WO2018018573A1 - 一种去除燃煤电厂烟气中细颗粒物的方法 - Google Patents
一种去除燃煤电厂烟气中细颗粒物的方法 Download PDFInfo
- Publication number
- WO2018018573A1 WO2018018573A1 PCT/CN2016/092205 CN2016092205W WO2018018573A1 WO 2018018573 A1 WO2018018573 A1 WO 2018018573A1 CN 2016092205 W CN2016092205 W CN 2016092205W WO 2018018573 A1 WO2018018573 A1 WO 2018018573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flue gas
- fine particles
- coal
- power plant
- fired power
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D51/00—Auxiliary pretreatment of gases or vapours to be cleaned
- B01D51/02—Amassing the particles, e.g. by flocculation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/01—Pretreatment of the gases prior to electrostatic precipitation
Definitions
- the invention relates to a method for removing fine particles in a flue gas of a coal-fired power plant, belonging to the technical field of environmental protection and the scope of pollution control, and is more suitable for the field of exhaust gas purification technology and the removal of fine particles.
- the National Energy Development Strategic Action Plan (2014-2020) clearly requires that “the energy production and energy consumption revolution should be accelerated, the level of efficient and clean development of coal power should be further improved, and the “saving, clean and safe” energy should be fully implemented.
- the strategic policy is to implement more stringent energy efficiency and environmental protection standards.
- the concentration of atmospheric pollutants emitted by newly-built coal-fired generating units in the eastern part of China should basically reach the gas turbine emission limit, that is, under the condition of 6% of the reference oxygen content, the smoke emission concentration is not higher than 10mg/m3; some active large-scale coal-fired units have to reach this limit after environmental protection, which has led to some new dust removal technologies.
- the terminal precision processing and capture equipment represented by the wet electrostatic precipitator can meet the requirements for the treatment of fine particles, but the investment cost is high, the floor space is large, and secondary pollution and water waste are easily caused. And it is impossible to remove the water mist content in the wet flue gas, and even increase the water mist content in the wet flue gas, and increase the phenomenon of "white smoke" in the chimney.
- the invention provides a method for removing fine particles in a flue gas of a coal-fired power plant, and adding a chemical substance to a system containing fine particles to increase the size (or mass) of the fine particles, thereby improving the difficulty of removing conventional equipment. And the removal efficiency, to create a high-efficiency, low-cost, simple, easy to promote technology to reduce fine particulate emissions.
- the present invention adopts the following technical solutions:
- a method for removing fine particulate matter from flue gas from a coal-fired power plant adding a chemical substance to the flue gas of a coal-fired power plant through a specific dedusting system to generate fine particles in the flue gas discharged from the flue gas discharge system
- the aggregation phenomenon increases the particle size and mass of the fine particles, and then the fine particles after flocculation are removed by a separation trap.
- fine particulate matter comprises one or a combination of at least any two of the following: fly ash, calcium sulfate Powder, calcium oxide powder, silica powder, titanium dioxide powder, calcium carbonate powder, secondary particles.
- the flue gas discharged from the flue gas discharge system of the coal-fired power plant may be one of the following systems or Less any combination of two: a gaseous system, a gas-liquid mixed system or a vapor-liquid mixed system; before the contact with the flocculating agent, the smoke exhausting state of the flue gas exhausting system may be one or a combination of any two : dry state, air dry state, wet state, wet saturation state, dry saturation state.
- fly ash is a particulate matter collected from a flue gas after coal combustion, and is a crystal a mixture of mineral and amorphous minerals, a mixture of crystals, glass bodies and a small amount of unburned carbon, containing a crystal phase structure of one or only at least two of mullite, quartz, glass phase, and may be a circulating fluidized bed boiler Fly ash, pulverized coal fired fly ash; and contains one or a combination of at least two of the following chemicals: SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , TiO 2 .
- aqueous phase system is one of tap water, pure water, production wastewater, or a combination of at least any two;
- the aqueous phase system satisfies one or a combination of at least two of the following conditions: pH range 2-10, SS ⁇ 150 mg/L, TDS ⁇ 15000 mg/L, COD ⁇ 300 mg/L.
- the detection method or instrument includes: laser particle size detection method, light scattering particle size detection Method, turbidity method, PM 10 impact method, low pressure impact sampler (DLPI) method, electrostatic low pressure impactor (ELPI) method.
- the specific dedusting system comprises a flue gas exhaust system, a flocculation agglomerator, and a flue gas particle separation system a flocculation solution preparation delivery system;
- the flue gas discharge system is connected to the flocculation agglomerator, the flocculation solution preparation delivery system is connected to the flocculation agglomerator, and the flue gas particle separation system is connected with the flocculation agglomerator, the flue gas particle separation system
- the feeding device can treat the fine particles of dust alone or with other auxiliaries at 1:1000- The mass ratio of 1000:1 is uniformly mixed and added to the feeding device;
- the other auxiliary agent is one of the following or a combination of at least any two: quartz sand, silica, alumina, magnesia, silica gel, zeolite, molecular sieve , gypsum, sodium chloride, potassium chloride, sodium sulfate, sodium nitrate, limestone, sand.
- the flocculation agglomerator may be a metal segment, a non-metal segment, or a non-metal segment and a metal a combination of segments; wherein the two segments of the agglomerator combined by the non-metallic segment and the metal segment are connected by a flange, and the ratio of the length of the non-metallic segment to the metal segment is 1:10000-10000:1; the flocculation agglomerator is provided One or more atomizing spray nozzles, the direction of the nozzle and the flow direction of the flue gas discharged by the flue gas discharge system are 0-180°; the plurality of nozzles can form a multi-level multi-stage spray combination having a certain distance from each other , the number of layers and the number of times range from 1-20.
- non-metallic segment material used in the flocculation agglomerator is one or a combination of any two : glass, plexiglass, glass reinforced plastic, polycarbonate, polyimide, polyoxymethylene, polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, nylon, fluoroplastic, phenolic resin;
- the metal segment material used in the flocculation agglomerator is one of the following or a combination of at least any two: stainless steel, cast iron, copper, aluminum, iron alloy, aluminum alloy, magnesium alloy, titanium alloy.
- the invention patent can not only closely integrate with the existing deep dust removal technology, but also achieve the purpose of reducing investment cost, improving equipment energy efficiency, and being easy to popularize and apply. It can also be matched with common dust removal means to achieve ultra-clean emission of thermal power plants.
- 1 is a flue gas emission system of a coal-fired power plant in the present invention.
- Figure 3 is a schematic flow chart of the present invention.
- the particle size changes of the 19 sets of data in the examples were statistically analyzed.
- points A and B are the center mean values of the fine particle diameters before and after flocculation
- A1 and B1 are the lower bounds of the particle size of the fine particles before and after flocculation
- A2 and B2 are the upper limits of the variance of the particle size of fine particles before and after flocculation. It can be seen from Table 2 that the particle size distribution of the fine particles before flocculation is concentrated.
- the particle size distribution area of the fine particles is relatively broad after flocculation agglomeration using different flocculants, but there is no intersection between the two ranges, from the statistical principle. It indicates that the introduction of flocculant has a significant effect on the agglomeration of fine particles.
- the intermediate layer suspension was taken to determine the turbidity.
- a certain amount of 10 mg / L flocculant solution and 0.2 wt% of fine particle solution were mixed according to 20000:3, stirred at 300 r / min for 1 min, and allowed to stand for 3 min, then the intermediate layer suspension was measured for turbidity. .
- the turbidity removal rate can reach 96.9%.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow is injected into the tower to form a mist cloud and the particles in the flue gas are fully mixed and collided. After collecting the sample, the average particle diameter of the fine particles after flocculation is measured to be 2.43 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 25.7 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is fed back by the flocculating agent to prepare the conveying system. After being sprayed into the tower to form a mist cloud and colliding with the particulate matter in the flue gas, the sample was collected and the average particle diameter of the fine particles after flocculation was measured to be 5.44 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 6.81 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow is injected into the tower to form a mist cloud and the particles in the flue gas are thoroughly mixed and collided, and after collecting the sample, the average particle diameter of the fine particles after the flocculation is measured is 4.65 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 12.6 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow is injected into the tower to form a mist cloud and the particles in the flue gas are thoroughly mixed and collided. After collecting the sample, the average particle diameter of the fine particles after flocculation is measured to be 5.43 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 13.3 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow is injected into the tower to form a mist cloud and the particles in the flue gas are fully mixed and collided. After collecting the sample, the average particle diameter of the fine particles after the flocculation is measured is 5.13 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 9.52 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow was injected into the tower to form a mist cloud and the particles in the flue gas were thoroughly mixed and collided. After collecting the sample, the average particle size of the fine particles after flocculation was measured to be 5.56 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 20.5 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow is injected into the tower to form a mist cloud and the particles in the flue gas are thoroughly mixed and collided. After collecting the sample, the average particle diameter of the fine particles after the flocculation is measured is 4.20 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 13.4 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow is injected into the tower to form a mist cloud and the particles in the flue gas are thoroughly mixed and collided. After collecting the sample, the average particle diameter of the fine particles after the flocculation is measured is 4.19 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 16.6 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow was injected into the tower to form a mist cloud and the particles in the flue gas were thoroughly mixed and collided. After collecting the sample, the average particle diameter of the fine particles after the flocculation was measured was 2.66 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 15.21 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow was injected into the tower to form a mist cloud and the particles in the flue gas were thoroughly mixed and collided. After collecting the sample, the average particle size of the fine particles after flocculation was measured to be 3.10 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 13.2 microns.
- the dust-containing flue gas with a temperature of 60 ° C and a soot concentration of 80 mg/m 3 is introduced into the dust removal system, and the air volume is controlled to 25 m 3 /h. Only water is injected into the flocculating agent preparation tank, and the water is prepared by the flocculating agent. The reverse gas flow was injected into the tower to form a mist cloud and the particles in the flue gas were thoroughly mixed and collided. After collecting the sample, the average particle diameter of the fine particles after the flocculation was measured was 2.11 ⁇ m.
- a flocculant is prepared by adding a flocculating agent with a concentration of 10 mg/L to the reactor through a flocculant preparation conveying system, and the mist cloud and the flue gas are fully mixed and collided with each other. After collecting the sample, the average particle size of the fine particles after flocculation is measured. 26.0 microns.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
一种去除燃煤电厂烟气中细颗粒物的方法,通过除尘系统往燃煤电厂烟气中添加化学物质,使烟气排放系统排放出的烟气中的细颗粒物发生聚集现象,增大细颗粒物的粒径或质量,然后通过分离捕集装置去除絮凝后的细颗粒物。
Description
本发明涉及一种去除燃煤电厂烟气中细颗粒物的方法,属于环境保护技术领域,污染控制范畴,多适用于废气净化技术及细颗粒物的脱除领域。
随着全球工业化和城市化的发展,环境污染特别是水环境污染和大气污染已经成为发展中国家面临的主要问题。就大气污染而言,细颗粒物是大气环境中化学组成最复杂、危害最大的污染物之一,也是导致大气能见度降低、灰霾天气等重大环境问题的重要因素。
随着我国治理雾霾的力度逐渐加大,促进煤炭清洁利用迫在眉睫,这就使粉尘排放成为当前燃煤电厂面临的主要问题。尽管行业内用于脱除细颗粒物的传统除尘设备种类繁多,但均在10微米以下(占粉尘总量16%-42%)存在穿透窗口,且捕集效率多低于95%。
同时,国家《能源发展战略行动计划(2014-2020年)》明确要求,“应加快推动能源生产和能源消费革命,进一步提升煤电高效清洁发展水平,全面落实“节约、清洁、安全”的能源战略方针,推行更严格能效环保标准。我国东部地区新建燃煤发电机组的大气污染物排放浓度要基本达到燃气轮机组排放限值,即在基准氧含量6%的条件下,烟尘排放浓度不高于10mg/m3;一些现役大型燃煤机组环保改造后也要达到这一限值”,这就使得一些新的除尘技术应运而生。
目前,以湿式电除尘器为代表的终端精处理捕集装备可以满足对细颗粒物的处理要求,但相对减排效果而言投资成本高、占地面积大、易造成二次污染及水资源浪费,且无法去除湿烟气中的水雾含量,甚至会增加湿烟气中的水雾含量,加大烟囱冒“白烟”的现象。
因此,要在真正意义上提升燃煤电厂煤电高效清洁发展水平,就急需要一种简单、可靠、高效的方法。
发明内容
本发明提出一种去除燃煤电厂烟气中细颗粒物的方法,通过向含有细颗粒物的体系中添加化学物质,使细颗粒物的尺寸(或质量)增大,进而提高后续常规设备的脱除难度和脱除效率,开创一种高效、低成本、简单、易推广的降低细颗粒物排放的技术。
为了解决上述问题,本发明采用如下技术方案:
(1)一种去除燃煤电厂烟气中细颗粒物的方法,通过一个特定的除尘系统往燃煤电厂烟气中添加化学物质,使烟气排放系统排放出的烟气中的细颗粒物发生化聚集现象,增大细颗粒物的粒径和质量,然后通过分离捕集装置去除絮凝后的细颗粒物。
(2)根据(1)所述的去除燃煤电厂烟气中细颗粒物的方法,所述的化学物质包括絮凝剂,还包括添加剂或助凝剂。
(3)根据(1)或(2)所述的去除燃煤电厂烟气中细颗粒物的方法,所述的细颗粒物含有下列物质之一或至少任意两种的组合:粉煤灰、硫酸钙粉末、氧化钙粉末、二氧化硅粉末、二氧化钛粉末、碳酸钙粉末、二次颗粒物。
(4)根据(1)-(3)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述燃煤电厂烟气排放系统排放出的烟气可为下列体系之一或者少任意两种的组合:气态体系、气-液混合体系或汽-液混合体系;与絮凝剂接触前,烟气排放系统排放出的烟气状态可为下列之一或至少任意两种的组合:全干的状态、气干状态、湿润状态、湿饱和状态、干饱和状态。
(5)根据(1)-(4)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的絮凝剂及絮凝体系含有下列物质之一或至少任意两种的组合:聚丙烯酰胺、壳聚糖、硅藻土、改性淀粉、改性纤维素、聚合氯化铝、聚合硫酸铝铁、聚合氯化铁、黄原胶、海藻酸钠。
(6)根据(1)-(5)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的添加剂含有下列物质之一或至少任意两种的组合:硬脂酸、十二烷基苯磺酸钠、季铵类化合物、甜菜碱型表面活性剂。
(7)根据(1)-(6)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的絮凝剂、添加剂、助凝剂使用前需进行溶解或稀释,溶剂为水相或者有机相。
(8)根据(1)-(7)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的助凝剂含有下列物质之一或至少任意两种的组合:生石灰、熟石灰、活化硅酸。
(9)根据(1)-(8)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述粉煤灰为煤燃烧后的烟气中收捕下来的颗粒物,是晶体矿物和非晶体矿物的混合物,由晶体、玻璃体及少量未燃炭组成的混合体,含有莫来石、石英、玻璃相之一或者或至少任意两种的晶相结构,可为循环流化床锅炉粉煤灰、煤粉炉粉煤灰;并含有下列化学物质之一或至少任意两种的组合:SiO2、Al2O3、Fe2O3、CaO、MgO、SO3、TiO2。
(10)根据(1)-(9)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述粉煤灰中各化学物质的含量范围满足下列条件之一或至少任意两种的组合:SiO2≤60%;Al2O3≤40%、Fe2O3≤40%、CaO≤40%、MgO≤20%、SO3≤20%、TiO2≤20%。
(11)根据(1)-(10)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述聚丙烯酰
胺可分为阴离子型聚丙烯酰胺,非离子型聚丙烯酰胺,阳离子型聚丙烯酰胺,其化学通式为:
(12)根据(1)-(11)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述壳聚糖其化学通式为:
(13)根据(1)-(12)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的絮凝剂具有下列性质中的一种或至少任意两种的组合:絮凝剂分子量为100-1800万、离子度为0%-80%;溶解或稀释成絮凝剂溶液后,所述的絮凝剂溶液具有下列性质中的一种或至少任意两种的组合:浓度为0.01-1000mg/L、pH范围为5-12。
(14)根据(1)-(13)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的絮凝剂及絮凝剂溶液使用的体系温度为1-200℃。
(15)根据(1)-(14)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的添加剂溶液使用浓度为0.01-1000mg/L;所述的助凝剂溶液使用浓度为0.01-1000mg/L。
(16)根据(1)-(15)所述的去除燃煤电厂烟气中细颗粒物的方法,所述的水相体系为自来水、纯水、生产废水之一或至少任意两种的组合;水相体系满足下列条件之一或至少任意两种的组合:pH范围为2-10,SS≤150mg/L,TDS≤15000mg/L,COD≤300mg/L。
(17)根据(1)-(16)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的有机溶剂含有下列物质之一或至少任意两种的组合:有机胺溶液、醇溶液、四氢呋喃。
(18)根据(1)-(17)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述增大细颗粒物的粒径和质量所需的时间为0.01-1000s。
(19)根据(1)-(18)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气排放系统排放出的烟气细微颗粒物具有下列性质中的一种或至少任意两种的组合:浓度范围为0.01-10000mg/Nm3;粒径范围为0.01-200μm。
(20)根据(1)-(19)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气排放系统排放出的烟气中的污染物包括下列物质之一或至少任意两种的组合:细颗粒物、SO2、SO3、NOX、H2S、CO2、NH3。
(21)根据(1)-(20)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气排放系统排放出的烟气中的污染物中各化学物质的含量范围在标准状态下(烟气在温度为273K,压力为101325Pa时)满足下列条件之一或至少任意两种的组合:细颗粒物≤10000mg/Nm3、SO2≤2000mg/m3、SO3≤mg/m3、NOX≤1500mg/m3、H2S≤300mg/m3、CO2≤500mg/m3、NH3≤500mg/m3。
(22)根据(1)-(21)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,絮凝剂、添加剂、助凝剂的引入方式为定量滴加法或雾化喷淋法。
(23)根据(1)-(22)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述的细微颗粒物粒径及质量变大反应时间的检测方法可为动态浊度测定仪法。
(24)根据(1)-(23)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述定量加入法的药剂溶液流量范围为每1Nm3气体中加入0.01-500mL/min;所述雾化喷淋法的药剂溶液范围为每1Nm3气体中加入0.01-100L/min。
(25)根据(1)-(24)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述雾化喷淋法具备下列工艺条件之一或至少任意两种的组合:相对烟气排放系统排放出的烟气流向的喷淋角度为0-180度、喷淋次数为1-20次。
(26)根据(1)-(25)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其所述细微颗粒物粒径及质量增大是指粒径增大1.1-100倍,质量增大1.1-10000倍。
(27)根据(1)-(26)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述细微颗粒物粒径及质量变大的监测方法可为在线监测法、离线监测法或二者相结合使用;其中离线检测法为采用烟尘测试仪、抽滤、鼓泡等方法将细颗粒分散在滤膜、滤筒或溶液介质中,累计一段时间后取出,通过检测仪器分析细颗粒物粒径及质量变化;在线检测法为直接将检测仪器置于系统内监测细颗粒物粒径及质量变化并给予实时结果;所述检测方法或仪器包括:激光粒度检测法、光散射粒度检测法、浊度法、PM10撞击法、低压冲击采样器(DLPI)法、静电低压撞击器(ELPI)法。
(28)根据(1)-(27)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述特定的除尘系统包括烟气排放系统、絮凝团聚器、烟气颗粒分离系统、絮凝溶液制备输送系统;所述烟气排放系统与絮凝团聚器连接,絮凝溶液制备输送系统与絮凝团聚器连接,所述烟气颗粒分离系统与絮凝团聚器连接,所述烟气颗粒分离系统后连接排空管路;通过絮凝溶液制备输送系统往烟气中添加化学物质使细颗粒物在絮凝团聚器中发生聚集现象,增大细颗粒物的粒径和质量,然后通过烟气颗粒分离系统去除絮凝后的细颗粒物。
(29)根据(1)-(28)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,烟气排放系统产生含尘烟气并通过管路输送至絮凝团聚器;絮凝剂、添加剂或助凝剂在絮凝溶液制备输送
系统内充分溶解或稀释制备成絮凝剂溶液后输送至絮凝团聚器;含尘烟气与絮凝剂溶液在絮凝团聚器内均匀混合并发生团聚反应,再经管路进入烟气颗粒分离捕集系统进行气-液-固三相分离,达到排放标准直接排放或经引风系统排放。
(30)根据(1)-(29)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气排放系统包括下列装置设备之一或至少任意两种的组合:燃煤锅炉、脱硫装置、脱硝装置、除尘装置。
(31)根据(1)-(30)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气排放系统包括粉尘发生装置或风机;所述粉尘发生装置可为单独的进料装置、进料装置和后端管路上的加热装置、或可自发生热烟气的燃煤锅炉。
(32)根据(1)-(31)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述进料装置为螺杆式进料机、粉尘发生器、气溶胶发生器、带式给料机、板式给料机、刮板给料机、振动给料机、圆盘给料机。
(33)根据(1)-(32)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述进料装置可将粉尘细颗粒单独或与其它助剂以1:1000-1000:1的质量比例均匀混合后加入进料装置中;所述其它助剂为以下之一或至少任意两种的组合:石英砂、二氧化硅、氧化铝、氧化镁、硅胶、沸石、分子筛、石膏、氯化钠、氯化钾、硫酸钠、硝酸钠、石灰石、砂石。
(34)根据(1)-(33)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述风机为通风机、鼓风机和压缩机;所述粉尘发生装置可在风机前,将风机原有的负压口改装为进料口,也可在经风机后与气流均匀混合输出。
(35)根据(1)-(34)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述絮凝团聚器,包括絮凝剂溶液喷洒阶段和絮凝剂液滴与细微颗粒充分混合团聚阶段。
(36)根据(1)-(35)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述絮凝团聚器可为金属段、非金属段、或由非金属段和金属段组合;其中由非金属段和金属段组合的团聚器两段之间需通过法兰连接,非金属段和金属段长度比例为1:10000-10000:1;所述絮凝团聚器中设有一个或多个雾化喷淋喷头,喷头的方向与烟气排放系统排放出的烟气流动方向角度为0-180°;多个喷头可形成相互有一定距离的多层次多级的喷淋组合,层数和次数范围为1-20。
(37)根据(1)-(36)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述絮凝团聚器所用非金属段材料为以下之一或至少任意两种的组合:玻璃、有机玻璃、玻璃钢、聚碳酸酯、聚酰亚胺、聚甲醛、聚丙烯、聚乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、尼龙、氟塑料、酚醛树脂;所述絮凝团聚器所用金属段材料为以下之一或至少任意两种的组合:不锈钢、铸铁、铜、铝、铁合金、铝合金、镁合金、钛合金。
(38)根据(1)-(37)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述絮凝团聚器的烟道外观形状外规整,可为规则形和不规则形,尺寸范围为长0.1-200m,短边宽为0.1-100m,烟道延伸可带有一定弯曲度或弯道。
(39)根据(1)-(38)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气颗粒分离系统包括在烟道上设置的采样口、采样测量装置和连接在采样口后端的除尘器。
(40)根据(1)-(39)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述絮凝剂制备输送系统包括絮凝剂制备罐、空气压缩机和计量泵。
(41)根据(1)-(40)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述烟气颗粒分离系统包括在烟道上设置的采样口、采样装置和连接在采样口后端主管路上的除尘器。
(42)根据(1)-(41)任一项所述的去除燃煤电厂烟气中细颗粒物的方法,所述除尘器为下列之一或至少任意两种的组合:旋风分离器、布袋除尘器或静电除尘器。
(43)根据(1)-(42)所述的去除燃煤电厂烟气中细颗粒物的方法,所述特定的除尘系统的加入位置可为以下之一或至少任意两种的组合:脱硫装置前、脱硫装置内、脱硫装置后及深度除尘设备前。
本发明的有益技术效果为:
1、首次跨领域地将絮凝原理运用到燃煤电厂烟气除尘中,利用絮凝作用增加烟气中细颗粒物之间、细颗粒物与絮凝剂之间的液桥力与固桥力,促使细颗粒物团聚长大,易于去除。
2、从根本上打破现有除尘技术从颗粒捕集技术上进行突破创新的模式,从最原始的细微颗粒物自身思考,有效的提高设备的除尘效率。
3、本发明专利既能与现有深度除尘技术紧密结合,较大程度达到降低投资成本、提高设备能效、易于推广应用的目的,还可与普通除尘手段相配套,实现火电厂超净排放。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明中的一种燃煤电厂烟气排放系统。
图2为本发明中的另一种燃煤电厂烟气排放系统。
图3为本发明流程示意图。
表1所用絮凝剂及结果列表
表2体系9-体系19的统计学分析表
对实施例中的19组数据的粒径变化进行统计学分析,表2中点A、B分别为絮凝前后细颗粒物粒径的中心均值,A1、B1为絮凝前后细颗粒物粒径的方差下限,A2、B2为絮凝前后细颗粒物粒径的方差上限。从表2可知:絮凝前细颗粒物的粒径分布较为集中,使用不同的絮凝剂对细颗粒物进行絮凝团聚后细颗粒物的粒径分布区较为宽泛,但二者区间无交集,从统计学原理上表明絮凝剂的引入对细颗粒物的团聚效果显著。
实施例1:
配置0.2wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=2.57μm),待分布均匀后,静置3min后取中间层悬浊液测定浊度。将一定量的10mg/L的絮凝剂溶液与0.2wt%的细颗粒物溶液按照20000:3进行混合,在300r/min的转速下搅拌搅拌1min,静置3min后取中间层悬浊液测定浊度。浊度去除率可达96.9%。
实施例2:
配置0.2wt%的细颗粒物溶液(细颗粒物表面呈正电性,平均粒径DX50=5μm),待分布均匀后,静置3min后取中间层悬浊液测定浊度。将一定量的10mg/L絮凝剂溶液与0.2wt%的细颗粒物溶液按照20000:3进行混合,在300r/min的转速下搅拌搅拌1min,静置3min后取中间层悬浊液测定浊度。浊度去除率可达99.5%。
实施例3:
配置0.2wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=100nm),待分布均匀后,静置3min后取中间层悬浊液测定浊度。将一定量的10mg/L絮凝剂溶液与0.2wt%的细颗粒物溶液按照20000:3进行混合,在300r/min的转速下搅拌搅拌1min,静置3min后取中间层悬浊液测定浊度。浊度去除率可达97.5%。
实施例4(对比例1):
配置0.2wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=100nm),待分布均匀后,静置3min后取中间层悬浊液测定浊度。将一定量的水与0.2wt%的细颗粒物溶液按照20000:3进行混合。在300r/min的转速下搅拌搅拌1min,静置3min后取中间层悬浊液测定浊度。浊度去除率为0%。
实施例5:
配置0.5wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=2.57μm),加入到电压稳定的动态浊度测定仪中,搅拌速度为500r/min,待系统再次电压稳定后,加入浓度为3mg/L的絮凝剂,系统4.5s内重新达到稳态。
实施例6:
配置0.5wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=2.57μm),加入到电压稳定的动态浊度测定仪中,搅拌速度为500r/min,待系统再次电压稳定后,加入浓度为1mg/L的絮凝剂,系统5.5s内重新达到稳态。
实施例7:
将一定量的10mg/L的絮凝剂溶液与0.2wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=2.57μm)按照20000:3进行混合,在300r/min的转速下搅拌1min,测得其平均粒径为25.8μm。
实施例8:
将一定量的10mg/L的絮凝剂溶液与0.2wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=2.57μm)按照20000:3进行混合,在300r/min的转速下搅拌1min,测得其平均粒径为16.7μm。
实施例9:
将100mL的10mg/L的絮凝剂溶液与0.2g的细颗粒物混合(细颗粒物表面呈负电性,平均粒径DX50=2.57μm),在300r/min的转速下搅拌1min,测得其平均粒径为61.9μm。
实施例10(对比例2):
将一定量的水与0.2wt%的细颗粒物溶液(细颗粒物表面呈负电性,平均粒径DX50=2.57
μm)按照20000:3进行混合,在300r/min的转速下搅拌1min,测得其平均粒径为2.57μm。
实施例11:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为2.43微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为25.7微米。
实施例12:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为5.44微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为6.81微米。
实施例13:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为4.65微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为12.6微米。
实施例14:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为5.43微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为13.3微米。
实施例15:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为5.13微米。然
后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为9.52微米。
实施例16:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为5.56微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为20.5微米。
实施例17:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为4.20微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为13.4微米。
实施例18:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为4.19微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为16.6微米。
实施例19:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为2.66微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为15.21微米。
实施例20:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,
在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为3.10微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为13.2微米。
实施例21:
将温度为60℃、烟尘浓度为80mg/m3的含尘烟气引入至除尘系统中,控制风量至25m3/h,在絮凝剂制备罐中仅注入水,通过絮凝剂制备输送系统将水逆气流喷入塔内,形成雾云与烟气中颗粒物充分混合碰撞后,收集样品后进行测得絮凝后细颗粒物平均粒径为2.11微米。然后,通过絮凝剂制备输送系统逆气流向反应器内加入浓度为10mg/L的絮凝剂,形成雾云与烟气中颗粒物充分混合碰撞,收集样品后进行测得絮凝后细颗粒物平均粒径为26.0微米。
以上所述仅为本发明专利的21种不同絮凝剂的优选实施例而已,并不用于限制本发明。本发明可以有各种更改与变化,凡在本发明原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明专利的保护范围之内。上述实施例并非具体实施方式的穷举,还可有其他的实施例,上述实施例目的在于说明本发明,而非限制本发明的保护范围,所有由本发明简单变化而来的应用均落在本发明的保护范围内。
需要注意的是,“第一”,“第二”或者类似词汇并不表示任何顺序,质量或重要性,只是用来区分不同的技术特征。结合数量使用的修饰词“约”包含所述值和内容上下文指定的含义。(例如:它包含有测量特定数量时的误差)。
Claims (42)
- 一种去除燃煤电厂烟气中细颗粒物的方法,其特征在于,通过除尘系统往燃煤电厂烟气中添加化学物质,使烟气排放系统排放出的烟气中的细颗粒物发生聚集现象,增大细颗粒物的粒径和质量,然后通过分离捕集装置去除絮凝后的细颗粒物。
- 根据权利要求1所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的化学物质包括絮凝剂,还包括添加剂和或助凝剂。
- 根据权利要求1或2所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的细颗粒物含有下列物质之一或至少任意两种的组合:粉煤灰、硫酸钙粉末、氧化钙粉末、二氧化硅粉末、二氧化钛粉末、碳酸钙粉末、二次颗粒物。
- 根据权利要求1-3任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述燃煤电厂烟气可为下列体系之一或者少任意两种的组合:气态体系、气-液混合体系或汽-液混合体系;与絮凝剂接触前,烟气排放系统排放出的烟气状态可为下列之一或至少任意两种的组合:全干的状态、气干状态、湿润状态、湿饱和状态、干饱和状态。
- 根据权利要求1-4任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的絮凝剂及絮凝体系含有下列物质之一或至少任意两种的组合:聚丙烯酰胺、壳聚糖、硅藻土、改性淀粉、改性纤维素、聚合氯化铝、聚合硫酸铝铁、聚合氯化铁、黄原胶、海藻酸钠。
- 根据权利要求1-5任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的添加剂含有下列物质之一或至少任意两种的组合:硬脂酸、十二烷基苯磺酸钠、季铵类化合物、甜菜碱型表面活性剂。
- 根据权利要求1-6任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的絮凝剂、添加剂、助凝剂使用前需进行溶解或稀释,溶剂为水相或者有机相。
- 根据权利要求1-7任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的助凝剂含有下列物质之一或至少任意两种的组合:生石灰、熟石灰、活化硅酸。
- 根据权利要求1-8任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述粉煤灰为煤燃烧后的烟气中收捕下来的颗粒物,是晶体矿物和非晶体矿物的混合物,由晶体、玻璃体及少量未燃炭组成的混合体,含有莫来石、石英、玻璃相之一或者或至少任意两种的晶相结构,可为循环流化床锅炉粉煤灰、煤粉炉粉煤灰;并含有下列化学物质之一或至少任意两种的组合:SiO2、Al2O3、Fe2O3、CaO、MgO、SO3、TiO2。
- 根据权利要求1-9任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述粉煤灰中各化学物质的含量范围满足下列条件之一或至少任意两种的组合:SiO2≤60%;Al2O3≤40%、Fe2O3≤40%、CaO≤40%、MgO≤20%、SO3≤20%、TiO2≤20%。
- 根据权利要求1-12任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的絮凝剂具有下列性质中的一种或至少任意两种的组合:絮凝剂分子量为100-1800万、离子度为0%-80%;溶解或稀释成絮凝剂溶液后,所述的絮凝剂溶液具有下列性质中的一种或至少任意两种的组合:浓度为0.01-1000mg/L、pH范围为5-12。
- 根据权利要求1-13任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的絮凝剂及絮凝剂溶液使用的体系温度为1-200℃。
- 根据权利要求1-14任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的添加剂溶液使用浓度为0.01-1000mg/L;所述的助凝剂溶液使用浓度为0.01-1000mg/L。
- 根据权利要求1-15任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的水相体系为自来水、纯水、生产废水之一或至少任意两种的组合;水相体系满足下列条件之一或至少任意两种的组合:pH范围为2-10,SS≤150mg/L,TDS≤15000mg/L,COD≤300mg/L。
- 根据权利要求1-16任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的有机溶剂含有下列物质之一或至少任意两种的组合:有机胺溶液、醇溶液、四氢呋喃。
- 根据权利要求1-17任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述增大细颗粒物的粒径和质量所需的时间为0.01-1000s。
- 根据权利要求1-18任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述烟气排放系统排放出的烟气中的细微颗粒物具有下列性质中的一种或至少任意两种的组合:浓度范围为0.01-10000mg/Nm3;粒径范围为0.01-200μm。
- 根据权利要求1-19任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于, 所述烟气排放系统排放出的烟气中的污染物包括下列物质之一或至少任意两种的组合:细颗粒物、SO2、SO3、NOX、H2S、CO2、NH3。
- 根据权利要求1-20任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述烟气排放系统排放出的烟气中的污染物中各化学物质的含量范围在标准状态下(烟气在温度为273K,压力为101325Pa时)满足下列条件之一或至少任意两种的组合:细颗粒物≤10000mg/Nm3、SO2≤2000mg/m3、SO3≤mg/m3、NOX≤1500mg/m3、H2S≤300mg/m3、CO2≤500mg/m3、NH3≤500mg/m3。
- 根据权利要求1-21任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,絮凝剂、添加剂、助凝剂的引入方式为定量滴加法或雾化喷淋法。
- 根据权利要求1-22任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的细微颗粒物粒径及质量变大反应时间的检测方法可为动态浊度测定仪法。
- 根据权利要求1-23任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述定量加入法的药剂溶液流量范围为每1Nm3气体中加入0.01-500mL/min;所述雾化喷淋法的药剂溶液范围为每1Nm3气体中加入0.01-100L/min。
- 根据权利要求1-24任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述雾化喷淋法具备下列工艺条件之一或至少任意两种的组合:相对烟气排放系统排放出的烟气流向的喷淋角度为0-180度、喷淋次数为1-20次。
- 根据权利要求1-25任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,其所述细微颗粒物粒径及质量增大是指粒径增大1.1-100倍,质量增大1.1-10000倍。
- 根据权利要求1-26任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述细微颗粒物粒径及质量变大的监测方法可为在线监测法、离线监测法或二者相结合使用;其中离线检测法为采用烟尘测试仪、抽滤、鼓泡等方法将细颗粒分散在滤膜、滤筒或溶液介质中,累计一段时间后取出,通过检测仪器分析细颗粒物粒径及质量变化;在线检测法为直接将检测仪器置于系统内监测细颗粒物粒径及质量变化并给予实时结果;所述检测方法或仪器包括:激光粒度检测法、光散射粒度检测法、浊度法、PM10撞击法、低压冲击采样器(DLPI)法、静电低压撞击器(ELPI)法。
- 根据权利要求1-27任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的除尘系统包括烟气排放系统、絮凝团聚器、烟气颗粒分离系统、絮凝溶液制备输送系统;所述烟气排放系统与絮凝团聚器连接,絮凝溶液制备输送系统与絮凝团聚器连接,所述烟气颗粒分离系统与絮凝团聚器连接,所述烟气颗粒分离系统后连接排空管路;通过絮凝溶液制备输送系统往烟气中添加化学物质使细颗粒物在絮凝团聚器中发生聚集现象,增大细颗粒物的粒径 和质量,然后通过烟气颗粒分离系统去除絮凝后的细颗粒物。
- 根据权利要求1-28任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,烟气排放系统产生含尘烟气并通过管路输送至絮凝团聚器;絮凝剂、添加剂或助凝剂在絮凝溶液制备输送系统内充分溶解或稀释制备成絮凝剂溶液后输送至絮凝团聚器;含尘烟气与絮凝剂溶液在絮凝团聚器内均匀混合并发生团聚反应,再经管路进入烟气颗粒分离捕集系统进行气-液-固三相分离,达到排放标准直接排放或经引风系统排放。
- 根据权利要求1-29任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述烟气排放系统包括下列装置设备之一或至少任意两种的组合:燃煤锅炉、脱硫装置、脱硝装置、除尘装置。
- 根据权利要求1-30任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述烟气排放系统包括粉尘发生装置或风机;所述粉尘发生装置可为单独的进料装置、进料装置和后端管路上的加热装置、或可自发生热烟气的燃煤锅炉。
- 根据权利要求1-31任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述进料装置为螺杆式进料机、粉尘发生器、气溶胶发生器、带式给料机、板式给料机、刮板给料机、振动给料机、圆盘给料机。
- 根据权利要求1-32任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述进料装置可将粉尘细颗粒单独或与其它助剂以1:1000-1000:1的质量比例均匀混合后加入进料装置中;所述其它助剂为以下之一或至少任意两种的组合:石英砂、二氧化硅、氧化铝、氧化镁、硅胶、沸石、分子筛、石膏、氯化钠、氯化钾、硫酸钠、硝酸钠、石灰石、砂石。
- 根据权利要求1-33任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述风机为通风机、鼓风机和压缩机;所述粉尘发生装置可在风机前,将风机原有的负压口改装为进料口,也可在经风机后与气流均匀混合输出。
- 根据权利要求1-34任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述絮凝团聚器,包括絮凝剂溶液喷洒阶段和絮凝剂液滴与细微颗粒充分混合团聚阶段。
- 根据权利要求1-35任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述絮凝团聚器可为金属段、非金属段、或由非金属段和金属段组合;其中由非金属段和金属段组合的团聚器两段之间需通过法兰连接,非金属段和金属段长度比例为1:10000-10000:1;所述絮凝团聚器中设有一个或多个雾化喷淋喷头,喷头的方向与烟气排放系统排放出的烟气流动方向角度为0-180°;多个喷头可形成相互有一定距离的多层次多级的喷淋组合,层数和次数范围为1-20。
- 根据权利要求1-36任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于, 所述絮凝团聚器所用非金属段材料为以下之一或至少任意两种的组合:玻璃、有机玻璃、玻璃钢、聚碳酸酯、聚酰亚胺、聚甲醛、聚丙烯、聚乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、尼龙、氟塑料、酚醛树脂;所述絮凝团聚器所用金属段材料为以下之一或至少任意两种的组合:不锈钢、铸铁、铜、铝、铁合金、铝合金、镁合金、钛合金。
- 根据权利要求1-37任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述絮凝团聚器的烟道外观形状外规整,可为规则形和不规则形,尺寸范围为长0.1-200 m,短边宽为0.1-100 m,烟道延伸可带有一定弯曲度或弯道。
- 根据权利要求1-38任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述烟气颗粒分离系统包括在烟道上设置的采样口、采样测量装置和连接在采样口后端的除尘器。
- 根据权利要求1-39任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于:所述絮凝剂制备输送系统包括絮凝剂制备罐、空气压缩机和计量泵。
- 根据权利要求1-40任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述除尘器为下列之一或至少任意两种的组合:旋风分离器、布袋除尘器或静电除尘器。
- 根据利要求1-41任一项所述的去除燃煤电厂烟气中细颗粒物的方法,其特征在于,所述的除尘系统的加入位置可为以下之一或至少任意两种的组合:脱硫装置前、脱硫装置内、脱硫装置后及深度除尘设备前。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/092205 WO2018018573A1 (zh) | 2016-07-29 | 2016-07-29 | 一种去除燃煤电厂烟气中细颗粒物的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/092205 WO2018018573A1 (zh) | 2016-07-29 | 2016-07-29 | 一种去除燃煤电厂烟气中细颗粒物的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018018573A1 true WO2018018573A1 (zh) | 2018-02-01 |
Family
ID=61015392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/092205 WO2018018573A1 (zh) | 2016-07-29 | 2016-07-29 | 一种去除燃煤电厂烟气中细颗粒物的方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018018573A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108159787A (zh) * | 2018-03-22 | 2018-06-15 | 河北工业大学 | 强化烟气中细颗粒物碰撞聚并长大的装置 |
CN109052526A (zh) * | 2018-08-28 | 2018-12-21 | 盛发环保科技(厦门)有限公司 | 烟气消白耦合高温旁路烟道蒸发高含盐废水零排放系统 |
CN109157941A (zh) * | 2018-11-15 | 2019-01-08 | 中建材环保研究院(江苏)有限公司 | 一种燃煤电厂烟气除湿减排系统及工艺 |
CN110215787A (zh) * | 2019-05-31 | 2019-09-10 | 华电电力科学研究院有限公司 | 一种声波强化细颗粒物脱除装置及脱除方法 |
CN111487094A (zh) * | 2020-05-25 | 2020-08-04 | 中煤科工集团重庆研究院有限公司 | 排放烟气中的so3检测预处理系统及其使用方法 |
WO2020232832A1 (zh) * | 2019-05-22 | 2020-11-26 | 山东科技大学 | 一种干湿混合式智能化除尘实验系统 |
CN112225239A (zh) * | 2020-09-10 | 2021-01-15 | 河南华慧有色工程设计有限公司 | 一种氧化铝生产协同处理钠碱法烟气脱硫废液的方法 |
CN112526071A (zh) * | 2020-11-27 | 2021-03-19 | 浙江大学 | 一种民用燃煤炉污染物排放测试系统 |
CN113401917A (zh) * | 2021-07-07 | 2021-09-17 | 北京科技大学 | 活化粉煤灰硅铝不溶相合成纯相p型分子筛的制备方法 |
CN113504327A (zh) * | 2021-07-14 | 2021-10-15 | 常州市第二人民医院 | 一种检测伏诺拉生血药浓度的方法 |
CN114075466A (zh) * | 2021-11-24 | 2022-02-22 | 江苏永诚装备科技有限公司 | 一种用于天然气的化学吸收式脱硫装置 |
CN114226066A (zh) * | 2021-12-20 | 2022-03-25 | 中国建筑材料科学研究总院有限公司 | 一种从尾气中回收再利用SiO2粉末的方法及装置 |
CN115845924A (zh) * | 2022-12-22 | 2023-03-28 | 河北络合科技有限公司 | 一种用于沼气脱硫的催化剂及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101513583A (zh) * | 2009-02-16 | 2009-08-26 | 华中科技大学 | 一种燃煤超细颗粒化学团聚促进剂 |
US20120288448A1 (en) * | 2011-05-10 | 2012-11-15 | Nwachukwu Chisomaga Ugochi | Sprayable Compositions For Reducing Particulates In The Air |
CN104174278A (zh) * | 2014-08-28 | 2014-12-03 | 尹无忌 | 一种膜法聚尘脱硫剂及半干式膜聚尘脱硫方法 |
CN105086321A (zh) * | 2015-08-27 | 2015-11-25 | 保护伞环保科技成都有限公司 | 一种粉尘凝集剂 |
CN105797531A (zh) * | 2016-04-28 | 2016-07-27 | 安徽工业大学 | 一种团聚法抑制铁矿烧结过程微细颗粒物排放的方法 |
CN106178803A (zh) * | 2016-07-29 | 2016-12-07 | 国电新能源技术研究院 | 一种去除气相混合物中细颗粒物的方法 |
-
2016
- 2016-07-29 WO PCT/CN2016/092205 patent/WO2018018573A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101513583A (zh) * | 2009-02-16 | 2009-08-26 | 华中科技大学 | 一种燃煤超细颗粒化学团聚促进剂 |
US20120288448A1 (en) * | 2011-05-10 | 2012-11-15 | Nwachukwu Chisomaga Ugochi | Sprayable Compositions For Reducing Particulates In The Air |
CN104174278A (zh) * | 2014-08-28 | 2014-12-03 | 尹无忌 | 一种膜法聚尘脱硫剂及半干式膜聚尘脱硫方法 |
CN105086321A (zh) * | 2015-08-27 | 2015-11-25 | 保护伞环保科技成都有限公司 | 一种粉尘凝集剂 |
CN105797531A (zh) * | 2016-04-28 | 2016-07-27 | 安徽工业大学 | 一种团聚法抑制铁矿烧结过程微细颗粒物排放的方法 |
CN106178803A (zh) * | 2016-07-29 | 2016-12-07 | 国电新能源技术研究院 | 一种去除气相混合物中细颗粒物的方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108159787B (zh) * | 2018-03-22 | 2023-06-23 | 河北工业大学 | 强化烟气中细颗粒物碰撞聚并长大的装置 |
CN108159787A (zh) * | 2018-03-22 | 2018-06-15 | 河北工业大学 | 强化烟气中细颗粒物碰撞聚并长大的装置 |
CN109052526A (zh) * | 2018-08-28 | 2018-12-21 | 盛发环保科技(厦门)有限公司 | 烟气消白耦合高温旁路烟道蒸发高含盐废水零排放系统 |
CN109157941A (zh) * | 2018-11-15 | 2019-01-08 | 中建材环保研究院(江苏)有限公司 | 一种燃煤电厂烟气除湿减排系统及工艺 |
WO2020232832A1 (zh) * | 2019-05-22 | 2020-11-26 | 山东科技大学 | 一种干湿混合式智能化除尘实验系统 |
CN110215787A (zh) * | 2019-05-31 | 2019-09-10 | 华电电力科学研究院有限公司 | 一种声波强化细颗粒物脱除装置及脱除方法 |
CN110215787B (zh) * | 2019-05-31 | 2024-02-27 | 华电电力科学研究院有限公司 | 一种声波强化细颗粒物脱除装置及脱除方法 |
CN111487094A (zh) * | 2020-05-25 | 2020-08-04 | 中煤科工集团重庆研究院有限公司 | 排放烟气中的so3检测预处理系统及其使用方法 |
CN112225239A (zh) * | 2020-09-10 | 2021-01-15 | 河南华慧有色工程设计有限公司 | 一种氧化铝生产协同处理钠碱法烟气脱硫废液的方法 |
CN112526071A (zh) * | 2020-11-27 | 2021-03-19 | 浙江大学 | 一种民用燃煤炉污染物排放测试系统 |
CN113401917A (zh) * | 2021-07-07 | 2021-09-17 | 北京科技大学 | 活化粉煤灰硅铝不溶相合成纯相p型分子筛的制备方法 |
CN113504327A (zh) * | 2021-07-14 | 2021-10-15 | 常州市第二人民医院 | 一种检测伏诺拉生血药浓度的方法 |
CN114075466A (zh) * | 2021-11-24 | 2022-02-22 | 江苏永诚装备科技有限公司 | 一种用于天然气的化学吸收式脱硫装置 |
CN114226066A (zh) * | 2021-12-20 | 2022-03-25 | 中国建筑材料科学研究总院有限公司 | 一种从尾气中回收再利用SiO2粉末的方法及装置 |
CN114226066B (zh) * | 2021-12-20 | 2024-04-12 | 中国建筑材料科学研究总院有限公司 | 一种从尾气中回收再利用SiO2粉末的方法及装置 |
CN115845924A (zh) * | 2022-12-22 | 2023-03-28 | 河北络合科技有限公司 | 一种用于沼气脱硫的催化剂及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018018573A1 (zh) | 一种去除燃煤电厂烟气中细颗粒物的方法 | |
CN102380278B (zh) | 协同促进pm2.5团聚长大和蒸发处理脱硫废水的方法及装置 | |
CN106512633B (zh) | 湍流和化学团聚耦合细颗粒团聚装置 | |
US10258901B2 (en) | Efficient and energy-saving wastewater evaporation crystallizer | |
CN109759233B (zh) | 一种协同处理脱硫废水和强化细颗粒物团聚与脱除的系统及方法 | |
CN107473482B (zh) | 一种脱硫废水烟道喷雾蒸发处理系统 | |
CN108434950B (zh) | 一种协同脱硫废水烟道蒸发和增强细颗粒物与三氧化硫脱除的装置及其方法 | |
CN104368217B (zh) | 组合式气旋除雾除尘系统及其处理工艺 | |
CN105668832B (zh) | 一种脱硫废水处理系统及方法 | |
CN104474830B (zh) | 用于脱除燃煤细颗粒物的化学团聚促进剂及其使用方法 | |
CN204897466U (zh) | 一种脱硫废水零排放一体化装置 | |
CN104147890B (zh) | 利用凹凸棒粘土悬浊液团聚捕集燃煤pm2.5的方法 | |
Zhou et al. | Improving the removal of fine particles by chemical agglomeration during the limestone-gypsum wet flue gas desulfurization process | |
CN105148709B (zh) | 一种烟气处理方法 | |
WO2018028425A1 (zh) | 一种燃煤烟气半干法脱除氟氯的脱硫废水零排放系统 | |
CN104399363B (zh) | 一种实现烟气净化方法中废弃物的回收再生装置 | |
CN207153449U (zh) | 一种脱除燃煤锅炉烟气中复合污染物的装置 | |
CN107140777A (zh) | 一种脱硫废水零排放处理装置及其处理方法 | |
Zhou et al. | Improving the electrostatic precipitation removal efficiency on fine particles by adding wetting agent during the chemical agglomeration process | |
CN106178804A (zh) | 一种去除气相混合物中细颗粒物的系统 | |
CN204320061U (zh) | 一种实现烟气净化方法中废弃物的回收再生装置 | |
CN104069712A (zh) | 基于化学凝并的“电-袋”一体复合除尘工艺 | |
CN105771531B (zh) | 一种化学团聚促进剂 | |
Xu et al. | Progress in the heterogeneous condensation of water vapor for PM2. 5 removal | |
CN103977698B (zh) | 一种降低湿法脱硫系统出口pm2.5和so2排放的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16910154 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/06/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16910154 Country of ref document: EP Kind code of ref document: A1 |