WO2018016901A1 - Pharmaceutical composition for preventing or treating bone diseases - Google Patents

Pharmaceutical composition for preventing or treating bone diseases Download PDF

Info

Publication number
WO2018016901A1
WO2018016901A1 PCT/KR2017/007852 KR2017007852W WO2018016901A1 WO 2018016901 A1 WO2018016901 A1 WO 2018016901A1 KR 2017007852 W KR2017007852 W KR 2017007852W WO 2018016901 A1 WO2018016901 A1 WO 2018016901A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
disease
formula
pharmaceutical composition
osteoclasts
Prior art date
Application number
PCT/KR2017/007852
Other languages
French (fr)
Korean (ko)
Inventor
정우진
서은경
이지애
홍성은
이혜인
조유진
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160091900A external-priority patent/KR101765141B1/en
Priority claimed from KR1020160091899A external-priority patent/KR101832351B1/en
Priority claimed from KR1020160091897A external-priority patent/KR101747775B1/en
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2018016901A1 publication Critical patent/WO2018016901A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/336Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings

Definitions

  • the present invention relates to a pharmaceutical composition for the prevention or treatment of bone diseases.
  • Osteoporosis a representative metabolic bone disease, is a disease in which bone mineral density is reduced and bone density becomes thinner, resulting in widening of the bone marrow cavity. It is easy to fracture even in shock.
  • Osteoporosis is characterized by a decrease in bone mass and abnormal microstructures. As aging progresses, the balance between the absorption of old bone and the formation of new bone is compromised, resulting in poor bone remodeling, which leads to bone failure. As a result, the risk of breakage or fracture increases. This bone mass is influenced by several factors, including genetic factors, nutrition, hormonal changes, differences in exercise and lifestyle, and age, lack of exercise, low weight, smoking, low calcium diet, menopause and ovarian ablation. It is a major cause of bone loss.
  • bone mass is usually the highest at 14-18 years of age, and decreases by about 1% per year in old age.
  • women after 30 years of bone reduction continues to progress, and by the hormonal changes, bone reduction rapidly progresses.
  • estrogen concentration rapidly decreases at the end of menopause, in which a large amount of B-lymphocytes are produced, as in the case of IL-7 (interleukin-7), and the B cell precursor (pre-B) is added to the bone marrow. cells) accumulate, thereby increasing the amount of IL-6, increasing the activity of osteoclasts, and eventually reducing bone mass.
  • IL-7 interleukin-7
  • osteoporosis is an unavoidable symptom for elderly people, especially postmenopausal women, although the degree of osteoporosis is increasing, and as the population ages in developed countries, interest in osteoporosis and its therapeutics is gradually increasing.
  • $ 130 billion is being created around the world in the treatment of bone disease, and because it is expected to grow further, research institutions and pharmaceutical companies around the world are investing heavily in developing bone disease treatments.
  • osteoporosis is more common than diabetes or cardiovascular disease, and osteoporosis is a very important health problem when estimating the pain or cost of treating patients who suffer from fractures.
  • Osteoclasts are large multinucleated cells that destroy or absorb bone tissue that has become unnecessary during the growth of bones of vertebrates and are differentiated from osteoclast precursors. Osteoclast progenitor cells differentiate into osteoclasts in the presence of M-CSF and RANKL, and form multinucleated osteoclasts through fusion. Osteoclasts bind to bone through ⁇ v ⁇ 3 integrin and create an acidic environment while secreting various collagenases and proteases, resulting in bone resorption. Can be an effective way of treating bone disease.
  • Euphorbia Factor L1 (hereinafter referred to as EFL1) is a diterpenoid obtained from seeds of Euphorbia lathyris linne (responder / poor), antiseptic, anticancer and apoptosis sensitization. ) Is known (Zang JY. Et al., Molecules, 2013, 18, 12793-12808).
  • Republic of Korea Patent Publication No. 2001-0028373 discloses the use of EFL1 as a drug or cosmetic material as a keratin exfoliation promoter, the osteoclast differentiation control effect of EFL1 of the present invention and the purpose of treating bone disease is not known to date.
  • the scullcapflavone derivative is a flavonoid derived from Scutellaria baicalensis (gold), which is known to have anti-inflammatory and anticancer effects by folk remedies.
  • gold Scutellaria baicalensis
  • the effect of inhibiting allergic asthma is known (Yun-Choi. Et al., Archives of pharmacal research, v. 16 no. 4, 1993, 283-288).
  • Republic of Korea Patent Publication 2013-0120849 discloses the use of the skull cap flavone derivatives as a pharmaceutical material as a composition for the prevention or treatment of asthma, but the osteoclast differentiation control effect of the skull cap flavone derivatives of the present invention and the purpose of treating bone diseases None known until now.
  • dehydrocostus lactone DHCL
  • DHCL dehydrocostus lactone
  • cinchonine is an alkaloid derived from Cinchona bark, but the effects of anti-obesity and anti-diabetic are known (Korean Patent Publication No. 0946641), the effect of controlling the differentiation of osteoclast differentiation and bone diseases of the present invention Is unknown to date.
  • the present inventors while searching for a substance that inhibits the activity of osteoclasts in search of a new substance for treating bone disease, found that EFL1 inhibited the bone resorption by osteoclasts. It has been confirmed that the composition can be usefully used.
  • the skull capflavone derivatives inhibit bone uptake by osteoclasts, thereby confirming that the skull capflavone derivatives may be usefully used as pharmaceutical compositions for treating bone diseases.
  • dihydrocostus lactone inhibits bone resorption by osteoclasts, and it was confirmed that dihydrocostus lactone may be usefully used as a pharmaceutical composition for treating bone diseases.
  • the present invention was completed by confirming that synconin inhibits bone resorption by osteoclasts, and confirms that synconin may be usefully used as a pharmaceutical composition for treating bone diseases.
  • An object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of bone diseases.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of bone diseases containing Eupovia factor L1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a dietary supplement for the improvement of bone diseases containing Euphorbia factor or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a pharmaceutical composition for the prevention or treatment of bone diseases containing a scalcap flavone derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a health functional food for the improvement of bone disease containing a skull cap flavone derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a pharmaceutical composition for the prevention or treatment of bone diseases containing dihydrocostus lactone or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a dietary supplement for the improvement of bone diseases containing dihydrocostus lactone or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of bone diseases, which contains as a active ingredient cinconin or a pharmaceutically acceptable salt thereof.
  • the present invention provides a dietary supplement for the improvement of bone diseases, which contains as a active ingredient Cynconin or a pharmaceutically acceptable salt thereof.
  • the pharmaceutical composition for preventing or treating bone diseases containing Euphorbia Factor of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient inhibits important factors related to osteoclast differentiation, thereby differentiating osteoclasts. There is an effect of inhibiting bone absorption by inhibiting.
  • the pharmaceutical composition for the prevention or treatment of bone diseases containing the skull capflavone derivative or a pharmaceutically acceptable salt thereof of the present invention to inhibit bone absorption by inhibiting important factors associated with osteoclast differentiation It works.
  • the pharmaceutical composition for the prevention or treatment of bone diseases containing the dihydrocostus lactone of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient, by inhibiting important factors associated with osteoclast differentiation, differentiation of osteoclasts There is an effect of inhibiting bone absorption by inhibiting.
  • the pharmaceutical composition for the prevention or treatment of bone diseases including the present mykonin or a pharmaceutically acceptable salt thereof as an active ingredient inhibits the differentiation of osteoclasts by inhibiting important factors related to osteoclast differentiation
  • the compositions can be usefully used for preclinical and clinical studies, and can treat bone-related diseases caused by the imbalance of osteoclasts, and thus are widely used for the prevention or treatment of bone-related diseases. Can be utilized.
  • EFL1 is a diagram showing the concentration and time-dependent effects of the composition of the present invention EFL1 on the differentiation of RANKL treated osteoclast progenitor cells (BMMs) according to the concentration of EFL1:
  • FIG. 2 is a diagram showing the effect of EFL1, a composition of the present invention, on the expression of NFATc1 and target genes in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 3 is a diagram showing the effect of EFL1, the composition of the present invention on NF- ⁇ B activity and c-FOS expression in RANKL treated osteoclast progenitor cells (BMMs):
  • Figure 4 is a diagram showing the effect of EFL1 composition of the present invention on the phosphorylation of MAPKs and AKT in RANKL-treated osteoclast progenitor cells (BMMs).
  • FIG. 5 is a diagram showing the effect of EFL1, the composition of the present invention on the activity of CREB-PGC-1 ⁇ in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 6 is a diagram showing the effect of EFL1, a composition of the present invention, on the activity and production of free radicals of Nrf2 and its target genes in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 7 is a diagram showing the effects of exposure to EFL1, the composition of the present invention, on osteoclast differentiation and expression of NFATc1 and PGC-1 ⁇ , and their target genes:
  • FIG. 8 is a diagram showing the effects of the exposure time point of EFL1, the composition of the present invention, on actining formation of RANKL-treated osteoclast progenitor cells (BMMs) and bone resorption on dentine discs:
  • FIG. 9 is a diagram showing the effect of EFL1, the composition of the present invention on the death of osteoclasts:
  • FIG. 10 is a diagram showing the inhibitory effect of the composition of the present invention EFL1 against bone damage caused by LPS-induced inflammation:
  • FIG. 11 is a diagram showing the concentration and time-dependent effect of SFII, the composition of the present invention on the differentiation of RANKL-treated osteoclast progenitor cells (BMMs):
  • FIG. 12 is a diagram showing the effect of SFII, the composition of the present invention on the expression of NFATc1 and target genes in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 13 is a diagram showing the effect of SFII, the composition of the present invention on NF- ⁇ B activity and c-FOS expression in RANKL treated osteoclast progenitor cells (BMMs):
  • Figure 14 shows the effect of SFII, the composition of the present invention on phosphorylation of MAPKs and Src-AKT and FOXO1 in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 15 is a diagram showing the effect of SFII, the composition of the present invention on the activity of CREB-PGC-1 ⁇ in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 16 is a diagram showing the effect of SFII, a composition of the present invention, on the activity of Nrf2 and its target genes, caveolin-1 and production of free radicals in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 17 is a diagram showing the effects of exposure time of SFII, a composition of the present invention, on osteoclast differentiation and expression of NFATc1 and its target genes:
  • FIG. 18 is a diagram showing the effects of SFII, the composition of the present invention, on the actining formation of RANKL-treated osteoclast progenitor cells (BMMs) and bone resorption on dentine discs:
  • FIG. 19 is a diagram showing the effect of SFII, a composition of the present invention, on bone damage caused by LPS-induced inflammation:
  • DHCL dihydrocostus lactone
  • FIG. 21 is a diagram showing the effect of dehydrocostus lactone (DHCL), a composition of the present invention, on the expression of NFATc1 and target genes in RANKL treated osteoclast progenitor cells (BMMs):
  • DHCL dehydrocostus lactone
  • FIG. 22 is a diagram showing the effect of dihydrocostus lactone (DHCL), a composition of the present invention, on NF- ⁇ B activity and c-FOS expression in RANKL treated osteoclast progenitor cells (BMMs):
  • DHCL dihydrocostus lactone
  • FIG. 23 is a diagram showing the effect of dihydrocostus lactone (DHCL), a composition of the present invention, on phosphorylation of MAPKs and Src-AKT and FOXO1 in RANKL treated osteoclast progenitor cells (BMMs):
  • DHCL dihydrocostus lactone
  • FIG. 24 is a diagram showing the effect of DHCL, a composition of the present invention, on the activity of Nrf2 and its target genes, caveolin-1 and production of free radicals in RANKL treated osteoclast progenitor cells (BMMs):
  • FIG. 25 is a diagram showing the effects of DHCL at the time of exposure of the composition of the present invention on differentiation of RANKL treated osteoclast progenitor cells (BMMs) and expression of NFATc1 and its target genes and osteoclast fusion related genes:
  • FIG. 26 is a diagram showing the effects of DHCL at the time of exposure of the composition of the present invention on actining formation of RANKL-treated osteoclast progenitor cells (BMMs) and bone resorption on dentine discs:
  • FIG. 27 is a diagram showing the inhibitory effect of DHCL, a composition of the present invention, on bone damage caused by LPS-induced inflammation:
  • CN cinconin
  • BMMs progenitor cells
  • CN cinconin
  • BMMs RANKL treated osteoclasts
  • FIG. 30 is a diagram showing the effect of cinconin (CN), a composition of the present invention, on NF- ⁇ B activity and c-FOS expression in progenitor cells (BMMs) of RANKL treated osteoclasts:
  • Figure 31 shows the effect of cinconin (CN), a composition of the present invention, on phosphorylation of MAPKs and Src-AKT and FOXO1 in RANKL treated osteoclasts (BMMs):
  • FIG. 32 is a diagram showing the effect of cinconin (CN), the composition of the present invention on the activity of CREB-PGC-1 ⁇ in RANKL treated osteoclasts (BMMs):
  • Figure 33 shows the effect of the exposure time of the composition of the present invention, Shinkonin (CN) on osteoclast differentiation and expression of NFATc1 and PGC-1 ⁇ and their target genes, and RANKL-treated osteoclast progenitor cells (BMMs)
  • Fig. 1 shows the effects of the composition of the present invention, cinconin (CN) on actining formation and bone resorption in dentine discs.
  • CN cinconin
  • Euphorbia Factor L1 which is an active ingredient of the present invention, is a diterpenoid obtained from seeds of Euphorbia lathyris linne (Successor / Platinum). Has:
  • the present invention provides a pharmaceutical composition for preventing or treating bone diseases containing the compound represented by Formula 1, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the Euphorbia factor L1 of this invention is 0.1-20 micrometers concentration.
  • Euphorbia factor L1 composition having a concentration of less than 0.1 ⁇ M has a problem in that the treatment efficiency of bone disease is lowered, and if 20 ⁇ M or more, there is a problem that toxicity may occur in cells.
  • the concentration of the pharmaceutical composition containing Euphoria factor L1 as an active ingredient may be preferably 1 to 10 ⁇ M, more preferably 6 ⁇ M, but is not limited thereto.
  • composition is characterized by reducing the expression or activity of NFATc1, NF- ⁇ B, c-FOS and PGC-1 ⁇ , characterized by increasing the expression or activity of Nrf2, inhibits the production of free radicals in the cell It promotes the death of osteoclasts and is characterized by inhibiting bone damage caused by inflammation.
  • bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is preferably at least one selected from the group consisting of Paget disease and metastatic bone cancers. It is not limited to this.
  • EFL1 Euphorbia factor L1
  • Chemical Formula 1 effectively inhibits osteoclast differentiation by RANKL
  • NFATc1 protein which is the most important transcription factor in osteoclast differentiation
  • target genes CK, MMP9 and TRAP genes
  • EFL1 inhibited the mRNA expression of PGC-1 ⁇ and its target genes, ND4, COX1, and COX3 (see FIG. 5), and mRNA expression of Nrf2 and NQO1 and Srx, which are representative target genes, increased together with EFL1. It confirmed that it became. At the same time, the expression of Nrf2 target proteins Srx, Prxl, PrxV, PrxVI, Trx1 and TrxR1 antioxidant enzymes, including Nrf2 and antioxidant enzymes, also increased. In addition, it was confirmed that the generation of free radicals is reduced by EFL1 (see Fig. 6).
  • EFL1 inhibited maintenance of osteoclasts differentiated, actin ring formation, and bone resorption in the dentine disc (see FIGS. 7 and 8), and promoted the death of osteoclasts (see FIG. 9). It was confirmed that the bone damage by inhibiting (see Fig. 10).
  • composition containing the euphoria factor L1 of the present invention as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
  • the scullcapflavone derivative containing the present invention as an active ingredient is a flavonoid derived from Scutellaria baicalensis (golden), and has a structure represented by the following formula (2):
  • R 1 and R 2 are H or OCH 3 .
  • the present invention provides a pharmaceutical composition for preventing or treating bone diseases containing the compound represented by Formula 2, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the skull cap flavone derivatives of the present invention is characterized in that the skull cap flavone I or skull cap flavone II, wherein the skull cap flavone derivatives R 1 and R 2 are each independently hydrogen (H) or methoxy (OCH 3 ) group.
  • R 1 and R 2 is hydrogen (H).
  • Scapcapflavone II, R 1 and R 2 in the formula (4) is a methoxy (OCH 3 ) group.
  • the skullcapflavone derivative of the present invention is preferably in a concentration of 0.1 to 10 ⁇ M.
  • Skullcapflavone derivative composition having a concentration of less than 0.1 ⁇ M has a problem that the treatment efficiency of bone disease is lowered, there is a problem that can cause toxicity to cells if more than 10 ⁇ M.
  • the concentration of the pharmaceutical composition containing the scullcapflavone derivative as an active ingredient may be preferably 1 to 5 ⁇ M, more preferably 2 ⁇ M, but is not limited thereto.
  • composition is characterized by reducing the expression or activity of NFATc1, c-FOS, MAPKS, Src, AKT, CREB, PGC-1 ⁇ and caveolin-1, and increases the expression or activity of Nrf2 and FOXO1 and catalase Characterized in that it inhibits the production of free radicals in the cell and inhibits bone damage caused by inflammation.
  • bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is preferably one or more selected from the group consisting of paget disease and metastatic bone cancers, but not limited thereto.
  • the skull capflavone II (hereinafter SFII) of the present invention
  • the skull cap flavone derivative described in Formula 2 effectively inhibits the differentiation of osteoclast progenitor cells (BMMs) by RANKL (See FIG. 11).
  • mRNA treatment of CR and DC-STAMP genes was inhibited with SFII, along with NFATc1 protein, the most important transcription factor in osteoclast differentiation, and its target genes CK, MMP9, and TRAP (see FIG. 12). ).
  • SFII was found to significantly inhibit the mRNA expression of CREB and PGC-1 ⁇ and its target genes ND4, COX1, COX3 and Cyt b (see FIG. 15).
  • SFII and NQO1 and Srx are representative target genes by SFII. MRNA expression was increased together.
  • Nrf2 and Nrf2 target proteins including antioxidant enzymes, NQO1, Srx, PrxI, PrxII, PrxIII, PrxIV, PrxV, PrxVI, Trx1, Trx2, TrxR1 and TrxR2, were also found to increase expression.
  • the generation of reactive oxygen by SFII was reduced, and the expression of caveolin-1, which is known to inhibit Nrf2 activity and promote the differentiation of osteoclasts, was also inhibited by SFII (see FIG. 16).
  • SFII inhibits the formation of actin ring and bone resorption by osteoclasts in dentine disc (see FIGS. 17 and 18) and inhibits bone damage due to LPS inflammation (see FIG. 19).
  • composition containing the skull cap flavone derivative of the present invention as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
  • DHCL dihydrocostus lactone
  • the present invention provides a pharmaceutical composition for preventing or treating bone diseases, comprising the compound represented by Formula 5, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the dihydrocostus lactone of the present invention is characterized in that the concentration of 0.1 to 10 ⁇ M.
  • Dihydrocostus lactone composition having a concentration of less than 0.1 ⁇ M has a problem that the treatment efficiency of bone disease is lowered, there is a problem that can cause toxicity to cells if more than 10 ⁇ M.
  • the concentration of the pharmaceutical composition containing dihydrocostus lactone as an active ingredient may be preferably 1 to 5 ⁇ M, more preferably 1.5 ⁇ M.
  • composition is characterized by reducing the expression or activity of NFATc1, c-FOS, JNK, ERK, Src, AKT and caveolin-1, increases the phosphorylation of CREB and the expression of PGC-1 ⁇ , Nrf2 and FOXO1 And increasing expression or activity of catalase, and inhibiting the production of free radicals in cells and inhibiting bone damage caused by inflammation.
  • bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is characterized in that any one or more selected from the group consisting of (Paget disease) and metastatic bone cancer (metastatic bone cancers).
  • DHCL dehydrocostus lactone
  • Nrf2 and NQO1 and Srx which are representative target genes, was increased by DHCL, and Nrf2 target proteins including Nrf2 and antioxidant enzymes were also increased.
  • DHCL DHCL
  • Nrf2 target proteins including Nrf2 and antioxidant enzymes were also increased.
  • the generation of free radicals is reduced by DHCL
  • the expression of caveolin-1 which inhibits the activity of Nrf2 and is known as a differentiation promoter of osteoclasts, is also inhibited by DHCL (see FIG. 24).
  • DHCL inhibits the formation of actin ring and bone uptake by osteoclasts in dentine disc (see FIGS. 25 and 26) and inhibits bone damage due to LPS inflammation (see FIG. 27).
  • composition containing the dihydrocostus lactone (DHCL) of the present invention as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
  • cinchonine (CN) which is contained as an active ingredient of the present invention, is an alkaloid derived from Cinchona bark, and has a structure represented by Formula 6 below:
  • the present invention provides a pharmaceutical composition for preventing or treating bone diseases, which contains the compound represented by Chemical Formula 6, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the cinconin of the present invention is characterized in that the concentration of 0.1 to 50 ⁇ M.
  • Synconin composition having a concentration of less than 0.1 ⁇ M has a problem in that the treatment efficiency of bone disease is lowered, there is a problem that can cause toxicity to cells if more than 50 ⁇ M.
  • the concentration of the pharmaceutical composition containing cinnaconin as an active ingredient is 1 to 30 ⁇ M, more preferably 20 ⁇ M.
  • composition is characterized by reducing the expression or activity of NFATc1, NF- ⁇ B, ERK, Src, AKT, FOXO1, c-FOS and PGC-1 ⁇ , it is characterized by inhibiting bone damage caused by inflammation.
  • bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is preferably one or more selected from the group consisting of paget disease and metastatic bone cancers, but not limited thereto.
  • composition containing the present mykonin (CN) as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
  • the present invention includes not only the compound represented by Chemical Formula 1 to Chemical Formula 6, but also a pharmaceutically acceptable salt thereof, and possible solvates, hydrates, racemates or stereoisomers which can be prepared therefrom.
  • the present invention can be used in the form of a compound represented by Formula 1 to Formula 6 or a pharmaceutically acceptable salt thereof, and an acid addition salt formed by a pharmaceutically acceptable free acid is useful as the salt.
  • Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkanes. Obtained from non-toxic organic acids such as doates, aromatic acids, aliphatic and aromatic sulfonic acids.
  • Such pharmaceutically toxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide and iodide Id, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suverate , Sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitro benzoate, hydroxybenzoate, meth Oxybenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfon
  • Acid addition salts according to the present invention are dissolved in conventional methods, for example, the compounds represented by the above formulas (1) to (6) in an excess of aqueous acid solution, and the salts are water-miscible organic solvents such as methanol, ethanol, acetone. Or by precipitation with acetonitrile.
  • the same amount of the compound represented by the formula (1) to formula (6), and the acid aqueous solution or alcohol may be heated, and then the mixture is evaporated to dryness or the precipitated salt may be produced by suction filtration.
  • Bases can also be used to make pharmaceutically acceptable metal salts.
  • Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt.
  • Corresponding silver salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable negative salt (eg, silver nitrate).
  • composition When formulating the composition, it is prepared using commonly used diluents or excipients, such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants.
  • Solids for oral administration include tablets, pills, powders, granules, capsules, troches and the like, and such solid preparations include at least one excipient example in the compound represented by Formula 1 to Formula 6 of the present invention.
  • it is prepared by mixing starch, calcium carbonate, sucrose or lactose or gelatin.
  • lubricants such as magnesium styrate talc are also used.
  • Liquid preparations for oral administration include suspensions, solvents, emulsions, or syrups, and may include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. have.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • injectable ester such as ethyl oleate, and the like
  • base of the suppository witepsol, macrogol, tween 81, cacao butter, taurine, glycerol, gelatin and the like can be used.
  • composition according to the invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and an effective dose level means the type, severity, and activity of the patient's disease. , Sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of the drug, and other factors well known in the medical arts.
  • the compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the effective amount of the compound according to the present invention may vary depending on the age, sex, and weight of the patient, and in general, 0.1 mg to 100 mg, preferably 0.5 mg to 10 mg per 1 kg of body weight is administered daily or every other day. Alternatively, the administration may be divided into 1 to 3 times a day. However, the dosage may be increased or decreased depending on the route of administration, the severity of the disease, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
  • compositions of the present invention can be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy and biological response modifiers.
  • the present invention provides a dietary supplement for the improvement of bone disease containing Euphorbia factor L1 represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a health functional food for the improvement of bone disease containing the skull cap flavone derivative represented by the formula (2) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the skull cap flavone derivative is characterized in that the skull cap flavone I or skull cap flavone II.
  • the present invention provides a dietary supplement for improving bone diseases containing dihydrocostus lactone represented by the formula (5) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a health functional food for improving bone diseases containing the compound represented by the formula (6), or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the bone diseases include growth stage development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (metastatic) and metastatic bone cancer (metastatic) It is preferably at least one selected from the group consisting of bone cancers), but is not limited thereto.
  • the "health functional food” of the present specification is manufactured by using nutrients or ingredients (functional raw materials) having useful functions to the human body, which are easily deficient in a daily meal, and maintaining health through physiological functions or maintaining normal functions of the human body.
  • the food is to maintain and improve the food as defined by the Commissioner of Food and Drug Safety, but is not limited to this and is not used to exclude the health food in the normal sense.
  • the composition of the present invention may be added as it is to food or used with other food or food ingredients, and may be appropriately used according to conventional methods.
  • the mixing amount of the active ingredient can be suitably determined according to the purpose of use (prevention or improvement).
  • the amount of the compound in the dietary supplement may be added at 0.01 to 90 parts by weight of the total food weight.
  • the amount may be below the above range, and the active ingredient may be used in an amount above the above range because there is no problem in terms of safety.
  • the health functional beverage composition of the present invention is not particularly limited to other ingredients except for containing the composition as an essential ingredient in the indicated ratios, and may contain various flavors or natural carbohydrates, etc. as additional ingredients, as in general beverages.
  • natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.
  • natural flavoring agents tautin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.) ⁇ and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used.
  • the proportion of said natural carbohydrates is generally about 1 to 20 g, preferably about 5 to 12 g per 100 g of the composition of the present invention.
  • the composition of the present invention includes various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, coloring and neutralizing agents (such as cheese and chocolate), pectic acid and salts thereof, alginic acid and its Salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks, and the like.
  • the composition of the present invention may contain natural fruit juice and pulp for the production of fruit juice beverages and vegetable beverages.
  • additives can be used independently or in combination.
  • the proportion of such additives is not so critical but is generally selected in the range of 0.1 to about 20 parts by weight per 100 parts by weight of the composition of the present invention.
  • the present invention also provides a method for preventing or treating bone diseases, comprising administering Euphorbia Factor L1 or a pharmaceutically acceptable salt thereof to a mammal, which is represented by Formula 1 below:
  • the present invention also provides the use of Euphorbia Factor L1 or a pharmaceutically acceptable salt thereof, as described in Formula 1, for use in the manufacture of a medicament for the prevention or treatment of bone diseases.
  • the present invention also provides a method for preventing or treating bone diseases, comprising administering to a mammal a skullcapflavone derivative represented by Formula 2 or a pharmaceutically acceptable salt thereof:
  • R 1 and R 2 are H or OCH 3 .
  • the present invention also provides the use of a scapcapflavone derivative according to Formula 2 or a pharmaceutically acceptable salt thereof for use in the manufacture of a medicament for the prevention or treatment of bone diseases.
  • the present invention provides a method for preventing or treating bone diseases, comprising administering to a mammal a dihydrocostus lactone represented by the following formula (5) or a pharmaceutically acceptable salt thereof:
  • the present invention also provides the use of a dihydrocostus lactone or a pharmaceutically acceptable salt thereof according to Formula 5, for use in the manufacture of a medicament for the prevention or treatment of a bone disease:
  • the present invention provides a method for preventing or treating bone diseases, comprising administering to a mammal, a neoconsin or a pharmaceutically acceptable salt thereof represented by the following formula:
  • the present invention also provides the use of cinconin or a pharmaceutically acceptable salt thereof as described in Formula 6 for use in the manufacture of a medicament for the prevention or treatment of bone diseases.
  • Euphorbia factor L1 contained in the present invention as an active ingredient was used in an experiment using CFN92883 / 76376-43-7 manufactured by ChemFaces.
  • BMM Bone Marrow-Derived Macrophages
  • BMM (Bone Marrow-Derived Macrophages) cells were treated with 50 ng / ml RANKL for 3 days in the presence of various concentrations (0, 4, 6, 8 ⁇ M) of EFL1 to differentiate into osteoclasts and 4% paraformaldehyde after PBS washing. After fixation with TRAP staining using leukocyte acid phosphatase cytochemistry kit (Sigma Aldrich), the number of osteoclasts with three or more multinucleated stained TRAP was analyzed under a microscope.
  • cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit in order to exclude that the osteoclast differentiation inhibitory effect of EFL1 is due to cytotoxicity.
  • BMM cells were treated with 50 ng / ml of RANKL for 2 days in the presence of various concentrations (0, 4, 6, 8 ⁇ M) of EFL1 to differentiate into osteoclasts, and osteoclasts.
  • various concentrations (0, 4, 6, 8 ⁇ M) of EFL1 to differentiate into osteoclasts, and osteoclasts.
  • immunoblot using an antibody against NFATc1 was performed.
  • Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
  • NFATc1 protein was significantly inhibited from 4 ⁇ M EFL1 concentration (FIG. 2A), and it was confirmed that the inhibitory effect was continued up to 5 days (FIG. 2B).
  • CK, MMP9 and TRAP genes which are target genes of NFATc1 were confirmed using real time-PCR.
  • Trizol reagent Invitrogen
  • ABI 7300 real at a final 20 ⁇ l volume containing 10 ⁇ l of 2 ⁇ SYBR Green PCR Master Mix (M Biotech) and 1 ⁇ l of 10 ⁇ M of each gene-specific primer (Genotech). Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C. The sequence of Primer used in the experiment is shown in Table 1 below.
  • EFL1 modulates NF- ⁇ B activity and c-Fos expression, known as upstream regulators of NFATc1
  • immunoblot using I ⁇ B ⁇ and p-I ⁇ B ⁇ (rabbit polyclonal antibodies, Cell Signaling Technology) was used to determine the degree of phosphorylation of I ⁇ B ⁇ .
  • SOD2 and c-FOS protein expression was also confirmed by immunoblot using antibodies (SOD2 / rabbit polyclonal antibody, Upstate; c-FOS / rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc), and SOD2 and c-Fos mRNA expression was confirmed. It was analyzed by real-time PCR by the method described in Experimental Example 2 (see Table 1 primer sequence).
  • EFL1 (6 ⁇ M) significantly inhibited the phosphorylation of I ⁇ B ⁇ in the presence of RANKL (50 ng / ml) (FIG. 3A) and significantly inhibited protein and mRNA expression of SOD2, an NF- ⁇ B target gene. (B and D of FIG. 3). In addition, EFL1 significantly inhibited c-Fos protein and mRNA expression (Fig. 3 C and D).
  • PGC-1 ⁇ is a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation.
  • RANKL a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation.
  • mRNA expression of PGC-1 ⁇ and its target genes ND4, COX1 and COX3 was confirmed by real-time PCR (see Table 1 primer sequence).
  • EFL1 (6 ⁇ M) significantly inhibited PGC-1 ⁇ , ND4, COX1 and COX3 mRNA expression by RANKL (50 ng / ml) (FIG. 5A).
  • EFL1 also inhibited the expression of PGC-1 ⁇ (rabbit polyclonal antibody, Abcam) protein, but CREB (phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz Biotechnology) , Inc) did not affect the phosphorylation (B and C of Figure 5).
  • Nrf2 Redox-sensitive transcription factor Nrf2 is known to be involved in osteoclast differentiation by regulating the expression of GSH synthase and antioxidant enzymes in vivo, and to investigate the inhibitory effect of osteoclast differentiation by regulating Nrf2 activity of EFL1.
  • Nrf2 NQO1 and Srx gene expression was confirmed by real-time PCR (see Table 1 primer sequence), Nrf2 target proteins NQO1, Srx, Prxl, PrxV, PrxVI, Trx1 and TrxR1 (rabbit polyclonal antibodies, Young In Frontier) protein expression was confirmed by immunoblot.
  • Nrf2 and its target genes NQO1 and Srx were increased by EFL1 (6 ⁇ M) treatment in the presence of RANKL (50 ng / ml) (FIG. 6A).
  • Nrf2 and its target proteins NQO1, Srx, Prxl, PrxV, PrxVI, Trx1 and TrxR1 antioxidant enzymes were also confirmed to increase the expression (Fig. 6B).
  • ROS was measured by oxidant sensitive fluorescence detection using CM-H2DCFDA. Since CM-H2DCFDA reacts with ROS and fluoresces, cells are treated with RANKL, washed with HBSS, and then treated with 5 ⁇ M of CM-H2DCFDA for 10 minutes in the dark, using a FACS Calibur flow cytometer (BD Biosciences). Analyzed.
  • EFL1 (6 ⁇ M) was pretreated for 30 minutes and RANKL (A in FIG. 6, bottom) or H 2 O 2 (FIG. A, lower right) was treated for 15 minutes, and then active oxygen was measured using CM-H2DCFDA as described above.
  • E0, RANKL treatment; E1, RANKL 1 day treatment; E2, RANKL 2 days) during RANKL treatment to differentiate BMM cells into osteoclasts Post-treatment was exposed to EFL1 and analyzed for the number of TRAP stained multinucleated osteoclasts.
  • BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, and then treated with EFL1, and EFL1
  • the cells treated with RANKL were fixed as follows and stained with actining and nuclei or analyzed for bone resorption on dentine discs.
  • the cells were fixed in PBS with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by Alexa Fluor 488-phalloidin (Invitrogen) for 20 minutes, followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope.
  • the degree of bone resorption was treated with BMM cells cultured in dentine disc (Immunodiagnostic Systems Ltd) under the same conditions as above, followed by removal of the cells using a cotton tip, staining the resorption pit with hematoxylin, and then using a microscope 100x magnification. The photographs taken were analyzed with Image-Pro Plus 4.5 software (Media Cybernetics).
  • the osteoclasts were treated with EFL1 (6 ⁇ M) and the shape change of cells with time (0, 6, 12, 18h) was observed through a microscope.
  • the osteoclasts were fixed as follows, followed by DAPI staining and TUNEL assay: The osteoclasts were fixed with 4% formaldehyde for 60 minutes at room temperature and washed with PBS. After staining the cells in which apoptosis occurred using In Situ Cell Death Detection Kit TMR red (Roche), the cells were stained with DAPI for 3 minutes at room temperature, and observed with a fluorescence microscope. As a result, it was confirmed that EFL1 induces the death of differentiated osteoclasts (C and D of FIG. 9).
  • LPS Lipopolysaccharide, 12.5 mg / kg body weight
  • an inflammatory inducer was injected into the mouse skull twice daily at intervals.
  • vehicle 50% DMAC + 10% Tween 80 + 50% distilled water
  • EFL1 10 mg / kg
  • decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin block was made and then cut and stained with TRAP and Hematoxylin.
  • Skullcapflavone II (hereinafter referred to as SFII) containing the present invention as an active ingredient was used in an experiment using CFN92216 / 55084-08-7 manufactured by ChemFaces.
  • BMM Bone Marrow-Derived Macrophages
  • Bone Marrow-Derived Macrophages (BMM) cells were treated with 25 ng / ml M-CSF (macrophage colony stimulating factor) and 50 ng / ml RANKL in the presence of SFII at various concentrations (0, 1, 2, 3 ⁇ M). After treatment for 1 day, differentiated into osteoclasts, fixed with 4% paraformaldehyde after PBS wash, followed by TRAP staining using leukocyte acid phosphatase cytochemistry kit (SigmaAldrich), followed by TRAP staining. Analyzed.
  • cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit in order to exclude that the osteoclast differentiation inhibitory effect of SFII is due to cytotoxicity.
  • BMM cells were prepared using 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium mono-sodium salt (WST-1) reagent (Roche Applied Science), respectively. ⁇ l was added and incubated at 37 ° C. for 2-4 hours, and the absorbance at 450 nm was measured.
  • BMM cells were treated with 50 ng / ml of RANKL for 2 days in the presence of SFII at various concentrations (0, 1, 2, 3 ⁇ M), and differentiated into osteoclasts.
  • SFII serum-derived factor
  • Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
  • DC-STAMP genes associated with CK, MMP9 and TRAP genes which are target genes of NFATc1, and CR and osteoclasts, which are calcitonin receptor genes, were confirmed by real time-PCR.
  • Trizol reagent Invitrogen
  • ABI 7300 real at the final 20 ⁇ l volume containing 0.8 ⁇ l of the diluted cDNA template (1: 2.5) containing 10 ⁇ l of 2X SYBR Green PCR Master Mix (M Biotech) and 1 ⁇ l of 10 ⁇ M of each gene-specific primer (Genotech).
  • Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the sequence of Primer used in the experiment is shown in Table 2 below.
  • PGC-1 ⁇ is a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation.
  • RANKL a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation.
  • mRNA expression of PGC-1 ⁇ and its target genes ND4, COX1, COX3 and Cyt b was confirmed by real-time PCR (see Table 2 primer sequence).
  • Nrf2 The redox-sensitive transcription factor Nrf2 is known to be involved in the differentiation of osteoclasts by regulating the expression of GSH synthase and antioxidant enzymes in vivo, and to investigate the inhibitory effect of osteoclast differentiation by regulating Nrf2 activity of SFII.
  • Nrf2, NQO1 and Srx gene expression was confirmed by real-time PCR (see Table 2 primer sequence), Nrf2 and other target proteins of Nrf2 including Nrf2 and antioxidant enzymes NQO1, Srx, PrxI, PrxII, PrxIII, PrxIV, PrxV, Expression of PrxVI, Trx1, Trx2, TrxR1 and TrxR2 (rabbit polyclonal antibodies, Young In Frontier) proteins was confirmed by immunoblot and real-time PCR.
  • Nrf2 and its target genes NQO1 and Srx were increased by SFII (2 ⁇ M) treatment in the presence of RANKL (50 ng / ml) (FIG. 16A).
  • Nrf2 and antioxidant enzymes including NQO1, Srx, PrxI, PrxII, PrxIII, PrxIV, PrxV, PrxVI, Trx1, Trx2, TrxR1 and TrxR2 were also found to increase the expression (Fig. 16B).
  • ROS was measured by oxidant sensitive fluorescence detection using CM-H2DCFDA. Since CM-H2DCFDA reacts with ROS and fluoresces, cells are treated with RANKL, washed with HBSS, and then treated with 5 ⁇ M of CM-H2DCFDA for 10 minutes in the dark, using a FACS Calibur flow cytometer (BD Biosciences). Analyzed.
  • SFII (2 ⁇ M) was pretreated for 30 minutes and RANKL (C, M in Figure 16) or H 2 O 2 (C in Figure 16) to determine the possibility of SFII to remove the active oxygen directly as an antioxidant. , Right) was treated for 15 minutes and the active oxygen was measured using CM-H2DCFDA as described above.
  • osteoclast formation was significantly inhibited when SFII (2 ⁇ M) was treated with RANKL (50 ng / ml) (E0), and osteoclasts when exposed to SFII after RANKL 1 day treatment (E1). Formation was significantly inhibited.
  • E2 when exposed after 2 days (E2), there was a significant difference in the number of osteoclasts of 10 or more nuclei but little effect on the number of osteoclasts of 3 or more nuclei (FIG. 17A). ).
  • BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, and then treated with SFII and SFII.
  • the cells treated with RANKL were fixed as follows and stained with actining and nuclei or analyzed for bone resorption on dentine discs.
  • the cells were fixed in PBS added with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by 20 minutes treatment with Alexa Fluor 488-phalloidin (Invitrogen), followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope.
  • the degree of bone resorption was obtained by removing the cells cultured on dentine disc (Immunodiagnostic Systems Ltd) using cotton tip, and staining the resorption pit with hematoxylin. (Media Cybernetics).
  • the mouse skull was injected twice a day with an inflammatory inducer, LPS (Lipopolysaccharide, 12.5 mg / kg body weight).
  • LPS Lipopolysaccharide, 12.5 mg / kg body weight
  • vehicle 10% DMAC + 10% Tween 80 + 80% distilled water
  • SFII 2 mg / kg
  • decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin blocks were made and then cut and stained with TRAP and Hematoxilin.
  • DHCL Dehydrocostus lactone
  • BMM Breast-Derived Macrophages
  • BMM cells are precursor cells capable of differentiating into osteoclasts.
  • cells extracted from femur and tibia bone marrow of 8-week-old C57BL / 6 male mice were used.
  • Bone Marrow-Derived Macrophages (BMM) cells were treated with 25 ng / ml M-CSF (macrophage colony stimulatory factor) and 50 ng / ml RANKL in the presence of various concentrations (0, 0.5, 1, 1.5 ⁇ M) of DHCL. After treatment for 1, 5 days to differentiate into osteoclasts, fixed with 4% paraformaldehyde after PBS washing, and then TRAP stained using leukocyte acid phosphatase cytochemistry kit (SigmaAldrich), followed by TRAP staining of osteoclasts with three or more multinucleated cells. The numbers were analyzed under a microscope.
  • M-CSF macrophage colony stimulatory factor
  • osteoclast differentiation was significantly inhibited from 0.5 ⁇ M of DHCL (A and B in FIG. 20), and 0.5 ⁇ M of DHCL was also treated when treated for 5 days. Osteoclast differentiation was significantly inhibited (D and E in FIG. 20).
  • cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit to exclude that the osteoclast differentiation inhibitory effect of DHCL is due to cytotoxicity.
  • BMM cells were treated with 50 ng / ml RANKL for 2 days in the presence of various concentrations (0, 0.5, 1, 1.5 ⁇ M) of DHCL to differentiate into osteoclasts, and osteoclasts.
  • various concentrations (0, 0.5, 1, 1.5 ⁇ M) of DHCL to differentiate into osteoclasts, and osteoclasts.
  • immunoblot using an antibody against NFATc1 was performed.
  • Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
  • DC-STAMP genes associated with CK, MMP9 and TRAP genes which are target genes of NFATc1, and CR and osteoclasts, which are calcitonin receptor genes, were confirmed by real time-PCR.
  • Trizol reagent Invitrogen
  • ABI 7300 real at the final 20 ⁇ l volume containing 0.8 ⁇ l of the diluted cDNA template (1: 2.5) containing 10 ⁇ l of 2X SYBR Green PCR Master Mix (M Biotech) and 1 ⁇ l of 10 ⁇ M of each gene-specific primer (Genotech).
  • Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the sequence of Primer used in the experiment is shown in Table 3 below.
  • DHCL regulates NF- ⁇ B activity and c-Fos expression known as upstream regulators of NFATc1
  • immunoblot using I ⁇ B ⁇ and p-I ⁇ B ⁇ (rabbit polyclonal antibodies, Cell Signaling Technology) was used to determine the degree of phosphorylation of I ⁇ B ⁇ .
  • SOD2 and c-FOS proteins was also confirmed by immunoblot using these antibodies (SOD2 / rabbit polyclonal antibody, Upstate; c-FOS / rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc), and SOD2 and c-Fos.
  • Expression of mRNA was analyzed by real-time PCR by the method described in Experimental Example 19 (see Table 3 primer sequence).
  • DHCL significantly inhibited the phosphorylation of I ⁇ B ⁇ in the presence of RANKL (50 ng / ml) (FIG. 22A) and significantly inhibited protein and mRNA expression of SOD2, an NF- ⁇ B target gene. (FIGS. 22B and D). In addition, it was confirmed that DHCL also significantly inhibits the expression of c-Fos protein and mRNA (C and D of Figure 22).
  • Nrf2 Redox-sensitive transcription factor Nrf2 is known to be involved in osteoclast differentiation by regulating the expression of GSH synthase and antioxidant enzymes in vivo, and to investigate the inhibitory effect of osteoclast differentiation by regulating Nrf2 activity of DHCL.
  • Nrf2 NQO1 and Srx gene expression was confirmed by real-time PCR (see Table 3 primer sequence), and target proteins of Nrf2 including Nrf2 and antioxidant enzymes NQO1, Srx, Prx, PrxV, PrxVI and Trx1 (rabbit polyclonal antibodies, Young In Frontier) protein expression was confirmed by immunoblot and real-time PCR.
  • Nrf2 and its target genes were increased by DHCL (1.5 ⁇ M) treatment in the presence of RANKL (50 ng / ml) (FIG. 24A).
  • Nrf2 and antioxidant enzymes including its target proteins NQO1, Srx, Prx I, PrxV, PrxVI and Trx1 was also confirmed that the expression is increased (Fig. 24B).
  • ROS was measured by oxidant sensitive fluorescence detection using CM-H2DCFDA. Since CM-H2DCFDA reacts with ROS and fluoresces, the cells are treated with RANKL, washed with HBSS, and then treated with 5 ⁇ M of CM-H2DCFDA for 20 minutes in the dark, using a FACS Calibur flow cytometer (BD Biosciences). Analyzed.
  • DHCL 1.5 ⁇ M was pretreated for 30 minutes and RANKL (C in FIG. 24) or H 2 O 2 (C in FIG. 24) to determine the possibility of DHCL being able to directly remove active oxygen as an antioxidant. After treating for 15 minutes, the right oxygen was measured using CM-H2DCFDA as described above.
  • DHCL is caveolin-1 (rabbit monoclonal) induced by RANKL. It was confirmed that the expression of antibody, Trnasduction Laboratories) is suppressed (FIG. 24D). This suggests that DHCL inhibits the expression of caveolin-1, thereby reducing the binding of Nrf2 to promote Nrf2 activity, resulting in lowering free radicals in cells.
  • DHCL osteoclasts In order to investigate the differentiation inhibitory effect of DHCL osteoclasts, different time points (E0, RANKL treatment; E1, RANKL 1 day treatment; E2, RANKL 2 days) during RANKL treatment to differentiate BMM cells into osteoclasts After treatment; after 3 days of treatment with E3, RANKL), DHCL was exposed and the number of TRAP stained multinucleated osteoclasts was analyzed.
  • NFATc1 its target genes MMP9, TRAP and DC-STAMP genes, CK and CR was also measured by real-time PCR (see Table 3 primer sequence), indicating that NFATc1 and its target genes Expression was also inhibited at the beginning of the differentiation of osteoclasts but hardly inhibited in mature osteoclasts (FIG. 25B).
  • BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, and then treated with DHCL and DHCL.
  • the cells treated with RANKL were fixed as follows and stained with actining and nuclei or analyzed for bone resorption on dentine discs.
  • the cells were fixed in PBS with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by treatment with Alexa Fluor 488-phalloidin (Invitrogen) for 30 minutes, followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope.
  • the degree of bone resorption was obtained by removing the cells cultured on dentine disc (Immunodiagnostic Systems Ltd) using cotton tip, and staining the resorption pit with hematoxylin. (Media Cybernetics).
  • DHCL may inhibit osteoclast fusion and bone resorption.
  • LPS Lipopolysaccharide, 12.5 mg / kg body weight
  • DHCL DHCL (2 mg / kg)
  • vehicle 10% DMAC + 10% Tween 80 + 80% distilled water
  • DHCL 2 mg / kg
  • decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin blocks were made and then cut and stained with TRAP and Hematoxylin.
  • Synconin (hereinafter referred to as CN) contained in the present invention as an active ingredient was used in an experiment using 27370 / 118-10-5 product of Sigma-Aldrich.
  • BMM Bone Marrow-Derived Macrophages
  • cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit to exclude the fact that the inhibition of osteoclast differentiation of the cytokine is caused by cytotoxicity.
  • BMM cells were prepared using 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium mono-sodium salt (WST-1) reagent (Roche Applied Science), respectively. ⁇ l was added and incubated at 37 ° C. for 2-4 hours, and the absorbance at 450 nm was measured.
  • BMM cells were treated with 50 ng / ml of RANKL for 2 days in the presence of various concentrations (0, 10, 20, 30 ⁇ M) to differentiate into osteoclasts.
  • various concentrations (0, 10, 20, 30 ⁇ M) to differentiate into osteoclasts.
  • immunoblot using an antibody against NFATc1 was performed.
  • Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
  • CK, MMP9 and TRAP genes which are target genes of NFATc1 were confirmed using real time-PCR.
  • Trizol reagent Invitrogen
  • ABI 7300 real at the final 20 ⁇ l volume containing 0.8 ⁇ l of the diluted cDNA template (1: 2.5) containing 10 ⁇ l of 2X SYBR Green PCR Master Mix (M Biotech) and 1 ⁇ l of 10 ⁇ M of each gene-specific primer (Genotech).
  • Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the sequence of Primer used in the experiment is shown in Table 4.
  • PGC-1 ⁇ is a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation.
  • RANKL a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation.
  • mRNA expression of PGC-1 ⁇ and its target genes ND4, Cyt b, COX1 and COX3 was confirmed by real-time PCR (see Table 4 primer sequence).
  • cinconin (20 ⁇ M) significantly inhibited PGC-1 ⁇ , ND4, Cyt b, COX1 and COX3 mRNA expression by RANKL (50 ng / ml) (FIG. 32A).
  • Cinconin inhibited the expression of PGC-1 ⁇ (rabbit polyclonal antibody, Abcam) protein, but CREB (phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz, a higher transcription factor of PGC-1 ⁇ ) Biotechnology, Inc) did not affect the phosphorylation (B and C of Figure 32).
  • NFATc1 and its target genes CK, MMP9, TRAP and PGC-1 ⁇ and its target genes ND4, COX1, COX3, and Cyt b genes were also measured by real-time PCR (Table 4). The expression was significantly inhibited when Cynconin was treated with RANKL (E0), but was hardly inhibited by Cynonin exposed after RANKL 2 days treatment (E2) (Fig. 33). B and c).
  • BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts
  • Cells treated with Cinconin with RANKL were fixed as follows and stained for actining and nuclei or analyzed for bone resorption on dentine discs.
  • the cells were fixed in PBS with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by Alexa Fluor 488-phalloidin (Invitrogen) for 20 minutes, followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope.
  • the degree of bone resorption was obtained by removing the cells cultured on dentine disc (Immunodiagnostic Systems Ltd) using cotton tip, and staining the resorption pit with hematoxylin. (Media Cybernetics).
  • the mouse skull was infused with LPS (Lipopolysaccharide, 12.5 mg / kg body weight), which is an inflammation-inducing substance, twice daily at intervals.
  • LPS Lipopolysaccharide, 12.5 mg / kg body weight
  • vehicle 20% polyethylene glycol + 20% ethanol + 60% distilled water
  • cinconin 10 mg / kg
  • Decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin blocks were made, cut and stained with TRAP and hematoxilin for observation.

Abstract

The present invention relates to a pharmaceutical composition for preventing or treating bone diseases and, specifically, the pharmaceutical composition containing Euphorbia factor or a pharmaceutically acceptable salt thereof as an active ingredient for preventing or treating bone diseases of the present invention inhibits important factors involved in osteoclast differentiation, thereby inhibiting osteoclast differentiation to suppress bone resorption. Furthermore, the pharmaceutical composition of the present invention containing a skullcapflavone derivative or a pharmaceutically acceptable salt thereof as an active ingredient for preventing or treating bone diseases inhibits important factors involved in osteoclast differentiation, thereby suppressing bone resorption. Furthermore, a pharmaceutical composition of the present invention containing dehydrocostus lactone or a pharmaceutically acceptable salt thereof as an active ingredient for preventing or treating bone diseases inhibits important factors involved in osteoclast differentiation, thereby inhibiting osteoclast differentiation to suppress bone resorption. Furthermore, a pharmaceutical composition of the present invention containing cinchonine or a pharmaceutically acceptable salt thereof as an active ingredient for preventing or treating bone diseases inhibits important factors involved in osteoclast differentiation, thereby inhibiting osteoclast differentiation to suppress bone resorption. Therefore, the compositions can be favorably utilized in preclinical and clinical studies and can treat bone-related diseases caused by an imbalance of osteoclasts, and thus can be widely utilized for the development of medicines for the prevention or treatment of bone-related diseases.

Description

골질환의 예방 또는 치료용 약학적 조성물Pharmaceutical composition for the prevention or treatment of bone disease
본 발명은 골질환의 예방 또는 치료용 약학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for the prevention or treatment of bone diseases.
대표적인 대사성 골 질환인 골다공증(osteoporosis)은 골 조직의 석회가 감소되어 뼈의 치밀질이 엷어지고 그로 인해 골수강(骨髓腔)이 넓어지게 되는 질환으로, 증세가 진전됨에 따라 뼈가 약해지기 때문에 작은 충격에도 골절되기가 쉽다. Osteoporosis, a representative metabolic bone disease, is a disease in which bone mineral density is reduced and bone density becomes thinner, resulting in widening of the bone marrow cavity. It is easy to fracture even in shock.
골다공증은 골량의 감소와 미세구조의 이상을 특징으로 갖는데, 노화가 진행되면서 낡은 뼈의 흡수와 새로운 뼈의 형성 사이에 균형이 무너져 새로운 뼈의 대체(bone remodeling)가 원활히 이루어지지 않아 뼈가 엉성해지고, 부러지거나 부서질 위험성이 커지게 된다. 이러한 골량은 유전적 요인, 영양 섭취, 호르몬의 변화, 운동 및 생활 습관의 차이 등 여러 가지 요인들에 의해 영향을 받으며, 노령, 운동 부족, 저체중, 흡연, 저칼슘 식이, 폐경, 난소 절제 등이 골량 감소의 주요한 원인이다. Osteoporosis is characterized by a decrease in bone mass and abnormal microstructures. As aging progresses, the balance between the absorption of old bone and the formation of new bone is compromised, resulting in poor bone remodeling, which leads to bone failure. As a result, the risk of breakage or fracture increases. This bone mass is influenced by several factors, including genetic factors, nutrition, hormonal changes, differences in exercise and lifestyle, and age, lack of exercise, low weight, smoking, low calcium diet, menopause and ovarian ablation. It is a major cause of bone loss.
한편, 개인차는 있지만 대개 골량은 14 ~ 18세에 가장 높고 노후에는 1년에 약 1%씩 감소한다. 특히, 여성의 경우 30세 이후부터 골 감소가 지속적으로 진행되며, 폐경기에 이르면 호르몬 변화에 의해 골 감소가 급격히 진행된다. 즉, 폐경기에 이르면 에스트로겐 농도가 급속히 감소하는데, 이때, IL-7(interleukin-7)에 의한 것처럼 B-임파구(B-lymphocyte)가 다량 생성되어 골수(bone marrow)에 B 세포 전구체(pre-B cell)가 축적되고, 이로 인해 IL-6의 양이 증가하여 파골세포의 활성을 증가시키므로 결국 골량이 감소하게 된다.On the other hand, although there are individual differences, bone mass is usually the highest at 14-18 years of age, and decreases by about 1% per year in old age. In particular, women after 30 years of bone reduction continues to progress, and by the hormonal changes, bone reduction rapidly progresses. In other words, estrogen concentration rapidly decreases at the end of menopause, in which a large amount of B-lymphocytes are produced, as in the case of IL-7 (interleukin-7), and the B cell precursor (pre-B) is added to the bone marrow. cells) accumulate, thereby increasing the amount of IL-6, increasing the activity of osteoclasts, and eventually reducing bone mass.
이와 같이, 골다공증은 정도에 차이는 있으나 노년층, 특히 폐경기 이후의 여성에게 있어서는 피할 수 없는 증상으로, 선진국에서는 인구가 노령화됨에 따라 골다공증 및 그 치료제에 대한 관심이 점차 증가하고 있다. 또한, 전 세계적으로 골질환 치료와 관련되어 약 1300억 달러의 시장이 형성되어 있으며, 앞으로 더 증가할 것으로 예상되기 때문에 세계적인 각 연구 기관과 제약회사에서는 골질환 치료제 개발에 많은 투자를 하고 있다. As such, osteoporosis is an unavoidable symptom for elderly people, especially postmenopausal women, although the degree of osteoporosis is increasing, and as the population ages in developed countries, interest in osteoporosis and its therapeutics is gradually increasing. In addition, around $ 130 billion is being created around the world in the treatment of bone disease, and because it is expected to grow further, research institutions and pharmaceutical companies around the world are investing heavily in developing bone disease treatments.
국내에서도 근래에 평균수명이 80세에 육박하면서 골다공증 유병률이 급격하게 증가하고 있는데, 최근 지역 주민을 대상으로 실시된 연구에 의하면 전국 인구로 표준화하였을 경우 남성의 4.5%, 여성의 19.8%가 골다공증을 갖고 있다고 보고되었다. 이는 골다공증이 당뇨병이나 심혈관계 질환보다 더 흔한 질환이며, 골절로 인해 받는 환자들의 고통이나 치료를 위해 들어가는 비용을 추정할 때 골다공증은 매우 중요한 보건 문제임을 시사한다.In Korea, the prevalence of osteoporosis is rapidly increasing as the average life expectancy reaches 80. Recently, a study of local residents showed that 4.5% of men and 19.8% of women had osteoporosis when standardized to the national population. It is reported to have. This suggests that osteoporosis is more common than diabetes or cardiovascular disease, and osteoporosis is a very important health problem when estimating the pain or cost of treating patients who suffer from fractures.
지금까지 여러 물질이 골다공증 치료제로 개발되었다. 그 중 골다공증 치료제로 가장 많이 사용되는 에스트로겐은 그 실제적인 효능이 아직 검증되지 않은 상태이며 생애 동안 계속 복용해야 하는 단점이 있으며, 장기간 투여하는 경우 유방암이나 자궁암이 증가하는 부작용이 있다. 알렌드로네이트(alrendronate)도 그 효능이 명확하지 않고 소화관에서의 흡수가 더디며 위장과 식도점막에 염증을 유발하는 문제가 있다. 칼슘제제는 부작용이 적으면서도 효과가 우수한 것으로 알려져 있지만 치료제라기보다는 예방제에 해당한다. 그 외에 칼시토닌과 같은 비타민 D 제제가 알려져 있으나 아직 효능 및 부작용에 대한 연구가 충분히 되어있지 않은 상태이다. 이에, 부작용이 적고 효과가 우수한 새로운 대사성 골 질환 치료제가 요구되고 있는 실정이다. To date, several substances have been developed for the treatment of osteoporosis. Among them, estrogen, which is most commonly used as a therapeutic agent for osteoporosis, has not yet been tested for its actual efficacy and has to be taken continuously throughout life, and has long-term side effects such as increased breast cancer or uterine cancer. Alendronate also has a problem that the effect is not clear, slow absorption in the digestive tract and inflammation of the stomach and esophagus mucosa. Calcium preparations are known to have fewer side effects and superior effects, but they are more preventive agents than therapeutic agents. Other vitamin D preparations, such as calcitonin, are known but have not been fully studied for their efficacy and side effects. Accordingly, there is a need for a new metabolic bone disease treatment agent having fewer side effects and excellent effects.
파골세포는 척추동물의 뼈가 성장하는 과정에서 불필요하게 된 뼈조직을 파괴 또는 흡수하는 대형의 다핵세포로써, 파골세포 전구체(osteoclast precursor)로부터 분화되는 세포이다. 파골세포 전구세포들은 M-CSF 및 RANKL 존재 하에서 파골세포로 분화되며, 융합을 통해 다핵 파골세포(multinucleated osteoclast)를 형성한다. 파골세포는 αvβ3 인테그린(integrin) 등을 통해 골에 결합하며 산성 환경을 조성하는 한편 각종 콜라게네이즈(collagenase) 및 프로테아제(protease)를 분비하여 골 흡수(bone resorption)를 일으키는데, 이러한 파골세포의 억제는 골질환 치료의 효과적인 방법이 될 수 있다. Osteoclasts are large multinucleated cells that destroy or absorb bone tissue that has become unnecessary during the growth of bones of vertebrates and are differentiated from osteoclast precursors. Osteoclast progenitor cells differentiate into osteoclasts in the presence of M-CSF and RANKL, and form multinucleated osteoclasts through fusion. Osteoclasts bind to bone through αvβ3 integrin and create an acidic environment while secreting various collagenases and proteases, resulting in bone resorption. Can be an effective way of treating bone disease.
한편, 유포비아 인자 L1은 (Euphorbia Factor L1; 이하 EFL1)은 Euphorbia lathyris linne (속수자/천금자)의 씨에서 얻어진 디테르페노이드로서 방부(antiseptic), 항암(anticancer) 및 세포사멸 민감화(apoptosis sensitization) 효과가 알려져 있다(Zang JY. et al., Molecules, 2013, 18, 12793-12808). 또한 대한민국 공개특허 특2001-0028373에서 각질 박리 촉진제로서 EFL1의 의약품 또는 화장품 재료로서 용도를 개시하고 있으나, 본 발명의 EFL1의 파골세포 분화 조절 효과 및 골질환 치료용도는 현재까지 알려진 바가 없다. Meanwhile, Euphorbia Factor L1 (hereinafter referred to as EFL1) is a diterpenoid obtained from seeds of Euphorbia lathyris linne (responder / poor), antiseptic, anticancer and apoptosis sensitization. ) Is known (Zang JY. Et al., Molecules, 2013, 18, 12793-12808). In addition, the Republic of Korea Patent Publication No. 2001-0028373 discloses the use of EFL1 as a drug or cosmetic material as a keratin exfoliation promoter, the osteoclast differentiation control effect of EFL1 of the present invention and the purpose of treating bone disease is not known to date.
또한, 스컬캅플라본(skullcapflavone) 유도체는 Scutellaria baicalensis(황금)로부터 유래된 플라보노이드로서 민간요법으로 항염 및 항암효과가 있는 것으로 알려져 있으며, 브래디키닌(bradykinin)의 길항제(antagonist)로써, 세포 신호전달에 관여하여, 알러지성 천식을 억제하는 효과가 알려져 있다(Yun-Choi. Et al., Archives of pharmacal research, v.16 no.4, 1993, 283-288). 또한 대한민국 공개특허 2013-0120849에서도 천식의 예방 또는 치료용 조성물로서 스컬캅플라본 유도체의 의약품 재료로서의 용도를 개시하고 있으나, 본 발명의 스컬캅플라본 유도체의 파골세포 분화 조절 효과 및 골질환 치료용도는 현재까지 알려진 바가 없다. In addition, the scullcapflavone derivative is a flavonoid derived from Scutellaria baicalensis (gold), which is known to have anti-inflammatory and anticancer effects by folk remedies. Thus, the effect of inhibiting allergic asthma is known (Yun-Choi. Et al., Archives of pharmacal research, v. 16 no. 4, 1993, 283-288). In addition, the Republic of Korea Patent Publication 2013-0120849 discloses the use of the skull cap flavone derivatives as a pharmaceutical material as a composition for the prevention or treatment of asthma, but the osteoclast differentiation control effect of the skull cap flavone derivatives of the present invention and the purpose of treating bone diseases None known until now.
또한, 디하이드로코스투스 락톤(dehydrocostus lactone, DHCL)은 TNFα에 의한 NF-κB activiation을 억제하고, caspase3와 caspase8의 활성을 증가시켜 세포사멸(apoptosis)를 촉진시키는 것으로 알려져 있고, 목향(木香)등에 함유되어 있으면서, 산화 스트레스에 대한 간세포의 보호효과 등이 알려져 있으나, 본 발명의 파골세포 분화 조절 효과 및 골질환 치료용도는 현재까지 알려진 바가 없다. In addition, dehydrocostus lactone (DHCL) is known to inhibit NF-κB activiation by TNFα and to increase the activity of caspase3 and caspase8 to promote apoptosis. Although contained in the back and the like, the protective effect of hepatocytes against oxidative stress is known, but the osteoclast differentiation regulating effect of the present invention and the purpose of treating bone disease is not known until now.
아울러, 신코닌(cinchonine, CN)은 Cinchona bark에서 유래한 알칼로이드로서 항 비만 및 항 당뇨의 효과가 알려져 있으나(대한민국 공개특허 0946641), 본 발명의 신코닌의 파골세포 분화 조절 효과 및 골질환 치료용도는 현재까지 알려진 바가 없다. In addition, cinchonine (cinchonine, CN) is an alkaloid derived from Cinchona bark, but the effects of anti-obesity and anti-diabetic are known (Korean Patent Publication No. 0946641), the effect of controlling the differentiation of osteoclast differentiation and bone diseases of the present invention Is unknown to date.
이에 본 발명자들은, 골질환을 치료하기 위한 새로운 물질을 찾고자 파골세포의 활성을 억제하는 물질을 탐색하던 중, EFL1이 파골세포에 의한 골 흡수를 저해하는 것을 발견하여, EFL1이 골질환 치료용 약학적 조성물로 유용하게 사용될 수 있음을 확인하였다. 또한, 스컬캅플라본 유도체가 파골세포에 의한 골 흡수를 저해하는 것을 발견하여, 스컬캅플라본 유도체가 골질환 치료용 약학적 조성물로 유용하게 사용될 수 있음을 확인하였다. 또한, 디하이드로코스투스 락톤이 파골세포에 의한 골 흡수를 저해하는 것을 발견하여, 디하이드로코스투스 락톤이 골질환 치료용 약학적 조성물로 유용하게 사용될 수 있음을 확인하였다. 아울러, 신코닌이 파골세포에 의한 골 흡수를 저해하는 것을 발견하여, 신코닌이 골질환 치료용 약학적 조성물로 유용하게 사용될 수 있음을 확인함으로써, 본 발명을 완성하였다.Accordingly, the present inventors, while searching for a substance that inhibits the activity of osteoclasts in search of a new substance for treating bone disease, found that EFL1 inhibited the bone resorption by osteoclasts. It has been confirmed that the composition can be usefully used. In addition, it has been found that the skull capflavone derivatives inhibit bone uptake by osteoclasts, thereby confirming that the skull capflavone derivatives may be usefully used as pharmaceutical compositions for treating bone diseases. In addition, it was found that dihydrocostus lactone inhibits bone resorption by osteoclasts, and it was confirmed that dihydrocostus lactone may be usefully used as a pharmaceutical composition for treating bone diseases. In addition, the present invention was completed by confirming that synconin inhibits bone resorption by osteoclasts, and confirms that synconin may be usefully used as a pharmaceutical composition for treating bone diseases.
본 발명의 목적은 골질환의 예방 또는 치료를 위한 약학적 조성물을 제공하기 위한 것이다.An object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of bone diseases.
상기 목적을 달성하기 위하여, 본 발명은 유포비아 인자 L1 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for the prevention or treatment of bone diseases containing Eupovia factor L1 or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 유포비아 인자 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In another aspect, the present invention provides a dietary supplement for the improvement of bone diseases containing Euphorbia factor or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for the prevention or treatment of bone diseases containing a scalcap flavone derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In another aspect, the present invention provides a health functional food for the improvement of bone disease containing a skull cap flavone derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for the prevention or treatment of bone diseases containing dihydrocostus lactone or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In another aspect, the present invention provides a dietary supplement for the improvement of bone diseases containing dihydrocostus lactone or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 신코닌 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for the prevention or treatment of bone diseases, which contains as a active ingredient cinconin or a pharmaceutically acceptable salt thereof.
아울러, 본 발명은 신코닌 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In addition, the present invention provides a dietary supplement for the improvement of bone diseases, which contains as a active ingredient Cynconin or a pharmaceutically acceptable salt thereof.
본 발명의 유포비아 인자(Euphorbia Factor) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물은 파골세포 분화와 관련된 중요한 인자들을 억제함으로써, 파골세포의 분화를 억제하여 골 흡수를 저해하는 효과가 있다. The pharmaceutical composition for preventing or treating bone diseases containing Euphorbia Factor of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient inhibits important factors related to osteoclast differentiation, thereby differentiating osteoclasts. There is an effect of inhibiting bone absorption by inhibiting.
또한, 본 발명의 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물은 파골세포 분화와 관련된 중요한 인자들을 억제함으로써, 골 흡수를 저해하는 효과가 있다.In addition, the pharmaceutical composition for the prevention or treatment of bone diseases containing the skull capflavone derivative or a pharmaceutically acceptable salt thereof of the present invention to inhibit bone absorption by inhibiting important factors associated with osteoclast differentiation It works.
또한, 본 발명의 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물은 파골세포 분화와 관련된 중요한 인자들을 억제함으로써, 파골세포의 분화를 억제하여 골 흡수를 저해하는 효과가 있다.In addition, the pharmaceutical composition for the prevention or treatment of bone diseases containing the dihydrocostus lactone of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient, by inhibiting important factors associated with osteoclast differentiation, differentiation of osteoclasts There is an effect of inhibiting bone absorption by inhibiting.
아울러, 본 발명의 신코닌 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물은 파골세포 분화와 관련된 중요한 인자들을 억제함으로써, 파골세포의 분화를 억제하여 골 흡수를 저해하는 효과가 있으므로, 상기 조성물들은 전임상 및 임상 연구에 유용하게 활용될 수 있고, 파골세포의 불균형에 의하여 유발되는 골 관련 질환을 치료할 수 있으므로, 골 관련 질환의 예방 또는 치료제 개발에 널리 활용될 수 있다.In addition, the pharmaceutical composition for the prevention or treatment of bone diseases, including the present mykonin or a pharmaceutically acceptable salt thereof as an active ingredient inhibits the differentiation of osteoclasts by inhibiting important factors related to osteoclast differentiation Because of the effects of inhibiting bone absorption, the compositions can be usefully used for preclinical and clinical studies, and can treat bone-related diseases caused by the imbalance of osteoclasts, and thus are widely used for the prevention or treatment of bone-related diseases. Can be utilized.
도 1은 EFL1의 농도에 따른 RANKL이 처리된 파골세포 전구세포(BMMs)의 분화에 대한 본 발명의 조성물인 EFL1의 농도 및 시간 별 효과를 나타내는 도이다: 1 is a diagram showing the concentration and time-dependent effects of the composition of the present invention EFL1 on the differentiation of RANKL treated osteoclast progenitor cells (BMMs) according to the concentration of EFL1:
A: 다양한 농도의 EFL1 존재 하에서 RANKL에 의해 분화된 파골세포의 TRAP 염색;A: TRAP staining of osteoclasts differentiated by RANKL in the presence of varying concentrations of EFL1;
B: 상기 A의 TRAP 염색된 다핵의 파골세포 수의 분석;B: analysis of the number of TRAP stained multinucleated osteoclasts of A;
C: EFL1의 농도별 세포독성 분석 (M: M-CSF/ M+R: M-CSF 및 RANKL);C: concentration-specific cytotoxicity assay of EFL1 (M: M-CSF / M + R: M-CSF and RANKL);
D: EFL1 존재 하에서 다양한 시간 동안 RANKL에 의해 분화된 파골세포의 TRAP 염색;D: TRAP staining of osteoclasts differentiated by RANKL for various times in the presence of EFL1;
E: 상기 D의 TRAP 염색된 다핵의 파골세포 수의 분석; 및E: Analysis of the number of TRAP stained multinucleated osteoclasts of D above; And
F: EFL1의 시간별 세포독성 분석 (Veh: Vehicle).F: hourly cytotoxicity assay of EFL1 (Veh: Vehicle).
도 2는 RANKL이 처리된 파골세포 전구세포(BMMs)의 NFATc1 및 타겟 유전자들의 발현에 대한 본 발명의 조성물인 EFL1의 효과를 나타내는 도이다: 2 is a diagram showing the effect of EFL1, a composition of the present invention, on the expression of NFATc1 and target genes in RANKL treated osteoclast progenitor cells (BMMs):
A: NFATc1의 발현에 대한 EFL1의 농도별 효과;A: concentration-dependent effects of EFL1 on the expression of NFATc1;
B: NFATc1의 발현에 대한 EFL1의 시간별 효과; 및B: hourly effect of EFL1 on the expression of NFATc1; And
C: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 EFL1의 효과.C: Effect of EFL1 on mRNA expression of NFATc1 and target genes.
도 3은 RANKL이 처리된 파골세포 전구세포(BMMs)에서 NF-κB 활성 및 c-FOS 발현에 대한 본 발명의 조성물인 EFL1의 효과를 나타내는 도이다: 3 is a diagram showing the effect of EFL1, the composition of the present invention on NF-κB activity and c-FOS expression in RANKL treated osteoclast progenitor cells (BMMs):
A: IκBα의 인산화 및 분해에 대한 EFL1의 효과;A: effect of EFL1 on phosphorylation and degradation of IκBα;
B: NF-κB 타겟 유전자의 발현에 대한 EFL1의 효과;B: effect of EFL1 on expression of NF-κB target gene;
C: c-Fos의 발현에 대한 EFL1의 효과; 및C: effect of EFL1 on the expression of c-Fos; And
D: c-Fos 및 NF-κB 타겟 유전자의 mRNA 발현에 대한 EFL1의 효과.D: Effect of EFL1 on mRNA expression of c-Fos and NF-κB target genes.
도 4는 RANKL이 처리된 파골세포 전구세포(BMMs)에서 MAPKs와 AKT의 인산화에 대한 본 발명의 조성물인 EFL1의 효과를 나타내는 도이다. Figure 4 is a diagram showing the effect of EFL1 composition of the present invention on the phosphorylation of MAPKs and AKT in RANKL-treated osteoclast progenitor cells (BMMs).
도 5는 RANKL이 처리된 파골세포 전구세포(BMMs)에서 CREB-PGC-1β의 활성에 대한 본 발명의 조성물인 EFL1의 효과를 나타내는 도이다:5 is a diagram showing the effect of EFL1, the composition of the present invention on the activity of CREB-PGC-1β in RANKL treated osteoclast progenitor cells (BMMs):
A: PGC-1β 및 타겟 유전자들의 mRNA 발현에 대한 EFL1의 효과;A: effect of EFL1 on mRNA expression of PGC-1β and target genes;
B: PGC-1β의 발현에 대한 EFL1의 효과; 및B: effect of EFL1 on expression of PGC-1β; And
C: CREB의 인산화에 대한 EFL1의 효과.C: Effect of EFL1 on phosphorylation of CREB.
도 6은 RANKL이 처리된 파골세포 전구세포(BMMs)에서 Nrf2와 이의 타겟 유전자들의 활성 및 활성산소의 생성에 대한 본 발명의 조성물인 EFL1의 효과를 나타내는 도이다: FIG. 6 is a diagram showing the effect of EFL1, a composition of the present invention, on the activity and production of free radicals of Nrf2 and its target genes in RANKL treated osteoclast progenitor cells (BMMs):
A: Nrf2 및 타겟 유전자들의 mRNA 발현에 대한 EFL1의 효과, 및 세포 내 활성산소 축적에 대한 EFL1의 효과; 및A: effect of EFL1 on mRNA expression of Nrf2 and target genes, and effect of EFL1 on free radical accumulation in cells; And
B: Nrf2 및 항산화효소를 비롯한 타겟 단백질들의 발현에 대한 EFL1의 효과.B: Effect of EFL1 on the expression of target proteins including Nrf2 and antioxidant enzymes.
도 7은 파골세포 분화 및 NFATc1과 PGC-1β, 그리고 이들의 타겟 유전자들의 발현에 대한 본 발명의 조성물인 EFL1의 노출시점 별 효과를 나타내는 도이다:FIG. 7 is a diagram showing the effects of exposure to EFL1, the composition of the present invention, on osteoclast differentiation and expression of NFATc1 and PGC-1β, and their target genes:
A: 파골세포 분화에 대한 EFL1의 노출시점 별 효과;A: effect of EFL1 on exposure to osteoclast differentiation;
B: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 EFL1의 노출시점 별 효과; 및B: Effect of time of exposure of EFL1 on mRNA expression of NFATc1 and target genes; And
C: PGC-1β 및 타겟 유전자들의 mRNA 발현에 대한 EFL1의 노출시점 별 효과. C: Effect of EFL1 on exposure to mRNA expression of PGC-1β and target genes.
도 8은 RANKL이 처리된 파골세포 전구세포(BMMs)의 액틴링 형성과 dentine disc에서의 골 흡수에 대한 본 발명의 조성물인 EFL1의 노출시점 별 효과를 나타내는 도이다:FIG. 8 is a diagram showing the effects of the exposure time point of EFL1, the composition of the present invention, on actining formation of RANKL-treated osteoclast progenitor cells (BMMs) and bone resorption on dentine discs:
A: EFL1의 노출시점 실험설계를 보여주는 도표;A: Chart showing the experimental design of the exposure time point of EFL1;
B: 액틴링의 형성에 대한 EFL1의 노출시점 별 효과; 및B: effect of time of exposure of EFL1 on the formation of actining; And
C: 골 흡수에 대한 EFL1의 노출시점 별 효과.C: Effects of EFL1 on bone absorption at different time points.
도 9는 파골세포의 사멸에 대한 본 발명의 조성물인 EFL1의 효과를 나타내는 도이다:9 is a diagram showing the effect of EFL1, the composition of the present invention on the death of osteoclasts:
A: EFL1의 처리시간에 따른 분화된 파골세포의 형태 변화;A: Morphological changes of differentiated osteoclasts with treatment time of EFL1;
B: 분화된 파골세포에서 EFL1의 세포독성 분석; B: cytotoxicity assay of EFL1 in differentiated osteoclasts;
C: 분화된 파골세포의 사멸에 대한 EFL1의 효과; 및C: effect of EFL1 on the death of differentiated osteoclasts; And
D: C의 그래프화.D: Graph of C.
도 10은 LPS 유도성 염증에 의한 골 손상에 대한 본 발명의 조성물인 EFL1의 억제효과를 나타내는 도이다:10 is a diagram showing the inhibitory effect of the composition of the present invention EFL1 against bone damage caused by LPS-induced inflammation:
A: TRAP과 Hematoxilin으로 염색된 두개골 절단면의 사진; 및A: Photograph of skull sections stained with TRAP and Hematoxilin; And
B: 상기 A의 bone cavity와 파골세포의 수의 분석.B: Analysis of the number of bone cavity and osteoclasts of A.
도 11은 RANKL이 처리된 파골세포 전구세포(BMMs)의 분화에 대한 본 발명의 조성물인 SFⅡ의 농도 및 시간 별 효과를 나타내는 도이다: 11 is a diagram showing the concentration and time-dependent effect of SFII, the composition of the present invention on the differentiation of RANKL-treated osteoclast progenitor cells (BMMs):
A: 다양한 농도의 SFⅡ 존재 하에서 RANKL에 의해 분화된 파골세포의 TRAP 염색;A: TRAP staining of osteoclasts differentiated by RANKL in the presence of various concentrations of SFII;
B: 상기 A의 TRAP 염색된 다핵의 파골세포 수의 분석;B: analysis of the number of TRAP stained multinucleated osteoclasts of A;
C: SFⅡ의 농도별 세포독성 분석 (M: M-CSF/ M+R: M-CSF 및 RANKL);C: cytotoxicity analysis by concentration of SFII (M: M-CSF / M + R: M-CSF and RANKL);
D: SFⅡ 존재 하에서 다양한 시간 동안 RANKL에 의해 분화된 파골세포의 TRAP 염색;D: TRAP staining of osteoclasts differentiated by RANKL for various times in the presence of SFII;
E: 상기 D의 TRAP 염색 염색된 다핵의 파골세포 수의 분석; 및E: Analysis of the number of osteoclasts of multinucleated stained TRAP staining of D; And
F: SFⅡ의 시간별 세포독성 분석 (Veh: Vehicle).F: hourly cytotoxicity assay of SFII (Veh: Vehicle).
도 12는 RANKL이 처리된 파골세포 전구세포(BMMs)의 NFATc1 및 타겟 유전자들의 발현에 대한 본 발명의 조성물인 SFⅡ의 효과를 나타내는 도이다: 12 is a diagram showing the effect of SFII, the composition of the present invention on the expression of NFATc1 and target genes in RANKL treated osteoclast progenitor cells (BMMs):
A: NFATc1의 발현에 대한 SFⅡ의 농도별 효과;A: concentration-dependent effects of SFII on the expression of NFATc1;
B: NFATc1의 발현에 대한 SFⅡ의 시간별 효과; 및B: hourly effect of SFII on the expression of NFATc1; And
C: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 SFⅡ의 효과.C: Effect of SFII on mRNA expression of NFATc1 and target genes.
도 13은 RANKL이 처리된 파골세포 전구세포(BMMs)에서 NF-κB 활성 및 c-FOS 발현에 대한 본 발명의 조성물인 SFⅡ의 효과를 나타내는 도이다: 13 is a diagram showing the effect of SFII, the composition of the present invention on NF-κB activity and c-FOS expression in RANKL treated osteoclast progenitor cells (BMMs):
A: IκBα의 인산화 및 분해에 대한 SFⅡ의 효과;A: effect of SFII on phosphorylation and degradation of IκBα;
B: NF-κB 타겟 유전자의 발현에 대한 SFⅡ의 효과;B: effect of SFII on expression of NF-κB target gene;
C: c-Fos의 발현에 대한 SFⅡ의 효과; 및C: effect of SFII on the expression of c-Fos; And
D: c-Fos 및 NF-κB 타겟 유전자의 mRNA 발현에 대한 SFⅡ의 효과.D: Effect of SFII on mRNA expression of c-Fos and NF-κB target genes.
도 14는 RANKL이 처리된 파골세포 전구세포(BMMs)에서 MAPKs와 Src-AKT 및 FOXO1의 인산화에 대한 본 발명의 조성물인 SFⅡ의 효과를 나타내는 도이다: Figure 14 shows the effect of SFII, the composition of the present invention on phosphorylation of MAPKs and Src-AKT and FOXO1 in RANKL treated osteoclast progenitor cells (BMMs):
A: MAPKs의 인산화에 대한 SFⅡ의 효과;A: effect of SFII on phosphorylation of MAPKs;
B: Src-AKT 및 FOXO1의 인산화에 대한 SFⅡ의 효과;B: effect of SFII on phosphorylation of Src-AKT and FOXO1;
C: FOXO1 및 catalase 발현에 대한 SFⅡ의 효과; 및C: effect of SFII on FOXO1 and catalase expression; And
D: catalase의 mRNA 발현에 대한 SFⅡ의 효과.D: Effect of SFII on mRNA expression of catalase.
도 15는 RANKL이 처리된 파골세포 전구세포(BMMs)에서 CREB- PGC-1β의 활성에 대한 본 발명의 조성물인 SFⅡ의 효과를 나타내는 도이다: 15 is a diagram showing the effect of SFII, the composition of the present invention on the activity of CREB-PGC-1β in RANKL treated osteoclast progenitor cells (BMMs):
A: PGC-1β 및 타겟 유전자들의 mRNA 발현에 대한 SFⅡ의 효과;A: effect of SFII on mRNA expression of PGC-1β and target genes;
B: PGC-1β의 발현에 대한 SFⅡ의 효과; 및B: effect of SFII on expression of PGC-1β; And
C: CREB의 인산화에 대한 SFⅡ의 효과.C: Effect of SFII on phosphorylation of CREB.
도 16은 RANKL이 처리된 파골세포 전구세포(BMMs)에서 Nrf2와 이의 타겟 유전자들, caveolin-1의 활성 및 활성산소의 생성에 대한 본 발명의 조성물인 SFⅡ의 효과를 나타내는 도이다:FIG. 16 is a diagram showing the effect of SFII, a composition of the present invention, on the activity of Nrf2 and its target genes, caveolin-1 and production of free radicals in RANKL treated osteoclast progenitor cells (BMMs):
A: Nrf2 및 타겟 유전자들의 mRNA 발현에 대한 SFⅡ의 효과; A: effect of SFII on mRNA expression of Nrf2 and target genes;
B: Nrf2 및 항산화효소를 비롯한 타겟 단백질들의 발현에 대한 SFⅡ의 효과;B: effect of SFII on the expression of target proteins including Nrf2 and antioxidant enzymes;
C: 세포 내 활성산소 축적에 대한 SFⅡ의 효과; 및C: effect of SFII on free radical accumulation in cells; And
D: caveolin-1의 발현에 대한 SFⅡ의 효과.D: Effect of SFII on the expression of caveolin-1.
도 17은 파골세포 분화 및 NFATc1과 이의 타겟 유전자들의 발현에 대한 본 발명의 조성물인 SFⅡ의 노출시점 별 효과를 나타내는 도이다: FIG. 17 is a diagram showing the effects of exposure time of SFII, a composition of the present invention, on osteoclast differentiation and expression of NFATc1 and its target genes:
A: 파골세포 분화에 대한 SFⅡ의 노출시점 별 효과; 및A: Effect of SFII on osteoclast differentiation by time of exposure; And
B: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 SFⅡ의 노출시점 별 효과.B: Effect of SFII upon exposure to mRNA expression of NFATc1 and target genes.
도 18은 RANKL이 처리된 파골세포 전구세포(BMMs)의 액틴링 형성과 dentine disc에서의 골 흡수에 대한 본 발명의 조성물인 SFⅡ의 노출시점 별 효과를 나타내는 도이다:FIG. 18 is a diagram showing the effects of SFII, the composition of the present invention, on the actining formation of RANKL-treated osteoclast progenitor cells (BMMs) and bone resorption on dentine discs:
A: SFⅡ의 노출시점 실험설계를 보여주는 도표;A: chart showing experimental design of exposure time of SFII;
B: 액틴링의 형성에 대한 SFⅡ의 노출시점 별 효과; 및B: effect of time of exposure of SFII on the formation of actining; And
C: 골 흡수에 대한 SFⅡ의 노출시점 별 효과.C: Effects of SFII on Bone Absorption by Time of Exposure.
도 19는 LPS 유도성 염증에 의한 골 손상에 대한 본 발명의 조성물인 SFⅡ의 효과를 나타내는 도이다:19 is a diagram showing the effect of SFII, a composition of the present invention, on bone damage caused by LPS-induced inflammation:
A: TRAP 염색된 두개골의 사진;A: photo of TRAP stained skull;
B: TRAP과 Hematoxilin으로 염색된 두개골 절단면의 사진; 및B: photograph of the skull section stained with TRAP and Hematoxilin; And
C: 상기 B의 bone cavity와 파골세포의 수의 분석.C: Analysis of the number of bone cavity and osteoclast of B.
도 20은 디하이드로코스투스 락톤(DHCL)의 농도에 따른 RANKL이 처리된 파골세포 전구세포(BMMs)의 분화에 대한 본 발명의 조성물인 디하이드로코스투스 락톤(이하 DHCL)의 농도 및 시간 별 효과를 나타내는 도이다:20 shows the concentration and time-dependent effects of the composition of the present invention, dihydrocostus lactone (hereinafter referred to as DHCL) on the differentiation of RANKL-treated osteoclast progenitor cells (BMMs) according to the concentration of dihydrocostus lactone (DHCL). Is a diagram representing:
A: 다양한 농도의 DHCL 존재 하에서 RANKL 4일 처리에 의해 분화된 파골세포의 TRAP 염색;A: TRAP staining of osteoclasts differentiated by RANKL 4 day treatment in the presence of various concentrations of DHCL;
B: 상기 A의 TRAP 염색된 다핵의 파골세포 수의 분석;B: analysis of the number of TRAP stained multinucleated osteoclasts of A;
C: DHCL의 농도별 세포독성 분석 (M: M-CSF/ M+R: M-CSF 및 RANKL); C: cytotoxicity assay by concentration of DHCL (M: M-CSF / M + R: M-CSF and RANKL);
D: 다양한 농도의 DHCL 존재 하에서 RANKL 5일 처리에 의해 분화된 파골세포의 TRAP 염색;D: TRAP staining of osteoclasts differentiated by RANKL 5 day treatment in the presence of various concentrations of DHCL;
E: 상기 D의 TRAP 염색 염색된 다핵의 파골세포 수의 분석; 및E: Analysis of the number of osteoclasts of multinucleated stained TRAP staining of D; And
F: DHCL의 농도별 세포독성 분석 (M: M-CSF/ M+R: M-CSF 및 RANKL).F: Cytotoxicity analysis by concentration of DHCL (M: M-CSF / M + R: M-CSF and RANKL).
도 21은 RANKL이 처리된 파골세포 전구세포(BMMs)의 NFATc1 및 타겟 유전자들의 발현에 대한 본 발명의 조성물인 디하이드로코스투스 락톤(DHCL)의 효과를 나타내는 도이다:FIG. 21 is a diagram showing the effect of dehydrocostus lactone (DHCL), a composition of the present invention, on the expression of NFATc1 and target genes in RANKL treated osteoclast progenitor cells (BMMs):
A: NFATc1의 발현에 대한 DHCL의 농도별 효과;A: concentration-dependent effect of DHCL on expression of NFATc1;
B: NFATc1의 발현에 대한 DHCL의 시간별 효과; 및B: hourly effect of DHCL on expression of NFATc1; And
C: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 DHCL의 효과.C: Effect of DHCL on mRNA expression of NFATc1 and target genes.
도 22는 RANKL이 처리된 파골세포 전구세포(BMMs)에서 NF-κB 활성 및 c-FOS 발현에 대한 본 발명의 조성물인 디하이드로코스투스 락톤(DHCL)의 효과를 나타내는 도이다:FIG. 22 is a diagram showing the effect of dihydrocostus lactone (DHCL), a composition of the present invention, on NF-κB activity and c-FOS expression in RANKL treated osteoclast progenitor cells (BMMs):
A: IκBα의 인산화 및 분해에 대한 DHCL의 효과;A: effect of DHCL on phosphorylation and degradation of IκBα;
B: NF-κB 타겟 유전자의 발현에 대한 DHCL의 효과;B: effect of DHCL on expression of NF-κB target gene;
C: c-Fos의 발현에 대한 DHCL의 효과; 및C: effect of DHCL on expression of c-Fos; And
D: c-Fos 및 NF-κB 타겟 유전자의 mRNA 발현에 대한 DHCL의 효과.D: Effect of DHCL on mRNA expression of c-Fos and NF-κB target genes.
도 23은 RANKL이 처리된 파골세포 전구세포(BMMs)에서 MAPKs 와 Src - AKT 및 FOXO1의 인산화에 대한 본 발명의 조성물인 디하이드로코스투스 락톤(DHCL)의 효과를 나타내는 도이다:FIG. 23 is a diagram showing the effect of dihydrocostus lactone (DHCL), a composition of the present invention, on phosphorylation of MAPKs and Src-AKT and FOXO1 in RANKL treated osteoclast progenitor cells (BMMs):
A: MAPKs의 인산화에 대한 DHCL의 효과;A: effect of DHCL on phosphorylation of MAPKs;
B: Src-AKT 및 FOXO1의 인산화에 대한 DHCL의 효과;B: effect of DHCL on phosphorylation of Src-AKT and FOXO1;
C: FOXO1 및 catalase 발현에 대한 DHCL의 효과; 및C: effect of DHCL on FOXO1 and catalase expression; And
D: catalase의 mRNA 발현에 대한 DHCL의 효과.D: Effect of DHCL on mRNA expression of catalase.
도 24는 RANKL이 처리된 파골세포 전구세포(BMMs)에서 Nrf2와 이의 타겟 유전자들, caveolin-1의 활성 및 활성산소의 생성에 대한 본 발명의 조성물인 DHCL의 효과를 나타내는 도이다: FIG. 24 is a diagram showing the effect of DHCL, a composition of the present invention, on the activity of Nrf2 and its target genes, caveolin-1 and production of free radicals in RANKL treated osteoclast progenitor cells (BMMs):
A: Nrf2 및 타겟 유전자들의 mRNA 발현에 대한 DHCL의 효과; A: effect of DHCL on mRNA expression of Nrf2 and target genes;
B: Nrf2 및 항산화효소를 비롯한 타겟 단백질들의 발현에 대한 DHCL의 효과;B: effect of DHCL on expression of target proteins including Nrf2 and antioxidant enzymes;
C: 세포 내 활성산소 축적에 대한 DHCL의 효과; 및C: effect of DHCL on free radical accumulation in cells; And
D: caveolin-1의 발현에 대한 DHCL의 효과.D: Effect of DHCL on expression of caveolin-1.
도 25는 RANKL이 처리된 파골세포 전구세포(BMMs)의 분화 및 NFATc1과 이의 타겟 유전자들 그리고 파골세포 융합관련 유전자의 발현에 대한 본 발명의 조성물인 DHCL의 노출시점 별 효과를 나타내는 도이다: FIG. 25 is a diagram showing the effects of DHCL at the time of exposure of the composition of the present invention on differentiation of RANKL treated osteoclast progenitor cells (BMMs) and expression of NFATc1 and its target genes and osteoclast fusion related genes:
A: 파골세포분화에 대한 DHCL의 노출시점 별 효과; 및A: Effects of DHCL on osteoclast differentiation at time of exposure; And
B: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 DHCL의 노출시점 별 효과.B: Effects of DHCL upon exposure to mRNA expression of NFATc1 and target genes.
도 26은 RANKL이 처리된 파골세포 전구세포(BMMs)의 액틴링 형성과 dentine disc에서의 골 흡수에 대한 본 발명의 조성물인 DHCL의 노출시점 별 효과를 나타내는 도이다: FIG. 26 is a diagram showing the effects of DHCL at the time of exposure of the composition of the present invention on actining formation of RANKL-treated osteoclast progenitor cells (BMMs) and bone resorption on dentine discs:
A: DHCL의 노출시점 실험설계를 보여주는 도표;A: Chart showing the experimental design of the exposure time point of DHCL;
B: 액틴링의 형성에 대한 DHCL의 노출시점 별 효과; 및B: Effect of time point of exposure of DHCL on the formation of actining; And
C: 골 흡수에 대한 DHCL의 노출시점 별 효과.C: Effect of DHCL upon bone exposure on bone absorption.
도 27은 LPS 유도성 염증에 의한 골 손상에 대한 본 발명의 조성물인 DHCL의 억제효과를 나타내는 도이다: 27 is a diagram showing the inhibitory effect of DHCL, a composition of the present invention, on bone damage caused by LPS-induced inflammation:
A: TRAP 염색된 두개골의 영상;A: imaging of TRAP stained skull;
B: TRAP과 Hematoxilin으로 염색된 두개골 절단면의 영상; 및B: Imaging of skull sections stained with TRAP and Hematoxilin; And
C: 상기 B의 bone cavity와 파골세포의 수의 분석.C: Analysis of the number of bone cavity and osteoclast of B.
도 28은 RANKL이 처리된 파골세포의 전구세포(BMMs)의 분화에 대한 본 발명의 조성물인 신코닌(CN)의 농도 및 시간별 효과를 나타내는 도이다:28 is a diagram showing the concentration and time-dependent effect of cinconin (CN), the composition of the present invention on the differentiation of progenitor cells (BMMs) of RANKL-treated osteoclasts:
A: 다양한 농도의 CN 존재 하에서 RANKL에 의해 분화된 파골세포의 TRAP 염색;A: TRAP staining of osteoclasts differentiated by RANKL in the presence of various concentrations of CN;
B: 상기 A의 TRAP 염색된 다핵의 파골세포 수의 분석;B: analysis of the number of TRAP stained multinucleated osteoclasts of A;
C: CN의 농도별 세포독성 분석 (M: M-CSF/ M+R: M-CSF 및 RANKL);C: concentration-specific cytotoxicity analysis of CN (M: M-CSF / M + R: M-CSF and RANKL);
D: CN 존재 하에서 다양한 시간 동안 RANKL에 의해 분화된 파골세포의 TRAP 염색;D: TRAP staining of osteoclasts differentiated by RANKL for various times in the presence of CN;
E: 상기 D의 TRAP 염색된 다핵의 파골세포 수의 분석; 및E: Analysis of the number of TRAP stained multinucleated osteoclasts of D above; And
F: CN의 시간별 세포독성 분석 (Veh: Vehicle).F: hourly cytotoxicity analysis of CN (Veh: Vehicle).
도 29는 RANKL이 처리된 파골세포의 전구세포(BMMs)의 NFATc1 및 타겟 유전자들의 발현에 대한 본 발명의 조성물인 신코닌(CN)의 효과를 나타내는 도이다:29 is a diagram showing the effect of cinconin (CN), the composition of the present invention on the expression of NFATc1 and target genes in RANKL treated osteoclasts (BMMs):
A: NFATc1의 발현에 대한 CN의 농도별 효과;A: concentration-dependent effect of CN on the expression of NFATc1;
B: NFATc1의 발현에 대한 CN의 시간별 효과; 및B: hourly effect of CN on expression of NFATc1; And
C: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 CN의 효과.C: Effect of CN on mRNA expression of NFATc1 and target genes.
도 30은 RANKL이 처리된 파골세포의 전구세포(BMMs)에서 NF-κB 활성 및 c-FOS 발현에 대한 본 발명의 조성물인 신코닌(CN)의 효과를 나타내는 도이다:30 is a diagram showing the effect of cinconin (CN), a composition of the present invention, on NF-κB activity and c-FOS expression in progenitor cells (BMMs) of RANKL treated osteoclasts:
A: IκBα의 인산화 및 분해에 대한 CN의 효과;A: effect of CN on phosphorylation and degradation of IκBα;
B: NF-κB 타겟 유전자의 발현에 대한 CN의 효과;B: effect of CN on expression of NF-κB target gene;
C: c-Fos의 발현에 대한 CN의 효과; 및C: effect of CN on expression of c-Fos; And
D: c-Fos 및 NF-κB 타겟 유전자의 mRNA 발현에 대한 CN의 효과.D: Effect of CN on mRNA expression of c-Fos and NF-κB target genes.
도 31은 RANKL이 처리된 파골세포의 전구세포(BMMs)에서 MAPKs 와 Src - AKT 및 FOXO1의 인산화에 대한 본 발명의 조성물인 신코닌(CN)의 효과를 나타내는 도이다:Figure 31 shows the effect of cinconin (CN), a composition of the present invention, on phosphorylation of MAPKs and Src-AKT and FOXO1 in RANKL treated osteoclasts (BMMs):
A: MAPKs의 인산화에 대한 CN의 효과;A: effect of CN on phosphorylation of MAPKs;
B: Src-AKT 및 FOXO1의 인산화에 대한 CN의 효과;B: effect of CN on phosphorylation of Src-AKT and FOXO1;
C: FOXO1 및 catalase 발현에 대한 CN의 효과; 및C: effect of CN on FOXO1 and catalase expression; And
D: catalase의 mRNA 발현에 대한 CN의 효과.D: Effect of CN on mRNA expression of catalase.
도 32는 RANKL이 처리된 파골세포의 전구세포(BMMs)에서 CREB - PGC-1β의 활성에 대한 본 발명의 조성물인 신코닌(CN)의 효과를 나타내는 도이다:32 is a diagram showing the effect of cinconin (CN), the composition of the present invention on the activity of CREB-PGC-1β in RANKL treated osteoclasts (BMMs):
A: PGC-1β 및 타겟 유전자들의 mRNA 발현에 대한 CN의 효과;A: effect of CN on mRNA expression of PGC-1β and target genes;
B: PGC-1β의 발현에 대한 CN의 효과; 및B: effect of CN on expression of PGC-1β; And
C: CREB의 인산화에 대한 CN의 효과.C: Effect of CN on phosphorylation of CREB.
도 33은 파골세포 분화 및 NFATc1과 PGC-1β 그리고 이들의 타겟 유전자들의 발현에 대한 본 발명의 조성물인 신코닌(CN)의 노출시점 별 효과와, RANKL이 처리된 파골세포 전구세포(BMMs)의 액틴링 형성과 dentine disc에서의 골 흡수에 대한 본 발명의 조성물인 신코닌(CN)의 노출시점 별 효과를 나타내는 도이다:Figure 33 shows the effect of the exposure time of the composition of the present invention, Shinkonin (CN) on osteoclast differentiation and expression of NFATc1 and PGC-1β and their target genes, and RANKL-treated osteoclast progenitor cells (BMMs) Fig. 1 shows the effects of the composition of the present invention, cinconin (CN) on actining formation and bone resorption in dentine discs.
A: 파골세포 분화에 대한 CN의 노출시점 별 효과;A: Effect of CN on exposure to osteoclast differentiation;
B: NFATc1 및 타겟 유전자들의 mRNA 발현에 대한 CN의 노출시점 별 효과;B: effect of CN exposure time on mRNA expression of NFATc1 and target genes;
C: PGC-1β 및 타겟 유전자들의 mRNA 발현에 대한 CN의 노출시점 별 효과;C: effect of CN exposure time on mRNA expression of PGC-1β and target genes;
D: CN의 노출시점 실험설계를 보여주는 도표;D: chart showing experimental design of exposure time of CN;
E: 액틴링의 형성에 대한 CN의 노출시점 별 효과; 및E: effect by time of exposure of CN on the formation of actining; And
F: 골 흡수에 대한 CN의 노출시점 별 효과.F: Effect of CN on exposure to bone absorption.
도 34는 LPS 유도성 염증에 의한 골 손상에 대한 본 발명의 조성물인 신코닌(CN)의 억제효과를 나타내는 도이다:34 is a diagram showing the inhibitory effect of cinconin (CN), the composition of the present invention on bone damage caused by LPS-induced inflammation:
A: TRAP과 Hematoxilin으로 염색된 두개골 절단면의 사진; 및A: Photograph of skull sections stained with TRAP and Hematoxilin; And
B: 상기 A의 bone cavity와 파골세포의 수의 분석.B: Analysis of the number of bone cavity and osteoclasts of A.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명이 유효성분으로 함유하는 유포비아 인자 L1 (Euphorbia Factor L1; 이하 EFL1)은 Euphorbia lathyris linne (속수자/천금자)의 씨에서 얻어진 디테르페노이드(diterpenoid)로써, 하기 화학식 1로 기재되는 구조를 갖는다:Euphorbia Factor L1 (hereinafter referred to as EFL1), which is an active ingredient of the present invention, is a diterpenoid obtained from seeds of Euphorbia lathyris linne (Successor / Platinum). Has:
Figure PCTKR2017007852-appb-C000001
Figure PCTKR2017007852-appb-C000001
본 발명은 상기 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating bone diseases containing the compound represented by Formula 1, or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명의 유포비아 인자 L1은 0.1 내지 20 μM 농도인 것이 바람직하다. 농도 0.1 μM 미만의 농도를 갖는 유포비아 인자 L1 조성물은 골질환의 치료 효율이 저하되는 문제점이 있고, 20 μM 이상이면 세포에 독성이 생길 수 있는 문제점이 있다. 이러한 측면에서 유포비아 인자 L1을 유효성분으로 함유하는 약학적 조성물의 농도는 1 내지 10 μM 인 것이 바람직할 수 있으며, 더욱 바람직하게는 6 μM일 수 있으나 이에 한정되는 것은 아니다.In addition, it is preferable that the Euphorbia factor L1 of this invention is 0.1-20 micrometers concentration. Euphorbia factor L1 composition having a concentration of less than 0.1 μM has a problem in that the treatment efficiency of bone disease is lowered, and if 20 μM or more, there is a problem that toxicity may occur in cells. In this respect, the concentration of the pharmaceutical composition containing Euphoria factor L1 as an active ingredient may be preferably 1 to 10 μM, more preferably 6 μM, but is not limited thereto.
상기 조성물은 NFATc1, NF-κB, c-FOS 및 PGC-1β의 발현 또는 활성을 감소시키는 것을 특징으로 하고, Nrf2의 발현 또는 활성을 증가시키는 것을 특징으로 하며, 세포 내 활성산소의 생성을 억제하고 파골세포의 사멸을 촉진하며 염증에 의한 골 손상을 억제하는 것을 특징으로 한다.The composition is characterized by reducing the expression or activity of NFATc1, NF-κB, c-FOS and PGC-1β, characterized by increasing the expression or activity of Nrf2, inhibits the production of free radicals in the cell It promotes the death of osteoclasts and is characterized by inhibiting bone damage caused by inflammation.
아울러, 본 발명의 조성물이 적용될 수 있는 골질환으로는 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것이 바람직하나. 이에 한정되는 것은 아니다.In addition, bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is preferably at least one selected from the group consisting of Paget disease and metastatic bone cancers. It is not limited to this.
본 발명의 구체적인 실험 예에서, 상기 화학식 1로 기재되는 유포비아 인자 L1(이하 EFL1)가 RANKL에 의한 파골세포 분화를 효과적으로 억제함을 확인하였다(도 1 참조). 또한 EFL1을 처리하였을 때, 파골세포 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질과 그 타겟 유전자인 CK, MMP9 및 TRAP 유전자의 mRNA 발현이 억제되었다(도 2 참조).In a specific experimental example of the present invention, it was confirmed that the Euphorbia factor L1 (hereinafter referred to as EFL1) described in Chemical Formula 1 effectively inhibits osteoclast differentiation by RANKL (see FIG. 1). In addition, when EFL1 was treated, mRNA expression of NFATc1 protein, which is the most important transcription factor in osteoclast differentiation, and its target genes, CK, MMP9 and TRAP genes, was inhibited (see FIG. 2).
또한, EFL1 존재 하에서 IκBα의 인산화가 억제되고 NFATc1의 upstream 조절자로 알려진 NF-κB 활성 및 그 타겟 유전자인 SOD2의 발현이 억제되며 c-Fos 발현도 유의적으로 억제되는 것을 확인하였다(도 3 참조).In addition, it was confirmed that phosphorylation of IκBα was suppressed in the presence of EFL1, NF-κB activity known as an upstream regulator of NFATc1, expression of its target gene SOD2, and c-Fos expression were also significantly inhibited (see FIG. 3). .
또한, EFL1이 PGC-1β 및 그 타겟 유전자인 ND4, COX1, COX3의 mRNA 발현을 저해하는 것을 확인하였으며(도 5 참조), EFL1에 의해 Nrf2와 대표적 타겟 유전자인 NQO1과 Srx의 mRNA 발현이 함께 증가되는 것을 확인하였다. 그리고 동시에 Nrf2와 항산화 효소를 비롯한 Nrf2 타겟 단백질인 Srx, Prxl, PrxV, PrxVI, Trx1 및 TrxR1 항산화 효소들의 발현도 증가되었다. 또한 EFL1에 의해 활성산소의 발생이 감소하는 것을 확인하였다(도 6 참조).In addition, it was confirmed that EFL1 inhibited the mRNA expression of PGC-1β and its target genes, ND4, COX1, and COX3 (see FIG. 5), and mRNA expression of Nrf2 and NQO1 and Srx, which are representative target genes, increased together with EFL1. It confirmed that it became. At the same time, the expression of Nrf2 target proteins Srx, Prxl, PrxV, PrxVI, Trx1 and TrxR1 antioxidant enzymes, including Nrf2 and antioxidant enzymes, also increased. In addition, it was confirmed that the generation of free radicals is reduced by EFL1 (see Fig. 6).
또한, EFL1이 분화된 파골세포의 유지, 액틴링 형성 및 dentine disc에서 골 흡수를 저해하며(도 7 및 8 참조), 파골세포의 사멸을 촉진함을 확인하였고(도 9 참조), LPS 염증에 의한 골의 손상을 억제함을 확인하였다(도 10 참조).In addition, it was confirmed that EFL1 inhibited maintenance of osteoclasts differentiated, actin ring formation, and bone resorption in the dentine disc (see FIGS. 7 and 8), and promoted the death of osteoclasts (see FIG. 9). It was confirmed that the bone damage by inhibiting (see Fig. 10).
따라서, 본 발명의 유포비아 인자 L1을 유효성분으로 함유하는 조성물은 골질환의 예방 또는 치료를 위해 유용하게 사용될 수 있다.Therefore, the composition containing the euphoria factor L1 of the present invention as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
또한, 본 발명이 유효성분으로 함유하는 스컬캅플라본(skullcapflavone) 유도체는 Scutellaria baicalensis(황금)로부터 유래된 플라보노이드로써, 하기 화학식 2로 기재되는 구조를 갖는다:In addition, the scullcapflavone derivative containing the present invention as an active ingredient is a flavonoid derived from Scutellaria baicalensis (golden), and has a structure represented by the following formula (2):
Figure PCTKR2017007852-appb-C000002
Figure PCTKR2017007852-appb-C000002
(여기서, 상기 R1 및 R2는 H 또는 OCH3 임).Wherein R 1 and R 2 are H or OCH 3 .
본 발명은 상기 화학식 2로 표시되는 화합물, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating bone diseases containing the compound represented by Formula 2, or a pharmaceutically acceptable salt thereof as an active ingredient.
본 발명의 상기 스컬캅플라본 유도체는 스컬캅플라본 I 또는 스컬캅플라본 Ⅱ인 것을 특징으로 하며, 본 발명에 따른 스컬캅플라본 유도체는 상기 R1 및 R2는 각각 독립적으로 수소(H) 또는 메톡시(OCH3)기로부터 선택된다.The skull cap flavone derivatives of the present invention is characterized in that the skull cap flavone I or skull cap flavone II, wherein the skull cap flavone derivatives R 1 and R 2 are each independently hydrogen (H) or methoxy (OCH 3 ) group.
Figure PCTKR2017007852-appb-C000003
Figure PCTKR2017007852-appb-C000003
본 발명의 스컬캅플라본 I은 상기의 화학식 3에 있어 R1과 R2가 수소(H)이다. Skullcapflavone I of the present invention, in the above formula (3) R 1 and R 2 is hydrogen (H).
Figure PCTKR2017007852-appb-C000004
Figure PCTKR2017007852-appb-C000004
또한 본 발명의 스컬캅플라본 Ⅱ는 상기의 화학식 4에 있어 R1와 R2가 메톡시(OCH3)기이다.Also, in the present invention, Scapcapflavone II, R 1 and R 2 in the formula (4) is a methoxy (OCH 3 ) group.
또한, 본 발명의 스컬캅플라본 유도체는 0.1 내지 10 μM 농도인 것이 바람직하다. 농도 0.1 μM 미만의 농도를 갖는 스컬캅플라본 유도체 조성물은 골질환의 치료 효율이 저하되는 문제점이 있고, 10 μM 이상이면 세포에 독성이 생길 수 있는 문제점이 있다. 이러한 측면에서 스컬캅플라본 유도체를 유효성분으로 함유하는 약학적 조성물의 농도는 1 내지 5 μM 인 것이 바람직할 수 있으며, 더욱 바람직하게는 2 μM 일 수 있으나 이에 한정되는 것은 아니다.In addition, the skullcapflavone derivative of the present invention is preferably in a concentration of 0.1 to 10 μM. Skullcapflavone derivative composition having a concentration of less than 0.1 μM has a problem that the treatment efficiency of bone disease is lowered, there is a problem that can cause toxicity to cells if more than 10 μM. In this aspect, the concentration of the pharmaceutical composition containing the scullcapflavone derivative as an active ingredient may be preferably 1 to 5 μM, more preferably 2 μM, but is not limited thereto.
또한, 상기 조성물은 NFATc1, c-FOS, MAPKS, Src, AKT, CREB, PGC-1β 및 caveolin-1의 발현 또는 활성을 감소시키는 것을 특징으로 하고, Nrf2와 FOXO1 및 catalase의 발현 또는 활성을 증가시키는 것을 특징으로 하며, 세포 내 활성산소의 생성을 억제하고 염증에 의한 골 손상을 억제하는 것을 특징으로 한다.In addition, the composition is characterized by reducing the expression or activity of NFATc1, c-FOS, MAPKS, Src, AKT, CREB, PGC-1β and caveolin-1, and increases the expression or activity of Nrf2 and FOXO1 and catalase Characterized in that it inhibits the production of free radicals in the cell and inhibits bone damage caused by inflammation.
아울러, 본 발명의 조성물이 적용될 수 있는 골질환으로는 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것이 바람직하나 이에 한정되는 것은 아니다.In addition, bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is preferably one or more selected from the group consisting of paget disease and metastatic bone cancers, but not limited thereto.
본 발명의 구체적인 실험예에서, 상기 화학식 2로 기재되는 스컬캅플라본 유도체인, 본 발명의 스컬캅플라본 Ⅱ(이하 SFⅡ)가 RANKL에 의한 파골세포 전구세포(BMMs)의 분화를 효과적으로 억제함을 확인하였다(도 11 참조). 또한 SFⅡ를 처리하였을 때, 파골세포 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질과 그 타겟 유전자들인 CK, MMP9, TRAP과 함께, CR 및 DC-STAMP 유전자의 mRNA 발현이 억제되었다(도 12 참조).In a specific experimental example of the present invention, it was confirmed that the skull capflavone Ⅱ (hereinafter SFII) of the present invention, the skull cap flavone derivative described in Formula 2 effectively inhibits the differentiation of osteoclast progenitor cells (BMMs) by RANKL (See FIG. 11). In addition, mRNA treatment of CR and DC-STAMP genes was inhibited with SFII, along with NFATc1 protein, the most important transcription factor in osteoclast differentiation, and its target genes CK, MMP9, and TRAP (see FIG. 12). ).
또한, SFⅡ 존재 하에서 NFATc1의 upstream 조절자로 알려진 c-Fos 단백질과 mRNA의 발현이 유의적으로 억제되는 것을 확인하였으며(도 13 참조), MAPKS와 Src- AKT 및 FOXO1의 인산화가 억제되는 것을 확인하였다(도 14 참조). 이에 따라 FOXO1의 분해도 저해되며, 그 결과 FOXO1의 전사활성이 증가되어 타겟 유전자인 catalase의 발현이 단백질과 mRNA 수준에서 모두 증가한 것을 확인하였다(도 14 참조).In addition, it was confirmed that the expression of c-Fos protein and mRNA known as upstream regulator of NFATc1 was significantly suppressed in the presence of SFII (see FIG. 13), and that phosphorylation of MAPKS and Src-AKT and FOXO1 was inhibited ( See FIG. 14). As a result, the degradation of FOXO1 was also inhibited. As a result, the transcriptional activity of FOXO1 was increased, indicating that the expression of catalase, a target gene, was increased at both protein and mRNA levels (see FIG. 14).
또한, SFⅡ가 CREB과 PGC-1β 및 그 타겟 유전자인 ND4, COX1, COX3 및 Cyt b의 mRNA 발현을 상당히 억제하는 것을 확인하였으며(도 15 참조), SFⅡ에 의해 Nrf2와 대표적 타겟 유전자인 NQO1과 Srx의 mRNA 발현이 함께 증가되는 것을 확인하였다. 그리고 동시에 Nrf2와 항산화 효소를 비롯한 Nrf2 타겟 단백질인 NQO1, Srx, PrxⅠ, PrxⅡ, PrxⅢ, PrxⅣ, PrxV, PrxⅥ, Trx1, Trx2, TrxR1 및 TrxR2도 발현이 증가함을 확인하였다. 또한 SFⅡ에 의해 활성산소의 발생이 감소하는 것을 확인하였으며, Nrf2의 활성을 저해하고 파골세포의 분화 촉진인자로 알려져 있는 caveolin-1의 발현도 SFⅡ에 의해 억제되는 것을 확인하였다(도 16 참조).In addition, SFII was found to significantly inhibit the mRNA expression of CREB and PGC-1β and its target genes ND4, COX1, COX3 and Cyt b (see FIG. 15). SFII and NQO1 and Srx are representative target genes by SFII. MRNA expression was increased together. Simultaneously, Nrf2 and Nrf2 target proteins including antioxidant enzymes, NQO1, Srx, PrxI, PrxII, PrxIII, PrxIV, PrxV, PrxVI, Trx1, Trx2, TrxR1 and TrxR2, were also found to increase expression. In addition, it was confirmed that the generation of reactive oxygen by SFII was reduced, and the expression of caveolin-1, which is known to inhibit Nrf2 activity and promote the differentiation of osteoclasts, was also inhibited by SFII (see FIG. 16).
또한, SFⅡ가 액틴링의 형성과 dentine disc에서 파골세포에 의한 골 흡수를 저해하며(도 17 및 18 참조), LPS 염증에 의한 골의 손상을 억제함을 확인하였다(도 19 참조).In addition, SFII inhibits the formation of actin ring and bone resorption by osteoclasts in dentine disc (see FIGS. 17 and 18) and inhibits bone damage due to LPS inflammation (see FIG. 19).
따라서, 본 발명의 스컬캅플라본 유도체를 유효성분으로 함유하는 조성물은 골질환의 예방 또는 치료를 위해 유용하게 사용될 수 있다.Therefore, the composition containing the skull cap flavone derivative of the present invention as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
또한, 본 발명이 유효성분으로 함유하는 디하이드로코스투스 락톤(dehydrocostus lactone, DHCL)은 하기 화학식 5로 기재되는 구조를 갖는다:In addition, the dihydrocostus lactone (DHCL) containing the present invention as an active ingredient has a structure represented by the following formula (5):
Figure PCTKR2017007852-appb-C000005
Figure PCTKR2017007852-appb-C000005
본 발명은 상기 화학식 5로 표시되는 화합물, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 것을 특징으로 하는, 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating bone diseases, comprising the compound represented by Formula 5, or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명의 디하이드로코스투스 락톤은 0.1 내지 10 μM 농도인 것을 특징으로 한다. 농도 0.1 μM 미만의 농도를 갖는 디하이드로코스투스 락톤 조성물은 골질환의 치료 효율이 저하되는 문제점이 있고, 10 μM 이상이면 세포에 독성이 생길 수 있는 문제점이 있다. 이러한 측면에서 디하이드로코스투스 락톤을 유효성분으로 함유하는 약학적 조성물의 농도는 1 내지 5 μM 인 것이 바람직할 수 있으며, 더욱 바람직하게는 1.5 μM 일 수 있다.In addition, the dihydrocostus lactone of the present invention is characterized in that the concentration of 0.1 to 10 μM. Dihydrocostus lactone composition having a concentration of less than 0.1 μM has a problem that the treatment efficiency of bone disease is lowered, there is a problem that can cause toxicity to cells if more than 10 μM. In this aspect, the concentration of the pharmaceutical composition containing dihydrocostus lactone as an active ingredient may be preferably 1 to 5 μM, more preferably 1.5 μM.
또한, 상기 조성물은 NFATc1, c-FOS, JNK, ERK, Src, AKT 및 caveolin-1의 발현 또는 활성을 감소시키는 것을 특징으로 하고, CREB의 인산화와 PGC-1β의 발현을 증가시키며, Nrf2와 FOXO1 및 catalase의 발현 또는 활성을 증가시키는 것을 특징으로 함과 동시에, 세포 내 활성산소의 생성을 억제하고 염증에 의한 골 손상을 억제하는 것을 특징으로 한다.In addition, the composition is characterized by reducing the expression or activity of NFATc1, c-FOS, JNK, ERK, Src, AKT and caveolin-1, increases the phosphorylation of CREB and the expression of PGC-1β, Nrf2 and FOXO1 And increasing expression or activity of catalase, and inhibiting the production of free radicals in cells and inhibiting bone damage caused by inflammation.
아울러, 본 발명의 조성물이 적용될 수 있는 골질환으로는 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 한다.In addition, bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is characterized in that any one or more selected from the group consisting of (Paget disease) and metastatic bone cancer (metastatic bone cancers).
본 발명의 구체적인 실험예에서, 상기 화학식 5로 기재되는 디하이드로코스투스 락톤(dehydrocostus lactone, 이하 DHCL)이 RANKL에 의한 파골세포 전구세포(BMMs)의 분화를 효과적으로 억제함을 확인하였다(도 20 참조). 또한 DHCL을 처리하였을 때, 파골세포 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질과 그 타겟 유전자들인 CK, MMP9, TRAP과 함께, CR 및 DC-STAMP 유전자의 mRNA 발현이 억제되었다(도 21 참조).In a specific experimental example of the present invention, it was confirmed that dehydrocostus lactone (DHCL) described in Chemical Formula 5 effectively inhibits the differentiation of osteoclast progenitor cells (BMMs) by RANKL (see FIG. 20). ). In addition, when treated with DHCL, mRNA expression of CR and DC-STAMP genes was suppressed along with NFATc1 protein, the most important transcription factor in osteoclast differentiation, and its target genes CK, MMP9, and TRAP (see FIG. 21). ).
또한, DHCL 존재 하에서 NFATc1의 upstream 조절자로 알려진 c-Fos 단백질과 mRNA의 발현이 유의적으로 억제되는 것을 확인하였으며(도 22 참조), JNK, ERK, Src - AKT 및 FOXO1의 인산화가 억제되는 것을 확인하였다(도 23 참조). 이에 따라 FOXO1의 분해도 저해되며, 그 결과 FOXO1의 전사활성이 증가되어 타겟 유전자인 catalase의 발현이 단백질과 mRNA 수준에서 모두 증가한 것을 확인하였다(도 23 참조).In addition, it was confirmed that the expression of c-Fos protein and mRNA known as upstream regulator of NFATc1 was significantly inhibited in the presence of DHCL (see FIG. 22), and that phosphorylation of JNK, ERK, Src-AKT and FOXO1 was inhibited. (See FIG. 23). As a result, the degradation of FOXO1 was also inhibited. As a result, the transcriptional activity of FOXO1 was increased, indicating that the expression of catalase, a target gene, was increased at both protein and mRNA levels (see FIG. 23).
또한, DHCL에 의해 Nrf2와 대표적 타겟 유전자인 NQO1과 Srx의 mRNA 발현이 함께 증가되는 것을 확인하였고, 동시에 Nrf2와 항산화 효소를 비롯한 Nrf2 타겟 단백질들도 발현이 증가함을 확인하였다. 또한 DHCL에 의해 활성산소의 발생이 감소하는 것을 확인하였으며, Nrf2의 활성을 저해하고 파골세포의 분화 촉진인자로 알려져 있는 caveolin-1의 발현도 DHCL에 의해 억제되는 것을 확인하였다(도 24 참조).In addition, it was confirmed that mRNA expression of Nrf2 and NQO1 and Srx, which are representative target genes, was increased by DHCL, and Nrf2 target proteins including Nrf2 and antioxidant enzymes were also increased. In addition, it was confirmed that the generation of free radicals is reduced by DHCL, it was confirmed that the expression of caveolin-1, which inhibits the activity of Nrf2 and is known as a differentiation promoter of osteoclasts, is also inhibited by DHCL (see FIG. 24).
또한, DHCL이 액틴링의 형성과 dentine disc에서 파골세포에 의한 골 흡수를 저해하며(도 25 및 26 참조), LPS 염증에 의한 골의 손상을 억제함을 확인하였다(도 27 참조).In addition, it was confirmed that DHCL inhibits the formation of actin ring and bone uptake by osteoclasts in dentine disc (see FIGS. 25 and 26) and inhibits bone damage due to LPS inflammation (see FIG. 27).
따라서, 본 발명의 디하이드로코스투스 락톤(DHCL)을 유효성분으로 함유하는 조성물은 골질환의 예방 또는 치료를 위해 유용하게 사용될 수 있다.Therefore, the composition containing the dihydrocostus lactone (DHCL) of the present invention as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
아울러, 본 발명이 유효성분으로 함유하는 신코닌(cinchonine, CN)은 Cinchona bark에서 유래한 알칼로이드로써, 하기 화학식 6으로 기재되는 구조를 갖는다:In addition, cinchonine (CN), which is contained as an active ingredient of the present invention, is an alkaloid derived from Cinchona bark, and has a structure represented by Formula 6 below:
Figure PCTKR2017007852-appb-C000006
Figure PCTKR2017007852-appb-C000006
본 발명은 상기 화학식 6으로 표시되는 화합물, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating bone diseases, which contains the compound represented by Chemical Formula 6, or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명의 신코닌은 0.1 내지 50 μM 농도인 것을 특징으로 한다. 농도 0.1 μM 미만의 농도를 갖는 신코닌 조성물은 골질환의 치료 효율이 저하되는 문제점이 있고, 50 μM 이상이면 세포에 독성이 생길 수 있는 문제점이 있다. 이러한 측면에서 신코닌을 유효성분으로 함유하는 약학적 조성물의 농도는 1 내지 30 μM 인 것이 바람직할 수 있으며, 더욱 바람직하게는 20 μM 일 수 있다.In addition, the cinconin of the present invention is characterized in that the concentration of 0.1 to 50 μM. Synconin composition having a concentration of less than 0.1 μM has a problem in that the treatment efficiency of bone disease is lowered, there is a problem that can cause toxicity to cells if more than 50 μM. In this aspect, it may be preferable that the concentration of the pharmaceutical composition containing cinnaconin as an active ingredient is 1 to 30 μM, more preferably 20 μM.
상기 조성물은 NFATc1, NF-κB, ERK, Src, AKT, FOXO1, c-FOS 및 PGC-1β의 발현 또는 활성을 감소시키는 것을 특징으로 하고, 염증에 의한 골 손상을 억제하는 것을 특징으로 한다.The composition is characterized by reducing the expression or activity of NFATc1, NF-κB, ERK, Src, AKT, FOXO1, c-FOS and PGC-1β, it is characterized by inhibiting bone damage caused by inflammation.
아울러, 본 발명의 조성물이 적용될 수 있는 골질환으로는 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것이 바람직하나 이에 한정되는 것은 아니다.In addition, bone diseases to which the composition of the present invention can be applied include growth stage of development, fracture, osteoporosis due to excessive absorption of osteoclasts (osteoporosis), rheumatoid arthritis, periodontal disease (periodontal disease), Paget It is preferably one or more selected from the group consisting of paget disease and metastatic bone cancers, but not limited thereto.
본 발명의 구체적인 실험예에서, 상기 화학식 6으로 기재되는 본 발명의 신코닌(CN)이 RANKL에 의한 파골세포의 분화를 효과적으로 억제함을 확인하였다(도 28 참조). 또한 신코닌을 처리하였을 때, 파골세포 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질과 그 타겟 유전자들인 CK, MMP9 및 TRAP 유전자의 mRNA 발현이 억제되었다(도 29 참조).In a specific experimental example of the present invention, it was confirmed that the cinconin (CN) of the present invention described in the formula (6) effectively inhibits the differentiation of osteoclasts by RANKL (see Fig. 28). In addition, NFATc1 protein, which is the most important transcription factor in osteoclast differentiation, and its target genes, CK, MMP9 and TRAP genes, were inhibited when Cynconin was treated (see FIG. 29).
또한, 신코닌 존재 하에서 IκBα의 인산화가 억제되었고, NFATc1의 upstream 조절자로 알려진 NF-κB 및 이의 타겟 유전자인 SOD2와 COX2의 발현도 억제되었다. 또한 신코닌에 의해 c-Fos 발현이 유의적으로 억제되는 것을 확인하였으며(도 30 참조), ERK와 Src-AKT 및 FOXO1의 인산화가 억제되는 것을 확인하였다(도 31 참조).In addition, phosphorylation of IκBα was inhibited in the presence of Cinconin, and expression of NF-κB and its target genes SOD2 and COX2, which are known as upstream regulators of NFATc1, was also inhibited. In addition, it was confirmed that c-Fos expression was significantly inhibited by cinnaconin (see FIG. 30), and phosphorylation of ERK, Src-AKT, and FOXO1 was inhibited (see FIG. 31).
또한, 신코닌이 PGC-1β 및 그 타겟 유전자인 ND4, Cytb, COX1, COX3의 mRNA 발현을 저해하는 것을 확인하였으며(도 32 참조), 신코닌이 액틴링의 형성과 dentine disc에서 파골세포에 의한 골 흡수를 저해하며(도 33 참조), LPS 염증에 의한 골의 손상을 억제함을 확인하였다(도 34 참조).In addition, it was confirmed that synonin inhibited the mRNA expression of PGC-1β and its target genes, ND4, Cytb, COX1, COX3 (see FIG. 32), and synonin induced by osteoclasts in the formation of actin ring and dentine disc. It was confirmed that inhibition of bone absorption (see FIG. 33), and inhibiting bone damage caused by LPS inflammation (see FIG. 34).
따라서, 본 발명의 신코닌(CN)을 유효성분으로 함유하는 조성물은 골질환의 예방 또는 치료를 위해 유용하게 사용될 수 있다.Therefore, the composition containing the present mykonin (CN) as an active ingredient can be usefully used for the prevention or treatment of bone diseases.
또한, 본 발명은 상기 화학식 1 내지 화학식 6으로 표시되는 화합물뿐만 아니라, 이의 약학적으로 허용되는 염, 이로부터 제조될 수 있는 가능한 용매화물, 수화물, 라세이체 또는 입체이성질체를 모두 포함한다.In addition, the present invention includes not only the compound represented by Chemical Formula 1 to Chemical Formula 6, but also a pharmaceutically acceptable salt thereof, and possible solvates, hydrates, racemates or stereoisomers which can be prepared therefrom.
본 발명은 상기 화학식 1 내지 화학식 6으로 표시되는 화합물 또는 이의 약학적으로 허용되는 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요오드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸이도에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트,니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 숙시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, 하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함한다.The present invention can be used in the form of a compound represented by Formula 1 to Formula 6 or a pharmaceutically acceptable salt thereof, and an acid addition salt formed by a pharmaceutically acceptable free acid is useful as the salt. . Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkanes. Obtained from non-toxic organic acids such as doates, aromatic acids, aliphatic and aromatic sulfonic acids. Such pharmaceutically toxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide and iodide Id, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suverate , Sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitro benzoate, hydroxybenzoate, meth Oxybenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfonate, chlorobenzenesulfo Nate, Xylene Sulfonate, Phenyl Acetate, Phenylpropionate, Phenyl Butyrate, Citrate, Lactate, Hydroxybutyrate, Glycolate, Maleate, Tartrate, Methanesulfonate, Propanesulfonate, Naphthalene-1-sulfonate , Naphthalene-2-sulfonate or mandelate.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면 상기 화학식 1 내지 화학식 6으로 표시되는 화합물을 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다. 또한, 동량의 상기 화학식 1 내지 화학식 6으로 표시되는 화합물, 및 산 수용액 또는 알코올을 가열하고, 이어서 이 혼합물을 증발시켜서 건조하거나 또는 석출된 염을 흡입 여과시켜 제조할 수도 있다.Acid addition salts according to the present invention are dissolved in conventional methods, for example, the compounds represented by the above formulas (1) to (6) in an excess of aqueous acid solution, and the salts are water-miscible organic solvents such as methanol, ethanol, acetone. Or by precipitation with acetonitrile. In addition, the same amount of the compound represented by the formula (1) to formula (6), and the acid aqueous solution or alcohol may be heated, and then the mixture is evaporated to dryness or the precipitated salt may be produced by suction filtration.
또한, 염기를 사용하여 약학적으로 허용가능 한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은, 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조 시켜 얻는다. 이때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 은 염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 음염(예, 질산은)과 반응시켜 얻는다.Bases can also be used to make pharmaceutically acceptable metal salts. Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt. Corresponding silver salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable negative salt (eg, silver nitrate).
상기 조성물을 제제화할 경우, 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조된다.When formulating the composition, it is prepared using commonly used diluents or excipients, such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants.
경구 투여를 위한 고형제에는 정제, 환제, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형 제제는 하나 이상의 본 발명의 상기 화학식 1 내지 화학식 6으로 표시되는 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.Solids for oral administration include tablets, pills, powders, granules, capsules, troches and the like, and such solid preparations include at least one excipient example in the compound represented by Formula 1 to Formula 6 of the present invention. For example, it is prepared by mixing starch, calcium carbonate, sucrose or lactose or gelatin. In addition to simple excipients, lubricants such as magnesium styrate talc are also used. Liquid preparations for oral administration include suspensions, solvents, emulsions, or syrups, and may include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. have.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제제, 좌제 등이 포함된다.Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 81, 카카오지, 타우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.As the non-aqueous solvent and the suspension solvent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used. As the base of the suppository, witepsol, macrogol, tween 81, cacao butter, taurine, glycerol, gelatin and the like can be used.
본 발명에 따른 조성물은 약제학적으로 유효한 양으로 투여한다. 본 발명에 있어서, "약제학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The composition according to the invention is administered in a pharmaceutically effective amount. In the present invention, “pharmaceutically effective amount” means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and an effective dose level means the type, severity, and activity of the patient's disease. , Sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of the drug, and other factors well known in the medical arts. The compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
구체적으로, 본 발명에 따른 화합물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 1 kg 당 0.1 mg 내지 100 mg, 바람직하게는 0.5 mg 내지 10 mg을 매일 또는 격일 투여하거나, 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나 투여 경로, 질환의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.Specifically, the effective amount of the compound according to the present invention may vary depending on the age, sex, and weight of the patient, and in general, 0.1 mg to 100 mg, preferably 0.5 mg to 10 mg per 1 kg of body weight is administered daily or every other day. Alternatively, the administration may be divided into 1 to 3 times a day. However, the dosage may be increased or decreased depending on the route of administration, the severity of the disease, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
본 발명의 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용될 수 있다.The compositions of the present invention can be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy and biological response modifiers.
또한, 본 발명은 상기 화학식 1로 표시되는 유포비아 인자 L1 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In another aspect, the present invention provides a dietary supplement for the improvement of bone disease containing Euphorbia factor L1 represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 상기 화학식 2로 표시되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다. 아울러, 상기의 스컬캅플라본 유도체는 스컬캅플라본 I 또는 스컬캅플라본 II인 것을 특징으로 한다.In addition, the present invention provides a health functional food for the improvement of bone disease containing the skull cap flavone derivative represented by the formula (2) or a pharmaceutically acceptable salt thereof as an active ingredient. In addition, the skull cap flavone derivative is characterized in that the skull cap flavone I or skull cap flavone II.
또한, 본 발명은 상기 화학식 5로 표시되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In another aspect, the present invention provides a dietary supplement for improving bone diseases containing dihydrocostus lactone represented by the formula (5) or a pharmaceutically acceptable salt thereof as an active ingredient.
아울러, 본 발명은 상기 화학식 6으로 표시되는 화합물, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 골질환의 개선용 건강기능식품을 제공한다.In addition, the present invention provides a health functional food for improving bone diseases containing the compound represented by the formula (6), or a pharmaceutically acceptable salt thereof as an active ingredient.
상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것이 바람직하나 이에 한정되는 것은 아니다.The bone diseases include growth stage development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (metastatic) and metastatic bone cancer (metastatic) It is preferably at least one selected from the group consisting of bone cancers), but is not limited thereto.
본 명세서의 "건강기능식품"이란 일상 식사에서 결핍되기 쉬운 영양소나 인체에 유용한 기능을 가진 원료나 성분 (기능성 원료)을 사용하여 제조한 것으로, 인체의 정상적인 기능을 유지하거나 생리기능 활성화를 통하여 건강을 유지하고 개선하는 식품으로 식품의약품안전처장이 정한 것을 의미하나, 이에 한정되지 않으며 통상적인 의미의 건강식품을 배제하는 의미로 사용된 것이 아니다.The "health functional food" of the present specification is manufactured by using nutrients or ingredients (functional raw materials) having useful functions to the human body, which are easily deficient in a daily meal, and maintaining health through physiological functions or maintaining normal functions of the human body. The food is to maintain and improve the food as defined by the Commissioner of Food and Drug Safety, but is not limited to this and is not used to exclude the health food in the normal sense.
본 발명의 조성물은 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 건강기능식품 중의 상기 화합물의 양은 전체 식품 중량의 0.01 내지 90 중량부로 가할 수 있다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취 시에는 상기 양은 상기 범위 이하일 수 있으며, 안전성 면에서 아무런 문제가 없기 때문에 유효성분은 상기 범위 이상의 양으로도 사용될 수 있다.The composition of the present invention may be added as it is to food or used with other food or food ingredients, and may be appropriately used according to conventional methods. The mixing amount of the active ingredient can be suitably determined according to the purpose of use (prevention or improvement). In general, the amount of the compound in the dietary supplement may be added at 0.01 to 90 parts by weight of the total food weight. However, in the case of prolonged ingestion for health and hygiene or health control, the amount may be below the above range, and the active ingredient may be used in an amount above the above range because there is no problem in terms of safety.
본 발명의 건강 기능성 음료 조성물은 지시된 비율로 필수 성분으로서 상기 조성물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 단당류, 예를 들어, 포도당, 과당 등; 이당류, 예를 들어 말토스, 수크로스 등; 및 다당류, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제{타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등)} 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 g 당 일반적으로 약 1 내지 20 g, 바람직하게는 약 5 내지 12 g이다.The health functional beverage composition of the present invention is not particularly limited to other ingredients except for containing the composition as an essential ingredient in the indicated ratios, and may contain various flavors or natural carbohydrates, etc. as additional ingredients, as in general beverages. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those described above, natural flavoring agents (tautin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.)} and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used. have. The proportion of said natural carbohydrates is generally about 1 to 20 g, preferably about 5 to 12 g per 100 g of the composition of the present invention.
상기 외에 본 발명의 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 조성물은 천연 과일 쥬스 및 과일쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다.In addition to the above, the composition of the present invention includes various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, coloring and neutralizing agents (such as cheese and chocolate), pectic acid and salts thereof, alginic acid and its Salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks, and the like. In addition, the composition of the present invention may contain natural fruit juice and pulp for the production of fruit juice beverages and vegetable beverages.
이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0.1 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.These components can be used independently or in combination. The proportion of such additives is not so critical but is generally selected in the range of 0.1 to about 20 parts by weight per 100 parts by weight of the composition of the present invention.
또한, 본 발명은 하기 화학식 1로 기재되는 유포비아 인자 L1(Euphorbia Factor L1) 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료 방법을 제공한다:The present invention also provides a method for preventing or treating bone diseases, comprising administering Euphorbia Factor L1 or a pharmaceutically acceptable salt thereof to a mammal, which is represented by Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2017007852-appb-I000001
Figure PCTKR2017007852-appb-I000001
또한, 본 발명은 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 상기 화학식 1로 기재되는 유포비아 인자 L1(Euphorbia Factor L1) 또는 이의 약학적으로 허용 가능한 염의 용도를 제공한다.The present invention also provides the use of Euphorbia Factor L1 or a pharmaceutically acceptable salt thereof, as described in Formula 1, for use in the manufacture of a medicament for the prevention or treatment of bone diseases.
또한, 본 발명은 하기 화학식 2로 기재되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료 방법을 제공한다:The present invention also provides a method for preventing or treating bone diseases, comprising administering to a mammal a skullcapflavone derivative represented by Formula 2 or a pharmaceutically acceptable salt thereof:
[화학식 2][Formula 2]
Figure PCTKR2017007852-appb-I000002
Figure PCTKR2017007852-appb-I000002
(여기서, 상기 R1 및 R2는 H 또는 OCH3 임).Wherein R 1 and R 2 are H or OCH 3 .
또한, 본 발명은 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 상기 화학식 2로 기재되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염의 용도를 제공한다.The present invention also provides the use of a scapcapflavone derivative according to Formula 2 or a pharmaceutically acceptable salt thereof for use in the manufacture of a medicament for the prevention or treatment of bone diseases.
또한, 본 발명은 하기 화학식 5로 기재되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료방법을 제공한다:In addition, the present invention provides a method for preventing or treating bone diseases, comprising administering to a mammal a dihydrocostus lactone represented by the following formula (5) or a pharmaceutically acceptable salt thereof:
[화학식 5][Formula 5]
Figure PCTKR2017007852-appb-I000003
Figure PCTKR2017007852-appb-I000003
또한, 본 발명은 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 상기 화학식 5로 기재되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염의 용도를 제공한다:The present invention also provides the use of a dihydrocostus lactone or a pharmaceutically acceptable salt thereof according to Formula 5, for use in the manufacture of a medicament for the prevention or treatment of a bone disease:
또한, 본 발명은 하기 화학식 6으로 기재되는 신코닌 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료방법을 제공한다:In another aspect, the present invention provides a method for preventing or treating bone diseases, comprising administering to a mammal, a neoconsin or a pharmaceutically acceptable salt thereof represented by the following formula:
[화학식 6][Formula 6]
Figure PCTKR2017007852-appb-I000004
Figure PCTKR2017007852-appb-I000004
또한, 본 발명은 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 상기 화학식 6으로 기재되는 신코닌 또는 이의 약학적으로 허용 가능한 염의 용도를 제공한다.The present invention also provides the use of cinconin or a pharmaceutically acceptable salt thereof as described in Formula 6 for use in the manufacture of a medicament for the prevention or treatment of bone diseases.
이하, 본 발명을 실험예에 의해서 상세히 설명한다Hereinafter, the present invention will be described in detail by experimental examples.
단, 하기의 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실험예에 의해서 한정되는 것은 아니다. However, the following experimental examples are only illustrative of the present invention, and the content of the present invention is not limited by the following experimental examples.
Ⅰ. I. EFL1의Of EFL1 효능 확인 Efficacy Check
<< 실험예Experimental Example 1>  1> EFL1의Of EFL1 파골세포 분화 억제 Osteoclast differentiation inhibition
본 발명이 유효성분으로 함유하는 유포비아 인자 L1(이하 EFL1)은 ChemFaces사의 CFN92883/76376-43-7 제품을 사용하여 실험에 사용하였다. Euphorbia factor L1 (hereinafter referred to as EFL1) contained in the present invention as an active ingredient was used in an experiment using CFN92883 / 76376-43-7 manufactured by ChemFaces.
우선 EFL1의 파골세포 분화 억제 효과를 확인하기 위하여, BMM(Bone Marrow-Derived Macrophages) 세포를 대상으로 하여 실험을 수행하였다. BMM 세포는 파골세포(osteoclast)로 분화할 수 있는 precursor cell로써, 본 실험에서는 8주령 C57BL/6 수컷 마우스의 대퇴골과 경골의 골수(Bone marrow)에서 추출한 세포를 사용하였다.First, in order to confirm the osteoclast differentiation inhibitory effect of EFL1, experiments were performed on BMM (Bone Marrow-Derived Macrophages) cells. BMM cells are precursor cells capable of differentiating into osteoclasts. In this experiment, cells extracted from femur and tibia bone marrow of 8-week-old C57BL / 6 male mice were used.
다양한 농도(0, 4, 6, 8 μM)의 EFL1 존재 하에서 BMM(Bone Marrow-Derived Macrophages) 세포에 50 ng/ml의 RANKL을 3일 동안 처리하여 파골세포로 분화시키고 PBS 워싱처리 후 4% paraformaldehyde로 고정한 뒤 leukocyte acid phosphatase cytochemistry kit(Sigma Aldrich)를 사용하여 TRAP 염색한 후, TRAP 염색된 3개 이상의 다핵을 가진 파골세포의 수를 현미경으로 분석하였다. BMM (Bone Marrow-Derived Macrophages) cells were treated with 50 ng / ml RANKL for 3 days in the presence of various concentrations (0, 4, 6, 8 μM) of EFL1 to differentiate into osteoclasts and 4% paraformaldehyde after PBS washing. After fixation with TRAP staining using leukocyte acid phosphatase cytochemistry kit (Sigma Aldrich), the number of osteoclasts with three or more multinucleated stained TRAP was analyzed under a microscope.
그 결과, 6 μM의 EFL1에서부터 파골세포 분화가 효과적으로 억제되었다(도 1의 A 및 B). As a result, osteoclast differentiation was effectively suppressed from 6 μM of EFL1 (A and B of FIG. 1).
또한, EFL1의 파골세포 분화 억제효과가 세포독성에 의한 것임을 배제하기 위하여, EASY Cytox(WST-1) assay kit로 세포독성을 분석하였다. BMM 세포를 각각 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt(WST-1) reagent (Roche Applied Science)를 10 μl씩 넣어주고 37 ℃에서 2 - 4시간 배양한 뒤, 450nm에서의 흡광도를 측정하였다.In addition, the cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit in order to exclude that the osteoclast differentiation inhibitory effect of EFL1 is due to cytotoxicity. 10 μl of 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium monosodium salt (WST-1) reagent (Roche Applied Science) After incubation at 37 ° C. for 2-4 hours, absorbance at 450 nm was measured.
그 결과, 8 μM 농도 까지 EFL1에 의한 세포독성이 나타나지 않는 것을 확인하였다(도 1의 C). 또한, BMM 세포를 6 μM EFL1의 존재 하에 RANKL을 3 에서 5일 동안 처리하여 분화시킨 경우에도 파골세포 분화가 유의적으로 억제되었으며(도 1의 D 및 E), 5일까지 세포독성이 나타나지 않는 것을 확인하였다(도 1의 F). 이는 EFL1의 파골세포 분화 억제효과가 세포사멸에 의한 것이 아님을 보여준다. As a result, it was confirmed that cytotoxicity by EFL1 did not appear up to 8 μM concentration (FIG. 1C). In addition, osteoclast differentiation was significantly inhibited even when BMM cells were differentiated by treatment of RANKL for 3 to 5 days in the presence of 6 μM EFL1 (D and E in FIG. 1), and no cytotoxicity was observed until day 5 It was confirmed (FIG. 1 F). This shows that the effect of inhibiting osteoclast differentiation of EFL1 is not due to apoptosis.
<< 실험예Experimental Example 2>  2> EFL1에On EFL1 의한  by NFATc1NFATc1 활성화 억제 Activation Suppression
EFL1의 파골세포 분화 억제 효과를 확인하기 위하여, 다양한 농도(0, 4, 6, 8 μM)의 EFL1 존재 하에서 BMM 세포에 2일 동안 50 ng/ml 의 RANKL을 처리하여 파골세포로 분화시키고, 파골세포의 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질의 발현을 확인하기 위해 NFATc1에 대한 항체를 사용한 immunoblot을 수행하였다. In order to confirm the osteoclast differentiation inhibitory effect of EFL1, BMM cells were treated with 50 ng / ml of RANKL for 2 days in the presence of various concentrations (0, 4, 6, 8 μM) of EFL1 to differentiate into osteoclasts, and osteoclasts. In order to confirm the expression of NFATc1 protein, the most important transcription factor in cell differentiation, immunoblot using an antibody against NFATc1 was performed.
10% polyacrylamide gel을 이용하여 단백질을 분리하고, 분리된 단백질을 nitrocellulose membranes에 옮겨주었다. TBST(0.05% Tween-20 in Tris-buffered saline, pH 7.4)에 녹인 5% 탈지유를 이용하여 막에 있는 비특이적 결합부위를 모두 블로킹하였다. 일차항체(mouse monoclonal antibodies, Santa Cruz Biotechnology Inc)를 14시간 동안 4℃에서 처리한 후 이차항체를 1시간 동안 상온에서 처리하여 West save Up (Ab Frontier)으로 분석하였다.Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
그 결과 NFATc1 단백질은 4 μM EFL1 농도에서부터 상당히 억제되었으며(도 2의 A), 5일까지 억제효과가 지속되는 것을 확인하였다(도 2의 B). As a result, NFATc1 protein was significantly inhibited from 4 μM EFL1 concentration (FIG. 2A), and it was confirmed that the inhibitory effect was continued up to 5 days (FIG. 2B).
또한, NFATc1의 타겟 유전자인 CK, MMP9 및 TRAP 유전자의 mRNA 발현 변화를 real time-PCR을 사용하여 확인하였다. In addition, mRNA expression changes of CK, MMP9 and TRAP genes, which are target genes of NFATc1, were confirmed using real time-PCR.
real time-PCR을 위해, Trizol reagent (Invitrogen)을 사용하여 총 RNA를 추출하여 260 nm의 흡광도에서 정량분석하였으며, 총 RNA를 0.5 mg의 oligo(dT) primers를 포함, 총 15 ml가 되게하여 70℃에서 5분간 인큐베이션 한 후, 얼음에서 바로 식혀주었다. cDNA 처음 가닥은 M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units 및 각각의 dNTP 0.25 mM를 포함한 최종볼륨 25 ㎕에서 42℃에서 1시간, 70℃에서 10분간 합성하였다. 희석 cDNA template의 0.8 ㎕씩(1:2.5)을 2X SYBR Green PCR Master Mix(M Biotech) 10 ㎕, 각 gene-specific primer(제노텍) 10 μμM 의 1 ㎕씩을 포함한 최종 20 ㎕ 볼륨에서 ABI 7300 real time PCR System (Applied Biosystems)을 사용하여 증폭시켰으며, 증폭은 50℃에서 2분간, 95℃에서 2분간, 다음으로 95℃에서 15초간, 60℃에서 1분간 40 사이클을 수행하여 실험하였다. 실험에서 사용한 Primer의 서열은 하기 표 1과 같다.For real time-PCR, total RNA was extracted using Trizol reagent (Invitrogen) and quantified at absorbance at 260 nm. Total RNA was totaled to 15 ml, containing 0.5 mg of oligo (dT) primers. After 5 minutes incubation at ℃, it was cooled directly on ice. The first strand of cDNA was synthesized at 25 μl for 1 hour at 42 ° C. and 10 minutes at 70 ° C. in 25 μl of final volume containing M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units and 0.25 mM each of dNTP. ABI 7300 real at a final 20 μl volume containing 10 μl of 2 × SYBR Green PCR Master Mix (M Biotech) and 1 μl of 10 μμM of each gene-specific primer (Genotech). Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C. The sequence of Primer used in the experiment is shown in Table 1 below.
real-time real-time PCRPCR primer의 서열 및  the sequence of the primer and ampliconamplicon 크기 size
GeneGene Primer(sense & antisense)Primer (sense & antisense) 서열번호SEQ ID NO: Amplicon length(bp)Amplicon length (bp)
1One NFATc1 NFATc1 5'-CTTCAGCTGGAGGACACC-3'5'-CTTCAGCTGGAGGACACC-3 ' 1One 7979
5'-CCAATGAACAGCTGTAGCG-3'5'-CCAATGAACAGCTGTAGCG-3 ' 22
22 CK CK 5'-ACCACTGCCTTCCAATACG-3’5'-ACCACTGCCTTCCAATACG-3 ' 33 9999
5’-CGTGGCGTTATACATACAAC-3’5’-CGTGGCGTTATACATACAAC-3 ’ 44
33 MMP9 MMP9 5’-AGACGACATAGACGGCATC-3’5’-AGACGACATAGACGGCATC-3 ’ 55 9797
5’-TGCTGTCGGCTGTGGTTC-3’5’-TGCTGTCGGCTGTGGTTC-3 ’ 66
44 TRAP TRAP 5'-CCAGCGACAAGAGGTTCC-3'5'-CCAGCGACAAGAGGTTCC-3 ' 77 113113
5'-AGAGACGTTGCCAAGGTGAT-3'5'-AGAGACGTTGCCAAGGTGAT-3 ' 88
55 SOD2 SOD2 5'-ATTAACGCGCAGATCATGCA-3'5'-ATTAACGCGCAGATCATGCA-3 ' 99 161161
5'-TGTCCCCCACCATTGAACTT-3'5'-TGTCCCCCACCATTGAACTT-3 ' 1010
66 COX2 COX2 5'-GATCATAAGCGAGGACCTG-3'5'-GATCATAAGCGAGGACCTG-3 ' 1111 8585
5'-GTCTGTCCAGAGTTTCACC-3'5'-GTCTGTCCAGAGTTTCACC-3 ' 1212
77 c-Fos c-Fos 5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 1313 9797
5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 1414
88 PGC-1βPGC-1β 5'-CTCCAGGCAGGTTCAACCC-3'5'-CTCCAGGCAGGTTCAACCC-3 ' 1515 8383
5'-GGGCCAGAAGTTCCCTTAGG-3'5'-GGGCCAGAAGTTCCCTTAGG-3 ' 1616
99 ND4ND4 5'-CATCACTCCTATTCTGCCTAGCAA-3'5'-CATCACTCCTATTCTGCCTAGCAA-3 ' 17    17 7474
5'-TCCTCGGGCCATGATTATAGTAC-3'5'-TCCTCGGGCCATGATTATAGTAC-3 ' 18    18
1010 COX1COX1 5'-TTTTCAGGCTTCACCCTAGATGA-3'5'-TTTTCAGGCTTCACCCTAGATGA-3 ' 1919 8181
5'-GAAGAATGTTATGTTTACTCCTACGAATATG-3'5'-GAAGAATGTTATGTTTACTCCTACGAATATG-3 ' 2020
1111 COX3COX3 5'-CGGAAGTATTTTTCTTTGCAGGAT-3'5'-CGGAAGTATTTTTCTTTGCAGGAT-3 ' 2121 8282
5'-CAGCAGCCTCCTAGATCATGTG-3'5'-CAGCAGCCTCCTAGATCATGTG-3 ' 2222
1212 CytbCytb 5'-GCCACCTTGACCCGATTCT-3'5'-GCCACCTTGACCCGATTCT-3 ' 2323 6464
5'-TTGCTAGGGCCGCGATAAT-3'5'-TTGCTAGGGCCGCGATAAT-3 ' 2424
1313 Nrf2Nrf2 5'-TCTCCTCGCTGGAAAAAGAA-3'5'-TCTCCTCGCTGGAAAAAGAA-3 ' 2525 498498
5'-AATGTGCTGGCTGTGCTTTA-3'5'-AATGTGCTGGCTGTGCTTTA-3 ' 2626
1414 NQO1NQO1 5'-TTCTCTGGCCGATTCAGAG-3'5'-TTCTCTGGCCGATTCAGAG-3 ' 2727 180180
5'-GGCTGCTTGGAGCAAAATAG-3'5'-GGCTGCTTGGAGCAAAATAG-3 ' 2828
1515 SrxSrx 5'-AGCCTGGTGGACACGATC-3'5'-AGCCTGGTGGACACGATC-3 ' 2929 9797
5'-AGGAATAGTAGTAGTCGCCA-3'5'-AGGAATAGTAGTAGTCGCCA-3 ' 3030
1616 b-actinb-actin 5'-ACCCTAAGGCCAACCGTG-3'5'-ACCCTAAGGCCAACCGTG-3 ' 3131 8181
5'-GCCTGGATGGCTACGTAC-3'5'-GCCTGGATGGCTACGTAC-3 ' 3232
CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2
그 결과, 6 μM EFL1 존재 하에서 2일 동안 50 ng/ml RANKL을 처리하였을 때, NFATc1과 그 타겟 유전자인 CK, MMP9 및 TRAP 유전자의 mRNA도 발현이 현저히 억제되는 것을 확인하였다(도 2의 C).As a result, when treated with 50 ng / ml RANKL for 2 days in the presence of 6 μM EFL1, it was confirmed that the mRNA of NFATc1 and its target genes CK, MMP9 and TRAP genes are also significantly suppressed (FIG. 2C). .
<< 실험예Experimental Example 3>  3> EFL1에On EFL1 의한  by NFNF -- κBκB 및 c- And c- FOSFOS 조절 control
EFL1이 NFATc1의 upstream 조절자로 알려진 NF-κB 활성과 c-Fos 발현을 조절하는지 확인하기 위하여, IκBα와 p-IκBα에 대한 항체(rabbit polyclonal antibodies, Cell Signaling Technology)를 사용한 immunoblot으로 IκBα의 인산화 정도를 확인하였고, SOD2 및 c-FOS 단백질 발현도 항체(SOD2/rabbit polyclonal antibody, Upstate; c-FOS/rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc)를 이용한 immunoblot으로 확인하였으며, SOD2 및 c-Fos mRNA 발현을 상기 실험예 2에 기재된 방법으로 real-time PCR로 분석하였다(표 1 primer 서열 참조). To determine whether EFL1 modulates NF-κB activity and c-Fos expression, known as upstream regulators of NFATc1, immunoblot using IκBα and p-IκBα (rabbit polyclonal antibodies, Cell Signaling Technology) was used to determine the degree of phosphorylation of IκBα. SOD2 and c-FOS protein expression was also confirmed by immunoblot using antibodies (SOD2 / rabbit polyclonal antibody, Upstate; c-FOS / rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc), and SOD2 and c-Fos mRNA expression was confirmed. It was analyzed by real-time PCR by the method described in Experimental Example 2 (see Table 1 primer sequence).
그 결과, EFL1(6 μM)은 RANKL(50 ng/ml)의 존재 하에서 IκBα의 인산화를 상당히 저해하였고(도 3의 A), NF-κB 타겟 유전자인 SOD2의 단백질 및 mRNA 발현도 유의적으로 억제하였다(도 3의 B 및 D). 또한 EFL1은 c-Fos의 단백질과 mRNA 발현도 유의적으로 억제하는 것을 확인하였다(도 3의 C 및 D).As a result, EFL1 (6 μM) significantly inhibited the phosphorylation of IκBα in the presence of RANKL (50 ng / ml) (FIG. 3A) and significantly inhibited protein and mRNA expression of SOD2, an NF-κB target gene. (B and D of FIG. 3). In addition, EFL1 significantly inhibited c-Fos protein and mRNA expression (Fig. 3 C and D).
<< 실험예Experimental Example 4>  4> EFL1에On EFL1 의한  by MAPKsMAPKs  And AKTAKT 활성 억제 Active inhibition
RANKL에 의해 활성화되는 MAPKs와 AKT에 대한 EFL1의 효과를 보기 위하여, 이들의 항체(phospho-JNK, phospho-ERK, phospho-p38, phospho-AKT에 대한 Rabbit polyclonal antibodies, AKT에 대한 rabbit monoclonal antibody, Cell Signaling Technology; JNK1, p38에 대한 Rabbit polyclonal antibodies, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc.)를 이용한 immunoblot으로 MAPKs와 AKT 단백질의 인산화 정도를 비교해본 결과, RANKL에 의한 MAPKs와 AKT의 인산화는 EFL1에 의해 영향을 받지 않음을 확인하였다(도 4).To see the effects of EFL1 on MAPKs and AKT activated by RANKL, rabbit polyclonal antibodies to phospho-JNK, phospho-ERK, phospho-p38, phospho-AKT, rabbit monoclonal antibody to AKT, Cell Signaling Technology: Comparison of the phosphorylation levels of MAPKs and AKT proteins by immunoblot using Rabbit polyclonal antibodies against ENK1, p38, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc. It was confirmed that it is not affected by (Fig. 4).
<< 실험예Experimental Example 5>  5> EFL1에On EFL1 의한  by PGCPGC -- 활성 억제 Active inhibition
PGC-1β는 RANKL에 의해 활성화되고 파골세포 분화과정에도 관여하는 것으로 잘 알려진 전사인자이다. EFL1의 PGC-1β 조절효과를 확인하기 위하여, real-time PCR을 통해 PGC-1 β와 그 타겟 유전자인 ND4, COX1 및 COX3의 mRNA 발현을 확인하였다(표 1 primer 서열 참조). PGC-1β is a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation. In order to confirm the PGC-1β regulatory effect of EFL1, mRNA expression of PGC-1β and its target genes ND4, COX1 and COX3 was confirmed by real-time PCR (see Table 1 primer sequence).
그 결과, EFL1(6 μM)은 RANKL(50 ng/ml)에 의한 PGC-1β, ND4, COX1 및 COX3 mRNA 발현을 상당히 억제하였다(도 5의 A). 또한, EFL1은 PGC-1β(rabbit polyclonal antibody, Abcam) 단백질의 발현도 저해하였으나, PGC-1β의 상위 전사인자인 CREB(phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz Biotechnology, Inc)의 인산화에는 영향을 주지 않았다(도 5의 B 및 C). As a result, EFL1 (6 μM) significantly inhibited PGC-1β, ND4, COX1 and COX3 mRNA expression by RANKL (50 ng / ml) (FIG. 5A). In addition, EFL1 also inhibited the expression of PGC-1β (rabbit polyclonal antibody, Abcam) protein, but CREB (phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz Biotechnology) , Inc) did not affect the phosphorylation (B and C of Figure 5).
<< 실험예Experimental Example 6>  6> EFL1에On EFL1 의한  by Nrf2Nrf2 활성화  Activation
레독스에 민감한 전사인자 Nrf2는 생체 내 환원제인 GSH의 합성효소와 항산화효소의 발현을 조절함으로써 파골세포의 분화에 관여한다고 알려져 있으므로, EFL1의 Nrf2 활성 조절을 통한 파골세포 분화 억제 효과를 알아보기 위하여, Nrf2, NQO1 및 Srx 유전자 발현을 real-time PCR을 통하여 확인하였고(표 1 primer 서열 참조), Nrf2의 타겟 단백질들인 NQO1, Srx, Prxl, PrxV, PrxVI, Trx1 및 TrxR1 (rabbit polyclonal antibodies, Young In Frontier)단백질 발현을 immunoblot을 통해 확인하였다. Redox-sensitive transcription factor Nrf2 is known to be involved in osteoclast differentiation by regulating the expression of GSH synthase and antioxidant enzymes in vivo, and to investigate the inhibitory effect of osteoclast differentiation by regulating Nrf2 activity of EFL1. , Nrf2, NQO1 and Srx gene expression was confirmed by real-time PCR (see Table 1 primer sequence), Nrf2 target proteins NQO1, Srx, Prxl, PrxV, PrxVI, Trx1 and TrxR1 (rabbit polyclonal antibodies, Young In Frontier) protein expression was confirmed by immunoblot.
그 결과, Nrf2와 그 타겟 유전자인 NQO1과 Srx의 mRNA 발현이 RANKL(50 ng/ml)의 존재 하에서 EFL1(6 μM)처리에 의해 증가하였다(도 6의 A). 또한 Nrf2와 그의 타겟 단백질인 NQO1, Srx, Prxl, PrxV, PrxVI, Trx1 및 TrxR1 항산화 효소들도 발현이 증가하는 것을 확인하였다(도 6의 B).As a result, mRNA expression of Nrf2 and its target genes NQO1 and Srx was increased by EFL1 (6 μM) treatment in the presence of RANKL (50 ng / ml) (FIG. 6A). In addition, Nrf2 and its target proteins NQO1, Srx, Prxl, PrxV, PrxVI, Trx1 and TrxR1 antioxidant enzymes were also confirmed to increase the expression (Fig. 6B).
또한, RANKL에 의한 파골세포의 분화에서 활성산소가 생성되며 분화과정에도 관여한다는 것이 잘 알려져 있고, EFL1가 Nrf2를 활성화시켜 항산화 효소를 비롯한 Nrf2 타겟 단백질의 발현이 증가되었다면 이들 항산화효소에 의해 RANKL에 의해 생성되는 활성산소가 제거될 수도 있으므로 이러한 가능성을 확인해보기 위하여, EFL1 존재 하에서 RANKL을 2일 동안 처리하고 활성산소(Reactive oxygen species; ROS)를 측정하였다.In addition, it is well known that free radicals are produced and involved in the differentiation process of osteoclasts by RANKL. If EFL1 activates Nrf2 and the expression of Nrf2 target proteins including antioxidant enzymes is increased, these antioxidant enzymes may be involved in RANKL. In order to confirm this possibility, the active oxygen generated by the reaction may be removed, and RANKL was treated for 2 days in the presence of EFL1, and reactive oxygen species (ROS) were measured.
ROS의 측정은 CM-H2DCFDA를 사용한 산화제 민감 형광 탐지 방식으로 진행하였다. CM-H2DCFDA는 ROS와 반응하여 형광을 내므로, 세포를 RANKL로 처리 후 HBSS로 워싱한 뒤, 5 μM의 CM-H2DCFDA를 어두운 곳에서 10분간 처리하고 FACS Calibur flow cytometer (BD Biosciences)를 사용하여 분석하였다.ROS was measured by oxidant sensitive fluorescence detection using CM-H2DCFDA. Since CM-H2DCFDA reacts with ROS and fluoresces, cells are treated with RANKL, washed with HBSS, and then treated with 5 μM of CM-H2DCFDA for 10 minutes in the dark, using a FACS Calibur flow cytometer (BD Biosciences). Analyzed.
그 결과, EFL1의 존재 하에서 세포 내 활성산소가 유의적으로 감소하는 것을 확인하였다(도 6의 A, 좌측 아래). As a result, it was confirmed that free radicals in the cells were significantly reduced in the presence of EFL1 (FIG. 6A, lower left).
또한, EFL1이 항산화제로써 직접 활성산소를 제거할 수 있는 가능성을 확인해보기 위해 EFL1 (6 μM)를 30분간 전 처리하고 RANKL (도 6의 A, 중간 아래) 혹은 H2O2 (도 6의 A, 우측 아래)를 15분간 처리한 후 상기와 같이 CM-H2DCFDA를 사용하여 활성산소를 측정하였다.In addition, EFL1 (6 μM) was pretreated for 30 minutes and RANKL (A in FIG. 6, bottom) or H 2 O 2 (FIG. A, lower right) was treated for 15 minutes, and then active oxygen was measured using CM-H2DCFDA as described above.
그 결과, EFL1에 의해 세포 내 활성산소가 감소하는 것을 확인하였다(도 6의 A, 중간 및 우측 아래). EFL1이 Nrf2 활성화에 의한 항산화효소의 발현이 일어나기 전 짧은 시간 동안만 전처리 되었으므로, 이 결과는 EFL1에 의해 활성산소가 직접 제거될 수 있음을 의미한다.As a result, it was confirmed that free radicals in cells were reduced by EFL1 (A, middle and lower right in FIG. 6). Since EFL1 was pretreated only for a short time before the expression of antioxidant enzymes by Nrf2 activation, this result indicates that free radicals can be directly removed by EFL1.
<< 실험예Experimental Example 7>  7> EFL1에On EFL1 의한 파골세포의 골 흡수 억제 Inhibition of bone resorption by osteoclasts
EFL1의 파골세포의 분화억제 작용시점을 알아보기 위하여, RANKL을 처리하여 BMM 세포를 파골세포로 분화시키는 동안, 여러 시점 (E0, RANKL 처리시; E1, RANKL 1일 처리 후; E2, RANKL 2일 처리 후)에서 EFL1에 노출시키고 TRAP 염색된 다핵의 파골세포의 수를 분석하였다.In order to investigate the differentiation inhibitory effect of EFL1 osteoclasts, different time points (E0, RANKL treatment; E1, RANKL 1 day treatment; E2, RANKL 2 days) during RANKL treatment to differentiate BMM cells into osteoclasts Post-treatment) was exposed to EFL1 and analyzed for the number of TRAP stained multinucleated osteoclasts.
그 결과, EFL1(6 μM)을 RANKL(50 ng/ml)과 함께 처리하였을 때(E0)와 마찬가지로 2일 후 EFL1을 처리하였을 때(E2)에도 파골세포의 형성을 현저히 억제하였다(도 7의 A). 동일한 실험조건에서 NFATc1과 그 타겟 유전자들인 CK, MMP9, TRAP의 발현 또한 real-time PCR을 통해 측정해 본 결과(표 1 primer 서열 참조), RANKL을 처리하고 2일 후에 처리된 EFL1에 의해서 RANKL과 함께 처리 되었을 때와 마찬가지로 유의적으로 억제 되었다(도 7의 B). 그리고 PGC-1β와 그 타겟 유전자인 ND4, COX1, COX3, Cyt b의 발현 또한 RANKL을 처리하고 2일 후에 노출된 EFL1에 의해서 유의적으로 억제 되는 것을 확인하였다(도 7의 C). As a result, when EFL1 (6 μM) was treated with RANKL (50 ng / ml) (E0), the formation of osteoclasts was significantly inhibited even when EFL1 was treated (E2) 2 days later (Fig. 7). A). Expression of NFATc1 and its target genes CK, MMP9, and TRAP under the same experimental conditions was also measured by real-time PCR (see Table 1 primer sequence). After 2 days of treatment with RANKL, RANKL and It was significantly inhibited as when treated together (FIG. 7B). And it was confirmed that the expression of PGC-1β and its target genes ND4, COX1, COX3, Cyt b was also significantly inhibited by EFL1 exposed 2 days after treatment with RANKL (Fig. 7 C).
또한, 유사한 실험조건에서 EFL1이 액틴 링(acting ring)의 형성과 골 흡수에 미치는 영향을 보기 위하여, BMM 세포에 3일 동안 RANKL을 처리하여 파골세포로 분화시킨 후 EFL1을 처리한 세포와, EFL1을 RANKL과 함께 처리한 세포를 다음과 같이 고정하고 액틴링과 핵을 염색하거나 dentine disc에서 골 흡수 정도를 분석하였다. 3.7 % formaldehyde가 첨가된 PBS에서 세포를 고정하여 0.1 % Triton X-100 처리를 한 뒤, Alexa Fluor 488-phalloidin(Invitrogen)을 20 분간 처리하고, 다시 DAPI(4', 6-diamidino-2-phenylindole, Roche)로 염색하여 형광 현미경을 통해 관찰하였다. 또한 골 흡수 정도는 dentine disc(Immunodiagnostic Systems Ltd)에 배양된 BMM 세포들을 상기와 같은 조건으로 처리 후, cotton tip을 사용하여 세포들을 제거한 뒤 재흡수 구멍(resorption pit)을 hematoxylin으로 염색하여 현미경 100배율로 촬영한 사진을 Image-Pro Plus 4.5 software (Media Cybernetics)로 분석하였다.In addition, in order to see the effect of EFL1 on the formation of acting ring and bone resorption under similar experimental conditions, BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, and then treated with EFL1, and EFL1 The cells treated with RANKL were fixed as follows and stained with actining and nuclei or analyzed for bone resorption on dentine discs. The cells were fixed in PBS with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by Alexa Fluor 488-phalloidin (Invitrogen) for 20 minutes, followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope. In addition, the degree of bone resorption was treated with BMM cells cultured in dentine disc (Immunodiagnostic Systems Ltd) under the same conditions as above, followed by removal of the cells using a cotton tip, staining the resorption pit with hematoxylin, and then using a microscope 100x magnification. The photographs taken were analyzed with Image-Pro Plus 4.5 software (Media Cybernetics).
그 결과, EFL1이 처리시점에 상관없이 두 경우 모두 액틴 링(acting ring)의 형성과 dentine disc에서 파골세포에 의한 골 흡수를 완전히 억제하는 것을 확인하였다(도 8의 A, B 및 C). 이러한 결과는 EFL1이 파골세포의 형성과 골 흡수 기능을 저해할 수 있음을 보여준다. As a result, it was confirmed that EFL1 completely inhibited the formation of acting rings and bone resorption by osteoclasts in the dentine disc in both cases (A, B and C of FIG. 8). These results show that EFL1 can inhibit osteoclast formation and bone resorption.
<< 실험예Experimental Example 8>  8> EFL1에On EFL1 의한 파골세포의 사멸 Death of osteoclasts
BMM 세포를 파골세포로 분화시킨 후 처리한 EFL1에 의해 파골세포와 액틴 링의 형성 및 골 흡수 등이 억제된 것이 EFL1이 분화된 파골세포의 사멸을 유도하여 기인된 것인지를 알아보기 위하여, 분화된 파골세포에 EFL1(6 μM)을 처리하고 시간(0, 6, 12, 18h)에 따른 세포의 모양 변화를 현미경을 통해 관찰하였다. The differentiation of BMM cells into osteoclasts and the inhibition of osteoclasts, actin ring formation, and bone resorption by EFL1 after treatment induced differentiation of osteoclasts differentiated from EFL1. The osteoclasts were treated with EFL1 (6 μM) and the shape change of cells with time (0, 6, 12, 18h) was observed through a microscope.
그 결과, vehicle만 처리한 파골세포는 세포들이 융합하여 더욱 커진 반면 EFL1을 처리한 파골세포는 시간이 지남에 따라 세포의 윤곽이 사라졌다(도 9의 A). 또한 WST-1 assay를 통해 세포성장을 측정해 본 결과, EFL1이 세포의 성장을 저해하는 것을 확인하였다(도 9의 B). 이러한 결과는 상기 실험예 1에서 보였듯, EFL1이 BMM 세포의 성장에는 영향을 주지 않으나 분화된 파골세포의 성장을 저해한다는 것을 보여준다. As a result, the osteoclasts treated only with the vehicle became larger due to the fusion of the cells, whereas the osteoclasts treated with the EFL1 disappeared over time (Fig. 9A). In addition, as a result of measuring cell growth through the WST-1 assay, it was confirmed that EFL1 inhibits the growth of cells (B of FIG. 9). These results show that EFL1 does not affect the growth of BMM cells but inhibits the growth of differentiated osteoclasts as shown in Experimental Example 1.
또한, 같은 조건에서 분화된 파골세포의 사멸을 유도하는지를 확인하기 위해, 다음과 같이 파골세포를 고정한 후 DAPI 염색 및 TUNEL assay를 수행하였다: 파골세포를 4% formaldehyde로 상온 60분간 고정하고 PBS로 워싱한 뒤, In Situ Cell Death Detection Kit TMR red (Roche)를 사용하여 세포사멸이 일어난 세포를 염색하고, 상온에서 3분동안 DAPI로 핵을 염색한 뒤 형광현미경으로 관찰하였다. 그 결과, EFL1이 분화된 파골세포의 사멸을 유도하는 것을 확인하였다(도 9의 C 및 D).In addition, to confirm the induction of differentiated osteoclasts under the same conditions, the osteoclasts were fixed as follows, followed by DAPI staining and TUNEL assay: The osteoclasts were fixed with 4% formaldehyde for 60 minutes at room temperature and washed with PBS. After staining the cells in which apoptosis occurred using In Situ Cell Death Detection Kit TMR red (Roche), the cells were stained with DAPI for 3 minutes at room temperature, and observed with a fluorescence microscope. As a result, it was confirmed that EFL1 induces the death of differentiated osteoclasts (C and D of FIG. 9).
<< 실험예Experimental Example 9>  9> EFL1의Of EFL1 염증에 의한 골 손상 억제 Suppress bone damage caused by inflammation
EFL1의 염증에 의해 유발되는 골 손상 억제효능을 동물모델에서 확인하기 위해, 마우스 두개골에 염증유도물질인 LPS(Lipopolysaccharide, 12.5 mg/kg body weight)를 하루 간격을 두고 2회 주입하였다. 이 때 Vehicle (40% DMAC + 10% Tween 80 + 50% distilled water) 또는 EFL1 (10mg/kg)이 함께 투여되었고, 첫 주입 5일 후에 두개골을 4% paraformaldehyde로 고정하고 PBS 워싱하였다. 또한 0.5 M ethylenediaminetetraacetic acid로 7일간 석회질을 제거하고, 파라핀 블락을 만든 후 절단하여 TRAP과 Hematoxylin으로 염색한 뒤 관찰하였다.In order to confirm the inhibitory effect of bone damage caused by inflammation of EFL1 in an animal model, LPS (Lipopolysaccharide, 12.5 mg / kg body weight), an inflammatory inducer, was injected into the mouse skull twice daily at intervals. At this time, vehicle (40% DMAC + 10% Tween 80 + 50% distilled water) or EFL1 (10 mg / kg) was administered together, and 5 days after the first injection, the skull was fixed with 4% paraformaldehyde and PBS washed. In addition, decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin block was made and then cut and stained with TRAP and Hematoxylin.
그 결과, LPS만 처리한 두개골에서는 TRAP 염색된 부분이 많았으나, EFL1를 함께 처리한 두개골에서는 TRAP 염색된 부분이 현저히 감소된 것을 확인하였다(도 10의 A). 또한 이를 정량적으로 분석한 결과, LPS 처리에 의해 증가된 bone cavity와 파골세포의 수가 EFL1에 의해 상당히 감소되는 것을 확인하였다(도 10의 B).As a result, there were many TRAP stained parts in the skull treated only with LPS, but the TRAP stained part was significantly reduced in the skull treated with EFL1 (FIG. 10A). In addition, as a result of quantitative analysis, it was confirmed that the number of bone cavity and osteoclasts increased by LPS treatment was significantly reduced by EFL1 (FIG. 10B).
Ⅱ. II. SFSF Ⅱ의 효능 확인Confirmation of efficacy of Ⅱ
<< 실험예Experimental Example 10>  10> SFSF Ⅱ의 파골세포 분화 억제Suppression of osteoclast differentiation of Ⅱ
본 발명이 유효성분으로 함유하는 스컬캅플라본 Ⅱ(이하 SFⅡ)는 ChemFaces사의 CFN92216/55084-08-7 제품을 사용하여 실험에 사용하였다. Skullcapflavone II (hereinafter referred to as SFII) containing the present invention as an active ingredient was used in an experiment using CFN92216 / 55084-08-7 manufactured by ChemFaces.
우선, SFⅡ의 파골세포 분화 억제 효과를 확인하기 위하여, 본 발명자들은 BMM(Bone Marrow-Derived Macrophages) 세포를 대상으로 하여 실험을 수행하였다. BMM 세포는 파골세포(osteoclast)로 분화 할 수 있는 precursor cell로써, 본 실험에서는 8주령 C57BL/6 수컷 마우스의 대퇴골과 경골의 골수(Bone marrow)에서 추출한 세포를 사용하였다.First, in order to confirm the osteoclast differentiation inhibitory effect of SFII, the present inventors performed experiments on BMM (Bone Marrow-Derived Macrophages) cells. BMM cells are precursor cells capable of differentiating into osteoclasts. In this experiment, cells extracted from femur and tibia bone marrow of 8-week-old C57BL / 6 male mice were used.
다양한 농도(0, 1, 2, 3 μM)의 SFⅡ 존재 하에서 BMM(Bone Marrow-Derived Macrophages) 세포에 25 ng/ml의 M-CSF(대식세포콜로니자극인자)와 50 ng/ml의 RANKL을 3일 동안 처리하여 파골세포로 분화시키고 PBS 워싱처리 후 4% paraformaldehyde로 고정한 뒤 leukocyte acid phosphatase cytochemistry kit (SigmaAldrich)를 사용하여 TRAP 염색한 후, TRAP 염색된 3개 이상의 다핵을 가진 파골세포의 수를 현미경으로 분석하였다. Bone Marrow-Derived Macrophages (BMM) cells were treated with 25 ng / ml M-CSF (macrophage colony stimulating factor) and 50 ng / ml RANKL in the presence of SFII at various concentrations (0, 1, 2, 3 μM). After treatment for 1 day, differentiated into osteoclasts, fixed with 4% paraformaldehyde after PBS wash, followed by TRAP staining using leukocyte acid phosphatase cytochemistry kit (SigmaAldrich), followed by TRAP staining. Analyzed.
그 결과, 2 μM의 SFⅡ에서부터 파골세포 분화가 효과적으로 억제되었다(도 11의 A 및 B). As a result, osteoclast differentiation was effectively suppressed from SFII of 2 μM (FIGS. 11A and 11B).
또한, SFⅡ의 파골세포 분화 억제효과가 세포독성에 의한 것임을 배제하기 위하여, EASY Cytox (WST-1) assay kit로 세포독성을 분석하였다. BMM 세포를 각각 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium mono- sodium salt (WST-1) reagent (Roche Applied Science)를 10 μl씩 넣어주고 37 ℃에서 2 - 4시간 배양한 뒤, 450nm에서의 흡광도를 측정하였다.In addition, cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit in order to exclude that the osteoclast differentiation inhibitory effect of SFII is due to cytotoxicity. BMM cells were prepared using 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium mono-sodium salt (WST-1) reagent (Roche Applied Science), respectively. μl was added and incubated at 37 ° C. for 2-4 hours, and the absorbance at 450 nm was measured.
그 결과, 3 μM 농도 까지 SFⅡ에 의한 세포독성이 나타나지 않는 것을 확인하였다(도 11의 C). 또한, BMM 세포를 2 μM SFⅡ의 존재 하에 RANKL을 3 에서 5일 동안 처리하여 분화시킨 경우에도 파골세포 분화가 유의적으로 억제되었으며(도 11의 D 및 E), 5일까지 세포독성이 나타나지 않는 것을 확인하였다(도 11의 F). 이는 SFⅡ의 파골세포 분화 억제효과가 세포사멸에 의한 것이 아님을 보여준다.As a result, it was confirmed that cytotoxicity by SFII did not appear up to a concentration of 3 μM (FIG. 11C). In addition, osteoclast differentiation was significantly inhibited even when BMM cells were differentiated by treatment with RANKL for 3 to 5 days in the presence of 2 μM SFII (D and E in FIG. 11), and no cytotoxicity was observed until day 5 It was confirmed (FIG. 11F). This shows that the osteoclast differentiation inhibitory effect of SFII is not due to apoptosis.
<< 실험예Experimental Example 11>  11> SFSF Ⅱ에 의한 By Ⅱ NFATc1NFATc1 활성화 억제 Activation Suppression
SFⅡ의 파골세포 분화 억제 효과를 확인하기 위하여, 다양한 농도(0, 1, 2, 3 μM)의 SFⅡ 존재 하에서 BMM 세포에 2일 동안 50 ng/ml 의 RANKL을 처리하여 파골세포로 분화시키고, 파골세포의 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질의 발현을 확인하기 위해 NFATc1에 대한 항체를 사용한 immunoblot을 수행하였다. In order to confirm the inhibitory effect of SFII on osteoclast differentiation, BMM cells were treated with 50 ng / ml of RANKL for 2 days in the presence of SFII at various concentrations (0, 1, 2, 3 μM), and differentiated into osteoclasts. In order to confirm the expression of NFATc1 protein, the most important transcription factor in cell differentiation, immunoblot using an antibody against NFATc1 was performed.
10% polyacrylamide gel을 이용하여 단백질을 분리하고, 분리된 단백질을 nitrocellulose membranes에 옮겨주었다. TBST(0.05% Tween-20 in Tris-buffered saline, pH 7.4)에 녹인 5% 탈지유를 이용하여 막에 있는 비특이적 결합부위를 모두 블로킹하였다. 일차항체(mouse monoclonal antibodies, Santa Cruz Biotechnology Inc)를 14시간 동안 4℃에서 처리한 후 이차항체를 1시간 동안 상온에서 처리하여 West save Up (Ab Frontier)으로 분석하였다.Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
그 결과 NFATc1 단백질은 2 μM SFⅡ 농도에서부터 상당히 억제되었으며(도 2의 A), 5일까지 억제효과가 지속되는 것을 확인하였다(도 12의 B).As a result, it was confirmed that NFATc1 protein was significantly suppressed from 2 μM SFII concentration (FIG. 2A), and the inhibitory effect was continued until 5 days (FIG. 12B).
또한, NFATc1의 타겟 유전자인 CK, MMP9 및 TRAP 유전자 그리고 칼시토닌 리셉터 유전자인 CR 및 파골세포 융합과 관련되어 있는 DC-STAMP 유전자의 mRNA 발현 변화를 real time-PCR로 확인하였다. In addition, mRNA expression changes of DC-STAMP genes associated with CK, MMP9 and TRAP genes, which are target genes of NFATc1, and CR and osteoclasts, which are calcitonin receptor genes, were confirmed by real time-PCR.
real time-PCR을 위해, Trizol reagent(Invitrogen)을 사용하여 총 RNA를 추출하여 260 nm의 흡광도에서 정량분석하였으며, 총 RNA를 0.5 mg의 oligo(dT) primers를 포함, 총 15 ml가 되게하여 70℃에서 5분간 인큐베이션 한 후, 얼음에서 바로 식혀주었다. cDNA 처음 가닥은 M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units 및 각각의 dNTP 0.25 mM를 포함한 최종볼륨 25 μl에서 42℃에서 1시간, 70℃에서 10분간 합성하였다. 희석 cDNA template의 0.8 μl씩(1:2.5)을 2X SYBR Green PCR Master Mix(M Biotech) 10 μl, 각 gene-specific primer(제노텍) 10 μM 의 1 μl씩을 포함한 최종 20 μl 볼륨에서 ABI 7300 real time PCR System (Applied Biosystems)을 사용하여 증폭시켰으며, 증폭은 50℃에서 2분간, 95℃에서 2분간, 다음으로 95℃에서 15초간, 60℃에서 1분간 40 사이클을 수행하여 실험하였다. 실험에서 사용한 Primer의 서열은 하기 표 2와 같다.For real time-PCR, total RNA was extracted using Trizol reagent (Invitrogen) and quantified at absorbance at 260 nm. Total RNA was adjusted to 15 ml total containing 0.5 mg oligo (dT) primers. After 5 minutes incubation at ℃, it was cooled directly on ice. The first strand of cDNA was synthesized at 25 μl for 1 hour at 42 ° C. and 10 minutes at 70 ° C. at 25 μl of final volume containing M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units and 0.25 mM each of dNTP. ABI 7300 real at the final 20 μl volume containing 0.8 μl of the diluted cDNA template (1: 2.5) containing 10 μl of 2X SYBR Green PCR Master Mix (M Biotech) and 1 μl of 10 μM of each gene-specific primer (Genotech). Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C. The sequence of Primer used in the experiment is shown in Table 2 below.
real-time real-time PCRPCR primer의 서열 및  the sequence of the primer and ampliconamplicon 크기 size
GeneGene Primer(sense & antisense)Primer (sense & antisense) 서열번호SEQ ID NO: Amplicon length(bp)Amplicon length (bp)
1717 NFATc1 NFATc1 5'-CTTCAGCTGGAGGACACC-3'5'-CTTCAGCTGGAGGACACC-3 ' 3333 7979
5'-CCAATGAACAGCTGTAGCG-3'5'-CCAATGAACAGCTGTAGCG-3 ' 3434
1818 CK CK 5'-ACCACTGCCTTCCAATACG-3’5'-ACCACTGCCTTCCAATACG-3 ' 3535 9999
5’-CGTGGCGTTATACATACAAC-3’5’-CGTGGCGTTATACATACAAC-3 ’ 3636
1919 MMP9 MMP9 5’-AGACGACATAGACGGCATC-3’5’-AGACGACATAGACGGCATC-3 ’ 3737 9797
5’-TGCTGTCGGCTGTGGTTC-3’5’-TGCTGTCGGCTGTGGTTC-3 ’ 3838
2020 TRAP TRAP 5'-CCAGCGACAAGAGGTTCC-3'5'-CCAGCGACAAGAGGTTCC-3 ' 3939 113113
5'-AGAGACGTTGCCAAGGTGAT-3'5'-AGAGACGTTGCCAAGGTGAT-3 ' 4040
2121 SOD2 SOD2 5'-ATTAACGCGCAGATCATGCA-3'5'-ATTAACGCGCAGATCATGCA-3 ' 4141 161161
5'-TGTCCCCCACCATTGAACTT-3'5'-TGTCCCCCACCATTGAACTT-3 ' 4242
2222 COX2 COX2 5'-GATCATAAGCGAGGACCTG-3'5'-GATCATAAGCGAGGACCTG-3 ' 4343 8585
5'-GTCTGTCCAGAGTTTCACC-3'5'-GTCTGTCCAGAGTTTCACC-3 ' 4444
2323 c-Fos c-Fos 5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 4545 9797
5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 4646
2424 PGC-1βPGC-1β 5'-CTCCAGGCAGGTTCAACCC-3'5'-CTCCAGGCAGGTTCAACCC-3 ' 4747 8383
5'-GGGCCAGAAGTTCCCTTAGG-3'5'-GGGCCAGAAGTTCCCTTAGG-3 ' 4848
2525 ND4ND4 5'-CATCACTCCTATTCTGCCTAGCAA-3'5'-CATCACTCCTATTCTGCCTAGCAA-3 ' 4949 7474
5'-TCCTCGGGCCATGATTATAGTAC-3'5'-TCCTCGGGCCATGATTATAGTAC-3 ' 5050
2626 COX1COX1 5'-TTTTCAGGCTTCACCCTAGATGA-3'5'-TTTTCAGGCTTCACCCTAGATGA-3 ' 5151 8181
5'-GAAGAATGTTATGTTTACTCCTACGAATATG-3'5'-GAAGAATGTTATGTTTACTCCTACGAATATG-3 ' 5252
2727 COX3COX3 5'-CGGAAGTATTTTTCTTTGCAGGAT-3'5'-CGGAAGTATTTTTCTTTGCAGGAT-3 ' 5353 8282
5'-CAGCAGCCTCCTAGATCATGTG-3'5'-CAGCAGCCTCCTAGATCATGTG-3 ' 5454
2828 CytbCytb 5'-GCCACCTTGACCCGATTCT-3'5'-GCCACCTTGACCCGATTCT-3 ' 5555 6464
5'-TTGCTAGGGCCGCGATAAT-3'5'-TTGCTAGGGCCGCGATAAT-3 ' 5656
2929 Nrf2Nrf2 5'-TCTCCTCGCTGGAAAAAGAA-3'5'-TCTCCTCGCTGGAAAAAGAA-3 ' 5757 498498
5'-AATGTGCTGGCTGTGCTTTA-3'5'-AATGTGCTGGCTGTGCTTTA-3 ' 5858
3030 NQO1NQO1 5'-TTCTCTGGCCGATTCAGAG-3'5'-TTCTCTGGCCGATTCAGAG-3 ' 5959 180180
5'-GGCTGCTTGGAGCAAAATAG-3'5'-GGCTGCTTGGAGCAAAATAG-3 ' 6060
3131 SrxSrx 5'-AGCCTGGTGGACACGATC-3'5'-AGCCTGGTGGACACGATC-3 ' 6161 9797
5'-AGGAATAGTAGTAGTCGCCA-3'5'-AGGAATAGTAGTAGTCGCCA-3 ' 6262
3232 b-actinb-actin 5'-ACCCTAAGGCCAACCGTG-3'5'-ACCCTAAGGCCAACCGTG-3 ' 6363 8181
5'-GCCTGGATGGCTACGTAC-3'5'-GCCTGGATGGCTACGTAC-3 ' 6464
3333 CRCR 5'-TGATGACTCTCAGGACAATG-3'5'-TGATGACTCTCAGGACAATG-3 ' 6565 8787
5'-ACTGGATCAATCTGTAGGAG-3'5'-ACTGGATCAATCTGTAGGAG-3 ' 6666
3434 DC-STAMPDC-STAMP 5'-TTATGTGTTTCCACGAAGCCCTA-3'5'-TTATGTGTTTCCACGAAGCCCTA-3 ' 6767 141141
5'-ACAGAAGAGAGCAGGGCAACG-3'5'-ACAGAAGAGAGCAGGGCAACG-3 ' 6868
3535 CatalaseCatalase 5'-CTCGTTCAGGATGTGGTTTTC-3'5'-CTCGTTCAGGATGTGGTTTTC-3 ' 6969 145145
5'-CTTTCCCTTGGAGTATCTGGTG-3'5'-CTTTCCCTTGGAGTATCTGGTG-3 ' 7070
CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2
그 결과, 2 μM SFⅡ 존재 하에서 2일 동안 50 ng/ml RANKL을 처리하였을 때 NFATc1과 그 타겟 유전자인 CK, MMP9, TRAP과 함께, CR 및 DC-STAMP 유전자의 mRNA도 발현이 현저히 억제되는 것을 확인하였다(도 12의 C).As a result, when 50 ng / ml RANKL was treated for 2 days in the presence of 2 μM SFII, the expression of CR and DC-STAMP genes, together with NFATc1 and its target genes CK, MMP9 and TRAP, was also significantly suppressed. (C of FIG. 12).
<< 실험예Experimental Example 12>  12> SFSF Ⅱ에 의한 c-C-by II FOSFOS 조절 control
SFⅡ가 NFATc1의 upstream 조절자로 알려진 NF-κB 활성과 c-Fos 발현을 조절하는지 확인하기 위하여, IκBα와 p-IκBα에 대한 항체(rabbit polyclonal antibodies, Cell Signaling Technology)를 사용한 immunoblot으로 IκBα의 인산화 정도를 확인하였고, SOD2 및 c-FOS 단백질의 발현도 이들의 항체(SOD2/rabbit polyclonal antibody, Upstate; c-FOS/rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc)를 이용한 immunoblot으로 확인하였으며, SOD2 및 c-Fos mRNA의 발현을 상기 실험예 11에 기재된 방법으로 real-time PCR로 분석하였다(표 2 primer 서열 참조).To determine whether SFII regulates NF-κB activity and c-Fos expression, known as upstream regulators of NFATc1, immunoblot using IκBα and p-IκBα (rabbit polyclonal antibodies, Cell Signaling Technology) was used to determine the degree of phosphorylation of IκBα. Expression of SOD2 and c-FOS proteins was also confirmed by immunoblot using these antibodies (SOD2 / rabbit polyclonal antibody, Upstate; c-FOS / rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc), and SOD2 and c-Fos. Expression of mRNA was analyzed by real-time PCR by the method described in Experimental Example 11 (see Table 2 primer sequence).
그 결과, SFⅡ(2 μM)는 RANKL(50 ng/ml)의 존재 하에서 IκBα의 인산화에 별다른 영향을 주지 않았고(도 13의 A), NF-κB 타겟 유전자인 SOD2의 단백질 및 mRNA 발현에도 큰 영향을 주지 않았다(도 13의 B 및 D). 그러나 SFⅡ는 c-Fos의 단백질과 mRNA 발현을 유의적으로 억제하는 것을 확인하였다(도 13의 C 및 D).As a result, SFII (2 μM) did not significantly affect the phosphorylation of IκBα in the presence of RANKL (50 ng / ml) (FIG. 13A), and also greatly influenced the protein and mRNA expression of SOD2, an NF-κB target gene. Not given (B and D in FIG. 13). However, SFII was found to significantly inhibit the expression of c-Fos protein and mRNA (C and D of Figure 13).
<< 실험예Experimental Example 13>  13> SFSF Ⅱ에 의한 By Ⅱ MAPKsMAPKs  And AKTAKT 활성 억제 Active inhibition
RANKL에 의해 활성화되는 MAPKs와 AKT에 대한 SFⅡ의 효과를 보기 위하여, 이들의 항체(phospho-JNK, phospho-ERK, phospho-p38, phospho-Src, phospho-AKT, phospho-Foxo1, Src에 대한 Rabbit polyclonal antibodies, AKT, Foxo1 에 대한 rabbit monoclonal antibodies, Cell Signaling Technology; JNK1, p38 에 대한 Rabbit polyclonal antibodies, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc.)를 이용한 immunoblot으로 MAPKs와 AKT 관련 단백질의 인산화 정도를 비교해 보았다.To see the effect of SFII on MAPKs and AKT activated by RANKL, Rabbit polyclonal against their antibodies (phospho-JNK, phospho-ERK, phospho-p38, phospho-Src, phospho-AKT, phospho-Foxo1, Src) We compared the phosphorylation levels of MAPKs and AKT-related proteins by immunoblot using rabbit monoclonal antibodies against AKT, Foxo1, Cell Signaling Technology; Rabbit polyclonal antibodies against JNK1, p38, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc. saw.
그 결과, SFⅡ에 의해 MAPKs와 Src-AKT의 인산화가 모두 억제되는 것을 확인하였다(도 14의 A 및 B). 또한 AKT는 FOXO1를 인산화시켜 분해를 유도하고 핵으로의 이동을 저해하는 것으로 알려져 있으므로 추가적으로 SFⅡ가 FOXO1의 인산화에 주는 영향을 확인해 본 결과, FOXO1의 인산화를 억제하였음을 확인하였다(도 14의 B). SFⅡ는 AKT 활성을 저해하여 FOXO1의 인산화를 억제하였는데, 이에 따라 FOXO1의 분해도 저해됨을 확인하였다(도 14의 C). 그 결과 FOXO1의 전사활성이 증가되어 타겟 유전자인 catalase의 발현이 단백질과 mRNA 수준에서 모두 증가한 것을 immunoblot과 real-time PCR로 확인하였다(도 14의 C 및 D).As a result, it was confirmed that both phosphorylation of MAPKs and Src-AKT is inhibited by SFII (A and B in Fig. 14). In addition, AKT phosphorylates FOXO1, which induces degradation and inhibits migration to the nucleus, and further confirms the effect of SFII on phosphorylation of FOXO1. As a result, it was confirmed that the phosphorylation of FOXO1 was inhibited (FIG. 14B). . SFII inhibited the phosphorylation of FOXO1 by inhibiting AKT activity, thereby confirming that the degradation of FOXO1 was also inhibited (FIG. 14C). As a result, the transcriptional activity of FOXO1 was increased and the expression of catalase, a target gene, was increased at both protein and mRNA levels by immunoblot and real-time PCR (FIG. 14C and D).
<< 실험예Experimental Example 14>  14> SFSF Ⅱ에 의한 By Ⅱ CREBCREB -  - PGCPGC -- 활성 억제 Active inhibition
PGC-1β는 RANKL에 의해 활성화되고 파골세포 분화과정에도 관여하는 것으로 잘 알려진 전사인자이다. SFⅡ의 PGC-1β 조절효과를 확인하기 위하여, real-time PCR을 통해 PGC-1 β와 그 타겟 유전자인 ND4, COX1, COX3 및 Cyt b의 mRNA 발현을 확인하였다(표 2 primer 서열 참조). PGC-1β is a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation. In order to confirm the PGC-1β regulatory effect of SFII, mRNA expression of PGC-1β and its target genes ND4, COX1, COX3 and Cyt b was confirmed by real-time PCR (see Table 2 primer sequence).
그 결과, SFⅡ(2 μM)는 RANKL(50 ng/ml)에 의한 PGC-1β, ND4, COX1, COX3 및 Cyt b의 mRNA 발현을 상당히 억제하였다(도 15의 A). 또한, SFⅡ는 PGC-1β 단백질의 발현도 저해하였으며, PGC-1β(rabbit polyclonal antibody, Abcam)의 상위 전사인자인 CREB(phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz Biotechnology, Inc)의 인산화도 억제함을 확인하였다(도 15의 B 및 C). 이는 SFⅡ가 CREB - PGC-1β 경로를 저해함을 나타낸다.As a result, SFII (2 μM) significantly inhibited the mRNA expression of PGC-1β, ND4, COX1, COX3 and Cyt b by RANKL (50 ng / ml) (FIG. 15A). In addition, SFII also inhibited the expression of PGC-1β protein, CREB (phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz Biotechnology, a higher transcription factor of PGC-1β (rabbit polyclonal antibody, Abcam)) , Inc) also inhibited the phosphorylation (B and C of Figure 15). This indicates that SFII inhibits the CREB-PGC-1β pathway.
<< 실험예Experimental Example 15>  15> SFSF Ⅱ에 의한 By Ⅱ Nrf2Nrf2 활성화 및 활성산소 조절 Activation and free radical regulation
레독스에 민감한 전사인자 Nrf2는 생체 내 환원제인 GSH의 합성효소와 항산화효소의 발현을 조절함으로써 파골세포의 분화에 관여한다고 알려져 있으므로, SFⅡ의 Nrf2 활성 조절을 통한 파골세포 분화 억제 효과를 알아보기 위하여, Nrf2, NQO1 및 Srx 유전자 발현을 real-time PCR을 통해 확인하였고(표 2 primer 서열 참조), Nrf2 및 항산화효소를 비롯한 Nrf2의 타겟 단백질들인 NQO1, Srx, PrxⅠ, PrxⅡ, PrxⅢ, PrxⅣ, PrxV, PrxⅥ, Trx1, Trx2, TrxR1 및 TrxR2 (rabbit polyclonal antibodies, Young In Frontier)단백질 발현을 immunoblot과 real-time PCR을 통해 확인하였다. The redox-sensitive transcription factor Nrf2 is known to be involved in the differentiation of osteoclasts by regulating the expression of GSH synthase and antioxidant enzymes in vivo, and to investigate the inhibitory effect of osteoclast differentiation by regulating Nrf2 activity of SFII. , Nrf2, NQO1 and Srx gene expression was confirmed by real-time PCR (see Table 2 primer sequence), Nrf2 and other target proteins of Nrf2 including Nrf2 and antioxidant enzymes NQO1, Srx, PrxI, PrxII, PrxIII, PrxIV, PrxV, Expression of PrxVI, Trx1, Trx2, TrxR1 and TrxR2 (rabbit polyclonal antibodies, Young In Frontier) proteins was confirmed by immunoblot and real-time PCR.
그 결과, Nrf2와 그 타겟 유전자인 NQO1과 Srx의 mRNA 발현이 RANKL(50 ng/ml)의 존재 하에서 SFⅡ(2 μM)처리에 의해 증가하였다(도 16의 A). 또한 Nrf2와 항산화효소를 비롯한 그의 타겟 단백질인 NQO1, Srx, PrxⅠ, PrxⅡ, PrxⅢ, PrxⅣ, PrxV, PrxⅥ, Trx1, Trx2, TrxR1 및 TrxR2 들도 발현이 증가하는 것을 확인하였다(도 16의 B).As a result, mRNA expression of Nrf2 and its target genes NQO1 and Srx was increased by SFII (2 μM) treatment in the presence of RANKL (50 ng / ml) (FIG. 16A). In addition, Nrf2 and antioxidant enzymes, including NQO1, Srx, PrxI, PrxII, PrxIII, PrxIV, PrxV, PrxVI, Trx1, Trx2, TrxR1 and TrxR2 were also found to increase the expression (Fig. 16B).
또한, RANKL에 의한 파골세포의 분화에서 활성산소가 생성되며 분화과정에도 관여한다는 것이 잘 알려져 있고, SFⅡ가 Nrf2를 활성화시켜 항산화 효소를 비롯한 Nrf2 타겟 단백질의 발현이 증가되었다면 이들 항산화효소에 의해 RANKL에 의해 생성되는 활성산소가 제거될 수도 있으므로 이러한 가능성을 확인해보기 위하여, SFⅡ 존재 하에서 RANKL을 2일 동안 처리하고 활성산소(Reactive oxygen species; ROS)를 측정하였다.In addition, it is well known that free radicals are produced and involved in the differentiation process of osteoclasts by RANKL. SFII activates Nrf2 to increase the expression of Nrf2 target proteins including antioxidant enzymes. In order to confirm this possibility, the active oxygen generated by the reaction may be removed, and RANKL was treated for 2 days in the presence of SFII and the reactive oxygen species (ROS) were measured.
ROS의 측정은 CM-H2DCFDA를 사용한 산화제 민감 형광 탐지 방식으로 진행하였다. CM-H2DCFDA는 ROS와 반응하여 형광을 내므로, 세포를 RANKL로 처리 후 HBSS로 워싱한 뒤, 5 μM의 CM-H2DCFDA를 어두운 곳에서 10분간 처리하고 FACS Calibur flow cytometer (BD Biosciences)를 사용하여 분석하였다.ROS was measured by oxidant sensitive fluorescence detection using CM-H2DCFDA. Since CM-H2DCFDA reacts with ROS and fluoresces, cells are treated with RANKL, washed with HBSS, and then treated with 5 μM of CM-H2DCFDA for 10 minutes in the dark, using a FACS Calibur flow cytometer (BD Biosciences). Analyzed.
그 결과, SFⅡ의 존재 하에서 세포 내 활성산소가 유의적으로 감소하는 것을 확인하였다(도 16의 C 좌측). As a result, it was confirmed that the free radicals in the cell significantly decreased in the presence of SFII (C left side of Figure 16).
또한, SFⅡ가 항산화제로써 직접 활성산소를 제거할 수 있는 가능성을 확인해보기 위해 SFⅡ(2 μM)를 30분간 전 처리하고 RANKL (도 16의 C, 중) 혹은 H2O2 (도 16의 C, 우측)를 15분간 처리한 후 상기와 같이 CM-H2DCFDA를 사용하여 활성산소를 측정하였다.In addition, SFII (2 μM) was pretreated for 30 minutes and RANKL (C, M in Figure 16) or H 2 O 2 (C in Figure 16) to determine the possibility of SFII to remove the active oxygen directly as an antioxidant. , Right) was treated for 15 minutes and the active oxygen was measured using CM-H2DCFDA as described above.
그 결과, SFⅡ에 의해 세포 내 활성산소가 감소하는 것을 확인하였다(도 16의 C, 중간 및 우측). SFⅡ가 Nrf2 활성화에 의한 항산화효소의 발현이 일어나기 전 짧은 시간 동안만 전처리 되었으므로, 이 결과는 SFⅡ에 의해 활성산소가 직접 제거될 수도 있음을 의미한다.As a result, it was confirmed that the free radicals in the cells were reduced by SFII (C, middle and right in Fig. 16). Since SFII was pretreated only for a short time before the expression of antioxidant enzyme by Nrf2 activation, this result means that free radicals can be directly removed by SFII.
또한, caveolin-1이 Nrf2의 발현을 조절하며, 파골세포 분화의 촉진인자로도 알려져 있으므로, SFⅡ가 caveolin-1의 발현에 미치는 영향을 실험해본 결과, SFⅡ가 RANKL에 의한 caveolin-1(rabbit monoclonal antibody, Trnasduction Laboratories)의 발현증가를 억제하는 것을 확인하였다(도 16의 D). 이는 SFⅡ가 caveolin-1의 발현을 억제하여 Nrf2와의 결합이 감소됨으로써 Nrf2의 활성을 촉진시키고, 결과적으로 세포 내 활성산소를 낮추는 것을 나타낸다.In addition, since caveolin-1 regulates the expression of Nrf2 and is known as a facilitator of osteoclast differentiation, experiments with the effect of SFII on the expression of caveolin-1 showed that SFII is caveolin-1 (rabbit monoclonal) induced by RANKL. It was confirmed that the expression of antibody, Trnasduction Laboratories) is suppressed (FIG. 16D). This suggests that SFII inhibits the expression of caveolin-1, thereby reducing the binding of Nrf2, thereby promoting the activity of Nrf2 and consequently lowering free radicals in cells.
<< 실험예Experimental Example 16>  16> SFSF Ⅱ에 의한 파골세포의 골 흡수 억제Inhibition of Bone Resorption of Osteoclasts by Ⅱ
SFⅡ의 파골세포의 분화억제 작용시점을 알아보기 위하여, RANKL을 처리하여 BMM 세포를 파골세포로 분화시키는 동안, 여러 시점 (E0, RANKL 처리시; E1, RANKL 1일 처리 후; E2, RANKL 2일 처리 후)에서 SFⅡ에 노출시키고 TRAP 염색된 다핵의 파골세포의 수를 분석하였다.In order to investigate the differentiation inhibitory effect of SFII osteoclasts, during differentiation of BMM cells into osteoclasts by treatment of RANKL, various time points (E0, RANKL treatment; E1, RANKL after 1 day treatment; E2, RANKL 2 days) After treatment) was exposed to SFII and the number of TRAP stained multinucleated osteoclasts was analyzed.
그 결과, SFⅡ(2 μM)를 RANKL(50 ng/ml)과 함께 처리하였을 때(E0)에는 파골세포의 형성이 상당히 억제되었고, RANKL 1일 처리 후에 SFⅡ에 노출되었을 때(E1)에는 파골세포의 형성이 유의적으로 억제되었으며, 마찬가지로 2일 후에 노출되었을 때(E2)에는 10핵 이상의 파골세포 수에는 유의적인 차이를 보였으나 3핵 이상의 파골세포 수에는 거의 영향을 주지 않았다(도 17의 A). As a result, osteoclast formation was significantly inhibited when SFII (2 μM) was treated with RANKL (50 ng / ml) (E0), and osteoclasts when exposed to SFII after RANKL 1 day treatment (E1). Formation was significantly inhibited. Similarly, when exposed after 2 days (E2), there was a significant difference in the number of osteoclasts of 10 or more nuclei but little effect on the number of osteoclasts of 3 or more nuclei (FIG. 17A). ).
동일한 실험조건에서 NFATc1과 그 타겟 유전자인 CK, MMP9, TRAP, CR과 DC-STAMP의 발현 또한 real-time PCR을 통해 측정해 본 결과(표 2 primer 서열 참조), SFⅡ를 RANKL과 함께 처리하였을 때(E0)와 SFⅡ를 RANKL 1일 처리 후에 처리하였을 때(E1)는 모두 발현이 유의적으로 억제되었으나, RANKL을 처리하고 2일 후에 노출된 SFⅡ(E2)에 의해서는 DC-STAMP 유전자만 유의적으로 억제 되었다(도 17의 B).Expression of NFATc1 and its target genes CK, MMP9, TRAP, CR and DC-STAMP under the same experimental conditions were also measured by real-time PCR (see Table 2 primer sequence). When SFII was treated with RANKL When (E0) and SFII were treated after RANKL 1 day treatment (E1), both expression was significantly inhibited, but only DC-STAMP gene was significantly affected by SFII (E2) exposed 2 days after RANKL treatment. Was suppressed (B of FIG. 17).
또한 유사한 실험조건에서 SFⅡ가 액틴링(acting ring)의 형성과 골 흡수에 미치는 영향을 보기 위하여, BMM 세포에 3일 동안 RANKL을 처리하여 파골세포로 분화시킨 후 SFⅡ를 처리한 세포와, SFⅡ를 RANKL과 함께 처리한 세포를 다음과 같이 고정하고 액틴링과 핵을 염색하거나 dentine disc에서 골 흡수 정도를 분석하였다. 3.7 % formaldehyde가 첨가된 PBS에서 세포를 고정하여 0.1 % Triton X-100 처리를 한 뒤, Alexa Fluor 488-phalloidin(Invitrogen)을 20분간 처리하고, 다시 DAPI(4', 6-diamidino-2-phenylindole, Roche)로 염색하여 형광 현미경을 통해 관찰하였다. 또한 골 흡수 정도는 dentine disc(Immunodiagnostic Systems Ltd)에 배양된 세포들을 cotton tip을 사용하여 제거한 뒤 재흡수 구멍(resorption pit)을 hematoxylin으로 염색하여 현미경 100배율로 촬영한 사진을 Image-Pro Plus 4.5 software (Media Cybernetics)로 분석하였다.Also, in order to see the effect of SFII on the formation of acting ring and bone resorption under similar experimental conditions, BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, and then treated with SFII and SFII. The cells treated with RANKL were fixed as follows and stained with actining and nuclei or analyzed for bone resorption on dentine discs. The cells were fixed in PBS added with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by 20 minutes treatment with Alexa Fluor 488-phalloidin (Invitrogen), followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope. In addition, the degree of bone resorption was obtained by removing the cells cultured on dentine disc (Immunodiagnostic Systems Ltd) using cotton tip, and staining the resorption pit with hematoxylin. (Media Cybernetics).
그 결과, RANKL과 함께 처리하였을 때 SFⅡ는 액틴링의 형성과 dentine disc에서의 파골세포에 의한 골 흡수를 완전히 억제하였고, 3일 동안 RANKL을 처리하여 파골세포로 분화시킨 후 SFⅡ를 처리한 경우에는 액틴링의 크기가 감소되었고 골 흡수도 상당히 저해되는 것을 확인하였다(도 18의 A, B 및 C). 이러한 결과는 SFⅡ가 파골세포의 융합과 골 흡수 기능을 저해할 수 있음을 나타낸다. As a result, when treated with RANKL, SFII completely inhibited the formation of actin ring and bone resorption by osteoclasts in dentine disc, and when treated with SFNK after treatment with RANKL for 3 days, It was confirmed that the size of the actining was reduced and bone absorption was also significantly inhibited (A, B and C in FIG. 18). These results indicate that SFII may inhibit osteoclast fusion and bone resorption.
<< 실험예Experimental Example 17>  17> SFSF Ⅱ의 염증에 의한 골 손상 억제Inhibition of Bone Damage by Inflammation of Ⅱ
SFⅡ의 염증에 의해 유발되는 골 손상 억제효능을 동물모델에서 확인하기 위해, 마우스 두개골에 염증유도물질인 LPS(Lipopolysaccharide, 12.5 mg/kg body weight)를 하루 간격을 두고 2회 주입하였다. 이 때 Vehicle(10% DMAC + 10% Tween 80 + 80% distilled water) 또는 SFⅡ(2 mg/kg)가 함께 투여되었고, 첫 주입 5일 후에 두개골을 4% paraformaldehyde로 고정 후, PBS 워싱하여 TRAP 염색 후 관찰하였다. 또한 0.5 M ethylenediaminetetraacetic acid로 7일간 석회질을 제거하고, 파라핀 블록을 만든 후 절단하여 TRAP과 Hematoxilin으로 염색한 뒤 관찰하였다.In order to confirm the inhibitory effect of bone damage caused by the inflammation of SFII in animal models, the mouse skull was injected twice a day with an inflammatory inducer, LPS (Lipopolysaccharide, 12.5 mg / kg body weight). At this time, vehicle (10% DMAC + 10% Tween 80 + 80% distilled water) or SFII (2 mg / kg) was administered together, and after 5 days of the first injection, the skull was fixed with 4% paraformaldehyde, and then PBS washed to TRAP stain Then observed. In addition, decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin blocks were made and then cut and stained with TRAP and Hematoxilin.
그 결과, LPS만 처리한 두개골에서는 TRAP 염색된 부분이 많았으나, SFⅡ를 함께 처리한 두개골에서는 TRAP 염색된 부분이 현저히 감소된 것을 확인하였다(도 19의 A). 또한 석회질 제거 후 분할된 두개골을 TRAP 염색하여 분석한 결과, LPS 처리에 의해 증가된 bone cavity와 파골세포의 수가 SFⅡ에 의해 상당히 감소되는 것을 확인하였다(도 19의 B 및 C).As a result, there were many TRAP stained parts in the skull treated only with LPS, but the TRAP stained part was significantly reduced in the skull treated with SFII (FIG. 19A). In addition, as a result of analysis by TRAP staining of the divided skull after descaling, it was confirmed that the number of bone cavity and osteoclasts increased by LPS treatment was significantly reduced by SFII (Figs. 19B and C).
Ⅲ. III. 디하이드로코스투스Dehydrocostus 락톤의 효능 확인 Identify the efficacy of lactones
<< 실험예Experimental Example 18>  18> 디하이드로코스투스Dehydrocostus 락톤의 파골세포 분화 억제 Inhibiting osteoclast differentiation of lactones
본 발명이 유효성분으로 함유하는 디하이드로코스투스 락톤(dehydrocostus lactone, 이하 DHCL)은 ChemFaces사의 CFN98720/447-43-0 제품을 사용하여 실험에 사용하였다. Dehydrocostus lactone (hereinafter referred to as DHCL) contained in the present invention as an active ingredient was used in an experiment using CFN98720 / 447-43-0 manufactured by ChemFaces.
우선 본 발명자들은 DHCL의 파골세포 분화 억제 효과를 확인하기 위하여, BMM(Bone Marrow-Derived Macrophages) 세포를 대상으로 하여 실험을 수행하였다. First, the inventors conducted experiments on BMM (Bone Marrow-Derived Macrophages) cells in order to confirm the inhibitory effect of DHCL osteoclast differentiation.
BMM 세포는 파골세포(osteoclast)로 분화 할 수 있는 precursor cell로써, 본 실험에서는 8주령 C57BL/6 수컷 마우스의 대퇴골과 경골의 골수(Bone marrow)에서 추출한 세포를 사용하였다.BMM cells are precursor cells capable of differentiating into osteoclasts. In this experiment, cells extracted from femur and tibia bone marrow of 8-week-old C57BL / 6 male mice were used.
다양한 농도(0, 0.5, 1, 1.5 μM)의 DHCL 존재 하에서 BMM(Bone Marrow-Derived Macrophages) 세포에 25 ng/ml의 M-CSF(대식세포콜로니자극인자)와 50 ng/ml의 RANKL을 4일, 5일 동안 처리하여 파골세포로 분화시키고 PBS 워싱처리 후 4% paraformaldehyde로 고정한 뒤 leukocyte acid phosphatase cytochemistry kit (SigmaAldrich)를 사용하여 TRAP 염색한 후, TRAP 염색된 3개 이상의 다핵을 가진 파골세포의 수를 현미경으로 분석하였다. Bone Marrow-Derived Macrophages (BMM) cells were treated with 25 ng / ml M-CSF (macrophage colony stimulatory factor) and 50 ng / ml RANKL in the presence of various concentrations (0, 0.5, 1, 1.5 μM) of DHCL. After treatment for 1, 5 days to differentiate into osteoclasts, fixed with 4% paraformaldehyde after PBS washing, and then TRAP stained using leukocyte acid phosphatase cytochemistry kit (SigmaAldrich), followed by TRAP staining of osteoclasts with three or more multinucleated cells. The numbers were analyzed under a microscope.
그 결과, RANKL을 4일동안 처리하여 파골세포로 분화 시켰을 때 0.5 μM의 DHCL에서부터 파골세포 분화가 유의적으로 억제되었으며(도 20의 A 및 B), 5일동안 처리하였을 때 역시 0.5μM의 DHCL에서부터 파골세포 분화가 유의적으로 억제되었다(도 20의 D 및 E).As a result, when RANKL was treated for 4 days to differentiate into osteoclasts, osteoclast differentiation was significantly inhibited from 0.5 μM of DHCL (A and B in FIG. 20), and 0.5 μM of DHCL was also treated when treated for 5 days. Osteoclast differentiation was significantly inhibited (D and E in FIG. 20).
또한, DHCL의 파골세포 분화 억제효과가 세포독성에 의한 것임을 배제하기 위하여, EASY Cytox (WST-1) assay kit로 세포독성을 분석하였다. BMM 세포를 각각 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt(WST-1) reagent (Roche Applied Science)를 10 μl씩 넣어주고 37 ℃에서 2 - 4시간 배양한 뒤, 450nm에서의 흡광도를 측정하였다.In addition, cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit to exclude that the osteoclast differentiation inhibitory effect of DHCL is due to cytotoxicity. 10 μl of 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium monosodium salt (WST-1) reagent (Roche Applied Science) After incubation at 37 ° C. for 2-4 hours, absorbance at 450 nm was measured.
그 결과, 다양한 농도의 DHCL(0, 0.5, 1, 1.5 μM)을 4일, 5일동안 처리하였을 때 1.5 μM 농도 까지 DHCL에 의한 세포독성이 나타나지 않는 것을 확인하였다(도 20의 C 및 F). 이는 DHCL의 파골세포 분화 억제효과가 세포사멸에 의한 것이 아님을 보여준다.As a result, when treated with various concentrations of DHCL (0, 0.5, 1, 1.5 μM) for 4 days, 5 days, it was confirmed that no cytotoxicity by DHCL up to 1.5 μM concentration (Fig. 20 C and F) . This shows that the inhibition of osteoclast differentiation of DHCL is not due to apoptosis.
<< 실험예Experimental Example 19>  19> DHCL에On DHCL 의한  by NFATc1NFATc1 활성화 억제 Activation Suppression
DHCL의 파골세포 분화 억제 효과를 확인하기 위하여, 다양한 농도(0, 0.5, 1, 1.5 μM)의 DHCL 존재 하에서 BMM 세포에 2일 동안 50 ng/ml 의 RANKL을 처리하여 파골세포로 분화시키고, 파골세포의 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질의 발현을 확인하기 위해 NFATc1에 대한 항체를 사용한 immunoblot을 수행하였다. To confirm the inhibitory effect of DHCL on osteoclast differentiation, BMM cells were treated with 50 ng / ml RANKL for 2 days in the presence of various concentrations (0, 0.5, 1, 1.5 μM) of DHCL to differentiate into osteoclasts, and osteoclasts. In order to confirm the expression of NFATc1 protein, the most important transcription factor in cell differentiation, immunoblot using an antibody against NFATc1 was performed.
10% polyacrylamide gel을 이용하여 단백질을 분리하고, 분리된 단백질을 nitrocellulose membranes에 옮겨주었다. TBST(0.05% Tween-20 in Tris-buffered saline, pH 7.4)에 녹인 5% 탈지유를 이용하여 막에 있는 비특이적 결합부위를 모두 블로킹하였다. 일차항체(mouse monoclonal antibodies, Santa Cruz Biotechnology Inc)를 14시간 동안 4℃에서 처리한 후 이차항체를 1시간 동안 상온에서 처리하여 West save Up (Ab Frontier)으로 분석하였다.Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
그 결과 NFATc1 단백질은 1 μM DHCL농도에서부터 상당히 억제되었으며(도 21의 A), 4일까지 억제효과가 지속되는 것을 확인하였다(도 21의 B). As a result, it was confirmed that NFATc1 protein was significantly suppressed from 1 μM DHCL concentration (FIG. 21A), and the inhibitory effect was continued up to 4 days (FIG. 21B).
또한, NFATc1의 타겟 유전자인 CK, MMP9 및 TRAP 유전자 그리고 칼시토닌 리셉터 유전자인 CR 및 파골세포 융합과 관련되어 있는 DC-STAMP 유전자의 mRNA 발현 변화를 real time-PCR로 확인하였다. In addition, mRNA expression changes of DC-STAMP genes associated with CK, MMP9 and TRAP genes, which are target genes of NFATc1, and CR and osteoclasts, which are calcitonin receptor genes, were confirmed by real time-PCR.
real time-PCR을 위해, Trizol reagent (Invitrogen)을 사용하여 총 RNA를 추출하여 260 nm의 흡광도에서 정량 분석하였으며, 총 RNA를 0.5 mg의 oligo(dT) primers를 포함, 총 15 ml가 되게하여 70℃에서 5분간 인큐베이션 한 후, 얼음에서 바로 식혀주었다. cDNA 처음 가닥은 M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units 및 각각의 dNTP 0.25 mM를 포함한 최종볼륨 25 μl에서 42℃에서 1시간, 70℃에서 10분간 합성하였다. 희석 cDNA template의 0.8 μl씩(1:2.5)을 2X SYBR Green PCR Master Mix(M Biotech) 10 μl, 각 gene-specific primer(제노텍) 10 μM 의 1 μl씩을 포함한 최종 20 μl 볼륨에서 ABI 7300 real time PCR System (Applied Biosystems)을 사용하여 증폭시켰으며, 증폭은 50℃에서 2분간, 95℃에서 2분간, 다음으로 95℃에서 15초간, 60℃에서 1분간 40 사이클을 수행하여 실험하였다. 실험에서 사용한 Primer의 서열은 하기 표 3과 같다.For real time-PCR, total RNA was extracted using Trizol reagent (Invitrogen) and quantified at absorbance at 260 nm. Total RNA was adjusted to 15 ml total containing 0.5 mg oligo (dT) primers. After 5 minutes incubation at ℃, it was cooled directly on ice. The first strand of cDNA was synthesized at 25 μl for 1 hour at 42 ° C. and 10 minutes at 70 ° C. at 25 μl of final volume containing M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units and 0.25 mM each of dNTP. ABI 7300 real at the final 20 μl volume containing 0.8 μl of the diluted cDNA template (1: 2.5) containing 10 μl of 2X SYBR Green PCR Master Mix (M Biotech) and 1 μl of 10 μM of each gene-specific primer (Genotech). Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C. The sequence of Primer used in the experiment is shown in Table 3 below.
real-time real-time PCRPCR primer의 서열 및  the sequence of the primer and ampliconamplicon 크기 size
GeneGene Primer(sense & antisense)Primer (sense & antisense) 서열번호SEQ ID NO: Amplicon length(bp)Amplicon length (bp)
3636 NFATc1 NFATc1 5'-CTTCAGCTGGAGGACACC-3'5'-CTTCAGCTGGAGGACACC-3 ' 7171 7979
5'-CCAATGAACAGCTGTAGCG-3'5'-CCAATGAACAGCTGTAGCG-3 ' 7272
3737 CK CK 5'-ACCACTGCCTTCCAATACG-3’5'-ACCACTGCCTTCCAATACG-3 ' 7373 9999
5’-CGTGGCGTTATACATACAAC-3’5’-CGTGGCGTTATACATACAAC-3 ’ 7474
3838 MMP9 MMP9 5’-AGACGACATAGACGGCATC-3’5’-AGACGACATAGACGGCATC-3 ’ 7575 9797
5’-TGCTGTCGGCTGTGGTTC-3’5’-TGCTGTCGGCTGTGGTTC-3 ’ 7676
3939 TRAP TRAP 5'-CCAGCGACAAGAGGTTCC-3'5'-CCAGCGACAAGAGGTTCC-3 ' 7777 113113
5'-AGAGACGTTGCCAAGGTGAT-3'5'-AGAGACGTTGCCAAGGTGAT-3 ' 7878
4040 SOD2 SOD2 5'-ATTAACGCGCAGATCATGCA-3'5'-ATTAACGCGCAGATCATGCA-3 ' 7979 161161
5'-TGTCCCCCACCATTGAACTT-3'5'-TGTCCCCCACCATTGAACTT-3 ' 8080
4141 CatalaseCatalase 5'-CTCGTTCAGGATGTGGTTTTC-3'5'-CTCGTTCAGGATGTGGTTTTC-3 ' 8181 145145
5'-CTTTCCCTTGGAGTATCTGGTG-3'5'-CTTTCCCTTGGAGTATCTGGTG-3 ' 8282
4242 c-Fos c-Fos 5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 8383 9797
5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 8484
4343 Nrf2Nrf2 5'-TCTCCTCGCTGGAAAAAGAA-3'5'-TCTCCTCGCTGGAAAAAGAA-3 ' 8585 498498
5'-AATGTGCTGGCTGTGCTTTA-3'5'-AATGTGCTGGCTGTGCTTTA-3 ' 8686
4444 NQO1NQO1 5'-TTCTCTGGCCGATTCAGAG-3'5'-TTCTCTGGCCGATTCAGAG-3 ' 8787 180180
5'-GGCTGCTTGGAGCAAAATAG-3'5'-GGCTGCTTGGAGCAAAATAG-3 ' 8888
4545 SrxSrx 5'-AGCCTGGTGGACACGATC-3'5'-AGCCTGGTGGACACGATC-3 ' 8989 9797
5'-AGGAATAGTAGTAGTCGCCA-3'5'-AGGAATAGTAGTAGTCGCCA-3 ' 9090
4646 β-actinβ-actin 5'-ACCCTAAGGCCAACCGTG-3'5'-ACCCTAAGGCCAACCGTG-3 ' 9191 8181
5'-GCCTGGATGGCTACGTAC-3'5'-GCCTGGATGGCTACGTAC-3 ' 9292
4747 CRCR 5'-TGATGACTCTCAGGACAATG-3'5'-TGATGACTCTCAGGACAATG-3 ' 9393 8787
5'-ACTGGATCAATCTGTAGGAG-3'5'-ACTGGATCAATCTGTAGGAG-3 ' 9494
4848 DC-STAMPDC-STAMP 5'-TTATGTGTTTCCACGAAGCCCTA-3'5'-TTATGTGTTTCCACGAAGCCCTA-3 ' 9595 141141
5'-ACAGAAGAGAGCAGGGCAACG-3'5'-ACAGAAGAGAGCAGGGCAACG-3 ' 9696
CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2
그 결과, 1.5 μM DHCL 존재 하에서 2일 동안 50 ng/ml RANKL을 처리하였을 때 NFATc1과 그 타겟 유전자인 CK, MMP9, TRAP과 함께, CR 및 DC-STAMP 유전자의 mRNA도 발현이 현저히 억제되는 것을 확인하였다(도 21의 C).As a result, when treated with 50 ng / ml RANKL for 2 days in the presence of 1.5 μM DHCL, mRNA of CR and DC-STAMP genes were significantly suppressed in addition to NFATc1 and its target genes CK, MMP9 and TRAP. (FIG. 21C).
<< 실험예Experimental Example 20>  20> DHCL에On DHCL 의한 c- By c- FOSFOS 조절 control
DHCL이 NFATc1의 upstream 조절자로 알려진 NF-κB 활성과 c-Fos 발현을 조절하는지 확인하기 위하여, IκBα와 p-IκBα에 대한 항체(rabbit polyclonal antibodies, Cell Signaling Technology)를 사용한 immunoblot으로 IκBα의 인산화 정도를 확인하였고, SOD2 및 c-FOS 단백질의 발현도 이들의 항체(SOD2/rabbit polyclonal antibody, Upstate; c-FOS/rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc)를 이용한 immunoblot으로 확인하였으며, SOD2 및 c-Fos mRNA의 발현을 상기 실험예 19에 기재된 방법으로 real-time PCR로 분석하였다(표 3 primer 서열 참조).To determine if DHCL regulates NF-κB activity and c-Fos expression, known as upstream regulators of NFATc1, immunoblot using IκBα and p-IκBα (rabbit polyclonal antibodies, Cell Signaling Technology) was used to determine the degree of phosphorylation of IκBα. Expression of SOD2 and c-FOS proteins was also confirmed by immunoblot using these antibodies (SOD2 / rabbit polyclonal antibody, Upstate; c-FOS / rabbit polyclonal antibody, Santa Cruz Biotechnology, Inc), and SOD2 and c-Fos. Expression of mRNA was analyzed by real-time PCR by the method described in Experimental Example 19 (see Table 3 primer sequence).
그 결과, DHCL(1.5 μM)은 RANKL(50 ng/ml)의 존재 하에서 IκBα의 인산화를 상당히 억제하였고(도 22의 A), NF-κB 타겟 유전자인 SOD2의 단백질 및 mRNA 발현도 유의적으로 억제되었다(도 22B 및 D). 또한 DHCL은 c-Fos의 단백질 및 mRNA 발현도 유의적으로 억제하는 것을 확인하였다(도 22의 C 및 D).As a result, DHCL (1.5 μM) significantly inhibited the phosphorylation of IκBα in the presence of RANKL (50 ng / ml) (FIG. 22A) and significantly inhibited protein and mRNA expression of SOD2, an NF-κB target gene. (FIGS. 22B and D). In addition, it was confirmed that DHCL also significantly inhibits the expression of c-Fos protein and mRNA (C and D of Figure 22).
<< 실험예Experimental Example 21>  21> DHCL에On DHCL 의한  by MAPKsMAPKs  And AKTAKT 활성 억제 Active inhibition
RANKL에 의해 활성화되는 MAPKs와 AKT에 대한 DHCL의 효과를 보기 위하여, 이들의 항체(phospho-JNK, phospho-ERK, phospho-p38, phospho-Src, phospho-AKT, phospho-Foxo1, Src에 대한 Rabbit polyclonal antibodies, AKT, Foxo1 에 대한 rabbit monoclonal antibodies, Cell Signaling Technology; JNK1, p38 에 대한 Rabbit polyclonal antibodies, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc.)를 이용한 immunoblot으로 MAPKs와 AKT 관련 단백질의 인산화 정도를 비교해 보았다.To see the effect of DHCL on MAPKs and AKT activated by RANKL, Rabbit polyclonal against their antibodies (phospho-JNK, phospho-ERK, phospho-p38, phospho-Src, phospho-AKT, phospho-Foxo1, Src) We compared the phosphorylation levels of MAPKs and AKT-related proteins by immunoblot using rabbit monoclonal antibodies against AKT, Foxo1, Cell Signaling Technology; Rabbit polyclonal antibodies against JNK1, p38, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc. saw.
그 결과, DHCL에 의해 JNK와 ERK의 인산화가 약간 억제되고, Src-AKT의 인산화가 상당히 억제되는 것을 확인하였다(도 23의 A 및 B). 또한 AKT는 FOXO1를 인산화시켜 분해를 유도하고 핵으로의 이동을 저해하는 것으로 알려져 있으므로 추가적으로 DHCL이 FOXO1의 인산화에 주는 영향을 확인해 본 결과, FOXO1의 인산화를 억제하였음을 확인하였다(도 23의 B). DHCL는 AKT 활성을 저해하여 FOXO1의 인산화를 억제하였는데, 이에 따라 FOXO1의 분해도 저해됨을 확인하였다(도 23의 C). 그 결과 FOXO1의 전사활성이 증가되어 타겟 유전자인 catalase의 발현이 단백질과 mRNA 수준에서 모두 증가한 것을 immunoblot과 real-time PCR로 확인하였다(도 23의 C 및 D).As a result, it was confirmed that phosphorylation of JNK and ERK was slightly inhibited by DHCL and that phosphorylation of Src-AKT was significantly suppressed (A and B in FIG. 23). In addition, AKT phosphorylates FOXO1, which induces degradation and inhibits migration to the nucleus, and further confirms the effect of DHCL on phosphorylation of FOXO1. . DHCL inhibited AKT activity and inhibited phosphorylation of FOXO1. As a result, it was confirmed that the degradation of FOXO1 was also inhibited (FIG. 23C). As a result, the transcriptional activity of FOXO1 was increased and the expression of catalase, a target gene, was increased at both protein and mRNA levels by immunoblot and real-time PCR (FIG. 23 C and D).
<< 실험예Experimental Example 22>  22> DHCL에On DHCL 의한  by Nrf2Nrf2 활성화 및 활성산소 조절 Activation and free radical regulation
레독스에 민감한 전사인자 Nrf2는 생체 내 환원제인 GSH의 합성효소와 항산화효소의 발현을 조절함으로써 파골세포의 분화에 관여한다고 알려져 있으므로, DHCL의 Nrf2 활성 조절을 통한 파골세포 분화 억제 효과를 알아보기 위하여, Nrf2, NQO1 및 Srx 유전자 발현을 real-time PCR을 통해 확인하였고(표 3 primer 서열 참조), Nrf2 및 항산화효소를 비롯한 Nrf2의 타겟 단백질들인 NQO1, Srx, Prx, PrxV, PrxⅥ 및 Trx1 (rabbit polyclonal antibodies, Young In Frontier)단백질 발현을 immunoblot과 real-time PCR을 통해 확인하였다. Redox-sensitive transcription factor Nrf2 is known to be involved in osteoclast differentiation by regulating the expression of GSH synthase and antioxidant enzymes in vivo, and to investigate the inhibitory effect of osteoclast differentiation by regulating Nrf2 activity of DHCL. , Nrf2, NQO1 and Srx gene expression was confirmed by real-time PCR (see Table 3 primer sequence), and target proteins of Nrf2 including Nrf2 and antioxidant enzymes NQO1, Srx, Prx, PrxV, PrxVI and Trx1 (rabbit polyclonal antibodies, Young In Frontier) protein expression was confirmed by immunoblot and real-time PCR.
그 결과, Nrf2와 그 타겟 유전자인 NQO1과 Srx의 mRNA 발현이 RANKL(50 ng/ml)의 존재 하에서 DHCL(1.5 μM)처리에 의해 증가하였다(도 24의 A). 또한 Nrf2와 항산화효소를 비롯한 그의 타겟 단백질인 NQO1, Srx, PrxⅠ,PrxV, PrxⅥ 및 Trx1들도 발현이 증가하는 것을 확인하였다(도 24의 B).As a result, mRNA expression of Nrf2 and its target genes, NQO1 and Srx, was increased by DHCL (1.5 μM) treatment in the presence of RANKL (50 ng / ml) (FIG. 24A). In addition, Nrf2 and antioxidant enzymes, including its target proteins NQO1, Srx, Prx I, PrxV, PrxVI and Trx1 was also confirmed that the expression is increased (Fig. 24B).
또한, RANKL에 의한 파골세포의 분화에서 활성산소가 생성되며 분화과정에도 관여한다는 것이 잘 알려져 있고, DHCL이 Nrf2를 활성화시켜 항산화 효소를 비롯한 Nrf2 타겟 단백질의 발현이 증가되었다면 이들 항산화효소에 의해 RANKL에 의해 생성되는 활성산소가 제거될 수도 있으므로 이러한 가능성을 확인해보기 위하여, DHCL의 존재 하에서 RANKL을 2일 동안 처리하고 활성산소(Reactive oxygen species; ROS)를 측정하였다.In addition, it is well known that free radicals are produced and involved in the differentiation process of osteoclasts by RANKL. If DHCL activates Nrf2 and the expression of Nrf2 target proteins including antioxidant enzymes is increased, these antioxidant enzymes may be involved in RANKL. In order to confirm this possibility, the active oxygen generated by the reaction may be removed, and RANKL was treated for 2 days in the presence of DHCL and the reactive oxygen species (ROS) were measured.
ROS의 측정은 CM-H2DCFDA를 사용한 산화제 민감 형광 탐지 방식으로 진행하였다. CM-H2DCFDA는 ROS와 반응하여 형광을 내므로, 세포를 RANKL로 처리 후 HBSS로 워싱한 뒤, 5 μM의 CM-H2DCFDA를 어두운 곳에서 20분간 처리하고 FACS Calibur flow cytometer (BD Biosciences)를 사용하여 분석하였다.ROS was measured by oxidant sensitive fluorescence detection using CM-H2DCFDA. Since CM-H2DCFDA reacts with ROS and fluoresces, the cells are treated with RANKL, washed with HBSS, and then treated with 5 μM of CM-H2DCFDA for 20 minutes in the dark, using a FACS Calibur flow cytometer (BD Biosciences). Analyzed.
그 결과, DHCL의 존재 하에서 세포 내 활성산소가 유의적으로 감소하는 것을 확인하였다(도 24의 C, 좌). As a result, it was confirmed that the free radicals in the cell significantly decreased in the presence of DHCL (FIG. 24C, left).
또한, DHCL이 항산화제로써 직접 활성산소를 제거할 수 있는 가능성을 확인해보기 위해 DHCL(1.5 μM)을 30분간 전 처리하고 RANKL (도 24의 C, 중) 혹은 H2O2 (도 24의 C, 우)를 15분간 처리한 후 상기와 같이 CM-H2DCFDA를 사용하여 활성산소를 측정하였다.In addition, DHCL (1.5 μM) was pretreated for 30 minutes and RANKL (C in FIG. 24) or H 2 O 2 (C in FIG. 24) to determine the possibility of DHCL being able to directly remove active oxygen as an antioxidant. After treating for 15 minutes, the right oxygen was measured using CM-H2DCFDA as described above.
그 결과, DHCL에 의해 세포 내 활성산소가 감소하는 것을 확인하였다(도 24의 C, 중 및 우). DHCL이 Nrf2 활성화에 의한 항산화효소의 발현이 일어나기 전 짧은 시간 동안만 전처리 되었으므로, 이 결과는 DHCL에 의해 활성산소가 직접 제거될 수도 있음을 의미한다.As a result, it was confirmed that free radicals in cells are reduced by DHCL (C, middle and right in Fig. 24). Since DHCL was pretreated only for a short time before the expression of antioxidant enzymes by Nrf2 activation, this result means that free radicals may be directly removed by DHCL.
또한, caveolin-1이 Nrf2의 발현을 조절하며, 파골세포 분화의 촉진인자로도 알려져 있으므로, DHCL이 caveolin-1의 발현에 미치는 영향을 실험해본 결과, DHCL이 RANKL에 의한 caveolin-1(rabbit monoclonal antibody, Trnasduction Laboratories)의 발현증가를 억제하는 것을 확인하였다(도 24의 D). 이는 DHCL이 caveolin-1의 발현을 억제하여 Nrf2와의 결합이 감소됨으로써 Nrf2의 활성을 촉진시키고, 결과적으로 세포 내 활성산소를 낮추는 것을 나타낸다.In addition, since caveolin-1 regulates the expression of Nrf2 and is known as a promoter of osteoclast differentiation, the effects of DHCL on the expression of caveolin-1 have been tested. As a result, DHCL is caveolin-1 (rabbit monoclonal) induced by RANKL. It was confirmed that the expression of antibody, Trnasduction Laboratories) is suppressed (FIG. 24D). This suggests that DHCL inhibits the expression of caveolin-1, thereby reducing the binding of Nrf2 to promote Nrf2 activity, resulting in lowering free radicals in cells.
<< 실험예Experimental Example 23>  23> DHCL에On DHCL 의한 파골세포의 골 흡수 억제 Inhibition of bone resorption by osteoclasts
DHCL의 파골세포의 분화억제 작용시점을 알아보기 위하여, RANKL을 처리하여 BMM 세포를 파골세포로 분화시키는 동안, 여러 시점 (E0, RANKL 처리시; E1, RANKL 1일 처리 후; E2, RANKL 2일 처리 후; E3, RANKL 3일 처리 후)에서 DHCL에 노출시키고 TRAP 염색된 다핵의 파골세포의 수를 분석하였다.In order to investigate the differentiation inhibitory effect of DHCL osteoclasts, different time points (E0, RANKL treatment; E1, RANKL 1 day treatment; E2, RANKL 2 days) during RANKL treatment to differentiate BMM cells into osteoclasts After treatment; after 3 days of treatment with E3, RANKL), DHCL was exposed and the number of TRAP stained multinucleated osteoclasts was analyzed.
그 결과, DHCL(1.5 μM)을 RANKL(50 ng/ml)과 함께 처리하였을 때(E0)와 파골세포의 분화 초기라 할 수 있는 RANKL 1일 처리(E1) 및 2일 처리(E2)의 경우에는 파골세포의 형성이 유의적으로 억제되었으나, 성숙된 파골세포에 DHCL을 처리한 경우인 E3에서는 3핵 이상의 파골세포 수에는 거의 영향을 주지 않았다(도 25의 A). 다만 10핵 이상의 파골세포의 수는 약간 감소되었다. As a result, when DHCL (1.5 μM) was treated with RANKL (50 ng / ml) (E0) and RANKL one-day treatment (E1) and two-day treatment (E2), which can be called early differentiation of osteoclasts, The formation of osteoclasts was significantly inhibited, but in E3 treated with mature osteoclasts, E3 had little effect on the number of osteoclasts of three or more nuclei (FIG. 25A). However, the number of osteoclasts above 10 nuclei was slightly reduced.
동일한 실험조건에서 NFATc1과 그 타겟 유전자인 MMP9, TRAP 그리고 DC-STAMP 유전자와 CK 및 CR의 mRNA발현 또한 real-time PCR을 통해 측정해 본 결과(표 3 primer 서열 참조), NFATc1과 그 타겟 유전자들의 발현도 파골세포의 분화초기에는 억제되었으나 성숙된 파골세포에서는 거의 억제되지 않았다(도 25의 B).Under the same experimental conditions, mRNA expression of NFATc1, its target genes MMP9, TRAP and DC-STAMP genes, CK and CR was also measured by real-time PCR (see Table 3 primer sequence), indicating that NFATc1 and its target genes Expression was also inhibited at the beginning of the differentiation of osteoclasts but hardly inhibited in mature osteoclasts (FIG. 25B).
또한 유사한 실험조건에서 DHCL이 액틴링(acting ring)의 형성과 골 흡수에 미치는 영향을 보기 위하여, BMM 세포에 3일 동안 RANKL을 처리하여 파골세포로 분화시킨 후 DHCL을 처리한 세포와, DHCL을 RANKL과 함께 처리한 세포를 다음과 같이 고정하고 액틴링과 핵을 염색하거나 dentine disc에서 골 흡수 정도를 분석하였다. 3.7 % formaldehyde가 첨가된 PBS에서 세포를 고정하여 0.1 % Triton X-100 처리를 한 뒤, Alexa Fluor 488-phalloidin(Invitrogen)을 30분간 처리하고, 다시 DAPI(4', 6-diamidino-2-phenylindole, Roche)로 염색하여 형광 현미경을 통해 관찰하였다. 또한 골 흡수 정도는 dentine disc(Immunodiagnostic Systems Ltd)에 배양된 세포들을 cotton tip을 사용하여 제거한 뒤 재흡수 구멍(resorption pit)을 hematoxylin으로 염색하여 현미경 100배율로 촬영한 사진을 Image-Pro Plus 4.5 software (Media Cybernetics)로 분석하였다.In addition, in order to see the effect of DHCL on the formation of acting ring and bone resorption under similar experimental conditions, BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, and then treated with DHCL and DHCL. The cells treated with RANKL were fixed as follows and stained with actining and nuclei or analyzed for bone resorption on dentine discs. The cells were fixed in PBS with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by treatment with Alexa Fluor 488-phalloidin (Invitrogen) for 30 minutes, followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope. In addition, the degree of bone resorption was obtained by removing the cells cultured on dentine disc (Immunodiagnostic Systems Ltd) using cotton tip, and staining the resorption pit with hematoxylin. (Media Cybernetics).
그 결과, RANKL과 함께 처리하였을 때 DHCL는 액틴링의 형성과 dentine disc에서의 파골세포에 의한 골 흡수를 완전히 억제하였고, 3일 동안 RANKL을 처리하여 파골세포로 분화시킨 후 DHCL을 처리한 경우에는 액틴링의 크기가 감소되었고 골 흡수도 상당히 저해되는 것을 확인하였다(도 26의 A, B 및 C). 이러한 결과는 DHCL이 파골세포의 융합과 골 흡수 기능을 저해할 수 있음을 나타낸다. As a result, when treated with RANKL, DHCL completely inhibited the formation of actin ring and bone resorption by osteoclasts in dentine disc, and when treated with RANKL for 3 days to differentiate into osteoclasts, It was confirmed that the size of the actining was reduced and bone absorption was also significantly inhibited (A, B and C in Fig. 26). These results indicate that DHCL may inhibit osteoclast fusion and bone resorption.
<< 실험예Experimental Example 24>  24> DHCL의Of DHCL 염증에 의한 골 손상 억제 Suppress bone damage caused by inflammation
DHCL의 염증에 의해 유발되는 골 손상 억제효능을 동물모델에서 확인하기 위해, 마우스 두개골에 염증유도물질인 LPS(Lipopolysaccharide, 12.5 mg/kg body weight)를 하루 간격을 두고 2회 주입하였다. 이 때 Vehicle (10% DMAC + 10% Tween 80 + 80% distilled water) 또는 DHCL(2 mg/kg)가 함께 투여되었고, 첫 주입 5일 후에 두개골을 4% paraformaldehyde로 고정 후, PBS 워싱하여 TRAP 염색 후 관찰하였다. 또한 0.5 M ethylenediaminetetraacetic acid로 7일간 석회질을 제거하고, 파라핀 블록을 만든 후 절단하여 TRAP과 Hematoxylin으로 염색한 뒤 관찰하였다.In order to confirm the inhibitory effect of bone damage caused by inflammation of DHCL in an animal model, LPS (Lipopolysaccharide, 12.5 mg / kg body weight), an inflammatory inducer, was injected into the mouse skull twice daily at intervals. At this time, vehicle (10% DMAC + 10% Tween 80 + 80% distilled water) or DHCL (2 mg / kg) was administered together, and after 5 days of the first injection, the skull was fixed with 4% paraformaldehyde, followed by PBS washing to TRAP staining. Then observed. In addition, decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin blocks were made and then cut and stained with TRAP and Hematoxylin.
그 결과, LPS만 처리한 두개골에서는 TRAP 염색된 부분이 많았으나, DHCL을 함께 처리한 두개골에서는 TRAP 염색된 부분이 현저히 감소된 것을 확인하였다(도 27의 A). 또한 이를 정량적으로 분석한 결과, LPS 처리에 의해 증가된 bone cavity와 파골세포의 수가 DHCL에 의해 상당히 감소되는 것을 확인하였다(도 27의 B 및 C).As a result, there were many TRAP stained parts in the skull treated only with LPS, but the TRAP stained part was significantly reduced in the skull treated with the DHCL (FIG. 27A). In addition, as a result of quantitative analysis, it was confirmed that the number of bone cavity and osteoclasts increased by LPS treatment was significantly reduced by DHCL (FIG. 27B and C).
Ⅳ. Ⅳ. 신코닌의Neoconinic 효능 확인 Efficacy Check
<< 실험예Experimental Example 25>  25> 신코닌의Neoconinic 파골세포 분화 억제 Osteoclast differentiation inhibition
본 발명이 유효성분으로 함유하는 신코닌(이하 CN)은 Sigma-Aldrich 사의 27370/118-10-5 제품을 사용하여 실험에 사용하였다. Synconin (hereinafter referred to as CN) contained in the present invention as an active ingredient was used in an experiment using 27370 / 118-10-5 product of Sigma-Aldrich.
우선, 신코닌의 파골세포 분화 억제 효과를 확인하기 위하여, 본 발명자들은 BMM(Bone Marrow-Derived Macrophages) 세포를 대상으로 하여 실험을 수행하였다. BMM 세포는 파골세포(osteoclast)로 분화 할 수 있는 precursor cell로써, 본 실험에서는 8주령 C57BL/6 수컷 마우스의 대퇴골과 경골의 골수(Bone marrow)에서 추출한 세포를 사용하였다.First, in order to confirm the inhibitory effect on the osteoclast differentiation of Cinconin, the present inventors conducted experiments on BMM (Bone Marrow-Derived Macrophages) cells. BMM cells are precursor cells capable of differentiating into osteoclasts. In this experiment, cells extracted from femur and tibia bone marrow of 8-week-old C57BL / 6 male mice were used.
다양한 농도(0, 10, 20, 30 μM)의 신코닌 존재 하에서 BMM(Bone Marrow-Derived Macrophages) 세포에 25 ng/ml의 M-CSF(대식세포콜로니자극인자)와 50 ng/ml의 RANKL(PeproTech Inc)을 3일 동안 처리하여 파골세포로 분화시키고, PBS 워싱처리 후 4% paraformaldehyde로 고정한 뒤 leukocyte acid phosphatase cytochemistry kit (SigmaAldrich)를 사용하여 TRAP 염색한 후, TRAP 염색된 3개 이상의 다핵을 가진 파골세포의 수를 현미경으로 분석하였다.  25 ng / ml M-CSF (macrophage colony stimulating factor) and 50 ng / ml RANKL (Bone Marrow-Derived Macrophages) cells in the presence of various concentrations (0, 10, 20, 30 μM) PeproTech Inc) was treated for 3 days to differentiate into osteoclasts, fixed with 4% paraformaldehyde after PBS washing, and then TRAP stained using leukocyte acid phosphatase cytochemistry kit (SigmaAldrich), followed by TRAP staining. The number of osteoclasts was analyzed under a microscope.
그 결과, 20 μM의 신코닌에서부터 파골세포 분화가 효과적으로 억제되었다(도 28의 A 및 B). As a result, osteoclast differentiation was effectively suppressed from 20 μM of cinconin (FIGS. 28A and 28B).
또한, 신코닌의 파골세포 분화 억제효과가 세포독성에 의한 것임을 배제하기 위하여, EASY Cytox (WST-1) assay kit로 세포독성을 분석하였다. BMM 세포를 각각 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium mono-sodium salt (WST-1) reagent (Roche Applied Science)를 10 μl씩 넣어주고 37 ℃에서 2 - 4시간 배양한 뒤, 450nm에서의 흡광도를 측정하였다.In addition, the cytotoxicity was analyzed by EASY Cytox (WST-1) assay kit to exclude the fact that the inhibition of osteoclast differentiation of the cytokine is caused by cytotoxicity. BMM cells were prepared using 2- (4-iodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium mono-sodium salt (WST-1) reagent (Roche Applied Science), respectively. μl was added and incubated at 37 ° C. for 2-4 hours, and the absorbance at 450 nm was measured.
그 결과, 30 μM 농도 까지 신코닌에 의한 세포독성이 나타나지 않는 것을 확인하였다(도 28의 C). 또한, BMM 세포를 20 μM 신코닌의 존재 하에 RANKL을 3 내지 5일 동안 처리하여 분화시킨 경우에도 파골세포 분화가 유의적으로 억제되었으며(도 28의 D 및 E), 5일까지 세포독성이 나타나지 않는 것을 확인하였다(도 28의 F). 이는 신코닌의 파골세포 분화 억제효과가 세포사멸에 의한 것이 아님을 보여준다. As a result, it was confirmed that no cytotoxicity caused by synconin was shown up to a concentration of 30 μM (FIG. 28C). In addition, osteoclast differentiation was significantly inhibited even when BMM cells were differentiated by treatment with RANKL for 3 to 5 days in the presence of 20 μM cinconin (FIG. 28D and E in FIG. 28), and cytotoxicity was shown up to 5 days. It was confirmed that no (FIG. 28F). This shows that the effect of inhibiting osteoclast differentiation of synconin is not due to apoptosis.
<< 실험예Experimental Example 26>  26> 신코닌에In shinkonin 의한  by NFATc1NFATc1 활성화 억제 Activation Suppression
신코닌의 파골세포 분화 억제 효과를 확인하기 위하여, 다양한 농도(0, 10, 20, 30 μM)의 신코닌 존재 하에서 BMM 세포에 2일 동안 50 ng/ml 의 RANKL을 처리하여 파골세포로 분화시키고, 파골세포의 분화에서 가장 중요하게 알려져 있는 transcription factor인 NFATc1 단백질의 발현을 확인하기 위해 NFATc1에 대한 항체를 사용한 immunoblot을 수행하였다. In order to confirm the inhibitory effect on the osteoclast differentiation of Cinconin, BMM cells were treated with 50 ng / ml of RANKL for 2 days in the presence of various concentrations (0, 10, 20, 30 μM) to differentiate into osteoclasts. In order to confirm the expression of NFATc1 protein, the most important transcription factor in osteoclast differentiation, immunoblot using an antibody against NFATc1 was performed.
10% polyacrylamide gel을 이용하여 단백질을 분리하고, 분리된 단백질을 nitrocellulose membranes에 옮겨주었다. TBST(0.05% Tween-20 in Tris-buffered saline, pH 7.4)에 녹인 5% 탈지유를 이용하여 막에 있는 비특이적 결합부위를 모두 블로킹하였다. 일차항체(mouse monoclonal antibodies, Santa Cruz Biotechnology Inc)를 14시간 동안 4℃에서 처리한 후 이차항체를 1시간 동안 상온에서 처리하여 West save Up (Ab Frontier)으로 분석하였다.Proteins were separated using 10% polyacrylamide gel, and the separated proteins were transferred to nitrocellulose membranes. All nonspecific binding sites on the membrane were blocked using 5% skim milk dissolved in TBST (0.05% Tween-20 in Tris-buffered saline, pH 7.4). Primary antibodies (mouse monoclonal antibodies, Santa Cruz Biotechnology Inc) were treated at 4 ° C. for 14 hours and secondary antibodies were treated at room temperature for 1 hour and analyzed by West save Up (Ab Frontier).
그 결과 NFATc1 단백질은 20 μM 신코닌 농도에서부터 상당히 억제되었으며(도 29의 A), 5일까지 억제효과가 지속되는 것을 확인하였다(도 29의 B). As a result, the NFATc1 protein was significantly inhibited from 20 μM succinonin concentration (FIG. 29A), and it was confirmed that the inhibitory effect was continued up to 5 days (FIG. 29B).
또한, NFATc1의 타겟 유전자인 CK, MMP9 및 TRAP 유전자의 mRNA 발현 변화를 real time-PCR을 사용하여 확인하였다. In addition, mRNA expression changes of CK, MMP9 and TRAP genes, which are target genes of NFATc1, were confirmed using real time-PCR.
real time-PCR을 위해, Trizol reagent (Invitrogen)을 사용하여 총 RNA를 추출하여 260 nm의 흡광도에서 정량분석하였으며, 총 RNA를 0.5 mg의 oligo(dT) primers를 포함, 총 15 μl가 되게하여 70℃에서 5분간 인큐베이션 처리한 후, 얼음에서 바로 식혀주었다. cDNA 처음 가닥은 M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units 및 각각의 dNTP 0.25 mM를 포함한 최종볼륨 25 μl에서 42℃에서 1시간, 70℃에서 10분간 합성하였다. 희석 cDNA template의 0.8 μl씩(1:2.5)을 2X SYBR Green PCR Master Mix(M Biotech) 10 μl, 각 gene-specific primer(제노텍) 10 μM 의 1 μl씩을 포함한 최종 20 μl 볼륨에서 ABI 7300 real time PCR System (Applied Biosystems)을 사용하여 증폭시켰으며, 증폭은 50℃에서 2분간, 95℃에서 2분간, 다음으로 95℃에서 15초간, 60℃에서 1분간 40 사이클을 수행하여 실험하였다. 실험에서 사용한 Primer의 서열은 하기 표 4와 같다.For real time-PCR, total RNA was extracted using Trizol reagent (Invitrogen) and quantified at absorbance at 260 nm. Total RNA was adjusted to 15 μl, containing 0.5 mg of oligo (dT) primers. After incubation for 5 minutes at C, it was cooled directly on ice. The first strand of cDNA was synthesized at 25 μl for 1 hour at 42 ° C. and 10 minutes at 70 ° C. at 25 μl of final volume containing M-MLV reverse transcriptase (Promega) 200 units, ribonuclease inhibitor 24 units and 0.25 mM each of dNTP. ABI 7300 real at the final 20 μl volume containing 0.8 μl of the diluted cDNA template (1: 2.5) containing 10 μl of 2X SYBR Green PCR Master Mix (M Biotech) and 1 μl of 10 μM of each gene-specific primer (Genotech). Amplification was carried out using a time PCR system (Applied Biosystems), and the amplification was performed by performing 40 cycles for 2 minutes at 50 ° C, 2 minutes at 95 ° C, then 15 seconds at 95 ° C, and 1 minute at 60 ° C. The sequence of Primer used in the experiment is shown in Table 4.
real-time real-time PCRPCR primer의 서열 및  the sequence of the primer and ampliconamplicon 크기 size
GeneGene Primer(sense & antisense)Primer (sense & antisense) 서열번호SEQ ID NO: Amplicon length(bp)Amplicon length (bp)
4949 NFATc1 NFATc1 5'-CTTCAGCTGGAGGACACC-3'5'-CTTCAGCTGGAGGACACC-3 ' 9797 7979
5'-CCAATGAACAGCTGTAGCG-3'5'-CCAATGAACAGCTGTAGCG-3 ' 9898
5050 CK CK 5'-ACCACTGCCTTCCAATACG-3’5'-ACCACTGCCTTCCAATACG-3 ' 9999 9999
5’-CGTGGCGTTATACATACAAC-3’5’-CGTGGCGTTATACATACAAC-3 ’ 100100
5151 MMP9 MMP9 5’-AGACGACATAGACGGCATC-3’5’-AGACGACATAGACGGCATC-3 ’ 101101 9797
5’-TGCTGTCGGCTGTGGTTC-3’5’-TGCTGTCGGCTGTGGTTC-3 ’ 102102
5252 TRAP TRAP 5'-CCAGCGACAAGAGGTTCC-3'5'-CCAGCGACAAGAGGTTCC-3 ' 103103 113113
5'-AGAGACGTTGCCAAGGTGAT-3'5'-AGAGACGTTGCCAAGGTGAT-3 ' 104104
5353 SOD2 SOD2 5'-ATTAACGCGCAGATCATGCA-3'5'-ATTAACGCGCAGATCATGCA-3 ' 105105 161161
5'-TGTCCCCCACCATTGAACTT-3'5'-TGTCCCCCACCATTGAACTT-3 ' 106106
5454 COX2 COX2 5'-GATCATAAGCGAGGACCTG-3'5'-GATCATAAGCGAGGACCTG-3 ' 107107 8585
5'-GTCTGTCCAGAGTTTCACC-3'5'-GTCTGTCCAGAGTTTCACC-3 ' 108108
5555 c-Fos c-Fos 5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 109109 9797
5'-GAGAAACGGAGAATCCGAAG-3'5'-GAGAAACGGAGAATCCGAAG-3 ' 110110
5656 PGC-1βPGC-1β 5'-CTCCAGGCAGGTTCAACCC-3'5'-CTCCAGGCAGGTTCAACCC-3 ' 111111 8383
5'-GGGCCAGAAGTTCCCTTAGG-3'5'-GGGCCAGAAGTTCCCTTAGG-3 ' 112112
5757 ND4ND4 5'-CATCACTCCTATTCTGCCTAGCAA-3'5'-CATCACTCCTATTCTGCCTAGCAA-3 ' 113113 7474
5'-TCCTCGGGCCATGATTATAGTAC-3'5'-TCCTCGGGCCATGATTATAGTAC-3 ' 114114
5858 COX1COX1 5'-TTTTCAGGCTTCACCCTAGATGA-3'5'-TTTTCAGGCTTCACCCTAGATGA-3 ' 115115 8181
5'-GAAGAATGTTATGTTTACTCCTACGAATATG-3'5'-GAAGAATGTTATGTTTACTCCTACGAATATG-3 ' 116116
5959 COX3COX3 5'-CGGAAGTATTTTTCTTTGCAGGAT-3'5'-CGGAAGTATTTTTCTTTGCAGGAT-3 ' 117117 8282
5'-CAGCAGCCTCCTAGATCATGTG-3'5'-CAGCAGCCTCCTAGATCATGTG-3 ' 118118
6060 CytbCytb 5'-GCCACCTTGACCCGATTCT-3'5'-GCCACCTTGACCCGATTCT-3 ' 119119 6464
5'-TTGCTAGGGCCGCGATAAT-3'5'-TTGCTAGGGCCGCGATAAT-3 ' 120120
6161 β-actinβ-actin 5'-ACCCTAAGGCCAACCGTG-3'5'-ACCCTAAGGCCAACCGTG-3 ' 121121 8181
5'-GCCTGGATGGCTACGTAC-3'5'-GCCTGGATGGCTACGTAC-3 ' 122122
6262 CatalaseCatalase 5'-CTCGTTCAGGATGTGGTTTTC-3'5'-CTCGTTCAGGATGTGGTTTTC-3 ' 123123 145145
5'-CTTTCCCTTGGAGTATCTGGTG-3'5'-CTTTCCCTTGGAGTATCTGGTG-3 ' 124124
CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2CK, cathepsin K; MMP9, matrix metalloprotease 9; SOD2, superoxide dismutase 2; COX2, cyclooxygenase 2
그 결과, 20 μM 신코닌 존재 하에서 2일 동안 50 ng/ml RANKL을 처리하였을 때, NFATc1과 그 타겟 유전자인 CK, MMP9 및 TRAP 유전자의 mRNA도 발현이 현저히 억제되는 것을 확인하였다(도 29의 C).As a result, when treated with 50 ng / ml RANKL for 2 days in the presence of 20 μM myconin, it was confirmed that the mRNA expression of NFATc1 and its target genes CK, MMP9 and TRAP genes are significantly suppressed (Fig. 29 C). ).
<< 실험예Experimental Example 27>  27> 신코닌에In shinkonin 의한  by NFNF -- κBκB 및 c- And c- FOSFOS 조절 control
신코닌이 NFATc1의 upstream 조절자로 알려진 NF-κB 활성과 c-Fos 발현을 조절하는지 확인하기 위하여, IκBα와 p-IκBα에 대한 항체(Rabbit polyclonal antibodies, Cell Signaling Technology)를 사용한 immunoblot으로 IκBα의 인산화 정도를 확인하였고, SOD2 및 c-FOS 단백질 발현도 항체(SOD2/rabbit polyclonal antibody, Upstate; c-FOS/Rabbit polyclonal antibody, Santa Cruz Biotechnology Inc)를 이용한 immunoblot으로 확인하였으며, SOD2 및 c-Fos mRNA 발현을 상기 실험예 26에 기재된 방법으로 real-time PCR로 분석하였다(표 4 primer 서열 참조). Phosphorylation of IκBα by immunoblot using antibodies to IκBα and p-IκBα (Rabbit polyclonal antibodies, Cell Signaling Technology) to determine whether Cinconin regulates NF-κB activity and c-Fos expression, known as upstream regulators of NFATc1 SOD2 and c-FOS protein expression was also confirmed by immunoblot using antibodies (SOD2 / rabbit polyclonal antibody, Upstate; c-FOS / Rabbit polyclonal antibody, Santa Cruz Biotechnology Inc), and SOD2 and c-Fos mRNA expression was confirmed. It was analyzed by real-time PCR by the method described in Experimental Example 26 (see Table 4 primer sequence).
그 결과, 신코닌(20 μM)은 RANKL(50 ng/ml)의 존재 하에서 IκBα의 인산화를 상당히 저해하였고(도 30의 A), NF-κB 타겟 유전자인 SOD2 및 COX2의 단백질 및 mRNA 발현도 유의적으로 억제하였다(도 30의 B 및 D). 또한 신코닌은 c-Fos의 단백질과 mRNA 발현도 유의적으로 억제하는 것을 확인하였다(도 30의 C 및 D).As a result, Cinconin (20 μM) significantly inhibited the phosphorylation of IκBα in the presence of RANKL (50 ng / ml) (FIG. 30A), and the protein and mRNA expression of SOD2 and COX2, NF-κB target genes, were also significant. Inhibition (B and D of FIG. 30). In addition, it was confirmed that cinnacon also significantly inhibited c-Fos protein and mRNA expression (C and D of FIG. 30).
<< 실험예Experimental Example 28>  28> 신코닌에In shinkonin 의한  by ERKERK  And SrcSrc -- AKTAKT 활성 억제 Active inhibition
RANKL에 의해 활성화되는 MAPKs와 AKT에 대한 신코닌의 효과를 보기 위하여, 이들의 항체(phospho-JNK, phospho-ERK, phospho-p38, phospho-Src, phospho-AKT, phospho-Foxo1, Src에 대한 Rabbit polyclonal antibodies, AKT, Foxo1 에 대한 rabbit monoclonal antibodies, Cell Signaling Technology; JNK1, p38 에 대한 Rabbit polyclonal antibodies, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc.)를 이용한 immunoblot으로 MAPKs와 AKT 관련 단백질의 인산화 정도를 비교해 보았다.To see the effect of Cinconin on MAPKs and AKT activated by RANKL, Rabbits on their antibodies (phospho-JNK, phospho-ERK, phospho-p38, phospho-Src, phospho-AKT, phospho-Foxo1, Src) Polyclonal antibodies, AKT, rabbit monoclonal antibodies against Foxo1, Cell Signaling Technology; JNK1, rabbit polyclonal antibodies against p38, ERK2 mouse monoclonal antibody, Santa Cruz Biotechnology, Inc. Compared.
그 결과, MAPKs 중 ERK와 Src-AKT가 신코닌에 의해 모두 인산화가 억제되는 것을 확인하였다(도 31의 A 및 B). 또한 AKT는 FOXO1를 인산화시켜 분해를 유도하고 핵으로의 이동을 저해하는 것으로 알려져 있으므로 추가적으로 신코닌이 FOXO1의 인산화에 미치는 영향을 확인해 본 결과, FOXO1의 인산화를 억제하였음을 확인하였다(도 31의 B). 신코닌은 AKT 활성을 저해하여 FOXO1의 인산화를 억제하였는데, 이에 따라 FOXO1의 분해도 저해됨을 확인하였다(도 31의 C). 그 결과 FOXO1의 전사활성이 증가되어 타겟 유전자인 catalase의 발현이 단백질과 mRNA 수준에서 모두 증가한 것을 immunoblot과 real-time PCR로 확인하였다(도 31의 C 및 D).As a result, it was confirmed that phosphorylation of both ERK and Src-AKT is suppressed by syntholin in MAPKs (A and B of FIG. 31). In addition, AKT phosphorylates FOXO1, which induces degradation and inhibits migration to the nucleus. Thus, as a result of confirming the effect of synconin on the phosphorylation of FOXO1, it was confirmed that the phosphorylation of FOXO1 was inhibited (FIG. 31B). ). Cinconin inhibited the phosphorylation of FOXO1 by inhibiting AKT activity, thereby confirming that the degradation of FOXO1 was also inhibited (FIG. 31C). As a result, it was confirmed by immunoblot and real-time PCR that the expression of catalase, which is a target gene, increased in FOXO1 transcriptional activity, at both protein and mRNA levels (FIG. 31C and D).
<< 실험예Experimental Example 29>  29> 신코닌에In shinkonin 의한  by PGCPGC -- 활성 억제 Active inhibition
PGC-1β는 RANKL에 의해 활성화되고 파골세포 분화과정에도 관여하는 것으로 잘 알려진 전사인자이다. 신코닌의 PGC-1β 조절효과를 확인하기 위하여, real-time PCR을 통해 PGC-1 β와 그 타겟 유전자인 ND4, Cyt b, COX1 및 COX3의 mRNA 발현을 확인하였다(표 4 primer 서열 참조). PGC-1β is a transcription factor well known to be activated by RANKL and involved in osteoclast differentiation. In order to confirm the effect of PGC-1β regulation of cinconin, mRNA expression of PGC-1β and its target genes ND4, Cyt b, COX1 and COX3 was confirmed by real-time PCR (see Table 4 primer sequence).
그 결과, 신코닌(20 μM)은 RANKL(50 ng/ml)에 의한 PGC-1β, ND4, Cyt b, COX1 및 COX3 mRNA 발현을 상당히 억제하였다(도 32의 A). 또한, 신코닌은 PGC-1β(rabbit polyclonal antibody, Abcam) 단백질의 발현도 저해하였으나, PGC-1β의 상위 전사인자인 CREB(phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz Biotechnology, Inc)의 인산화에는 영향을 주지 않았다(도 32의 B 및 C). As a result, cinconin (20 μM) significantly inhibited PGC-1β, ND4, Cyt b, COX1 and COX3 mRNA expression by RANKL (50 ng / ml) (FIG. 32A). In addition, Cinconin inhibited the expression of PGC-1β (rabbit polyclonal antibody, Abcam) protein, but CREB (phospho-CREB rabbit monoclonal antibody, Cell Signaling Technology; CREB mouse monoclonal antibody, Santa Cruz, a higher transcription factor of PGC-1β) Biotechnology, Inc) did not affect the phosphorylation (B and C of Figure 32).
<< 실험예Experimental Example 30>  30> 신코닌에In shinkonin 의한 파골세포의 골 흡수 억제 Inhibition of bone resorption by osteoclasts
신코닌의 파골세포의 분화억제 작용시점을 알아보기 위하여, RANKL을 처리하여 BMM 세포를 파골세포로 분화시키는 동안, 여러 시점 (E0, RANKL 처리시; E1, RANKL 1일 처리 후; E2, RANKL 2일 처리 후)에서 신코닌에 노출시키고 TRAP 염색된 다핵의 파골세포의 수를 분석하였다. To investigate the differentiation-inhibiting time of the osteoclasts of Cinconin, during differentiation of BMM cells into osteoclasts by treatment of RANKL, several time points (E0, RANKL treatment; E1, RANKL after 1 day treatment; E2, RANKL 2 After one treatment), the number of multinucleated osteoclasts stained with cinconin and TRAP stained.
그 결과, 신코닌(20 μM)을 RANKL(50 ng/ml)과 함께 처리하였을 때(E0)에는 파골세포의 형성을 거의 억제하였고, RANKL 1일 처리 후에 신코닌을 처리하였을 때(E1)에는 유의적으로 억제하였지만, 2일 후 신코닌을 처리하였을 때(E2)에는 파골세포 형성에 거의 영향을 주지 않았다(도 33의 A).As a result, when the treatment with cinnaconin (20 μM) with RANKL (50 ng / ml) (E0) almost suppressed the formation of osteoclasts, when treated with synonin after RANKL 1 day treatment (E1) Significant inhibition was observed, but little effect on osteoclast formation when treated with synonin after 2 days (E2) (FIG. 33A).
동일한 실험조건에서 NFATc1과 그 타겟 유전자인 CK, MMP9, TRAP 그리고 PGC-1β와 그 타겟 유전자인 ND4, COX1, COX3, 및 Cyt b 유전자의 발현 또한 real-time PCR을 통해 측정해 본 결과(표 4 primer 서열 참조) 신코닌을 RANKL과 함께 처리하였을 때(E0)에는 대부분 발현이 유의적으로 억제되었으나, RANKL 2일 처리 후(E2)에 노출된 신코닌에 의해서는 거의 억제가 되지 않았다(도 33의 B 및 C).Expression of NFATc1 and its target genes CK, MMP9, TRAP and PGC-1β and its target genes ND4, COX1, COX3, and Cyt b genes under the same experimental conditions were also measured by real-time PCR (Table 4). The expression was significantly inhibited when Cynconin was treated with RANKL (E0), but was hardly inhibited by Cynonin exposed after RANKL 2 days treatment (E2) (Fig. 33). B and c).
또한 유사한 실험조건에서 신코닌이 액틴 링(acting ring)의 형성과 골 흡수에 미치는 영향을 보기 위하여, BMM 세포에 3일 동안 RANKL을 처리하여 파골세포로 분화시킨 후 신코닌을 처리한 세포와, 신코닌을 RANKL과 함께 처리한 세포를 다음과 같이 고정하고 액틴링과 핵을 염색하거나 dentine disc에서 골 흡수 정도를 분석하였다. 3.7 % formaldehyde가 첨가된 PBS에서 세포를 고정하여 0.1 % Triton X-100 처리를 한 뒤, Alexa Fluor 488-phalloidin(Invitrogen)을 20 분간 처리하고, 다시 DAPI(4', 6-diamidino-2-phenylindole, Roche)로 염색하여 형광 현미경을 통해 관찰하였다. 또한 골 흡수 정도는 dentine disc(Immunodiagnostic Systems Ltd)에 배양된 세포들을 cotton tip을 사용하여 제거한 뒤 재흡수 구멍(resorption pit)을 hematoxylin으로 염색하여 현미경 100배율로 촬영한 사진을 Image-Pro Plus 4.5 software (Media Cybernetics)로 분석하였다.In addition, in order to see the effect of synonin on the formation of actin ring (acting ring) and bone resorption under similar experimental conditions, BMM cells were treated with RANKL for 3 days to differentiate into osteoclasts, Cells treated with Cinconin with RANKL were fixed as follows and stained for actining and nuclei or analyzed for bone resorption on dentine discs. The cells were fixed in PBS with 3.7% formaldehyde and treated with 0.1% Triton X-100, followed by Alexa Fluor 488-phalloidin (Invitrogen) for 20 minutes, followed by DAPI (4 ', 6-diamidino-2-phenylindole). , Roche) and observed through a fluorescence microscope. In addition, the degree of bone resorption was obtained by removing the cells cultured on dentine disc (Immunodiagnostic Systems Ltd) using cotton tip, and staining the resorption pit with hematoxylin. (Media Cybernetics).
그 결과, RANKL과 함께 처리하였을 때에는 신코닌은 액틴 링(acting ring)의 형성과 골 흡수를 억제하였으나 3일 동안 RANKL로 분화시킨 세포에서는 액틴링 형성 및 골 흡수를 억제하지 못하였다(도 33의 D 및 F).  As a result, when treated with RANKL, synonin inhibited the formation of acting ring and bone uptake, but did not inhibit actining formation and bone uptake in cells differentiated with RANKL for 3 days (Fig. 33). D and F).
이러한 결과는 신코닌이 파골세포의 형성과 골 흡수를 저해할 수 있음을 보여준다.These results show that cinconin may inhibit osteoclast formation and bone resorption.
<< 실험예Experimental Example 31>  31> 신코닌의Neoconinic 염증에 의한 골 손상 억제 Suppress bone damage caused by inflammation
신코닌의 염증에 의해 유발되는 골 손상 억제효능을 동물모델에서 확인하기 위해, 마우스 두개골에 염증유도물질인 LPS(Lipopolysaccharide, 12.5 mg/kg body weight)를 하루 간격을 두고 2회 주입하였다. 이 때 Vehicle (20% polyethylene glycol + 20% ethanol + 60% distilled water) 또는 신코닌 (10 mg/kg)이 함께 투여되었고, 첫 주입 5일 후에 두개골을 4% paraformaldehyde로 고정 하고 PBS 워싱하였다. 0.5 M ethylenediaminetetraacetic acid로 7일간 석회질을 제거하고 파라핀 블록을 만든 후 절단하여 TRAP과 Hematoxilin으로 염색한 뒤 관찰하였다.In order to confirm the inhibitory effect of bone damage caused by the inflammation of cinnaconin in an animal model, the mouse skull was infused with LPS (Lipopolysaccharide, 12.5 mg / kg body weight), which is an inflammation-inducing substance, twice daily at intervals. At this time, vehicle (20% polyethylene glycol + 20% ethanol + 60% distilled water) or cinconin (10 mg / kg) was administered together, and 5 days after the first injection, the skull was fixed with 4% paraformaldehyde and PBS washed. Decalcification was performed with 0.5 M ethylenediaminetetraacetic acid for 7 days, paraffin blocks were made, cut and stained with TRAP and hematoxilin for observation.
그 결과, LPS 유도에 의해 증가된 bone cavity와 파골세포의 수가 신코닌에 의해 상당히 감소되는 것을 확인하였다(도 34의 A 및 B).As a result, it was confirmed that the number of bone cavities and osteoclasts increased by LPS induction was significantly reduced by Cinconin (FIGS. 34A and 34).

Claims (43)

  1. 하기 화학식 1로 기재되는 유포비아 인자 L1(Euphorbia Factor L1) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 예방 또는 치료용 약학적 조성물:A pharmaceutical composition for preventing or treating bone diseases, comprising Euphorbia Factor L1 (Euphorbia Factor L1) or a pharmaceutically acceptable salt thereof as an active ingredient, represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2017007852-appb-I000005
    Figure PCTKR2017007852-appb-I000005
  2. 제 1항에 있어서, 상기 유포비아 인자 L1은 0.1 내지 20 μM 농도인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물. The pharmaceutical composition for preventing or treating bone disease according to claim 1, wherein the Euphorbia factor L1 is in a concentration of 0.1 to 20 μM.
  3. 제 1항에 있어서, 상기 조성물은 NFATc1, NF-κB, c-FOS 및 PGC-1β의 발현 또는 활성을 감소시키는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the composition is a pharmaceutical composition for the prevention or treatment of bone diseases, characterized in that the expression or activity of NFATc1, NF-κB, c-FOS and PGC-1β reduces.
  4. 제 1항에 있어서, 상기 조성물은 Nrf2의 발현 또는 활성을 증가시키는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the composition is a pharmaceutical composition for preventing or treating bone diseases, characterized in that for increasing the expression or activity of Nrf2.
  5. 제 1항에 있어서, 상기 조성물은 세포 내 활성산소의 생성을 억제하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the composition is a pharmaceutical composition for preventing or treating bone diseases, characterized in that the production of free radicals in the cell.
  6. 제 1항에 있어서, 상기 조성물은 분화된 파골세포의 사멸을 촉진하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the composition is a pharmaceutical composition for the prevention or treatment of bone diseases, characterized in that to promote the death of differentiated osteoclasts.
  7. 제 1항에 있어서, 상기 조성물은 염증에 의한 골 손상을 억제하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the composition is a pharmaceutical composition for preventing or treating bone diseases, characterized in that to inhibit bone damage caused by inflammation.
  8. 제 1항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The method of claim 1, wherein the bone disease is a growth stage of development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers), any one or more selected from the group consisting of a pharmaceutical composition for the prevention or treatment of bone diseases.
  9. 하기 화학식 1로 기재되는 유포비아 인자 L1(Euphorbia Factor L1) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 개선용 건강기능식품:Euphorbia Factor L1 (Euphorbia Factor L1) or a pharmaceutically acceptable salt thereof as an active ingredient, which is represented by the formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2017007852-appb-I000006
    Figure PCTKR2017007852-appb-I000006
  10. 제 9항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 골질환의 개선용 건강기능식품.10. The method of claim 9, wherein the bone disease is a growth stage development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers) health functional food for improvement of bone disease, characterized in that any one or more selected from the group consisting of.
  11. 하기 화학식 1로 기재되는 유포비아 인자 L1(Euphorbia Factor L1) 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료 방법:A method of preventing or treating bone disease, comprising administering Euphorbia Factor L1 or a pharmaceutically acceptable salt thereof to a mammal, which is represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2017007852-appb-I000007
    Figure PCTKR2017007852-appb-I000007
  12. 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 하기 화학식 1로 기재되는 유포비아 인자 L1(Euphorbia Factor L1) 또는 이의 약학적으로 허용 가능한 염의 용도:Use of Euphorbia Factor L1, or a pharmaceutically acceptable salt thereof, represented by Formula 1 for use in the manufacture of a medicament for the prevention or treatment of bone disease:
    [화학식 1][Formula 1]
    Figure PCTKR2017007852-appb-I000008
    Figure PCTKR2017007852-appb-I000008
  13. 하기 화학식 2로 기재되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 예방 또는 치료용 약학적 조성물:A pharmaceutical composition for preventing or treating bone diseases, comprising as an active ingredient a scullcapflavone derivative represented by Formula 2 or a pharmaceutically acceptable salt thereof:
    [화학식 2][Formula 2]
    Figure PCTKR2017007852-appb-I000009
    Figure PCTKR2017007852-appb-I000009
    (여기서, 상기 R1 및 R2는 H 또는 OCH3 임).Wherein R 1 and R 2 are H or OCH 3 .
  14. 제 13항에 있어서, 상기 스컬캅플라본 유도체는 스컬캅플라본 I 또는 스컬캅플라본 Ⅱ인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating bone disease according to claim 13, wherein the skull capflavone derivative is skull capflavone I or skull capflavone II.
  15. 제 13항에 있어서, 상기 스컬캅플라본 유도체는 0.1 내지 10 μM 농도인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물. The pharmaceutical composition for preventing or treating bone disease according to claim 13, wherein the skullcapflavone derivative is at a concentration of 0.1 to 10 μM.
  16. 제 13항에 있어서, 상기 조성물은 NFATc1, c-FOS, MAPKS, Src, AKT, CREB, PGC-1β 및 caveolin-1의 발현 또는 활성을 감소시키는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating bone diseases of claim 13, wherein the composition reduces the expression or activity of NFATc1, c-FOS, MAPK S , Src, AKT, CREB, PGC-1β and caveolin-1. Composition.
  17. 제 13항에 있어서, 상기 조성물은 Nrf2, FOXO1 및 catalase의 발현 또는 활성을 증가시키는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating bone disease according to claim 13, wherein the composition increases the expression or activity of Nrf2, FOXO1 and catalase.
  18. 제 13항에 있어서, 상기 조성물은 세포 내 활성산소의 생성을 억제하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The method of claim 13, wherein the composition is a pharmaceutical composition for preventing or treating bone diseases, characterized in that the production of free radicals in the cell.
  19. 제 13항에 있어서, 상기 조성물은 염증에 의한 골 손상을 억제하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.According to claim 13, wherein the composition is a pharmaceutical composition for the prevention or treatment of bone diseases, characterized in that to inhibit bone damage caused by inflammation.
  20. 제 13항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The method of claim 13, wherein the bone disease is a growth stage of development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers) is a pharmaceutical composition for the prevention or treatment of bone diseases, characterized in that at least one selected from the group consisting of.
  21. 하기 화학식 2로 기재되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 개선용 건강기능식품:A health functional food for improving bone disease, comprising as an active ingredient a scull capflavone derivative or a pharmaceutically acceptable salt thereof represented by Formula 2 below:
    [화학식 2][Formula 2]
    Figure PCTKR2017007852-appb-I000010
    Figure PCTKR2017007852-appb-I000010
    (여기서, 상기 R1 및 R2는 H 또는 OCH3 임).Wherein R 1 and R 2 are H or OCH 3 .
  22. 제 21항에 있어서, 상기 스컬캅플라본 유도체는 스컬캅플라본 I 또는 스컬캅플라본 II인 것을 특징으로 하는 골질환의 개선용 건강기능식품.22. The health functional food for improving bone disease according to claim 21, wherein the skull capflavone derivative is Skull cap Flavon I or Skull cap Flavon II.
  23. 제 21항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 골질환의 개선용 건강기능식품.22. The method of claim 21, wherein the bone disease is a growth stage of development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers) health functional food for improving bone disease, characterized in that at least one selected from the group consisting of.
  24. 하기 화학식 2로 기재되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료 방법:A method for preventing or treating bone disease, comprising administering to a mammal a skullcapflavone derivative represented by Formula 2 or a pharmaceutically acceptable salt thereof:
    [화학식 2][Formula 2]
    Figure PCTKR2017007852-appb-I000011
    Figure PCTKR2017007852-appb-I000011
    (여기서, 상기 R1 및 R2는 H 또는 OCH3 임).Wherein R 1 and R 2 are H or OCH 3 .
  25. 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 하기 화학식 2로 기재되는 스컬캅플라본 유도체 또는 이의 약학적으로 허용 가능한 염의 용도:Use of a skullcapflavone derivative represented by the following formula (2) or a pharmaceutically acceptable salt thereof for use in the manufacture of a medicament for the prevention or treatment of bone disease:
    [화학식 2][Formula 2]
    Figure PCTKR2017007852-appb-I000012
    Figure PCTKR2017007852-appb-I000012
    (여기서, 상기 R1 및 R2는 H 또는 OCH3 임).Wherein R 1 and R 2 are H or OCH 3 .
  26. 하기 화학식 5로 기재되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 것을 특징으로 하는, 골질환의 예방 또는 치료용 약학적 조성물:A pharmaceutical composition for preventing or treating bone diseases, characterized in that it contains dihydrocostus lactone represented by Formula 5 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 5][Formula 5]
    Figure PCTKR2017007852-appb-I000013
    Figure PCTKR2017007852-appb-I000013
  27. 제 26항에 있어서, 상기 디하이드로코스투스 락톤은 0.1 내지 10 μM 농도인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating bone disease of claim 26, wherein the dihydrocostus lactone is in a concentration of 0.1 to 10 μM.
  28. 제 26항에 있어서, 상기 조성물은 NFATc1, c-FOS, JNK, ERK, Src, AKT 및 caveolin-1의 발현 또는 활성을 감소시키는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition of claim 26, wherein the composition reduces the expression or activity of NFATc1, c-FOS, JNK, ERK, Src, AKT, and caveolin-1.
  29. 제 26항에 있어서, 상기 조성물은 염증에 의한 골 손상을 억제하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition of claim 26, wherein the composition inhibits bone damage caused by inflammation.
  30. 제 26항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.27. The method of claim 26, wherein the bone disease is a growth stage of development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers), any one or more selected from the group consisting of a pharmaceutical composition for the prevention or treatment of bone diseases.
  31. 하기 화학식 5로 기재되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 것을 특징으로 하는, 골질환의 개선용 건강기능식품:A dietary supplement for improving bone disease, characterized in that it contains dihydrocostus lactone represented by the following formula (5) or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 5][Formula 5]
    Figure PCTKR2017007852-appb-I000014
    Figure PCTKR2017007852-appb-I000014
  32. 제 31항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 골질환의 개선용 건강기능식품.32. The method of claim 31, wherein the bone disease is a growth stage development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers) health functional food for improvement of bone disease, characterized in that any one or more selected from the group consisting of.
  33. 하기 화학식 5로 기재되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료방법:A method for preventing or treating bone diseases, comprising administering to a mammal a dihydrocostus lactone represented by Formula 5 or a pharmaceutically acceptable salt thereof:
    [화학식 5][Formula 5]
    Figure PCTKR2017007852-appb-I000015
    Figure PCTKR2017007852-appb-I000015
  34. 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 하기 화학식 5로 기재되는 디하이드로코스투스 락톤 또는 이의 약학적으로 허용 가능한 염의 용도:Use of dihydrocostus lactone or a pharmaceutically acceptable salt thereof represented by Formula 5 for use in the manufacture of a medicament for the prevention or treatment of bone disease:
    [화학식 5][Formula 5]
    Figure PCTKR2017007852-appb-I000016
    Figure PCTKR2017007852-appb-I000016
  35. 하기 화학식 6으로 기재되는 신코닌 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 예방 또는 치료용 약학적 조성물:A pharmaceutical composition for the prevention or treatment of bone diseases, which contains as a active ingredient a cinnaconin or a pharmaceutically acceptable salt thereof represented by the following formula (6):
    [화학식 6][Formula 6]
    Figure PCTKR2017007852-appb-I000017
    Figure PCTKR2017007852-appb-I000017
  36. 제 35항에 있어서, 상기 신코닌은 0.1 내지 50 μM 농도인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.36. The pharmaceutical composition for preventing or treating bone disease according to claim 35, wherein the cinconin is in a concentration of 0.1 to 50 µM.
  37. 제 35항에 있어서, 상기 조성물은 NFATc1, NF-κB, ERK, Src, AKT, FOXO1, c-FOS 및 PGC-1β의 발현 또는 활성을 감소시키는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating bone disease of claim 35, wherein the composition reduces the expression or activity of NFATc1, NF-κB, ERK, Src, AKT, FOXO1, c-FOS, and PGC-1β. Composition.
  38. 제 35항에 있어서, 상기 조성물은 염증에 의한 골 손상을 억제하는 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.36. The pharmaceutical composition for preventing or treating bone disease according to claim 35, wherein the composition inhibits bone damage caused by inflammation.
  39. 제 35항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 골질환의 예방 또는 치료용 약학적 조성물.36. The method of claim 35, wherein the bone disease is a growth stage development, fracture, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers), any one or more selected from the group consisting of a pharmaceutical composition for the prevention or treatment of bone diseases.
  40. 하기 화학식 6으로 기재되는 신코닌 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는, 골질환의 개선용 건강기능식품:A health functional food for improving bone disease, which contains as a active ingredient a cinnaconin or a pharmaceutically acceptable salt thereof represented by the following formula (6):
    [화학식 6][Formula 6]
    Figure PCTKR2017007852-appb-I000018
    Figure PCTKR2017007852-appb-I000018
  41. 제 40항에 있어서, 상기 골질환은 성장기 발육부진, 골절, 과도한 파골세포의 골 흡수에 의한 골다공증(osteoporosis), 류마티스성 관절염(rheumatoid arthritis), 치주질환(periodontal disease), 파제트병(Paget disease) 및 전이성 골암(metastatic bone cancers)으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 골질환의 개선용 건강기능식품.41. The method of claim 40, wherein the bone disease is a growth stage of development, fractures, osteoporosis (osteoporosis) due to excessive bone resorption of osteoclasts (rheumatoid arthritis), periodontal disease (periodontal disease), Paget disease (Paget disease) ) And metastatic bone cancers (metastatic bone cancers) health functional food for improvement of bone disease, characterized in that any one or more selected from the group consisting of.
  42. 하기 화학식 6으로 기재되는 신코닌 또는 이의 약학적으로 허용 가능한 염을 포유류에 투여하는 것을 포함하는, 골질환의 예방 또는 치료방법:A method for preventing or treating bone disease, comprising administering to a mammal a neoconsin or a pharmaceutically acceptable salt thereof represented by Formula 6 below:
    [화학식 6][Formula 6]
    Figure PCTKR2017007852-appb-I000019
    Figure PCTKR2017007852-appb-I000019
  43. 골질환의 예방 또는 치료를 위한 약제의 제조에 사용하기 위한 하기 화학식 6으로 기재되는 신코닌 또는 이의 약학적으로 허용 가능한 염의 용도:Use of a Cinconin, or a pharmaceutically acceptable salt thereof, as described in Formula 6 for use in the manufacture of a medicament for the prevention or treatment of bone disease:
    [화학식 6][Formula 6]
    Figure PCTKR2017007852-appb-I000020
    Figure PCTKR2017007852-appb-I000020
PCT/KR2017/007852 2016-07-20 2017-07-20 Pharmaceutical composition for preventing or treating bone diseases WO2018016901A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2016-0091897 2016-07-20
KR10-2016-0091898 2016-07-20
KR10-2016-0091899 2016-07-20
KR10-2016-0091900 2016-07-20
KR1020160091900A KR101765141B1 (en) 2016-07-20 2016-07-20 Composition for prevention or treatment of bone disease containing skullcapflavone derivatives or pharmaceutically acceptable salts thereof as an active ingredient
KR1020160091899A KR101832351B1 (en) 2016-07-20 2016-07-20 Composition for prevention or treatment of bone disease containing cinchonine or pharmaceutically acceptable salts thereof as an active ingredient
KR1020160091897A KR101747775B1 (en) 2016-07-20 2016-07-20 Composition for prevention or treatment of bone disease containing Euphorbia Factor L1 or pharmaceutically acceptable salts thereof as an active ingredient
KR20160091898 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016901A1 true WO2018016901A1 (en) 2018-01-25

Family

ID=60992304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007852 WO2018016901A1 (en) 2016-07-20 2017-07-20 Pharmaceutical composition for preventing or treating bone diseases

Country Status (1)

Country Link
WO (1) WO2018016901A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110664803A (en) * 2019-09-19 2020-01-10 中山大学 Application of isoindolone compound in preparation of medicine for preventing and treating osteolytic diseases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070081294A (en) * 2006-02-10 2007-08-16 동화약품공업주식회사 Composition for preventing and curing osteoporosis comprising two terpenoids, fraction or extract from euphorbia kansui
KR20130059741A (en) * 2011-11-29 2013-06-07 케일럽 멀티랩 (주) Pharmaceutical compositions for preventing or treating arthritis comprising euphorbia ebracteolata extracts
KR20150050705A (en) * 2013-10-30 2015-05-11 한국과학기술연구원 Composition for increasing matrix metalloproteinase expression comprising Euphorbia lathyris extract and use thereof
KR101747775B1 (en) * 2016-07-20 2017-06-16 이화여자대학교 산학협력단 Composition for prevention or treatment of bone disease containing Euphorbia Factor L1 or pharmaceutically acceptable salts thereof as an active ingredient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070081294A (en) * 2006-02-10 2007-08-16 동화약품공업주식회사 Composition for preventing and curing osteoporosis comprising two terpenoids, fraction or extract from euphorbia kansui
KR20130059741A (en) * 2011-11-29 2013-06-07 케일럽 멀티랩 (주) Pharmaceutical compositions for preventing or treating arthritis comprising euphorbia ebracteolata extracts
KR20150050705A (en) * 2013-10-30 2015-05-11 한국과학기술연구원 Composition for increasing matrix metalloproteinase expression comprising Euphorbia lathyris extract and use thereof
KR101747775B1 (en) * 2016-07-20 2017-06-16 이화여자대학교 산학협력단 Composition for prevention or treatment of bone disease containing Euphorbia Factor L1 or pharmaceutically acceptable salts thereof as an active ingredient

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPENDINO, G: "An expeditious procedure for the isolation of ingenol from the seeds of Euphorbia lathyris", JOURNAL OF NATURAL PRODUCTS, vol. 62, no. 1, 1999, pages 76 - 79, XP055047805, DOI: 10.1021/np980218n *
ZHANG, J.-Y. ET AL.: "Apoptosis sensitization by Euphorbia factor L1 in ABCB1-mediated multidrug resistant K562/ADR cells", MOLECULES, vol. 18, no. 10, 2013, pages 12793 - 12808, XP055602584, DOI: 10.3390/molecules181012793 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110664803A (en) * 2019-09-19 2020-01-10 中山大学 Application of isoindolone compound in preparation of medicine for preventing and treating osteolytic diseases
CN110664803B (en) * 2019-09-19 2023-08-29 中山大学 Application of isoindolone compounds in preparation of medicines for preventing and treating osteolytic diseases

Similar Documents

Publication Publication Date Title
WO2017030410A1 (en) Composition for prevention or treatment of metabolic syndrome or for antioxidation containing black bean leaf extracts and flavonol glycosides isolated therefrom as active ingredients
WO2021162451A1 (en) Pharmaceutical composition for preventing or treating cancer, containing bile acids or derivatives thereof, biguanide-based compounds, and two or more kinds of antiviral agents as active ingredients
WO2019212196A1 (en) 2-amino-2-(1,2,3-triazole-4-yl)propane-1,3-diol derivative of novel compound for directly inhibiting asm activity, and use thereof
WO2015099392A1 (en) Pyranochromenyl phenol derivative, and pharmaceutical composition for treating metabolic syndrome or inflammatory disease
WO2021177519A1 (en) Pharmaceutical composition for preventing or treating cancer containing, as active ingredient, complex of biguanide-based compound and flavone, hydroxyflavone, flavanone, flavone derivative, hydroxyflavone derivative, or flavanone derivative
WO2013183920A1 (en) Pharmaceutical composition containing verbenone derivative for treating or preventing neurodegenerative disease
WO2021010715A1 (en) Pharmaceutical composition for preventing or treating bone diseases
WO2012067316A1 (en) Composition for prevention or treatment of metabolic diseases or complications thereof containing pterocarpan-based compounds or pharmaceutically acceptable salts thereof as active ingredient, or composition for antioxidation
WO2012046945A2 (en) Pharmaceutical and food composition for preventing or treating diabetes or obesity
WO2014030972A1 (en) Anticancer composition
WO2021107547A1 (en) Composition for prevention, alleviation, or treatment of respiratory disease
WO2018016901A1 (en) Pharmaceutical composition for preventing or treating bone diseases
WO2015072734A1 (en) Composition for preventing or treating osteoporosis, containing extract containing artemisia capillaris-derived scoparone as active ingredient
WO2018008803A1 (en) Novel use of sesquiterpene derivative
WO2022065968A1 (en) Pharmaceutical composition comprising evodiamine as active ingredient for prevention or treatment of non-small cell lung cancer
WO2019027239A2 (en) Composition for preventing hair loss or promoting hair growth
WO2021100897A1 (en) Pharmaceutical composition for preventing or treating cancer, comprising biguanide-based compound and ferrocene or ferrocene derivative as active ingredients
WO2021206455A1 (en) Fraction extract of melissa officinalis leaves and novel pharmaceutical composition including same
WO2020080641A1 (en) Composition for preventing or treating ampk-related diseases, comprising gynostemma longipes vk1 extract or compound isolated therefrom as active ingredient
WO2022019663A1 (en) Anti-inflammatory composition comprising benzofuran-based n-acylhydrazone derivatives
WO2022225259A1 (en) Anticancer composition inducing cell senescence and cell death
WO2023038413A1 (en) Composition for preventing, treating, or ameliorating influenza virus infection, comprising elaeocarpus sylvestris extracts, fractions, or phenolic compound derived therefrom as active ingredient
WO2023085894A1 (en) Novel thiourea derivative as activator of rorα and pharmaceutical composition comprising same
WO2023106884A1 (en) Composition including artemisia capillaris and bamboo shoot extract for prevention or treatment of bowel disease
WO2017192013A1 (en) Composition for improving muscular function or for enhancing exercise performance comprising vigna angularis var. angularis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831373

Country of ref document: EP

Kind code of ref document: A1