WO2018016719A1 - Slag stabilization treatment system - Google Patents

Slag stabilization treatment system Download PDF

Info

Publication number
WO2018016719A1
WO2018016719A1 PCT/KR2017/003956 KR2017003956W WO2018016719A1 WO 2018016719 A1 WO2018016719 A1 WO 2018016719A1 KR 2017003956 W KR2017003956 W KR 2017003956W WO 2018016719 A1 WO2018016719 A1 WO 2018016719A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
nozzle
port
main
cooling tower
Prior art date
Application number
PCT/KR2017/003956
Other languages
French (fr)
Korean (ko)
Inventor
오영미
박장수
Original Assignee
(주)유진에코씨엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유진에코씨엘 filed Critical (주)유진에코씨엘
Publication of WO2018016719A1 publication Critical patent/WO2018016719A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/04Making slag of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the present invention relates to a stabilization treatment technology of the slag generated in the steelmaking process, in particular to a technique for producing a stabilized slag ball by spraying a high pressure gas to the slag in the molten state.
  • blast furnace slag is used in various ways, such as concrete aggregates or mixed materials, cement additives, steelmaking slag has limited volume stability due to its low volume stability.
  • the low stability of steelmaking slag is mainly due to unreacted free lime (free-CaO). Free lime or magnesium forms hydroxide when it comes in contact with water and expands in volume. Therefore, aging is required, and the time is not only very long, but also the utilization is low due to low quality reliability after aging.
  • Steelmaking can be mainly divided into steelmaking by converters and electric furnaces.
  • the steelmaking process by converters is carried out in order of molten iron pretreatment, converter refining, secondary refining and continuous casting.
  • a molten iron pretreatment process is a process of mainly removing sulfur (S) component from the hot metal manufactured by melting iron ore in a furnace.
  • the converter refining process is a process of removing carbon and impurities in molten iron in the form of oxides of CO gas or slag by charging molten iron and scrap metal into the converter and blowing oxygen gas of high purity through a lance.
  • the molten iron from which impurities are removed through refining is molten steel.
  • This converter refining process is a method of dewatering and purifying the delineation in the decarburization converter by tapping the molten iron in the decarburization converter, and delineation and decarburization in a single converter. Method, so-called double slag method.
  • the steelmaking process by electric furnace is an oxidation process that removes impurities in the scrap metal by adding quicklime and blowing oxygen after dissolving scrap metal, and removes oxygen and sulfur by adding coke and quicklime to the molten steel again from the ladle. It can be divided into a reduction process. Slag is produced about 80% in the oxidation process and about 20% in the reduction process.
  • converter slag will vary depending on the raw material blending ratio, but generates about 150 ⁇ 180kg per tonne of molten steel.
  • steelmaking slag has low utilization due to limitations due to the volume expansion mechanism as described above.
  • the slag stabilization technique proposed to solve the above problems and increase the utilization of slag generated in the steelmaking process is atomizing method. Atomizing is performed by spraying high pressure compressed air while dropping molten slag to squeeze the slag to quench the slag, thereby obtaining slag balls.
  • the atomized slag ball has a very hard surface and is spherical in shape, so it is easy to work with. In addition, it has excellent physical and chemical properties and volume stability, such as low absorption rate and no elution of heavy metals. Slag balls are currently used in the industry as abrasives, press block materials, and weight materials.
  • Korean Patent No. 1194277 a slag atomizing treatment apparatus is introduced.
  • the conventional apparatus is configured such that the molten slag discharged from the slag port passes through the tundish and then falls into the gas injection zone.
  • Hydraulic cylinders were also used in the device for tilting the slag port.
  • the tundish disposed between the slag port and the nozzle causes the following problems.
  • the high temperature slag of 1400 ⁇ 1550 °C damages the tundish area of the dropping point, and the slag is cooled and fixed there, so it is necessary to remove the heavy slag by using heavy equipment such as a fork lane. Therefore, in the related art, not only two or more continuous operations are difficult, but also the slag processing time is delayed and the yield is low, and the cost increase due to frequent replacement of tundish is also a problem.
  • the tundish is disposed between the slag port and the nozzle, the distance between the tundish and the ground must be narrowed, so that the high pressure gas injection zone by the nozzle could not be expanded and the large-scale slag treatment was difficult.
  • the tundish is used to control the flow or flow rate of the molten slag discharged therefrom, but the molten slag is partially cooled and fixed as it is discharged from the tundish, which is inconsistent with a certain shape and quantity at a predetermined position. There was a problem that does not fall into. In addition, since the slag stuck in the tundish as well as the slag port after the operation must be removed, there is also a problem of excessive workload and time.
  • the inventors have found that there is more to lose than the benefit of using tundish. Especially when using tundish, a large amount of slag treatment is difficult to expect.
  • the hydraulic cylinder was conventionally used for tilting the slag port, but the hydraulic cylinder method is applicable when the cylinder is used less than five times a day in consideration of wear of the cylinder or replacement of hydraulic oil. It is not suitable as a mass processing equipment for slag that must be used more than once. In addition, in a slag treatment environment in which dust and high heat are generated, there is a problem that a fire occurs due to leakage.
  • the present invention is based on the above-mentioned recognition, and aims to provide a system and method for improving the efficiency of slag stabilization treatment and mass processing.
  • the tundish that is disposed between the slag port and the nozzle for the retention of the molten slag is omitted, and the fluid is directly injected from the nozzle to the slag discharged from the slag port falling.
  • the tundish may be omitted, thereby ensuring a sufficient high pressure fluid injection space between the slag port and the nozzle, and thus the arrangement of the nozzle may be more freely designed.
  • the nozzle may be installed in three stages above and below.
  • the nozzle may comprise an upper main nozzle portion; A sub nozzle portion disposed on both sides of the main nozzle portion below the main nozzle portion; And a lower nozzle part disposed under the sub nozzle part and having a larger left and right width than the main nozzle part.
  • the molten slag is quenched primarily by the main nozzle portion, whereby the slag not properly quenched can be further cooled by the lower nozzle.
  • the sub nozzle part may be operated when the flow of slag discharged from the slag port is partially changed or the amount of discharge slag is large.
  • the nozzle may be a laval jet nozzle or a single hole straight nozzle. Considering the degree of deceleration until reaching the molten slag falling from the nozzle, the injected fluid velocity may be about Mach 1.5-3.
  • the fluid ejected from the nozzle will primarily be air, and nitrogen or other inert gases can be used. Additionally water may be sprayed.
  • the fluid injection amount (mass flow rate) relative to the amount (mass flow rate) of slag discharged from the slag port needs to be controlled within a certain condition. And it is preferable that the falling distance and nozzle spray angle until molten slag discharged from a slag port hit a fluid are kept constant.
  • the nozzle position is configured to move in conjunction with the tilting movement of the slag port so that the nozzle injection angle and the drop distance can be constantly adjusted.
  • the nozzle is mounted on the nozzle mounting wall for preventing the slag from scattering backward, and the nozzle spraying angle and the fall distance can be constantly adjusted by moving the nozzle mounting wall downward as the slag port is tilted. It can be configured to be.
  • the tilting device for tilting the port for discharge of the slag, the port table on which the slag port is seated; A locking member for fixing the slag port seated on the port table; And a tilting drive mechanism for pivoting the port table and rotating the port table.
  • the slag stabilization treatment is carried out by placing the slag excluded from the converter or electric furnace in the port and transporting it to the bogie, then placing the slag port on the port table and fixing it with a locking member, and tilting the port table with a tilting drive mechanism to drop the slag.
  • the tilting drive mechanism may include a gear assembly that transmits a driving force of the electric motor and the motor.
  • the slag scattered forward by the fluid injected from the nozzle can be collected in the sealed rotary container.
  • Rotary containers should be equipped with a sorting function in addition to collecting slag balls.
  • the rotary container needs to be rotatable for sorting, and a hole for sorting slag balls may be formed in the circumferential surface of the rear end.
  • Slag balls with a small particle diameter for example 10 mm or less, may be selectively collected through holes in the rear end of the rotary container.
  • the quench slag remaining after the sorting may, for example, be discharged by tilting the container.
  • an exhaust port is provided at the rear end of the rotary container and collected by the dust collector. If the nozzles and tilting devices are installed in a building, the collecting device may be connected to the exhaust of the building.
  • Dust collector vertical spraying cooling tower connected to the exhaust port of the rotary container or structure; A separator connected to the rear end of the spraying cooling tower; A water tank into which water discharged from the spraying cooling tower and the separator is introduced; And at least one blower fan provided on the exhaust line of the structure to provide a dust discharge pressure and flowing from the structure to the separator through a water spray cooling tower.
  • the work for removing the slag stuck in the tundish is unnecessary, and since the nozzle can be arranged three or more steps up and down under the slag port, the efficiency of slag stabilization treatment is high and Slag stabilization treatment is possible.
  • quenched slag balls are collected and sorted in the rotary container, so no separate slag ball collection and sorting operations are required, and dust and high heat flowing into the rotary container can be discharged and cooled uniformly, thereby improving the efficiency of slag stabilization. High and bulk slag treatment is possible.
  • FIG. 1 is a view for explaining the quenching treatment of molten slag according to an embodiment of the present invention
  • FIG. 2 is a view showing a nozzle mounting wall on which a nozzle and a nozzle are mounted according to an embodiment of the present invention
  • FIG. 3 is a view showing a slag port tilting device according to an embodiment of the present invention.
  • FIG. 4 is a schematic perspective view of the port table shown in FIG.
  • FIG. 5 is a view showing a rotary container according to an embodiment of the present invention.
  • FIG. 6 is a view showing a dust collecting apparatus according to an embodiment of the present invention.
  • FIG. 1 shows a slag port 10 containing molten slag and a nozzle 20 for spraying high pressure air forward for stabilization of molten slag discharged therefrom.
  • no tundish for retaining molten slag is disposed between the slag port 10 and the nozzle 20.
  • High pressure air is directly injected from the nozzle 20 to the molten slag discharged by tilting the slag port 10 about the horizontal axis 53.
  • the distance between the nozzle 20 and the hot water outlet of the slag port 10 is preferably adjusted as close as possible.
  • the slag port 10 which is set up at 90 °, should be gradually inclined to discharge molten slag, and in order to continuously discharge the molten slag, the slag port 10 should be gradually inclined.
  • the slag port 10 tilting apparatus will be described later.
  • the nozzle injection angle can be seen, for example, at an angle to the spray centerline A directed by the nozzle 20 with respect to the imaginary horizontal plane.
  • the falling distance until the slag discharged from the slag port 10 hits the high-pressure air injected from the nozzle 20 is kept constant.
  • this distance h may remain the same until the time when slag discharge is completed.
  • the nozzle 20 is fixedly mounted to the nozzle mounting wall 30.
  • the nozzle mounting wall 30 is a member on which the nozzle 20 is mounted and a slag blocking wall for preventing the slag discharged from the slag port 10 from scattering backward.
  • a general apparatus for supplying high pressure air to the nozzle 20 behind the nozzle mounting wall 30 is omitted.
  • the nozzle mounting wall 30 can be moved inclined downward by the moving mechanism 31 provided behind it.
  • the movement of the nozzle mounting wall 30 by the moving mechanism 31 is linked to the inclination angle of the slag port 10.
  • the moving mechanism 31 may be a hydraulic cylinder having a rod 31a.
  • the nozzle mounting wall 30 need not be a cement wall at all. It is suitable to mount and move the nozzle 20 and is provided in size, thickness and material. The moving mechanism 31 behind the nozzle mounting wall 30 is blocked by the mounting wall 30 so that molten slag or dust does not flow in.
  • an inclined bottom plate 40 inclined downward is provided Under the nozzle 20 or the nozzle mounting wall 30, an inclined bottom plate 40 inclined downward is provided. Most slag hit by high pressure air will fly forward, but otherwise slag may fall near the nozzle 20. The inclined bottom plate 40 allows slag falling near the nozzle 20 to flow forward to facilitate collection.
  • the slag When the slag is initially discharged from the tap opening of the port 10, it will be discharged by a predetermined amount at a predetermined position, but as time passes, partial solidification occurs at the tap and the discharge position may be changed or the discharge may be increased or decreased.
  • the arrangement of the nozzle 20 is free, and it is possible to cope with the fluctuation situation during the operation and to process the slag in a large capacity.
  • the nozzle 20 shows the arrangement of the nozzles provided on the nozzle mounting wall 30.
  • the nozzle 20 is arranged in multiple stages in the vertical direction, and is also widely disposed in the left and right directions.
  • the nozzle 20 includes a main nozzle part 21 at an upper side, a sub nozzle part 22 disposed below both main nozzle parts, and a sub nozzle part at both sides of the main nozzle part. It is provided with a large lower nozzle portion 23 disposed below and wider than the main nozzle portion.
  • the main nozzle part 21 is a nozzle which plays a main role in quenching molten slag falling from the slag port 10, and most molten slag is quenched by the main nozzle part 21.
  • the nozzle spray angle may be set based on the spray center line of the main nozzle portion 21.
  • the lower nozzle portion 23 additionally quenchs the slag that has not been quenched by the main nozzle portion 21. Since the falling direction of the slag may be changed by the influence of the high pressure air from the main nozzle portion 21, the lower nozzle portion 23 may be distributed in a wider horizontal direction than the main nozzle portion 21. In the case of a single hole nozzle, the left and right widths are formed long.
  • the production ratio is not high. Therefore, it is necessary to quench the molten slag as much as possible by the primary treatment.
  • the slag discharged from the hot water outlet of the slag port 10 may be changed in the discharge direction during operation.
  • the sub-nozzle unit 22 assists the main nozzle unit 21 so that the molten slag can be atomized as much as possible by primary contact, and the nozzle is provided to cope with the above-mentioned fluctuations during operation.
  • the sub nozzle part 22 is widely disposed to the left and right of the main nozzle part 21 and is disposed at a distance directly below the main nozzle part 21, preferably within 50 cm, more preferably within 30 cm. When the amount of molten slag to be treated is large or there is a variation in the slag discharge direction, the sub nozzle unit 22 can be operated.
  • the blocking wall 32 is installed for the purpose of heat dissipation to prevent the slag from scattering backward and to block the generated high heat.
  • the blocking wall 32 is detachably arranged on the left and right sides of the nozzle mounting wall 30.
  • FIG 3 shows a tilting device 50 for tilting the slag port 10 for the discharge of slag.
  • the tilting device 50 includes a port member 51 on which the slag port 10 is seated, and a locking member for fixing the slag port 10 seated on the port table 51. And a tilting drive mechanism for pivoting the port table 51 and rotating the port table 51.
  • the port table 51 is formed in a shape in which the slag port 10 is stacked and can be seated thereon. Although it may vary depending on the depth of the pot table 51, the mouse 51a which is recessed downward concave for discharging slag in the area where the tapping hole of the slag port 10 is located in the seated state is preferably To be prepared.
  • the slag port 10 is provided with trunnions protruding from side to side for holding the port 10.
  • the port table 51 may be formed with a guide groove for entering the trunnion downward, the locking member is configured to lock the trunnion across the guide groove, or various other known techniques can be applied. There will be.
  • the tilting drive mechanism may be composed of a gear assembly which transmits the driving force of the electric motor 56 and the electric motor 56 to the port table 51.
  • the gear assembly may include a main gear 52, a sub gear 54, a gear box 55, and a drive shaft 57.
  • the port table 51 is axially fixed to the main gear 52.
  • the driving force of the electric motor 56 is transmitted to the main gear 52 through the gear box 55 and the sub gear 54, the port table 51 connected to the horizontal shaft 53 by the rotational force of the main gear 52 Is rotated.
  • the rotational force transmission of the main gear 52 causes the port table 51 to be rotated by the horizontal axis 53 or a gear corresponding to the main gear 52 is provided on the port table 51 to center the horizontal axis 53.
  • the port table 51 may be implemented in such a manner as to rotate.
  • a blocking film 58 may be installed between the port table 51 and the gear assembly.
  • a blocking film 58 is provided at a portion of the main gear 52 that faces the port table 51 so that high heat, dust, slag, and the like do not enter.
  • FIG. 5 shows a rotary container 60 configured in a closed type to easily collect and sort slag quenched by nozzle injection.
  • the rotary container 60 As shown in FIG. 5, the rotary container 60 according to the embodiment is provided with a slag inlet 63 at the front and a support body rotatably supporting the main body 61 and the main body 61 provided with the exhaust port 64 at the rear.
  • a frame (not shown) and rotating mechanisms (65, 66, 67) for providing a rotational force to the body.
  • the main body 61 is formed in a cylindrical shape, and the inlets 63 and the exhaust ports 64 are provided with extensions 63a and 64a for seating the main body 61 on the support frame.
  • a bearing may be interposed between the extensions 63a and 64a and the support frame, and the driving force of the motor 67 is transmitted to the main body 61 by the engagement gears 65 and 66.
  • the through-hole 62 for sorting the collected quench slag is formed in the peripheral surface of the rear end of the main body 61.
  • the quenching slag forwarded by the nozzle injection is introduced into the main body 61 through the inlet 63, and the small-sized slag ball transported far to the rear end of the main body 61 rotates the main body 61.
  • the through hole 62 is selected.
  • the slag left in the main body 61 after the operation can be discharged by tilting the main body in the inlet 63 direction, or by providing an opening and closing door (not shown) in the main body 61 itself.
  • the rotary container 60 may be configured to be mobile.
  • the exhaust port 64 of the main body 61 is provided with a pressure for high heat and dust discharge. Even though the through hole 62 is formed at the rear end of the main body 61, the dust and the high heat inside the main body 61 can be led to the exhaust port 64 by adjusting the pressure provided to the exhaust port 64.
  • FIG. 6 shows collecting devices 70, 80, 90, and 100 for collecting and cooling dust or high heat discharged from the exhaust port 64 of the rotary container 60.
  • L1 to L5 are transfer lines for dust or moisture.
  • Cooling tower 70 is configured in a vertical type, while the high heat and dust is transported to the upper, it is cooled and removed by a plurality of sprayers 71 arranged in multiple layers up and down. The water after the watering is collected in the water tank 100 through the transfer line L4.
  • Dust or high heat passing through the cooling tower 70 is supplied to the separator 80 through the transfer line L2.
  • the gas and the water are separated, the gas is discharged to the outside through the blower 90 through the transfer line L3, the moisture is collected in the water tank 100 through the transfer line L5.
  • the slag stabilization treatment method includes the steps of discharging molten slag by tilting the slag port, and rapidly cooling by injecting high pressure air into the molten slag free-falling from the slag port using a nozzle at high speed, further melting
  • the method may further include recovering and cooling the dust or high heat generated during the quenching of the slag.
  • the nozzle position is moved so that the nozzle ejection angle and the drop distance from the slag discharged from the slag port to strike the ejected fluid from the nozzle can be kept constant.
  • the slag stabilization treatment system described above and the process using the same may be used to adjust the nozzle spray angle or drop distance, to collect the quench slag, and to discharge and cool the dust or high heat generated during the slag quenching process.
  • main nozzle portion 22 sub nozzle portion
  • blower 100 water tank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Furnace Details (AREA)

Abstract

Introduced is a stabilization treatment technique for slag generated in an ironmaking process. A nozzle spray angle and a fall distance (h) representing the distance until molten slag discharged from a slag pot (10) collides with a fluid sprayed from a nozzle (20) are constantly maintained, and a tundish for retaining molten slag is not arranged between the slag pot (10) and the nozzle (20).

Description

슬래그 안정화 처리 시스템Slag stabilization treatment system
본 발명은 제철 과정에 발생되는 슬래그의 안정화 처리기술, 특히 용융 상태의 슬래그에 고압가스를 분사하여 안정화된 슬래그볼로 제조하는 기술에 관한 것이다.The present invention relates to a stabilization treatment technology of the slag generated in the steelmaking process, in particular to a technique for producing a stabilized slag ball by spraying a high pressure gas to the slag in the molten state.
제철 과정에 다량의 슬래그가 발생한다. 이 중 고로슬래그는 콘크리트용 골재 또는 혼화재료, 시멘트 첨가제 등 다양하게 이용됨에 비해, 제강슬래그는 체적 안정성이 낮아 활용이 제한되었다.Large amounts of slag are generated in the steelmaking process. Among them, blast furnace slag is used in various ways, such as concrete aggregates or mixed materials, cement additives, steelmaking slag has limited volume stability due to its low volume stability.
제강슬래그의 낮은 안정성은 주로는 미반응 유리석회(free-CaO)에 기인한다. 유리된 석회나 마그네슘은 수분을 접할 경우 수산화물을 생성하며 부피가 팽창한다. 때문에 에이징이 필요한데, 그 시간이 매우 길뿐만 아니라 에이징 이후에도 품질 신뢰도가 낮아 활용도가 낮았다.The low stability of steelmaking slag is mainly due to unreacted free lime (free-CaO). Free lime or magnesium forms hydroxide when it comes in contact with water and expands in volume. Therefore, aging is required, and the time is not only very long, but also the utilization is low due to low quality reliability after aging.
제강은 주로 전로와 전기로에 의한 제강으로 나뉠 수 있는데, 전로에 의한 제강공정은 용선 예비처리공정, 전로 정련공정, 이차정련공정 및 연속주조공정 순으로 진행된다.Steelmaking can be mainly divided into steelmaking by converters and electric furnaces. The steelmaking process by converters is carried out in order of molten iron pretreatment, converter refining, secondary refining and continuous casting.
용선 예비처리공정은, 용광로에서 철광석을 녹여 제조된 용선(hot metal)으로부터 주로는 유황(S)성분을 제거하는 공정이다.A molten iron pretreatment process is a process of mainly removing sulfur (S) component from the hot metal manufactured by melting iron ore in a furnace.
전로정련공정은 용선과 고철을 전로에 장입한 후 랜스를 통해 고순도의 산소가스를 취입함으로써 용선 중 탄소와 불순물을 CO 가스 또는 슬래그 중 산화물 형태로 제거하는 공정이다. 정련을 통해 불순물이 제거된 용선이 용강(molten steel)이다.The converter refining process is a process of removing carbon and impurities in molten iron in the form of oxides of CO gas or slag by charging molten iron and scrap metal into the converter and blowing oxygen gas of high purity through a lance. The molten iron from which impurities are removed through refining is molten steel.
이러한 전로정련공정은 탈린 정련 후, 탈린 용선을 출탕하여 탈탄 전로에서 탈탄 정련을 진행하는 방법과, 단일의 전로 내에서 탈린 및 탈탄을 진행하되, 탈린 공정과 탈탄 공정 사이에 탈린된 슬래그를 중간 배제하는 방법, 이른바 더블 슬래그법으로 구분될 수 있다.This converter refining process is a method of dewatering and purifying the delineation in the decarburization converter by tapping the molten iron in the decarburization converter, and delineation and decarburization in a single converter. Method, so-called double slag method.
전기로에 의한 제강공정은 고철을 용해한 후 생석회를 투입하고 산소를 불어넣으면서 고철 중에 존재하는 불순물을 제거하는 산화공정과, 용강을 다시 래들(ladle)에서 코크스와 생석회를 투입하여 산소와 황 등을 제거하는 환원공정으로 구분될 수 있다. 슬래그는 산화공정에서 약 80%, 환원공정에서 약 20%가 생성된다.The steelmaking process by electric furnace is an oxidation process that removes impurities in the scrap metal by adding quicklime and blowing oxygen after dissolving scrap metal, and removes oxygen and sulfur by adding coke and quicklime to the molten steel again from the ladle. It can be divided into a reduction process. Slag is produced about 80% in the oxidation process and about 20% in the reduction process.
위와 같은 제강공정을 거쳐 발생된 슬래그, 예로서 전로슬래그는 원료 배합비에 따라 다르겠으나 용강 1톤당 대략 150~180kg이 발생한다. 그러나 이러한 제강슬래그는 앞서 살펴본 바와 같이 부피 팽창메카니즘 등으로 인한 제약으로 인해 활용도가 낮았다.Slag generated through the steelmaking process as described above, for example, converter slag will vary depending on the raw material blending ratio, but generates about 150 ~ 180kg per tonne of molten steel. However, such steelmaking slag has low utilization due to limitations due to the volume expansion mechanism as described above.
위와 같은 문제의 해결과 제철 과정에 발생된 슬래그의 활용도를 높이기 위해 제안된 슬래그 안정화 기술이 아토마이징 공법이다. 아토마이징은 용융 슬래그를 낙하시키면서 고압의 압축공기를 분사하여 슬래그를 비산 급냉시키는 방식으로 수행되며, 이에 의해 슬래그볼이 얻어진다.The slag stabilization technique proposed to solve the above problems and increase the utilization of slag generated in the steelmaking process is atomizing method. Atomizing is performed by spraying high pressure compressed air while dropping molten slag to squeeze the slag to quench the slag, thereby obtaining slag balls.
아토마이징 처리된 슬래그볼은 매우 단단한 표면을 가지며 구형의 입상이므로 작업성이 좋다. 또한 흡수율이 낮고 중금속을 용출시키지 않는 등 물리적, 화학적 특성과 체적 안정성이 우수하다. 현재 슬래그볼은 연마재, 보도블럭 재료, 웨이트재 등으로 산업에서 활용되고 있다.The atomized slag ball has a very hard surface and is spherical in shape, so it is easy to work with. In addition, it has excellent physical and chemical properties and volume stability, such as low absorption rate and no elution of heavy metals. Slag balls are currently used in the industry as abrasives, press block materials, and weight materials.
한국등록특허 제1194277호에는 슬래그 아토마이징 처리장치가 소개되어 있다. 이 특허에서 보듯이, 종래 장치는 슬래그 포트에서 배출된 용융 슬래그가 턴디시를 거친 후, 가스 분사구역으로 낙하되도록 구성되었다. 또한 슬래그 포트를 기울이기 위한 장치에 유압실린더가 이용되었다.In Korean Patent No. 1194277, a slag atomizing treatment apparatus is introduced. As shown in this patent, the conventional apparatus is configured such that the molten slag discharged from the slag port passes through the tundish and then falls into the gas injection zone. Hydraulic cylinders were also used in the device for tilting the slag port.
종래에 슬래그 포트와 노즐 사이에 배치된 턴디시는 다음과 같은 문제를 야기한다.Conventionally, the tundish disposed between the slag port and the nozzle causes the following problems.
첫 번째로, 1400~1550℃에 이르는 고온의 슬래그는 낙하지점의 턴디시 부위를 손상시키고 여기에 슬래그가 냉각 및 고착되기에, 포크레인 등의 중장비를 이용하여 이를 제거하기 위한 작업이 필요하다. 따라서 종래에는 2회 이상의 연속 조업이 어려울 뿐만 아니라 그만큼 슬래그 처리 시간이 지연되고 수율은 낮을 수밖에 없었으며, 또한 턴디시의 잦은 교체로 인한 비용 상승도 문제가 되었다.First, the high temperature slag of 1400 ~ 1550 ℃ damages the tundish area of the dropping point, and the slag is cooled and fixed there, so it is necessary to remove the heavy slag by using heavy equipment such as a fork lane. Therefore, in the related art, not only two or more continuous operations are difficult, but also the slag processing time is delayed and the yield is low, and the cost increase due to frequent replacement of tundish is also a problem.
두 번째로, 슬래그 포트와 노즐 사이에 턴디시가 배치되므로 턴디시와 지면 사이의 거리가 좁아질 수밖에 없어, 노즐에 의한 고압가스 분사구역을 확장할 수 없었고 대용량의 슬래그 처리가 어려웠다.Secondly, since the tundish is disposed between the slag port and the nozzle, the distance between the tundish and the ground must be narrowed, so that the high pressure gas injection zone by the nozzle could not be expanded and the large-scale slag treatment was difficult.
세 번째로, 턴디시를 이용하여 이로부터 배출되는 용융 슬래그의 유동이나 유량을 조절하고자 한 것이나, 용융 슬래그가 턴디시로부터 배출되면서 부분적으로 냉각 고착되어, 의도와 달리, 일정한 위치에서 일정한 형태와 양으로 낙하되지 않는 문제가 있었다. 또한 조업 후, 슬래그 포트는 물론 턴디시에 고착된 슬래그도 제거해야 하므로 작업량과 시간이 과다해지는 문제도 있다.Thirdly, the tundish is used to control the flow or flow rate of the molten slag discharged therefrom, but the molten slag is partially cooled and fixed as it is discharged from the tundish, which is inconsistent with a certain shape and quantity at a predetermined position. There was a problem that does not fall into. In addition, since the slag stuck in the tundish as well as the slag port after the operation must be removed, there is also a problem of excessive workload and time.
위와 같이 본 발명자는 턴디시를 사용함에 의해 얻는 이익보다는 잃는 것이 더 많다는 것을 알게 되었다. 특히 턴디시를 이용할 경우, 대량의 슬래그 처리는 기대하기 어렵다.As mentioned above, the inventors have found that there is more to lose than the benefit of using tundish. Especially when using tundish, a large amount of slag treatment is difficult to expect.
한편, 앞서 언급되었듯이 종래에 슬래그 포트의 틸팅을 위해 유압실린더가 이용되었는데, 유압 실린더 방식은 실린더의 마모나 유압유의 교체등을 고려할 때 1일 5회 미만의 사용 시에는 적용 가능하나 1일 10회 이상을 사용하여야 하는 슬래그 대량 처리 설비로서는 적합하지 않다. 또한 분진과 고열이 발생하는 슬래그 처리 환경에서, 누유로 인한 화재가 발생하는 문제점도 있다.On the other hand, as mentioned above, the hydraulic cylinder was conventionally used for tilting the slag port, but the hydraulic cylinder method is applicable when the cylinder is used less than five times a day in consideration of wear of the cylinder or replacement of hydraulic oil. It is not suitable as a mass processing equipment for slag that must be used more than once. In addition, in a slag treatment environment in which dust and high heat are generated, there is a problem that a fire occurs due to leakage.
본 발명은 위와 같은 인식에 기초한 것으로, 슬래그 안정화 처리의 효율성을 높이고 대량 처리가 가능한 시스템 및 방법을 제공하고자 하는 것이다.The present invention is based on the above-mentioned recognition, and aims to provide a system and method for improving the efficiency of slag stabilization treatment and mass processing.
본 발명의 또 다른 목적들은 이하의 기재내용으로부터 이해될 수 있을 것이다.Still other objects of the present invention will be understood from the following description.
위 목적을 달성하기 위한 본 발명에 의하면, 용융 슬래그의 체류를 위해 슬래그 포트와 노즐 사이 배치되었던 턴디시가 생략되며, 슬래그 포트로부터 배출되어 낙하하는 슬래그에 노즐로부터 유체가 직접 분사된다.According to the present invention for achieving the above object, the tundish that is disposed between the slag port and the nozzle for the retention of the molten slag is omitted, and the fluid is directly injected from the nozzle to the slag discharged from the slag port falling.
본 발명에 의하면 턴디시가 생략되어 슬래그 포트와 노즐 사이에 충분한 고압의 유체 분사공간을 확보할 수 있으며, 이에 따라 노즐의 배치가 보다 자유롭게 설계될 수 있다.According to the present invention, the tundish may be omitted, thereby ensuring a sufficient high pressure fluid injection space between the slag port and the nozzle, and thus the arrangement of the nozzle may be more freely designed.
본 발명에 의하면 노즐은 상중하 3단으로 설치될 수 있다. 예로서 노즐은 상부의 메인 노즐부; 메인 노즐부의 양 사이드에, 메인 노즐부보다는 아래에 배치된 서브 노즐부; 및 서브 노즐부 아래에 배치되며 메인 노즐부보다 좌우 폭이 큰 하부 노즐부;를 포함할 수 있다.According to the present invention, the nozzle may be installed in three stages above and below. By way of example, the nozzle may comprise an upper main nozzle portion; A sub nozzle portion disposed on both sides of the main nozzle portion below the main nozzle portion; And a lower nozzle part disposed under the sub nozzle part and having a larger left and right width than the main nozzle part.
메인 노즐부에 의해 1차적으로 용융 슬래그가 급냉되며, 이에 의해 제대로 급냉되지 못한 슬래그는 하부 노즐에 의해 추가적으로 냉각될 수 있다. 서브 노즐부는 슬래그 포트로부터 배출되는 슬래그의 흐름이 일부 변경되거나 배출 슬래그양이 많을 때 작동될 수 있다.The molten slag is quenched primarily by the main nozzle portion, whereby the slag not properly quenched can be further cooled by the lower nozzle. The sub nozzle part may be operated when the flow of slag discharged from the slag port is partially changed or the amount of discharge slag is large.
노즐로는 라발(laval)형태의 제트 노즐이나 단공의 스트레이트 노즐이 사용될 수 있다. 노즐에서 낙하하는 용융 슬래그에 도달할 때까지의 감속 정도를 고려하면, 분사되는 유체 속도는 마하 1.5~3 정도일 수 있다. 노즐로부터 분사되는 유체는 주로는 공기일 것이며, 질소나 기타 불활성가스가 사용될 수 있다. 추가적으로 물이 분무될 수 있다.The nozzle may be a laval jet nozzle or a single hole straight nozzle. Considering the degree of deceleration until reaching the molten slag falling from the nozzle, the injected fluid velocity may be about Mach 1.5-3. The fluid ejected from the nozzle will primarily be air, and nitrogen or other inert gases can be used. Additionally water may be sprayed.
슬래그 안정화 처리를 위해서는, 슬래그 포트로부터 배출되는 슬래그의 양(질량유속)에 대한 유체 분사량(질량유속)은 일정 조건 이내로 제어될 필요가 있다. 그리고 슬래그 포트로부터 배출된 용융 슬래그가 유체에 부딪히기까지의 낙하거리와 노즐 분사각은 일정하게 유지되는 것이 바람직하다.For the slag stabilization treatment, the fluid injection amount (mass flow rate) relative to the amount (mass flow rate) of slag discharged from the slag port needs to be controlled within a certain condition. And it is preferable that the falling distance and nozzle spray angle until molten slag discharged from a slag port hit a fluid are kept constant.
본 발명에 따르면, 노즐 분사각과 낙하거리가 일정하게 조절될 수 있도록, 노즐 위치가 슬래그 포트의 틸팅 움직임에 연동하여 이동할 수 있도록 구성된다.According to the present invention, the nozzle position is configured to move in conjunction with the tilting movement of the slag port so that the nozzle injection angle and the drop distance can be constantly adjusted.
본 발명에 의하면, 노즐은 후방으로 슬래그가 비산되지 않도록 하기 위한 노즐 장착벽에 장착되며, 슬래그 포트가 기울어짐에 따라 노즐 장착벽이 하향 이동되도록 하여 노즐 분사각과 낙하거리가 일정하게 조절될 수 있도록 구성될 수 있다.According to the present invention, the nozzle is mounted on the nozzle mounting wall for preventing the slag from scattering backward, and the nozzle spraying angle and the fall distance can be constantly adjusted by moving the nozzle mounting wall downward as the slag port is tilted. It can be configured to be.
본 발명에 의하면, 슬래그의 배출을 위해 포트를 기울이기 위한 틸팅장치는, 슬래그 포트가 안착되는 포트 테이블; 포트 테이블에 안착된 슬래그 포트를 고정하기 위한 로킹부재; 및 포트 테이블이 축고정되며, 포트 테이블을 회전시키기 위한 틸팅 구동기구;를 포함할 수 있다.According to the present invention, the tilting device for tilting the port for discharge of the slag, the port table on which the slag port is seated; A locking member for fixing the slag port seated on the port table; And a tilting drive mechanism for pivoting the port table and rotating the port table.
슬래그 안정화 처리는 전로 또는 전기로에서 배재된 슬래그를 포트에 담아 대차로 이송한 후, 슬래그 포트를 포트 테이블 위에 얹어 로킹부재로 고정하고, 틸팅 구동기구로 포트 테이블을 틸팅시켜, 슬래그를 낙하시키는 방식으로 수행될 수 있다. 틸팅 구동기구로는 전동모터와 모터의 구동력을 전달하는 기어조립체로 구성될 수 있다.The slag stabilization treatment is carried out by placing the slag excluded from the converter or electric furnace in the port and transporting it to the bogie, then placing the slag port on the port table and fixing it with a locking member, and tilting the port table with a tilting drive mechanism to drop the slag. Can be performed. The tilting drive mechanism may include a gear assembly that transmits a driving force of the electric motor and the motor.
고압 공기를 분사하여 낙하하는 고온의 용융 슬래그를 급냉시키는 과정에 미세화된 볼이나 분진이 비산하거나 고열이 주변으로 확산되어 작업장 환경이 열악해질 수 있다.In the process of quenching high-temperature molten slag falling by injecting high-pressure air, finer balls or dust are scattered or high heat is diffused to the surroundings, which may result in a poor workplace environment.
종래의 경우 슬래그 안정화 처리는 단지 건물 내에서 이루어졌다. 이러한 경우, 내부에 쌓인 슬래그볼 제품을 외부로 반출하기 위해서는 건물 내부로 페이로더 등의 중장비가 진입하여 스크루형 배출장치에 수거하는 작업 등이 필요한데, 비효율적일 뿐만 아니라 작업장 환경이 열악하여 작업을 수행하기에 어려움이 있었다.In the conventional case, the slag stabilization treatment was only done in the building. In this case, in order to take out the slag ball products piled up inside, heavy equipment such as payloader enters the building and collects them in the screw-type discharge device, which is not only inefficient but also poorly performed in the workplace environment. There was a difficulty.
본 발명에 의하면, 노즐로부터 분사된 유체에 의해 전방으로 비산되는 슬래그는 밀폐형의 로터리 컨테이너에 수집될 수 있다. 로터리 컨테이너는 슬래그볼의 수집과 더불어 선별 기능을 구비하는 것이 좋다. 선별을 위해 로터리 컨테이너는 회전 가능할 필요가 있으며, 후단부의 둘레면에는 슬래그볼의 선별을 위한 홀이 형성될 수 있다.According to the present invention, the slag scattered forward by the fluid injected from the nozzle can be collected in the sealed rotary container. Rotary containers should be equipped with a sorting function in addition to collecting slag balls. The rotary container needs to be rotatable for sorting, and a hole for sorting slag balls may be formed in the circumferential surface of the rear end.
유체에 부딪혀 급냉된 슬래그볼 중 작고 가벼운 것들은 로터리 컨테이너의 후단부까지 멀리 이송되며, 크고 무거운 것들은 로터리 컨테이너의 전방 측에 주로 쌓인다. 입경이 작은, 예로서 10mm 이하의 슬래그볼은 로터리 컨테이너 후단부의 홀을 통해 선별 수집될 수 있다. 선별 후 남은 급냉 슬래그는 예로서 컨테이너를 기울여 배출할 수 있을 것이다.Small and light of slag balls quenched by the fluid are transported far to the rear end of the rotary container, and large and heavy ones are mainly stacked on the front side of the rotary container. Slag balls with a small particle diameter, for example 10 mm or less, may be selectively collected through holes in the rear end of the rotary container. The quench slag remaining after the sorting may, for example, be discharged by tilting the container.
위와 같은 밀폐형의 로터리 컨테이너를 사용하는 경우, 로터리 컨테이너 내의 분진이나 고열을 외부로 배출 및 냉각시킬 필요가 있다. 이를 위해 로터리 컨테이너 후단부에는 배기구가 마련되며 이를 통해 집진장치로 포집된다. 노즐 및 틸팅장치가 건물 내에 설치된 경우, 해당 건물의 배기구에 집장장치가 연결될 수 있을 것이다.When using the sealed rotary container as described above, it is necessary to discharge and cool the dust or high heat in the rotary container to the outside. To this end, an exhaust port is provided at the rear end of the rotary container and collected by the dust collector. If the nozzles and tilting devices are installed in a building, the collecting device may be connected to the exhaust of the building.
집진장치는, 로터리 컨테이너나 구조물의 배기구와 연결된 수직형의 살수 냉각탑; 살수 냉각탑의 후단과 연결된 기수분리기; 살수 냉각탑 및 기수분리기에서 배출된 수분이 유입되는 물탱크; 및 구조물의 배기구에 분진 배출압을 제공하고, 구조물로부터 살수 냉각탑을 거쳐 기수분리기로 흐르는 배출라인 상에 설치된 하나 이상의 송풍팬을 구비할 수 있다.Dust collector, vertical spraying cooling tower connected to the exhaust port of the rotary container or structure; A separator connected to the rear end of the spraying cooling tower; A water tank into which water discharged from the spraying cooling tower and the separator is introduced; And at least one blower fan provided on the exhaust line of the structure to provide a dust discharge pressure and flowing from the structure to the separator through a water spray cooling tower.
상술한 바와 같은 본 발명에 의하면, 턴디시에 고착된 슬래그를 제거하기 위한 작업이 불필요하며, 슬래그 포트 아래에 노즐을 상하로 3단 이상 배치할 수 있으므로, 슬래그 안정화 처리의 효율성이 높고 또한 대량의 슬래그 안정화 처리가 가능하다.According to the present invention as described above, the work for removing the slag stuck in the tundish is unnecessary, and since the nozzle can be arranged three or more steps up and down under the slag port, the efficiency of slag stabilization treatment is high and Slag stabilization treatment is possible.
또한, 급냉된 슬래그볼은 로터리 컨테이너에 수집 및 선별되므로, 별도의 슬래그볼 수거 및 선별작업이 필요없고, 로터리 컨테이너 내부에 유입되는 분진이나 고열을 일률적으로 배출 냉각가능하므로, 슬래그 안정화 처리의 효율성이 높고 대량의 슬래그 처리가 가능하다.In addition, quenched slag balls are collected and sorted in the rotary container, so no separate slag ball collection and sorting operations are required, and dust and high heat flowing into the rotary container can be discharged and cooled uniformly, thereby improving the efficiency of slag stabilization. High and bulk slag treatment is possible.
도 1은 본 발명의 실시예에 따른 용융 슬래그의 급냉 처리를 설명하기 위한 도면,1 is a view for explaining the quenching treatment of molten slag according to an embodiment of the present invention,
도 2는 본 발명의 실시예에 따른 노즐과 노즐이 장착된 노즐 장착벽을 보인 도면,2 is a view showing a nozzle mounting wall on which a nozzle and a nozzle are mounted according to an embodiment of the present invention;
도 3은 본 발명의 실시예에 따른 슬래그 포트 틸팅장치를 보인 도면,3 is a view showing a slag port tilting device according to an embodiment of the present invention,
도 4는 도 3에 도시된 포트 테이블의 개략적인 사시도,4 is a schematic perspective view of the port table shown in FIG.
도 5는 본 발명의 실시예에 따른 로터리 컨테이너를 보인 도면,5 is a view showing a rotary container according to an embodiment of the present invention,
도 6은 본 발명의 실시예에 따른 집진처리 장치를 보인 도면이다.6 is a view showing a dust collecting apparatus according to an embodiment of the present invention.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 도면들은 본 발명에 따른 실시예의 설명을 위해 개략적으로 도시된 것으로, 공지기술에 대해서는 설명이 생략될 수 있으며, 동일한 구성요소 또는 부품들은 설명의 편의를 위해 가능한 한 동일한 참조부호로 표시된다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS The drawings are schematically shown for the description of the embodiments according to the invention, and the description of the well-known technology may be omitted, and the same components or parts are denoted by the same reference numerals as much as possible for the convenience of description.
도 1에는 용융 슬래그가 담긴 슬래그 포트(10)와 이로부터 배출되는 용융 슬래그의 안정화 처리를 위해 전방으로 고압공기를 분사하는 노즐(20)이 도시되어 있다.1 shows a slag port 10 containing molten slag and a nozzle 20 for spraying high pressure air forward for stabilization of molten slag discharged therefrom.
도 1을 참조하면, 슬래그 포트(10)와 노즐(20) 사이에는, 종래와 달리, 용융 슬래그를 체류시키기 위한 턴디시가 배치되지 않는다. 슬래그 포트(10)를 수평축(53)을 중심으로 기울여 배출되는 용융 슬래그에 노즐(20)로부터 고압공기가 직접 분사된다.Referring to FIG. 1, unlike the prior art, no tundish for retaining molten slag is disposed between the slag port 10 and the nozzle 20. High pressure air is directly injected from the nozzle 20 to the molten slag discharged by tilting the slag port 10 about the horizontal axis 53.
노즐(20)로부터 낙하하는 슬래그까지의 거리가 멀수록 고압 공기에 의해 슬래그에 전달되는 에너지가 작아진다. 따라서 노즐(20)과 슬래그 포트(10)의 출탕구 간의 거리는 여건이 허락되는 한, 가깝게 조절되는 것이 바람직하다.The farther the distance from the nozzle 20 to the slag falling, the smaller the energy delivered to the slag by the high pressure air. Therefore, the distance between the nozzle 20 and the hot water outlet of the slag port 10 is preferably adjusted as close as possible.
슬래그 안정화 처리를 위해서는 예를 들어 90°세워져 있는 슬래그 포트(10)를 점차 기울여 용융 슬래그를 배출해야 하며, 용융 슬래그를 연속적으로 배출하기 위해서는 슬래그 포트(10)는 점차 더 기울어져야 한다. 슬래그 포트(10) 틸팅 장치는 후술된다.For the slag stabilization treatment, for example, the slag port 10, which is set up at 90 °, should be gradually inclined to discharge molten slag, and in order to continuously discharge the molten slag, the slag port 10 should be gradually inclined. The slag port 10 tilting apparatus will be described later.
슬래그 배출 과정에 슬래그 포트(10)가 점차 기울여짐에도 불구하고, 낙하하는 슬래그가 고압공기에 부딪히는 각도, 즉 노즐 분사각도는 동일하게 유지된다. 노즐 분사각은 예로서 가상의 수평면에 대해, 노즐(20)에 의해 지향되는 분사 중심선(A)까지의 각도로 볼 수 있다.Although the slag port 10 is gradually inclined during the slag discharge process, the angle at which the falling slag strikes the high pressure air, that is, the nozzle injection angle, remains the same. The nozzle spray angle can be seen, for example, at an angle to the spray centerline A directed by the nozzle 20 with respect to the imaginary horizontal plane.
또한 아토마이징 처리 과정에, 슬래그 포트(10)로부터 배출된 슬래그가 노즐(20)로부터 분사된 고압공기에 부딪히기까지의 낙하거리는 일정하게 유지된다. 예로서 최초 슬래그 배출 시점에 포트(10)의 출탕구로부터 분사 중심선(A)까지의 거리가 h일 경우, 이 거리 h는 슬래그 배출이 완료되는 시점까지 동일하게 유지될 수 있다. In addition, during the atomizing process, the falling distance until the slag discharged from the slag port 10 hits the high-pressure air injected from the nozzle 20 is kept constant. For example, when the distance from the hot water outlet of the port 10 to the injection center line A is h at the time of initial slag discharge, this distance h may remain the same until the time when slag discharge is completed.
도 1에서 보듯이, 노즐(20)은 노즐 장착벽(30)에 고정적으로 장착된다. 노즐 장착벽(30)은 노즐(20)이 장착되는 부재이자, 슬래그 포트(10)로부터 배출된 슬래그가 후방으로 비산되지 않도록 하기 위한 슬래그 차단벽이다. 노즐 장착벽(30) 후방에 노즐(20)로 고압공기를 공급하는 제반 장치는 생략되어 있다.As shown in FIG. 1, the nozzle 20 is fixedly mounted to the nozzle mounting wall 30. The nozzle mounting wall 30 is a member on which the nozzle 20 is mounted and a slag blocking wall for preventing the slag discharged from the slag port 10 from scattering backward. A general apparatus for supplying high pressure air to the nozzle 20 behind the nozzle mounting wall 30 is omitted.
노즐 장착벽(30)은 그 후방에 마련된 이동기구(31)에 의해 하방향 경사지게 이동될 수 있다. 이동기구(31)에 의한 노즐 장착벽(30)의 움직임은 슬래그 포트(10)의 기울임 각도에 연동한다. 이동기구(31)는 로드(31a)를 갖는 유압실린더일 수 있다.The nozzle mounting wall 30 can be moved inclined downward by the moving mechanism 31 provided behind it. The movement of the nozzle mounting wall 30 by the moving mechanism 31 is linked to the inclination angle of the slag port 10. The moving mechanism 31 may be a hydraulic cylinder having a rod 31a.
노즐 장착벽(30)은 시멘트벽일 필요가 전혀 없다. 노즐(20)을 장착하고 또 이동하기에 적당하고 크기와 두께, 재질로 마련된다. 노즐 장착벽(30) 후방의 이동기구(31)는 장착벽(30)에 의해 차단되어 용융 슬래그나 분진 등이 유입되지는 않는다.The nozzle mounting wall 30 need not be a cement wall at all. It is suitable to mount and move the nozzle 20 and is provided in size, thickness and material. The moving mechanism 31 behind the nozzle mounting wall 30 is blocked by the mounting wall 30 so that molten slag or dust does not flow in.
슬래그 포트(10)의 기울임각이 미리 설정된 각도에 이르르면, 노즐(30)로부터 고압공기가 분사됨과 아울러, 슬래그 포트(10)의 틸팅 움직임에 연동하여 이동기구(31)가 노즐 장착벽(30)을 하방향으로 경사지게 이동시킨다. 낙하거리와 노즐 분사각이 최대한 일정하게 유지되도록 한다.When the inclination angle of the slag port 10 reaches a preset angle, the high pressure air is injected from the nozzle 30, and the moving mechanism 31 moves in conjunction with the tilting movement of the slag port 10 to move the nozzle mounting wall 30. ) Inclined downward. Keep the drop distance and nozzle spray angle as constant as possible.
슬래그 포트(10)로부터 최초 배출되는 용융 슬래그의 낙하거리가 h이고 포트(10)로부터 완전히 슬래그가 배출된 때의 낙하거리가 h'라 할때, h=h'인 것이 좋다. 슬래그 포트(10)는 틸팅됨에 비해 노즐 장착벽(30)은 직진하므로, 이들 값이 완전히 일치하기는 어렵다. 그러나 슬래그의 아토마이징이 매우 미세하고 섬세한 작업은 아니므로 대체적으로 혹은 실질적으로 일치하는 정도로 조절 가능하다.When the falling distance of the molten slag discharged initially from the slag port 10 is h and the falling distance when the slag is completely discharged from the port 10 is h ', h = h' is preferable. Since the slag port 10 is tilted, the nozzle mounting wall 30 goes straight, so these values are difficult to completely match. However, the atomizing of the slag is not very fine and delicate, so it can be adjusted to an almost or substantially consistent degree.
슬래그 포트(10)로부터 용융 슬래그가 배출될 때의 노즐 분사각이 A이고 이후 노즐 장착벽(30)이 이동됨에 따른 노즐 분사각이 A'라고 할때, A=A'로 유지된다. 슬래그 포트(10)의 움직임에 가깝도록 노즐 장착벽(30)을 이동시키면서 틸팅시키는 것도 고려될 수 있을 것이나, 장치가 복잡해진다.When the nozzle injection angle when the molten slag is discharged from the slag port 10 is A and the nozzle injection angle as the nozzle mounting wall 30 is moved later is A ', A = A' is maintained. Tilting while moving the nozzle mounting wall 30 to be close to the movement of the slag port 10 may also be considered, but the apparatus is complicated.
노즐(20) 혹은 노즐 장착벽(30)의 아래에는 전방으로 하향 경사진 경사 바닥판(40)이 마련된다. 고압 공기에 의해 부딪힌 대부분의 슬래그는 전방으로 비산될 것이지만, 그렇지 못한 슬래그는 노즐(20) 근방에 떨어질 수 있다. 경사 바닥판(40)은 노즐(20) 근방에 떨어진 슬래그가 전방으로 흘러 내려 수거가 용이하게 한다.Under the nozzle 20 or the nozzle mounting wall 30, an inclined bottom plate 40 inclined downward is provided. Most slag hit by high pressure air will fly forward, but otherwise slag may fall near the nozzle 20. The inclined bottom plate 40 allows slag falling near the nozzle 20 to flow forward to facilitate collection.
포트(10)의 출탕구로부터 슬래그가 초기 배출될 때에는 일정한 위치에서 일정량씩 배출되겠지만, 시간이 흐를수록 출탕구에 부분 응고가 발생되면서 배출 위치가 변경되거나 배출량도 증감할 수 있다. 실시예에 의하면 노즐(20) 배치가 자유로워, 조업 중 변동상황에 대한 대응이나 슬래그의 대용량 처리가 가능하다.When the slag is initially discharged from the tap opening of the port 10, it will be discharged by a predetermined amount at a predetermined position, but as time passes, partial solidification occurs at the tap and the discharge position may be changed or the discharge may be increased or decreased. According to the embodiment, the arrangement of the nozzle 20 is free, and it is possible to cope with the fluctuation situation during the operation and to process the slag in a large capacity.
도 2에는 노즐 장착벽(30)에 설치된 노즐의 배치구조가 도시되어 있다. 노즐(20)은 상하방향으로 여러 단 배치되며, 좌우방향으로도 넓게 배치된다.2 shows the arrangement of the nozzles provided on the nozzle mounting wall 30. The nozzle 20 is arranged in multiple stages in the vertical direction, and is also widely disposed in the left and right directions.
도 2를 참조하면, 실시예에 따르면 노즐(20)은 상부의 메인 노즐부(21), 메인 노즐부의 양 사이드에, 메인 노즐부보다는 아래에 배치된 서브 노즐부(22), 그리고 서브 노즐부 아래에 배치되며 메인 노즐부보다 좌우로 넓게 배치된 큰 하부 노즐부(23)를 구비한다.Referring to FIG. 2, according to an embodiment, the nozzle 20 includes a main nozzle part 21 at an upper side, a sub nozzle part 22 disposed below both main nozzle parts, and a sub nozzle part at both sides of the main nozzle part. It is provided with a large lower nozzle portion 23 disposed below and wider than the main nozzle portion.
메인 노즐부(21)는 슬래그 포트(10)로부터 낙하하는 용융 슬래그의 급냉시키는데 메인 역할을 하는 노즐로, 대부분의 용융 슬래그는 메인 노즐부(21)에 의해 급냉된다. 노즐 분사각은 이 메인 노즐부(21)의 분사 중심선을 기준으로 설정될 수 있다.The main nozzle part 21 is a nozzle which plays a main role in quenching molten slag falling from the slag port 10, and most molten slag is quenched by the main nozzle part 21. The nozzle spray angle may be set based on the spray center line of the main nozzle portion 21.
하부 노즐부(23)는 메인 노즐부(21)에 의해 급냉 처리되지 못한 슬래그를 추가적으로 급냉 처리한다. 메인 노즐부(21)로부터의 고압공기의 영향으로 슬래그의 낙하방향이 바뀔 수 있으므로, 하부 노즐부(23)는 메인 노즐부(21)보다 좌우방향으로 넓게 분포되는 것이 좋다. 단공의 노즐인 경우 좌우폭이 길게 형성된다.The lower nozzle portion 23 additionally quenchs the slag that has not been quenched by the main nozzle portion 21. Since the falling direction of the slag may be changed by the influence of the high pressure air from the main nozzle portion 21, the lower nozzle portion 23 may be distributed in a wider horizontal direction than the main nozzle portion 21. In the case of a single hole nozzle, the left and right widths are formed long.
메인 노즐부(21)에 의해 1차적으로 급냉되지 못한 용융 슬래그가 하부 노즐부(23)에 의해 2차적으로 냉각되는 경우에, 제품화 비율이 높지 않다. 따라서 1차 처리에 의해 최대한 용융 슬래그를 급냉 처리하는 것이 필요하다. 또한 앞서 언급되었듯이, 슬래그 포트(10)의 출탕구로부터 배출되는 슬래그는 조업 중 배출방향이 변경될 수 있다. In the case where the molten slag that is not quenched primarily by the main nozzle portion 21 is secondarily cooled by the lower nozzle portion 23, the production ratio is not high. Therefore, it is necessary to quench the molten slag as much as possible by the primary treatment. In addition, as mentioned above, the slag discharged from the hot water outlet of the slag port 10 may be changed in the discharge direction during operation.
서브 노즐부(22)는 메인 노즐부(21)를 보조하여 1차 접촉에 의해 최대한 많은 용융 슬래그가 아토마이징 처리될 수 있도록 하며, 아울러 조업 중 위와 같은 변동상황에 대한 대응을 위해 마련된 노즐이다. 서브 노즐부(22)는 메인 노즐부(21)의 좌우로 넓게 배치되며 메인 노즐부(21) 바로 아래, 좋게는 50cm 이내, 더 좋게는 30cm 이내의 거리에 배치된다. 처리해야 할 용융 슬래그의 양이 많거나, 슬래그 배출방향에 변동이 있는 경우, 서브 노즐부(22)를 작동시킬 수 있다.The sub-nozzle unit 22 assists the main nozzle unit 21 so that the molten slag can be atomized as much as possible by primary contact, and the nozzle is provided to cope with the above-mentioned fluctuations during operation. The sub nozzle part 22 is widely disposed to the left and right of the main nozzle part 21 and is disposed at a distance directly below the main nozzle part 21, preferably within 50 cm, more preferably within 30 cm. When the amount of molten slag to be treated is large or there is a variation in the slag discharge direction, the sub nozzle unit 22 can be operated.
노즐 장착벽(30)의 좌우에는 날개 형태로 차단벽(32)이 설치된다. 차단벽(32)은 슬래그가 후방으로 비산되는 것을 방지하고 발생된 고열을 차단하기 위한 방열 목적으로 설치된다. 차단벽(32)은 노즐 장착벽(30)의 좌우에 분리 가능하게 배치된다.Left and right of the nozzle mounting wall 30 is provided with a blocking wall 32 in the form of a wing. The blocking wall 32 is installed for the purpose of heat dissipation to prevent the slag from scattering backward and to block the generated high heat. The blocking wall 32 is detachably arranged on the left and right sides of the nozzle mounting wall 30.
도 3에는 슬래그의 배출을 위해 슬래그 포트(10)를 기울이기 위한 틸팅장치(50)가 도시되어 있다.3 shows a tilting device 50 for tilting the slag port 10 for the discharge of slag.
도 3에서 보듯이, 실시예에 따른 틸팅장치(50)는 슬래그 포트(10)가 안착되는 포트 테이블(51), 포트 테이블(51)에 안착된 슬래그 포트(10)를 고정하기 위한 로킹부재(미도시), 그리고 포트 테이블(51)이 축고정되며 포트 테이블(51)을 회전시키기 위한 틸팅 구동기구;를 포함한다.As shown in FIG. 3, the tilting device 50 according to the embodiment includes a port member 51 on which the slag port 10 is seated, and a locking member for fixing the slag port 10 seated on the port table 51. And a tilting drive mechanism for pivoting the port table 51 and rotating the port table 51.
도 3 및 도 4에서 보듯이, 포트 테이블(51)은 슬래그 포트(10)가 포개어져 그 위에 안착될 수 있는 형상으로 형성된다. 포트 테이블(51)의 깊이에 따라 다를 수는 있겠으나, 바람직하게는 안착된 상태에서 슬래그 포트(10)의 출탕구가 위치되는 영역에 슬래그의 배출을 위해 하방향 오목하게 패인 마우스(51a)가 마련된다.3 and 4, the port table 51 is formed in a shape in which the slag port 10 is stacked and can be seated thereon. Although it may vary depending on the depth of the pot table 51, the mouse 51a which is recessed downward concave for discharging slag in the area where the tapping hole of the slag port 10 is located in the seated state is preferably To be prepared.
통상 슬래그 포트(10)에는 포트(10)의 홀딩을 위해 좌우에 돌출된 트러니언(trunnion)이 마련된다. 포트 테이블(51)에는 트러니언이 진입할 수 있도록 하기 위한 가이드홈이 하방향 형성될 수 있으며, 로킹부재는 이러한 가이드홈에 걸쳐진 트러니언을 걸어 잠글 수 있도록 구성되거나, 기타 다양한 공지기술이 적용될 수 있을 것이다.In general, the slag port 10 is provided with trunnions protruding from side to side for holding the port 10. The port table 51 may be formed with a guide groove for entering the trunnion downward, the locking member is configured to lock the trunnion across the guide groove, or various other known techniques can be applied. There will be.
틸팅 구동기구는 전동모터(56)와 전동모터(56)의 구동력을 포트 테이블(51)에 전달하는 기어조립체로 구성될 수 있다. 기어조립체는 메인기어(52), 서브기어(54), 기어박스(55) 및 구동축(57)을 포함할 수 있다.The tilting drive mechanism may be composed of a gear assembly which transmits the driving force of the electric motor 56 and the electric motor 56 to the port table 51. The gear assembly may include a main gear 52, a sub gear 54, a gear box 55, and a drive shaft 57.
포트 테이블(51)은 메인기어(52)에 축고정된다. 전동모터(56)의 구동력은 기어박스(55)와 서브기어(54)를 거쳐 메인기어(52)로 전달되며, 메인기어(52)의 회전력에 의해 수평축(53)에 연결된 포트 테이블(51)이 회전된다.The port table 51 is axially fixed to the main gear 52. The driving force of the electric motor 56 is transmitted to the main gear 52 through the gear box 55 and the sub gear 54, the port table 51 connected to the horizontal shaft 53 by the rotational force of the main gear 52 Is rotated.
메인기어(52)의 회전력 전달은, 수평축(53)에 의해 포트 테이블(51)이 회전되도록 하거나, 메인기어(52)에 대응하는 기어를 포트 테이블(51)에 마련하여 수평축(53)을 중심으로 포트 테이블(51)이 회전하도록 방식으로 구현될 수 있을 것이다.The rotational force transmission of the main gear 52 causes the port table 51 to be rotated by the horizontal axis 53 or a gear corresponding to the main gear 52 is provided on the port table 51 to center the horizontal axis 53. As such, the port table 51 may be implemented in such a manner as to rotate.
포트 테이블(51)과 기어조립체 사이에는 차단막(58)이 설치될 수 있다. 예로서 포트 테이블(51)과 마주하는 메인기어(52) 부위에는 고열이나 분진, 슬래그 등이 유입되지 않도록 차단막(58)이 설치된다.A blocking film 58 may be installed between the port table 51 and the gear assembly. For example, a blocking film 58 is provided at a portion of the main gear 52 that faces the port table 51 so that high heat, dust, slag, and the like do not enter.
도 5에는 노즐 분사에 의해 급냉된 슬래그를 쉽게 수거하고 또 선별하기 위해 밀폐형으로 구성된 로터리 컨테이너(60)가 도시되어 있다.FIG. 5 shows a rotary container 60 configured in a closed type to easily collect and sort slag quenched by nozzle injection.
도 5에서 보듯이, 실시예에 따른 로터리 컨테이너(60)는 전방에 슬래그 유입구(63)가 마련되며 후방에 배기구(64)가 마련된 본체(61), 본체(61)를 회전 가능하게 지지하는 서포트 프레임(미도시), 그리고 본체에 회전력을 제공하는 회전기구(65,66,67)를 포함한다.As shown in FIG. 5, the rotary container 60 according to the embodiment is provided with a slag inlet 63 at the front and a support body rotatably supporting the main body 61 and the main body 61 provided with the exhaust port 64 at the rear. A frame (not shown) and rotating mechanisms (65, 66, 67) for providing a rotational force to the body.
본체(61)는 원통형으로 형성되며, 유입구(63)와 배기구(64) 각각에는 서포트 프레임에 본체(61)를 안착시키기 위한 익스텐션(63a,64a)이 마련된다. 익스텐션(63a,64a)과 서포트 프레임 간에는 베어링이 개재될 수 있으며, 모터(67)의 구동력은 맞물림기어(65,66)에 의해 본체(61)로 전달된다.The main body 61 is formed in a cylindrical shape, and the inlets 63 and the exhaust ports 64 are provided with extensions 63a and 64a for seating the main body 61 on the support frame. A bearing may be interposed between the extensions 63a and 64a and the support frame, and the driving force of the motor 67 is transmitted to the main body 61 by the engagement gears 65 and 66.
본체(61)의 후단부 둘레면에는 수집된 급냉 슬래그를 선별하기 위한 관통홀(62)이 형성된다. 노즐 분사에 의해 전방으로 이송된 급냉 슬래그는 유입구(63)를 통해 본체(61)내부로 유입되며, 본체(61) 후단부로 멀리 이송된 작은 크기의 슬래그볼은, 본체(61)를 회전시키는 과정에 관통홀(62)을 통해 선별된다.The through-hole 62 for sorting the collected quench slag is formed in the peripheral surface of the rear end of the main body 61. The quenching slag forwarded by the nozzle injection is introduced into the main body 61 through the inlet 63, and the small-sized slag ball transported far to the rear end of the main body 61 rotates the main body 61. The through hole 62 is selected.
조업 후 본체(61) 내에 남겨진 슬래그는 본체를 유입구(63) 방향으로 기울여 배출하거나, 본체(61) 자체에 개폐도어(미도시)를 마련하여 이를 통해 배출되도록 할 수 있다. 로터리 컨테이너(60)는 이동식으로 구성될 수 있다.The slag left in the main body 61 after the operation can be discharged by tilting the main body in the inlet 63 direction, or by providing an opening and closing door (not shown) in the main body 61 itself. The rotary container 60 may be configured to be mobile.
본체(61)의 배기구(64)에는 고열과 분진의 배출을 위한 압력이 제공된다. 본체(61) 후단부에 관통홀(62)이 형성되어 있더라도, 배기구(64)에 제공되는 압력을 조절함에 의해 본체(61) 내부의 분진과 고열은 배기구(64)로 유도될 수 있다.The exhaust port 64 of the main body 61 is provided with a pressure for high heat and dust discharge. Even though the through hole 62 is formed at the rear end of the main body 61, the dust and the high heat inside the main body 61 can be led to the exhaust port 64 by adjusting the pressure provided to the exhaust port 64.
도 6에는 로터리 컨테이너(60)의 배기구(64)로부터 배출된 분진이나 고열을 포집 및 냉각하기 위한 포집장치(70,80,90,100)가 도시되어 있다. L1~L5는 분진이나 수분 등의 이송라인이다.FIG. 6 shows collecting devices 70, 80, 90, and 100 for collecting and cooling dust or high heat discharged from the exhaust port 64 of the rotary container 60. L1 to L5 are transfer lines for dust or moisture.
도 6에서 보듯이, 배기구(64)로부터 배출된 분진 등은 이송라인 L1을 통해 냉각탑(70)의 저부로 공급된다. 냉각탑(70)은 수직형으로 구성되며, 고열과 분진이 상부로 이송되면서, 상하로 여러 층 배열된 다수의 살수기(71)에 의해 냉각 및 제거된다. 살수 후의 물은 이송라인 L4를 통해 물탱크(100)에 모아진다.As shown in Figure 6, the dust and the like discharged from the exhaust port 64 is supplied to the bottom of the cooling tower 70 through the transfer line L1. Cooling tower 70 is configured in a vertical type, while the high heat and dust is transported to the upper, it is cooled and removed by a plurality of sprayers 71 arranged in multiple layers up and down. The water after the watering is collected in the water tank 100 through the transfer line L4.
냉각탑(70)을 거친 분진이나 고열은 이송라인 L2를 통해 기수분리기(80)로 공급된다. 여기서 기체와 수분이 분리되어, 기체는 이송라인 L3를 통해 송풍기(90)를 거쳐 외부로 배출되며, 수분은 이송라인 L5를 통해 물탱크(100)로 모아진다.Dust or high heat passing through the cooling tower 70 is supplied to the separator 80 through the transfer line L2. Here, the gas and the water are separated, the gas is discharged to the outside through the blower 90 through the transfer line L3, the moisture is collected in the water tank 100 through the transfer line L5.
이상 슬래그 안정화 처리를 위한 시스템을 중심으로 살펴보았다. 본 발명에 따른 슬래그 안정화 처리방법에는 위에서 설명된 바와 같은 시스템이 그대로 이용될 수 있으므로, 슬래그 안정화 처리방법에 대해 간단히 살펴본다.The system for the above-mentioned slag stabilization process was examined. In the slag stabilization treatment method according to the present invention, since the system as described above can be used as it is, a brief look at the slag stabilization treatment method.
실시예에 의한 슬래그 안정화 처리방법은 슬래그 포트를 기울여 용융 슬래그를 배출하는 단계, 및 노즐을 이용하여 슬래그 포트로부터 자유 낙하하는 용융 슬래그에 고압공기를 고속으로 분사하여 급냉시키는 단계를 포함하며, 나아가 용융 슬래그의 급냉 과정에 발생된 분진이나 고열 등을 회수하여 냉각하는 단계를 더 포함할 수 있다.The slag stabilization treatment method according to the embodiment includes the steps of discharging molten slag by tilting the slag port, and rapidly cooling by injecting high pressure air into the molten slag free-falling from the slag port using a nozzle at high speed, further melting The method may further include recovering and cooling the dust or high heat generated during the quenching of the slag.
슬래그 포트와 노즐 사이에 용융 슬래그를 체류시키기 위한 턴디시가 배치되지 않으며, 슬래그 포트로부터 배출되는 용융 슬래그에 노즐로부터 유체가 직접 분사된다.There is no tundish for retaining molten slag between the slag port and the nozzle, and fluid is injected directly from the nozzle to the molten slag discharged from the slag port.
노즐 분사각과 슬래그 포트로부터 배출된 슬래그가 노즐로부터 분사된 유체에 부딪히기까지의 낙하거리는 일정하기 유지될 수 있도록, 노즐 위치를 이동시킨다.The nozzle position is moved so that the nozzle ejection angle and the drop distance from the slag discharged from the slag port to strike the ejected fluid from the nozzle can be kept constant.
노즐 분사각이나 낙허거리의 조절, 급냉 슬래그의 수거 및 슬래그 급냉과정에 발생된 분진이나 고열의 배출 및 냉각에는 앞서 설명된 슬래그 안정화 처리 시스템 및 이를 이용한 프로세스가 그대로 이용될 수 있다.The slag stabilization treatment system described above and the process using the same may be used to adjust the nozzle spray angle or drop distance, to collect the quench slag, and to discharge and cool the dust or high heat generated during the slag quenching process.
이상 본 발명의 특정 실시예에 관하여 도시하고 설명하였지만, 하기의 특허청구범위에 기재된 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명은 다양하게 수정 또는 변형될 수 있다는 것이 이해될 필요가 있다.While specific embodiments of the present invention have been shown and described, it should be understood that the present invention may be variously modified or modified without departing from the spirit of the invention as set forth in the claims below.
[부호의 설명][Description of the code]
10: 슬래그 포트 20: 노즐10: slag port 20: nozzle
21: 메인 노즐부 22: 서브 노즐부21: main nozzle portion 22: sub nozzle portion
23: 하부 노즐부 30: 노즐 장착벽23: lower nozzle portion 30: nozzle mounting wall
40: 경사 바닥판 50: 틸팅장치40: inclined bottom plate 50: tilting device
51: 포트 테이블 51a: 마우스51: port table 51a: mouse
52: 메인기어 54: 서브기어52: main gear 54: subgear
55: 기어박스 56: 전동모터55: gearbox 56: electric motor
60: 로터리 컨테이너 61: 본체60: rotary container 61: main body
70: 냉각탑 80: 기수분리기70: cooling tower 80: separator
90: 송풍기 100: 물탱크90: blower 100: water tank

Claims (6)

  1. 수평 축선 상에 슬래그 포트를 고정하고 이를 회전시키기 위한 틸팅장치; 및A tilting device for fixing and rotating the slag port on a horizontal axis; And
    슬래그 포트를 기울여 배출되는 슬래그를 향해 전방으로 유체를 분사하기 위한 노즐;A nozzle for injecting fluid forward toward the slag discharged by tilting the slag port;
    을 포함하며,Including;
    상기 노즐이 장착되며, 후방으로 슬래그가 비산되지 않도록 하기 위한 노즐 장착벽; 및A nozzle mounting wall on which the nozzle is mounted, for preventing slag from scattering backwards; And
    상기 슬래그 포트가 기울어짐에 따라 노즐 장착벽을 함께 하향 이동시켜 상기 슬래그 포트로부터 배출된 슬래그가 상기 노즐로부터 분사된 고압공기에 부딪히기까지의 낙하거리가 일정하게 유지되도록 함과 함께, 상기 슬래그 포트가 점차 기울여짐에도 낙하하는 슬래그가 고압공기에 부딪히는 노즐 분사각도를 일정하게 유지하기 위한 이동기구;As the slag port is tilted, the nozzle mounting wall is moved downward so that the falling distance from the slag discharged from the slag port to the high pressure air injected from the nozzle is kept constant, and the slag port is maintained. A moving mechanism for maintaining a constant nozzle spray angle at which slag falling even inclined gradually hits high pressure air;
    를 더 구비하며,Further provided,
    상기 노즐 장착벽 아래에 마련되며, 노즐 장착벽 근방에 낙하된 슬래그가 전방으로 흘러내릴 수 있도록 경사진 경사 바닥판을 더 포함하며,It is provided below the nozzle mounting wall, and further comprises an inclined bottom plate inclined so that the slag dropped in the vicinity of the nozzle mounting wall flows forward,
    상기 노즐 장착벽에 마련된 노즐은,The nozzle provided on the nozzle mounting wall,
    상부에 구비되며 상기 슬래그 포트로부터 낙하하는 슬래그를 급냉시키는 메인 역할을 하는 메인 노즐부;A main nozzle unit provided at an upper part and serving as a main for quenching slag falling from the slag port;
    상기 메인 노즐부의 양 사이드에, 상기 메인 노즐부보다는 아래에 배치되며, 상기 메인 노즐부를 보조하여 슬래그를 아토마이징 처리하는 서브 노즐부; 및A sub nozzle unit disposed at both sides of the main nozzle unit below the main nozzle unit and configured to atomize slag by assisting the main nozzle unit; And
    상기 서브 노즐부 아래에 배치되며, 상기 메인 노즐부에 의해 급냉 처리되지 못한 슬래그를 추가로 급냉 처리하며, 상기 메인 노즐부보다 좌우로 넓게 배치된 큰 하부 노즐부;A large lower nozzle portion disposed below the sub nozzle portion and further quenched slag that is not quenched by the main nozzle portion, and disposed wider to the left and right than the main nozzle portion;
    를 포함하며,Including;
    상기 노즐 장착벽은 상기 슬래그 포트의 기울임 각도에 연동하여 움직이도록 하며,The nozzle mounting wall is moved in conjunction with the inclination angle of the slag port,
    슬래그 포트와 노즐 사이에 턴디시가 배치되지 않으며, 슬래그 포트로부터 배출되는 슬래그에 노즐로부터 유체가 직접 분사되고,No tundish is placed between the slag port and the nozzle, fluid is injected directly from the nozzle into the slag discharged from the slag port,
    수평면에 대한 노즐 분사각 및 슬래그 포트로부터 배출된 슬래그가 노즐로부터 분사된 유체에 부딪히기까지의 낙하거리가 실질적으로 일정하게 유지될 수 있도록, 노즐 위치가 이동 가능한 것을 특징으로 하는 슬래그 안정화 처리 시스템.10. A slag stabilization treatment system according to claim 1, wherein the nozzle position is movable so that the nozzle spray angle with respect to the horizontal plane and the falling distance from the slag discharged from the slag port to the hitting fluid injected from the nozzle can be kept substantially constant.
  2. 청구항 1에 있어서, 상기 틸팅장치는,The method of claim 1, wherein the tilting device,
    슬래그 포트가 안착되는 포트 테이블;A port table on which the slag port is seated;
    포트 테이블에 안착된 슬래그 포트를 고정하기 위한 로킹부재; 및A locking member for fixing the slag port seated on the port table; And
    포트 테이블이 축고정되며, 포트 테이블을 회전시키기 위한 틸팅 구동기구;를 포함하는 것을 특징으로 하는 슬래그 안정화 처리 시스템.And a tilting drive mechanism for pivoting the port table and rotating the port table.
  3. 청구항 2에 있어서, 상기 포트 테이블은,The method of claim 2, wherein the port table,
    슬래그 포트의 출탕구에 대응하는 영역에, 슬래그의 배출을 위한, 하방향 오목하게 패인 마우스를 구비하는 것을 특징으로 하는 슬래그 안정화 처리 시스템.A slag stabilization treatment system comprising a mouse recessed downwardly for discharging slag in a region corresponding to a hot tap of a slag port.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 노즐로부터 분사된 유체에 의해 전방으로 비산되는 슬래그를 수집하기 위한 로터리 컨테이너를 더 포함하며,Further comprising a rotary container for collecting the slag scattered forward by the fluid injected from the nozzle,
    로터리 컨테이너는,Rotary container,
    전방에 슬래그 유입구가 마련되며 후방에 배기구가 마련된 본체;A main body provided with a slag inlet in the front and an exhaust in the rear;
    본체를 회전 가능하게 지지하는 서포트 프레임; 및A support frame rotatably supporting the main body; And
    본체에 회전력을 제공하는 회전기구;Rotation mechanism to provide a rotational force to the body;
    를 포함하며,Including;
    본체 후단부에는 수집된 슬래그를 선별하기 위한 관통홀이 둘레면에 형성된 것을 특징으로 하는 슬래그 안정화 처리 시스템.Slag stabilization treatment system, characterized in that the through-hole formed on the circumferential surface for sorting the collected slag at the rear end of the main body.
  5. 청구항 4에 있어서, 상기 로터리 컨테이너에 연결된 집진장치를 더 포함하며,The method of claim 4, further comprising a dust collector connected to the rotary container,
    집진장치는,Dust collector,
    배기구와 연결된 수직형의 살수 냉각탑;A vertical spraying cooling tower connected to the exhaust port;
    살수 냉각탑의 후단과 연결된 기수분리기;A separator connected to the rear end of the spraying cooling tower;
    살수 냉각탑 및 기수분리기에서 배출된 수분이 유입되는 물탱크; 및A water tank into which water discharged from the spraying cooling tower and the separator is introduced; And
    로터리 컨테이너 배기구에 분진 배출압을 제공하고, 로터리 컨테이너로부터 살수 냉각탑을 거쳐 기수분리기로 흐르는 배출라인 상에 설치된 하나 이상의 송풍팬을 구비하는 것을 특징으로 하는 슬래그 안정화 처리 시스템.And at least one blower fan provided on the discharge line for providing dust discharge pressure to the rotary container exhaust port and flowing from the rotary container to a separator separator via a sprinkler cooling tower.
  6. 청구항 1 내지 3 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 틸팅장치 및 노즐이 설치된 구조물 내에서 발생된 분진을 수집하기 위한 집진장치를 더 포함하고,Further comprising a dust collector for collecting dust generated in the structure is installed the tilting device and the nozzle,
    집진장치는,Dust collector,
    해당 구조물의 배기구와 연결된 수직형의 살수 냉각탑;Vertical spraying cooling tower connected to the exhaust port of the structure;
    살수 냉각탑의 후단과 연결된 기수분리기;A separator connected to the rear end of the spraying cooling tower;
    살수 냉각탑 및 기수분리기에서 배출된 수분이 유입되는 물탱크; 및A water tank into which water discharged from the spraying cooling tower and the separator is introduced; And
    구조물의 배기구에 분진 배출압을 제공하고, 구조물로부터 살수 냉각탑을 거쳐 기수분리기로 흐르는 배출라인 상에 설치된 하나 이상의 송풍팬을 구비하는 것을 특징으로 하는 슬래그 안정화 처리 시스템.And at least one blower fan provided on the discharge line from the structure to the dust outlet pressure and flowing from the structure to the separator through a water spray cooling tower.
PCT/KR2017/003956 2016-07-19 2017-04-12 Slag stabilization treatment system WO2018016719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160091448A KR101727300B1 (en) 2016-07-19 2016-07-19 System for slag stabilization treatment
KR10-2016-0091448 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016719A1 true WO2018016719A1 (en) 2018-01-25

Family

ID=58579922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003956 WO2018016719A1 (en) 2016-07-19 2017-04-12 Slag stabilization treatment system

Country Status (2)

Country Link
KR (1) KR101727300B1 (en)
WO (1) WO2018016719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790063B (en) * 2021-12-27 2023-01-11 樊滿舟 Quality transmission equipment and method for heterogenous interface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113387B1 (en) * 2018-02-12 2020-05-20 (주)유진에코씨엘 Quenching system for slag equipped with injection nozzle whose injection position is controlled

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159838U (en) * 1979-05-02 1980-11-17
JPS59109736U (en) * 1982-12-29 1984-07-24 日本鋼管株式会社 Gutter equipment for air crushed slag production
JPS6452638A (en) * 1987-05-16 1989-02-28 Kubota Ltd Production of granular slag and device therefor
KR20050084729A (en) * 2004-02-24 2005-08-29 주식회사 포스코 Apparatus for manufacturing fine slag with a function of utilizing sensible heat
JP2009227495A (en) * 2008-03-20 2009-10-08 Jfe Steel Corp Method for treating slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159838U (en) * 1979-05-02 1980-11-17
JPS59109736U (en) * 1982-12-29 1984-07-24 日本鋼管株式会社 Gutter equipment for air crushed slag production
JPS6452638A (en) * 1987-05-16 1989-02-28 Kubota Ltd Production of granular slag and device therefor
KR20050084729A (en) * 2004-02-24 2005-08-29 주식회사 포스코 Apparatus for manufacturing fine slag with a function of utilizing sensible heat
JP2009227495A (en) * 2008-03-20 2009-10-08 Jfe Steel Corp Method for treating slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790063B (en) * 2021-12-27 2023-01-11 樊滿舟 Quality transmission equipment and method for heterogenous interface

Also Published As

Publication number Publication date
KR101727300B1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
CA2360306C (en) Continuous charge preheating, melting, refining and casting
EP0592830A1 (en) A method for intensifying the reactions in metallurgical reaction vessels
JPS63125611A (en) Method for increasing supply of energy to arc furnace
US5218617A (en) Apparatus for feeding iron-bearing materials to metallurgical furnaces
CN110923394A (en) Steel-making equipment and steel-making method
WO2018016719A1 (en) Slag stabilization treatment system
US5980816A (en) Method and apparatus for removing deposit in non-ferrous smelting furnace
US6273932B1 (en) Continuous metal melting process
WO2012060547A1 (en) Apparatus for atomizing molten slag and recovering valuable metal
WO2010095904A2 (en) Device for collecting sensible heat of blast furnace molten slag
CN211367630U (en) Steel-smelting equipment
CN207391515U (en) Oxygen-enriched side-blowing smelting equipment
CN214270950U (en) LF stove is concise blows slag face deoxidation device
CN110042187B (en) Device for modifying slag powder spraying and separating slag steel during converter tapping and use method
CN109880950A (en) A kind of molten slag mechanical centrifugal granulation system and method
WO2023284293A1 (en) Top blown furnace having powdery material fed from side, and treatment method thereof
KR0161961B1 (en) Pneumatic steel making vessel and method of production
CN205843366U (en) Winding-up oxygen-enriched air and the side-blown submerged combustion bath smelting device of fine coal
ES2934857T3 (en) Method for refining molten metal using a converter
CN112680568A (en) LF stove is concise blows slag face deoxidation device
CN114410857A (en) Electric furnace slag granulation treatment device and treatment process thereof
KR20140053195A (en) Method and apparatus for dephosphorising liquid hot metal such as liquid blast furnace iron
KR100558310B1 (en) An Apparatus and A Method for dry cooling of molten pretreatment slag
US3599947A (en) Apparatus for direct iron and steel making
US3788619A (en) Steel converter vessel pollution control method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831193

Country of ref document: EP

Kind code of ref document: A1