WO2018016651A1 - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
WO2018016651A1
WO2018016651A1 PCT/JP2017/026584 JP2017026584W WO2018016651A1 WO 2018016651 A1 WO2018016651 A1 WO 2018016651A1 JP 2017026584 W JP2017026584 W JP 2017026584W WO 2018016651 A1 WO2018016651 A1 WO 2018016651A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shift
rotating plate
passage region
endoscope system
Prior art date
Application number
PCT/JP2017/026584
Other languages
English (en)
French (fr)
Inventor
真哉 下田代
将太郎 小林
佳宏 林
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to DE112017001854.4T priority Critical patent/DE112017001854B4/de
Priority to US16/098,043 priority patent/US20190150790A1/en
Priority to JP2018528914A priority patent/JP6517441B2/ja
Priority to CN201780001415.2A priority patent/CN107864616A/zh
Publication of WO2018016651A1 publication Critical patent/WO2018016651A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope system capable of switching illumination light for illuminating a subject such as a lesion.
  • Patent Document 1 describes a specific configuration example of an endoscope system capable of performing normal light observation and special light observation simultaneously as an example of such an endoscope system.
  • the special light observation is an observation that generates an image showing the distribution of biomolecules in the biological tissue, thereby enabling the operator to identify various lesions. This is an extremely important specification as the product specification of the mirror system.
  • the light source unit of the endoscope system described in Patent Document 1 includes a rotation filter in which a normal light passage region that allows normal light to pass through and a special light filter region that allows special light to pass through are arranged side by side on the circumference. Yes.
  • the normal observation image and the special light observation image can be simultaneously displayed on the monitor screen.
  • the normal light passage region of the rotary filter is configured as a wire net-like dimming unit, and thereby configured to match the amount of special light and normal light. Has been.
  • a configuration in which a normal observation image and a special light observation image can be acquired at the same time using a rotation filter can be used, for example, by using image information obtained by normal light in addition to image information obtained by special light. It is required to calculate biological information such as oxygen saturation (and thus an evaluation value of a lesion) and use it for diagnosis assistance. Therefore, it is possible to obtain a normal observation image and a special light observation image at the same time, and to make the configuration so that the amount of special light and normal light that affect the calculation of biological information does not change. From the viewpoint of improving the accuracy of value calculation, it will be an important product specification that will be further required as an endoscope system in the future.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is an endoscope system capable of irradiating first light and second light having different wavelength ranges.
  • An object of the present invention is to provide an endoscope system suitable for maintaining the ratio of the light amounts of the first light and the second light within the reference range.
  • the endoscope system has the following aspects. (1): A light source that emits first light; A first light passage region that transmits the first light and a second light passage region that extracts second light of one or more types of specific wavelength regions from the first light are arranged in a predetermined direction. A rotating plate that reduces a difference between the first light passing through the first light passing region and the amount of the second light extracted by the second light passing region.
  • a rotating plate configured to: A rotation drive unit that sequentially inserts the first light passage region and the second light passage region into the optical path of the first light from the light source by rotating the rotating plate; A shift drive unit that shifts the rotating plate in a direction intersecting the optical path from the light source; A control unit that controls the shift driving unit so that a ratio of a light amount of light that has passed through the second light passage region and a light amount of light that has passed through the first light passage region is within a reference range;
  • An endoscope system comprising: The control unit outputs a control signal for controlling the shift driving unit so that a ratio between a light amount of light passing through the second light passage region and a light amount of light passing through the first light passage region is within a reference range.
  • the control signal is generated and transmitted to the shift driving unit via a signal line.
  • a light source configured to emit first light; A first light passage region through which the first light passes; and a second light passage region from which second light having one or more types of specific wavelength regions is extracted from the first light.
  • a rotating plate configured to sequentially generate the first light and the second light by sequentially arranging a region and the second light passage region on an optical path of the first light;
  • a shift driving unit configured to shift the rotating plate in a direction crossing the optical path of the first light;
  • a control unit configured to control the shift driving unit so that a ratio between a light amount of the light passing through the second light passing region and a light amount of the light passing through the first light passing region is within a reference range;
  • An endoscope system comprising: The control unit outputs a control signal for controlling the shift driving unit so that a ratio between a light amount of light passing through the second light passage region and a light amount of light passing through the first light passage region is within a reference range.
  • the control signal is generated and transmitted to the shift driving unit via a signal line.
  • the control unit is caused by the shift driving unit when the rotating plate is shifted from the first position to the second position, which is a target position, by the shift driving unit.
  • the endoscope system according to (1) or (2) wherein a parameter for correcting a deviation amount between the first position and the second position is stored in advance, and the shift driving unit is controlled based on the parameter.
  • the control unit holds in advance a parameter for correcting an amount of deviation from the target position that occurs when the rotating plate is moved from a predetermined position to a target position by the shift driving unit, and the shift is performed based on the parameter.
  • the endoscope system according to (1) or (2) which controls a drive unit.
  • the control unit preferably generates a control signal based on the parameter and transmits the control signal to the shift driving unit via a signal line.
  • the control unit has a peak position where the light intensity of the first light from the light source becomes a maximum intensity at a position where the first light passage region of the rotating plate is inserted into the optical path by the rotation driving unit. Controlling the shift driver to be positioned with respect to a reference; The endoscope system according to any one of (1) to (3). Alternatively, the control unit drives the shift so that a position when the first light passage region of the rotating plate is inserted into the optical path is within a predetermined range from a peak position of light from the light source. The endoscope system according to any one of (1) to (3), wherein the endoscope system is controlled.
  • the control unit has a peak position where the light intensity of the first light from the light source becomes a maximum intensity at a position where the first light passage region of the rotating plate is inserted into the optical path by the rotation driving unit. It is preferable that a control signal positioned with reference is generated, and the control signal is transmitted to the shift driver via a signal line.
  • the first light has a light intensity distribution;
  • the light beam cross section of the first light when entering the first light passage region and the second light passage region is larger than the incident surfaces of the first light passage region and the second light passage region.
  • a part of the luminous flux of the light is incident on the first light passing area and the second light passing area, and the remaining part of the luminous flux is not incident on the first light passing area and the second light passing area,
  • the control unit shifts the shift so that a part of the light velocity of the first light incident on at least one of the first light passage region and the second light passage region includes a peak position in the light intensity distribution.
  • Control the drive The endoscope system according to any one of (1) to (4).
  • the control unit outputs a control signal such that a part of the speed of light of the first light incident on at least one of the first light passage region and the second light passage region includes a peak position in the light intensity distribution.
  • the control signal is generated and transmitted to the shift driving unit via a signal line.
  • the control unit varies the drive amount of the shift driving unit according to the shift direction of the rotating plate when the rotating plate is shifted between the first position and the second position by the shift driving unit.
  • the endoscope system according to any one of (1) to (5).
  • the control unit moves the rotating plate from the predetermined position to the target position according to a moving direction of the rotating plate when the rotating plate is moved from the predetermined position to the target position by the shift driving unit.
  • the first light passing region is controlled to be located within a predetermined range from the peak position of the light from the light source,
  • the endoscope system according to any one of (1) to (5).
  • the control unit varies the drive amount of the shift driving unit according to the shift direction of the rotating plate when the rotating plate is shifted between the first position and the second position by the shift driving unit.
  • a control signal is generated and the control signal is transmitted to the shift driving unit.
  • the control unit controls the shift driving unit so that a shift direction when the rotating plate enters the optical path and stops by the shift driving unit is always a constant shift direction.
  • the endoscope system according to any one of (1) to (5).
  • the control unit drives the shift driving unit so that an approach direction when the first light passage region of the rotating plate enters the optical path is always a constant approach direction by the shift driving unit.
  • the control unit generates a control signal in which a shift direction when the rotating plate enters and stops in the optical path by the shift driving unit is always a constant shift direction, and the control signal is transmitted via the signal line to the control signal. It is preferable to transmit to the shift drive unit.
  • control unit controls the shift driving unit based on information on a mechanical tolerance of the shift driving unit.
  • the control unit may generate a control signal for controlling the shift driving unit based on information on a mechanical tolerance of the shift driving unit, and transmit the control signal to the shift driving unit via a signal line. preferable.
  • the rotating plate is configured such that radial widths of the second light passage region and the first light passage region are different from each other.
  • the endoscope system according to any one of (1) to (9).
  • the wavelength band of the second light is narrower than the wavelength band of the first light
  • the light source is a lamp that emits white light as the first light.
  • the endoscope system according to any one of (1) to (11).
  • the control unit includes the value of the color component image data included in the captured image data of the biological tissue illuminated with the first light and the color component included in the captured image data of the subject illuminated with the second light.
  • the endoscope system according to any one of (1) to (12), wherein information representing a state of the living tissue is generated based on a ratio with a value of image data.
  • the control unit preferably transmits the information to the display device in order to display the information on the display device.
  • the endoscope system can irradiate the first light and the second light having different wavelength ranges, and includes the first light and the second light.
  • An endoscope system suitable for keeping the ratio of the amount of light within a reference range is provided.
  • An endoscope system is based on a plurality of images captured under illumination of light having different wavelength ranges, such as biological information of a subject (for example, total hemoglobin amount, oxygen saturation, etc.
  • biological information of a subject for example, total hemoglobin amount, oxygen saturation, etc.
  • This is a device that quantitatively analyzes a feature amount of a living tissue and displays the analysis result as an image.
  • the property that the spectral characteristics of blood that is, the spectral characteristics of hemoglobin
  • oxygen saturation the property that the spectral characteristics of blood (that is, the spectral characteristics of hemoglobin) continuously change according to the total hemoglobin amount and oxygen saturation is used.
  • part of observation by the endoscope system of this embodiment is digestive organs, such as a respiratory organ, for example.
  • the respiratory organs and the like include, for example, the lungs and the ENT.
  • Examples of digestive organs include the large intestine, small intestine, stomach, esophagus, duodenum, and uterus.
  • the endoscope system sequentially irradiates the first light and the second light (that is, illumination lights having different wavelength ranges) having different wavelength ranges. It has a configuration that can.
  • the endoscope system of the present embodiment includes a light source unit that emits white light as the first light, and a rotating plate for extracting second light in a specific wavelength region from the white light.
  • a rotary filter is described as an example of the rotary plate.
  • white light from the light source is also referred to as normal light
  • light that has passed through the optical filter of the rotary filter is also referred to as special light.
  • the configuration of the rotary filter and the configuration for driving the rotary filter back and forth between the retracted position and the application position will be described later.
  • the application position is a position where the peak position indicating the maximum intensity in the light intensity distribution of the white light beam passes through the rotary filter.
  • FIG. 1 shows an absorption spectrum of hemoglobin near 550 nm.
  • Hemoglobin has a strong absorption band called a Q band derived from porphyrin near 550 nm.
  • the absorption spectrum of hemoglobin varies depending on the oxygen saturation.
  • the oxygen saturation is a ratio of oxygenated hemoglobin HbO in the total hemoglobin.
  • the solid line waveform in FIG. 1 is an absorption spectrum when the oxygen saturation is 100% (ie, oxygenated hemoglobin HbO), and the long broken line waveform is when the oxygen saturation is 0% (ie, reduction).
  • It is an absorption spectrum of hemoglobin Hb, that is, an absorption spectrum of reduced hemoglobin Hb.
  • the short dashed line is an absorption spectrum of hemoglobin (a mixture of oxygenated hemoglobin HbO and reduced hemoglobin Hb) at an intermediate oxygen saturation of 10, 20, 30,... 90%.
  • oxygenated hemoglobin HbO and reduced hemoglobin Hb have different peak wavelengths. Specifically, oxygenated hemoglobin HbO has an absorption peak P1 near a wavelength of 542 nm and an absorption peak P3 near a wavelength of 576 nm. On the other hand, reduced hemoglobin Hb has an absorption peak P2 near 556 nm. Since FIG. 1 shows a two-component absorption spectrum in which the sum of the concentrations of each component (oxygenated hemoglobin HbO, reduced hemoglobin Hb) is constant, the absorption is independent of the concentration of each component (that is, oxygen saturation). Iso-absorption points E1, E2, E3, E4 that become constant appear.
  • the wavelength region sandwiched between the isosbestic points E1 and E2 is sandwiched between the wavelength region R1 and the wavelength region sandwiched between the isosbestic points E2 and E3 is sandwiched between the wavelength region R2 and the isosbestic points E3 and E4.
  • This wavelength region is called a wavelength region R3.
  • a wavelength region sandwiched between the isosbestic points E1 and E4 (that is, a combination of the wavelength regions R1, R2, and R3) is referred to as a wavelength region R0.
  • the wavelength band R2 is also referred to as an N band (Narrow-band)
  • the wavelength band R0 is also referred to as a W band (Wide-band).
  • the absorbances of hemoglobin in the wavelength ranges R1 and R3 increase linearly with respect to the oxygenated hemoglobin concentration.
  • the absorbance A R2 of hemoglobin in the wavelength range R2 linearly increases relative to the concentration of reduced hemoglobin.
  • oxygen saturation is defined by the following formula 1.
  • Equation 1 Equations 2 and 3 representing the concentrations of oxygenated hemoglobin HbO and reduced hemoglobin are obtained.
  • the absorbances A R1 , A R2, and A R3 of hemoglobin are characteristic quantities that depend on both the oxygen saturation and the total hemoglobin amount.
  • the absorbance of hemoglobin in the wavelength region R0 composed of the wavelength regions R1, R2 and R3 does not depend on the oxygen saturation, and the total hemoglobin amount It has been found that the value depends on
  • the total hemoglobin amount can be quantified from the absorbance AR0 .
  • the oxygen saturation Sat can be quantified from the absorbance A R1 , A R2 or A R3 and the total hemoglobin amount determined from the absorbance A R0 .
  • the amount of change in absorbance due to oxygen saturation is the wavelength. largest in-range R2, the absorbance a R2 in the wavelength range R2 is the most sensitive characteristic quantity with respect to oxygen saturation.
  • the oxygen saturation is quantified using light in the wavelength region R2 (N band).
  • FIG. 2 is an example of a reflection spectrum, which is a spectral characteristic in the visible region of a living tissue obtained by simulation calculation, and shows the influence of light scattering on the spectral characteristic.
  • the horizontal axis of each graph in FIG. 2 represents the wavelength, and the vertical axis represents the reflectance.
  • the reflection spectrum of living tissue such as the inner wall of the gastrointestinal tract is the wavelength characteristic of absorption by components constituting the living tissue, specifically, the wavelength of light scattering by living tissue in addition to the absorption spectrum characteristics of oxygenated hemoglobin and reduced hemoglobin. Influenced by characteristics.
  • 2A is a reflection spectrum when there is no scattering, FIG.
  • FIG. 2C is a reflection spectrum when there is no absorption by hemoglobin and there is light scattering
  • FIG. 2B is a reflection spectrum. It is a reflection spectrum in the case where the contribution of light scattering of biological tissue (attenuation of light due to scattering) and the contribution of absorption of hemoglobin (attenuation of light due to absorption) are approximately the same.
  • the oxygen saturation calculated based on the spectral characteristics of the living tissue without considering the intensity of light scattering since the spectral characteristics of the living tissue change depending on the intensity of light scattering, the oxygen saturation calculated based on the spectral characteristics of the living tissue without considering the intensity of light scattering.
  • the value of biological information such as can vary depending on the intensity of light scattering. That is, if the biological information is calculated using the spectral characteristics of the biological tissue (for example, the reflectance in the wavelength region R2) as it is, a calculation result including an error due to light scattering can be obtained. In order to obtain a highly accurate analysis result, it is necessary to correct an error caused by light scattering.
  • a method of correcting an error caused by light scattering a method of correcting an error after calculating biological information such as oxygen saturation Sat from the spectral characteristic of biological tissue, or an intermediate method that does not depend on light scattering from the spectral characteristic of biological tissue.
  • biological information such as oxygen saturation Sat from the spectral characteristic of biological tissue, or an intermediate method that does not depend on light scattering from the spectral characteristic of biological tissue.
  • biological information that does not include errors due to light scattering is acquired by the latter method.
  • this method has strong sensitivity (correlation) with respect to biological information to be acquired, specifically, the total amount of hemoglobin and oxygen saturation, which are characteristic amounts of biological tissue, and is caused by light scattering.
  • a search was made for a parameter that is less likely to cause an error, that is, less likely to change with respect to the intensity of light scattering.
  • the fact that it is difficult to change with respect to the intensity of light scattering is also referred to as having no sensitivity to light scattering.
  • FIG. 3-5 is a graph showing an example of correlation between various parameters that can be acquired from endoscopic image data, total hemoglobin amount tHb, and oxygen saturation Sat, and is a graph in which simulation results of various parameters are plotted. .
  • the horizontal axis of each graph represents the total hemoglobin amount, and the vertical axis represents the value of each parameter.
  • Table 1 summarizes the specifications of each graph in FIGS. 3-5.
  • “Sensitivity” in Table 1 is the sensitivity of each parameter with respect to changes in total hemoglobin amount tHb, light scattering intensity and oxygen saturation Sat, which can be read from each graph in FIGS. Is indicated by three-stage stars. The more stars, the higher the sensitivity of the parameter, that is, the larger the fluctuation range.
  • FIG. 3 (A1) and (A2) are graphs in which the simulation results of the parameter “G / R” are plotted.
  • G is a pixel value of a G pixel (color pixel to which a green G color filter is attached) obtained by normal observation using white light as illumination light for living tissue.
  • R is a pixel value of an R pixel (color pixel to which a red R color filter is attached) obtained by normal observation.
  • the parameter “G / R” is obtained by dividing the pixel value G obtained by normal observation by the pixel value R, respectively. Normal observation refers to capturing an image of a living tissue with white light and acquiring R, G, and B component images in the RGB color space.
  • the pixel value is not limited to the pixel value of the imaging signal (so-called RAW data) of the image sensor provided with the RGB primary color filter, but the demosaic processing (interpolation processing) or linear matrix processing is performed from the imaging signal.
  • the pixel value of the image data obtained through various image processing such as the above is also included.
  • RAW data the imaging signal
  • G component, and B component image data in the RGB color space obtained by demosaicing and color space conversion processing of an imaging signal of an image sensor including a complementary color filter Each process described later can also be performed using the R value, the G value, and the B value as the R pixel value, the G pixel value, and the B pixel value, respectively.
  • B1 and (B2) are graphs in which the simulation results of the parameter “B / R” are plotted.
  • “B” is a pixel value of a B pixel (color pixel to which a blue B color filter is attached) obtained by normal observation using white light.
  • the parameter “B / R” is obtained by dividing the pixel value B obtained by normal observation by the pixel value R, respectively.
  • (C1) and (C2) are graphs in which simulation results of the parameter “B / G” are plotted.
  • the parameter “B / G” is obtained by dividing the pixel value B obtained by normal observation by the pixel value G.
  • (D1) and (D2) are graphs in which the simulation result of the parameter “W / R” is plotted.
  • “W” is the pixel value of the G pixel obtained by special observation using illumination light in the wavelength range R0 (W band) shown in FIG. As will be described later, the wavelength range R0 is included in the wavelength range in which the G pixel of the image sensor has sensitivity.
  • the parameter “W / R” is obtained by dividing the pixel value W of the G pixel obtained by special observation using illumination light in the W band by the pixel value R obtained by normal observation.
  • the graphs (E1) and (E2) in FIG. 4 are graphs plotting simulation results of the parameter “N / R”.
  • “N” is the pixel value of the G pixel obtained by special observation using illumination light in the wavelength region R2 (N band) shown in FIG.
  • the parameter “N / R” is obtained by dividing the pixel value N of the G pixel obtained by special observation using N-band illumination light by the pixel value R obtained by normal observation.
  • (F1) and (F2) are graphs in which simulation results of the parameter “N / W” are plotted.
  • the parameter “N / W” indicates the pixel value N of the G pixel obtained by special observation using the N-band illumination light, and the pixel value W of G pixel obtained by special observation using the W-band illumination light. Divided by.
  • the graphs (G1) and (G2) in FIG. 5 are graphs plotting simulation results of the parameter “W / (R + G)”.
  • the parameter “W / (R + G)” is the pixel value W of the G pixel obtained by special observation using W band illumination light, and the pixel value of the R pixel obtained by normal observation using white light as illumination light. This is the sum of R and the pixel value G of the G pixel divided by “R + G”.
  • FIG. 5 is a plot in which oxygen saturations are varied by 10% from 0 to 100% and are superimposed. From these graphs, the magnitude of sensitivity of each parameter to oxygen saturation can be known.
  • the parameter “W / R” has a large sensitivity to the total amount of hemoglobin, while it has a high sensitivity to light scattering and oxygen saturation. Almost no sensitivity. Therefore, the value of the total hemoglobin amount is uniquely determined by the value of the parameter “W / R”. That is, from the quantitative relationship between the value of the parameter “W / R” obtained from the image data and the total hemoglobin amount represented by the graphs (D1) and (D2) and the parameter “W / R”, light scattering and oxygen saturation An accurate total hemoglobin amount that does not depend on the degree can be obtained.
  • the parameter “N / W” has a large sensitivity to oxygen saturation, but is almost free from light scattering. Does not have sensitivity. Therefore, if the total hemoglobin amount is known, the value of the oxygen saturation is uniquely determined from the value of the parameter “N / W” by the graph (F2). Specifically, when a plot on the graph (F2) that best matches a numerical value pair composed of the value of the total hemoglobin amount obtained from each pixel value and the value of the parameter “N / W” is selected, it corresponds to the plot. As the value of oxygen saturation, the oxygen saturation of the living tissue imaged on the pixel is obtained. Note that the value of the total hemoglobin amount includes the value of the parameter “W / R” obtained from the image data and the relationship between the total hemoglobin amount and the parameter “W / R” represented in the graphs (D1) and (D2). Obtained from.
  • the parameter “W / (R + G)” is equal to the total hemoglobin amount in the same manner as the parameter “W / R” described above. Is sensitive, but has little sensitivity to light scattering and oxygen saturation, so the amount of total hemoglobin represented in graphs (G1) and (G2) and the quantification of the parameter “W / (R + G)” From the relationship, an accurate total hemoglobin value independent of light scattering and oxygen saturation can be obtained.
  • the relationship represented by the graph (D1), (D2) or the graph (G1), (G2) and the relationship represented by the graph (F2) or (C2) can be used to simplify the process.
  • FIG. 6 is a block diagram of the endoscope system 1 according to the embodiment of the present invention.
  • the endoscope system 1 of this embodiment includes an electronic endoscope 100, a processor 200, and a monitor 300.
  • the electronic endoscope 100 and the monitor 300 are detachably connected to the processor 200.
  • the processor 200 includes a light source unit 400 and an image processing unit 500.
  • the light source unit 400 is built in the processor 200, but the light source unit 400 may not be built in the processor 200.
  • the light source unit 400 may be configured as a light source device that is separate from the processor.
  • the electronic endoscope 100 has an insertion tube 110 that is inserted into the body of a subject. Inside the electronic endoscope 100, a light guide 131 that extends over substantially the entire length is provided. One end portion (tip portion 131a) of the light guide 131 is disposed at the tip portion (insertion tube tip portion 111) of the insertion tube 110, and the other end portion (base end portion 131b) of the light guide 131 is connected to the processor 200. It is connected.
  • the processor 200 includes a light source unit 400 including a light source lamp 430 that generates white light WL having a large light amount, such as a xenon lamp. The illumination light IL generated by the light source unit 400 enters the base end 131b of the light guide 131.
  • the light incident on the proximal end 131b of the light guide 131 is guided to the distal end portion 131a through the light guide 131 and is emitted from the distal end portion 131a.
  • a light distribution lens 132 is provided at the distal end portion 111 of the insertion tube of the electronic endoscope 100 so as to face the distal end portion 131 a of the light guide 131, and illumination emitted from the distal end portion 131 a of the light guide 131.
  • the light IL passes through the light distribution lens 132 and illuminates the living tissue T in the vicinity of the insertion tube distal end portion 111.
  • an objective optical system 121 and an image sensor 141 are provided at the distal end portion 111 of the insertion tube.
  • a part (return light) of the illumination light IL reflected or scattered on the surface of the living tissue T is incident on the objective optical system 121 and is condensed and imaged on the light receiving surface of the image sensor 141.
  • the image sensor 141 of the present embodiment is a CCD (Charge Coupled Device) image sensor for color image capturing, which includes a color filter 141a on its light receiving surface.
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • the color filter 141 a includes an R color filter that transmits red light, a G color filter that transmits green light, and a B color filter that transmits blue light, and is arranged on each light receiving element of the image sensor 141. It is a so-called on-chip filter formed directly.
  • the R, G, and B filters have spectral characteristics as shown in FIG. That is, the R color filter of the present embodiment is a filter that passes light having a wavelength longer than about 570 nm, the G color filter is a filter that passes light having a wavelength of about 470 nm to 620 nm, and the B color filter is It is a filter that allows light having a wavelength shorter than about 530 nm to pass through.
  • the image sensor 141 is controlled to be driven in synchronization with a signal processing circuit 550 described later, and periodically captures an image signal corresponding to a subject image formed on the light receiving surface (for example, at 1/30 second intervals). )Output.
  • the imaging signal output from the imaging element 141 is sent to the image processing unit 500 of the processor 200 via the cable 142.
  • the image processing unit 500 includes an A / D conversion circuit 510, a temporary storage memory 520, a controller 530, a video memory 540, and a signal processing circuit 550.
  • the A / D conversion circuit 510 performs A / D conversion on an imaging signal input from the imaging device 141 of the electronic endoscope 100 via the cable 142 and outputs digital image data.
  • Digital image data output from the A / D conversion circuit 510 is sent to and stored in the temporary storage memory 520.
  • the digital image data includes R digital image data captured by a light receiving element to which an R color filter is mounted, G digital image data captured by a light receiving element to which a G color filter is mounted, and light reception to which a B color filter is mounted.
  • B digital image data imaged by the element is included.
  • R digital image data, G digital image data, and B digital image data are also referred to as single color image data (R single color image data, G single color image data, and B single color image data).
  • the controller 530 processes one or more digital image data stored in the temporary storage memory 520 to generate screen data to be displayed on the monitor 300, and sends this to the video memory 540.
  • the controller 530 may generate screen data generated from a single digital image data, screen data in which images of a plurality of digital image data are arranged, or each pixel (x, y) based on a plurality of digital image data.
  • a reflection spectrum of the living tissue T is generated, and thereby, screen data including an image obtained by color-coding the healthy part and the lesioned part, and a graph display of the reflection spectrum of the living tissue T corresponding to a specific pixel (x, y) are displayed.
  • the generated screen data and the like are generated and stored in the video memory 540.
  • the signal processing circuit 550 generates and outputs a video signal in a predetermined format (for example, a format conforming to the NTSC standard or the DVI standard) based on the screen data stored in the video memory 540.
  • the video signal output from the signal processing circuit 550 is input to the monitor 300.
  • an endoscopic image captured by the electronic endoscope 100 is displayed on the monitor 300.
  • the controller 530 generates a control signal for controlling the operation of each part of the light source unit 400, and transmits this control signal to each part via a signal line.
  • the processor 200 functions as a video processor for processing the imaging signal output from the imaging device 141 of the electronic endoscope 100 and the illumination light IL for illuminating the living tissue T as the subject. It also has a function as a light source device to be supplied to the light guide 131 of the endoscope 100.
  • the light source unit 400 includes a condensing lens 440, a rotating filter (rotating plate) 410, a filter control unit 420, and a condensing lens 450 in addition to the light source 430 described above.
  • the substantially parallel white light WL emitted from the light source 430 is collected by the condenser lens 440, passes through the rotary filter 410, and is collected again by the condenser lens 450, and is then proximal to 131 b of the light guide 131. Is incident on.
  • the light source unit 400 further includes a shift drive mechanism (shift drive unit) 470.
  • shift drive mechanism 470 By this shift drive mechanism 470, the rotary filter 410 is movable between the application position on the optical path of the white light WL and the retracted position outside the optical path. Details of the shift drive mechanism 470 will be described later.
  • FIG. 8 is a front view of the rotary filter 410 as viewed from the condenser lens 450 side.
  • a shift drive mechanism 470 that drives the rotary filter 410 to advance and retract perpendicularly to the optical path from the light source 430 is not shown.
  • the rotary filter 410 includes four fan-shaped optical filters (special optical filters) Fs1, Fs2, Fs3, and Fs4, and four slit portions SL1, SL2, SL3, and SL4.
  • the special light filter Fs1, the slit portion SL1, the special light filter Fs2, and the slit portion SL2 are arranged at an angle pitch (here, an angle of 90 °) corresponding to the imaging period (frame period). Pitch). Further, on the inner peripheral side of the rotary filter 410, the special light filter Fs2, the slit portion SL3, the special light filter Fs4, and the slit portion SL4 have an angular pitch corresponding to the imaging period (frame period) (here, an angular pitch of 90 °). ).
  • Each of the special optical filters Fs1, Fs2, Fs3, and Fs4 is a dielectric multilayer filter, but is another type of optical filter (for example, an etalon filter using a dielectric multilayer film as a reflection film). Also good.
  • Each of the special light filters Fs1, Fs2, Fs3, and Fs4 has an action of extracting special light (light in a specific wavelength range).
  • “frame” may be replaced with “field”.
  • the frame period and the field period are, for example, 1/30 seconds and 1/60 seconds, respectively.
  • the rotation filter 410 is arranged so that the special light filter Fs 1, the slit part SL 1, the special light filter Fs 2, and the slit part SL 2 on the outer peripheral side of the rotation filter part 260 are positioned on the optical path from the light source 430 by the shift drive mechanism 270.
  • the slit portions (SL1, SL2) have a radial width different from that of the special optical filters (Fs1, Fs2).
  • the radial width of the slit portions (SL1, SL2) is narrower than the radial width of the special optical filter.
  • the radial width w of the slit portions SL1 and SL2 is, for example, the ratio between the transmitted light amount of the slit portion SL1 (SL2) and the transmitted light amount of the special optical filter Fs1 and / or Fs2 is within the reference range. So that it is set. This reference range is preferably set to be constant.
  • the brightness ratio between the normal observation image by the slit portion SL1 (or SL2) and the special light observation image by the special light filters Fs1 and / or Fs2 is kept within a certain reference range, and is set to a certain value. Etc. can be controlled.
  • the operator maintains the accuracy of calculation of biological information such as oxygen saturation, avoids the occurrence of phenomena such as darkening one when displaying the normal observation image and the special light observation image at the same time. It is possible to improve the accuracy of diagnosis of a lesion by
  • the reference range is determined as a range in which the accuracy of calculating biological information such as oxygen saturation of hemoglobin can be maintained.
  • the reference range is determined for each type of biological information based on a test result performed in advance using a sample whose biological information is known.
  • the endoscope system 1 is configured to hold a table of values determined for each type of biological information as a reference range of the ratio between the transmitted light amount of the slit portion and the transmitted light amount of the special light filter portion. It is preferable.
  • the special light filter and slit (Fs1, SL1, Fs2, and SL2) on the outer peripheral side of the rotary filter 410 and the special light filter and slit (Fs3, SL3, Fs4, and SL4) on the inner peripheral side are used as the light of the light source 430.
  • the operator can switch the position on the road by operating an operation panel (not shown) of the processor 200 according to the observation purpose.
  • the controller 530 drives and controls the shift drive mechanism 270 in accordance with an operation input by the operator, and the special light filters and slits (Fs1, SL1, Fs2,. SL2), the special optical filter on the inner peripheral side, and the slits (Fs3, SL3, Fs4, SL4) are positioned on the optical path.
  • the special optical filters Fs1 and Fs2 on the outer peripheral side are configured as optical filters for observing oxygen saturation.
  • the special optical filters Fs1 and Fs2 are also referred to as a first oxygen saturation observation filter Fs1 and a second oxygen saturation observation filter Fs2, respectively.
  • the special light filters Fs3 and Fs4 on the inner peripheral side are preferably configured as optical filters for infrared light observation, for example.
  • the first oxygen saturation observation filter Fs1 is an optical bandpass filter that selectively transmits light in the 550 nm band. As shown in FIG. 1, the first oxygen saturation observation filter Fs1 transmits light in the wavelength region from the equiabsorption points E1 to E4 (that is, the wavelength region R0) with low loss, and other wavelengths. It has spectral characteristics that shield the light in the area.
  • the second filter for observing the degree of oxygen saturation Fs2 transmits the light in the wavelength region (that is, the wavelength region R2) from the isosbestic points E2 to E3 with low loss and blocks the light in the other wavelength regions. have.
  • a through hole 413 is formed in the peripheral edge of the rotary filter 410.
  • the through hole 413 is formed at a predetermined position (for example, a position facing the special optical filter) in the rotation direction of the rotary filter 410.
  • a photo interrupter 422 for detecting the through hole 413 is arranged so as to surround a part of the peripheral edge of the rotary filter 410.
  • the photo interrupter 422 is connected to the filter control unit 420.
  • the endoscope system 1 of the present embodiment has two operation modes, a normal observation mode and a spectroscopic analysis (special observation) mode.
  • the normal observation mode is an operation mode for capturing a color image using normal light.
  • spectroscopic analysis is performed based on digital image data captured using illumination light IL (special light) that has passed through each of the special light filters Fs1 and Fs2, and a distribution image of biomolecules in biological tissue ( For example, this is a mode for displaying an oxygen saturation distribution image).
  • the operation mode of the endoscope system 1 is switched by a user operation on an operation panel (not shown) of the processor 200 or an operation button (not shown) of the electronic endoscope 100, for example.
  • the controller 530 controls the shift drive mechanism 470 to shift the rotary filter 410 from the application position to the retracted position.
  • the rotary filter 410 is disposed at the application position.
  • the digital image data picked up by the image pickup device 141 is subjected to predetermined image processing such as demosaic, then converted to a video signal and displayed on the monitor 300.
  • the controller 530 controls the filter control unit 420 having a servo motor (not shown) to rotate and rotate the rotary filter 410 at a constant rotation speed, while the special optical filter Fs1, the slit unit SL1, Imaging of the living tissue T is sequentially performed by the illumination light IL that has passed through the special light filter Fs2 and the slit portion SL2. Then, based on the digital image data acquired using the illumination light IL that has passed through each of the special light filters Fs1 and Fs2, an image showing the distribution of biomolecules in the living tissue is generated, and the slit portions SL1 and SL2 are generated. A display screen on which the normal observation images acquired by using the image are arranged is generated, further converted into a video signal, and displayed on the monitor 300.
  • the filter control unit 420 detects the phase of rotation of the rotary filter 410 based on the timing when the photo interrupter 422 detects the through hole 413, and uses this as the phase of the timing signal supplied from the controller 530. In comparison, the rotation phase of the rotary filter 410 is adjusted.
  • the timing signal from the controller 530 is synchronized with the drive signal for the image sensor 141. Accordingly, the rotary filter 410 is rotationally driven at a substantially constant rotational speed in synchronization with the driving of the image sensor 141.
  • the rotation of the rotation filter 410 is performed by the special light filter Fs1 and the slit portion in which the white light WL is incident every time one image (three frames of R, G, and B) is captured by the image sensor 141.
  • Control is performed so that SL1, the special optical filter Fs2, and the slit portion SL2 are switched.
  • the filter control unit 420 having a servo motor functions as a rotation drive unit that sequentially inserts the slit portions (SL 1, SL 2) and the special light filters (Fs 1, Fs 2) of the rotary filter 410 into the optical path of white light from the light source 430. .
  • FIG. 9 is a flowchart showing the procedure of the spectroscopic analysis process.
  • the filter control unit 420 rotationally drives the rotary filter 410 at a constant rotational speed. Then, the illumination light IL that has passed through the special light filter Fs1, the slit portion SL1, the special light filter Fs2, and the slit portion SL2 is sequentially supplied from the light source unit 400, and imaging using each illumination light IL is sequentially performed (S1). ). Specifically, G digital image data W (x, y) imaged using the illumination light IL that has passed through the special light filter Fs1, and G digital image data imaged using the illumination light IL that has passed through the special light filter Fs2.
  • Digital image data B (x, y) is stored in the internal memory 532 of the controller 530.
  • the image processing unit 500 uses the R digital image data R (x, y), G digital image data G (x, y), and B digital image data B (x, y) acquired in step S1. Then, the pixel selection process S2 for selecting the pixels to be subjected to the following analysis process (processes S3-S8) is performed.
  • pixels suitable for the analysis processing that is, pixels in which the spectroscopic characteristics of hemoglobin are recorded are selected, and the analysis processing is performed only on the selected pixels. It is configured.
  • the above three conditional expressions are set based on the magnitude relationship of the values of G component ⁇ B component ⁇ R component in the blood transmission spectrum. Note that the pixel selection process S2 is performed using only one or two of the above three conditional expressions, for example, focusing on the red color peculiar to blood and using only Expression 5 and Expression 6. May be.
  • the image processing unit 500 performs a first analysis process S3.
  • a non-volatile memory 532 of the controller 530 holds a numerical table T1 (or function) representing a quantitative relationship between the total hemoglobin amount tHb and the parameter W / R represented by the graph (D1) or (D2) in FIG. ing.
  • the numerical table T1 is used to calculate the total hemoglobin amount tHb from the G digital image data W (x, y) and the R digital image data R (x, y) acquired in the process S1. Get the value.
  • Equation 7 the parameter W / R (x, y) is calculated for each pixel (x, y) by Equation 7.
  • the value of the total hemoglobin amount tHb (x, y) corresponding to the value of the parameter W / R (x, y) calculated by the mathematical formula 7 is read and acquired.
  • the quantitative relationship of the numerical value table T1 (and numerical value table T2 to be described later) held in the nonvolatile memory 532 is obtained in advance by theoretical calculation or experiment.
  • the value of the total hemoglobin amount tHb and the value of the parameter W / R do not have a one-to-one correspondence, but the numerical table T1 includes the total hemoglobin.
  • a typical one-to-one quantitative relationship (for example, average value or median value) between the quantity tHb and the parameter W / R is maintained. Therefore, the total hemoglobin amount tHb is uniquely determined from the value of the parameter W / R by the numerical value table T1.
  • the non-volatile memory 532 of the controller 530 holds a numerical table T2 (or function) representing the quantitative relationship between the total hemoglobin amount tHb, the parameter N / W, and the oxygen saturation Sat shown in the graph (F2) of FIG. ing.
  • a numerical value table T2 three numerical values (hereinafter referred to as “numerical value set”) of the total hemoglobin amount tHb, the parameter N / W, and the oxygen saturation Sat are associated and registered.
  • the second analysis process S4 using this numerical table T2, the G digital image data W (x, y) and N (x, y) acquired in the process S1 and the total acquired in the first analysis process S3 are used.
  • the value of the oxygen saturation Sat (x, y) of each pixel is acquired from the value of the hemoglobin amount tHb (x, y).
  • Equation 8 the parameter N / W (x, y) is calculated for each pixel (x, y) by Equation 8.
  • the non-volatile memory 532 of the controller 530 stores a numerical table (or function) representing the relationship between the oxygen saturation Sat (x, y) and the display color (pixel value). Then, in the process S5 (FIG. 6), the controller 530 refers to this numerical table (or function), and calculates a value representing a display color corresponding to the oxygen saturation Sat (x, y) obtained in the process S4. Obtained and oxygen saturation distribution image data having this value as a pixel value is generated.
  • the controller 530 also uses the R digital image data R (x, y) and G digital image data G (x, y) captured using the illumination light IL (white light) that has passed through the slit portion SL1 (or SL2).
  • B Normal observation image data is generated from the digital image data B (x, y).
  • the controller 530 generates screen data for displaying the normal observation image and the oxygen saturation distribution image side by side on one screen from the generated oxygen saturation distribution image data and normal observation image data, and stores them in the video memory 540.
  • the controller 530 displays the patient ID on the display screen that displays only the oxygen saturation distribution image, the display screen that displays only the normal observation image, the oxygen saturation distribution image and / or the normal observation image in accordance with a user operation.
  • Various display screens can be generated, such as a display screen in which incidental information such as information and observation conditions is displayed in a superimposed manner.
  • the controller 530 determines that the total hemoglobin amount acquired in the first analysis process S3 is larger than a predetermined reference value (first reference value), and the oxygen saturation acquired in the second analysis process S4 is a predetermined reference value. Pixels smaller than (second reference value) are extracted, for example, lesion-enhanced image data in which highlight display processing is performed on the corresponding pixels of the normal observation image data is generated, and the normal observation image and / or oxygen saturation is generated. A lesion-emphasized image can be displayed on the monitor 300 together with (or alone) the degree distribution image.
  • a process of increasing the pixel value of the corresponding pixel for example, a process of changing the hue (for example, a process of increasing the red component by increasing the R component, or a process of rotating the hue by a predetermined angle) ), A process of blinking the corresponding pixel (or changing the hue periodically).
  • the controller 530 converts, for example, the deviation from the average value of the oxygen saturation Sat (x, y) and the deviation from the average value of the total hemoglobin amount tHb (x, y) instead of the lesion-emphasized image data. Based on this, an index Z (x, y) as an evaluation value indicating the degree of suspicion of a malignant tumor may be calculated to generate image data (malignancy suspicion image data) having the index Z as a pixel value. .
  • the controller 530 captures the value of the R digital image data, which is a color component included in the captured image data of the biological tissue illuminated with white light, and the imaging of the biological tissue illuminated with the special light. It is preferable to generate information representing the state of the living tissue based on the ratio W / R with the value of the G digital image data included in the image data.
  • FIG. 10 is a diagram schematically illustrating a configuration example in one embodiment of the shift drive mechanism 470.
  • FIG. 10 shows the state of the configuration of the shift drive mechanism 470 as viewed from the condenser lens 450 side.
  • the shift drive mechanism 470 includes, for example, a stepping motor 471, a pinion gear 472 connected to the drive shaft of the stepping motor 471 via a gear mechanism (not shown), a rack gear 473, and an arm 475.
  • a photo interrupter 474 for detecting the origin position of the rotary filter 410.
  • the arm 475 fixes the rotary filter 410 to the rack gear 473.
  • the rotary filter 410 is retracted from the optical path of the illumination light.
  • the special optical filter / slit on the outer peripheral side is positioned in the optical path of the illumination light.
  • a special light observation image corresponding to the observation purpose can be generated by performing control such as positioning in the optical path of light.
  • the controller 530 moves / stops the rotary filter 410 to a position corresponding to the observation purpose in accordance with an operation input from the operator via the operation panel.
  • FIG. 11 is a diagram for explaining the variation of the stop position of the rotary filter 410 due to such manufacturing tolerances. As shown in FIG. 11, even when the stepping motor 471 is controlled at the same number of steps, depending on the rotation direction of the pinion gear 272, the stop position of the rack gear 473 is at the T position shown in FIG. Zero tolerance occurs.
  • the mechanical error of the rotary filter 410 and the mechanical position of the photointerrupt 474 are included in the factors that cause the fluctuation of the stop position of the rotary filter 410 depending on the rotation direction of the pinion gear. It is considered that multiple factors such as errors are combined.
  • the light intensity distribution of the white light incident on the rotary filter 410 from the light source 430 has a peak at the center, and the intensity gradually decreases from the peak to the outside.
  • the slit portion (SL1 or the like) is positioned at the center of the white light (FIG. 12A)
  • the slit portion The amount of illumination light IL (ordinary light) varies between when (SL1 etc.) deviates from the center of white light (FIG. 12B).
  • the shaded portion corresponds to the slit portion (SL1 or the like).
  • the light beam cross-section of the white light when entering the slit (SL1, SL2, etc.) and the special light filter (Fs1, Fs2, etc.) is divided into the slit (SL1, SL2, etc.) and the special light filter ( Fs1, Fs2, etc.) are larger than the incident surface, and part of the white light beam enters the slits (SL1, SL2, etc.) and special light filters (Fs1, Fs2), and the remaining part of the light beam is the slit (SL1, SL2). Etc.) and special light filters (Fs1, Fs2, etc.).
  • the controller 530 performs shift driving so that a part of white light incident on at least one of the slits (SL1, SL2, etc.) and the special light filters (Fs1, Fs2, etc.) includes the peak position in the light intensity distribution. It is preferable to control mechanism 470.
  • a parameter for correcting the amount of deviation from the target position that occurs when the rotary filter 410 is shifted from the predetermined position to the target position by the shift drive mechanism 470 is held in advance, and the shift drive mechanism 470 is controlled based on this parameter.
  • the position of the slit portion (SL1 etc.) is controlled so as to be within a predetermined range of the peak position where the light intensity of the white light becomes the maximum intensity. In other words, the light intensity of the white light becomes the maximum intensity.
  • the controller 531 is configured so that the rotary filter 410 is in a predetermined slit (SL1, SL2) of the rotary filter 410 from a predetermined reference position deviated from the optical path of the light source 430.
  • the special optical filters (Fs1, Fs2) are at the target positions on the optical path, or the predetermined slits (SL3, SL4 or) and the special optical filters (Fs3, Fs4) are at the target positions on the optical path. It is preferable to hold a table in which the adjusted driving amount is set so that the stepping motor 471 is driven according to this driving amount and stopped.
  • the adjusted drive amount varies depending on the shift direction of the rotary filter 410, that is, the forward path operation and the backward path operation of the stepping motor 471.
  • the number of steps of the stepping motor 471 is an example of the driving amount.
  • Table 2 an adjustment value table of the number of steps of the stepping motor 471 is held in the internal memory 532, and the rack gear 473 can be controlled to stop at the position of the number of steps indicated in the adjustment value table. preferable.
  • the number of steps in the retracted position is set to 5
  • the special optical filter / slit on the outer peripheral side (simply referred to as filter 1 in Table 2) is used.
  • the number of steps is set to 100 and the special optical filter / slit on the inner circumference side (simply referred to as filter 2 in Table 2) is used, the number of steps is set to 200.
  • the special optical filter / slit on the outer peripheral side (simply referred to as filter 1 in Table 2) is used, the number of steps is 95, and the special optical filter / slit on the inner peripheral side (simply referred to as filter 2 in Table 2). )
  • the number of steps is 195 when used.
  • An example of the number of steps is the number of pulses used to drive the stepping motor 471.
  • the position of the slit portion of the rotary filter 410 can be accurately determined regardless of which special optical filter / slit is used. It is possible to make it coincide with the peak position of the illumination light or to be within a predetermined range of the peak position.
  • Table 2 shows examples of adjustment values when the rotary filter 410 has two sets of special optical filters / slits in the radial direction. However, the rotary filter 410 has more special optical filters / slits in the radial direction. In the case of a configuration having a portion, the value of the adjustment value to be held may be increased in accordance with the number of sets of special optical filters and slit portions.
  • the adjustment value table may be updated in consideration of the secular change of the tolerance of the mechanical mechanism. Specifically, since the controller 530 has a function of integrating the usage time of the processor 200 based on the internal clock, the adjustment value is updated, for example, one step per year using this integration function. May be. Table 3 below is an adjustment value table to be applied after one year when the adjustment value is updated step by step in units of years as an example.
  • the speed of aging may be determined with reference to the value of the durability test.
  • the adjustment value is updated in consideration of the secular change, the play that increases as the gear is scraped every time it is used is absorbed, and the transition by the rack gear 473 is performed throughout the product life. Position accuracy can be maintained.
  • FIG. 14 is a flowchart showing control when the rotary filter 410 is shifted from the current position to the target position using the adjustment value table.
  • the control shown in FIG. 14 is an example in which the operator operates an operation panel (not shown) provided in the processor to shift the position of the rotation filter 410 (operation for performing desired special light observation). ) In response to the controller 530.
  • this processing is started, first, the difference between the current position of the rotary filter 410 and the target position is calculated, and it is determined whether the shift direction of the rotary filter 410 is the forward direction or the backward direction (step S101). ).
  • step S101 If the calculation result is negative in step S1, and therefore the shift direction of the rotary filter 410 is the forward direction (S101: negative), the number of steps in the forward operation column is read from the adjustment value table (Table 2) (Ste S102). Then, the driving of the stepping motor 471 is started using the number of steps read out in step S2 (step S104), and the driving operation using this number of steps is continued until the rotary filter 410 reaches the target position (S105: NO).
  • Information on the current position can be obtained by the controller 530 from the drive amount applied to the stepping motor 471 described above.
  • Information on the target position can be obtained by the controller 530 depending on the type of special light set in the spectroscopic analysis mode.
  • the difference between the current position and the target position can be calculated from the difference between the actual light amount measured by the white light emitted from the rotary filter 410 and the light amount that is a predetermined reference. preferable.
  • the brightness of the current image captured by the electronic endoscope system 1 and the brightness of the ideal reference image can also be calculated from the difference.
  • step S101 if the calculation result is positive in step S101 and the shift direction of the rotary filter 410 is the return direction (S101: positive), the number of steps in the return path column is read from the adjustment value table (Table 2). (Step S103). Then, the driving of the stepping motor 471 is started using the number of steps read in step S102 (step S104), and this driving operation continues until the rotary filter 410 reaches the target position (S105: NO). When the rotary filter 410 reaches the target position (S105: YES), this control ends.
  • the controller 530 shifts the rotary filter 410 from the first position to the second position, which is the target position, by the shift drive mechanism 470
  • the controller 530 is generated due to manufacturing errors and tolerances of the device of the shift drive mechanism 470.
  • a parameter such as the number of steps for correcting the shift amount between the actual position where the rotary filter 410 shifts and the second position is held in advance, and the shift drive mechanism 470 is controlled based on this parameter.
  • the controller 530 shifts the rotary filter 410 between the first position and the second position by the shift drive mechanism 470, the controller 530 varies the drive amount of the shift drive mechanism 470 according to the shift direction of the rotary filter 410. It is also preferable.
  • FIG. 15 is a diagram for explaining the operation principle of this control.
  • the number of steps of the stepping motor accurately corresponds to the target position when the rotary filter 410 performs the return path operation.
  • the rotary filter 410 when the shift from the current position to the target position is in the forward direction, the rotary filter 410 is temporarily moved to a position exceeding the target position, and the return path is set. Move to return to the target position by movement.
  • the target position is moved by the passing amount ⁇ .
  • FIG. 15B when the shift from the current position to the target position is in the backward direction, it is moved to the target position as it is.
  • the rotary filter 410 can always enter and stop with respect to the target position by the return path operation.
  • FIG. 16 is a flowchart for realizing the above control.
  • numbers are assigned to the special light filters in order from the outside (that is, the filter numbers are the outside numbers).
  • the control shown in FIG. 16 is, for example, in response to an operation (operation for performing desired special light observation) in which the operator operates the operation panel (not shown) of the processor 200 to shift the position of the rotary filter 410. This is executed under the control signal generated by the controller 530.
  • step S11 a process of subtracting the target filter number from the filter number at the current position is performed (step S11). If the result of the subtraction process in step S11 is negative, the shift is in the forward direction, the process proceeds to step S12, and driving of the rotary filter 410 to the target filter number is started. This driving is continued until the rotary filter 410 is shifted to the position of the target filter number (step S13: NO). When the rotary filter 410 reaches the target position (step S13: YES), a process of adding the passing amount ⁇ to the target position is performed (step S14), and driving is further continued (step S15). This driving is continued until the rotary filter 410 reaches the target position set in step S15 (step S16: NO).
  • step S17 When the rotation filter 410 reaches the target position set in step S15 (step S16: YES), next, a process of subtracting the passing amount ⁇ from the target position is performed (step S17). And the process which drives the rotation filter 410 to a target position is performed (step S18). This drive is executed until the rotary filter 410 reaches the target position set in step S17 (step S19: NO). When the rotary filter 410 reaches the target position set in step S17 (step S19: YES), this control process ends.
  • step S11 if the calculation result in step S11 is positive, the shift direction of the rotary filter 410 is the return path direction (step S11: positive), so the process proceeds to step S20.
  • step S20 driving of the rotary filter 410 to the target position is started, and this driving is continued until the rotary filter unit 410 reaches the target value (step S21: NO).
  • step S21: YES When the rotary filter 410 reaches the target position (step S21: YES), this process ends.
  • the rotary filter 410 can always enter and stop at the target position by the return path operation, and can be accurately stopped at the target position.
  • the position control process shown in FIG. 16 is based on the premise that the number of steps of the stepping motor accurately corresponds to the target position when the rotary filter unit 410 performs the return path operation.
  • the number of steps of the stepping motor accurately corresponds to the target position when the rotary filter 410 performs the forward operation.
  • a series of processes in which the calculation result of step S11 is positive in the flowchart of FIG. Then, the same processing as described above using the passing amount is performed.
  • the controller 530 uses the shift drive mechanism 470 to stop the slit (SL1, SL2, etc.) of the rotary filter 410 from entering the optical path of white light, in other words, the shift direction immediately before the stop is always a constant shift direction. It is preferable to control the shift drive mechanism 470 so as to be. At this time, when the rotary filter 410 shifts from the first position toward the second position, the controller 530 shifts the rotary filter 410 from the first position beyond the second position, and then the shift direction of the rotary filter 410. It is preferable to shift to the second position in reverse.
  • the passing amount ⁇ is preferably as small as possible from the viewpoint of quickly shifting the rotary filter 410, but may be set to a necessary and sufficient amount in consideration of the following various tolerances.
  • ⁇ Tolerance for example, 0.1mm
  • Tolerance and engagement play amount due to work accuracy of all gears (for example, 1.0 mm)
  • Amount of play assumed for aging / durability, etc. for example, 1.0 mm
  • the position of the slit portion (SL1 or the like) of the rotary filter 410 can be controlled so as to be within a predetermined range of the white light peak position.
  • the range of the shift amount (that is, the shift amount of the stop position of the rotary filter) based on the beam diameter (the beam diameter of the beam incident on the rotary filter) provided by the above embodiment is 0 to 4% is preferable, 0 to 2% is more preferable, and 0 to 1% is more preferable. In order to make the amount of deviation zero, it is necessary to improve various precisions, and it is highly possible that the cost will increase.
  • the lower limit of the amount of deviation may be 0.1% or more, or 0.3% It may be above. According to one embodiment, it is possible to suppress the deviation amount based on the light beam diameter to 0.7% under a specific condition (the deviation amount in this case is an amount caused by a gear tolerance or the like). Is almost zero, and it is considered that the amount of deviation due to other factors remains.) As a comparative example, the deviation amount based on the beam diameter in the conventional configuration is about 5% (in this case, factors such as gear tolerance are dominant). In addition, the effect mentioned here is an example in case a light beam diameter is 10 mm, and the effect in each embodiment is not limited to the numerical example quoted here.
  • FIG. 17 is a diagram for explaining this in principle.
  • a state is assumed in which the shift drive mechanism 470 is controlled so that the position of the slit portion is accurately aligned with the optical path from the light source 430.
  • the slit portions (SL1, SL2) are located at the peak portion of the luminance distribution of white light (the shaded portion in FIG.
  • FIG. 17C corresponds to the position of the slit portion). Therefore, the amount of light corresponding to the peak position is obtained as normal light.
  • FIG. 17A shows which part of the luminance distribution of the white light the special light filters (Fs1, Fs2) overlap in this case.
  • the shaded portions correspond to special optical filters (Fs1, Fs2).
  • the special light filters Fs1 and Fs2 are formed to have a sufficiently large radial width with respect to the slit portions (SL1 and SL2). Therefore, in the state of FIG. , Fs2) is understood to use a significant portion of the luminance distribution of white light.
  • the shift driving mechanism 470 is driven and controlled, and the slit portions (SL1, S12) of the rotary filter 410 are moved step by step from the peak position of the white light by a predetermined amount. Assume that.
  • the amount of light that decreases stepwise can be obtained by the slit portions (SL1, SL2).
  • FIG. 17D a state in which three kinds of light amounts ( ⁇ 1 step, ⁇ 2 step, and ⁇ 3 step) that decrease stepwise are obtained is shown.
  • the special optical filters (Fs1, Fs2) have a sufficient width in the radial direction, it is assumed that the rotary filter 410 is moved to the “ ⁇ 3 stage” in FIG.
  • the amount of white light to be reduced is small, and the amount of white light can be sufficiently transmitted, and the emission intensity of the illumination light from the special light filters (Fs1, Fs2) has a substantial effect on the brightness of the image. It will not decrease as much as given.
  • the brightness ratio of the normal observation image when the normal observation image and the special observation image are simultaneously displayed is adjusted by moving the position of the rotation filter 41 in an accurate and minute stepwise manner according to the above-described driving example. It is possible.
  • the parameter W / R is used to calculate the total hemoglobin amount tHb along the spectral analysis mode shown in FIG. Desired.
  • the value of the parameter W / R is an important value for calculating the total hemoglobin amount tHb and further calculating the oxygen saturation Sat from the calculated total hemoglobin amount tHb.
  • this parameter W / R is the ratio of the light intensity of the white light that has passed through the slit (SL1, SL2, etc.) and the special light component that has passed through the special light filter (Fs1, Fs2, etc.), Changing with the use of the endoscope system 1 a plurality of times is not preferable in calculating the accurate total hemoglobin amount tHb and calculating the accurate oxygen saturation Sat. From this point, the effect of controlling the shift drive mechanism 470 is great so that the ratio between the amount of special light and the amount of white light falls within the reference range.
  • the wavelength band of the special light is narrower than the wavelength band of the white light, and the radial width of the rotary filter 410 of the special filter (Fs1, Fs2, etc.) for extracting the special light is the radial direction of the slit (SL1, SL2, etc.). Since it is larger than the width, the total light amount of the entire wavelength band of the special light can be brought close to the total light amount of the entire wavelength band of the white light, so that the SN ratio of the parameter W / R can be improved. As a result, it is possible to obtain the total hemoglobin amount tHb and the oxygen saturation Sat with high accuracy.
  • the configuration of the rotary filter described with reference to FIG. 8 is just an example, and there may be various configuration examples of the type of special optical filter and the number of arrangement in the radial direction.
  • the white light passage region of the rotary filter is configured as a slit, but the configuration of the white light passage region is configured to reduce white light from the light source and from the light source.
  • the configuration of the above-described embodiment functions effectively.
  • the white light passage region may include a filter such as a neutral density filter.
  • the present invention is applied to the analysis of the hemoglobin concentration distribution in the biological tissue.
  • another biological substance that changes the color of the biological tissue for example, a secretion product such as a hormone.
  • the present invention can also be applied to analysis of concentration distribution.
  • the image sensor 141 of the present embodiment has been described as an image sensor for color image capturing provided with R, G, and B primary color filters on the front surface thereof, but is not limited to this configuration.
  • an image sensor for capturing a color image including a Y, Cy, Mg, G complementary color filter may be used.
  • Endoscope System 100 Electronic Endoscope 110 Insertion Tube 111 Insertion Tube Tip 121 Objective Optical System 131 Light Guide 131a Tip 131b Base End 132 Light Distribution Lens 141 Image Sensor 141a Color Filter 142 Cable 200 Processor 300 Monitor 400 Light Source Unit 410 rotary filter 420 filter control unit 430 light source 440 condensing lens 450 condensing lens 470 shift drive mechanism 471 stepping motor 472 pinion gear 473 rack gear 474 photointerrupter 500 image processing unit 510 A / D conversion circuit 520 temporary storage memory 530 controller 540 Video memory 550 signal processing circuit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

内視鏡システムは、第1の光を射出する光源と、第1の光を通過させる第1光通過領域と、第1の光から1種類以上の特定波長域の第2の光を取り出す第2光通過領域とが所定の方向に並べて配置された回転板であって、第1光通過領域が第1光通過領域を通過した第1の光と第2光通過領域により取り出された第2の光の光量との差を低減するように構成された回転板と、回転板を回転させることにより第1光通過領域と第2光通過領域とを前記光源からの第1の光の光路に順次挿入する回転駆動部、回転板を、光源からの光路と交差する方向にシフトさせるシフト駆動部と、第2光通過領域を通過した光の光量と第1光通過領域を通過した光の光量の比率が基準範囲内となるようにシフト駆動手段を制御する制御部と、を備える。

Description

内視鏡システム
 本発明は、病変部等の被写体を照明する照明光の切り換えが可能な内視鏡システムに関する。
 医療機器の分野においては、特性の異なる波長域の照明光を使用した観察を同時に行う事で病変部の診断を容易にした内視鏡システムが知られている。例えば、特許文献1には、このような内視鏡システムの一例として、通常光観察と特殊光観察とを同時に行うことのできる内視鏡システムの具体的な構成例が記載されている。
 ここで、特殊光観察とは、生体組織中の生体分子の分布を示す画像を生成し、これにより術者が各種病変を識別することを可能にする観察であり、特殊光観察機能は内視鏡システムが備える製品仕様として極めて重要な仕様である。
 特許文献1に記載された内視鏡システムの光源部は、通常光を通過させる通常光通過領域と特殊光を通過させる特殊光フィルタ領域とが円周上に並べて配置された回転フィルタを備えている。回転フィルタを回転駆動し、被写体に対して通常光と特殊光を順次照射して撮像を行う事で、通常観察画像と特殊光観察画像とを同時にモニタ画面に表示することが可能となる。また、特許文献1に記載された内視鏡システムにおいては、回転フィルタの通常光通過領域は、金網状の減光部として構成され、これにより、特殊光と通常光の光量を合わせるように構成されている。
特開2011-200377号公報
 近年、回転フィルタを用い通常観察画像と特殊光観察画像とを同時に取得できる構成とすることにより、特殊光によって得られる画像情報に加え、通常光によって得られる画像情報を用いることで、例えば、ヘモグロビンの酸素飽和度等の生体情報(ひいては、病変の評価値)を算出し、診断補助に利用することが求められている。したがって、通常観察画像と特殊光観察画像とを同時に取得できる構成とし、且つ、生体情報の算出に影響を与える特殊光と通常光の光量が変化しないように構成することは、診断や病変の評価値の算出の精度を向上させる観点で内視鏡システムとして今後いっそう求められる重要な製品仕様となると考えられる。
 しかし、回転フィルタを光源からの光路に対し進入・退避する際の位置の誤差に起因して、特殊光と通常光の光量が変化してしまい、結果的に診断や病変の評価値の精度が低下してしまうという問題がある。
 本発明は、以上のような事情に鑑みてなされたものであり、その目的とするところは、波長域の異なる第1の光と第2の光とを照射可能な内視鏡システムであって、第1の光と第2の光の光量の比率を基準範囲内に保つことに好適な内視鏡システムを提供することを目的とする。
 本実施形態にかかる内視鏡システムは、以下の態様を有する。
(1):
 第1の光を射出する光源と、
 前記第1の光を通過させる第1光通過領域と、前記第1の光から1種類以上の特定波長域の第2の光を取り出す第2光通過領域とが所定の方向に並べて配置された回転板であって、前記第1光通過領域が前記第1光通過領域を通過した前記第1の光と前記第2光通過領域により取り出された前記第2の光の光量との差を低減するように構成された回転板と、
 前記回転板を回転させることにより前記第1光通過領域と前記第2光通過領域とを前記光源からの前記第1の光の光路に順次挿入する回転駆動部と、
 前記回転板を、前記光源からの光路と交差する方向にシフトさせるシフト駆動部と、
 前記第2光通過領域を通過した光の光量と前記第1光通過領域を通過した光の光量の比率が基準範囲内となるように前記シフト駆動部を制御する制御部と、
を備える内視鏡システム。
 前記制御部は、前記第2光通過領域を通過した光の光量と前記第1光通過領域を通過した光の光量の比率が基準範囲内となるように前記シフト駆動部を制御する制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(2):
 第1の光を射出するように構成された光源と、
 前記第1の光を通過させる第1光通過領域と、前記第1の光から1種類以上の特定波長域の第2の光を取り出す第2光通過領域とが設けられ、前記第1光通過領域と前記第2光通過領域を前記第1の光の光路上に順次配置して、前記第1の光と前記第2の光を順次生成するように構成された回転板と、
 前記回転板を、前記第1の光の光路と交差する方向にシフトさせるように構成されたシフト駆動部と、
 前記第2光通過領域を通過した光の光量と前記第1光通過領域を通過した光の光量の比率が基準範囲内となるように前記シフト駆動部を制御するように構成された制御部と、
を備える内視鏡システム。
 前記制御部は、前記第2光通過領域を通過した光の光量と前記第1光通過領域を通過した光の光量の比率が基準範囲内となるように前記シフト駆動部を制御する制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(3):
 前記制御部は、前記回転板を前記シフト駆動部により第1位置から目標位置である第2位置にシフトさせる際に、前記シフト駆動部に起因して生じる、前記回転板がシフトする実際の位置と前記第2位置とのずれ量を補正するパラメータを予め保持し、該パラメータに基づいて前記シフト駆動部を制御する、(1)または(2)に記載の内視鏡システム。
 あるいは、前記制御部は、前記回転板を前記シフト駆動部により所定位置から対象位置に移動させる際に生じる前記対象位置からのずれ量を補正するパラメータを予め保持し、該パラメータに基づいて前記シフト駆動部を制御する、(1)または(2)に記載の内視鏡システム。
 前記制御部は、前記パラメータに基づいた制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(4):
 前記制御部は、前記回転駆動部により前記回転板の前記第1光通過領域が前記光路に挿入される位置が、前記光源からの前記第1の光の光強度が最大強度となるピーク位置を基準にして位置決めされるように前記シフト駆動部を制御する、
(1)~(3)のいずれか1つに記載の内視鏡システム。
 あるいは、前記制御部は、前記回転板の前記第1光通過領域が前記光路に挿入される際の位置が、前記光源からの光のピーク位置から所定の範囲内に位置するように前記シフト駆動部を制御する、(1)~(3)のいずれか1つに記載の内視鏡システム。
 前記制御部は、前記回転駆動部により前記回転板の前記第1光通過領域が前記光路に挿入される位置が、前記光源からの前記第1の光の光強度が最大強度となるピーク位置を基準にして位置決めされる制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(5):
 前記第1の光は、光強度分布を有し、
 前記第1光通過領域及び前記第2光通過領域に入射するときの前記第1の光の光束断面は、前記第1光通過領域及び前記第2光通過領域の入射面より大きく、前記第1の光の光束の一部が前記第1光通過領域及び前記第2光通過領域に入射し、前記光束の残りの部分は前記第1光通過領域及び前記第2光通過領域に入射せず、
 前記制御部は、前記第1光通過領域及び前記第2光通過領域の少なくとも一方に入射する前記第1の光の光速の一部は、前記光強度分布におけるピーク位置を含むように、前記シフト駆動部を制御する、
(1)~(4)のいずれか1つに記載の内視鏡システム。
 前記制御部は、前記第1光通過領域及び前記第2光通過領域の少なくとも一方に入射する前記第1の光の光速の一部が、前記光強度分布におけるピーク位置を含むような制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(6):
 前記制御部は、前記回転板を前記シフト駆動部により第1位置と第2位置との間でシフトさせる際に、前記回転板のシフト方向に応じて前記シフト駆動部の駆動量を異ならせる、
(1)~(5)のいずれか1つに記載の内視鏡システム。
 あるいは、前記制御部は、前記回転板を前記シフト駆動部により所定位置から対象位置に移動させる際に、前記回転板の移動方向に応じて前記回転板を前記所定位置から前記対象位置に移動させる際の前記シフト駆動部の駆動量を異ならせることによって、前記第1光通過領域が前記光源からの光のピーク位置から所定の範囲内に位置するように制御する、
(1)~(5)のいずれか1つに記載の内視鏡システム。
 前記制御部は、前記回転板を前記シフト駆動部により第1位置と第2位置との間でシフトさせる際に、前記回転板のシフト方向に応じて前記シフト駆動部の駆動量を異ならせた制御信号を生成し、前記制御信号を前記シフト駆動部に送信することが好ましい。
(7):
 前記制御部は、前記シフト駆動部によって前記回転板が前記光路に進入して停止する際のシフト方向が常に一定のシフト方向となるように前記シフト駆動部を制御する、
(1)~(5)のいずれか1つに記載の内視鏡システム。
 あるいは、前記制御部は、前記シフト駆動部によって前記回転板の前記第1光通過領域が前記光路に進入する際の進入方向が常に一定の進入方向となるように前記シフト駆動部を駆動することによって、前記第1光通過領域が前記光源からの光のピーク位置から所定の範囲内に位置するように制御する、
(1)~(5)のいずれか1つに記載の内視鏡システム。
 前記制御部は、前記シフト駆動部によって前記回転板が前記光路に進入して停止する際のシフト方向が常に一定のシフト方向となる制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(8):
 前記制御部は、前記回転板が第1位置から第2位置に向かってシフトする際、前記回転板を前記第1位置から前記第2位置を超えてシフトさせた後、前記回転板のシフト方向を逆にして前記第2位置にシフトさせる、
(7)に記載の内視鏡システム。
 あるいは、前記制御部は、前記回転板が現在位置から対象位置に向かって移動する際の初期移動方向が前記一定の進入方向と異なる場合に、前記回転板を前記初期移動方向に沿って前記対象位置を越えて所定距離行き過ぎるように移動させた後、前記回転板を逆方向に前記一定の進入方向に沿って前記対象位置に移動させる、
(7)に記載の内視鏡システム。
 前記制御部は、前記回転板が第1位置から第2位置に向かってシフトする際、前記回転板を前記第1位置から前記第2位置を超えてシフトさせた後、前記回転板のシフト方向を逆にして前記第2位置にシフトさせる制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(9):
 前記制御部は、前記シフト駆動部の機械的な公差に関する情報に基づいて前記シフト駆動部を制御する、(1)~(7)のいずれか1つに記載の内視鏡システム。
 前記制御部は、前記シフト駆動部の機械的な公差に関する情報に基づいて前記シフト駆動部を制御する制御信号を生成し、前記制御信号を信号線を介して前記シフト駆動部に送信することが好ましい。
(10):
 前記回転板は、前記第2光通過領域と前記第1光通過領域の径方向の幅が異なるように構成された、
(1)~(9)のいずれか1つに記載の内視鏡システム。
(11):
 前記第2の光の波長帯域は、前記第1の光の波長帯域より狭く、
 前記第2光通過領域の径方向の幅は、前記第1光通過領域の径方向の幅より大きい、(10)に記載の内視鏡システム。
(12):
 前記光源は前記第1の光として白色光を射出するランプである、
(1)~(11)のいずれか1つに記載の内視鏡システム。
(13):
 前記制御部は、前記第1の光で照明した生体組織の撮像画像データに含まれる色成分の画像データの値と、前記第2の光で照明した被写体の撮像画像データに含まれる色成分の画像データの値との比率に基づいて、前記生体組織の状態を表す情報を生成する、(1)~(12)のいずれか1つに記載の内視鏡システム。
 前記制御部は、前記情報を表示装置に表示させるために前記表示装置に送信することが好ましい。
 以上のように、上記内視鏡システムによれば、波長域の異なる第1の光と第2の光とを照射可能な内視鏡システムであって、第1の光と第2の光の光量の比率を基準範囲内に保つことに好適な内視鏡システムが提供される。
へモグロビンのQ帯の吸収スペクトルである。 生体組織の分光特性のシミュレーション結果である。 各種パラメータと生体情報との相関を表すグラフである。 各種パラメータと生体情報との相関を表すグラフである。 各種パラメータと生体情報との相関を表すグラフである。 本実施形態に係る内視鏡システムの一例のブロック図である。 本実施形態に係る内視鏡システムの撮像素子に内蔵されるカラーフィルタの透過スペクトルの一例を示す図である。 本実施形態に係る内視鏡システムの回転フィルタの一例の外観図である。 本実施形態に係る内視鏡システムで行う分光分析処理の一例のを説明するフローチャートである。 本実施形態に係る内視鏡システムにおけるシフト駆動機構の構成の一例を示す図である。 メカ機構の製造公差による回転フィルタの停止位置の変動を説明する図である。 光源からの白色光の強度分布と、回転フィルタのスリット部の位置との関係を説明する図である。 本実施形態に係る内視鏡システムにおけるシフト駆動機構におけるラックギアが停止するときの位置を、往路動作と復路動作で正確に一致させる状態を説明する図である。 本実施形態に係る内視鏡システムにおける回転フィルタの停止位置の制御の一例を示すフローチャートである。 本実施形態に係る内視鏡システムにおける回転フィルタの停止位置の制御の一例の動作原理を説明する図である。 本実施形態に係る内視鏡システムにおける回転フィルタの停止位置の制御の一例を示すフローチャートである。 本実施形態に係る内視鏡システムにおけるシフト駆動機能の制御による通常観察画像の明るさ調整を説明する図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 以下に説明する本発明の実施形態に係る内視鏡システムは、波長域の異なる光の照明下で撮像した複数の画像に基づいて被写体の生体情報(例えば、総ヘモグロビン量や酸素飽和度等の生体組織の特徴量)を定量的に分析して、分析結果を画像化して表示する装置である。以下に説明する総ヘモグロビン量及び酸素飽和度の定量分析では、血液の分光特性(すなわち、ヘモグロビンの分光特性)が総ヘモグロビン量や酸素飽和度に応じて連続的に変化する性質が利用される。なお、本実施形態の内視鏡システムによる観察の対象部位は、例えば、呼吸器等、消化器等である。呼吸器等は、例えば、肺、耳鼻咽喉を含む。消化器等は、例えば、大腸、小腸、胃、食道、十二指腸、子宮等を含む。
 また、以下で詳細に説明するように、本実施形態の内視鏡システムは、波長域の異なる第1の光と第2の光(すなわち、波長域の異なる照明光)とを順次照射することができる構成となっている。具体的には、本実施形態の内視鏡システムは、第1の光として白色光を射出する光源部と、白色光から特定波長域の第2の光を取り出す為の回転板とを有する。本実施形態では、回転板の例として回転フィルタについて記載する。なお、本明細書では、光源からの白色光を通常光とも称し、また、回転フィルタの光学フィルタを通過した光を特殊光とも称する。回転フィルタの構成及び回転フィルタを待避位置と適用位置間で進退駆動する為の構成については後述する。適用位置とは、白色光の光束のうち光強度分布における最大強度を示すピーク位置が回転フィルタを通過する位置である。
<生体組織の分光特性と生体情報の計算原理>
 本発明の実施形態に係る内視鏡システムの詳しい構成を説明する前に、ヘモグロビンの分光特性と、本発明の実施形態に係る酸素飽和度等の生体組織の特徴量(生体情報)の計算原理について説明する。
 図1に、550nm付近のヘモグロビンの吸収スペクトルを示す。ヘモグロビンは、550nm付近にポルフィリンに由来するQ帯と呼ばれる強い吸収帯を有している。ヘモグロビンの吸収スペクトルは、酸素飽和度に応じて変化する。酸素飽和度は、全ヘモグロビンのうち酸素化ヘモグロビンHbOが占める割合である。図1における実線の波形は、酸素飽和度が100%の場合の(すなわち、酸素化ヘモグロビンHbOの)吸収スペクトルであり、長破線の波形は、酸素飽和度が0%の場合の(すなわち、還元ヘモグロビンHbの)吸収スペクトル、すなわち、還元ヘモグロビンHbの吸収スペクトルである。また、短破線は、その中間の酸素飽和度が10、20、30、・・・90%におけるヘモグロビン(酸素化ヘモグロビンHbOと還元ヘモグロビンHbの混合物)の吸収スペクトルである。
 図1に示されるように、Q帯において、酸素化ヘモグロビンHbOと還元ヘモグロビンHbは互いに異なるピーク波長を有している。具体的には、酸素化ヘモグロビンHbOは、波長542nm付近の吸収ピークP1と、波長576nm付近の吸収ピークP3を有している。一方、還元ヘモグロビンHbは、556nm付近に吸収ピークP2を有している。図1は、各成分(酸素化ヘモグロビンHbO、還元ヘモグロビンHb)の濃度の和が一定となる2成分系の吸収スペクトルであるため、各成分の濃度(すなわち、酸素飽和度)によらず吸収が一定となる等吸収点E1、E2、E3、E4が現れる。以下の説明では、等吸収点E1とE2とで挟まれた波長領域を波長域R1、等吸収点E2とE3とで挟まれた波長領域を波長域R2、等吸収点E3とE4とで挟まれた波長領域を波長域R3と呼ぶ。また、等吸収点E1とE4とで挟まれた波長領域(すなわち波長域R1、R2及びR3を合わせたもの)を波長域R0と呼ぶ。また、以下の説明において、波長域R2をN帯(Narrow-band)、波長域R0をW帯(Wide-band)とも称する。
 図1に示されるように、隣接する等吸収点間の波長域では、ヘモグロビンの吸収は酸素飽和度に対して線形的に増加又は減少する。
 具体的には、波長域R1、R3におけるヘモグロビンの吸光度(波長域R1、R3における積分値)AR1、AR3は、酸素化ヘモグロビンの濃度に対して線形的に増加する。また、波長域R2におけるヘモグロビンの吸光度AR2は、還元ヘモグロビンの濃度に対して線形的に増加する。
 ここで、酸素飽和度は次の数式1により定義される。
Figure JPOXMLDOC01-appb-M000001
 
   但し、
    Sat:酸素飽和度
    [Hb]:還元ヘモグロビンの濃度
    [HbO]:酸素化ヘモグロビンの濃度
    [Hb]+[HbO]:総ヘモグロビン量(tHb)
 また、数式1より、酸素化ヘモグロビンHbO及び還元ヘモグロビンの濃度を表す数式2、数式3が得られる。
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
 従って、ヘモグロビンの吸光度AR1、AR2及びAR3は、酸素飽和度と総ヘモグロビン量の両方に依存する特性量となる。
 また、本件特許出願人における研究により、波長域R1、R2及びR3からなる波長域R0におけるヘモグロビンの吸光度(波長域R0における積分値)AR0は、酸素飽和度には依存せず、総ヘモグロビン量によって決まる値となることが判明している。
 従って、吸光度AR0から総ヘモグロビン量を定量することができる。また、吸光度AR1、AR2又はAR3と、吸光度AR0から定量した総ヘモグロビン量とから、酸素飽和度Satを定量することができる。なお、図1に示されるように、波長域R1、R2及びR3のうち、酸素飽和度による吸光度の変化量(すなわち、実線の波形と長破線の波形とで囲まれた領域の面積)は波長域R2において最も大きく、波長域R2の吸光度AR2が酸素飽和度に対して最も感度の高い特性量となる。後述する実施形態でも、波長域R2(N帯)の光を使用して酸素飽和度の定量が行われる。
 次に、生体組織の分光特性における散乱の影響について説明する。
 図2は、シミュレーション計算によって得られた生体組織の可視域における分光特性である反射スペクトルの一例であり、分光特性に与える光散乱の影響を示したものである。図2の各グラフの横軸は波長を表し、縦軸は反射率を表す。消化管内壁等の生体組織の反射スペクトルは、生体組織を構成する成分による吸収の波長特性、具体的には、酸素化ヘモグロビン及び還元ヘモグロビンの吸収スペクトル特性に加えて、生体組織による光散乱の波長特性の影響を受ける。図2(a)は散乱が全く無い場合の反射スペクトルであり、図2(c)はヘモグロビンによる吸収が全くなく、光散乱がある場合の反射スペクトルであり、図2(b)は反射スペクトルにおける生体組織の光散乱の寄与(散乱による光の減衰)とヘモグロビンの吸収の寄与(吸収による光の減衰)が同程度である場合の反射スペクトルである。
 図2に示されるように、生体組織の分光特性は、光散乱の強さによって変化するため、光散乱の強弱の程度を考慮することなく生体組織の分光特性に基づいて計算された酸素飽和度等の生体情報は、光散乱の強さによって値が変わり得る。すなわち、生体組織の分光特性(例えば波長域R2における反射率)をそのまま使用して生体情報を計算すると、光散乱に起因する誤差を含んだ計算結果が得られることになる。精度の高い分析結果を得るためには、光散乱に起因する誤差を補正する必要がある。
 光散乱に起因する誤差を補正する方法としては、生体組織の分光特性から酸素飽和度Sat等の生体情報を計算した後に誤差を補正する方法や、生体組織の分光特性から光散乱に依存しない中間パラメータを生成し、中間パラメータを生成する段階で光散乱に依存する成分を取り除き、その中間パラメータと生体情報、すなわち生体組織の特徴量との相関関係から生体情報を計算する方法がある。本実施形態は、後者の手法により、光散乱に起因する誤差を含まない生体情報を取得するものである。この手法を実現するために、取得すべき生体情報、具体的には、生体組織の特徴量である総ヘモグロビン量及び酸素飽和度に対して強い感度(相関)を有すると共に、光散乱に起因する誤差が生じ難い、即ち、光散乱の強弱に対して変化し難いパラメータの探索を行った。以降では、光散乱の強弱に対して変化し難いことを、光散乱に対して感度を有しないともいう。
 図3-5は、内視鏡画像データから取得可能な各種パラメータと、総ヘモグロビン量tHb及び酸素飽和度Satとの相関の一例を表すグラフであり、各種パラメータのシミュレーション結果をプロットしたグラフである。各グラフの横軸は総ヘモグロビン量を表し、縦軸は各パラメータの値を表す。また、表1は、図3-5の各グラフの諸元を纏めたものである。
 なお、表1における「感度」は、図3-5の各グラフから読み取れる、総ヘモグロビン量tHb、光散乱の強さ及び酸素飽和度Satの変化に対する各パラメータの感度、いいかえると変動幅の大きさを三段階の星印で示したものである。星印が多いほどパラメータの感度が高い、すなわち変動幅が大きいことを示している。
Figure JPOXMLDOC01-appb-T000004
 
 図3のグラフ(A1)及び(A2)は、パラメータ「G/R」のシミュレーション結果をプロットしたグラフである。「G」は、白色光を生体組織の照明光として使用した通常観察で得られるG画素(緑色のGカラーフィルタが装着された色画素)の画素値である。また、「R」は、通常観察で得られるR画素(赤色のRカラーフィルタが装着された色画素)の画素値である。そして、パラメータ「G/R」は、それぞれ通常観察で得られた画素値Gを画素値Rで除したものである。通常観察とは、白色光で生体組織を撮像して、RGB色空間上のR成分、G成分、及びB成分の画像を取得することをいう。
 なお、本明細書において、画素値とは、RGB原色系カラーフィルタを備えたイメージセンサの撮像信号(所謂RAWデータ)の画素値に限らず、撮像信号からデモザイク処理(補間処理)やリニアマトリクス処理等の各種画像処理を経て得られる画像データの画素値も含まれる。例えば、補色系のカラーフィルタを備えたイメージセンサの撮像信号をデモザイク処理及び色空間変換処理して得られるRGB色空間上のR成分、G成分、及びB成分の画像データに含まれる各画素のR値、G値及びB値をそれぞれR画素値、G画素値及びB画素値として使用して、後述する各処理を行うこともできる。
 図3のグラフ(B1)及び(B2)は、パラメータ「B/R」のシミュレーション結果をプロットしたグラフである。「B」は、白色光を使用した通常観察で得られるB画素(青色のBカラーフィルタが装着された色画素)の画素値である。パラメータ「B/R」は、それぞれ通常観察で得られた画素値Bを画素値Rで除したものである。
 図3のグラフ(C1)及び(C2)は、パラメータ「B/G」のシミュレーション結果をプロットしたグラフである。パラメータ「B/G」は、それぞれ通常観察で得られた画素値Bを画素値Gで除したものである。
 図4のグラフ(D1)及び(D2)は、パラメータ「W/R」のシミュレーション結果をプロットしたグラフである。「W」は、図1に示される波長域R0(W帯)の照明光を使用した特殊観察で得られるG画素の画素値である。なお、後述するように、波長域R0は撮像素子のG画素が感度を有する波長域に含まれる。パラメータ「W/R」は、W帯の照明光を使用した特殊観察で得られたG画素の画素値Wを通常観察で得られた画素値Rで除したものである。
 図4のグラフ(E1)及び(E2)は、パラメータ「N/R」のシミュレーション結果をプロットしたグラフである。「N」は、図1に示される波長域R2(N帯)の照明光を使用した特殊観察で得られるG画素の画素値である。パラメータ「N/R」は、N帯の照明光を使用した特殊観察で得られたG画素の画素値Nを通常観察で得られた画素値Rで除したものである。
 図4のグラフ(F1)及び(F2)は、パラメータ「N/W」のシミュレーション結果をプロットしたグラフである。パラメータ「N/W」は、N帯の照明光を使用した特殊観察で得られたG画素の画素値Nを、W帯の照明光を使用した特殊観察で得られたG画素の画素値Wで除したものである。
 図5のグラフ(G1)及び(G2)は、パラメータ「W/(R+G)」のシミュレーション結果をプロットしたグラフである。パラメータ「W/(R+G)」は、W帯の照明光を使用した特殊観察で得られたG画素の画素値Wを、白色光を照明光として使用した通常観察で得られるR画素の画素値RとG画素の画素値Gとの和「R+G」で除したものである。
 また、図3乃至図5における左側のグラフ(A1)、(B1)、(C1)、(D1)、(E1)、(F1)、(G1)は、酸素飽和度を100%に固定し、光散乱の寄与度(光散乱の強さを表すパラメータ)を0~100単位にかけて10単位ずつ変化させたものを重ねてプロットしたものである。これらのグラフから、各パラメータの光散乱に対する感度の大きさを知ることができる。
 また、図3乃至図5における右側のグラフ(A2)、(B2)、(C2)、(D2)、(E2)、(F2)、(G2)は、散乱の寄与度を0単位に固定し、酸素飽和度を0~100%にかけて10%ずつ変化させたものを重ねてプロットしたものである。これらのグラフから、各パラメータの酸素飽和度に対する感度の大きさを知ることができる。
 表1及び図4のグラフ(D1)、(D2)に示されるように、パラメータ「W/R」は、総ヘモグロビン量に対して大きな感度を有する一方、光散乱や酸素飽和度に対しては殆ど感度を有していない。そのため、パラメータ「W/R」の値により総ヘモグロビン量の値が一意的に決まる。すなわち、画像データから得られるパラメータ「W/R」の値と、グラフ(D1)、(D2)に表される総ヘモグロビン量とパラメータ「W/R」との定量関係から、光散乱や酸素飽和度に依存しない正確な総ヘモグロビン量を得ることができる。
 また、表1及び図4のグラフ(F1)、(F2)に示されるように、パラメータ「N/W」は、酸素飽和度に対して大きな感度を有しながら、光散乱に対しては殆ど感度を有していない。そのため、総ヘモグロビン量が既知であれば、グラフ(F2)により、パラメータ「N/W」の値から酸素飽和度の値が一意的に決まる。具体的には、各画素値から得られる総ヘモグロビン量の値とパラメータ「N/W」の値とからなる数値対に最も適合するグラフ(F2)上のプロットを選択すると、そのプロットに対応する酸素飽和度の値として、その画素に写された生体組織の酸素飽和度が得られる。なお、総ヘモグロビン量の値は、画像データから得られるパラメータ「W/R」の値と、グラフ(D1)、(D2)に表される総ヘモグロビン量とパラメータ「W/R」との関係とから得られる。
 また、表1及び図5のグラフ(G1)、(G2)に示されるように、パラメータ「W/(R+G)」も、上述したパラメータ「W/R」と同様に、総ヘモグロビン量に対しては感度を有するが、光散乱や酸素飽和度に対しては殆ど感度を有しないため、グラフ(G1)、(G2)に表される総ヘモグロビン量とパラメータ「W/(R+G)」との定量関係から、光散乱や酸素飽和度に依存しない正確な総ヘモグロビン量の値が得られる。
 以上のように、グラフ(D1)、(D2)若しくはグラフ(G1)、(G2)で表される関係と、グラフ(F2)又は(C2)で表される関係とを使用して、簡単な計算により、散乱による誤差を殆ど含まない、総ヘモグロビン量及び酸素飽和度の正確な値を得ることができる。
<内視鏡システムの構成>
 図6は、本発明の実施形態に係る内視鏡システム1のブロック図である。本実施形態の内視鏡システム1は、電子内視鏡100、プロセッサ200及びモニタ300を備えている。電子内視鏡100及びモニタ300は、プロセッサ200に着脱可能に接続されている。また、プロセッサ200には、光源部400及び画像処理部500が内蔵されている。なお、本実施形態では、光源部400はプロセッサ200に内蔵されているが、光源部400は、プロセッサ200には内蔵されていなくても良い。例えば、光源部400は、プロセッサとは別体の光源装置として構成されていても良い。
 電子内視鏡100は、被検者の体内に挿入される挿入管110を有している。電子内視鏡100の内部には、略全長に亘って延びるライトガイド131が設けられている。ライトガイド131の一端部(先端部131a)は、挿入管110の先端部(挿入管先端部111)に配置されており、ライトガイド131の他端部(基端部131b)は、プロセッサ200に接続されている。プロセッサ200は、キセノンランプ等の光量の大きい白色光WLを生成する光源ランプ430等を備えた光源部400を内蔵している。光源部400によって生成された照明光ILは、ライトガイド131の基端131bに入射する。ライトガイド131の基端131bに入射した光は、ライトガイド131を通ってその先端部131aに導かれ、先端部131aから放射される。電子内視鏡100の挿入管先端部111には、ライトガイド131の先端部131aと対向して配置された配光レンズ132が設けられており、ライトガイド131の先端部131aから放射される照明光ILは、配光レンズ132を通過して、挿入管先端部111の近傍の生体組織Tを照明する。
 また、挿入管先端部111には対物光学系121及び撮像素子141が設けられている。生体組織Tの表面で反射又は散乱された照明光ILの一部(戻り光)は、対物光学系121に入射し、集光されて、撮像素子141の受光面上で結像する。本実施形態の撮像素子141は、その受光面にカラーフィルタ141aを備えたカラー画像撮像用のCCD(Charge Coupled Device)イメージセンサである。撮像素子141には、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の他の種類の撮像素子を使用してもよい。
 カラーフィルタ141aは、赤色の光を通過させるRカラーフィルタと、緑色の光を通過させるGカラーフィルタと、青色の光を通過させるBカラーフィルタとが配列され、撮像素子141の各受光素子上に直接形成された、いわゆるオンチップフィルタである。R、G、Bの各フィルタは、図7に示されるような分光特性を有している。すなわち、本実施形態のRカラーフィルタは、波長約570nmより長波長の光を通過させるフィルタであり、Gカラーフィルタは、波長約470nm~620nmの光を通過させるフィルタであり、Bカラーフィルタは、波長約530nmより短波長の光を通過させるフィルタである。
 撮像素子141は、後述する信号処理回路550と同期して駆動するように制御され、受光面上で結像した被写体像に対応する撮像信号を、周期的に(例えば、1/30秒間隔で)出力する。撮像素子141から出力された撮像信号は、ケーブル142を介してプロセッサ200の画像処理部500に送られる。
 画像処理部500は、A/D変換回路510、一時記憶メモリ520、コントローラ530、ビデオメモリ540及び信号処理回路550を備えている。A/D変換回路510は、電子内視鏡100の撮像素子141からケーブル142を介して入力される撮像信号をA/D変換してデジタル画像データを出力する。A/D変換回路510から出力されるデジタル画像データは、一時記憶メモリ520に送られ記憶される。デジタル画像データには、Rカラーフィルタが装着された受光素子によって撮像されたRデジタル画像データ、Gカラーフィルタが装着された受光素子によって撮像されたGデジタル画像データ及びBカラーフィルタが装着された受光素子によって撮像されたBデジタル画像データが含まれている。なお、本明細書において、Rデジタル画像データ、Gデジタル画像データ及びBデジタル画像データを、単色画像データ(R単色画像データ、G単色画像データ及びB単色画像データ)とも称する。
 コントローラ530は、一時記憶メモリ520に記憶された単数又は複数のデジタル画像データを処理してモニタ300に表示させる画面データを生成し、これをビデオメモリ540に送る。例えば、コントローラ530は、単一のデジタル画像データから生成された画面データ、複数のデジタル画像データの画像が並べられた画面データ、或いは複数のデジタル画像データに基づいて画素(x,y)毎に生体組織Tの反射スペクトルを生成し、これによって健常部と病変部とを色別した画像を含む画面データや、特定の画素(x,y)に対応する生体組織Tの反射スペクトルのグラフ表示を含む画面データ等を生成して、これをビデオメモリ540に記憶させる。信号処理回路550は、ビデオメモリ540に記憶されている画面データに基づいて所定の形式(例えば、NTSC規格やDVI規格に準拠した形式)のビデオ信号を生成して出力する。信号処理回路550から出力されたビデオ信号は、モニタ300に入力される。この結果、電子内視鏡100によって撮像された内視鏡画像等が、モニタ300に表示される。
 なお、コントローラ530は、光源部400の各部分の動作を制御する制御信号を生成し、この制御信号を各部分に信号線を介して送信する。
 このように、プロセッサ200は、電子内視鏡100の撮像素子141から出力される撮像信号を処理するビデオプロセッサとしての機能と、被写体である生体組織Tを照明するための照明光ILを電子内視鏡100のライトガイド131に供給する光源装置としての機能とを兼ね備えたものである。
 光源部400は、上述の光源430の他に、集光レンズ440、回転フィルタ(回転板)410、フィルタ制御部420及び集光レンズ450を備えている。光源430から射出される略平行光の白色光WLは、集光レンズ440によって集光され、回転フィルタ410を通過した後、集光レンズ450によって再度集光されて、ライトガイド131の基端131bに入射する。
 光源部400は、更に、シフト駆動機構(シフト駆動部)470を備える。このシフト駆動機構470により、回転フィルタ410は、白色光WLの光路上の適用位置と光路外の退避位置との間で移動可能になっている。シフト駆動機構470の詳細については後述する。
 光源430より射出された白色光WLは、回転フィルタ410に入射される。図8は、回転フィルタ410を集光レンズ450側から見た正面図である。なお、説明の便宜の為、図8では、回転フィルタ410を光源430からの光路に対して垂直に進退駆動するシフト駆動機構470については図示を省略している。図8に示されるように、回転フィルタ410は、4つの扇形状を有する光学フィルタ(特殊光フィルタ)Fs1、Fs2、Fs3及びFs4、及び、4つのスリット部SL1、SL2、SL3及びSL4を備える。詳細には、回転フィルタ410の外周側には、特殊光フィルタFs1、スリット部SL1、特殊光フィルタFs2及びスリット部SL2が、撮像周期(フレーム周期)に対応する角度ピッチ(ここでは90°の角度ピッチ)で配置されている。また、回転フィルタ410の内周側には、特殊光フィルタFs2、スリット部SL3、特殊光フィルタFs4及びスリット部SL4が、撮像周期(フレーム周期)に対応する角度ピッチ(ここでは90°の角度ピッチ)で配置されている。各特殊光フィルタFs1、Fs2、Fs3、Fs4は、何れも誘電体多層膜フィルタであるが、他の方式の光学フィルタ(例えば、誘電体多層膜を反射膜として用いたエタロンフィルタ等)であってもよい。各特殊光フィルタFs1、Fs2、Fs3、Fs4は、特殊光(特定波長域の光)を取り出す作用を有する。なお、以降の説明において「フレーム」は「フィールド」に置き替えてもよい。本実施形態において、フレーム周期、フィールド周期はそれぞれ、例えば1/30秒、1/60秒である。
 上記構成において、シフト駆動機構270により、回転フィルタ部260の外周側の特殊光フィルタFs1、スリット部SL1、特殊光フィルタFs2及びスリット部SL2が光源430からの光路上に位置するように回転フィルタ410をシフトさせることにより、特殊光フィルタFs1を通過した特殊光、スリット部SL1を通過した通常光、特殊光フィルタFs2を通過した特殊光及びスリット部SL2を通過した通常光が、例えば、フレーム単位(或いは、フィールド単位)で被写体に順次照射される。図8に示されるようにスリット部(SL1、SL2)は、径方向の幅が、特殊光フィルタ(Fs1、Fs2)と異なる。具体的には、スリット部(SL1、SL2)の径方向の幅は特殊光フィルタの径方向の幅と比較して狭い構成となっている。詳細には、スリット部SL1、SL2の径方向の幅wは、例えば、スリット部SL1(SL2)の透過光量と、特殊光フィルタFs1及び/又はFs2の透過光量との比率が基準範囲内となるように、設定されている。この基準範囲は好ましくは一定となるように設定される。これにより、スリット部SL1(又はSL2)による通常観察画像と、特殊光フィルタFs1及び/又はFs2による特殊光観察画像との明るさの比率を一定の基準範囲内に抑える、一定の値にする、等の制御が可能になる。また、その結果として、酸素飽和度等の生体情報の算出の精度を維持する、通常観察画像と特殊光観察画像を同時表示する場合に一方が暗くなるといった現象の発生を回避する等、術者による病変部の診断の精度を向上させることが可能となる。なお、一実施形態によれば、基準範囲は、例えば、ヘモグロビンの酸素飽和度等の生体情報の算出の精度を維持できる範囲として定められることが好ましい。一実施形態によれば、基準範囲は、生体情報が既知であるサンプルを用いて予め行った試験結果に基づいて生体情報の種類ごとに定められることが好ましい。この場合、内視鏡システム1は、スリット部の透過光量と特殊光フィルタ部の透過光量との比率の基準範囲として生体情報の種類ごとに定められた値のテーブルを保持するように構成されることが好ましい。
 なお、回転フィルタ410の外周側の特殊光フィルタ及びスリット(Fs1、SL1、Fs2、SL2)と、内周側の特殊光フィルタ及びスリット(Fs3、SL3、Fs4、SL4)のいずれを光源430の光路上に位置させるかは、術者が、プロセッサ200の操作パネル(不図示)を観察目的に応じて操作することにより切り替えることができるように構成されている。特殊光観察が行われる場合、コントローラ530は、術者による操作入力に応じて、シフト駆動機構270を駆動制御し、回転フィルタ410上の外周側の特殊光フィルタ及びスリット(Fs1、SL1、Fs2、SL2)と、内周側の特殊光フィルタ及びスリット(Fs3、SL3、Fs4、SL4)のいずれを光路上に位置させる。
 以下の、説明においては、一例として、外周側の特殊光フィルタFs1、Fs2が、酸素飽和度を観察する為の光学フィルタとして構成されている場合について説明する。また、説明の便宜の為特殊光フィルタFs1、Fs2をそれぞれ、第一の酸素飽和度観察用フィルタFs1、第二の酸素飽和度観察用フィルタFs2とも呼ぶことにする。なお、この場合、一実施形態によれば、内周側の特殊光フィルタFs3、Fs4は、例えば、赤外光観察用の光学フィルタとして構成されることが好ましい。
 第一の酸素飽和度観察用フィルタFs1は、550nm帯の光を選択的に透過させる光バンドパスフィルタである。図1に示されるように、第一の酸素飽和度観察用フィルタFs1は、等吸収点E1からE4までの波長域(すなわち、波長域R0)の光を低損失で透過させ、それ以外の波長領域の光を遮蔽する分光特性を持つ。第二の酸素飽和度観察用フィルタFs2は、等吸収点E2からE3までの波長域(すなわち、波長域R2)の光を低損失で透過させ、それ以外の波長領域の光を遮蔽する分光特性を持つ。
 なお、回転フィルタ410の周縁部には、貫通孔413が形成されている。貫通孔413は、回転フィルタ410の回転方向において、所定位置(例えば、特殊光フィルタに対尾する位置)に形成されている。回転フィルタ410の周囲には、貫通孔413を検出するためのフォトインタラプタ422が、回転フィルタ410の周縁部の一部を囲むように配置されている。フォトインタラプタ422は、フィルタ制御部420に接続されている。
 本実施形態の内視鏡システム1は、通常観察モードと分光分析(特殊観察)モードの2つの動作モードを有している。通常観察モードは、通常光を用いてカラー画像を撮影する動作モードである。分光分析モードは、特殊光フィルタFs1及びFs2のそれぞれを通過した照明光IL(特殊光)を使用して撮像したデジタル画像データに基づいて分光分析を行い、生体組織中の生体分子の分布画像(例えば酸素飽和度分布画像)を表示するモードである。内視鏡システム1の動作モードは、例えばプロセッサ200の操作パネル(不図示)や電子内視鏡100の操作ボタン(不図示)に対するユーザ操作によって切り換えられる。
 通常観察モードにおいては、コントローラ530は、シフト駆動機構470を制御して、回転フィルタ410を適用位置から退避位置へシフトさせる。なお、分光分析モードでは、回転フィルタ410は適用位置に配置される。そして、撮像素子141によって撮像されたデジタル画像データに対してデモザイク等の所定の画像処理を施した後に、ビデオ信号に変換して、モニタ300に画面表示させる。
 分光分析モードにおいては、コントローラ530は、サーボモータ(不図示)を有するフィルタ制御部420を制御して、回転フィルタ410を一定の回転数で回転駆動させながら、特殊光フィルタFs1、スリット部SL1、特殊光フィルタFs2、スリット部SL2のそれぞれを通過した照明光ILによる生体組織Tの撮像を順次行う。そして、特殊光フィルタFs1、Fs2のそれぞれを通過した照明光ILを用いて取得したデジタル画像データに基づいて生体組織中の生体分子の分布を示す画像を生成し、これとスリット部SL1及びSL2を用いて取得した通常観察画像とを並べた表示画面を生成して、更にビデオ信号に変換して、モニタ300に表示させる。
 分光分析モードでは、フィルタ制御部420は、フォトインタラプタ422が貫通孔413を検出するタイミングに基づいて、回転フィルタ410の回転の位相を検出し、これをコントローラ530から供給されるタイミング信号の位相と比較して、回転フィルタ410の回転の位相を調整する。コントローラ530からのタイミング信号は、撮像素子141の駆動信号と同期している。従って、回転フィルタ410は、撮像素子141の駆動と同期して、略一定の回転数で回転駆動される。具体的には、回転フィルタ410の回転は、撮像素子141による1画像分(R,G,Bの3フレーム)の撮像が行われる毎に、白色光WLが入射する特殊光フィルタFs1、スリット部SL1、特殊光フィルタFs2、スリット部SL2が切り替わるように制御される。サーボモータを有するフィルタ制御部420は、回転フィルタ410のスリット部(SL1、SL2)と特殊光フィルタ(Fs1、Fs2)を、光源430からの白色光の光路に順次挿入する回転駆動部として機能する。
 次に、分光分析モードにおいて実行される分光分析処理について説明する。図9は、分光分析処理の手順を表すフローチャートである。
 ユーザ操作によって、分光分析モードが選択されている場合は、上述したように、フィルタ制御部420は回転フィルタ410を一定の回転数で回転駆動する。そして、光源部400からは、特殊光フィルタFs1、スリット部SL1、特殊光フィルタFs2、スリット部SL2を通過した照明光ILが順次供給され、各照明光ILを用いた撮像が順次行われる(S1)。具体的には、特殊光フィルタFs1を通過した照明光ILを用いて撮像したGデジタル画像データW(x,y)、特殊光フィルタFs2を通過した照明光ILを用いて撮像したGデジタル画像データN(x,y)並びにスリット部SL1、SL2を通過した照明光IL(白色光)を用いて撮像したRデジタル画像データR(x,y)、Gデジタル画像データG(x,y)及びBデジタル画像データB(x,y)がコントローラ530の内部メモリ532に記憶される。
 次に、画像処理部500は、処理S1にて取得したRデジタル画像データR(x,y)、Gデジタル画像データG(x,y)及びBデジタル画像データB(x,y)を用いて、以下の分析処理(処理S3-S8)の対象とする画素を選別する画素選別処理S2を行う。
 血液を含んでいない箇所や、生体組織の色がヘモグロビン以外の物質により支配的な影響を受けている箇所については、画素の色情報から酸素飽和度や血流量を計算しても意味のある値は得られず、単なるノイズとなる。このようなノイズを医師に提供すると、医師による診断の妨げとなるだけでなく、画像処理部500に無用な負荷を与えて処理速度を低下させるという弊害が生じる。そこで、本実施形態の分析処理は、分析処理に適した画素(すなわち、ヘモグロビンの分光学的特徴が記録された画素)を選別して、選別された画素に対してのみ分析処理を行うように構成されている。
 画素選別処理S2では、以下の数式4、数式5及び数式6の条件を全て充足する画素のみが分析処理の対象画素として選別される。
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000007
 
 ここで、a、a、aは正の定数である。
 上記の3つの条件式は、血液の透過スペクトルにおける、G成分<B成分<R成分の値の大小関係に基づいて設定されている。なお、上記の3つの条件式のうちの1つ又は2つのみを使用して、例えば、血液に特有の赤色に注目して数式5及び数式6のみを使用して、画素選別処理S2を行っても良い。
 次に、画像処理部500は、第1分析処理S3を行う。コントローラ530の不揮発性メモリ532には、図4のグラフ(D1)又は(D2)で表される総ヘモグロビン量tHbとパラメータW/Rとの定量関係を表す数値テーブルT1(又は関数)が保持されている。第1分析処理S3では、この数値テーブルT1を使用して、処理S1にて取得したGデジタル画像データW(x,y)及びRデジタル画像データR(x,y)から、総ヘモグロビン量tHbの値を取得する。
 具体的には、まず数式7により、各画素(x,y)についてパラメータW/R(x,y)が計算される。
Figure JPOXMLDOC01-appb-M000008
 
 次に、数値テーブルT1を参照して、数式7により計算されたパラメータW/R(x,y)の値に対応する総ヘモグロビン量tHb(x,y)の値が読み取られて取得される。
 不揮発性メモリ532に保持された数値テーブルT1(及び後述する数値テーブルT2)の定量関係は、予め理論計算や実験によって得られたものである。なお、グラフ(D1)、(D2)では、総ヘモグロビン量tHbの値とパラメータW/Rの値とが完全には1対1の対応関係を有していないが、数値テーブルT1には総ヘモグロビン量tHbとパラメータW/Rとの代表的な1対1の定量関係(例えば平均値や中央値)が保持されている。そのため、数値テーブルT1により、パラメータW/Rの値から総ヘモグロビン量tHbが一意に決定される。
 次に、画像処理部500は、第2分析処理S4を行う。コントローラ530の不揮発性メモリ532には、図4のグラフ(F2)に表される総ヘモグロビン量tHb、パラメータN/W及び酸素飽和度Satの定量関係を表す数値テーブルT2(又は関数)が保持されている。数値テーブルT2には、総ヘモグロビン量tHb、パラメータN/W及び酸素飽和度Satの3つの数値(以下「数値セット」という。)が関連付けられて登録されている。第2分析処理S4では、この数値テーブルT2を使用して、処理S1にて取得したGデジタル画像データW(x,y)、N(x,y)及び第1分析処理S3にて取得した総ヘモグロビン量tHb(x,y)の値から、各画素の酸素飽和度Sat(x,y)の値を取得する。
 具体的には、まず数式8により、各画素(x,y)についてパラメータN/W(x,y)が計算される。
Figure JPOXMLDOC01-appb-M000009
 
 次に、各画素(x,y)について、数値テーブルT2を参照して、第1分析処理S3にて取得した総ヘモグロビン量tHb(x,y)の値と、数式8により計算されたパラメータN/W(x,y)の値に最も近い数値セットを抽出し、抽出した数値セットの酸素飽和度Satの値が読み取られて、当該画素(x,y)の酸素飽和度Sat(x,y)の値として取得される。
 コントローラ530の不揮発性メモリ532には、酸素飽和度Sat(x,y)と表示色(画素値)との関係を表す数値テーブル(又は関数)が記憶されている。そして、処理S5(図6)において、コントローラ530は、この数値テーブル(又は関数)を参照して、処理S4で得られた酸素飽和度Sat(x,y)に対応する表示色を表す値を取得し、この値を画素値とする酸素飽和度分布画像データを生成する。
 また、コントローラ530は、スリット部SL1(又はSL2)を通過した照明光IL(白色光)を使用して撮像したRデジタル画像データR(x,y)、Gデジタル画像データG(x,y)及びBデジタル画像データB(x,y)から、通常観察画像データを生成する。
 更に、コントローラ530は、生成した酸素飽和度分布画像データ及び通常観察画像データから、1画面上に通常観察画像と酸素飽和度分布画像を並べて表示する画面データを生成して、ビデオメモリ540に記憶させる。なお、コントローラ530は、ユーザ操作に応じて、酸素飽和度分布画像のみを表示する表示画面や、通常観察画像のみを表示する表示画面、酸素飽和度分布画像及び/又は通常観察画像に患者のID情報や観察条件等の付帯情報をスーパーインポーズ表示した表示画面等、種々の表示画面を生成することができる。
 悪性腫瘍の組織では、血管新生により正常な組織よりも総ヘモグロビン量が多く、尚且つ、酸素の代謝が顕著であるため酸素飽和度は正常な組織よりも低いことが知られている。そこで、コントローラ530は、第1分析処理S3により取得した総ヘモグロビン量が所定の基準値(第1基準値)よりも大きく、且つ、第2分析処理S4により取得した酸素飽和度が所定の基準値(第2基準値)よりも小さい画素を抽出して、例えば通常観察画像データの対応する画素に対して強調表示処理を行った病変部強調画像データを生成し、通常観察画像及び/又は酸素飽和度分布画像と共に(或いは単独で)病変部強調画像をモニタ300に表示させることもできる。
 強調表示処理としては、例えば、該当する画素の画素値を増加させる処理や、色相を変化させる処理(例えば、R成分を増加させて赤味を強くする処理や、色相を所定角度だけ回転させる処理)、該当する画素を明滅させる(あるいは、周期的に色相を変化させる)処理がある。
 また、コントローラ530が、病変部強調画像データの代わりに、例えば、酸素飽和度Sat(x,y)の平均値からの偏差と、総ヘモグロビン量tHb(x,y)の平均値からの偏差に基づいて、悪性腫瘍の疑いの度合を示す評価値としての指標Z(x,y)を計算して、指標Zを画素値とする画像データ(悪性疑い度画像データ)を生成する構成としてもよい。
 このように、一実施形態によれば、コントローラ530は、白色光で照明した生体組織の撮像画像データに含まれる色成分であるRデジタル画像データの値と、特殊光で照明した生体組織の撮像画像データに含まれるGデジタル画像データの値の値との比率W/Rに基づいて、生体組織の状態を表す情報を生成することが好ましい。
 [回転フィルタシフト機構]
 次に、シフト駆動機構(シフト駆動部)470の構成について説明する。図10は、シフト駆動機構470の一実施形態における構成例を概略的に表す図である。なお、図10は、シフト駆動機構470の構成を、集光レンズ450側から見た状態を表している。図10に示されるように、シフト駆動機構470は、例えば、ステッピングモータ471と、ステッピングモータ471の駆動軸に不図示のギア機構を介して接続されたピニオンギア472と、ラックギア473と、アーム475と、回転フィルタ410の原点位置を検出するフォトインタラプタ474とを備える。アーム475は、回転フィルタ410をラックギア473に対して固定する。シフト駆動機構470の上記構成により、回転フィルタ410を、照明光の光路から退避させる、外周側の特殊光フィルタ・スリットを照明光の光路に位置させる、内周側の特殊光フィルタ・スリットを照明光の光路に位置させる等の制御を行い、観察目的に応じた特殊光観察画像を生成することができる。コントローラ530は、操作パネルを介した術者の操作入力に応じて、回転フィルタ410を観察目的に応じた位置に移動・停止させる。
 [回転フィルタの停止位置の変動に伴う明るさの変動の問題]
 上述のようにメカ機構により回転フィルタ410を移動・停止させる構成においては、メカ機構の製造公差により回転式フィルタ410が停止する位置に変動が生じる場合がある。製造公差は、モータのバックラッシュ、ギア嵌合の誤差等様々な機械的要因による。図11は、このような製造公差による回転フィルタ410の停止位置の変動を説明する図である。図11に示すように、ステッピングモータ471を同じステップ数の位置で制御した場合であっても、ピニオンギア272の回転方向に依存して、ラックギア473の停止位置には、図11中に示すTの公差が生じる。なお、ピニオンギアの回転方向に依存する、回転フィルタ410の停止位置の変動を生じさせる要因には、上記以外にも、回転フィルタ410の機械的な誤差、フォトインタラプ474の位置の機械的な誤差等、複数の要因が組み合わされると考えられる。
 このように回転フィルタ410の停止位置に変動が生じた場合の問題点について説明する。図12に示すように光源430からの回転フィルタ410に入射する白色光の光強度分布は、中心部にピークを有し、ピーク部分から外側に向かって徐々に強度が減少すると考えられる。本実施形態のように、白色光をスリット状の開口部に通過させる構成の場合には、スリット部(SL1等)が白色光の中心に位置した際(図12(a))と、スリット部(SL1等)が白色光の中心からずれた際(図12(b))との間で照明光IL(通常光)の光量に変動が生じる。なお、図12において網掛部分が、スリット部(SL1等)に対応している。一般には、スリット部(SL1等)が白色光のピーク部分に位置することを前提として、上述の酸素飽和度等の生体情報(評価値)の計算や、通常光画像と特殊光画像の同時表示等が実行される為、スリット部(SL1等)の位置が図12(b)のように変動して通常光の光量が想定値から減少している場合には、生体情報(評価値)の算出の精度に影響を与えたり、或いは、特殊光観察画像と同時に表示されている通常光観察画像の明るさが暗くなる、等の問題が生じる可能性がある。
 したがって、一実施形態によれば、スリット(SL1、SL2等)及び特殊光フィルタ(Fs1、Fs2等)に入射するときの白色光の光束断面は、スリット(SL1、SL2等)及び特殊光フィルタ(Fs1、Fs2等)の入射面より大きく、白色光の光束の一部がスリット(SL1、SL2等)及び特殊光フィルタ(Fs1,Fs2)に入射し、光束の残りの部分はスリット(SL1、SL2等)及び特殊光フィルタ(Fs1,Fs2等)に入射しない。このとき、コントローラ530は、スリット(SL1、SL2等)及び特殊光フィルタ(Fs1,Fs2等)の少なくとも一方に入射する白色光の一部は、光強度分布におけるピーク位置を含むように、シフト駆動機構470を制御することが好ましい。
 以下では、回転フィルタ410をシフト駆動機構470により所定位置から対象位置にシフトさせる際に生じる対象位置からのずれ量を補正するパラメータを予め保持し、このパラメータに基づいてシフト駆動機構470を制御することによって、スリット部(SL1等)の位置が、白色光の光強度が最大強度となるピーク位置の所定の範囲内に収まるように制御し、いいかえると、白色光の光強度が最大強度となるピーク位置を基準にして位置決めされるように制御し、それにより上述のような問題点を解消する構成例について説明する。
 [回転フィルタの停止位置の制御1]
 図11で示したような、ピニオンギア472の回転方向に依存するラックギア473の停止位置の変動は、ラックギア473の往路動作(回転フィルタ410が待避位置から光路に進入する方向)と復路動作(回転フィルタ410が光路から退避位置側に向かう方向)でラックギア273の停止位置が変わることによるものである。したがって、往路方向の動作と復路方向の動作とでステッピングモータ471のステップ数を異ならせるようにラックギア273の停止位置を制御することによって、この問題を解消することができる。一実施形態によれば、図13(a)に示すように、往路動作のときにラックギア473を停止させる位置をステッピングモータ471のステップ数100とした場合、復路動作のときにラックギア473を停止させる位置をステッピングモータ471のステップ数95として調整することによって(図13(b))、ラックギア473が停止するときのギア山の位置を往路動作の場合と正確に一致させることが好ましい。
 上述の制御を実現する為、一実施形態によれば、コントローラ531は、回転フィルタ410が光源430の光路からはずれた所定の基準位置にある状態から回転フィルタ410の所定のスリット(SL1、SL2)及び特殊光フィルタ(Fs1,Fs2)が光路上の目標とする位置にくるように、あるいは所定のスリット(SL3、SL4あるいは)及び特殊光フィルタ(Fs3,Fs4)が光路上の目標とする位置にくるように、調整された駆動量を設定したテーブルを保持し、この駆動量にしたがってステッピングモータ471を駆動させて停止させることが好ましい。この場合、調整された駆動量は、回転フィルタ410のシフト方向、すなわち、ステッピングモータ471の往路動作及び復路動作に応じて異ならせることが好ましい。
 例えば、駆動量の一例として、ステッピングモータ471のステップ数が挙げられる。下記表2に示す様に、ステッピングモータ471のステップ数の調整値テーブルを内部メモリ532に保持し、この調整値テーブルに示されたステップ数の位置でラックギア473を停止させるように制御することが好ましい。表2に示された例では、ラックギア473を往路動作で停止させる場合には、待避位置のステップ数を5とし、外周側の特殊光フィルタ・スリット(表2では単にフィルタ1と記す)使用時にはステップ数を100とし、内周側の特殊光フィルタ・スリット(表2では単にフィルタ2と記す)使用時にはステップ数を200とする一方、ラックギア473を復路動作で停止させる場合には、待避位置のステップ数を0とし、外周側の特殊光フィルタ・スリット(表2では単にフィルタ1と記す)使用時にはステップ数を95とし、内周側の特殊光フィルタ・スリット(表2では単にフィルタ2と記す)使用時にはステップ数を195とする。ステップ数とは、一例として、ステッピングモータ471の駆動に用いるパルス数が挙げられる。
Figure JPOXMLDOC01-appb-T000010
 
 上記表2に示された調整値を用いてラックギア473の停止位置を制御することにより、いずれの特殊光フィルタ・スリットが用いられる場合であっても、回転フィルタ410のスリット部の位置を正確に照明光のピーク位置に一致させる、或いはピーク位置の所定の範囲内に収まるようにすることが可能となる。なお、表2は、回転フィルタ410が、径方向に2組の特殊光フィルタ・スリット部を有する場合の調整値の例であるが、回転フィルタ410が径方向に更に多くの特殊光フィルタ・スリット部を有する構成である場合には、保持すべき調整値の値を特殊光フィルタ・スリット部の組数に合わせて増やせばよい。
 また、メカ機構の公差の経年変化を考慮して、上記調整値テーブルを更新するようにしても良い。具体的には、コントローラ530は、内部クロックに基づきプロセッサ200の使用時間を積算する機能を有しているので、この積算機能を使用して、例えば、1年当たり1ステップずつ調整値を更新しても良い。下記の表3は、一例として、年単位で1ステップずつ調整値を更新する構成とする場合の、一年経過後に適用する調整値テーブルである。
Figure JPOXMLDOC01-appb-T000011
 
 経年変化(劣化)のスピードは、耐久試験の値などを参考にして決定しても良い。このように、経年変化を考慮して調整値を更新する構成とすることによって、使用して行くたびにギアが削れていく分で増加する遊びを吸収し、製品寿命の全域でラックギア473による遷移位置精度を維持することが可能となる。
 図14は、上記調整値テーブルを用いて回転フィルタ410を現在位置から目標位置へシフトさせる際の制御を示すフローチャートである。なお、図14に示す制御は、一例として、術者がプロセッサに設けられた操作パネル(不図示)を操作して回転フィルタ410の位置をシフトさせる操作(所望の特殊光観察を行う為の操作)に応答して、コントローラ530の制御の下で実行される。本処理が開始されると、はじめに、回転フィルタ410の現在位置と目標位置との差分が計算され、回転フィルタ410のシフト方向が往路方向であるか復路方向であるかが判断される(ステップS101)。ステップS1で計算結果が負であり、したがって回転フィルタ410のシフト方向が往路方向である場合には(S101:負)、調整値テーブル(表2)から往路動作の欄のステップ数が読み出される(ステップS102)。そして、ステップS2において読み出されたステップ数を用いてステッピングモータ471の駆動が開始され(ステップS104)、このステップ数を用いた駆動動作は回転フィルタ410が目標位置に達するまで継続する(S105:NO)。
 現在位置の情報は、上述したステッピングモータ471に与える駆動量から、コントローラ530が求めることができる。目標位置の情報は、分光分析モードで用いる設定された特殊光の種類によってコントローラ530が求めることができる。また、一実施形態によれば、回転フィルタ410から出射した白色光の計測した実際の光量と、予め定めた基準とする光量との差分から、現在位置と目標位置との差分を計算することも好ましい。また、分光分析モードにおいて、回転フィルタ410のどの部分のスリット及び特殊フィルタを用いるかを定めるために、電子内視鏡システム1で撮像された現在の画像の明るさと理想とする基準画像の明るさとの差から現在位置と目標位置との差分を計算することもできる。
 他方、ステップS101で計算結果が正であり、したがって回転フィルタ410のシフト方向が復路方向である場合には(S101:正)、調整値テーブル(表2)から復路動作の欄のステップ数が読み出される(ステップS103)。そして、ステップS102において読み出されたステップ数を用いてステッピングモータ471の駆動が開始され(ステップS104)、この駆動動作は回転フィルタ410が目標位置に達するまで継続する(S105:NO)。回転フィルタ410が目標位置に達すると(S105:YES)、本制御は終了する。
 このように、コントローラ530は、回転フィルタ410をシフト駆動機構470により第1位置から目標位置である第2位置にシフトさせる際に、シフト駆動機構470の装置の製造誤差や公差に起因して生じる、回転フィルタ410がシフトする実際の位置と第2位置とのずれ量を補正する、ステップ数のようなパラメータを予め保持し、このパラメータに基づいてシフト駆動機構470を制御することが好ましい。
 また、コントローラ530は、回転フィルタ410をシフト駆動機構470により第1位置と第2位置との間でシフトさせる際に、回転フィルタ410のシフト方向に応じてシフト駆動機構470の駆動量を異ならせることも好ましい。
 以上の位置制御により、調整値テーブルを用いた回転フィルタ410の位置の正確な制御が達成される。
 [回転フィルタの停止位置の制御2]
 次に、回転フィルタ410の停止位置制御の他の一実施形態について説明する。停止位置の制御2では、上記停止制御1のように調整値テーブルを使用するのではなく、回転フィルタ410が常に往路方向又は復路方向のいずれか一方の方向から目標位置に進入して停止するように制御する。図15にこの制御の動作原理を説明する図を示す。なお、ここでは、一例として、回転フィルタ410が復路動作をするときに、スッテッピングモータのステップ数が目標位置に正確に対応することを前提とする。
 図15(a)に示すように、一実施形態によれば、現在位置から目標位置へのシフトが往路方向となる場合には、回転フィルタ410を一旦目標位置を超える位置まで移動させて、復路動作で目標位置まで戻るように移動させる。ここでは、一例として、通り過ぎ量α分だけ目標位置を越えて移動させることとする。他方、図15(b)に示すように、現在位置から目標位置へのシフトが復路方向となる場合には、そのまま目標位置へ移動させる。このような制御により、回転フィルタ410を常に目標位置に対して復路動作で進入・停止させることが可能となる。
 図16は、上記制御を実現するフローチャートである。なお、ここでは、回転フィルタ410において、特殊光フィルタが径方向に複数組設けられる場合に、特殊光フィルタに対して外側から順に番号が割り当てられているものとする(すなわち、フィルタ番号は、外側から順に、フィルタ1、フィルタ2、フィルタ3・・・と割り当てられている)。図16に示す制御は、一例として、術者がプロセッサ200の操作パネル(不図示)を操作して回転フィルタ410位置をシフトさせる操作(所望の特殊光観察を行う為の操作)に応答して、コントローラ530の生成する制御信号の下で実行される。
 本処理が開始されると、はじめに、現在位置のフィルタ番号から目標のフィルタ番号を減算する処理が行われる(ステップS11)。ステップS11での減算処理の結果が負である場合には、往路方向へのシフトとなり、処理はステップS12に進み、回転フィルタ410の目標フィルタ番号への駆動が開始される。この駆動は、回転フィルタ410が目標フィルタ番号の位置にシフトするまで継続される(ステップS13:NO)。回転フィルタ410が目標位置に達すると(ステップS13:YES)、目標位置に通り過ぎ量αを加算する処理が行われ(ステップS14)、さらに駆動が継続される(ステップS15)。この駆動は、回転フィルタ410がステップS15で設定された目標位置に達するまで継続される(ステップS16:NO)。
 回転フィルタ410が、ステップS15で設定された目標位置まで達すると(ステップS16:YES)、次に、目標位置から通り過ぎ量αを減算する処理が行われる(ステップS17)。そして、回転フィルタ410を目標位置へ駆動する処理が行われる(ステップS18)。この駆動は、回転フィルタ410が、ステップS17で設定された目標位置へ達するまで実行される(ステップS19:NO)。回転フィルタ410が、ステップS17で設定された目標位置へ達すると(ステップS19:YES)、本制御処理は終了する。
 他方、ステップS11での計算結果が正である場合には、回転フィルタ410のシフト方向は復路方向であるので(ステップS11:正)、処理はステップS20に進む。ステップS20では、回転フィルタ410の目標位置への駆動が開始され、この駆動は回転フィルタ部410が目標値へ達するまで継続する(ステップS21:NO)。回転フィルタ410が目標位置に達すると(ステップS21:YES)、本処理は終了する。
 以上の位置制御処理により、回転フィルタ410を常に復路動作で目標位置に進入・停止させ、目標位置に正確に停止させることが可能となる。なお、図16に示す位置制御処理は、回転フィルタ部410が復路動作をするときにステッピングモータのステップ数が正確に目標位置に対応することを前提とするものである。回転フィルタ410が往路動作をするときにステッピングモータのステップ数が正確に目標位置に対応することを前提とする場合には、図16のフローチャートにおいて、ステップS11の計算結果が正である処理の系列において、通り過ぎ量を用いた上述同様の処理が行われることとなる。
 すなわち、コントローラ530は、シフト駆動機構470によって回転フィルタ410のスリット(SL1、SL2等)が白色光の光路に進入して停止する際の、言い換えると停止直前のシフト方向が常に一定のシフト方向となるようにシフト駆動機構470を制御する、ことが好ましい。このとき、コントローラ530は、回転フィルタ410が第1位置から第2位置に向かってシフトする際、回転フィルタ410を第1位置から第2位置を超えてシフトさせた後、回転フィルタ410のシフト方向を逆にして第2位置にシフトさせることが好ましい。
 通り過ぎ量αは、回転フィルタ410のシフトを迅速に行う観点ではできるだけ小さい方が好ましいが、次の様な各種公差を考慮して必要十分な量に設定しても良い。
・回転式フィルタを構成する回転ターレットの工作精度からくる公差(例えば、0.1mm)
・全構成ギアの工作精度からくる公差とかみ合わせ遊び量(例えば、1.0mm)
・経年/耐久等で想定される遊び量(例えば、1.0mm)
・任意の安全率
 ここで、上記実施形態によりもたらされる効果について更に説明する。上述の通り、回転フィルタ410のスリット部(SL1等)の位置が、白色光のピーク位置の所定の範囲内に収まるように制御することが可能となる。一実施形態によれば、上記実施形態によりもたらされる、光束径(回転フィルタに入射する光束の光束径)を基準とした場合のずれ量(つまり、回転フィルタの停止位置のずれ量)の範囲は、0~4%であることが好ましく、0~2%であることがより好ましく、0~1%であることがさらに好ましい。なお、ずれ量をゼロにするためには各種精度を向上させる必要がありコストが上昇すると可能性が高いため、ずれ量の下限は0.1%以上であっても良く、或いは0.3%以上であっても良い。なお、一実施形態によれば、特定の条件下において、光束径を基準とするずれ量を0.7%まで抑えることが可能となる(この場合のずれ量は、ギア公差等に起因する量がほぼゼロとなり、別の要因によるずれ量が残存する状態となっていると考えられる)。比較例として、従来の構成による光束径を基準とするずれ量は5%程度である(この場合は、ギア公差等の要因が支配的である)。なお、ここで挙げた効果は、光束径が10mmである場合の例であり、各実施形態における効果はここで挙げた数値例に限定されるものではない。
 [比率調整機能]
 上述の構成により、シフト駆動機構470を介して回転フィルタ410のスリット部(SL1,SL2)の位置を正確に制御することが可能となった。この構成を応用して、通常観察画像と特殊光観察画像の同時表示を行っている状態で、通常観察画像の明るさ比率を調整することができる。図17は、この事を原理的に説明する為の図である。まず、シフト駆動機構470を制御して、スリット部の位置を光源430からの光路に正確に合わせた状態を想定する。この場合、図17(c)に示されるように、スリット部(SL1、SL2)が、白色光の輝度分布のピーク部分に位置し(図17(c)において網掛部分がスリット部の位置に対応する)、通常光としてピーク位置に相当する量の光量が得られることとなる。図17(a)は、この場合の、特殊光フィルタ(Fs1、Fs2)が、白色光の輝度分布のどの部分と重なっているかを表している。図17(a)において、網掛部分が、特殊光フィルタ(Fs1、Fs2)に対応している。上述のとおり、特殊光フィルタFs1、Fs2は、スリット部(SL1、SL2)に対して径方向の幅が十分に大きく形成されているので、図17(a)の状態において、特殊光フィルタ(Fs1、Fs2)は、白色光の輝度分布のかなりの部分を用いている事が理解される。
 ここで、図17(d)に示すように、シフト駆動機構470を駆動制御して、回転フィルタ410のスリット部(SL1、Sl2)を、白色光のピーク位置から所定分量ずつ段階的に移動させることを想定する。この場合、図17(d)に示すように、スリット部分(SL1、SL2)により、段階的に減少する光量を得ることができる。図17(d)に示した例では、段階的に減少する3種類の光量(-1段階、-2段階、-3段階)が得られる状態が示されている。他方、この場合において、特殊光フィルタ(Fs1、Fs2)は、径方向に十分な幅を有しているので、図17(d)でいる「-3段階」まで回転フィルタ410を移動させたとしても、白色光の減少する光量は少なく、白色光の光量を十分に透過させることができ、特殊光フィルタ(Fs1、Fs2)からの照明光の出射強度は画像の明るさに実質的な影響を与える程には減少しないこととなる。
 したがって、上述の駆動例にしたがって回転フィルタ41の位置を正確かつ微小に段階的に移動させることによって、通常観察画像と特殊観察画像を同時表示する際の通常観察画像の明るさの比率を調整することが可能である。
 上述したように、内視鏡システム1では、特殊光と白色光とを被写体の照明光として用いて、図9に示す分光分析モードに沿って総ヘモグロビン量tHbを算出するためパラメータW/Rが求められる。パラメータW/Rの値は、総ヘモグロビン量tHbを算出し、さらに、算出した総ヘモグロビン量tHbから酸素飽和度Satを算出する上で重要な値である。このパラメータW/Rの値は、スリット部(SL1、SL2等)を通過した白色光と、特殊光フィルタ(Fs1あるいはFs2等)を透過した特殊光の光成分の光強度の比率であるので、内視鏡システム1の複数回の使用によって変化することは、正確な総ヘモグロビン量tHbを算出して、正確な酸素飽和度Satを算出する上で好ましくない。この点から、特殊光の光量と白色光の光量の比率が基準範囲内となるようにシフト駆動機構470を制御する効果は大きい。
 特殊光の波長帯域は、白色光の波長帯域より狭く、特殊光を抽出する特殊フィルタ(Fs1.Fs2等)の回転フィルタ410の径方向の幅は、スリット(SL1,SL2等)の径方向の幅より大きいので、特殊光の波長帯域全体の合計の光量を白色光の波長帯域全体の合計の光量に近づけることができるので、パラメータW/RのSN比を改善することができる。この結果、精度の高い総ヘモグロビン量tHb、ひいては酸素飽和度Satを求めることができる。
 以上が本発明の実施形態および該実施形態の具体的実施例の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。
 例えば、図8を参照して説明した回転フィルタの構成は一例で合って、特殊光フィルタの種類、径方向の配列数は様々な構成例があり得る。
 また、上述の実施形態において、回転フィルタの白色光通過領域はスリットとして構成されているが、白色光通過領域の構成は、光源からの白色光を減光するように構成され、かつ、光源からの白色光の光束における光強度のピーク位置とシフト駆動機構の製造公差との関係で上述のような問題が生じるような場合には、上述の本実施形態の構成が有効に機能することとなる。例えば、白色光通過領域は、減光フィルタ等のフィルタを備えていても良い。
 また、上記の実施形態では、生体組織中のヘモグロビンの濃度分布の分析に本発明を適用したものであるが、生体組織の色を変化させる別の生体物質(例えば、ホルモン等の分泌物)の濃度分布の分析にも本発明を適用することができる。
 また、本実施形態の撮像素子141は、その前面にR、G、Bの原色系カラーフィルタを備えたカラー画像撮像用の撮像素子であるとして説明したが、この構成に限定されるものではなく、例えば、Y、Cy、Mg、Gの補色系カラーフィルタを備えたカラー画像撮像用の撮像素子を用いてもよい。
  1  内視鏡システム
100  電子内視鏡
110  挿入管
111  挿入管先端部
121  対物光学系
131  ライトガイド
131a 先端部
131b 基端部
132  配光レンズ
141  撮像素子
141a カラーフィルタ
142  ケーブル
200  プロセッサ
300  モニタ
400  光源部
410  回転フィルタ
420  フィルタ制御部
430  光源
440  集光レンズ
450  集光レンズ
470  シフト駆動機構
471  ステッピングモータ
472  ピニオンギア
473  ラックギア
474  フォトインタラプタ
500  画像処理部
510  A/D変換回路
520  一時記憶メモリ
530  コントローラ
540  ビデオメモリ
550  信号処理回路

Claims (13)

  1.  第1の光を射出する光源と、
     前記第1の光を通過させる第1光通過領域と、前記第1の光から1種類以上の特定波長域の第2の光を取り出す第2光通過領域とが所定の方向に並べて配置された回転板であって、前記第1光通過領域が前記第1光通過領域を通過した前記第1の光と前記第2光通過領域により取り出された前記第2の光の光量との差を低減するように構成された回転板と、
     前記回転板を回転させることにより前記第1光通過領域と前記第2光通過領域とを前記光源からの前記第1の光の光路に順次挿入する回転駆動部と、
     前記回転板を、前記光源からの光路と交差する方向にシフトさせるシフト駆動部と、
     前記第2光通過領域を通過した光の光量と前記第1光通過領域を通過した光の光量の比率が基準範囲内となるように前記シフト駆動部を制御する制御部と、
    を備える内視鏡システム。
  2.  第1の光を射出するように構成された光源と、
     前記第1の光を通過させる第1光通過領域と、前記第1の光から1種類以上の特定波長域の第2の光を取り出す第2光通過領域とが設けられ、前記第1光通過領域と前記第2光通過領域を前記第1の光の光路上に順次配置して、前記第1の光と前記第2の光を順次生成するように構成された回転板と、
     前記回転板を、前記第1の光の光路と交差する方向にシフトさせるように構成されたシフト駆動部と、
     前記第2光通過領域を通過した光の光量と前記第1光通過領域を通過した光の光量の比率が基準範囲内となるように前記シフト駆動部を制御するように構成された制御部と、
    を備える内視鏡システム。
  3.  前記制御部は、前記回転板を前記シフト駆動部により第1位置から目標位置である第2位置にシフトさせる際に、前記シフト駆動部に起因して生じる、前記回転板がシフトする実際の位置と前記第2位置とのずれ量を補正するパラメータを予め保持し、該パラメータに基づいて前記シフト駆動部を制御する、請求項1または2に記載の内視鏡システム。
  4.  前記制御部は、前記回転駆動部により前記回転板の前記第1光通過領域が前記光路に挿入される位置が、前記光源からの前記第1の光の光強度が最大強度となるピーク位置を基準にして位置決めされるように前記シフト駆動部を制御する、
    請求項1~3のいずれか1項に記載の内視鏡システム。
  5.  前記第1の光は、光強度分布を有し、
     前記第1光通過領域及び前記第2光通過領域に入射するときの前記第1の光の光束断面は、前記第1光通過領域及び前記第2光通過領域の入射面より大きく、前記第1の光の光束の一部が前記第1光通過領域及び前記第2光通過領域に入射し、前記光束の残りの部分は前記第1光通過領域及び前記第2光通過領域に入射せず、
     前記制御部は、前記第1光通過領域及び前記第2光通過領域の少なくとも一方に入射する前記第1の光の光速の一部は、前記光強度分布におけるピーク位置を含むように、前記シフト駆動部を制御する、
    請求項1~4のいずれか1項に記載の内視鏡システム。
  6.  前記制御部は、前記回転板を前記シフト駆動部により第1位置と第2位置との間でシフトさせる際に、前記回転板のシフト方向に応じて前記シフト駆動部の駆動量を異ならせる、
    請求項1~5のいずれか1項に記載の内視鏡システム。
  7.  前記制御部は、前記シフト駆動部によって前記回転板が前記光路に進入して停止する際のシフト方向が常に一定のシフト方向となるように前記シフト駆動部を制御する、
    請求項1~5のいずれか1項に記載の内視鏡システム。
  8.  前記制御部は、前記回転板が第1位置から第2位置に向かってシフトする際、前記回転板を前記第1位置から前記第2位置を超えてシフトさせた後、前記回転板のシフト方向を逆にして前記第2位置にシフトさせる、
    請求項7に記載の内視鏡システム。
  9.  前記制御部は、前記シフト駆動部の機械的な公差に関する情報に基づいて前記シフト駆動部を制御する、請求項1~8のいずれか1項に記載の内視鏡システム。
  10.  前記回転板は、前記第2光通過領域と前記第1光通過領域の径方向の幅が異なるように構成された、
    請求項1~9のいずれか1項に記載の内視鏡システム。
  11.  前記第2の光の波長帯域は、前記第1の光の波長帯域より狭く、
     前記第2光通過領域の径方向の幅は、前記第1光通過領域の径方向の幅より大きい、請求項10に記載の内視鏡システム。
  12.  前記光源は前記第1の光として白色光を射出するランプである、
    請求項1~11のいずれか1項に記載の内視鏡システム。
  13.  前記制御部は、前記第1の光で照明した生体組織の撮像画像データに含まれる色成分の画像データの値と、前記第2の光で照明した被写体の撮像画像データに含まれる色成分の画像データの値との比率に基づいて、前記生体組織の状態を表す情報を生成する、請求項1~12のいずれか1項に記載の内視鏡システム。
PCT/JP2017/026584 2016-07-21 2017-07-21 内視鏡システム WO2018016651A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017001854.4T DE112017001854B4 (de) 2016-07-21 2017-07-21 Endoskopsystem
US16/098,043 US20190150790A1 (en) 2016-07-21 2017-07-21 Endoscope system
JP2018528914A JP6517441B2 (ja) 2016-07-21 2017-07-21 内視鏡システム
CN201780001415.2A CN107864616A (zh) 2016-07-21 2017-07-21 内窥镜系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-143505 2016-07-21
JP2016143505 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018016651A1 true WO2018016651A1 (ja) 2018-01-25

Family

ID=60992447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026584 WO2018016651A1 (ja) 2016-07-21 2017-07-21 内視鏡システム

Country Status (5)

Country Link
US (1) US20190150790A1 (ja)
JP (1) JP6517441B2 (ja)
CN (1) CN107864616A (ja)
DE (1) DE112017001854B4 (ja)
WO (1) WO2018016651A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120749A (ja) * 2010-12-09 2012-06-28 Hoya Corp 内視鏡用フィルタターレット位置検出装置
JP2013220235A (ja) * 2012-04-18 2013-10-28 Hoya Corp 内視鏡用光源装置
JP2016097067A (ja) * 2014-11-21 2016-05-30 Hoya株式会社 分析装置及び分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860094A (en) 1987-03-10 1989-08-22 Olympus Optical Co., Ltd. Control apparatus for use with different types of endoscopes
WO2002007588A1 (fr) * 2000-07-21 2002-01-31 Olympus Optical Co., Ltd. Endoscope
JP5455733B2 (ja) * 2010-03-25 2014-03-26 Hoya株式会社 電子内視鏡用光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120749A (ja) * 2010-12-09 2012-06-28 Hoya Corp 内視鏡用フィルタターレット位置検出装置
JP2013220235A (ja) * 2012-04-18 2013-10-28 Hoya Corp 内視鏡用光源装置
JP2016097067A (ja) * 2014-11-21 2016-05-30 Hoya株式会社 分析装置及び分析方法

Also Published As

Publication number Publication date
DE112017001854T5 (de) 2018-12-27
CN107864616A (zh) 2018-03-30
JP6517441B2 (ja) 2019-05-22
US20190150790A1 (en) 2019-05-23
JPWO2018016651A1 (ja) 2019-01-10
DE112017001854B4 (de) 2020-06-10

Similar Documents

Publication Publication Date Title
US10722155B2 (en) Method and device for generating image showing concentration distribution of biological substances in biological tissue
US10031070B2 (en) Analyzing device and analyzing method based on images of biological tissue captured under illumination of light with different illumination wavelength ranges
JP6783721B2 (ja) 分析装置
US10925527B2 (en) Endoscope apparatus
CN109561808B (zh) 分析装置
WO2018043728A1 (ja) 内視鏡システム及び特徴量算出方法
JP6284451B2 (ja) 内視鏡装置
JP6783168B2 (ja) 内視鏡システム及び分析装置
JP6517441B2 (ja) 内視鏡システム
WO2018037505A1 (ja) 内視鏡システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018528914

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831167

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17831167

Country of ref document: EP

Kind code of ref document: A1