时间段的起点之间的运动轨迹。Further, the calculating unit includes: a first fitting module, configured to fit the first motion trajectory to a parabola, wherein the first motion trajectory is within a first preset time period from the starting position and before reaching the end position a motion trajectory in the second preset time period; and a second fitting module, configured to fit the second motion trajectory into a straight line, wherein the second motion trajectory is an end point of the first preset time period and a second preset time period The trajectory between the starting points.
进一步地,确定单元用于在目标运动类型为连续运动时,确定目标关节的运动轨迹计算方法为高阶多项式算法,计算单元用于通过高阶多项式算法拟合起始位置和终点位置之间的运动轨迹,其中,运动轨迹经过起始位置和终点位置之间的预设路径点,预设路径点为连续运动经过的路径点,控制单元用于控制目标关节按照高阶多项式算法拟合的起始位置和终点位置之间的运动轨迹运动。Further, the determining unit is configured to determine, when the target motion type is continuous motion, a motion trajectory calculation method of the target joint is a high-order polynomial algorithm, and the calculating unit is configured to fit between the start position and the end position by using a high-order polynomial algorithm a motion trajectory, wherein the motion trajectory passes a preset path point between the start position and the end position, and the preset path point is a path point through which the continuous motion passes, and the control unit controls the target joint to be fitted according to the high-order polynomial algorithm. Motion trajectory movement between the starting position and the ending position.
进一步地,高阶多项式算法为三次多项式算法。Further, the high order polynomial algorithm is a cubic polynomial algorithm.
进一步地,三次多项式算法的运动轨迹表达式为:θ(t)=a0+a1t+a2t2+a3t3,其中,a0表示第一系数,a1表示第二系数,a2表示第三系数,a3表示第四系数,t表示时间,θ(t)表示关节运动的角度,计算单元包括:第一计算模块,用于通过预设的约束条件计算第一系数、第二系数、第三系数和第四系数,第二计算模块,用于通过运动轨迹表达式计算目标关节的运动轨迹。Further, the motion trajectory expression of the cubic polynomial algorithm is: θ(t)=a 0 +a 1 t+a 2 t 2 +a 3 t 3 , where a 0 represents the first coefficient and a 1 represents the second coefficient , a 2 represents a third coefficient, a 3 represents a fourth coefficient, t represents time, θ (t) represents the angle of articulation, the computing unit includes: a first calculation module for calculating a first constraint condition by a preset coefficient And a second coefficient, a third coefficient, and a fourth coefficient, and a second calculating module, configured to calculate a motion trajectory of the target joint by using a motion trajectory expression.
进一步地,目标关节包括第一关节和第二关节,第一关节的目标运动类型为点位运动,第二关节的目标运动类型为连续运动,确定单元包括:第一确定模块,用于根据第一关节的目标运动类型确定第一关节的运动轨迹计算方法为抛物线算法,第二确定模块,用于根据第二关节的目标运动类型确定第二关节的运动轨迹计算方法为高阶多项式算法。Further, the target joint includes a first joint and a second joint, the target motion type of the first joint is a point motion, and the target motion type of the second joint is a continuous motion, and the determining unit includes: a first determining module, configured to The target motion type of one joint determines that the motion trajectory calculation method of the first joint is a parabola algorithm, and the second determining module determines that the motion trajectory calculation method of the second joint is a high-order polynomial algorithm according to the target motion type of the second joint.
为了实现上述目的,根据本发明的另一方面,还提供了一种机器人,该机器人包括:本发明的机器人关节运动控制装置。In order to achieve the above object, according to another aspect of the present invention, there is also provided a robot comprising: the robot joint motion control device of the present invention.
本发明通过获取机器人的目标关节的目标运动类型,其中,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动;根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法;通过运动轨迹计算方法计算目标关节的 运动轨迹;以及控制目标关节按照运动轨迹运动,解决了机器人的关节运动轨迹计算方法单一导致的局限性高的问题,进而达到了灵活控制机器人的关节运动轨迹的效果。The invention obtains a target motion type of a target joint of a robot, wherein the target motion type is a target type of the target joint motion, the target motion type includes a point motion and a continuous motion; and the target joint motion trajectory is determined according to the target motion type of the target joint. Calculation method; calculating the target joint by the motion trajectory calculation method The motion trajectory; and the control target joint movement according to the motion trajectory solves the problem of high limitation caused by the single calculation method of the joint motion trajectory of the robot, thereby achieving the effect of flexibly controlling the joint motion trajectory of the robot.
附图说明DRAWINGS
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings, which are incorporated in the claims In the drawing:
图1是根据本发明实施例的机器人关节运动控制方法的流程图;1 is a flow chart of a robot joint motion control method according to an embodiment of the present invention;
图2是根据本发明实施例的抛物线运动轨迹拟合的示意图;2 is a schematic diagram of a parabolic trajectory fitting in accordance with an embodiment of the present invention;
图3是根据本发明实施例的三次多项式运动轨迹拟合的示意图;以及3 is a schematic diagram of a cubic polynomial motion trajectory fit in accordance with an embodiment of the present invention;
图4是根据本发明实施例的机器人关节运动控制装置的示意图。4 is a schematic diagram of a robot joint motion control apparatus according to an embodiment of the present invention.
具体实施方式detailed description
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。The technical solutions in the embodiments of the present application are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present application. It is an embodiment of the present application, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present application without departing from the inventive scope shall fall within the scope of the application.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the specification and claims of the present application and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or order. It should be understood that the data so used may be interchanged where appropriate to facilitate the embodiments of the present application described herein. In addition, the terms "comprises" and "comprises" and "the" and "the" are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or units is not necessarily limited to Those steps or units may include other steps or units not explicitly listed or inherent to such processes, methods, products or devices.
本发明实施例提供了一种机器人关节运动控制方法。Embodiments of the present invention provide a robot joint motion control method.
图1是根据本发明实施例的机器人关节运动控制方法的流程图,如图1所示,该方法包括以下步骤:1 is a flow chart of a robot joint motion control method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
步骤S102:获取机器人的目标关节的目标运动类型。 Step S102: Acquire a target motion type of the target joint of the robot.
机器人可以是多种类型的机器人,例如,可以是双足行走机器人,也可以是进行滑步运动的机器人,或者轮式移动机器人,包括全方位移动机器人以及差速移动平台机器人,也可以是手臂机器人,例如手术机器人手臂,或者四足仿生机器人等。目标关节是机器人的一个或多个要活动的关节,机器人通过关节的活动带动机器人进行活动,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动,其中,机器人运动中,多数关节只需要实现点位运动,少数关节需要进行连续运动。在点位运动中,某个关节在一定时间内从一个位置点运动到另一个位置点,在两个位置点之间可以通过多种路径运动,中间路径如何运动并不影响最终机器人的运动结果。在连续运动中,关节由一个位置点运动到另一个位置点,要进行连续运动,中间要经过特定的路径点,才能带动机器人完成预设的动作,从而使整个机器人运动动作更加流畅。The robot can be a variety of types of robots, for example, a biped walking robot, a robot for sliding motion, or a wheeled mobile robot, including an omnidirectional mobile robot and a differential mobile platform robot, or an arm. Robots, such as surgical robotic arms, or quadruped bionic robots. The target joint is one or more joints of the robot to be moved. The robot drives the robot to move through the joint activity. The target motion type is the target type of the target joint motion, and the target motion type includes point motion and continuous motion, wherein the robot motion Most joints only need to achieve point motion, and a few joints need continuous motion. In point motion, a joint moves from one position point to another in a certain period of time. It can move through multiple paths between two position points. How the middle path moves does not affect the final robot's motion result. . In continuous motion, the joint moves from one position point to another, and continuous motion is required, and a specific path point is passed in the middle to drive the robot to complete the preset motion, thereby making the whole robot movement movement smoother.
目标运动类型可以根据不同的目标任务提前计算或者规划,例如,机器人接收到前进的指令后,机器人的运动控制板处理指令,解析和计算机器人目标关节的目标运动类型,例如,第一腿关节目标运动类型为点位运动,第二腿关节目标运动类型为连续运动。The target motion type can be calculated or planned in advance according to different target tasks. For example, after the robot receives the forward instruction, the motion control board of the robot processes the command, and analyzes and calculates the target motion type of the robot target joint, for example, the first leg joint target. The type of exercise is point motion, and the second leg joint target motion type is continuous motion.
步骤S104:根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法。Step S104: Determine a motion trajectory calculation method of the target joint according to the target motion type of the target joint.
在获取机器人的目标关节的目标运动类型之后,根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法。例如,如果获取到机器人的目标运动类型为点位运动,则确定目标关节的运动轨迹计算方法为抛物线算法;如果目标运动类型为连续运动,则确定目标关节的运动轨迹计算方法为高阶多项式算法。其中,抛物线算法可以是通过抛物线拟合起始点和终止点之间的路径,在拟合区段内,使用恒定的加速度平滑的改变速度。高阶多项式可以是三次多项式,也可以是四次多项式,五次多项式等高阶多项式,为了使计算过程更简单,降低计算复杂度,提高计算效率,高阶多项式算法可以采用三次多项式算法,同样,在某些应用场景中,为了提高运动的精确度,也会采用四次多项式算法、五次多项式算法、甚至更高次数的多项式算法以达到更精准地控制机器人的关节运动的效果,在实际应用中,可以根据具体应用场景进行设置和选择。目标关节的运动轨迹计算方法也可以是其他方法,可以预先存储在机器人的运动控制存储装置中,例如存储器中。After acquiring the target motion type of the target joint of the robot, the motion trajectory calculation method of the target joint is determined according to the target motion type of the target joint. For example, if the target motion type of the acquired robot is point motion, the motion trajectory calculation method for determining the target joint is a parabolic algorithm; if the target motion type is continuous motion, the motion trajectory calculation method for determining the target joint is a high-order polynomial algorithm. . Wherein, the parabolic algorithm may be a parabola fitting the path between the starting point and the ending point, and within the fitting section, the speed of change is smoothed using a constant acceleration. High-order polynomials can be cubic polynomials, or higher-order polynomials such as fourth-order polynomials and fifth-order polynomials. In order to make the calculation process simpler, reduce computational complexity, and improve computational efficiency, high-order polynomial algorithms can use cubic polynomial algorithms. In some application scenarios, in order to improve the accuracy of motion, four-time polynomial algorithm, fifth-order polynomial algorithm, and even higher-order polynomial algorithm are also used to achieve more precise control of the joint motion of the robot. In the application, settings and selections can be made according to specific application scenarios. The motion trajectory calculation method of the target joint may also be other methods, and may be stored in advance in the motion control storage device of the robot, such as a memory.
步骤S106:通过运动轨迹计算方法计算目标关节的运动轨迹。Step S106: Calculating the motion trajectory of the target joint by the motion trajectory calculation method.
在确定出目标关节的运动轨迹计算方法之后,通过确定出的运动轨迹计算方法计算目标关节的运动轨迹,例如,如果目标运动类型为点位运动,则确定目标关节的运动轨迹计算方法为抛物线算法,通过抛物线算法拟合起始位置和终点位置之间的运动轨迹。如果目标运动类型为连续运动,则确定目标关节的运动轨迹计算方法为高阶多 项式算法,通过高阶多项式算法拟合起始位置和终点位置之间的运动轨迹,其中,连续运动的路径需要经过预设的路径点,因此拟合的运动轨迹经过起始位置和终点位置之间的预设路径点,预设路径点为连续运动经过的路径点,通过在起始位置和终点位置之间经过预设路径点,能够提高路径规划的准确度。After determining the motion trajectory calculation method of the target joint, the motion trajectory of the target joint is calculated by the determined motion trajectory calculation method. For example, if the target motion type is point motion, determining the motion trajectory calculation method of the target joint is a parabolic algorithm. , the motion trajectory between the starting position and the ending position is fitted by a parabolic algorithm. If the target motion type is continuous motion, it is determined that the motion trajectory calculation method of the target joint is higher order The item-based algorithm fits the motion trajectory between the start position and the end position by a high-order polynomial algorithm, wherein the path of the continuous motion needs to pass a preset path point, so the fitted motion trajectory passes the start position and the end position The preset path point between the preset path points is the path point through which the continuous motion passes, and the accuracy of the path planning can be improved by passing the preset path point between the start position and the end position.
步骤S108:控制目标关节按照运动轨迹运动。Step S108: Control the target joint to move according to the motion trajectory.
在通过运动轨迹计算方法计算目标关节的运动轨迹之后,控制目标关节按照运动轨迹运动,例如,如果目标运动类型为点位运动,则控制目标关节按照抛物线算法拟合的起始位置和终点位置之间的运动轨迹运动。如果目标运动类型为连续运动,则控制目标关节按照高阶多项式算法拟合的起始位置和终点位置之间的运动轨迹运动。After calculating the motion trajectory of the target joint by the motion trajectory calculation method, the target joint is controlled to move according to the motion trajectory. For example, if the target motion type is point motion, the target joint is controlled according to the starting position and the end position of the parabola algorithm. Motion trajectory between. If the target motion type is continuous motion, the control target joint moves according to the motion trajectory between the start position and the end position fitted by the high-order polynomial algorithm.
该实施例既可以应用在关节的快速运动,又可以应用在慢速运动中。This embodiment can be applied to both rapid movement of joints and slow motion.
该实施例采用获取机器人的目标关节的目标运动类型,其中,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动;根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法;通过运动轨迹计算方法计算目标关节的运动轨迹;以及控制目标关节按照运动轨迹运动,从而解决了机器人的关节运动轨迹计算方法单一导致的局限性高的问题,进而达到了灵活控制机器人的关节运动轨迹的效果。The embodiment adopts a target motion type of acquiring a target joint of the robot, wherein the target motion type is a target type of the target joint motion, the target motion type includes a point motion and a continuous motion; and the target joint motion is determined according to the target motion type of the target joint. Trajectory calculation method; calculating the motion trajectory of the target joint by the motion trajectory calculation method; and controlling the target joint to move according to the motion trajectory, thereby solving the problem of high limitation caused by the single calculation method of the joint motion trajectory of the robot, thereby achieving the flexible control robot The effect of the joint motion trajectory.
在一个可选的实施方式中,通过抛物线算法拟合起始位置和终点位置之间的运动轨迹可以是:拟合第一运动轨迹为抛物线,其中,第一运动轨迹为通过起始位置起第一预设时间段内以及到达终点位置前的第二预设时间段内的运动轨迹;拟合第二运动轨迹为直线,其中,第二运动轨迹为第一预设时间段的终点与第二预设时间段的起点之间的运动轨迹。第一预设时间段和第二预设时间段的长度可以相同也可以不同。In an optional implementation manner, fitting the motion trajectory between the starting position and the ending position by a parabola algorithm may be: fitting the first motion trajectory to a parabola, wherein the first motion trajectory is from the starting position. a motion trajectory within a preset time period and a second preset time period before reaching the end position; fitting the second motion trajectory to a straight line, wherein the second motion trajectory is the end point and the second time of the first preset time period The trajectory of motion between the start points of the preset time period. The lengths of the first preset time period and the second preset time period may be the same or different.
图2是根据本发明实施例的抛物线运动轨迹拟合的示意图,线性轨迹规划即用一条直线将起点位置和终点位置连接起来,形成一条相对于时间的运动函数,但是直线插值将直接导致起始位置和终点位置的速度不连续,这种情况在实际机器人运动中是不允许发生的。为了避免起点和终点的速度突变,可以利用抛物线拟合起始位置和终点位置附近的一段路径,在拟合区段内,使用恒定的加速度平滑的改变速度。如图2所示,横坐标为时间,纵坐标为关节运动角度,起始位置为关节运动角度θ0,tb时刻关节运动角度为θ0,tf时刻,关节运动角度为θf,以起始时间为时间零点,在时间到达第一预设时间段tb之前,按照抛物线轨迹运动,在时间在tf-tb到tf之间,也是以抛物线为轨迹运动,在tb到tf-tb之间,可以采用直线运动,通过恒定的加速度平滑的改变速度进行过渡。2 is a schematic diagram of a parabolic trajectory fitting according to an embodiment of the present invention. Linear trajectory planning uses a straight line to connect the starting position and the ending position to form a motion function with respect to time, but linear interpolation directly leads to the starting The speed of the position and end position is not continuous, which is not allowed in actual robot movement. In order to avoid sudden changes in the velocity of the start and end points, a parabolic line can be used to fit a segment of the path near the start and end positions, and within the fitted segment, a constant acceleration is used to smooth the rate of change. 2, the abscissa is time and the ordinate is the angle of articulation, the starting position of the articulation angle θ 0, t is the time b articulation angle θ 0, t f time, the articulation angle θ f, to The starting time is time zero. Before the time reaches the first preset time period t b , the motion is in accordance with the parabolic trajectory. During the time between t f -t b and t f , the parabola is also used as the trajectory, at t b to Between t f and t b , a linear motion can be used to smoothly transition through a constant acceleration and change speed.
在一个可选的实施方式中,三次多项式算法的运动轨迹表达式为: In an alternative embodiment, the motion trajectory expression of the cubic polynomial algorithm is:
θ(t)=a0+a1t+a2t2+a3t3,其中,a0表示第一系数,a1表示第二系数,a2表示第三系数,a3表示第四系数,t表示时间,θ(t)表示关节运动的角度,通过运动轨迹计算方法计算目标关节的运动轨迹包括:通过预设的约束条件计算第一系数、第二系数、第三系数和第四系数,通过运动轨迹表达式计算目标关节的运动轨迹。θ(t)=a 0 +a 1 t+a 2 t 2 +a 3 t 3 , where a 0 represents the first coefficient, a 1 represents the second coefficient, a 2 represents the third coefficient, and a 3 represents the fourth coefficient Coefficient, t represents time, θ(t) represents the angle of joint motion, and the motion trajectory of the target joint is calculated by the motion trajectory calculation method including: calculating the first coefficient, the second coefficient, the third coefficient, and the fourth by a preset constraint condition The coefficient calculates the motion trajectory of the target joint through the motion trajectory expression.
在对机器人运动的平稳性要求较高的情况下,可以采用高阶多项式插值的连续路径轨迹规划方法。特别对于要求过路径点的轨迹规划中,高阶多项式插值可以保证关节角度、角速度、角加速度的变化连续。In the case of high requirements for the smoothness of the robot motion, a continuous path trajectory planning method with high-order polynomial interpolation can be used. Especially for trajectory planning where path points are required, high-order polynomial interpolation can ensure continuous changes in joint angle, angular velocity and angular acceleration.
高阶多项式运动轨迹插值表达式可以采用如下表达式:The high-order polynomial motion track interpolation expression can take the following expression:
θ(t)=a0+a1t+a2t2…+antn θ(t)=a 0 +a 1 t+a 2 t 2 ...+a n t n
该实施例可以采用两个三次多项式(n=3)拟合经过一个路径点的运动轨迹,利用关节在起始点的角度、速度、路径点前后的角度、经过路径点时的速度、加速度、终点的角度和速度共8个约束条件,可以计算出两个多项式的8个系数。其中,关节的角度是指关节运动后与关节零点位置之间的角度。This embodiment can use two cubic polynomials (n=3) to fit the motion trajectory through a path point, using the angle of the joint at the starting point, the speed, the angle before and after the path point, the speed, acceleration, and end point when passing the path point. The angle and speed have a total of 8 constraints, and the 8 coefficients of the two polynomials can be calculated. Among them, the angle of the joint refers to the angle between the joint movement and the position of the joint zero point.
图3是根据本发明实施例的三次多项式运动轨迹拟合的示意图,如图3所示,横坐标表示时间,纵坐标表示关节运动角度。关节通过三次多项式拟合出的路径轨迹由起点位置经过路径点运动到终点位置,在运动过程中,路径轨迹和关节角度平滑过渡,根据路径轨迹和时间可以计算出运动速度平缓变化,没有突变,能够提高机器人关节运动的稳定性,使机器人运动快速、平稳,进一步提高了机器人运行的稳定性。3 is a schematic diagram of a cubic polynomial motion trajectory fitting according to an embodiment of the present invention. As shown in FIG. 3, the abscissa represents time and the ordinate represents joint motion angle. The path trajectory fitted by the joint through the cubic polynomial moves from the starting point position to the end point position through the path point. During the movement, the path trajectory and the joint angle are smoothly transitioned. According to the path trajectory and time, the movement speed can be calculated smoothly, without mutation. It can improve the stability of the robot joint movement, make the robot movement fast and stable, and further improve the stability of the robot operation.
在一个可选的实施方式中,目标关节包括第一关节和第二关节,第一关节的目标运动类型为点位运动,第二关节的目标运动类型为连续运动,根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法包括:根据第一关节的目标运动类型确定第一关节的运动轨迹计算方法为抛物线算法,根据第二关节的目标运动类型确定第二关节的运动轨迹计算方法为高阶多项式算法。In an optional embodiment, the target joint includes a first joint and a second joint, the target motion type of the first joint is a point motion, and the target motion type of the second joint is a continuous motion, according to the target motion type of the target joint. The method for determining the motion trajectory of the target joint includes: determining a motion trajectory calculation method of the first joint according to the target motion type of the first joint as a parabolic algorithm, and determining a motion trajectory calculation method of the second joint according to the target motion type of the second joint is high Order polynomial algorithm.
机器人具有多个关节,根据不同关节的不同目标运动类型确定每个目标关节的运动轨迹计算方法,对于一个目标关节,可能在本次运动中,目标运动类型为点位运动,在下一次运动中,目标类型为连续运动。在机器人的一次运动中,可能由两个或两个以上的关节配合完成本次活动,如果目标关节包括第一关节和第二关节,第一关节的目标运动类型为点位运动,第二关节的目标运动类型为连续运动,则可以根据第一关节的目标运动类型确定第一关节的运动轨迹计算方法为抛物线算法,根据第二关节的目标运动类型确定第二关节的运动轨迹计算方法为高阶多项式算法,其中,高阶多项式算法可以是三次多项式算法,也可以是四次多项式算法,对于每个关节的每次运动,也可以有所区别,例如,本次运动中采用三次多项式算法,下一次运动中采用四次多 项式算法,具体的计算方法可以根据不同运动过程进行确定。The robot has multiple joints, and the calculation method of the motion trajectory of each target joint is determined according to different target motion types of different joints. For a target joint, in this motion, the target motion type may be point motion, and in the next motion, The target type is continuous motion. In a movement of the robot, the activity may be completed by two or more joints. If the target joint includes the first joint and the second joint, the target motion type of the first joint is point motion, the second joint The target motion type is continuous motion, and the motion trajectory calculation method of the first joint can be determined according to the target motion type of the first joint as a parabolic algorithm, and the motion trajectory calculation method of the second joint is determined according to the target motion type of the second joint is high. a polynomial algorithm, wherein the high-order polynomial algorithm may be a cubic polynomial algorithm or a fourth-order polynomial algorithm, and may be different for each motion of each joint, for example, a cubic polynomial algorithm is used in this motion. Use more than four times in the next exercise The item-based algorithm, the specific calculation method can be determined according to different motion processes.
机器人的运动是由各关节共同运动形成的,在实际的关节运动过程中,大多数关节只需要实现点位运动,比如,关节i在t1时间内从启动到停止到达某一位置点,在t2时间内再次启动到停止到达另一位置点,这种情况使用抛物线过渡的线性轨迹规划即可实现(在该实施例中,轨迹规划也即轨迹计算),因为两个位置点的机器人活动是非连续的,可以针对某一段运动区域使用抛物线法进行轨迹规划。如果关节i+1需要在时间t1+t2内连续运动,从而使得整个机器人运动动作更加流畅,这就需要针对关节i+1采用三次多项式并路过一个路径点的方法来规划路径,该路径点的位置和经过时间需根据不同的目标运动要求提前规划。Movement of the robot is formed by the movement of the common articulation, articulated in the actual process, most of the joints need only implement point motion, such as joint i in time t 1 from the start to the stop position reaches a point in Start again in t 2 to stop reaching another position, which can be achieved by linear trajectory planning of parabolic transition (in this embodiment, trajectory planning, ie trajectory calculation), because of the robot activity at two locations It is non-continuous and can use the parabolic method for trajectory planning for a certain motion area. If joint i+1 needs to move continuously in time t 1 +t 2 , so that the whole robot motion is smoother, it is necessary to plan the path by using cubic polynomial and passing a path point for joint i+1. The location and elapsed time of the point must be planned in advance according to different target motion requirements.
表1抛物线法和三次多项式轨迹规划方法结合使用的对应关系表Table 1 Correspondence table for the combination of parabola method and cubic polynomial trajectory planning method
Figure PCTCN2017091971-appb-000001
Figure PCTCN2017091971-appb-000001
如表1所示,在t1时间,关节i采用抛物线法计算运动轨迹,关节i+1采用三次多项式法计算运动轨迹,关节i+2采用抛物线法计算运动轨迹;在t2时间,关节i采用抛物线法计算运动轨迹,关节i+1采用三次多项式法计算运动轨迹,关节i+2采用抛物线法计算运动轨迹。同一个关节在不同时间也可以采用不同的计算方法计算运动轨迹。As shown in Table 1, at time t 1 , the joint i uses the parabola method to calculate the motion trajectory, the joint i+1 uses the cubic polynomial method to calculate the motion trajectory, and the joint i+2 uses the parabola method to calculate the motion trajectory; at time t 2 , the joint i The parabola method is used to calculate the motion trajectory. The joint i+1 uses the cubic polynomial method to calculate the motion trajectory, and the joint i+2 uses the parabola method to calculate the motion trajectory. The same joint can also calculate the motion trajectory at different times at different times.
本发明实施例能够根据目标关节的目标运动类型,例如,机器人的任务、运动路径和轨迹需求,结合不同关节的运动快慢和约束条件等,选择目标关节的运动轨迹计算方法,计算出预期的运动轨迹,甚至速度、加速度,从而生成运动轨迹,改进了原单一轨迹计算方法,能够在实际运动中实现一部分关节使用抛物线法轨迹规划,另外一部分关节使用高阶多项式轨迹规划,该方法既确保运算简单,又保证机器人运动的快速、平稳,在实际编程调试中可以使用复杂的嵌套循环来实现两种方法的并用,该方法应用范围广,可以用于几乎所有机器人关节连续运动的场合。The embodiment of the invention can select the target trajectory calculation method of the target joint according to the target motion type of the target joint, for example, the task, the motion path and the trajectory requirement of the robot, combined with the motion speed and constraints of the different joints, and calculate the expected motion. Trajectories, even speed and acceleration, to generate motion trajectories, improve the original single trajectory calculation method, can realize parabolic trajectory planning for some joints in actual motion, and use high-order polynomial trajectory planning for other joints, which ensures simple operation In addition, the robot can be moved quickly and smoothly. In the actual programming and debugging, complex nested loops can be used to achieve the combination of the two methods. The method has a wide application range and can be used in almost all robot joint joint motions.
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。It should be noted that the steps illustrated in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer executable instructions, and, although shown in the flowchart, The steps shown or described may be performed in an order different than that herein.
本发明实施例提供了一种机器人关节运动控制装置,该机器人关节运动控制装置可以用于执行本发明实施例的机器人关节运动控制方法。 The embodiment of the invention provides a robot joint motion control device, which can be used to execute the robot joint motion control method of the embodiment of the invention.
图4是根据本发明实施例的机器人关节运动控制装置的示意图,如图4所示,该装置包括:4 is a schematic diagram of a robot joint motion control apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
获取单元10,用于获取机器人的目标关节的目标运动类型,其中,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动。The acquiring unit 10 is configured to acquire a target motion type of the target joint of the robot, wherein the target motion type is a target type of the target joint motion, and the target motion type includes a point motion and a continuous motion.
确定单元20,用于根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法。The determining unit 20 is configured to determine a motion trajectory calculation method of the target joint according to the target motion type of the target joint.
计算单元30,用于通过运动轨迹计算方法计算目标关节的运动轨迹。The calculating unit 30 is configured to calculate a motion trajectory of the target joint by using a motion trajectory calculation method.
控制单元40,用于控制目标关节按照运动轨迹运动。The control unit 40 is configured to control the target joint to move according to the motion trajectory.
可选地,确定单元20用于在目标运动类型为点位运动时,确定目标关节的运动轨迹计算方法为抛物线算法,计算单元30用于通过抛物线算法拟合起始位置和终点位置之间的运动轨迹,以及控制单元40用于控制目标关节按照抛物线算法拟合的起始位置和终点位置之间的运动轨迹运动。Optionally, the determining unit 20 is configured to determine a motion trajectory calculation method of the target joint as a parabolic algorithm when the target motion type is a point motion, and the calculating unit 30 is configured to fit between the start position and the end position by a parabolic algorithm. The motion trajectory, and the control unit 40 is used to control the motion trajectory movement between the start position and the end position of the target joint in accordance with the parabolic algorithm.
可选地,计算单元30包括:第一拟合模块,用于拟合第一运动轨迹为抛物线,其中,第一运动轨迹为通过起始位置起第一预设时间段内以及到达终点位置前的第二预设时间段内的运动轨迹;以及第二拟合模块,用于拟合第二运动轨迹为直线,其中,第二运动轨迹为第一预设时间段的终点与第二预设时间段的起点之间的运动轨迹。Optionally, the calculating unit 30 includes: a first fitting module, configured to fit the first motion trajectory to a parabola, wherein the first motion trajectory is within a first preset time period from the start position and before reaching the end position a motion trajectory in a second preset time period; and a second fitting module for fitting the second motion trajectory to a straight line, wherein the second motion trajectory is an end point of the first preset time period and the second preset The trajectory of motion between the beginnings of the time period.
可选地,确定单元20用于在目标运动类型为连续运动时,确定目标关节的运动轨迹计算方法为高阶多项式算法,计算单元30用于通过高阶多项式算法拟合起始位置和终点位置之间的运动轨迹,其中,运动轨迹经过起始位置和终点位置之间的预设路径点,预设路径点为连续运动经过的路径点,控制单元40用于控制目标关节按照高阶多项式算法拟合的起始位置和终点位置之间的运动轨迹运动。Optionally, the determining unit 20 is configured to determine, when the target motion type is continuous motion, a motion trajectory calculation method of the target joint is a high-order polynomial algorithm, and the calculating unit 30 is configured to fit the start position and the end position by using a high-order polynomial algorithm. a motion trajectory, wherein the motion trajectory passes a preset path point between the start position and the end position, the preset path point is a path point through which the continuous motion passes, and the control unit 40 is configured to control the target joint according to a high order polynomial algorithm The motion path motion between the starting position and the ending position of the fit.
可选地,高阶多项式算法为三次多项式算法。Alternatively, the high order polynomial algorithm is a cubic polynomial algorithm.
可选地,三次多项式算法的运动轨迹表达式为:θ(t)=a0+a1t+a2t2+a3t3,其中,a0表示第一系数,a1表示第二系数,a2表示第三系数,a3表示第四系数,t表示时间,θ(t)表示关节运动的角度,计算单元30包括:第一计算模块,用于通过预设的约束条件计算第一系数、第二系数、第三系数和第四系数,第二计算模块,用于通过运动轨迹表达式计算目标关节的运动轨迹。Optionally, the motion trajectory expression of the cubic polynomial algorithm is: θ(t)=a 0 +a 1 t+a 2 t 2 +a 3 t 3 , where a 0 represents the first coefficient and a 1 represents the second Coefficient, a 2 represents a third coefficient, a 3 represents a fourth coefficient, t represents time, θ(t) represents an angle of joint motion, and calculation unit 30 includes: a first calculation module for calculating a preset constraint condition a coefficient, a second coefficient, a third coefficient, and a fourth coefficient, and a second calculating module, configured to calculate a motion trajectory of the target joint by using a motion trajectory expression.
进一步地,目标关节包括第一关节和第二关节,第一关节的目标运动类型为点位运动,第二关节的目标运动类型为连续运动,确定单元20包括:第一确定模块,用于根据第一关节的目标运动类型确定第一关节的运动轨迹计算方法为抛物线算法,第二 确定模块,用于根据第二关节的目标运动类型确定第二关节的运动轨迹计算方法为高阶多项式算法。Further, the target joint includes a first joint and a second joint, the target motion type of the first joint is a point motion, and the target motion type of the second joint is a continuous motion, and the determining unit 20 includes: a first determining module, configured to The target motion type of the first joint determines the motion trajectory calculation method of the first joint as a parabolic algorithm, and second The determining module is configured to determine a motion trajectory calculation method of the second joint according to the target motion type of the second joint as a high-order polynomial algorithm.
该实施例采用获取单元10,用于获取机器人的目标关节的目标运动类型,其中,目标运动类型为目标关节运动的目的类型,目标运动类型包括点位运动和连续运动;确定单元20,用于根据目标关节的目标运动类型确定目标关节的运动轨迹计算方法;计算单元30,用于通过运动轨迹计算方法计算目标关节的运动轨迹;以及控制单元40,用于控制目标关节按照运动轨迹运动,从而解决了机器人的关节运动轨迹计算方法单一导致的局限性高的问题,进而达到了灵活控制机器人的关节运动轨迹的效果。The embodiment adopts an obtaining unit 10 for acquiring a target motion type of a target joint of the robot, wherein the target motion type is a target type of the target joint motion, and the target motion type includes a point motion and a continuous motion; the determining unit 20 is configured to Determining a motion trajectory calculation method of the target joint according to the target motion type of the target joint; calculating unit 30 for calculating a motion trajectory of the target joint by the motion trajectory calculation method; and controlling unit 40 for controlling the target joint to move according to the motion trajectory, thereby The invention solves the problem of high limitation caused by the single calculation method of the joint motion trajectory of the robot, and further achieves the effect of flexibly controlling the joint motion trajectory of the robot.
本发明实施例还提供了一种机器人,该机器人包括本发明实施例的机器人关节运动控制装置。The embodiment of the invention further provides a robot comprising the robot joint motion control device of the embodiment of the invention.
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。It will be apparent to those skilled in the art that the various modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims (15)

  1. 一种机器人关节运动控制方法,其特征在于,包括:A robot joint motion control method, comprising:
    获取机器人的目标关节的目标运动类型,其中,所述目标运动类型为所述目标关节运动的目的类型,所述目标运动类型包括点位运动和连续运动;Obtaining a target motion type of a target joint of the robot, wherein the target motion type is a target type of the target joint motion, and the target motion type includes a point motion and a continuous motion;
    根据所述目标关节的目标运动类型确定所述目标关节的运动轨迹计算方法;Determining a motion trajectory calculation method of the target joint according to a target motion type of the target joint;
    通过所述运动轨迹计算方法计算所述目标关节的运动轨迹;以及Calculating a motion trajectory of the target joint by the motion trajectory calculation method;
    控制所述目标关节按照所述运动轨迹运动。The target joint is controlled to move in accordance with the motion trajectory.
  2. 根据权利要求1所述的方法,其特征在于,The method of claim 1 wherein
    根据所述目标关节的目标运动类型确定所述目标关节的运动轨迹计算方法包括:如果所述目标运动类型为所述点位运动,则确定所述目标关节的运动轨迹计算方法为抛物线算法,Determining a motion trajectory calculation method of the target joint according to a target motion type of the target joint includes: if the target motion type is the point motion, determining a motion trajectory calculation method of the target joint as a parabolic algorithm,
    通过所述运动轨迹计算方法计算所述目标关节的运动轨迹包括:通过抛物线算法拟合起始位置和终点位置之间的运动轨迹,Calculating the motion trajectory of the target joint by the motion trajectory calculation method includes: fitting a motion trajectory between a start position and an end position by a parabolic algorithm,
    控制所述目标关节按照所述运动轨迹运动包括:控制所述目标关节按照所述抛物线算法拟合的起始位置和终点位置之间的运动轨迹运动。Controlling movement of the target joint in accordance with the motion trajectory includes controlling motion trajectory movement between a starting position and an ending position of the target joint fitted in accordance with the parabolic algorithm.
  3. 根据权利要求2所述的方法,其特征在于,通过所述抛物线算法拟合起始位置和终点位置之间的运动轨迹包括:The method according to claim 2, wherein the fitting of the motion trajectory between the start position and the end position by the parabolic algorithm comprises:
    拟合第一运动轨迹为抛物线,其中,所述第一运动轨迹为通过所述起始位置起第一预设时间段内以及到达所述终点位置前的第二预设时间段内的运动轨迹;Fitting the first motion trajectory to a parabola, wherein the first motion trajectory is a motion trajectory within a second preset time period before the first preset time period from the start position and before reaching the end position ;
    拟合第二运动轨迹为直线,其中,所述第二运动轨迹为所述第一预设时间段的终点与所述第二预设时间段的起点之间的运动轨迹。The second motion trajectory is fitted to a straight line, wherein the second motion trajectory is a motion trajectory between an end point of the first preset time period and a start point of the second preset time period.
  4. 根据权利要求1所述的方法,其特征在于,The method of claim 1 wherein
    根据所述目标关节的目标运动类型确定所述目标关节的运动轨迹计算方法包括:如果所述目标运动类型为所述连续运动,则确定所述目标关节的运动轨迹计算方法为高阶多项式算法,Determining a motion trajectory calculation method of the target joint according to a target motion type of the target joint includes: if the target motion type is the continuous motion, determining a motion trajectory calculation method of the target joint is a high-order polynomial algorithm,
    通过所述运动轨迹计算方法计算所述目标关节的运动轨迹包括:通过高阶多项式算法拟合起始位置和终点位置之间的运动轨迹,其中,所述运动轨迹经过所述起始位置和所述终点位置之间的预设路径点,所述预设路径点为所述连续运动经过的路径点, Calculating the motion trajectory of the target joint by the motion trajectory calculation method includes: fitting a motion trajectory between a start position and an end position by a high-order polynomial algorithm, wherein the motion trajectory passes through the start position and a preset path point between the end positions, the preset path point being a path point through which the continuous motion passes,
    控制所述目标关节按照所述运动轨迹运动包括:控制所述目标关节按照所述高阶多项式算法拟合的起始位置和终点位置之间的运动轨迹运动。Controlling movement of the target joint in accordance with the motion trajectory includes controlling motion trajectory movement between the start position and the end position of the target joint fitted according to the high order polynomial algorithm.
  5. 根据权利要求4所述的方法,其特征在于,所述高阶多项式算法为三次多项式算法。The method of claim 4 wherein said higher order polynomial algorithm is a cubic polynomial algorithm.
  6. 根据权利要求5所述的方法,其特征在于,The method of claim 5 wherein:
    所述三次多项式算法的运动轨迹表达式为:θ(t)=a0+a1t+a2t2+a3t3,其中,a0表示第一系数,a1表示第二系数,a2表示第三系数,a3表示第四系数,t表示时间,θ(t)表示关节运动的角度,The motion trajectory expression of the cubic polynomial algorithm is: θ(t)=a 0 +a 1 t+a 2 t 2 +a 3 t 3 , where a 0 represents the first coefficient and a 1 represents the second coefficient, a 2 represents a third coefficient, a 3 represents a fourth coefficient, t represents time, and θ(t) represents an angle of joint motion,
    通过所述运动轨迹计算方法计算所述目标关节的运动轨迹包括:通过预设的约束条件计算所述第一系数、所述第二系数、所述第三系数和所述第四系数,通过所述运动轨迹表达式计算所述目标关节的运动轨迹。Calculating the motion trajectory of the target joint by the motion trajectory calculation method includes: calculating the first coefficient, the second coefficient, the third coefficient, and the fourth coefficient by using a preset constraint condition, The motion trajectory expression calculates a motion trajectory of the target joint.
  7. 根据权利要求1所述的方法,其特征在于,所述目标关节包括第一关节和第二关节,所述第一关节的目标运动类型为所述点位运动,所述第二关节的目标运动类型为所述连续运动,根据所述目标关节的目标运动类型确定所述目标关节的运动轨迹计算方法包括:The method according to claim 1, wherein the target joint comprises a first joint and a second joint, a target motion type of the first joint is the point motion, and a target motion of the second joint The type is the continuous motion, and the method for calculating the motion trajectory of the target joint according to the target motion type of the target joint includes:
    根据所述第一关节的目标运动类型确定所述第一关节的运动轨迹计算方法为抛物线算法,Determining, according to the target motion type of the first joint, a motion trajectory calculation method of the first joint is a parabolic algorithm,
    根据所述第二关节的目标运动类型确定所述第二关节的运动轨迹计算方法为高阶多项式算法。Determining a motion trajectory calculation method of the second joint according to a target motion type of the second joint is a high-order polynomial algorithm.
  8. 一种机器人关节运动控制装置,其特征在于,包括:A robot joint motion control device, comprising:
    获取单元,用于获取机器人的目标关节的目标运动类型,其中,所述目标运动类型为所述目标关节运动的目的类型,所述目标运动类型包括点位运动和连续运动;An acquiring unit, configured to acquire a target motion type of a target joint of the robot, wherein the target motion type is a target type of the target joint motion, and the target motion type includes a point motion and a continuous motion;
    确定单元,用于根据所述目标关节的目标运动类型确定所述目标关节的运动轨迹计算方法;a determining unit, configured to determine a motion trajectory calculation method of the target joint according to a target motion type of the target joint;
    计算单元,用于通过所述运动轨迹计算方法计算所述目标关节的运动轨迹;以及a calculating unit configured to calculate a motion trajectory of the target joint by the motion trajectory calculation method;
    控制单元,用于控制所述目标关节按照所述运动轨迹运动。And a control unit, configured to control the target joint to move according to the motion trajectory.
  9. 根据权利要求8所述的装置,其特征在于, The device of claim 8 wherein:
    所述确定单元用于在所述目标运动类型为所述点位运动时,确定所述目标关节的运动轨迹计算方法为抛物线算法,The determining unit is configured to determine, when the target motion type is the point motion, a motion trajectory calculation method of the target joint as a parabolic algorithm,
    所述计算单元用于通过抛物线算法拟合起始位置和终点位置之间的运动轨迹,以及The calculation unit is configured to fit a motion trajectory between a start position and an end position by a parabolic algorithm, and
    所述控制单元用于控制所述目标关节按照所述抛物线算法拟合的起始位置和终点位置之间的运动轨迹运动。The control unit is configured to control a motion trajectory movement between the start position and the end position of the target joint according to the parabolic algorithm.
  10. 根据权利要求9所述的装置,其特征在于,所述计算单元包括:The apparatus according to claim 9, wherein said calculating unit comprises:
    第一拟合模块,用于拟合第一运动轨迹为抛物线,其中,所述第一运动轨迹为通过所述起始位置起第一预设时间段内以及到达所述终点位置前的第二预设时间段内的运动轨迹;以及a first fitting module, configured to fit the first motion trajectory to a parabola, wherein the first motion trajectory is a second time period before the first preset time period from the start position and before reaching the end position Motion trajectory within a preset time period;
    第二拟合模块,用于拟合第二运动轨迹为直线,其中,所述第二运动轨迹为所述第一预设时间段的终点与所述第二预设时间段的起点之间的运动轨迹。a second fitting module, configured to fit the second motion trajectory to a straight line, wherein the second motion trajectory is between an end point of the first preset time period and a start point of the second preset time period Movement track.
  11. 根据权利要求8所述的装置,其特征在于,The device of claim 8 wherein:
    所述确定单元用于在所述目标运动类型为所述连续运动时,确定所述目标关节的运动轨迹计算方法为高阶多项式算法,The determining unit is configured to determine, when the target motion type is the continuous motion, a motion trajectory calculation method of the target joint as a high-order polynomial algorithm,
    所述计算单元用于通过高阶多项式算法拟合起始位置和终点位置之间的运动轨迹,其中,所述运动轨迹经过所述起始位置和所述终点位置之间的预设路径点,所述预设路径点为所述连续运动经过的路径点,The calculation unit is configured to fit a motion trajectory between a start position and an end position by a high-order polynomial algorithm, wherein the motion trajectory passes a preset path point between the start position and the end position, The preset path point is a path point through which the continuous motion passes.
    所述控制单元用于控制所述目标关节按照所述高阶多项式算法拟合的起始位置和终点位置之间的运动轨迹运动。The control unit is configured to control a motion trajectory movement between the start position and the end position of the target joint according to the high-order polynomial algorithm.
  12. 根据权利要求11所述的装置,其特征在于,所述高阶多项式算法为三次多项式算法。The apparatus of claim 11 wherein said higher order polynomial algorithm is a cubic polynomial algorithm.
  13. 根据权利要求12所述的装置,其特征在于,The device according to claim 12, characterized in that
    所述三次多项式算法的运动轨迹表达式为:θ(t)=a0+a1t+a2t2+a3t3,其中,a0表示第一系数,a1表示第二系数,a2表示第三系数,a3表示第四系数,t表示时间,θ(t)表示关节运动的角度,The motion trajectory expression of the cubic polynomial algorithm is: θ(t)=a 0 +a 1 t+a 2 t 2 +a 3 t 3 , where a 0 represents the first coefficient and a 1 represents the second coefficient, a third coefficient a 2, a 3 represents a fourth coefficient, t represents time, θ (t) represents the angle of articulation,
    所述计算单元包括:第一计算模块,用于通过预设的约束条件计算所述第一系数、所述第二系数、所述第三系数和所述第四系数,The calculating unit includes: a first calculating module, configured to calculate the first coefficient, the second coefficient, the third coefficient, and the fourth coefficient by using a preset constraint condition,
    第二计算模块,用于通过所述运动轨迹表达式计算所述目标关节的运动轨迹。 And a second calculating module, configured to calculate a motion trajectory of the target joint by using the motion trajectory expression.
  14. 根据权利要求8所述的装置,其特征在于,所述目标关节包括第一关节和第二关节,所述第一关节的目标运动类型为所述点位运动,所述第二关节的目标运动类型为所述连续运动,所述确定单元包括:The apparatus according to claim 8, wherein said target joint includes a first joint and a second joint, a target motion type of said first joint is said point motion, and a target motion of said second joint The type is the continuous motion, and the determining unit comprises:
    第一确定模块,用于根据所述第一关节的目标运动类型确定所述第一关节的运动轨迹计算方法为抛物线算法,a first determining module, configured to determine, according to the target motion type of the first joint, a motion trajectory calculation method of the first joint as a parabolic algorithm,
    第二确定模块,用于根据所述第二关节的目标运动类型确定所述第二关节的运动轨迹计算方法为高阶多项式算法。The second determining module is configured to determine, according to the target motion type of the second joint, a motion trajectory calculation method of the second joint as a high-order polynomial algorithm.
  15. 一种机器人,其特征在于,包括权利要求8至14中任一项所述的机器人关节运动控制装置。 A robot comprising the robot joint motion control device according to any one of claims 8 to 14.
PCT/CN2017/091971 2016-07-29 2017-07-06 Robot and joint motion control method and device therefor WO2018019111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610619162.2A CN107662205A (en) 2016-07-29 2016-07-29 Robot and its joint motions control method and device
CN201610619162.2 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019111A1 true WO2018019111A1 (en) 2018-02-01

Family

ID=61016115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091971 WO2018019111A1 (en) 2016-07-29 2017-07-06 Robot and joint motion control method and device therefor

Country Status (2)

Country Link
CN (1) CN107662205A (en)
WO (1) WO2018019111A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954081A (en) * 2021-12-07 2022-01-21 中国煤炭科工集团太原研究院有限公司 Working arm track planning method and system of anchor rod support robot
CN114174009A (en) * 2019-09-30 2022-03-11 西门子(中国)有限公司 Method, device and system for controlling robot, storage medium and terminal
CN115592675A (en) * 2022-12-01 2023-01-13 今麦郎饮品股份有限公司(Cn) Control system based on portable drink preparation arm
CN117406756A (en) * 2023-12-06 2024-01-16 苏州元脑智能科技有限公司 Method, device, equipment and storage medium for determining motion trail parameters

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333968B (en) * 2018-02-11 2021-05-25 昆山艾派科技有限公司 Track planning method for single-step motion of robot
CN109304711A (en) * 2018-10-29 2019-02-05 广州卫富科技开发有限公司 Serial manipulator method for planning track
CN111216119B (en) * 2018-11-23 2022-04-15 深圳市优必选科技有限公司 Robot joint motion control method and device and terminal equipment
CN111273783B (en) * 2020-03-25 2023-01-31 北京百度网讯科技有限公司 Digital human control method and device
CN111813115B (en) * 2020-07-08 2023-06-09 山东交通学院 Four-foot complete-flight-item gait control method and system and four-foot robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531006A (en) * 2009-03-31 2009-09-16 清华大学 Power type walking method for biped robot
CN101733750A (en) * 2009-11-05 2010-06-16 浙江大学 Dynamic response spectrum-based method for planning track of robot with clearance at a joint
CN103085072A (en) * 2013-03-11 2013-05-08 南京埃斯顿机器人工程有限公司 Method for achieving industrial robot off-line programming based on three-dimensional modeling software
JP2013248682A (en) * 2012-05-30 2013-12-12 Kobe Steel Ltd Device and method for trajectory control of articulated robot
CN103737603A (en) * 2013-12-27 2014-04-23 柳州职业技术学院 Accuracy control system and control method for mechanical arm on assembly line
CN105171744A (en) * 2015-07-29 2015-12-23 浙江理工大学 Movement control method for five-freedom-degree rotary chain type stacking manipulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235580A (en) * 1997-02-26 1998-09-08 Seiko Seiki Co Ltd Position and force target trajectory generator
CN101850552A (en) * 2010-05-28 2010-10-06 广东工业大学 Industrial robot comprehensive control platform and control method thereof
JP2012051042A (en) * 2010-08-31 2012-03-15 Yaskawa Electric Corp Robot system and robot control device
CN103909522B (en) * 2014-03-19 2016-08-17 华南理工大学 A kind of Six-DOF industrial robot is by the method in unusual territory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531006A (en) * 2009-03-31 2009-09-16 清华大学 Power type walking method for biped robot
CN101733750A (en) * 2009-11-05 2010-06-16 浙江大学 Dynamic response spectrum-based method for planning track of robot with clearance at a joint
JP2013248682A (en) * 2012-05-30 2013-12-12 Kobe Steel Ltd Device and method for trajectory control of articulated robot
CN103085072A (en) * 2013-03-11 2013-05-08 南京埃斯顿机器人工程有限公司 Method for achieving industrial robot off-line programming based on three-dimensional modeling software
CN103737603A (en) * 2013-12-27 2014-04-23 柳州职业技术学院 Accuracy control system and control method for mechanical arm on assembly line
CN105171744A (en) * 2015-07-29 2015-12-23 浙江理工大学 Movement control method for five-freedom-degree rotary chain type stacking manipulator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174009A (en) * 2019-09-30 2022-03-11 西门子(中国)有限公司 Method, device and system for controlling robot, storage medium and terminal
CN114174009B (en) * 2019-09-30 2023-07-21 西门子(中国)有限公司 Method, device, system, storage medium and terminal for controlling robot
CN113954081A (en) * 2021-12-07 2022-01-21 中国煤炭科工集团太原研究院有限公司 Working arm track planning method and system of anchor rod support robot
CN115592675A (en) * 2022-12-01 2023-01-13 今麦郎饮品股份有限公司(Cn) Control system based on portable drink preparation arm
CN115592675B (en) * 2022-12-01 2023-09-12 今麦郎饮品股份有限公司 Control system based on mobile beverage preparation mechanical arm
CN117406756A (en) * 2023-12-06 2024-01-16 苏州元脑智能科技有限公司 Method, device, equipment and storage medium for determining motion trail parameters
CN117406756B (en) * 2023-12-06 2024-03-08 苏州元脑智能科技有限公司 Method, device, equipment and storage medium for determining motion trail parameters

Also Published As

Publication number Publication date
CN107662205A (en) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2018019111A1 (en) Robot and joint motion control method and device therefor
JP6717164B2 (en) Operation route planning method
US10065306B2 (en) Traveling robot, motion planning method for traveling robot, and storage medium storing program for traveling robot
JP6347595B2 (en) Robot control method and robot control apparatus
WO2018086226A1 (en) Control method and apparatus for robotic arm
TWI704039B (en) Mechanical arm singular point control method and system
US20130317646A1 (en) Robot program changing device
Hauser Fast Interpolation and Time-Optimization on Implicit Contact Submanifolds.
CN111553239B (en) Robot joint vision servo control method, terminal equipment and storage medium
Moro et al. An attractor-based whole-body motion control (WBMC) system for humanoid robots
JPH01316187A (en) Method of controlling movement of joint type arm
CN108908347A (en) One kind is towards redundancy mobile mechanical arm error-tolerance type repetitive motion planning method
Faulwasser et al. Predictive path-following control: Concept and implementation for an industrial robot
JP4667764B2 (en) Route setting method
JP2016120549A (en) Robot control method and robot control device
CN113084792A (en) Method for determining joint singular area, robot and storage device
WO2023077618A1 (en) Robot trajectory tracking control method, magnetic medical robot and storage medium
Arreguit et al. Fast multi-contact whole-body motion planning with limb dynamics
Kjærgaard et al. Generic trajectory representation and trajectory following for wheeled robots
JPH05324044A (en) Locus control system for robot
JP7060700B2 (en) Coordination system, handling equipment and method
CN112975986A (en) Mechanical arm point-to-point trajectory planning method and device based on radial basis function
Tho et al. Optimal Control of Payload's Skew Rotation in Crane Systems with State and Control Input Constraints
JP6447278B2 (en) Multipoint contact robot, control method and program for multipoint contact robot
Liu Trajectory planning and control algorithm of industrial robot manipulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833414

Country of ref document: EP

Kind code of ref document: A1