WO2018018662A1 - 一种空蚀累积加工方法及其装置 - Google Patents

一种空蚀累积加工方法及其装置 Download PDF

Info

Publication number
WO2018018662A1
WO2018018662A1 PCT/CN2016/094100 CN2016094100W WO2018018662A1 WO 2018018662 A1 WO2018018662 A1 WO 2018018662A1 CN 2016094100 W CN2016094100 W CN 2016094100W WO 2018018662 A1 WO2018018662 A1 WO 2018018662A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavitation
workpiece
pressure
high pressure
accumulation processing
Prior art date
Application number
PCT/CN2016/094100
Other languages
English (en)
French (fr)
Inventor
王匀
王建杰
曾亚维
赵康梅
陈哲
许桢英
杨夏明
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2018018662A1 publication Critical patent/WO2018018662A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/10Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to cutting or desurfacing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D81/00Methods, machines, or devices for working metal, covered by more than one main group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding

Definitions

  • the invention relates to the field of mechanical manufacturing and material molding, and particularly relates to the technical field of material removal processing, and particularly relates to a cavitation accumulation processing method and a device thereof.
  • the processing methods for these difficult-to-machine materials and micro-components mainly include traditional machining, micro-EDM machining, laser processing, electron beam processing, micro-electro-corrosion processing, ion beam processing, micro-plastic forming processing, LIGA and quasi-LIGA processes. Wait.
  • Micro-EDM mainly has the effects of short circuit, open circuit or arc discharge, reducing processing efficiency and precision.
  • problems such as electrode loss, difficulty in tool compensation, and slow processing speed in laser processing; laser processing and electron beam processing are costly, equipment is expensive, laser processing parts have recast layers, and surface quality is poor; micro-electro-corrosion processing Scattered corrosion and corrosion of peripheral equipment; ion beam processing vacuum system and complete set of special equipment are expensive; the workpiece is deformed during microplastic forming, and is limited by the size of the tool, it is difficult to process the micro structure, and the punch The preparation and clamping requirements are also very high; LIGA and quasi-LIGA process technology have large investment and complicated processing. How to solve these problems and propose a new processing concept and processing method is a huge challenge.
  • the present invention proposes a completely new processing method, which is currently not involved at home and abroad, so the method has great development potential.
  • the use of high-pressure water jets creates cavitation effects and is used to process a variety of difficult-to-shape materials and micro-components.
  • a cavitation cumulative machining method characterized in that the workpiece material to be processed comprises a hardness of (80-700) HV Metal material
  • a cavitation cumulative processing method comprises the following steps:
  • the high-pressure pump group outputs high-pressure water flow, which is measured by a pressure regulating valve and a pressure gauge.
  • the water jet pressure p 2 ⁇ 80 MPa, and the high-pressure water jet is ejected from the cavitation nozzle;
  • the workpiece is cavitation and ablation layer by layer, and finally the cumulative effect forms the desired shape.
  • the material hardness of the mask is HV800HV, such as special ceramics, diamonds, rubies, etc.
  • An apparatus for performing the above-described cavitation accumulation processing method comprising a jet generation system, a high pressure submerged system, a pool, a high pressure hose, and a filter, the jet generation system including a high pressure pump set, a pressure gauge, a pressure regulating valve, and a cavitation a nozzle;
  • the high pressure submerged system comprises a high pressure vessel, a pressure gauge, a drain valve, a pressure reducing valve, an exhaust valve and a workpiece holding device;
  • the high pressure vessel is a closed container, and an exhaust valve, a pressure reducing valve and a pressure gauge are arranged above,
  • a drain valve is arranged below, a cavitation nozzle and a workpiece clamping device respectively disposed at two ends of the high-pressure vessel;
  • the cavitation nozzle is connected to the pressure gauge through a high-pressure hose;
  • the pressure gauge is sequentially connected with the pressure regulating valve and the high pressure through the high-pressure hose
  • the above-mentioned cavitation accumulation processing method is implemented.
  • the stagnation pressure caused by the block of the workpiece causes the cavitation group to collapse, and the single collapse cavitation is in the region of the surface diameter of the workpiece of about 10 ⁇ m.
  • a hot spot of about 5000 ⁇ 200K is generated inside to weaken the material melt, which reduces the fatigue threshold of the material, and the high-frequency shock wave at high frequency Under the combined action, the material is fatigue-fractured, forming a circular block-like ablation, and the material is manufactured.
  • the present invention has the following beneficial effects:
  • a new processing concept and processing method are proposed.
  • the removal of the workpiece by the thermal effect of cavitation generated by the high-pressure hydraulic jet can fully exploit the potential beneficial value of the cavitation effect and promote the diversification of the workpiece processing method.
  • the application of the mask technology, the high hardness and high heat resistance of the mask material can effectively protect the non-machined surface of the workpiece, make the workpiece forming and forming more accurate, and the forming effect is better.
  • the thermal decay rate is up to 1000K/s, which is a cold processing method. After melting and weakening, the material needs to remove the small ablation force, which will not cause cracks in the workpiece processing position. Therefore, the strength and fatigue resistance of the workpiece can be ensured. At the same time, it is also convenient for subsequent processing of the workpiece.
  • the device is simple in operation, easy to maintain, low in cost, small in environmental impact, and has high potential value.
  • Figure 1 is a schematic illustration of the apparatus of the present invention.
  • Fig. 2 is a schematic view showing the workpiece point ablation processing by single bubble cavitation collapse.
  • Fig. 3 is a schematic view showing the single-point single-layer ablation processing of the workpiece by group bubble cavitation collapse.
  • Fig. 4 is a schematic view showing a single-point single-layer ablation process of a mask type group bubble cavitation collapse workpiece.
  • Figure 5 is a schematic view of a through-hole mask cover.
  • Figure 6 is a plan view of Figure 5.
  • FIG. 1 is a schematic view of a method and apparatus for processing a workpiece 14 based on a high pressure water jet cavitation effect, comprising sequentially connecting a pool 1, a filter 2, and a jet generation system, and the jet generation system and the high pressure submerged system pass cavitation
  • the nozzle 12 is disposed at one end of the high pressure vessel 11 to create a connection relationship; wherein the jet flow generation system includes a high pressure pump set 3, a pressure regulating valve 4, a pressure gauge 5, and a cavitation nozzle 12; the high pressure submerged system includes a high pressure vessel 11
  • the exhaust valve 8, the pressure reducing valve 6, and the pressure gauge 7, the drain valve 10 is disposed below; the workpiece holding device 9 is located at one end of the high pressure vessel 11, and is disposed symmetrically with the cavitation nozzle 12.
  • FIG. 2 is a schematic diagram of a 14-point ablation process of a single bubble cavitation collapse.
  • the water flow generates a bubble 15 in the cavitation nozzle 12, and the bubble 15 collides with the jet to the surface of the workpiece 14 to collapse, and the surface diameter of the workpiece 14 is 10 ⁇ m.
  • geographic range A hot spot of about 5000 ⁇ 200K is generated inside to melt and weaken the material, and a high-pressure shock wave of GPa level is generated to vertically act on the surface of the workpiece 14, and the ablation point 16 is generated.
  • FIG. 3 is a schematic diagram of a single-point single-layer ablation process of a workpiece 14 in a group bubble cavitation collapse, in which a water flow generates a bubble 15 in the cavitation nozzle 12, and a bubble group is formed in the effective diameter range of the water jet to the surface of the workpiece 14.
  • a circular coverage having a certain size is formed, and the layered ablation domain 18 is created by the overlap effect of the ablation points 16 of the group of bubbles.
  • FIG. 4 is a schematic diagram of a single-point single-layer ablation process of a mask-type group bubble cavitation collapse workpiece 14 , and a single-point single-layer ablation process of the workpiece 14 is performed relative to the unmasked group bubble cavitation collapse in FIG.
  • the high hardness and high heat resistance of the mask material can effectively protect the non-machined surface of the workpiece, improve the dimensional accuracy of the workpiece and the smoothness of the inner surface of the round hole.
  • FIG. 5 and 6 are schematic views showing the bonding of the through-hole mask 19 and the workpiece 14.
  • the mask 19 and the workpiece 14 are bonded by a tablet, and the roughness values of the bonding surfaces of the mask 19 and the workpiece 14 are both 1.6 ⁇ m.
  • the mask 19 is made of super-hard nano-ceramic, but this does not imply that other high-hardness materials cannot be used.
  • the filter 2 supplies a clean water source to the high pressure pump group 3 through the connecting pipe, and is sent to the cavitation nozzle 12 to be ejected;
  • the position and trajectory of the workpiece holding device 9 is controlled, starting from the center of the circle on the surface of the workpiece 14 where the through hole is located, and the trajectory is changed in a spiral shape within 6 minutes.
  • the outer part is layer-by-layer to material ablate the workpiece 14;
  • each of the processing completes an ablation layer, and the workpiece holding device 9 controls the workpiece 14 to advance to the cavitation nozzle 12 by 0.5 mm;
  • the through-hole mask 19 and the workpiece 14 are bonded by a tableting method, and are fixed on the workpiece holding device 9;
  • the filter 2 supplies a clean water source to the high pressure pump group 3 through the connecting pipe, and is sent to the cavitation nozzle 12 to be ejected;
  • the position and trajectory of the workpiece holding device 9 is controlled, and the circular center of the surface of the workpiece 14 on which the through hole is located is taken as a starting point, and a trajectory change is performed in 4 minutes, which is spirally formed.
  • the outer part is layer-by-layer to material ablate the workpiece 14;
  • processing completes an ablation layer, and the workpiece holding device 9 controls the workpiece 14 to advance to the cavitation nozzle 12 by 0.8 mm;
  • Steps (8) to (9) are repeated.
  • the pose trajectory of the workpiece holding device 9 is controlled to end cavitation erosion, and finally the cumulative effect forms the size shape of the through hole required.
  • Example 2 The processing efficiency of Example 2 was increased by 40% with respect to Example 1, the dimensional accuracy was improved by two orders of magnitude, and the roughness of the inner surface of the machined hole was reduced by 1.6 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nozzles (AREA)
  • Laser Beam Processing (AREA)

Abstract

公开了一种空蚀累积加工方法及装置。所述空蚀累积加工方法利用高压水射流制造空化效应来对工件进行剥蚀加工,累积形成所需要的形状。所述装置包括射流发生系统、高压淹没系统、水池(1)、高压软管(13)和过滤器(2)。该装置结构简单,成本较低,环境影响小,能够对各种难成形材料及微型制件进行加工。

Description

一种空蚀累积加工方法及其装置 技术领域
本发明涉及机械制造、材料成型领域,具体涉及去材制造加工技术领域,特指一种空蚀累积加工方法及其装置。
背景技术
在工业领域中,各种难成形材料及微型制件使用的场合越来越多,如高强度钢、高性能铝合金、钛合金的应用,镁合金应用的逐步扩大,结构向微型化发展,成形难度越来越大,既有材料性能提高带来的加工难度,也有制件结构微小带来的复杂性,例如钢的由250MPA提高到1000MPA,塑性由45%降低到12%,铝合金的强度由150MPA提高到530MPA,塑性由30%降低到10%。如何找到一种加工精度高、生产成本低、适应性较强,特别适合于这些难加工材料及微型制件的加工方法是目前迫切需要解决的问题。
目前对于这些难加工材料及微型制件的加工方法主要有传统机械加工、微细电火花加工、激光加工、电子束加工、微细电腐蚀加工、离子束加工、微塑性成形加工、LIGA和准LIGA工艺等。总的来说,目前各类加工方法存在以下问题:
传统机械加工对刀具材料和微型制件的尺寸的要求较严格,进而提高了加工成本并限制其适用范围;微细电火花加工主要存在加工短路、断路或电弧放电作用,降低加工效率和精度,此外,加工中存在电极损耗,刀具补偿困难、加工速度慢等问题;激光加工激光加工和电子束加工成本高,设备贵,激光加工件还有重铸层,且表面质量差;微细电腐蚀加工杂散腐蚀大,且对外围设备有腐蚀;离子束加工的真空系统和整套专用设备价格昂贵;微塑性成形加工中工件存在变形,且受限于刀具尺寸,很难加工出微型结构,且对冲头的制备和装夹要求也很高;LIGA和准LIGA工艺技术投资大,加工过程复杂。如何解决这些难题,提出一种新的加工理念及加工方法是一个巨大的挑战。
为此,本发明提出了一种全新的加工方法,目前这方面国内外没有涉及,所以该方法有着巨大的发展潜力。
发明内容
本发明的目的是提出一种空蚀累积加工方法及其装置。利用高压水射流产生空化效应并以此来进行对各种难成形材料及微型制件的加工。
本发明采用的技术方案是:
一种空蚀累积加工方法,其特征在于,所加工工件材料包括硬度介于(80~700)HV 的金属材料
实施上述的工件加工,本发明所提供的一种空蚀累积加工方法,包含以下步骤:
1)高压容器内注水且水面至空化喷嘴上边缘高度d1≥150mm,并加压使得高压容器内的压力p1=0.6~1.5MPa;
2)改变工件夹持装置与空化喷嘴之间的相对距离d2=30×D,D为空化喷嘴出口直径,使空化溃灭发生在工件表面;
3)高压泵组输出高压水流,通过调压阀控制、压力表测定,水射流压力p2≥80MPa,高压水射流从空化喷嘴射出;
4)经压力传递,单个空泡空化溃灭时在工件表面直径10μm区域范围内会产生约5000±200K的热点进行材料熔融弱化,并产生GPa级高压冲击波垂直作用于工件表面,产生剥蚀点,空泡对工件表面的溃灭频次T=450~500次/s;工件表面的单个空泡空化溃灭时在工件表面产生约为5000±200K的高温以及垂直作用于工件表面的高压冲击波,产生剥蚀点;
5)根据所加工的工件形状和要求,通过控制工件夹持装置的位姿轨迹,逐点逐层对工件进行空化剥蚀,最终累积效应形成所需要的形状。
工件表面覆盖掩膜层,所述掩膜层暴露出部分工件表面;,厚度k=D,其中D为空化喷嘴出口直径,掩膜与工件采用压片式贴合,掩膜与工件的贴合面粗糙度Ra≤1.6μm。掩膜的材料硬度≧800HV,如特种陶瓷、金刚石、红宝石等。
所述高压水射流中空泡群有效覆盖区域d3=(3~5)×D,单点单层加工,所用时间t≤8min,剥蚀层厚度h=(0.5~1.0)mm,剥蚀域面积s=л×(d3/2)2
实施上述的一种空蚀累积加工方法的装置,包括射流发生系统、高压淹没系统、水池、高压软管和过滤器,所述射流发生系统包括高压泵组、压力表、调压阀和空化喷嘴;所述高压淹没系统包括高压容器、压力表、排水阀、减压阀、排气阀和工件夹持装置;高压容器为密闭容器,上方布置有排气阀、减压阀和压力表,下方布置有排水阀,高压容器两端分别设有的空化喷嘴和工件夹持装置;所述空化喷嘴通过高压软管与压力表相连;压力表通过高压软管依次与调压阀、高压泵组、过滤器、水池相连。高压容器由具有高透光性的亚克力材料制成。装置各部件之间的连接处采用法兰密封连接。
实施上述的一种空蚀累积加工方法,基于空泡群运动至工件表面时,因工件阻滞产生的滞止压力促使空泡群溃灭,单个溃灭空泡在工件表面直径约10μm区域范围内产生约5000±200K的热点进行材料熔融弱化,降低了材料的疲劳阀值,在高频次高压冲击波 复合作用下,引起材料的疲劳断裂,形成圆块状剥蚀,实现去材制造。
因此,本发明具有如下有益效果:
1)提出了一种全新的加工理念与加工方法,利用高压水力射流产生的空化的热效应对工件进行去除加工,能够充分挖掘空化效应的潜在有利价值,并推动工件加工方法的多样化。同时掩膜技术的应用,掩膜材料的高硬度、高耐热性,能够有效保护工件非加工表面,使工件的加工成形更准确,成形效果更好。
2)作为一种完全水淹没式加工,热衰减率高达1000K/s,是一种冷态加工方法,且经熔融弱化后,材料去除所需剥蚀力小,不会使工件加工位置产生裂纹,因而能保证工件的强度和耐疲劳性要求。同时,也方便工件的后续加工。
3)装置操作简单,易维护,成本低,环境影响小,具有较高的潜在价值。
附图说明
图1是本发明装置的示意图。
图2是单泡空化溃灭进行工件点剥蚀加工的示意图。
图3是群泡空化溃灭进行工件单点单层剥蚀加工的示意图。
图4是掩膜式群泡空化溃灭工件单点单层剥蚀加工的示意图。
图5是通孔掩膜覆盖件示意图。
图6是图5的俯视图。
图中,1.水池,2.过滤器,3.高压泵组,4.调压阀,5.压力表,6.减压阀,7.压力表,8.排气阀,9.工件夹持装置,10.排水阀,11.高压容器,12.空化喷嘴,13.高压软管,14.工件,15.空泡,16.剥蚀点,17.空泡群,18.剥蚀域,19.掩膜。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明:
图1为本发明一种基于高压水射流空化效应来进行工件14加工的方法及装置的示意图,包括依次连接水池1、过滤器2和射流发生系统,射流发生系统与高压淹没系统通过空化喷嘴12布置于高压容器11的一端而产生连接关系;其中射流发生系统包括依次连接高压泵组3、调压阀4、压力表5和空化喷嘴12;高压淹没系统包括在高压容器11上方布置排气阀8、减压阀6和压力表7,下方布置排水阀10;工件夹持装置9位于高压容器11的一端,与空化喷嘴12呈对称布置。
图2为单泡空化溃灭进行工件14点剥蚀加工的示意图图,水流在空化喷嘴12内产生空泡15,空泡15随射流运动至工件14表面溃灭,在工件14表面直径10μm区域范围 内会产生约5000±200K的热点进行材料熔融弱化,并产生GPa级高压冲击波垂直作用于工件14表面,产生剥蚀点16,空泡对工件14表面的溃灭频次T=450~500次/s。
图3为群泡空化溃灭进行工件14单点单层剥蚀加工的示意图,水流在空化喷嘴12内产生空泡15,在水射流的有效直径范围内形成空泡群,对工件14表面形成具有一定尺寸的圆形覆盖面,利用群泡的剥蚀点16重叠效应,产生层片状剥蚀域18。
图4为掩膜式群泡空化溃灭工件14单点单层剥蚀加工的示意图,相对于图3中无掩膜的群泡空化溃灭进行工件14单点单层剥蚀加工方式,由于掩膜材料的高硬度、高耐热性,能够有效保护工件非加工表面,提高工件的尺寸精度以及圆孔内表面的光洁度。
图5、6为通孔掩膜19与工件14贴合示意图,掩膜19与工件14采用压片式贴合,掩膜19、工件14二者贴合面的粗糙度值均取为1.6μm,掩膜19材质为超硬纳米陶瓷,但这并不暗示不可以采用其它高硬度材质。
实施例1:本实施例所用工件14材料为硬度HB=200的普通钢,结合附图详细说明空蚀累积厚度H=5mm,直径D1=10mm通孔加工,其包含以下步骤:
(1)启动高压泵组,空载运行10分钟,各项指标正常;
(2)控制调压阀,待压力表5缓慢升至150MPa,持续30分钟,显示高压泵组运行正常,系统无明显泄露,压力稳定,满足实施要求;
(3)高压容器11内注水且水面至空化喷嘴12上边缘高度d1=180mm,并加压使得高压容器11内的压力p1=1.0MPa;
(4)打开电源开关,水池1中水经连接管输送至过滤器2;
(5)过滤器2通过连接管向高压泵组3提供洁净水源,并输送至空化喷嘴12射出;
(6)通过调压阀调节水流压力,经压力表5测定水射流压力p2=80MPa;
(7)设定工件夹持装置9与空化喷嘴12之间相对距离d2=30×D=2.4mm,其中D=0.8mm为空化喷嘴12出口直径;
(8)根据所加工的通孔的尺寸,控制工件夹持装置9的位姿轨迹,以通孔所在工件14表面的圆形的圆心为起始点,6min进行一次轨迹变动,呈螺旋状由内而外逐点逐层对工件14进行材料剥蚀;
(9)每加工完成一个剥蚀层,由工件夹持装置9控制工件14向空化喷嘴12推进0.5mm;
(10)重复步骤(8)~(9),当剥蚀深度达到H时,控制工件夹持装置9的位姿轨 迹结束空化剥蚀,最终累积效应形成所需要通孔的尺寸形状。
实施例2:本实施例所用工件14材料为硬度HB=200的普通钢,结合附图详细说明空蚀累积厚度H=5mm,直径D1=10mm通孔加工,其包含以下步骤:
(1)通孔掩膜19与工件14采用压片方式进行贴合,并固定在工件夹持装置9上;
(2)启动高压泵组,空载运行10分钟,各项指标正常;
(3)控制调压阀,待压力表5缓慢升至150MPa,,持续30分钟,显示高压泵组运行正常,系统无明显泄露,压力稳定,满足实施要求;
(4)高压容器11内注水且水面至空化喷嘴12上边缘高度d1=180mm,并加压使得高压容器11内的压力p1=1.0MPa;
(5)打开电源开关,水池1中水经连接管输送至过滤器2;
(6)过滤器2通过连接管向高压泵组3提供洁净水源,并输送至空化喷嘴12射出;
(7)通过调压阀调节水流压力,经压力表5测定水射流压力p2=150MPa;
(8)设定工件夹持装置9与空化喷嘴12之间相对距离d2=30×D=2.4mm,其中D=0.8mm为空化喷嘴12出口直径;
(9)根据所加工的通孔的尺寸,控制工件夹持装置9的位姿轨迹,以通孔所在工件14表面的圆形的圆心为起始点,4min进行一次轨迹变动,呈螺旋状由内而外逐点逐层对工件14进行材料剥蚀;
(10)加工至该剥蚀层最终成形圈(待剥蚀径向尺寸d4<d3/2)时,控制工件夹持装置9的位姿轨迹,使空化喷嘴12的轴线和工件14表面得交点始终与掩膜19圆孔的边线保持重合;
(11)加工完成一个剥蚀层,由工件夹持装置9控制工件14向空化喷嘴12推进0.8mm;
(12)重复步骤(8)~(9),当剥蚀深度达到H时,控制工件夹持装置9的位姿轨迹结束空化剥蚀,最终累积效应形成所需要通孔的尺寸形状。
实施例2加工效率相对于实施例1提高40%,尺寸精度提高两个数量级,且加工的圆孔内表面粗糙度值降低1.6μm。

Claims (11)

  1. 一种空蚀累积加工方法,其特征在于,利用高压水射流制造空化效应来对工件进行剥蚀加工,累积形成所需要的形状,包含以下步骤:
    A)高压容器(11)内注水且水面至空化喷嘴(12)上边缘高度d1≥150mm,并加压使得高压容器(11)内的压力p1=0.6~1.5MPa;
    B)改变工件夹持装置(9)与空化喷嘴(12)之间的相对距离d2=30×D,D为空化喷嘴(12)出口直径,使空化溃灭发生在工件(14)表面;
    C)高压泵组(3)输出高压水流,通过调压阀(4)控制、压力表(5)测定,水射流压力p2≥80MPa,高压水射流从空化喷嘴(12)射出;
    D)经压力传递,工件(14)表面的单个空泡空化溃灭时在工件(14)表面产生约为5000±200K的高温以及垂直作用于工件(14)表面的高压冲击波,产生剥蚀点(16);
    E)根据所加工的工件(14)形状和要求,通过控制工件夹持装置(9)的位姿轨迹,逐点逐层对工件(14)进行空化剥蚀,最终累积效应形成所需要的形状。
  2. 根据权利要求1所述的一种空蚀累积加工方法,其特征在于,工件表面覆盖掩膜(19)层,所述掩膜(19)层暴露出部分工件(14)表面,该暴露部分为工件(14)所需加工的形状。
  3. 根据权利要求2所述的一种空蚀累积加工方法,其特征在于,所述,掩膜(19)与工件采用压片式贴合,掩膜与工件的贴合面粗糙度Ra≤1.6μm。
  4. 根据权利要求2或3所述的一种空蚀累积加工方法,其特征在于,所述掩膜(19)为硬度≧800HV的材料。
  5. 根据权利要求4所述的一种空蚀累积加工方法,其特征在于,所述掩膜(19)为陶瓷、金刚石或红宝石。
  6. 根据权利要求1、2或3所述的一种空蚀累积加工方法,其特征在于,所述高压水射流中空泡群有效覆盖区域d3=(3~5)×D,单点单层加工,所用时间t≤8min,剥蚀层厚度h=(0.5~1.0)mm,剥蚀域(18)面积s=л×(d3/2)2
  7. 根据权利要求1、2或3所述的一种空蚀累积加工方法,其特征在于,所述工件(14)的材料为硬度介于(80~700)HV的金属材料。
  8. 实施权利要求1~6中任意一项所述的一种空蚀累积加工方法的装置,其特征在于,包括射流发生系统、高压淹没系统、水池(1)、高压软管(13)和过滤器(2),所述射流 发生系统包括高压泵组(3)、压力表(5)、调压阀(4)和空化喷嘴(12);所述高压淹没系统包括高压容器(11)、压力表(7)、排水阀(10)、减压阀(6)、排气阀(8)和工件夹持装置(9);高压容器(11)为密闭容器,上方布置有排气阀(8)、减压阀(6)和压力表(7),下方布置有排水阀(10),高压容器(11)两端分别设有的空化喷嘴(12)和工件夹持装置(9);所述空化喷嘴(12)通过高压软管(13)与压力表(5)相连;压力表(5)通过高压软管(13)依次与调压阀(4)、高压泵组(3),所述高压泵组(3)通过高压软管(13)与过滤器(2)相连,所述过滤器(2)连接水池(1)。
  9. 根据权利要求4所述的一种空蚀累积加工装置,其特征在于,高压容器(11)由具有高透光性的亚克力材料制成。
  10. 根据权利要求4或5所述的一种空蚀累积加工装置,其特征在于,所述空化喷嘴(12)出口直径D=0.6~1.2mm。
  11. 根据权利要求4或5所述的一种空蚀累积加工装置,其特征在于,所述装置各部件之间的连接处采用法兰密封连接。
PCT/CN2016/094100 2016-07-26 2016-08-09 一种空蚀累积加工方法及其装置 WO2018018662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610589350.5A CN106181100B (zh) 2016-07-26 2016-07-26 一种空蚀累积加工方法及其装置
CN201610589350.5 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018018662A1 true WO2018018662A1 (zh) 2018-02-01

Family

ID=57494810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094100 WO2018018662A1 (zh) 2016-07-26 2016-08-09 一种空蚀累积加工方法及其装置

Country Status (2)

Country Link
CN (1) CN106181100B (zh)
WO (1) WO2018018662A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216770A (zh) * 2016-07-26 2016-12-14 江苏大学 一种基于高压水射流空化效应的加工方法及装置
CN108533434A (zh) * 2018-01-25 2018-09-14 中国第汽车股份有限公司 一种喷油器中孔内壁面强化装置及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528704A (en) * 1968-07-17 1970-09-15 Hydronautics Process for drilling by a cavitating fluid jet
US3713699A (en) * 1971-08-26 1973-01-30 Hydronautics System for eroding solids with a cavitating fluid jet
IE55031B1 (en) * 1980-12-12 1990-05-09 Hydronautics Enhancing liquid jet erosion
JP2005096032A (ja) * 2003-09-25 2005-04-14 Susumu Kitagawa ワークの表面加工装置
CN101028662A (zh) * 2007-03-23 2007-09-05 哈尔滨工业大学(威海) 无磨料超声加工工艺
CN101886160A (zh) * 2010-07-06 2010-11-17 中国矿业大学 乳化液射流金属表面改性方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479682B (zh) * 2010-11-30 2013-12-04 京东方科技集团股份有限公司 一种离地剥离的方法和tft阵列基板的制作方法
JP5900961B2 (ja) * 2012-06-15 2016-04-06 東北電力株式会社 金属短線の洗浄装置および金属短線の洗浄方法
CN103247219A (zh) * 2013-05-10 2013-08-14 江南大学 切削射流支撑综合实验装置
CN203440128U (zh) * 2013-06-01 2014-02-19 中国人民解放军后勤工程学院 一种射流空化破乳设备
JP2016078181A (ja) * 2014-10-17 2016-05-16 日立Geニュークリア・エナジー株式会社 ウォータージェットピーニング装置およびウォータージェットピーニング方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528704A (en) * 1968-07-17 1970-09-15 Hydronautics Process for drilling by a cavitating fluid jet
US3713699A (en) * 1971-08-26 1973-01-30 Hydronautics System for eroding solids with a cavitating fluid jet
IE55031B1 (en) * 1980-12-12 1990-05-09 Hydronautics Enhancing liquid jet erosion
JP2005096032A (ja) * 2003-09-25 2005-04-14 Susumu Kitagawa ワークの表面加工装置
CN101028662A (zh) * 2007-03-23 2007-09-05 哈尔滨工业大学(威海) 无磨料超声加工工艺
CN101886160A (zh) * 2010-07-06 2010-11-17 中国矿业大学 乳化液射流金属表面改性方法

Also Published As

Publication number Publication date
CN106181100B (zh) 2019-05-31
CN106181100A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
Leone et al. Experimental investigation on laser milling of aluminium oxide using a 30 W Q-switched Yb: YAG fiber laser
Ahmed et al. Laser ablation and laser-hybrid ablation processes: a review
Zhu et al. A review of hybrid manufacturing processes–state of the art and future perspectives
Darwish et al. A comparison of laser beam machining of micro-channels under dry and wet mediums
CN113732515B (zh) 可控液流-振动耦合辅助激光铣抛加工方法与系统
CN103521933B (zh) 一种激光诱导冲击波辅助激光打孔方法
CN104493365A (zh) 一种水射流-激光刻蚀陶瓷的装置及方法
CN106112280A (zh) 一种激光穿孔加工方法
CN104439710A (zh) 一种水射流辅助激光化学刻蚀的装置及方法
CN110625272B (zh) 一种利用化学腐蚀冰层辅助激光加工低锥度微孔的装置及方法
WO2018018662A1 (zh) 一种空蚀累积加工方法及其装置
CN112658446B (zh) 一种激光诱导等离子体微细加工装置及方法
Shi et al. Effects of ultrasonic assistance on microhole drilling based on Nd: YAG laser trepanning
CN204366265U (zh) 一种水射流辅助激光化学刻蚀的装置
CN106216770A (zh) 一种基于高压水射流空化效应的加工方法及装置
CN103521936B (zh) 一种激光诱导冲击波辅助激光打孔装置
CN101708596A (zh) 应用水射流技术去除微小孔内孔毛刺的方法
Wang et al. Comparison of percussion laser drilling quality with and without water-based ultrasonic assistance
Zhang et al. Effect of electrochemical dissolving in laser drilling assisted with jet electrochemical machining
Liu et al. Versatility of waterjet technology: from macro and micro machining for most materials
CN113584568B (zh) 一种金属微细结构的电化学高精度抛光方法
CN204621369U (zh) 一种水射流-激光刻蚀陶瓷的装置
Shanu et al. Micromachining of alumina ceramic for microsystems applications: a systematic review, challenges and future opportunities
Zhang et al. Process characteristics of electrochemical discharge machining and hybrid methods: a review
CN107385432A (zh) 一种油缸部件表面制备钴基合金涂层的激光熔覆方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910242

Country of ref document: EP

Kind code of ref document: A1