WO2018018655A1 - 激光冲击石墨烯或氧化石墨烯涂层的表面强化方法 - Google Patents

激光冲击石墨烯或氧化石墨烯涂层的表面强化方法 Download PDF

Info

Publication number
WO2018018655A1
WO2018018655A1 PCT/CN2016/093920 CN2016093920W WO2018018655A1 WO 2018018655 A1 WO2018018655 A1 WO 2018018655A1 CN 2016093920 W CN2016093920 W CN 2016093920W WO 2018018655 A1 WO2018018655 A1 WO 2018018655A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
graphene
graphene oxide
layer
strengthening
Prior art date
Application number
PCT/CN2016/093920
Other languages
English (en)
French (fr)
Inventor
胡增荣
詹耀辉
林栋�
陈长军
徐家乐
郭华锋
张敏
王晓南
孙茜
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2018018655A1 publication Critical patent/WO2018018655A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat

Definitions

  • the invention relates to the field of surface strengthening technology, in particular to a surface strengthening method for laser impact graphene or graphene oxide coating.
  • Graphene is a two-dimensional crystal composed of carbon atoms and having only one atomic thickness.
  • the physicists of the University of Manchester, André Gem and Konstantin Novoselov succeeded in separating graphene from graphite, confirming that it can exist alone, and the two jointly won the 2010 Nobel Bell Physics Award.
  • graphene was the thinnest material and the toughest material, with a breaking strength 200 times higher than the best steel. At the same time, it has good elasticity and can reach 20% of its own size. It is the thinnest and strongest material in nature. If you use a piece of graphene with a square meter of 1 square meter to make a hammock, you can bear a kilogram of cat by weighing less than 1 milligram.
  • Surface strengthening technology is of great importance in various fields. It can improve the surface properties of mechanical parts and components. It can improve fatigue strength and wear resistance. Surface strengthening sometimes improves corrosion resistance.
  • the surface of the part subjected to load is often under maximum stress and works in different media environments. Therefore, the failure and damage of the parts mostly occur on the surface or from the surface, such as introducing a certain residual compressive stress on the surface layer of the part.
  • surface strengthening technology the surface hardness can be increased, the surface structure can be improved, etc., and the parts can be significantly improved. Fatigue strength and wear resistance.
  • Common surface strengthening techniques include surface heat treatment, surface chemical treatment and surface mechanical treatment.
  • Surface mechanical treatment mainly includes shot peening and rolling.
  • these commonly used surface strengthening treatment techniques are relatively complicated, low in efficiency, and generally effective in strengthening.
  • Laser shock reinforced technology is a high-tech that utilizes the plasma shock wave generated by a strong laser beam to improve the fatigue resistance, wear resistance and corrosion resistance of metal materials. It has the advantages of non-contact, no heat affected zone, strong controllability and significant strengthening effect.
  • an object of the present invention is to provide a surface strengthening method for laser impact graphene or graphene oxide coating, which is simple in process, convenient in operation, high in enhancement efficiency, and good in reinforcing effect.
  • the invention provides a surface strengthening method for laser impact graphene or graphene oxide coating, which comprises the following steps:
  • Step (1) applying graphene, graphene oxide or a mixture of the two to the surface of the material substrate to be strengthened to form a coating;
  • Step (2) providing an aluminum foil as an absorbing layer on the coating
  • Step (3) providing optical glass or silica gel as a constraining layer on the absorption layer;
  • the principle of laser shock enhancement is: laser shock scanning of the absorption layer by pulsed laser, the laser is irradiated through the constraining layer onto the absorption layer, and the absorption layer absorbs laser energy. Rapid gasification simultaneously forms a large number of high-temperature and high-pressure plasmas. The plasma rapidly expands to form a high-strength shock wave. The shock wave acts on the coating. Part of the coating is pressed into the surface layer of the material by the shock wave. Part of the coating acts closely and fits to the material. The surface layer of the substrate acts to strengthen the surface of the material substrate;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the constraining layer and the absorbing layer remaining on the material matrix are removed to obtain a surface-hardened material matrix.
  • the thickness of the coating described in the step (1) is 20 to 60 ⁇ . Meter.
  • the absorbent layer described in the step (2) is an aluminum foil having a thickness of 80 to 300 ⁇ m.
  • the constraining layer described in the step (3) is an optical glass having a thickness of 1.6 to 5.0 mm.
  • the optical glass is K7 optical glass or K9 optical glass, and K7 optical glass or K9 optical glass has high laser light transmittance.
  • the constraining layer described in the step (3) is a silica gel having a thickness of 1.0 to 2.2 mm.
  • the speed of the laser shock scanning described in the step (4) is from 0.5 to 1.5 mm/s.
  • the scanning pitch of the laser shock scanning described in the step (4) is 0.75 to 1.25 mm.
  • the laser emitter of the laser pulse described in the step (4) is a Nd:YAG laser having a wavelength of 1064 nm and a pulse width of 15 to 20 ns.
  • the pulse energy of the laser pulse described in the step (4) ranges from 9 to 30 J, and the spot diameter is from 1 to 3 mm.
  • the present invention has at least the following advantages: the laser shock itself has a very good surface strengthening effect, and the method of the present invention implants graphene, graphene oxide or a mixture of the two into the surface layer of the material by laser shock, utilizing Their own characteristics can better strengthen the surface of the material, and the processing process is simple, the efficiency is high, the strengthening effect is good, and the corrosion resistance, fatigue resistance and wear resistance of the material can be improved.
  • FIG. 1 is a schematic view showing the principle of a surface strengthening method of a laser-impacted graphene or graphene oxide coating according to the present invention.
  • Embodiment 1 A method for surface strengthening of a laser impact graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 20 ⁇ m thick graphene oxide on the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 80 ⁇ m thick aluminum foil on the graphene oxide
  • Step (3) providing a 1.6 mm thick K7 optical glass on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser having a wavelength of 1064 nm, a pulse width of 15 ns, a pulse energy of 9 J, and a spot diameter of 1 mm, and performing laser shock scanning on the aluminum foil, the scanning speed is 0.5 mm/s, and the scanning pitch is 0.75mm, the laser is irradiated onto the aluminum foil through the K7 optical glass.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts on the graphene oxide and partially oxidizes.
  • Graphene is pressed into the surface layer of the material matrix by the shock wave, and part of the graphene oxide acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the K7 optical glass and the aluminum foil remaining on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 2 A surface strengthening method for laser impacting graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 60 ⁇ m thick graphene oxide to the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 300 micron thick aluminum foil on the graphene oxide
  • Step (3) providing a layer of 5 mm thick K7 optical glass on the aluminum foil;
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts on the graphene oxide.
  • Graphene oxide is shock wave Pressed into the surface layer of the material matrix, part of the graphene oxide acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the K7 optical glass and the aluminum foil remaining on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 3 A surface strengthening method for laser impacting graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 20 ⁇ m thick graphene on the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 80 micron thick aluminum foil on the graphene
  • Step (3) providing a 1.6 mm thick K9 optical glass on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser having a wavelength of 1064 nm, a pulse width of 15 ns, a pulse energy of 9 J, and a spot diameter of 1 mm, and performing laser shock scanning on the aluminum foil, the scanning speed is 0.5 mm/s, and the scanning pitch is 0.75mm, the laser is irradiated onto the aluminum foil through the K9 optical glass.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts on the graphene, and part of the graphite
  • the olefin is pressed into the surface layer of the material matrix by the shock wave, and part of the graphene acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the K9 optical glass and the aluminum foil remaining on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 4 A surface strengthening method for laser impacting graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying a mixture of 20 ⁇ m thick graphene and graphene oxide on the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 120 micron thick aluminum foil on the mixture
  • Step (3) providing a 1.6 mm thick K9 optical glass on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser having a wavelength of 1064 nm, a pulse width of 15 ns, a pulse energy of 9 J, and a spot diameter of 1 mm, and performing laser shock scanning on the aluminum foil at a scanning speed of 0.5mm/s, the scanning pitch is 0.75mm, the laser is irradiated onto the aluminum foil through the K9 optical glass.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large number of high-temperature and high-pressure plasmas.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts.
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the K9 optical glass and the aluminum foil remaining on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 5 A surface strengthening method for laser impact graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 60 ⁇ m thick graphene to the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 300 micron thick aluminum foil on the graphene
  • Step (3) providing a layer of 2.2 mm thick silica gel on the aluminum foil;
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave.
  • the shock wave acts on the graphene, and some of the graphene is The shock wave is pressed into the surface layer of the material matrix, and part of the graphene acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the residual silica gel and aluminum foil on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 6 A surface strengthening method for laser impact graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 20 ⁇ m thick graphene oxide on the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 80 ⁇ m thick aluminum foil on the graphene oxide
  • Step (3) providing a layer of 1.0 mm thick silica gel on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a wavelength of 1064 nm and a pulse width of 15 ns, pulse energy
  • the pulsed laser with a diameter of 9J and a spot diameter of 1 mm is subjected to laser shock scanning of the aluminum foil.
  • the scanning speed is 0.5 mm/s
  • the scanning pitch is 0.75 mm
  • the laser is irradiated onto the aluminum foil through the silica gel.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes at the same time. A large number of high-temperature and high-pressure plasmas are formed, and the plasma rapidly expands to form a high-intensity shock wave.
  • the shock wave acts on the graphene oxide, and part of the graphene oxide is pressed into the surface layer of the material matrix by the shock wave, and the partial graphene oxide acts closely and adheres to the material.
  • the surface layer of the substrate acts to strengthen the surface of the material substrate;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the residual silica gel and aluminum foil on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 7 A surface strengthening method for laser impacting graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 40 ⁇ m thick graphene oxide to the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 100 micron thick aluminum foil on the graphene oxide
  • Step (3) providing a layer of 3 mm thick K7 optical glass on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser with a wavelength of 1064 nm, a pulse width of 18 ns, a pulse energy of 15 J, and a spot diameter of 2 mm, and a laser shock scan of the aluminum foil, the scanning speed is 1 mm/s, and the scanning pitch is 1mm, the laser is irradiated onto the aluminum foil through the K7 optical glass.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts on the graphene oxide and partially oxidizes the graphite.
  • the olefin is pressed into the surface layer of the material matrix by the shock wave, and the part of the graphene oxide acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the K7 optical glass and the aluminum foil remaining on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 8 A surface strengthening method for laser impacting graphene or graphene oxide coating, comprising the following steps:
  • Step (1) applying 40 ⁇ m thick graphene to the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 150 micron thick aluminum foil on the graphene
  • Step (3) providing a layer of 3 mm thick K9 optical glass on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser with a wavelength of 1064 nm, a pulse width of 18 ns, a pulse energy of 15 J, and a spot diameter of 2 mm, and a laser shock scan of the aluminum foil, the scanning speed is 1 mm/s, and the scanning pitch is 1mm, the laser is irradiated onto the aluminum foil through the K9 optical glass.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave.
  • the shock wave acts on the graphene, and some of the graphene is The shock wave is pressed into the surface layer of the material matrix, and part of the graphene acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the K9 optical glass and the aluminum foil remaining on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 9 A surface strengthening method for laser impacting a graphene or graphene oxide coating, comprising the steps of:
  • Step (1) applying a mixture of 40 ⁇ m thick graphene and graphene oxide on the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 150 micron thick aluminum foil on the mixture
  • Step (3) providing a layer of 1.8 mm thick silica gel on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser with a wavelength of 1064 nm, a pulse width of 18 ns, a pulse energy of 15 J, and a spot diameter of 2 mm, and a laser shock scan of the aluminum foil, the scanning speed is 1 mm/s, and the scanning pitch is 1mm, the light is irradiated onto the aluminum foil through the silica gel.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts on the mixture of graphene and graphene oxide.
  • a mixture of a part of graphene and graphene oxide is pressed into the surface layer of the material substrate by a shock wave, and a mixture of a part of graphene and graphene oxide acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the residual silica gel and aluminum foil on the material substrate are removed to obtain a surface-hardened material matrix.
  • Embodiment 10 A surface strengthening method for laser impacting graphene or graphene oxide coating, comprising The following steps:
  • Step (1) applying a mixture of 40 ⁇ m thick graphene and graphene oxide on the surface of the material substrate to be strengthened;
  • Step (2) providing a layer of 100 micron thick aluminum foil on the mixture
  • Step (3) providing a layer of 1.8 mm thick silica gel on the aluminum foil;
  • Step (4) using a Nd:YAG laser to emit a pulsed laser with a wavelength of 1064 nm, a pulse width of 18 ns, a pulse energy of 15 J, and a spot diameter of 2 mm, and a laser shock scan of the aluminum foil, the scanning speed is 1 mm/s, and the scanning pitch is 1mm, the light is irradiated onto the aluminum foil through the silica gel.
  • the aluminum foil absorbs the laser energy and rapidly vaporizes to form a large amount of high-temperature and high-pressure plasma.
  • the plasma rapidly expands to form a high-intensity shock wave, and the shock wave acts on the mixture of graphene and graphene oxide.
  • a mixture of a part of graphene and graphene oxide is pressed into the surface layer of the material substrate by a shock wave, and a mixture of a part of graphene and graphene oxide acts closely and adheres to the surface layer of the material matrix to strengthen the surface of the material matrix;
  • Step (5) The material matrix after the laser impact is naturally cooled to room temperature, and then the residual silica gel and aluminum foil on the material substrate are removed to obtain a surface-hardened material matrix.
  • graphene, graphene oxide, and a mixture of graphene and graphene oxide are both heated to a liquid and then applied to the surface of the material substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:将石墨烯、氧化石墨烯或两者的混合物溶液涂抹到需要强化的材料基体表面,形成涂层;在涂层上设置铝箔作为吸收层;在吸收层上设置光学玻璃或硅胶作为约束层;用脉冲激光对吸收层进行激光冲击扫描;将激光冲击后的材料基体自然冷却到室温,去除材料基体上的残留物,得到表面强化好的材料基体。

Description

激光冲击石墨烯或氧化石墨烯涂层的表面强化方法
本申请要求了申请日为2016年7月29日,申请号为201610607738.3,发明名称为“激光冲击氧化石墨烯涂层的表面强化方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及表面强化技术领域,尤其涉及一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法。
背景技术
石墨烯(Graphene)是由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。
在2015年末硼烯发现之前,石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。
在运动副和磨损较为剧烈的表面,单独使用石墨烯涂覆层有很多不利之处。比如结合力弱,涂层维持完整性较为困难等。因此人们考虑采用预置粉末激光熔敷的办法将石墨烯添加到零件的表层材料中,制备了石墨烯复合材料熔敷涂层。但在某些情况下激光熔敷,由于热影响较大,熔敷表面粗糙等原因并不适用。
表面强化技术在各领域都具有重要意义,它能够改善机械零件和构件表面性能,它能够提高疲劳强度和耐磨性能,表面强化有时还能提高耐腐蚀性能。
承受载荷的零件表面常处于最大应力状态,并在不同的介质环境中工作。因此,零件的失效和破坏也大多发生在表面或从表面开始,如在零件表层引入一定的残余压应力,通过表面强化技术能够增加表面硬度,改善表层组织结构等,就能显著地提高零件的疲劳强度和耐磨性。
常用表面强化技术有表面热处理、表面化学处理和表面机械处理,表面机械处理主要有喷丸和滚压两种方法。但这些常用的表面强化处理技术工艺比较复杂,效率低,强化效果一般。
激光冲击做为先进的表面强化技术,应用日益广泛,激光冲击强化技术是利用强激光束产生的等离子冲击波,提高金属材料的抗疲劳、耐磨损和抗腐蚀能力的一种高新技术。它具有非接触、无热影响区、可控性强以及强化效果显著等突出优点。
有鉴于上述的缺陷,本设计人,积极加以研究创新,以期创设一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,该方法工艺简单,操作方便,强化效率高,强化效果好。
本发明提出的一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:包括以下步骤:
步骤(1):将石墨烯、氧化石墨烯或两者的混合物涂抹到需要强化的材料基体表面,形成涂层;
步骤(2):在涂层上设置铝箔作为吸收层;
步骤(3):在吸收层上设置光学玻璃或硅胶作为约束层;
步骤(4):用脉冲激光对涂层进行激光冲击扫描,激光冲击强化的原理是:用脉冲激光对吸收层进行激光冲击扫描,激光穿过约束层照射到吸收层上,吸收层吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于涂层,部分涂层被冲击波压入到材料基体表层,部分涂层紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的约束层和吸收层,得到表面强化好的材料基体。
作为本发明方法的进一步改进,步骤(1)中所述的涂层的厚度为20~60微 米。
作为本发明方法的进一步改进,步骤(2)中所述的吸收层为铝箔,厚度为80~300微米。
作为本发明方法的进一步改进,步骤(3)中所述的约束层为光学玻璃,厚度为1.6~5.0毫米。
作为本发明方法的进一步改进,所述的光学玻璃为K7光学玻璃或K9光学玻璃,K7光学玻璃或K9光学玻璃的激光增透性高。
作为本发明方法的进一步改进,步骤(3)中所述的约束层为硅胶,厚度为1.0~2.2毫米。
作为本发明方法的进一步改进,步骤(4)中所述的激光冲击扫描的速度为0.5~1.5mm/s。
作为本发明方法的进一步改进,步骤(4)中所述的激光冲击扫描的扫描间距为0.75~1.25mm。
作为本发明方法的进一步改进,步骤(4)中所述的激光脉冲的激光器发射器为Nd:YAG激光器,波长为1064nm,脉宽为15~20ns。
作为本发明方法的进一步改进,步骤(4)中所述的激光脉冲的脉冲能量范围为9~30J,光斑直径为1~3mm。
借由上述方案,本发明至少具有以下优点:激光冲击本身就有非常好的表面强化效果,本发明方法通过激光冲击将石墨烯、氧化石墨烯或两者的混合物植入到材料表层中,利用它们自身的特性,能够更好的强化材料表面,而且加工过程简单,效率高,强化效果好,同时能够提高材料的耐腐蚀、耐疲劳、抗磨损等性能。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明激光冲击石墨烯或氧化石墨烯涂层的表面强化方法原理示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例一:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹20微米厚的氧化石墨烯;
步骤(2):在氧化石墨烯上设置一层80微米厚的铝箔;
步骤(3):在铝箔上设置一层1.6毫米厚的K7光学玻璃;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为15ns,脉冲能量为9J,光斑直径为1mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为0.5mm/s,扫描间距为0.75mm,激光穿过K7光学玻璃照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于氧化石墨烯,部分氧化石墨烯被冲击波压入到材料基体表层,部分氧化石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的K7光学玻璃和铝箔,得到表面强化好的材料基体。
实施例二:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹60微米厚的氧化石墨烯;
步骤(2):在氧化石墨烯上设置一层300微米厚的铝箔;
步骤(3):在铝箔上设置一层5毫米厚的K7光学玻璃;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为20ns,脉冲能量为30J,光斑直径为3mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为1.5mm/s,扫描间距为1.25mm,激光穿过K7光学玻璃照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于氧化石墨烯上,部分氧化石墨烯被冲击波 压入到材料基体表层,部分氧化石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的K7光学玻璃和铝箔,得到表面强化好的材料基体。
实施例三:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹20微米厚的石墨烯;
步骤(2):在石墨烯上设置一层80微米厚的铝箔;
步骤(3):在铝箔上设置一层1.6毫米厚的K9光学玻璃;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为15ns,脉冲能量为9J,光斑直径为1mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为0.5mm/s,扫描间距为0.75mm,激光穿过K9光学玻璃照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于石墨烯上,部分石墨烯被冲击波压入到材料基体表层,部分石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的K9光学玻璃和铝箔,得到表面强化好的材料基体。
实施例四:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹20微米厚的石墨烯和氧化石墨烯的混合物;
步骤(2):在混合物上设置一层120微米厚的铝箔;
步骤(3):在铝箔上设置一层1.6毫米厚的K9光学玻璃;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为15ns,脉冲能量为9J,光斑直径为1mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为 0.5mm/s,扫描间距为0.75mm,激光穿过K9光学玻璃照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于石墨烯和氧化石墨烯的混合物上,部分石墨烯和氧化石墨烯的混合物被冲击波压入到材料基体表层,部分石墨烯和氧化石墨烯的混合物紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的K9光学玻璃和铝箔,得到表面强化好的材料基体。
实施例五:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹60微米厚的石墨烯;
步骤(2):在石墨烯上设置一层300微米厚的铝箔;
步骤(3):在铝箔上设置一层2.2毫米厚的硅胶;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为20ns,脉冲能量为30J,光斑直径为3mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为1.5mm/s,扫描间距为1.25mm,激光穿过硅胶照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于石墨烯上,部分石墨烯被冲击波压入到材料基体表层,部分石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的硅胶和铝箔,得到表面强化好的材料基体。
实施例六:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹20微米厚的氧化石墨烯;
步骤(2):在氧化石墨烯上设置一层80微米厚的铝箔;
步骤(3):在铝箔上设置一层1.0毫米厚的硅胶;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为15ns,脉冲能 量为9J,光斑直径为1mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为0.5mm/s,扫描间距为0.75mm,激光穿过硅胶照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于氧化石墨烯上,部分氧化石墨烯被冲击波压入到材料基体表层,部分氧化石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的硅胶和铝箔,得到表面强化好的材料基体。
实施例七:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹40微米厚的氧化石墨烯;
步骤(2):在氧化石墨烯上设置一层100微米厚的铝箔;
步骤(3):在铝箔上设置一层3毫米厚的K7光学玻璃;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为18ns,脉冲能量为15J,光斑直径为2mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为1mm/s,扫描间距为1mm,激光穿过K7光学玻璃照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于氧化石墨烯上,部分氧化石墨烯被冲击波压入到材料基体表层,部分氧化石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的K7光学玻璃和铝箔,得到表面强化好的材料基体。
实施例八:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹40微米厚的石墨烯;
步骤(2):在石墨烯上设置一层150微米厚的铝箔;
步骤(3):在铝箔上设置一层3毫米厚的K9光学玻璃;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为18ns,脉冲能量为15J,光斑直径为2mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为1mm/s,扫描间距为1mm,激光穿过K9光学玻璃照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于石墨烯上,部分石墨烯被冲击波压入到材料基体表层,部分石墨烯紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的K9光学玻璃和铝箔,得到表面强化好的材料基体。
实施例九:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括以下步骤:
步骤(1):在需要强化的材料基体表面涂抹40微米厚的石墨烯和氧化石墨烯的混合物;
步骤(2):在混合物上设置一层150微米厚的铝箔;
步骤(3):在铝箔上设置一层1.8毫米厚的硅胶;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为18ns,脉冲能量为15J,光斑直径为2mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为1mm/s,扫描间距为1mm,光穿过硅胶照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于石墨烯和氧化石墨烯的混合物上,部分石墨烯和氧化石墨烯的混合物被冲击波压入到材料基体表层,部分石墨烯和氧化石墨烯的混合物紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的硅胶和铝箔,得到表面强化好的材料基体。
实施例十:一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,包括 以下步骤:
步骤(1):在需要强化的材料基体表面涂抹40微米厚的石墨烯和氧化石墨烯的混合物;
步骤(2):在混合物上设置一层100微米厚的铝箔;
步骤(3):在铝箔上设置一层1.8毫米厚的硅胶;
步骤(4):用Nd:YAG激光器发出波长为1064nm,脉宽为18ns,脉冲能量为15J,光斑直径为2mm的脉冲激光,对铝箔进行激光冲击扫描,扫描速度为1mm/s,扫描间距为1mm,光穿过硅胶照射到铝箔上,铝箔吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于石墨烯和氧化石墨烯的混合物上,部分石墨烯和氧化石墨烯的混合物被冲击波压入到材料基体表层,部分石墨烯和氧化石墨烯的混合物紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
步骤(5):将激光冲击后的材料基体自然冷却到室温,然后去除材料基体上残留的硅胶和铝箔,得到表面强化好的材料基体。
上述实施例一至十中,石墨烯、氧化石墨烯以及石墨烯和氧化石墨烯混合物均通过加热变成液体后再涂抹到材料基体表面。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:包括以下步骤:
    步骤(1):将石墨烯、氧化石墨烯或两者的混合物涂抹到需要强化的材料基体表面,形成涂层;
    步骤(2):在涂层上设置铝箔作为吸收层;
    步骤(3):在吸收层上设置光学玻璃或硅胶作为约束层;
    步骤(4):用脉冲激光对涂层进行激光冲击扫描,激光冲击强化的原理是:用脉冲激光对吸收层进行激光冲击扫描,激光穿过约束层照射到吸收层上,吸收层吸收激光能量迅速气化同时形成大量的高温高压等离子体,等离子体快速膨胀形成高强度的冲击波,冲击波作用于涂层,部分涂层被冲击波压入到材料基体表层,部分涂层紧密作用并贴合到材料基体表层,对材料基体表面起强化作用;
    步骤(5):将激光冲击后的材料基体冷却到室温,然后去除材料基体上残留的约束层和吸收层,得到表面强化好的材料基体。
  2. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(1)中所述的涂层的厚度为20~60微米。
  3. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(2)中所述的吸收层厚度为80~300微米。
  4. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(3)中所述的约束层为光学玻璃,厚度为1.6~5.0毫米。
  5. 根据权利要求4所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:所述的光学玻璃为K7光学玻璃或K9光学玻璃。
  6. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(3)中所述的约束层为硅胶,厚度为1.0~2.2毫米。
  7. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(4)中所述的激光冲击扫描的速度为0.5~1.5mm/s。
  8. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(4)中所述的激光冲击扫描的间距为0.75~1.25mm。
  9. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(4)中所述的激光脉冲的激光器发射器为Nd:YAG激光器,波长为1064nm,脉宽为15~20ns。
  10. 根据权利要求1所述的激光冲击石墨烯或氧化石墨烯涂层的表面强化方法,其特征在于:步骤(4)中所述的激光脉冲的脉冲能量范围为9~30J,光斑直径为1~3mm。
PCT/CN2016/093920 2016-07-29 2016-08-08 激光冲击石墨烯或氧化石墨烯涂层的表面强化方法 WO2018018655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610607738.3 2016-07-29
CN201610607738.3A CN106222650A (zh) 2016-07-29 2016-07-29 激光冲击氧化石墨烯涂层的表面强化方法

Publications (1)

Publication Number Publication Date
WO2018018655A1 true WO2018018655A1 (zh) 2018-02-01

Family

ID=57534258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093920 WO2018018655A1 (zh) 2016-07-29 2016-08-08 激光冲击石墨烯或氧化石墨烯涂层的表面强化方法

Country Status (2)

Country Link
CN (1) CN106222650A (zh)
WO (1) WO2018018655A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109079316A (zh) * 2018-10-25 2018-12-25 广东工业大学 一种基于激光冲击的标记方法
SE1850174A1 (en) * 2018-02-16 2019-08-17 Munksjoe Ahlstrom Oyj Graphene and graphene paper and its manufacture
CN112958917A (zh) * 2021-02-05 2021-06-15 中国航发中传机械有限公司 一种金属零组件激光冲击标印方法
CN113061400A (zh) * 2021-04-08 2021-07-02 中国航发北京航空材料研究院 一种石墨烯改性的激光冲击强化用胶带及其制备方法
CN114985767A (zh) * 2022-06-21 2022-09-02 武汉大学 复合激光冲击和激光退火的金属增材制造的方法
CN115058584A (zh) * 2022-05-13 2022-09-16 西安交通大学 一种金属颗粒辅助激光温强化的装置及方法
FR3142292A1 (fr) 2022-11-22 2024-05-24 Saft Procede de preparation de composant electrochimique

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207910A (zh) * 2018-10-25 2019-01-15 广东工业大学 一种基于激光冲击的渗碳方法
CN111525086B (zh) * 2020-04-26 2021-12-07 东华大学 一种基于激光冲击技术的锂电池电极的制备方法
CN111549339B (zh) * 2020-05-22 2023-01-24 蚌埠学院 一种增强石墨烯与基材结合牢度的方法
CN112080629B (zh) * 2020-09-04 2021-11-02 武汉大学 一种激光冲击压印复合强化方法
CN113088849B (zh) * 2021-03-09 2022-08-05 武汉大学 激光诱导合成纳米金刚石的复合强化方法
CN113088172B (zh) * 2021-04-08 2022-04-19 中国航发北京航空材料研究院 一种石墨烯改性的激光吸收层涂料及其涂覆方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736214A (zh) * 2010-01-08 2010-06-16 清华大学 一种轻金属表面激光冲击微纳米颗粒注入强化方法
CN102140644A (zh) * 2011-03-18 2011-08-03 江苏大学 一种改变材料表面纳米性能的方法
CN102212655A (zh) * 2011-05-08 2011-10-12 张家港富瑞特种装备股份有限公司 一种激光冲击方法
CN102219499A (zh) * 2011-04-28 2011-10-19 江苏大学 一种提高氧化锌基低压压敏陶瓷薄膜电性能的方法
CN105200226A (zh) * 2015-08-21 2015-12-30 江苏大学 一种提高金属材料疲劳寿命的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736214A (zh) * 2010-01-08 2010-06-16 清华大学 一种轻金属表面激光冲击微纳米颗粒注入强化方法
CN102140644A (zh) * 2011-03-18 2011-08-03 江苏大学 一种改变材料表面纳米性能的方法
CN102219499A (zh) * 2011-04-28 2011-10-19 江苏大学 一种提高氧化锌基低压压敏陶瓷薄膜电性能的方法
CN102212655A (zh) * 2011-05-08 2011-10-12 张家港富瑞特种装备股份有限公司 一种激光冲击方法
CN105200226A (zh) * 2015-08-21 2015-12-30 江苏大学 一种提高金属材料疲劳寿命的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1850174A1 (en) * 2018-02-16 2019-08-17 Munksjoe Ahlstrom Oyj Graphene and graphene paper and its manufacture
WO2019158707A1 (en) 2018-02-16 2019-08-22 Ahlstrom-Munksjö Oyj A method of manufacturing a graphene/graphehe oxide layer and a graphene/graphehe oxide-coated support
EP4177397A1 (en) 2018-02-16 2023-05-10 Ahlstrom-Munksjö Oyj A method of manufacturing a graphene/graphehe oxide layer and a graphene/graphehe oxide-coated support
CN109079316A (zh) * 2018-10-25 2018-12-25 广东工业大学 一种基于激光冲击的标记方法
CN112958917A (zh) * 2021-02-05 2021-06-15 中国航发中传机械有限公司 一种金属零组件激光冲击标印方法
CN113061400A (zh) * 2021-04-08 2021-07-02 中国航发北京航空材料研究院 一种石墨烯改性的激光冲击强化用胶带及其制备方法
CN113061400B (zh) * 2021-04-08 2022-07-12 中国航发北京航空材料研究院 一种石墨烯改性的激光冲击强化用胶带及其制备方法
CN115058584A (zh) * 2022-05-13 2022-09-16 西安交通大学 一种金属颗粒辅助激光温强化的装置及方法
CN114985767A (zh) * 2022-06-21 2022-09-02 武汉大学 复合激光冲击和激光退火的金属增材制造的方法
CN114985767B (zh) * 2022-06-21 2024-02-02 武汉大学 复合激光冲击和激光退火的金属增材制造的方法
FR3142292A1 (fr) 2022-11-22 2024-05-24 Saft Procede de preparation de composant electrochimique

Also Published As

Publication number Publication date
CN106222650A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018018655A1 (zh) 激光冲击石墨烯或氧化石墨烯涂层的表面强化方法
Li et al. The effects of the confining medium and protective layer during femtosecond laser shock peening
Chen et al. Investigation of microstructures and residual stresses in laser peened Incoloy 800H weldments
Yella et al. Laser shock peening studies on SS316LN plate with various sacrificial layers
Tang et al. An enhanced rapid plasma nitriding by laser shock peening
Hu et al. Increasing the capability of laser peen forming to bend titanium alloy sheets with laser-assisted local heating
Dai et al. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations
Zhang et al. Progress in applications of shockwave induced by short pulsed laser on surface processing
CN112080629B (zh) 一种激光冲击压印复合强化方法
Petan et al. Effects of Laser Shock Peening on the Surface Integrity of 18% Ni Maraging Steel.
Ma et al. Microstructure Evolution and Properties of Gradient Nanostructures Subjected to Laser Shock Processing in 300M Ultrahigh‐Strength Steel
JP2006122969A (ja) 金属材料及び金属クラッド材の溶接継手及び鋳造材のレーザピーニング処理
Zang et al. Influence of pulse energy on surface integrity of AZ31 magnesium alloy processed by femtosecond laser shock peening
Zhao et al. The Effects of Laser‐Assisted Ultrasonic Nanocrystal Surface Modification on the Microstructure and Mechanical Properties of 300M Steel
Dudarev et al. Deformation behavior and spalling fracture of a heterophase aluminum alloy with ultrafine-grained and coarse-grained structure subjected to a nanosecond relativistic high-current electron beam
Wu et al. Research on the technical principle and typical applications of laser shock processing
Zhou et al. The mechanism and experimental study on laser peen forming of sheet metal
Ti6Al4V The effect of the Laser Shock Peening (LSP) on the microstructure and properties of the surface layer of Ti6Al4V alloy has been studied. Laser shock processing was accomplished by a high-power Q-switched Nd: YAG laser, operating in a 1,064 µm wavelength range. The laser power density was 1 GW/cm2 and a puls duration 18 ns. Before the laser processing the material was covered by a 50 µm absorption layer and 3 mm layer of water. Investigations of modified surface layer were carried out by scanning (SEM) and transmission electron microscopy (TEM). The chemical composition of treated surface
Jia et al. Recent progress in laser shock peening: Mechanism, laser systems and development prospects
Cao et al. The residual stress distribution and fatigue property of TC4 laser-welded joint treated by laser shock peening
García-Santibañez et al. Study of wear processes generated by cavitation phenomena produced by laser induced dielectric breakdown on borided and non-borided 316L stainless steel surfaces in bi-distilled water
Ren et al. Study of the effect of coatings on mechanical properties of TC4 titanium alloy during laser shock processing
Huang et al. Effects of Laser Shock Processing on Impact Toughness of Ti-17 Titanium Alloy
Moskvitin et al. Laser hardening to reduce metal fatigue.
Li et al. Research advance in laser shock processing surface modification technology on metal alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910235

Country of ref document: EP

Kind code of ref document: A1