WO2018016645A1 - Novel phospholipid, uses thereof and development of phospholipid separation and measurement method - Google Patents

Novel phospholipid, uses thereof and development of phospholipid separation and measurement method Download PDF

Info

Publication number
WO2018016645A1
WO2018016645A1 PCT/JP2017/026563 JP2017026563W WO2018016645A1 WO 2018016645 A1 WO2018016645 A1 WO 2018016645A1 JP 2017026563 W JP2017026563 W JP 2017026563W WO 2018016645 A1 WO2018016645 A1 WO 2018016645A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysophosphatidylinositol
phosphate
monophosphate
diphosphate
phosphatidylinositol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/026563
Other languages
French (fr)
Japanese (ja)
Inventor
雄彦 佐々木
広樹 中西
将己 石川
紀子 上野
賢史 江口
純子 佐々木
中西 貴代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Lipid Technologies
Akita Lipid Technologies LLC
Akita University NUC
Original Assignee
Akita Lipid Technologies
Akita Lipid Technologies LLC
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Lipid Technologies, Akita Lipid Technologies LLC, Akita University NUC filed Critical Akita Lipid Technologies
Priority to JP2018528909A priority Critical patent/JP7549306B2/en
Publication of WO2018016645A1 publication Critical patent/WO2018016645A1/en
Anticipated expiration legal-status Critical
Priority to JP2022085341A priority patent/JP2022118008A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/117Esters of phosphoric acids with cycloaliphatic alcohols
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel phospholipid and use thereof. Furthermore, the present invention relates to a phospholipid separation measurement method. More specifically, the present invention relates to a technique for specifying the position of a phosphate group of phosphatidylicitol phosphate and / or lysophosphatidylinositol phosphate while keeping an acyl group intact. Specifically, the present invention provides a phospholipid separation measurement method using mass spectrometry (MS), optionally in combination with chromatography or ion mobility separation (IMS).
  • MS mass spectrometry
  • IMS ion mobility separation
  • Lipids are essential components of life as membrane constituents, energy sources, and signal transduction molecules.
  • phospholipids are an important group of molecules that regulates various cellular functions as spatiotemporal regulators that target intracellular proteins to cell membranes and organelles and control their activity at those locations.
  • it since it is sparingly soluble in water and not directly under the control of genes, it has limited analysis and has become a biochemical research field where research has not progressed.
  • the present inventors challenged such an undeveloped field by using a new technique of producing a genetically modified mouse having a phospholipid metabolizing enzyme or a phospholipid binding domain.
  • the research of the present inventors has become a pioneer in the world, and elucidation of the biological function regulation mechanism by intracellular phospholipid has been developed so that it can be regarded as a new research field.
  • various medical conditions such as various cancers, allergies, hepatic steatosis / fibrosis, cardiac dysfunction, neurodegeneration, enterocolitis, etc. were found one after another, and abnormal metabolic enzymes of individual phospholipids were found one after another.
  • Non-patent Document 1 Non-patent Document 1
  • Non-patent Document 1 lipid detection, identification and quantification methods have not been developed yet. Unlike genes, the type and number of lipids that make up living organisms are still uncertain, and many unknown lipids are thought to be sleeping without being discovered.
  • Phosphoinositide also referred to as phosphatidylinositol phosphate, phosphatidylinositol phosphate (salt), etc.
  • Phosphoinositide involved in many diseases includes 8 classes (phosphatidylinositol, phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate) Acid, phosphatidylinositol-5-monophosphate, phosphatidylinositol-3,4-diphosphate, phosphatidylinositol-3,5-diphosphate, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4 , 5-triphosphate). These lipids or metabolites may
  • the present inventors have begun to develop a new lipid analysis method based on mass spectrometry.
  • the merit of using mass spectrometry is that it is possible to analyze biological samples (human clinical specimens, etc.) that could not be analyzed without using the radioisotope label to be analyzed.
  • the composition of the lysophospholipid according to the present invention can be found.
  • Established a new measurement method for the phosphatidylinositol phosphate group also referred to as “PIPs” in this specification, which is extremely difficult to measure due to the presence of a small amount in the living body and multivalent phosphorylation. .
  • LPIPs lysophosphatidylinositol phosphate group
  • phosphoinositide and lysophosphoinositide also referred to as lysophosphatidylinositol phosphate, lysophosphatidylinositol phosphate (salt), etc.
  • lysophosphatidylinositol phosphate lysophosphatidylinositol phosphate (salt), etc.
  • acyl group is obtained by chromatography-mass spectrometry.
  • the present invention relates to all 8 classes of phosphoinositides and all 8 classes of lysophosphoinositides with information on acyl groups (fatty acid side chains) by liquid column chromatography / mass spectrometry (LC-MS) or ion mobility separation.
  • LC-MS liquid column chromatography / mass spectrometry
  • IMS-MS mass spectrometry
  • the present invention provides the following.
  • (Item 1A) A compound which is lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate.
  • (Item 2A) 1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidyl The compound according to item 1A, which is inositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate.
  • (Item 3A) 1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate, 2-acyl-lysophosphatidylinositol- 3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidylinositol-3.4-diphosphate, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol-3,4-diphosphate, 2- Acy
  • Item 4A Item 1A-3A which is 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate
  • 2-acyl-lysophosphatidylinositol monophosphate 2-acyl-lysophosphatidylinositol diphosphate
  • 1-acyl-lysophosphatidylinositol triphosphate 2-acyl-lysophosphatidylinositol triphosphate
  • 2-acyl-lysophosphatidylinositol triphosphate 2-acyl-lysophosphatidylinositol triphosphate
  • (Item 6A) A composition comprising the compound according to any one of items 1A to 5A for use as a disease marker.
  • (Item 7A) Item 6.
  • (Item 8A) The composition of item 7A, wherein the cancer comprises prostate cancer.
  • (Item 9A) Item 6.
  • the method for producing a compound according to any one of Items 1A to 5A comprising a step of deacylating phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with alkylamine. .
  • (Item 10A) Item 9.
  • the production method according to Item 9A wherein the alkylamine is methylamine.
  • Item 11A Item 10. The production method according to Item 9A or Item 10A, wherein the deacylation is a milder condition than a condition for dediacylation.
  • the method according to Item 11A wherein the mild condition is achieved by shortening a reaction time, reducing a concentration of the alkylamine, a reaction temperature, or a combination thereof among the conditions for dediacylation.
  • the mild condition is that methylamine is used as the alkylamine, the reaction time is 10 minutes or less, or the concentration of the methylamine is about 11% or less, the reaction temperature is 53 ° C.
  • (Item 14A) (A) a step of providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different mass acyl groups at the 1-position and the 2-position, wherein the acyl group having a desired mass is Existing in a desired position selected from the 1st or 2nd position; (B) deacylating the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with an alkylamine, and (C) an acyl having a desired mass, if necessary.
  • lysophosphatidylinositol monophosphate Removing lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having a group, lysophosphatidylinositol monophosphate having a desired acyl group at a desired position, lysophosphatidylinositol
  • (Item 15A) Concentrating the phospholipid by contacting the sample with an anion exchange resin; Protecting a phosphate group in the acidic phospholipid with a protecting group; and detecting, identifying or quantifying lysophosphatidylinositol phosphate in the phospholipid by mass spectrometry; For detecting, identifying or quantifying lysophosphatidylinositol phosphate.
  • (Item 16A) The method according to Item 15A, further comprising detecting, identifying or quantifying phosphatidylinositol phosphate in the phospholipid.
  • (Item 17A) The method of item 15A or 16A, wherein the protecting group comprises an alkyl group.
  • (Item 18A) The method according to any one of Items 15A to 17A, wherein the protecting group comprises a methyl group.
  • (Item 19A) The method according to any one of Items 15A to 18A, wherein the mass spectrometry includes a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer.
  • SRM selective reaction monitoring method
  • (Item 20A) Further, any one of items 15A to 19A, further comprising a step of detecting, identifying or quantifying the fatty acid side chain and / or phosphate group of the lysophosphatidylinositol phosphate using liquid column chromatography or ion mobility separation. 2. The method according to item 1.
  • (Item 21A) Item 20.
  • (Item 24A) A method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample, the method comprising: A) applying the sample to mass spectrometry (MS); and B) a peak in the MS And locating the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate according to the elution position of the phosphatidylinositol phosphate.
  • the method according to Item 24A further comprising applying the sample to chromatography in the step A).
  • the mass spectrometry is liquid column chromatography-mass spectrometry (LC-MS);
  • Item 27A Item 26. The method according to any one of Items 24A to 26A, wherein the total molecular weight of the acyl groups contained in the phosphatidylinositol phosphate is also specified in the specifying step.
  • (Item 28A) The method according to any one of Items 24A to 27A, wherein in the identifying step, the kind of acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also identified.
  • (Item 29A) The method according to any one of items 24A to 28A, wherein the position of the phosphate group of said phosphatidylinositol phosphate and lysophosphatidylinositol phosphate is specified in the same run.
  • the condition includes not performing a deacylation treatment.
  • (Item 33A) The method according to any one of items 26A to 32A, wherein the liquid column chromatography is selected from the group consisting of a chiral column, a reverse phase column, and a column chromatography that separates a hydrophilic group and a hydrophobic group.
  • (Item 34A) The method of any one of items 24A-33A, wherein the liquid column chromatography is combined with ion mobility separation.
  • Item 35A The method of any one of items 24A-34A, further comprising quantifying the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • (Item 36A) The method of any one of items 24A-35A, wherein the sample is an intact sample.
  • (Item 37A) The method according to any one of Items 24A to 36A, wherein the identification is performed without labeling the sample.
  • (Item 38A) The mass spectrometry is ion mobility separation-mass spectrometry (IMS-MS);
  • the specifying step B) is a step of specifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the IMS-MS.
  • (Item 39A) The method of item 38A, comprising any one or more of the items 25A-33A, 35A-37A.
  • (Item 40A) An apparatus for measuring, detecting or identifying the position of acyl group and phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample under conditions where mass spectrometry (MS) and phosphatidylinositol phosphate are not decomposed And an application unit that applies the sample to the MS.
  • MS mass spectrometry
  • phosphatidylinositol phosphate an application unit that applies the sample to the MS.
  • the device according to Item 40A further comprising a chromatography device.
  • Item 42A Item 40A, wherein the mass spectrometry is liquid column chromatography-mass spectrometry (LC-MS), and the application unit is an application unit that applies the sample to the LC-MS under conditions in which phosphatidylinositol phosphate is not decomposed. Or the apparatus of 41A.
  • Item 43A 42.
  • the apparatus according to any one of items 40A-43A, further comprising means for detecting or quantifying said phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • the mass spectrometry is ion mobility separation-mass spectrometry (IMS-MS), and the application section is an application section that applies the sample to the IMS-MS under the condition that phosphatidylinositol phosphate is not decomposed.
  • IMS-MS ion mobility separation-mass spectrometry
  • (Item 46A) A method for separating or purifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample according to the position of a phosphate group while retaining an acyl group, the method comprising: A) Steps applied to graphy-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) the elution position of the peak from the eluate of LC or IMS in the LC-MS or IMS-MS Collecting phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at the position of interest specified by.
  • LC-MS graphy-mass spectrometry
  • IMS-MS ion mobility separation-mass spectrometry
  • (Item 48A) 47 The method according to Item 47A, wherein the number of the phosphatidylinositol phosphate and / or the lysophosphatidylinositol phosphate contained in the mixture is less than the number of types of the phosphate group.
  • the present invention provides the following.
  • (1B) a method for measuring, detecting or identifying phosphatidylinositol phosphate in a sample comprising: A) applying the sample to liquid column chromatography-mass spectrometry (LC-MS); and B) A method comprising the step of locating the phosphate group of the phosphatidylinositol phosphate by the elution position of the peak in LC-MS.
  • LC-MS liquid column chromatography-mass spectrometry
  • IMS-MS ion mobility separation-mass spectrometry
  • IMS-MS ion mobility separation-mass spectrometry
  • a method for separating or purifying phosphatidylinositol phosphate in a sample according to the position of a phosphate group while retaining an acyl group comprising: A) liquid column chromatography-mass spectrometry of the sample (LC-MS) or a step applied to ion mobility separation-mass spectrometry (IMS-MS); and B) from the eluate of the LC-MS or IMS-MS to the target position specified by the elution position of the peak Collecting a phosphatidylinositol phosphate having a phosphate group.
  • LC-MS liquid column chromatography-mass spectrometry of the sample
  • IMS-MS ion mobility separation-mass spectrometry
  • a phosphatidyl group having a phosphate group at a kind of position less than the number of kinds of the phosphate group of the phosphatidylinositol phosphate included in the mixture from a mixture of two or more phosphate groups of the phosphatidylinositol phosphate A method for producing a sample comprising inositol phosphate, comprising: A) applying the sample to liquid column chromatography-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) from the eluate of the LC-MS or IMS-MS, Collecting a fraction containing a phosphatidylinositol phosphate having a phosphate group at a target position specified by an elution position of a peak.
  • LC-MS liquid column chromatography-mass spectrometry
  • IMS-MS ion mobility separation-mass spectrometry
  • the present invention relates to an analytical method that can separate and measure eight PIPs and LPIPs isomers intact using a chiral column.
  • An exemplary analysis uses MRM / SRM with triple quadrole mass spectrometer. Q1 sets an intact precursor ion, and Q3 sets DAG or MAG from which inositol phosphate is eliminated as a product ion.
  • the present invention also provides the following.
  • (1C) A compound which is lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate.
  • (2C) 1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl
  • the compound according to item 1C which is lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate.
  • (3C) 1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate, 2-acyl-lyso Phosphatidylinositol-3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidylinositol-3-4-2 Phosphoric acid, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol-3,4-diphosphate 2-acyl
  • Item 1C which is 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate
  • 2-acyl-lysophosphatidylinositol monophosphate 2-acyl-lysophosphatidylinositol diphosphate
  • 1-acyl-lysophosphatidylinositol triphosphate 2-acyl-lysophosphatidylinositol triphosphate
  • (13C) A step of providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having acyl groups with different masses at the 1-position and the 2-position, and having a desired mass An acyl group is present at a desired position selected from the 1-position or 2-position; (B) contacting the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate with an alkylamine; And (C) optionally removing lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having a desired mass of acyl group.
  • a method for detecting, identifying or quantifying lysophosphatidylinositol phosphate comprising the step of detecting, identifying or quantifying lysophosphatidylinositol phosphate in said phospholipid by an analytical method.
  • the protecting group comprises an alkyl group.
  • the protecting group comprises a methyl group.
  • the mass spectrometry includes a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer.
  • the present invention provides new lipids to elucidate the vital functions of these lipids and can be applied to medical applications.
  • new drug discovery targets can be presented.
  • the present invention can provide a new diagnosis and detection method by providing a new measurement method.
  • phosphoinositide and / or lysophosphoinositide can be separated at the position of a phosphate group and measured, detected or identified in an intact state. Analysis can be performed. Such information is useful in biological information, pharmacological information, drug development, treatment, diagnosis, and the like.
  • FIG. 1A is a schematic diagram for explaining the principle of “measurement and detection method by SRM in a triple quadrupole mass spectrometer”.
  • FIG. 1B shows the experimental results for studying the conditions for the synthesis of the compounds of the present invention.
  • LPIP1 is not produced under the conventional deacylation reaction conditions, but LPIP1 can be obtained by shortening the reaction time (upper stage) or decreasing the methylamine concentration (lower stage).
  • the vertical axis represents the yield (%) of the reaction product, and the horizontal axis represents time (minutes).
  • FIG. 1C shows the results of examining the reaction temperature. 17: 0/20: 4 PI4P was used as a raw material.
  • the products are 17: 0 LPIP1 and 20: 4 LPIP1.
  • FIG. 2A shows the identification data of a synthetic product of the compound of the present invention.
  • FIG. 2B shows the identification data of a synthetic product of the compound of the present invention.
  • FIG. 2C shows identification data for a synthetic product of the compounds of the present invention.
  • FIG. 2D shows identification data for a synthetic product of the compounds of the present invention.
  • FIG. 2E shows identification data for a synthetic product of the compounds of the present invention.
  • FIG. 2F shows identification data of a synthetic product of the compound of the present invention.
  • FIG. 2G shows identification data for a synthetic product of the compounds of the invention.
  • FIG. 3A shows two types of LPI produced by a mild deacylation reaction (see FIG. 1) of 37: 4 PI (4) P (sn-1 17: 0, sn-2 20: 4 PI (4) P). (4) About P, the result of having performed the exact mass spectrometry of the fragment derived from LPI (4) P and LPI (4) P is shown. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes).
  • FIG. 3B shows the structural formula of 37: 4 PI (4) P, the product after the deacylation reaction, and fragments thereof.
  • 3C shows two types of LPIs produced by a mild deacylation reaction of 37: 4 PI (4,5) P2 (sn-1 17: 0, sn-2 20: 4 PI (4,5) P2).
  • 4,5) P2 shows the results of accurate mass analysis of LPI (4,5) P2 and fragments derived from LPI (4,5) P2.
  • the vertical axis represents relative abundance, and the horizontal axis represents time (minutes).
  • FIG. 3D shows the structural formula of 37: 4 PI (4,5) P2, the product after the deacylation reaction, and its fragment.
  • FIG. 3E shows a two-dimensional reaction resulting from a mild deacylation reaction of 37: 4 PI (3,4,5) P3 (sn-1 17: 0, sn-2 20: 4 PI (3,4,5) P3).
  • FIG. 4A represents an overview of the spin system of inositol phospholipids. A portion surrounded by a solid line indicates a group of 1 H nuclei connected by continuous 3 J coupling, and a portion surrounded by a broken line indicates a portion where 1 H nuclei and 31 P nuclei are 3 J coupled.
  • FIG. 4A represents an overview of the spin system of inositol phospholipids. A portion surrounded by a solid line indicates a group of 1 H nuclei connected by continuous 3 J coupling, and a portion surrounded by a broken line indicates a portion where 1 H nuclei and 31 P nuclei are 3 J coupled.
  • FIG. 4C shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of Sample 1 of Example 1 (16: 0 LPI4P).
  • the chemical structure observed from the structural formula of 16: 0 LPI4P and 1 H-1D and TOCSY spectra is shown.
  • Fatty acid and glycerol skeleton C1 and C3 signals were observed.
  • a signal considered to be an inositol ring was weakly observed. No signal of polyunsaturated fatty acids was observed.
  • FIG. 4D shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of Sample 2 of Example 1 (17: 0 LPI (4,5) P2).
  • FIG. 4E shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of sample 3 of Example 1 (18: 0 LPI (4,5) P2).
  • 18: 0 shows the chemical structure observed from the structural formula of LPI (4,5) P2 and the signals of 1 H-1D and TOCSY spectra.
  • FIG. 4F shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of Sample 5 of Example 1 (17: 0/20: 4 PI (4,5) P2). 17: 0/20: 4 This shows the chemical structure observed from the structural formula of PI (4,5) P2 and the signals of 1 H-1D and TOCSY spectra. Fatty acid and glycerol skeleton C1, C2, and C3 signals were observed.
  • FIG. 5A-5D show data relating to the presence of a compound of the invention in a biological sample (cultured cancer cell line).
  • FIG. 5A shows the presence of LPIPs in HEK293T cells.
  • the vertical axis represents the abundance (pmol) of the compound relative to 1 nmol of phosphatidylserine (PS), and the horizontal axis represents the molecular species.
  • FIG. 5B shows the presence of LPIPs in Jurkat cells.
  • the vertical axis represents the abundance (pmol) of the compound relative to 1 nmol of phosphatidylserine (PS), and the horizontal axis represents the molecular species.
  • FIG. 5C shows the results of accurate mass measurement of LPIP3 and fragments thereof present in HEK293T cells. The vertical axis represents relative abundance, and the horizontal axis represents m / z (mass / number of charges).
  • FIG. 5D shows the coincidence of elution times of LPIP3 present in HEK293T cells and fragments thereof. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 6A-6D show data relating to the presence in biological samples (mouse, human) for the compounds of the present invention.
  • FIG. 6A shows that LPIPs are present in the mouse heart, large intestine, liver, brain (whole brain), and spleen.
  • the vertical axis represents the abundance (pmol) of the compound relative to 1 nmol of phosphatidylserine (PS), and the horizontal axis represents the cell type.
  • FIG. 6B shows the presence of LPIPs in mouse serum.
  • the vertical axis represents the abundance (fmol) of the compound relative to 1 ⁇ L of serum, and the horizontal axis represents the molecular species.
  • FIG. 6C shows the presence of LPIPs in mouse plasma.
  • the vertical axis represents the abundance (fmol) of the compound relative to 1 ⁇ L of plasma, and the horizontal axis represents the molecular species.
  • FIG. 6D shows the presence of LPIPs in human serum.
  • the vertical axis represents the abundance (fmol) of the compound relative to 1 ⁇ L of serum, and the horizontal axis represents the molecular species.
  • FIG. 7A shows mouse prostate weight in the upper row (vertical axis indicates weight (mg), horizontal axis indicates tissue type), and lower row shows prostate HE-stained image. Indicates that cancer develops.
  • FIG. 7B shows that LPIPs levels in the prostate increase with the development of prostate cancer.
  • the vertical axis represents LPIPs level (AU (arbitrary unit)) for 1 nmol of phosphatidylserine (PS), the horizontal axis Ctrl indicates normal mice, and PTEN KO expresses the tumor suppressor gene Pten in a prostate-specific manner.
  • FIG. 8 shows that LPIP3 is generated in myelocytes upon stimulation with complement component 5a, which is a inflammatory substance.
  • the vertical axis indicates the abundance (pmol) of LPIP3 with respect to 10 6 cells, the horizontal axis “ ⁇ ” indicates that stimulation by the complement component 5a is not performed, and “+” indicates the complement component This means that stimulation by 5a is being performed.
  • FIGS. 9A and 9B are diagrams showing the separation of 17: 0/20: 4 phosphoinositides on a chiral column.
  • Each graph is a chromatogram when the phosphoric acid group phosphoinositide sample displayed is measured with a mass spectrometer, the horizontal axis represents retention time (minutes), and the vertical axis represents peak-top signal intensity (cps). Represents the relative signal intensity with respect to 100%.
  • the left column of FIG. 9A shows PI
  • the center column shows PI (3) P
  • the right column shows their mixture (PIP1mix).
  • the second column from the right shows PI (3,5) P, PI (3,4) P2PI (4,5) P2 and mixtures thereof, respectively.
  • the left column of FIG. 9B shows PI (3,5) P2, PI (3,4) P2 and PI (4,5) P2 from the top, the center shows their mixture (PIP2mix), and the right column shows PI (3,4,5) P3 is shown.
  • 9A and 9B are diagrams showing the separation of 17: 0/20: 4 phosphoinositides on a chiral column. Each graph is a chromatogram when the phosphoric acid group phosphoinositide sample displayed is measured with a mass spectrometer, the horizontal axis represents retention time (minutes), and the vertical axis represents peak-top signal intensity (cps).
  • FIG. 9A Represents the relative signal intensity with respect to 100%.
  • the left column of FIG. 9A shows PI
  • the center column shows PI (3) P, PI (4) P and PI (5) P from the top, respectively, and the right column shows their mixture (PIP1mix).
  • the second column from the right shows PI (3,5) P, PI (3,4) P2PI (4,5) P2 and mixtures thereof, respectively.
  • the left column of FIG. 9B shows PI (3,5) P2, PI (3,4) P2 and PI (4,5) P2 from the top, the center shows their mixture (PIP2mix), and the right column shows PI (3,4,5) P3 is shown.
  • FIG. 9A shows PI
  • the center column shows PI (3) P, PI (4) P and PI (5) P from the top, respectively
  • the right column shows their mixture (PIP1mix).
  • the second column from the right shows PI (3,5) P, PI (3,4) P2PI (4,5) P2 and mixtures thereof,
  • 10 shows seven different amounts (0.02, 0.05, 0.1, 0.2, 5, 10, 50 pmol) of the indicated phosphate group 17: 0/20: 4 phosphoinositide.
  • the calibration curve prepared from the signal intensity (peak area) when measured with a mass spectrometer (repeatedly measured four times for each injection amount) is shown.
  • the average of 4 repeated measurements is represented by black dots, and the standard deviation is represented by error bars.
  • the upper row shows PI, PI (3) P, and PI (4) P from the left
  • the middle row shows PI (5) P, PI (3,5) P, and PI (3,4) P2 from the left
  • the lower row From the left, PI (4,5) P2, PI (3,4,5), P3 are shown.
  • FIG. 11 shows fluctuations in signal intensity (cps) when 10 pmol of 17: 0/20: 4 phosphoinositide of the displayed phosphate group was measured 50 times with a mass spectrometer.
  • the vertical axis represents signal intensity (cps), and the horizontal axis represents the number of injections.
  • PI (3) P gives the first strongest signal strength
  • PI (4) P gives the second strongest signal strength
  • PI (5) P gives the third strongest signal strength.
  • PI (3,4) P2 gives the fourth strongest signal strength
  • PI (3,5) P2 gives the fifth strongest signal strength
  • PI gives the sixth strongest signal strength
  • PI (4, 5) P2 gave the seventh strongest signal intensity
  • PI (3,4,5) P3 gave the weakest signal intensity.
  • FIG. 12 shows the separation of 17: 0/20: 4 phosphoinositides (PI (3,4) P2, PI (3,5) P2, PI (4,5) P2) by ion mobility.
  • the horizontal axis represents compensation voltage (COV, V), and the vertical axis represents signal intensity (cps).
  • COV, V compensation voltage
  • cps signal intensity
  • FIG. 13 shows the change in phosphoinositide composition of cells when the cells were treated with H 2 O 2 as a result of measurement using a combination of a chiral column and a mass spectrometer.
  • the horizontal axis represents the retention time
  • the vertical axis represents the relative signal intensity when the peak top signal intensity (cps) is 100%.
  • FIGS. 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value.
  • the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation.
  • pmol the average of four measurements a
  • the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation
  • the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar).
  • ANOVA when statistical processing using the multiple comparison test of Tukey, that *** is p ⁇ 0.001, that ** is p ⁇ 0.01, *, p ⁇ Each represents 0.05.
  • 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value.
  • the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation.
  • the results at the 0 minute point, the 2 minute point, the 5 minute point, and the 15 minute point of H 2 O 2 treatment are shown from the left.
  • the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation
  • the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar).
  • FIGS. 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value.
  • the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation.
  • pmol the average of four measurements a
  • the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation
  • the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar).
  • ANOVA when statistical processing using the multiple comparison test of Tukey, that *** is p ⁇ 0.001, that ** is p ⁇ 0.01, *, p ⁇ Each represents 0.05.
  • 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value.
  • the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation.
  • the results at the 0 minute point, the 2 minute point, the 5 minute point, and the 15 minute point of H 2 O 2 treatment are shown from the left.
  • the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation
  • the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar).
  • FIG. 15 shows changes in the phosphoinositide composition in the thyroid gland (organ) of the mouse when the mouse is genetically modified as a result of measurement using a combination of a chiral column and a mass spectrometer.
  • the horizontal axis represents the retention time
  • the vertical axis represents the relative signal intensity when the peak top signal intensity (cps) is 100%.
  • FIGS. 16A to 16C show the change in phosphoinositide composition for each diacylglycerol and the total amount of each phosphoinositide in the thyroid gland (organ) of the mouse when the mouse is genetically modified from the measurement results of the chiral column-mass spectrometer. It is shown as a quantitative value. In the graphs of FIGS.
  • the horizontal axis represents the type of diacylglycerol in phosphoinositide
  • the vertical axis represents 3 times (wild type), 4 times (INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ), And the amount (pmol) of each phosphoinositide contained in 1 mg of tissue calculated as an average of the INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ )) measurement, together with the standard deviation.
  • the results for wild type, INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ), and INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ ) mice are shown from the left.
  • 16A to 16C show the change in phosphoinositide composition for each diacylglycerol and the total amount of each phosphoinositide in the thyroid gland (organ) of the mouse when the mouse is genetically modified from the measurement results of the chiral column-mass spectrometer. It is shown as a quantitative value. In the graphs of FIGS.
  • the horizontal axis represents the type of diacylglycerol in phosphoinositide
  • the vertical axis represents 3 times (wild type), 4 times (INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ), And the amount (pmol) of each phosphoinositide contained in 1 mg of tissue calculated as an average of the INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ )) measurement, together with the standard deviation.
  • the results for wild type, INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ), and INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ ) mice are shown from the left.
  • 16A to 16C show changes in the phosphoinositide composition for each diacylglycerol and the total amount of each phosphoinositide in the thyroid gland (organ) of the mouse when the mouse is genetically modified from the measurement results of the chiral column-mass spectrometer. It is shown as a quantitative value.
  • the vertical axis represents the average of three times (wild type), four times (INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ), and INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ )) measurements.
  • the total amount (pmol) of phosphoinositides having the same phosphate substitution contained in 1 mg of tissue calculated as follows is expressed with standard deviation, and the horizontal axis from the left is wild type, INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ) And INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ ) mice. 3 (wild type), 4 times (INPP4B ( ⁇ / ⁇ ), PTEN (+/ ⁇ ), and INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ )) repeated measurement results, the average of repeated measurements , With standard deviation (error bar).
  • FIG. 17 is a diagram showing that it is possible to separate phosphoric acid position isomers of lysophospholipid by column chromatography.
  • the horizontal axis represents the retention time
  • the vertical axis represents the relative signal intensity when the peak top signal intensity (cps) is 100%.
  • the left column shows the results of lyso PI (3) P, lyso PI (4) P, and lyso PI (5) P at 17: 0 from the top.
  • the right column shows the results of lyso PI (3, 5) P2, lyso PI (3,4) P2, and lyso PI (4, 5) P2 at 17: 0 from the top.
  • the present invention provides a novel phospholipid and a technology for measuring, detecting or identifying phospholipids phosphoinositide and lysophosphoinositide separated by subclass.
  • phosphatidylinositol phosphate or “phosphatidylinositol phosphate” are used interchangeably and refer to the sn-1 position and sn ⁇ of glycerol (also referred to as propane-1,2,3-triol, glycerol).
  • An inositol bonded to the sn-3 position is phosphorylated with X inositol bonded to the 2-position.
  • One, two or three phosphate groups can be attached, in this case referred to as “phosphatidylinositol X phosphate” (where X is one, two or three).
  • phosphatidylinositol X phosphates are collectively referred to as “phosphoinositide”, “phosphatidylinositol phosphates”, or “PIPs”.
  • the phosphate group can be indicated at a position on inositol, such as phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate, phosphatidylinositol-3,4 -Described as diphosphate, phosphatidylinositol-3,5-diphosphate, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, etc.
  • the present invention For the first time in the present invention, a method for identifying the position of the phosphate group of the PIPs while retaining the acyl group was provided.
  • the detailed information of the phosphate group of PIPs in the living body can be understood by using the identification method provided by the present invention.
  • the present invention is a detailed information that cannot be analyzed by the prior art in the sense that information in the living body can be analyzed in a true sense.
  • inositol is myo-inositol and the fatty acid bond type is an ester type.
  • PIPs with arbitrary acyl and phosphate group positions can be prepared, see, for example, Stuart J. et al. Conway et al. , Org. Biomol. Chem. , 2010, 8, 66-76, any kind of PIP can be manufactured. So far, phosphoinositides have been analyzed by separation of RI-label or non-label deacylated glycerophosphoinositides, or by using molecular probes and antibodies with specific binding proteins. In that sense, there are still no analytical methods that can measure intact phosphoinositide.
  • lysophosphatidylinositol phosphate or “lysophosphatidylinositol phosphate” is used interchangeably, and one acyl group is removed from phosphatidylinositol and inositol bonded to the sn-3 position is X Individual phosphorylated.
  • One, two or three phosphate groups can be attached, in this case referred to as “lysophosphatidylinositol X phosphate” (where X is one, two or three).
  • lysophosphatidylinositol X phosphates are collectively referred to as “lysophosphoinositide”, “lysophosphatidylinositol phosphates”, or “LPIPs”.
  • the phosphate group can be represented by a position on inositol, and is expressed as, for example, lysophosphatidylinositol-3,4,5-triphosphate.
  • LPIPs are also present in the living body by using the identification method provided by the present invention.
  • the position of the phosphate group could be identified for LPIPs.
  • inositol is myo-inositol and the fatty acid bond type is an ester type.
  • sn- is an abbreviation for “Stereospecifically Numbered”, and is used when the carbon atoms of a glycerin derivative are represented by stereospecific numbering. If the glycerin derivative is racemic, add rac-; if the stereochemistry is unknown, add X-.
  • LPIPs There are two types of LPIPs, sn-1-LPIPs or sn-2-LPIPs, depending on the position of the acyl group binding. For the actual display, the position of the acyl group is used as it is, such as 1-acyl-phosphatidylinositol X phosphate, 2-acyl-phosphatidylinositol X phosphate.
  • the corresponding PIPs can be produced using this and applied to the synthesis method of the present invention to produce LPIPs having the desired fatty acid group.
  • Specific embodiments of the present invention include the following. Monophosphate, sn-1-position 1-butanyl-lysophosphatidylinositol 4-monophosphate; 1-hexanyl-lysophosphatidylinositol 4-monophosphate; 1-octanyl-lysophosphatidylinositol 4-monophosphate; 1-hexadecanyl-lysophosphatidylinositol 4-monophosphate ⁇ palmityl>; 1-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate ⁇ palmitreniinyl>; 1-heptadecanyl-lysophosphatidylinositol 4-monophosphate; 1-octadecanyl-lysophosphatidylinositol 4-monophosphate ⁇ stearyl>; 1-9Z-octadecenyl-lysophosphat
  • acyl (group) is used in the ordinary sense in the art and refers to a group formed by removing a hydroxyl group from an organic acid (carboxylic acid; fatty acid).
  • formyl group HCO—, acetyl group CH 3 CO—, malonyl group —COCH 2 CO—, benzoyl group C 6 H 5 CO—, cinnamoyl group C 6 H 5 CH ⁇ CHCO—, etc. are included, and ketone derivatives And so on.
  • fatty acid groups contained in phosphatidylinositol phosphates and lysophosphatidylinositol phosphates are also referred to as fatty acid groups because they form fatty acids in a preferred embodiment.
  • a fatty acid can be represented by its carbon number and the number of double bonds, for example, arachidonic acid can be represented as (20: 4).
  • arachidonic acid can be represented as (20: 4).
  • fatty acids and acyl groups based thereon are generally used, but the present invention is not limited thereto, and it is understood that fatty acids having any chain length and any double bond can be used.
  • the number of carbon atoms one or more, typically 1 to 30, usually 4 to 30 may be mentioned, 1, 2, 3, 4, 5, 6, 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24, 25, 26, 27, 28, 29, 30 and the like, but is not limited thereto.
  • the number of double bonds may be any number that can be allowed according to the number of carbon atoms, such as 0, 1, 2, 3, 4, 5, 6, 7, and the like.
  • the position of the double bond is typically the ⁇ -3 system, ⁇ -6 system, ⁇ -9 system, etc.
  • the ⁇ -5 system, the ⁇ -7 system, etc. have been confirmed. Any available one can be used.
  • the fatty acid may contain a triple bond, and the number thereof is 0, 1, 2, 3, 4, 5, 6, 7, etc. Numbers can be employed.
  • chromatography is used in the ordinary sense used in the art, and when the medium passes (permeates) uniformly through a column or capillary passage of a substance, one or more in the medium. Means a process in which the components of are selectively delayed. The delay is caused by the distribution of the mixture components between one or more stationary phases and this medium as the bulk medium (ie, mobile phase) moves relative to the stationary phase (s).
  • chromatography include liquid chromatography (LC) and gas chromatography (GC). In one embodiment, chromatography can be used to identify the binding position of a phosphate group.
  • gas chromatography or “GC” is used in the ordinary sense used in the art, and when a gas uniformly passes (permeates) through a column or capillary passage of a substance, Means a process in which one or more components are selectively delayed. The delay is caused by the distribution of the mixture components between one or more stationary phases and this gas as the bulk gas (ie, mobile phase) moves relative to the stationary phase (s).
  • liquid chromatography or “LC” is used in the ordinary sense used in the art, and when a fluid passes uniformly (permeates) through a column or capillary passage of matter, Means a process in which one or more components are selectively delayed. The delay is caused by the distribution of the mixture components between one or more stationary phases and this fluid as the bulk fluid (ie, mobile phase) moves relative to the stationary phase (s).
  • liquid chromatography include reverse phase liquid chromatography (RPLC), ion chromatography (IC), high performance liquid chromatography (HPLC), and turbulent liquid chromatography (TFLC) (high turbulent liquid chromatography). (Also referred to as (HTLC) or high-throughput liquid chromatography).
  • HPLC high performance liquid chromatography
  • HPLC also referred to as “high pressure liquid chromatography”
  • HPLC high performance liquid chromatography
  • Separation modes of the filler include normal phase, reverse phase, partition, chiral, ion exchange, molecular sieve, affinity column, etc., and any column chromatography that separates hydrophilic groups and hydrophobic groups can be used. Of these, chiral, reverse phase, normal phase, and ion exchange columns are preferred. In one preferred embodiment, it has been shown in the present invention that when a chiral column is used, all the binding positions of phosphate groups can be identified without using another column.
  • Examples of chiral columns include polysaccharide derivative chiral columns, protein-bonded chiral columns, chemically bonded optically active crown ether chiral columns, crown ether chiral columns, zwitterionic molecular column columns, anion exchange chiral columns, ligand exchange chiral columns, poly Examples thereof include, but are not limited to, methacrylate-type chiral columns and polysaccharide derivative chiral columns (for example, those sold by Daicel Corporation (Osaka, Japan)).
  • the sample or sample components may be applied to the LC column at the inlet, eluted with the solvent or solvent mixture, and discharged at the outlet.
  • Various solvent modes can be selected to elute the analyte (s) of interest.
  • liquid chromatography may be performed using a gradient mode, an isocratic mode, or a polymorphic (ie, mixed) mode.
  • the separation of materials is affected by variables such as the choice of eluent (also referred to as “mobile phase”), elution mode, gradient conditions, temperature, and the like.
  • IMS ion mobility separation
  • a bulkier compound when a gaseous ion passes through an IMS cell filled with N 2 gas, a bulkier compound has more frequent collisions with N 2 molecules and lower mobility.
  • the compounds can be separated by the difference in the transit time (Drift Time) caused thereby.
  • MS mass spectrometry
  • mass spectrometry or “MS” is used in the ordinary sense used in the field, and refers to an analytical method for identifying a compound by its mass, and is a particle such as an atom, molecule, or cluster. Is a technique for separating and detecting ions according to the mass-to-charge ratio by making them into gaseous ions by some method (ionization), moving them in a vacuum and using electromagnetic force, etc., or by a time-of-flight difference. MS refers to a method of filtering, detecting, and measuring ions based on this mass-to-charge ratio, or “m / z”.
  • MS techniques generally include (1) ionizing a compound to form a charged compound: and (2) detecting the molecular weight of the charged compound and calculating a mass to charge ratio.
  • the compound can be ionized and detected by appropriate means.
  • a “mass spectrometer” generally includes an ionizer, a mass analyzer, and an ion detector.
  • the molecule or molecules of interest are ionized and the ions are then introduced into a mass spectrometer where the ions are subject to mass (“m”) and charge (for combination of magnetic and electric fields).
  • m mass
  • charge for combination of magnetic and electric fields
  • z charge
  • Examples of the mass spectrometer include a magnetic field type, a quadrupole type, and a time-of-flight type, and it is preferable to use a quadrupole type that has good quantitativeness, a wide dynamic range, and good linearity.
  • one of the ion species purified by the selected ion monitoring or the first mass analysis unit that selectively detects only the target ions is selected as the precursor ion, and the second ion is detected.
  • selective reaction monitoring (SRM) that detects product ions generated by cleavage of the precursor ions in the mass spectrometer.
  • SRM selective reaction monitoring
  • the term “resolution” or “resolution (FWHM)” is the width of the mass peak at 50% of the maximum height. Refers to the observed mass to charge ratio divided by (full width half maximum, “FWHM”). Also in the present invention, it is preferable to use an analyzer having a high resolution. The higher the resolution, the better the qualitative and quantitative properties.
  • valves and connector piping allows two or more chromatographic columns to be passed as needed so that material passes from one to the next without the need for any manual steps. It may be connected.
  • the selection of valves and piping is controlled by a computer preprogrammed to perform the necessary steps.
  • the chromatography system is also connected to a detection system, such as an MS system, in such an online manner.
  • a detection system such as an MS system
  • C-MS chromatography-mass spectrometry
  • chromatography-mass spectrometry means an analysis method performed using an apparatus combining a chromatograph (eg, gas chromatograph, liquid chromatograph, etc.) and a mass spectrometer. To do.
  • a chromatograph eg, gas chromatograph, liquid chromatograph, etc.
  • mass spectrometer e.g, liquid chromatograph, etc.
  • tandem mass spectrometry C-MS / MS
  • ionization in C-MS for example, atmospheric pressure chemical ionization, ESI, atmospheric pressure photoionization, or the like can be used.
  • liquid column chromatography-mass spectrometry means an analysis method performed using an apparatus in which a liquid chromatograph and a mass spectrometer are combined.
  • tandem mass spectrometry LC-MS / MS
  • mass spectrometry in which a plurality of mass spectrometry units are combined can also be used.
  • ionization in LC-MS for example, atmospheric pressure chemical ionization, ESI, atmospheric pressure photoionization, or the like can be used.
  • IMS-MS ion mobility separation-mass spectrometry
  • IMS-MS means an analysis method performed using an apparatus combining ion mobility separation (IMS) and a mass spectrometer.
  • IMS-MS / MS tandem mass spectrometry
  • IMS-MS ion mobility separation-mass spectrometry
  • MS-MS tandem mass spectrometry
  • IMS-MS enables separation of interfering components having the same m / z, which is impossible with a mass spectrometer alone, and analysis of the three-dimensional structure of ions, and can provide more specific and detailed information to scientists.
  • measurement is used in the normal sense used in the field, and refers to determining how much a certain object is measured.
  • detection is used in the usual meaning used in the field, refers to finding out a substance, component, etc.
  • identity refers to an existing object related to itself. This refers to the act of finding the attribution of the classification from the classification of the substance, and when used in the chemical field, it refers to determining the identity of the target substance as a chemical substance (for example, determining the chemical structure), “Quantitative” refers to determining the amount of a target substance.
  • the term “run” is used in the ordinary meaning used in the art, and the sample is loaded in a separation means such as mass spectrometry, chromatography, and ion mobility separation to separate components in the sample. , Refers to a series of steps until washing as necessary. Usually, different samples are measured in different runs to avoid confusion. When there are multiple measurement objects, it is advantageous to be able to measure all measurement objects in the same run, but the run is considered in consideration of adaptability to the measurement system for each measurement object in the sample, dynamic range, and separation degree. You may divide into several.
  • the “amount” of an analyte in a body fluid sample generally refers to an absolute value that reflects the mass of the analyte that can be detected in the volume of the sample. However, an amount also contemplates a relative amount compared to another analyte amount. For example, the amount of analyte in the sample may be an amount greater than the control or normal level of analyte normally present in the sample.
  • alkylamine refers to an alkyl group to which an amine (NH 2 —) group is bonded. Typical examples include, but are not limited to, methylamine, ethylamine, propanamine and the like. Also referred to as aliphatic amine or aminoalkane.
  • anion exchange resin is used in the ordinary sense in the art, and typically has a property in which a basic group is bonded to the surface of the resin and binds to an anion. Can be concentrated.
  • acidic phospholipid refers to a phospholipid in which the negative charge of the phosphate group is not canceled by a base, and includes phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol ( PI).
  • PA phosphatidic acid
  • PS phosphatidylserine
  • PI phosphatidylinositol
  • protecting group for the phosphate group, any substance used in the art can be used.
  • Protecting groups are exemplified in, for example, Clark J et al, Nat Methods. 2011 March; 8 (3): 267-272.doi: 10.1038 / nmeth.1564.
  • Benzyl group, p-methoxybenzyl group, Examples thereof include a tert-butyl group.
  • the conditions under which phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate are not decomposed means a condition in which components such as acyl groups are not decomposed and eliminated from phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • “Conditions under which phosphatidylinositol phosphate is not decomposed” refers to conditions in which components such as acyl groups are decomposed from phosphatidylinositol phosphate and do not leave, and “Conditions under which lysophosphatidylinositol phosphate is not decomposed” refers to lysophosphatidyl.
  • the conditions under which components such as acyl groups are not decomposed and eliminated from inositol phosphate, and the conditions under which phosphatidylinositol phosphate and lysophosphatidylinositol phosphate are not decomposed are the conditions under which phosphatidylinositol phosphate and lysophosphatidylinositol phosphate This is a condition in which components such as are decomposed and do not desorb.
  • Such conditions can be applied to chromatography, ion mobility separation, or MS by applying other treatments under conditions that do not include deacylation, in addition to applying the sample directly to chromatography, ion mobility separation, or MS.
  • the treatment of denaturing the sample is not performed, and the treatment of introducing a protecting group into the phosphate group is included.
  • no deacylation treatment means deacylation, for example, treatment with phospholipases A (phospholipase A 1 , A 2 etc.), treatment in the presence of alkylamine such as methylamine ( Serunian, et al., Methods in Enzymol. Vol., 198, 1991, pp. 78-87, especially pp. 82-83, and Fujii et al. Folia Pharmacol Jpn. 2013, pp. 236-240, especially pp. 238-239).
  • alkylamine such as methylamine
  • sample means that when a sample to be analyzed is assumed, the sample is not denatured.
  • sample denaturation include denaturation by heating, oxidation in the air, moisture, heat, light, metal ions, microorganisms or enzymes, and hydrolysis in an aqueous solvent. In order to be in an intact state, for example, the sample is frozen immediately after preparation and stored at ⁇ 80 ° C. until the subsequent operation is performed.
  • label refers to a presence (for example, a substance, energy, electromagnetic wave, etc.) for distinguishing a target molecule or substance from others.
  • a labeling method include RI (radioisotope) method, fluorescence method, biotin method, chemiluminescence method and the like.
  • the labeling is performed with fluorescent substances having different fluorescence emission maximum wavelengths.
  • the target object can be modified so that it can be detected by the detection means used. Such modifications are known in the art, and those skilled in the art can appropriately carry out such methods depending on the label and the target object.
  • diagnosis identifies various parameters related to a disease, disorder, condition (eg, a disease, disorder, condition, etc. caused by a lipid mediator) in a subject, and such a disease, disorder , Refers to determining the current state or future of the state.
  • conditions within the body can be examined, and such information can be used to formulate a disease, disorder, condition, treatment to be administered or prevention in a subject.
  • various parameters such as methods can be selected.
  • diagnosis in a narrow sense means diagnosis of the current state, but in a broad sense includes “early diagnosis”, “predictive diagnosis”, “preliminary diagnosis”, and the like.
  • the diagnostic method of the present invention is industrially useful because, in principle, the diagnostic method of the present invention can be used from the body and can be performed away from the hands of medical personnel such as doctors.
  • “predictive diagnosis, prior diagnosis or diagnosis” may be referred to as “support”.
  • the technique of the present invention can be applied to such a diagnostic technique.
  • the presence of phosphoinositide and / or lysophosphoinositide or the position of the phosphate group thereof can be specified and applied to such various diagnoses.
  • treatment refers to a certain disease or disorder (for example, a disorder such as cancer, a disease caused by a lipid mediator, a disorder, etc.), when such a condition or Prevents the deterioration of the disorder, preferably maintains the current state, more preferably reduces, and even more preferably eliminates the disorder, or exhibits the symptom improving effect or preventing effect of one or more symptoms associated with the disease. It includes what can be done. Diagnosing in advance and performing appropriate treatment is referred to as “companion treatment”, and the diagnostic agent therefor is sometimes referred to as “companion diagnostic agent”.
  • the ability to identify the presence of phosphoinositide and / or lysophosphoinositide or the binding position of its phosphate group using the techniques of the present invention can be associated with a particular disease state and thus such companion therapy or companion diagnosis May be useful.
  • prevention refers to preventing a certain disease or disorder (for example, cancer, a disease or disorder related to lipid mediators, etc.) from entering such a state before such a state occurs. That means. Possibility that diagnosis can be performed using the PIPs and / or LPIPs of the present invention, and if necessary, for example, prevention of diseases or the like can be taken using the drug of the present invention. There is.
  • prolactic agent refers to any agent that can prevent a target condition (for example, cancer, diseases and disorders related to lipid mediators, etc.).
  • prognosis means predicting the possibility of death or progression due to a disorder such as cancer, a disease caused by a lipid mediator, or a disorder.
  • Prognostic factors are variables related to the natural course of the disease, and these affect the recurrence rate of patients who have once developed the disease.
  • Clinical indicators associated with worse prognosis include, for example, any cellular indicator used in the present invention.
  • Prognostic factors are often used to classify patients into subgroups with different pathologies.
  • phosphatidylinositol and / or lysophosphatidylinositol or the binding position of its phosphate group can be identified using the technology of the present invention, it is useful as a technology for providing a prognostic factor because it can be associated with a specific disease state. obtain.
  • detection device means, in a broad sense, any device that can detect or inspect a target object.
  • a chromatography, an ion mobility separation device, a mass analyzer, and the like are also included in the detection device.
  • diagnosis device means, in a broad sense, any drug capable of diagnosing a target condition (for example, cancer, diseases and disorders related to lipid mediators, etc.).
  • drug drug
  • drug may also be a substance or other element (eg energy such as light, radioactivity, heat, electricity).
  • Such substances include proteins (including antibodies, etc.), polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (for example, DNA such as cDNA and genomic DNA, mRNA and the like) RNA), polysaccharides, oligosaccharides, lipids, small organic molecules (for example, hormones, ligands, signaling substances, small organic molecules, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals, etc.)
  • proteins including antibodies, etc.
  • polypeptides for example, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (for example, DNA such as cDNA and genomic DNA, mRNA and the like) RNA), polysaccharides, oligosaccharides, lipids, small organic molecules (for example, hormones, lig
  • detection agent or “test agent (agent)” refers to any agent that can detect or inspect a target object in a broad sense.
  • diagnostic agent broadly refers to any agent capable of diagnosing a target condition (for example, cancer, diseases and disorders related to lipid mediators, etc.).
  • therapeutic agent refers to any agent that can treat a target condition (for example, cancer, diseases or disorders related to lipid mediators, etc.).
  • cancer refers to any cancer detectable with the marker of the present invention, such as hepatocellular carcinoma, squamous cell carcinoma of the esophagus, breast cancer, pancreatic cancer, and squamous cells of the head and neck.
  • inflammation refers to any inflammation detectable with the marker of the present invention, and activation of blood cells related to inflammation such as macrophages (inflammatory cell chemotaxis, active oxygen production, phagocytosis, enzyme A secretory reaction, etc.).
  • macrophages inflammatory cell chemotaxis, active oxygen production, phagocytosis, enzyme A secretory reaction, etc.
  • Exemplary inflammations include, for example, arthritis, tendinitis, bursitis, psoriasis, cystic fibrosis, Sjogren's syndrome, giant cell arteritis, progressive systemic sclerosis (scleroderma), spondylitis, multiple Dermatomyositis, dermatomyositis, pemphigus, pemphigoid, Hashimoto's thyroiditis, cholangitis, inflammatory bowel disease (IBD, eg Crohn's disease, ulcerative colitis), colitis, inflammatory skin disease, pneumonia, asbestosis, Silicosis, bronchiectasis, talc lung, pneumoconiosis, sarcoidosis, delayed hypersensitivity reaction (eg poison ivy dermatitis), respiratory tract inflammation, adult respiratory distress syndrome (ARDS), encephalitis, immediate hypersensitivity reaction, asthma, hay fever, allergy , Acute anaphylaxis, reperfusion injury, rheumato
  • the “cancer marker” is also referred to as a tumor marker, and refers to a biological substance that is effective for cancer diagnosis, follow-up after treatment, discovery of recurrence or metastasis, or a substance found in the living body.
  • cancer diagnosis and the like can be performed by measuring substances in the blood.
  • the substance in the blood corresponds to the cancer marker.
  • the term “marker” is in a certain state (for example, functionality, transformation state, disease state, disorder state, proliferative ability, level of differentiation state, presence / absence, etc.) or is there a risk thereof?
  • “disease marker” refers to a substance that serves as an indicator for tracking whether a disease state is present or at risk.
  • detection, diagnosis, preliminary detection, prediction, or prior diagnosis for a certain state for example, a disease state, a health state, a disease such as a cell or tissue differentiation disorder
  • it can be realized by using a marker-specific drug, agent, factor or means, or a composition, kit or system containing the same.
  • a “purified” substance or biological agent refers to an agent that naturally accompanies the substance or biological agent. This means that at least a part has been removed. Thus, typically, the purity of a biological agent in a purified biological agent is higher (ie, enriched) than the state in which the biological agent is normally present.
  • the term “purified” as used herein is preferably at least 75% by weight, more preferably at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight, Means the presence of the same type of biological agent.
  • the substance or biological agent used in the present invention is preferably a “purified” substance.
  • an “isolated” substance or biological agent such as a nucleic acid or protein
  • the term “isolated” as used herein does not necessarily have to be expressed in purity, as it will vary depending on its purpose, but is preferably at least 75% by weight, more preferably if necessary. Means that there is at least 85%, more preferably at least 95%, and most preferably at least 98% by weight of the same type of biological agent.
  • the materials used in the present invention are preferably “isolated” materials or biological agents.
  • compositions, medicaments, agents (therapeutic agents, prophylactic agents, etc.) of the present invention comprise a therapeutically effective amount of a medicament or active ingredient, and a pharmaceutically acceptable carrier or excipient.
  • pharmaceutically acceptable refers to a licensed or otherwise recognized pharmacopoeia of a government for use in animals, and more particularly in humans, by a government supervisory authority. It means that it is enumerated.
  • a “patient” is mainly assumed to be a human, but may be a mammal other than a human as long as it is applicable.
  • subject refers to a subject to be used for the prevention or treatment of the present invention, and is a human or a mammal other than a human (eg, mouse, guinea pig, hamster, rat, rat, Including one or more of a rabbit, pig, sheep, goat, cow, horse, cat, dog, marmoset, monkey, or chimpanzee).
  • the “kit” is a unit provided with a portion to be provided (eg, a test agent, a diagnostic agent, a therapeutic agent, a reagent, a label, an instruction, etc.) usually divided into two or more compartments.
  • a portion to be provided eg, a test agent, a diagnostic agent, a therapeutic agent, a reagent, a label, an instruction, etc.
  • This kit form is preferred when it is intended to provide a composition that should not be provided in admixture for stability or the like, but preferably used in admixture immediately before use.
  • Such kits preferably include instructions describing how to use or how to handle the provided moiety (eg, test, diagnostic, therapeutic, reagent, label, etc.).
  • kit when used as a reagent kit, the kit describes how to use a test agent, a diagnostic agent, a therapeutic agent, a reagent, a label, and the like. This includes instructions, etc.
  • a “kit” can be provided as a “system”.
  • the “instruction sheet” describes the method for using the present invention for a doctor or other user.
  • This instruction manual includes a word indicating that the detection method of the present invention, how to use a diagnostic agent, or administration of a medicine or the like is given.
  • the instruction sheet may include a word indicating a method for detecting and determining the marker.
  • This instruction is prepared in accordance with the format prescribed by the national supervisory authority (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States, etc. in the United States) where the present invention is implemented, and is approved by the supervisory authority. It is clearly stated that it has been received.
  • the instruction sheet is a so-called package insert and is usually provided in a paper medium, but is not limited thereto, and is in a form such as an electronic medium (for example, a homepage or an e-mail provided on the Internet). But it can be provided.
  • LPIPs ⁇ Lysophosphatidylinositol phosphates (LPIPs)>
  • the present invention relates to lyso-phosphatidylinositol monophosphate (LPIP1), lysophosphatidylinositol diphosphate (LPIP2) or lysophosphatidylinositol triphosphate (lyso-phosphatidylinositol monophosphate (LPIP2)).
  • LPIP3 phosphatidylinositol trisphosphate
  • Phosphoinositide / inosyl phospholipids are said to constitute plasma membranes and organelle membranes, and their head group is significantly larger than other glycerophospholipids due to the six-membered carbon ring and polyvalent phosphate groups.
  • the PIPs metabolic system rich in electric charge is considered to be involved in a wide range of life phenomena such as proliferation, differentiation, movement, aging, and death.
  • the lipids (LPIPs) of the present invention identified for the first time in the present invention can be useful as targets for various therapeutic drugs and as disease markers. Since lipid metabolism is one of the important research subjects, these lipids are used as experimental reagents as reagents.
  • LPIPs lyso form of PIPs
  • an anion exchange resin such as DEAE cellulose
  • TMS diazomethane protected phosphate groups with TMS diazomethane
  • SRM method with a triple quadrupole mass spectrometer.
  • Analytical method was developed. By using this method, the inventors succeeded in finding LPIP1, LPIP2, and LPIP3 of the present invention, which are structures different from known inositol phospholipids. Also, LPIPs could not be produced because the synthesis method was not known.
  • LPIPs have not been confirmed as substances and can be said to have not been known.
  • synthetic methods can be developed, and in addition to providing LPIPs existing in vivo, LPIPs including “non-natural type” LPIPs can be provided by synthesis.
  • LPIPs are also shown in the present invention to be present in vivo.
  • it is found in various mammalian cell lines and mouse prostate cancer tissues, and seems to be preferentially expressed in cancer cells in specific molecular species such as LPIP3. It became clear. It was also found that some of the found LPIPs are specifically or preferentially expressed in cancer.
  • PIPs having a structure similar to LPIPs have been analyzed in the past. For example, it is known that mutations and decreased expression of the tumor suppressor gene PTEN are abnormalities that are frequently observed in about half of human cancers. ing.
  • LPIPs of the present invention are The possibility of working as a lipid mediator can also be considered. Moreover, it was found by high sensitivity measurement that LPIPs exist not only in cells but also outside cells. Measuring these lipids with a sample that is relatively easy to collect, such as blood and urine, is also useful in laboratory medicine.
  • LPIPs have been found as novel substances in the present invention, and it has been found that some LPIPs are preferentially expressed in cancer, blood, urine in diseases associated with cancer or other lipid mediators It can be applied to medical examinations and diagnosis using specimens such as.
  • phospholipases A phospholipases A 1 , A 2, etc.
  • phospholipases A 1 and A 2 have extremely high substrate specificity, It does not respond to different types of phospholipids.
  • a subtype having phosphatidylcholine as a substrate does not react with phosphatidylserine.
  • PIPs as a substrate is not known.
  • lysophosphatidylinositol monophosphate lysophosphatidylinositol diphosphate
  • lysophosphatidylinositol triphosphate have been found.
  • lysophosphatidylinositol monophosphate found in the living body, a phosphate group is located at the 4-position, and a species in which the following fatty acids are bonded to the sn-1 position or the sn-2 position was found.
  • fatty acid molecular species are similar to the fatty acid species found in PIPs, suggesting the presence of a previously unknown phospholipase A 1 or phospholipase A 2 that has specificity for phosphatidylinositol phosphates.
  • the fatty acid molecular species are likely to be found in both sn-1 and sn-2 in vivo, although there are many abundances.
  • the invention provides 1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol.
  • Compounds are provided that are diphosphate, 1-acyl-lysophosphatidylinositol triphosphate, or 2-acyl-lysophosphatidylinositol triphosphate.
  • the acyl group may be any kind of acyl group as long as the corresponding fatty acid is available.
  • the lysophosphatidylinositol phosphates of the present invention can be produced starting from phosphatidylinositol phosphates. Therefore, by introducing the obtained fatty acid into phosphatidylinositol phosphates based on the Conway method cited in this specification, it can be used as a starting material for the production method of lysophosphatidylinositol phosphates of the present invention.
  • the present invention provides 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidyl.
  • a compound that is inositol triphosphate is provided.
  • lysophosphatidylinositol phosphates can be used in which the phosphate group is bonded to any position in inositol, and preferably one of 2, 3, and 5 positions. Or what was couple
  • the present invention provides 1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate Acid, 2-acyl-lysophosphatidylinositol-3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidyl Inositol-3.4-diphosphate, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol- 3,4-diphosphate, 2-
  • the present invention illustratively provides the following compound, but the specific compound of the present invention is not limited to the following.
  • the present invention provides a composition for use as a disease marker comprising a compound of the present invention (such as lysophosphatidylinositol phosphates).
  • a compound of the present invention such as lysophosphatidylinositol phosphates. It is understood that as such a compound, any embodiment described in ⁇ lysophosphatidylinositol phosphates (LPIPs)> in this specification may be employed in combination of one or more.
  • LPIP1 lysophosphatidylinositol monophosphate
  • LPIP2 lysophosphatidylinositol diphosphate
  • LPIP3 lysophosphatidylinositol triphosphate
  • LPIP3 has been shown to have a significantly increased expression level in cancer tissues, and the compound of the present invention should be used as an inflammation marker or a cancer marker, particularly in the case of substances present in vivo. It is understood that a synthetic product is also useful as a control or standard for detection of an inflammatory marker or a cancer marker.
  • the target cancer is not limited.
  • the target inflammation is not limited, for example, arthritis, tendinitis, bursitis, psoriasis, cystic fibrosis, Sjogren's syndrome, giant cell arteritis , Progressive systemic sclerosis (scleroderma), spondylitis, polymyositis, dermatomyositis, pemphigus, pemphigoid, Hashimoto's thyroiditis, cholangitis, inflammatory bowel disease (IBD such as Crohn's disease, ulcerative) Colitis), colitis, inflammatory skin disease, pneumonia, asbestosis, silicosis, bronchiectasis, talc lung, pneumoconiosis, sarcoidosis, delayed type hypersensitivity reaction (eg poison ivy dermatitis), airway inflammation, adult respiratory distress syndrome (ARDS), encephalitis, immediate hypersensitivity reaction, asthma, hay fever, allergy, acute anaphylaxis
  • IBD inflammatory bowel disease
  • colitis
  • the LPIPs of the present invention can be used for the detection method and other methods disclosed in the present specification (for example, immunological techniques, cytological techniques using radioactive substances, etc.) ) Can be used.
  • radioactive materials intracellular LPIPs labeled with radioactive isotopes (RI) following the PIPs method (see Sasaki et al., Ayumi Sci. Vol. 248, No. 13, (2014) pp. 1039-1049) Are separated by high performance liquid chromatography (HPLC) to obtain radioactivity.
  • the detection, identification, quality control, and the like of the LPIPs of the present invention can be realized by using a substance or an interacting molecule that binds to LPIPs serving as a marker, in addition to using the detection method described in the present invention.
  • a “substance that binds” or “interacting molecule” to a marker substance binds and preferably binds to a molecule, such as a substance that is at least temporarily marker (eg, LPIPs).
  • a molecule or substance that can indicate eg, is labeled or is ready to be labeled).
  • Substances that bind to molecules such as LPIPs may be receptors for molecules such as LPIPs or transferases (if known), and other examples include antibodies, antisense oligonucleotides, siRNAs, low molecular weight molecules ( LMW), binding peptides, aptamers, ribozymes, peptidomimetics, and the like, including, for example, binding proteins specific for molecules such as LPIPs.
  • binding protein for a molecule such as LPIPs refers to a type of protein that binds (preferably specifically) to a molecule such as LPIPs, and is induced to a molecule such as LPIPs. Including but not limited to antibodies such as polyclonal or monoclonal antibodies, antibody fragments and protein backbones. A typical example of such a protein is an antibody, and such an antibody can be carried out using a technique known in the art.
  • the present invention relates to a compound of the present invention (lysophosphatidylinositol) comprising the step of deacylating phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with alkylamine. (Phosphate) production method.
  • the alkylamine is methylamine
  • the deacylation is carried out at a temperature (eg, room temperature to about 80 ° C.) at which the deacylation promotes in the presence of an appropriate concentration (eg, 10.7% or less) of an alkylamine such as methylamine. Incubate for an appropriate period of time (typically, about 53 ° C. can be used.)
  • a temperature eg, room temperature to about 80 ° C.
  • an appropriate concentration eg, 10.7% or less
  • an alkylamine such as methylamine.
  • Incubate for an appropriate period of time typically, about 53 ° C. can be used.
  • Serunian, et al. Methods in Enzymol disclosing the dediacylation conditions Vol., 198, 1991, pp. 78-87, especially pp. 82-83, Fujii et al. Folia Pharmacol Jpn. Vol. 142, 2013, pp. 236-240, especially pp. 238-239.
  • the monoacyl is unexpectedly cleaved by using it for a short period of time such as about 30 minutes or less, and sn-1
  • LPIPs or sn-2 LPIPs are generated.
  • the concentration of methylamine was 2.13%, only monoacyl was cleaved unexpectedly under the reaction conditions of 120 minutes to produce LPIP.
  • deacylation means that the fatty acid bond at the 1-position and / or 2-position in phosphatidylinositol phosphate (which may be monophosphate, diphosphate, or triphosphate, also referred to as PIPs). It means that the acyl group is cleaved and cleaved (eliminated). Unless otherwise specified herein, “deacylation” includes “demonoacylation” in which one acyl group is cleaved (eliminated) and “dediacylation” in which two acyl groups are cleaved (eliminated). Both reactions can be included. As used herein, it includes “demonoacylation”. “Demonoacylation” can be either of the sn-1 position or of the sn-2.
  • methylamine / H 2 O / methanol / n-butanol 1.92 / 38.08 / 40/10 (deacylation reaction solution) was added to the dried PIPs, and 53 Incubate at 5 ° C for 5 minutes. An ice-cooled deacylation reaction solution is added to stop the reaction (an exemplary result obtained by allowing to stand on ice for 1 minute and then drying to measure the product is shown in FIG. 1).
  • One or more (or all) of various conditions such as solvent composition, reaction temperature, reaction time, catalyst (typically methylamine) concentration, etc. may be appropriately changed as long as demonoacylation occurs. can do.
  • the object of the present invention can be achieved if the amount of methylamine is 1-3%.
  • phosphatidylinositol monophosphate phosphatidylinositol diphosphate or phosphatidylinositol triphosphate
  • phosphatidylinositol monophosphate phosphatidylinositol diphosphate or phosphatidylinositol triphosphate
  • any kind of PIP can be manufactured by Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66-76.
  • the present invention provides (A) providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different mass acyl groups at the 1-position and 2-position, An acyl group having a desired mass is present at a desired position (position 1 or position 2); (B) the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate with an alkylamine Deacylation by contact with (usually performed under the demonoacylation conditions described herein), and (C) lysophosphatidylinositol monophosphate having a desired mass of acyl groups, lyso Phosphatidylinosito
  • phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different masses of acyl groups at the 1-position and the 2-position are obtained from Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66-76 can be used as a reference and will be described in detail below.
  • deacylation the above-mentioned conditions can be appropriately applied.
  • the desired lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate can be removed by any means that can be separated by differences in mass, hydrophobicity, and the like. For example, chromatography can be used. Of course, the purification step is not essential if it can be used without purification.
  • R 1 and R 2 are each independently any fatty acid residue, and R B and R C are each independently hydrogen or an alkyl group (for example, 1 to 12 carbon atoms such as methyl, ethyl, etc. an alkyl group) and the like
  • PG a, PG P1 and PG P2 as are each independently a protecting group. protecting groups such as benzyl group, p- methoxybenzyl group, be mentioned tert- butyl group (However, it is not limited to these.
  • compound P-2 By subjecting compound P-2 to appropriate conditions (for example, by using trifluoroacetic acid), the protecting group PG P1 (for example, methoxymethyl group) of the hydroxy group is deprotected to obtain compound P-3.
  • compound P-3 and a carboxylic acid halide are subjected to appropriate conditions (for example, dimethylaminopyridine (DMAP) and octadecanoyl chloride are added to a dichloromethane solution of compound P-3 at 0 ° C. and stirred at room temperature.
  • DMAP dimethylaminopyridine
  • octadecanoyl chloride are added to a dichloromethane solution of compound P-3 at 0 ° C. and stirred at room temperature.
  • Compound P-4 is obtained.
  • compound P-4 By subjecting compound P-4 to appropriate conditions (for example, by using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) or ammonium hexanitrerium (IV) acid (CAN))
  • the protecting group PG P2 for example, 4-methoxybenzyl group
  • compound P-5 Compound 1-5 and aminophosphine (eg (4-methoxybenzyloxy) bis (N, N-diisopropylamino) phosphine) are subjected to appropriate conditions (eg 1H-tetrazole is added at room temperature in dichloromethane solution).
  • aminophosphine eg (4-methoxybenzyloxy) bis (N, N-diisopropylamino) phosphine
  • PG 1 , PG A , and PG 2 are each independently a protecting group.
  • the protecting group include, but are not limited to, methoxybenzyl and the like.
  • Compound I-1 with subjecting to suitable conditions e.g. the compound I-1 of DMF was added 4-methoxybenzyl chloride and sodium hydride was added at 0 ° C., by stirring at room temperature
  • protecting group PG A Compound I-2 into which (for example, 4-methoxybenzyl group) is introduced is obtained.
  • compound I-2 By subjecting compound I-2 to appropriate conditions (for example, by adding chloromethyl methyl ether and sodium hydride to a DMF solution of compound I-2 at 0 ° C.
  • protecting group PG 1 For example, compound I-3 into which a methoxymethyl group is introduced is obtained.
  • compound I-3 By subjecting compound I-3 to appropriate conditions (for example, by adding diisobutylaluminum hydride (DIBAL) to a dichloromethane / hexane solution of compound I-3 at 0 ° C. and stirring at room temperature), compound I-4 obtain.
  • compound I-4 By subjecting compound I-4 to appropriate conditions (for example, by adding 4-methoxybenzyl chloride and sodium hydride to a DMF solution of compound I-4 at 0 ° C. and stirring at room temperature), the protecting group PG 2 Compound (I-5) into which (for example, 4-methoxybenzyl group) is introduced is obtained.
  • compound I-6 By subjecting compound I-5 to appropriate conditions (for example, adding hydrochloric acid to a methanol solution of compound I-5 and refluxing), compound I-6 is obtained. By subjecting compound I-6 to appropriate conditions (for example, a solution of compound I-6 in dichloromethane with toluenesulfonic acid monohydrate)
  • compound I-8 (l, l) having 1 hydroxy group, m hydroxy groups protected with protecting group PG 1 and n hydroxy groups protected with PG 2 is obtained.
  • m and n are integers of 0 or more and 6 or less, and the sum of l, m, and n is 6.
  • Suitable for the hydroxy group of inositol precursor PI-1 eg 1D-2,3,4,5,6-penta-O- (4′-methoxybenzyl) -1-O- (methoxymethyl) -myo-inositol
  • a suitable phosphorus reagent eg bis (4-methoxybenzyloxy) (N, N-diisopropylamino) phosphine
  • PI-2 modified with a phosphate group (for example, 1D-2,3,4,5,6-penta-O- (4′-methoxybenzyl) -1-) by stirring at room temperature for 10 to 14 hours O- (methoxymethyl) -myo-inositol-4
  • the protective group PG 1 for example, methoxymethyl group
  • PI-3 for example, 1D-2,3,4,5, 6-Penta-O- (4′-methoxybenzyl) -myo-inositol-4- (bis (4-methoxybenzyloxy) phosphate)
  • PI-3 and a phosphoramidite precursor eg (1-acetyloxy-2′-octadecanoyloxypropyl) (4-methoxybenzyl) diisopropyl phosphoramidite
  • the appropriate conditions eg PI— 1-tetrazole and (1-acetyloxy-2-octadecanoyloxypropyl) (4-methoxybenzyl) diisopropyl phosphoramidite
  • metachloroperbenzoic acid PI-4 is obtained by adding acid (mCPBA) at ⁇ 78 ° C. and stirring for 20 minutes at room temperature.
  • the protective group PG 2 (eg 4-benzyl) is added to PI-4 under appropriate conditions (for example, by adding ammonium hexanitracelium (IV) to a solution of PI-4 in acetonitrile and stirring for 45 minutes at room temperature).
  • PI-5 eg, 1D-myo-inositol-1- (1′-O-acetyl-2′-O-octadecanoyl-sn-glycera-3-yl phosphate) is obtained by deprotecting the group.
  • Phosphatidylinositol phosphate produced by the above production method includes, for example, the following formula
  • a solution of phosphatidylinositol 1 (eg 1D-myo-inositol-1- (1′-O-acetyl-2′-O-octadecanoyl-sn-glycera-3-yl phosphate) (eg chloroform / methanol (9 / 1)
  • a solution may be mentioned, but the ratio of the solvent for preparing the solution can be appropriately changed, and another solvent can be used as long as the reaction is promoted.) Is dried with an inert gas such as N 2.
  • a suitable reagent for example, but not limited to, a methylamine solution
  • solvents include methylamine / water / methanol / 1-butanol (4.8 / 35.2 / 40/10).
  • the ratio of the solvent for the preparation and methylamine can be appropriately changed, and another solvent can be used as long as the reaction is accelerated. It can be added at a temperature (eg, 53 ° C.) and exemplified for a suitable time (eg, 5 minutes), but can be stretched as long as it is longer or shorter as long as demonoacylation is achieved. It has been observed that demonoacylation occurs in 30 seconds.) Suitable temperatures (eg, 53 ° C.
  • COR 1 is an acetyl group
  • COR 2 If a octadecanoyl group), 2 and 3 acyl group is a compound desorbed only one, since the molecular weight are different, it is possible to separate and purify each compound.
  • the present invention provides a method for detecting, identifying or quantifying lysophosphatidylinositol phosphate, wherein (A) concentrating a phospholipid by contacting a sample with an anionic resin; B) protecting the phosphate group in the phospholipid with a protecting group; and (C) detecting, identifying or quantifying lysophosphatidylinositol phosphate in the phospholipid by mass spectrometry. Methods for detecting, identifying or quantifying phospholipids are provided.
  • Phosphoinositides including lysophosphatidylinositol phosphate
  • the method of the present invention was able to set several hundred amol to several fmol as the lower limit of quantification, and was able to measure many types of LPIPs that were unknown whether they existed in vivo.
  • the present invention provides a mass spectrometry based method capable of absolute quantification with various biological trace samples.
  • the present invention provides for the first time a technique for identifying and detecting lysophosphatidylinositol phosphates.
  • any protecting group for the phosphate group of the present invention can be used as long as it can be protected, but preferably it does not become an obstacle in mass spectrometry or is desorbed before mass spectrometry.
  • an alkyl group for example, a methyl group
  • the protecting group contains an alkyl group, more preferably a methyl group.
  • any technique can be used for the mass spectrometry used in the present invention, it preferably includes a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer.
  • SRM selective reaction monitoring method
  • the SRM used in the present invention further includes a step of detecting, identifying or quantifying the fatty acid side chain and / or phosphate group of the lysophosphatidylinositol phosphate using reverse phase column chromatography.
  • diacylglycerol in the reverse phase column chromatography, can be selected as a product ion (fragment ion) to detect, identify or quantify the fatty acid side chain and / or phosphate group.
  • PIP1 and PIP2 are each quantified as the sum of three types of isomers (structural isomers with different positions of phosphorylated hydroxyl groups). The procedure is outlined below.
  • the total lipid fraction obtained by the high recovery Bligh-Dyer method of phosphoinositide such as lysophosphatidylinositol phosphates in vivo is further fractionated using an anion exchange column (DEAE cellulose column). Gradually separate and elute according to the difference in ion exchange capacity of each phospholipid polar site, and fractions rich in phosphoinositide can be recovered at a high rate, and lysophosphatidylinositol phosphates should be recovered at a high rate as well. Can do.
  • lysophosphatidylinositol phosphates are also the same. It is thought that it has the property of. Therefore, phosphoinositide is rapidly damaged in the analytical vial during the waiting time from collection to measurement, and tailing is seen in the detected elution peak.
  • the present inventors perform a robust analysis by producing a stable derivative that suppresses decomposition / adsorption by methylating a phosphate group after high recovery of phosphoinositide. Such a technique can also be applied to lysophosphatidylinositol phosphates.
  • a selective reaction monitoring method using a triple quadrupole mass spectrometer, which is a highly sensitive and highly quantitative analytical method, is used.
  • SRM selective reaction monitoring method
  • Phosphoinositide is easy to detect as a negative ion due to its structure, but in the analysis method of the present invention, it is easy to detect as a positive ion because the phosphate group is protected such as methylation.
  • Lysophosphatidylinositol phosphates also show similar properties. Each molecular species selects diacylglycerol (DG) as a characteristic fragment ion.
  • DG diacylglycerol
  • Analysis is carried out by reverse phase column (C8) using the difference in hydrophobicity of fatty acid side chains to separate and elute each molecular species.
  • Each phosphoinositide of the same molecular species elutes in the order of PIP3, PIP2, and PIP1 due to the difference in the number of phosphate groups, and therefore, analysis is performed using this difference in elution time.
  • the peak area of the chromatogram of each molecular species that has been smoothed by the Gaussian method is digitized, and this is applied to a calibration curve prepared using various 17: 0/20: 4 synthetic products that are hardly present in the living body. To calculate.
  • This analysis method of the present invention is highly sensitive and excellent in quantification, and can be analyzed with human clinical specimens and animal tissue-derived samples in addition to cultured cells. The same analysis can be performed for lysophosphatidylinositol phosphates. In addition to the differences in molecular weight, LPIP3, LPIP2, and LPIP1 are eluted in this order. The peak area of the chromatogram of each molecular species subjected to smoothing can be digitized, compared with a standard product, and applied to the prepared calibration curve for calculation.
  • the present invention provides a technique for distinguishing and detecting lysophosphatidylinositol phosphates, which can also be disease markers, from other substances, it can also diagnose cancer.
  • LPIPs diacyl-type inositol phospholipids
  • the LPIPs of the present invention which are structurally closely related to diacyl-type inositol phospholipids (PIPs) are also known to be related to various pathological conditions, and have usefulness as therapeutic targets and diagnostic markers. Expected to have. Specifically, the following uses are assumed. Also, Biochemistry Vol. 83, No. 6, pp.
  • lysophosphatidylinositol As described in 525-535, 201, it is known to have various activities including lysophosphatidylinositol as a lipid mediator and a G protein receptor such as its receptor GPR55. Therefore, the compound of the present invention in which lysophosphatidylinositol is phosphorylated in various forms is expected to be directly or indirectly related to various physiological uses in relation to lysophosphatidylinositol and its receptor.
  • the inositol polyphosphate group produced from PIPs by the action of phospholipase C controls intracellular calcium kinetics and the like.
  • the LPIPs of the present invention that are structurally closely related to the inositol polyphosphate group are also expected to have utility as therapeutic targets and diagnostic markers.
  • the present invention provides a method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample.
  • the method comprises A) applying the sample to mass spectrometry (MS); and B) identifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the MS Is included.
  • the sample is further applied to chromatography.
  • the sample is further applied to ion mobility separation (IMS).
  • the position of the phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate can be specified by comparison with a standard product.
  • the elution position and elution time of a standard product can be calculated and set in advance, and the identification can be performed by comparing with the calculation.
  • a method for identifying PIPs and LPIPs for example, whether stable isotopes of phosphoric acid and inositol ( 13C and deuterium) can be added to a sample in advance can be replaced with natural ones. There is a method to investigate.
  • the present invention provides a method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample.
  • the method comprises A) applying the sample to ion mobility separation-mass spectrometry (IMS-MS); and B) depending on the elution position of the peak in the IMS-MS, the phosphorous of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • IMS-MS ion mobility separation-mass spectrometry
  • the presence or absence of an acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is specified in the specifying step in the present invention.
  • Some phospholipids in the sample do not have an acyl group, but they are not deacylated by the measurement of the present invention, and therefore can be measured in an intact state. Therefore, the presence or absence of an acyl group is also specified. can do.
  • the total molecular weight of acyl groups contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also specified in the specifying step in the present invention.
  • the molecular weight is specified by mass spectrometry. Therefore, once it is specified that the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is specified, the total molecular weight of the acyl group bonded is specified from the molecular weight.
  • the type of acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also specified in the specifying step in the present invention.
  • the molecular weight is specified by mass spectrometry.
  • the total molecular weight of the bound acyl group is determined from its molecular weight, and in the case of phosphatidylinositol phosphate, In order to be specified, the molecular weight of one of the acyl groups is specified. When one molecular weight is specified, the other molecular weight is also specified, and the type of acyl group is specified from the molecular weight.
  • a method for identifying the type of acyl group from the molecular weight based on the results of measurement by MS and MS / MS is described, for example, in Clark J et al. , Nat Methods. 2011 Mar; 8 (3): 267-72. Doi: 10.1038 / nmeth can be referred to.
  • the measurement, detection or identification in the present invention is characterized in that phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is distinguished from other inositol-containing phospholipids.
  • the measurement, detection or identification method of the present invention can be carried out while retaining the acyl group. More specifically, phosphatidyl phosphate and lysophosphatidylinositol phosphate can be used.
  • inositol-containing phosphoric acid such as glycerophosphoinositol can be distinguished from each other in that the molecular weight of the acyl group is different by measuring the retention of the acyl group.
  • the sample to be measured according to the present invention is prepared under conditions where phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate are not decomposed.
  • the conditions in which phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate are not degraded can include any conditions in which degradation is not performed, and in particular, deacylation treatment is performed. In addition to this, there are other conditions such as not performing a treatment for denaturing the sample and performing a treatment for introducing a protecting group into a phosphate group.
  • liquid column chromatography used in the present invention, a chiral column, a reverse phase column, a normal phase column, an ion exchange column or the like can be used, and any column chromatography which separates a hydrophilic group and a hydrophobic group can be used. .
  • chromatography gas chromatography or liquid column chromatography
  • ion mobility separation can more clearly separate the position of the phosphate group of phosphoinositide and / or lysophosphoinositide.
  • Any chromatography eg, liquid column chromatography
  • ion mobility separation and further mass spectrometry can be used to analyze the phosphate group of phosphoinositide and / or lysophosphoinositide while retaining the acyl group.
  • the position can be separated and measured, detected or identified.
  • the position of the phosphate group of phosphoinositide can be separated and measured, detected or identified while retaining the acyl group by using mass spectrometry (MS), and Furthermore, the position of the phosphate group can be separated and measured, detected or identified in combination with chromatography such as liquid chromatography using a chiral column. Or when using ion mobility separation, you may combine with mass spectrometry as it is, without using chromatography.
  • MS mass spectrometry
  • the method of the invention further comprises the step of quantifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • the sample used in the present invention is an intact sample.
  • that the sample is intact includes conditions under which acyl groups of phosphoinositide and lysophosphoinositide are retained, such as denaturation by heating, oxygen in the air, moisture, heat, light, metal ions, Examples thereof include, but are not limited to, oxidation by the action of microorganisms or enzymes, hydrolysis in an aqueous solvent, deacylation in the presence of an alkylamine such as methylamine, and the like.
  • the position of the phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is determined without labeling the sample. Since it is not necessary to label with a fluorescent label or radioisotope, it is possible to perform analysis under the condition of the living body as it is or similar conditions to the sample in the living body, reflecting more living body information Analysis can be performed.
  • the present invention provides an apparatus for measuring, detecting or identifying the positions of acyl and phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample.
  • the apparatus comprises a mass spectrometer, preferably further comprising a chromatography apparatus or an ion mobility separation apparatus, for example the chromatography apparatus is at least one for gas chromatography and liquid chromatography.
  • One device may be included.
  • the present invention includes a mass spectrometer (MS) apparatus and an application unit that applies the sample to the MS under a condition that the phosphatidylinositol phosphate is not decomposed.
  • MS mass spectrometer
  • the present invention includes a liquid column chromatography-mass spectrometry (LC-MS) apparatus and an application unit that applies the sample to the LC-MS under conditions in which phosphatidylinositol phosphate is not decomposed. Including.
  • LC-MS liquid column chromatography-mass spectrometry
  • the present invention provides an apparatus for measuring, detecting or identifying the positions of acyl groups and phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample.
  • the apparatus includes an ion mobility separation-mass spectrometry (IMS-MS) apparatus and an application unit that applies the sample to the IMS-MS under a condition in which phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is not decomposed.
  • IMS-MS ion mobility separation-mass spectrometry
  • means for performing ion mobility separation may be included as necessary.
  • liquid column chromatography used in the present specification is selected from the group consisting of chiral columns, reverse phase columns, normal phase columns, ion exchange columns, columns that separate hydrophilic groups and hydrophobic groups.
  • it further comprises means for detecting or quantifying the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • means for quantifying for example, a method of calculating and quantifying the obtained detection peak in comparison with an internal standard can be mentioned.
  • the present invention provides a method for separating or purifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample depending on the position of a phosphate group while retaining an acyl group.
  • the method comprises A) applying the sample to mass spectrometry (MS); and B) from the eluate of the MS, a phosphatidylinositol phosphate having a phosphate group at the target position identified by the elution position of the peak and / or Or collecting lysophosphatidylinositol phosphate.
  • the sample is further applied to chromatography or ion mobility separation (IMS).
  • the present invention provides a mixture of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate contained in the mixture from a mixture of two or more of the phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
  • a method for producing a sample comprising phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates having phosphate groups at fewer (eg, one) positions than the number of acid group positions.
  • the method includes: A) applying the sample to chromatography, ion mobility separation (IMS) or mass spectrometry (MS); and B) identifying the elution from the chromatography, IMS or MS by the elution position of the peak. Collecting a fraction containing a phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a desired target position.
  • the sample is applied to any combination of chromatography, ion mobility separation and mass spectrometry.
  • any technique known in the art may be used as a technique for collecting phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a target position specified by the elution position of the peak.
  • an appropriate device such as an autosampler can be used, or the data can be collected manually.
  • phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate mixture containing two or more phosphate groups include biological samples, foods, metabolites and any other phosphoinositide and / or lysophosphatidylinositol phosphate. Any sample containing or presumed to contain can be mentioned.
  • the mixture is composed of three isomers of monophosphate phosphatidylinositol (phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate).
  • the phosphatidylinositol phosphate having a phosphate group at one position and the lysophosphatidylinositol phosphate having a phosphate group at one position each have a binding pattern of seven kinds of phosphate groups.
  • phosphatidylinositol-3-monophosphate phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate, phosphatidylinositol-3,4-diphosphate, phosphatidylinositol- 3,5-diphosphate, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, and their lysates. Techniques that can be separated in part from the mixture are also the subject of the present invention.
  • the number of phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates contained in the mixture is less than the number of types of phosphate groups of the lysophosphatidylinositol phosphates” means phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates contained in the mixture
  • the number of types of the position of the phosphoric acid group is n, it means n-1 or less.
  • the number of phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates contained in the mixture is less than the number of types of the phosphate groups of the phosphatidylinositol phosphate, but is not limited thereto, but is not limited to one, two, three There may be four types.
  • P phosphatidylinositol PI3P or PI (3)
  • P phosphatidylinositol-3-monophosphate PI4P or PI
  • P phosphatidylinositol-4-monophosphate PI5P or PI
  • P phosphatidylinositol-5-mono Phosphoric acid (PI3P or PI4P or PI5P is expressed as PIP1) PI (3,4)
  • P 2 Phosphatidylinositol-3,4-diphosphate PI (3,5)
  • P 2 Phosphatidylinositol-3,5-diphosphate PI (4,5)
  • P 2 Phosphatidylinositol- 4,5 diphosphate (PI (3,4) P 2 or PI (3,5) P 2 or PI (4,5) P 2 and referred to as PIP2)
  • P 3,4,5) P 3 Phosphatid
  • LPIPs Structures bonded to fatty acids or hydrocarbons through only one of the sn-1 hydroxyl group and sn-2 hydroxyl group of glycerol of PIPs are collectively referred to as LPIPs.
  • Example 1 Production and identification of lysophosphatidylinositol phosphates
  • lysophosphatidylinositol phosphates were produced, and a novel identification method for the new substance was also developed.
  • Phosphatidylinositol phosphates used as starting materials are 17: 0/20: 4-PI3P, 17: 0/20: 4-PI4P, 17: 0/20: 4-PI5P, 17: 0/20: 4-PI ( 3,4) P 2 , 17: 0/20: 4-PI (3,5) P 2 , 17: 0/20: 4-PI (4,5) P 2 , 17: 0/20: 4-PI (3,4,5) P 3 and other glycerophospholipids standard synthetic were purchased from Avanti Polar lipids (Alabaster, AL, USA). Trimethylsilyldiazomethane (TMS-diazomethane) was purchased from Tokyo Kasei. Ultrapure water was obtained from Kanto Chemicals (Tokyo, Japan). All other solvents were HPLC or LC-MS grade and other chemical reagents were analytical grade. These were obtained from Wako Pure Chemicals.
  • TMS-diazomethane Trimethylsilyldiazomethane
  • LPIPs phosphate group methylation protection reaction was performed for highly sensitive measurement with a mass spectrometer. A specimen containing LPIPs was dissolved in 800 ⁇ L of chloroform / methanol (1/1), 150 ⁇ L of trimethylsilyldiazomethane was added, and the mixture was reacted at room temperature for 5 minutes. The reaction was quenched by adding 10 ⁇ L of glacial acetic acid. After adding 800 ⁇ L of methanol / water / chloroform (48: 47: 3) and 400 ⁇ L of chloroform and stirring, the organic layer was dried with N 2 gas. Methanol / 70% ethylamine (1: 0.13%), v / v) 27 ⁇ L and water 9 ⁇ L were added and stirred.
  • LPIPs were measured by the selective reaction monitoring (SRM) method in positive ion mode. Table 2 summarizes the measurement conditions of individual LPIPs in the SRM mode. LPIP1, LPIP2, and LPIP3 were identified by the combination of the m / z value (Q1) of the parent ion and the m / z value (Q2) of monoacylglycerol measured as the daughter ion. A schematic diagram is shown in FIG. 1-1.
  • the abscissa represents the reaction time, and the ordinate represents the production amount of 17: 0 LPIP1 or 20: 4 LPIP1 (the yield obtained from the peak area ratio of the raw material to the reaction product on the chromatogram).
  • LPIP1 was not detected, even when the reaction time was shortened to 60 minutes.
  • LPIP1 was detected only when the reaction time was further reduced to 5, 10, and 30 minutes.
  • Both 17: 0 LPIP1 and 20: 4 LPIP1 were generated.
  • a similar reaction time-dependent tendency was observed in the reaction with a methylamine concentration of 2.14%, which is lower than that of the conventional method. In this case, a small amount of LPIP1 was detected even at reaction times of 60 minutes and 120 minutes, and more LPIP1 was detected at 5, 10, and 30 minutes.
  • the reaction depends on the temperature. Incubation at 10.7% methylamine at 37 ° C. for 10 minutes yielded LPIP1 in a higher yield than the reaction at 53 ° C.
  • LPIPs By adjusting the degree of deacylation by shortening the reaction time, reducing the methylamine concentration, reducing the reaction temperature, and a combination thereof, only one acyl can be deacylated, corresponding to diacyl-type PIPs used as starting materials LPIPs can be synthesized.
  • Table 3 shows examples of LPIPs that can be synthesized using a commercially available PIPs synthetic product as a raw material in this example
  • Table 4 shows an example in which the position of the phosphate group can be determined.
  • the numbers in the table indicate the number of carbon atoms and the number of double bonds.
  • FIG. 2 the results of LPIPs produced from seven kinds of PIPs raw materials (acyl groups are 17: 0, 20: 4) having different phosphorylation patterns are illustrated.
  • the reaction product was dried with N2 gas, the methylation protection of the phosphate group of the target LPIPs was performed, and measurement was performed by the above method using a triple quadrupole mass spectrometer. Using any PIPs as a raw material, the production of LPIPs was observed by the methylamine reaction.
  • the PIPs fraction was added to mobile phase A (methanol / H 2 O / 70% ethylamine (20: 80: 0.13, v / v)) / mobile phase B (methanol / H 2 O / 2-propanol / 70% ethylamine ( 5: 5: 90: 0.13, v / v)) ratio of 90% / 10% (0-0.1 min), with a gradient of 70% / 30% over 0.1-3 min, followed by 10 Separation by a gradient with% / 90% (3-15 min).
  • the flow rate was 30 ⁇ L / min and chromatography was performed at 30 ° C.
  • LPIP1 The identification of LPIP1 will be described with reference to the chromatogram in FIG. 3A and the structural formulas of the starting material, product, and fragment in FIG. 3B.
  • the results of accurate mass spectrometry of LPI (4) P and fragments derived from LPI (4) P are shown as representative examples of LPIP1 synthesis reaction.
  • FIG. 3A the accurate mass measurement results of 17: 0 LPIP 1 (first stage) and its fragment ion (second stage) and 20: 4 LPIP 1 (third stage) and its fragment ion (fourth stage) are determined. Together with the molecular formula.
  • m / z 327.2892 has an error of 0.48 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of 17: 0 monoacylglycerol (17: 0 MG) (monovalent positive ion with one hydroxyl group missing).
  • m / z 361.22736 has an error of 0.45 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of 20: 4 monoacylglycerol (20: 4 MG) (monovalent positive ion from which one hydroxyl group is missing).
  • FIG. 3C shows two types of LPIs produced by a mild deacylation reaction of 37: 4 PI (4,5) P2 (sn-1 17: 0, sn-2 20: 4 PI (4,5) P2) ( As a representative example of LPIP2 synthesis reaction, the results of accurate mass spectrometry of fragments derived from LPI (4,5) P2 and LPI (4,5) P2 are shown for 4,5) P2. 17: 0 LPIP 2 (first step) and its fragment ion (second step), 20: 4 LPIP 2 (third step) and its fragment ion (fourth step) accurate mass measurement results together with the determined molecular formula Show.
  • FIG. 3E shows the results of a mild deacylation reaction of 37: 4 PI (3,4,5) P3 (sn-1 17: 0, sn-2 20: 4 PI (3,4,5) P3).
  • the result of carrying out the accurate mass spectrometry of the fragment derived from LPI (3,4,5) P3 and LPI (3,4,5) P3 is shown for the species LPI (3,4,5) P3.
  • the error between these values and the theoretical m / z value obtained from the molecular formulas of 17: 0 LPIP3 (7 methylated product, ethylamine adduct) and 20: 4 LPIP3 (7 methylated product, ethylamine adduct) is 1.
  • 3A to 3F are proof of identification of LPIPs by accurate mass measurement.
  • NMR analysis of LPIPs The structure of the synthesized LPIPs was determined by NMR. Regarding the structure determination of lipids by NMR, those skilled in the art can appropriately determine the structure, for example, 1 H chemical shift is described in Ong et al. Mol. Biosys. (2009) 5, 288-298 can be referred to.
  • the first position gives a chemical shift of about 3.7 ppm, the second position about 5.2 ppm, and the third position about 4.1 ppm, so that it is possible to distinguish between sn-1 and sn-2.
  • aCH 2 gives a chemical shift of about 2.3 ppm and bCH 3 gives a chemical shift of about 1.6 ppm, so that it is possible to distinguish between sn-1 and sn-2.
  • the polyunsaturated portion of the polyunsaturated fatty acid gives a chemical shift of about 2.8 ppm and about 5.3 ppm, it can be used to estimate the type of fatty acid in the lysophospholipid.
  • the phosphorus atom gives a chemical shift of 0 to 2 ppm ( 31 P, about 0.5 ppm low magnetic field shift with lysophospholipidation), and can be used for investigation of reaction progress.
  • the lipid structure can be determined from NMR as shown in FIG. 4A.
  • Example 2 Analysis in biological sample and separation of LPIPs (cultured cells)
  • experiments were conducted on the separation and analysis of LPIPs in biological samples.
  • a human cultured cell line was used as the biological sample.
  • HEK293T human embryo-derived kidney epithelial cell line, Open biosystems catalog number HCL4517
  • Jurkat human acute T-cell leukemia cell-derived cell line, ATCC catalog number TIB-152 under the conditions recommended by the provider Cultured and maintained.
  • Lipid extraction was performed based on the Bligh & Dyer method (EG Bligh et al, Canadian Journal of Biochemistry and Physiology, 1959, 37 (8): 911-917, 10.1139 / o59-099). .
  • FIG. 5A shows the presence of LPIP1, LPIP2, and LPIP3 in HEK293T cells and FIG. 5B in Jurkat cells.
  • the horizontal axis represents molecular species having different fatty acid structures, and the vertical axis represents the abundance in cell-derived phospholipids containing PS 1 nmol.
  • LPIPs having various acyl groups having 16 to 22 carbon atoms and 0 to 6 double bonds were found in cells.
  • LPIP1 and LPIP2 were trace amounts of phospholipids present at a level of 1 / hundred to several tenths of PS, and LPIP3 was present at a level of 1 / hundred to several thousandths.
  • 5K and 5D show the results of detection of 18: 0 LPIP3 and its specific fragments in the analysis of HEK293T cell lipid extract by “Measurement and detection method using hybrid quadrupole-orbitrap mass spectrometer”. Shown in
  • the dehydroxylated product is shown below.
  • the pre-dehydration oxidation is shown below.
  • Example 3 Analysis and separation of LPIPs in biological samples (mouse tissue and human blood samples) Next, in this example, an experiment for separation and analysis of LPIPs in a biological sample was performed using another sample. As biological samples, LPIPs in mouse or human tissues or serum or plasma were used.
  • mice C57BL / 6J ⁇ purchased from Clea Japan Co., Ltd.>, 12-16 weeks old organ / tissue: Brain, heart, liver, large intestine were prepared as follows. Mice were dislocated from the cervical vertebrae, fixed on their back and then laparotomized. Organs isolated after perfusion and blood removal with PBS were immediately frozen in liquid nitrogen. Thawed immediately before lipid extraction and homogenized with a homogenizer. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.
  • Serum An anesthetic (ketamine) was opened 3 minutes after intraperitoneal administration, and blood was collected from the heart. The collected blood was allowed to stand at room temperature for 15 minutes and then allowed to stand at 4 ° C. for 12 hours. The clot was removed by centrifugation (600 g, 30 minutes), and serum was prepared. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.
  • Plasma The abdominal cavity was opened 3 minutes after administration of anesthetic (ketamine) and 0.5 ml of blood was collected from the lower abdominal aorta. The collected blood was collected in a 1.5 mL tube containing 2 mg of EDTA-2Na cooled with ice, and a plasma sample was prepared from the supernatant after stirring and centrifugation (600 g, 30 minutes). Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.
  • Human serum Blood was collected from a peripheral vein into a test tube, and the collected blood was allowed to stand at room temperature for 15 minutes, and then allowed to stand at 4 ° C. for 12 hours. The clot was removed by centrifugation (600 g, 30 minutes), and serum was prepared. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed in the same manner as in Example 3. The analysis was carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.
  • LPIPs were present in the mouse tissue. Furthermore, since LPIPs are present as liquid components in the living body such as the serum shown in FIG. 6B and the plasma shown in FIG. It was suggested that the production of LPIP2 by phosphorylation of the protein also occurs outside the cell. LPIPs were also present in human serum as shown in FIG. 6D.
  • Example 4 Use as a cancer marker
  • the usefulness of novel LPIPs was examined.
  • PTEN flox / flox mice subject mice
  • FIG. 7A shows the tissue weight in the upper row and the tissue image by HE staining in the lower row of the prostate of a normal mouse (Ctrl) or a mouse (PTEN KO) that specifically lacks the tumor suppressor gene Pten. It can be seen that Pten deficiency causes prostate cancer.
  • FIG. 7B it was revealed that 16: 0 LPIPs were increased in prostate cancer tissue as compared to the normal prostate as a control. In particular, in LPIP3, a significant increase was found with tumor formation when the normal tissue was below the detection limit. Since the fluctuation of LPIPs correlates with carcinogenesis, the usefulness of LPIPs as biomarkers reflecting cancer treatment targets and cancer is expected.
  • Example 5 Use as an inflammation marker
  • C57BL / 6J purchased from Clea Japan Co., Ltd.>
  • 12-16 week old mice were dissected after dislocation of the cervical vertebrae to obtain the foot femur.
  • Myelospheres and neutrophils were collected from the obtained femur and stimulated with complement component C5a, which is an inflammatory substance.
  • Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were carried out in the same manner as in Example 2.
  • the analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.
  • LPIP3 is increased with stimulation of complement component C5a involved in the activation of blood cells related to inflammation such as neutrophils and macrophages.
  • complement component C5a involved in the activation of blood cells related to inflammation such as neutrophils and macrophages.
  • LPIP3 is involved in chemotaxis of inflammatory cells, active oxygen production, phagocytosis, enzyme secretion reaction, etc. is presented, and it can be expected to be useful as a therapeutic target for inflammation.
  • Example 6 Separation of phosphoinositide by column
  • PIPs phosphate group of phosphoinositide
  • Each sample was treated with TMS diazomethane to protect the phosphate groups. Specifically, each sample was treated with 150 ⁇ L of 0.6 M TMS diazomethane (22-25 ° C.), and after 5 minutes, 15 ⁇ L of glacial acetic acid was added to stop the methylation reaction.
  • Mass spectrometer QTRAP6500 with SelexION System (ABSciex, Tokyo, Japan) Pump: Nexera X2 system (Shimadzu Corporation, Kyoto, Japan) Autosampler: PAL HTC-XT (AMR, Tokyo, Japan) Column: CHIRALPAK IC-3, 2.1 mm x 250 mm, particle size 3 ⁇ m (DAICEL corporation, Osaka, Japan) Flow rate: 0.1 mL / min Injection sample volume: 10 ⁇ L (Chromatographic conditions) Mobile phase A: acetonitrile + 5 mM ammonium acetate Mobile phase B: methanol + 5 mM ammonium acetate * All these reagents were LC-MS grades purchased from Wako Pure Chemical (Tokyo, Japan).
  • FIG. 1 shows the results of isomer separation using a 17: 0/20: 4 synthetic product.
  • Phosphoinositides with different numbers of phosphate groups were eluted with different retention times. Even when three types of isomers differing only in the position of the phosphate group were mixed (mixture of PIP or PIP2), they could be separated well by a 20-minute measurement method using a column. As described above, the separation of the phosphoinositide by the phosphate group positional isomer enables regioisomer-specific analysis.
  • This sample was subjected to the following methylation treatment.
  • the sample was treated with 150 ⁇ L of 0.6 M TMS diazomethane (22-25 ° C.), and after 5 minutes, 15 ⁇ L of glacial acetic acid was added to stop the methylation reaction. Thereafter, 700 ⁇ L of a mixed solution of chloroform: methanol: water (3:48:47) was added to each sample, and after centrifugation, the organic layer (lower layer) was dispensed into a Spitz test tube and evaporated with a nitrogen gas concentrator. Each sample was dried and redissolved in 100 ⁇ L of acetonitrile to prepare a sample for LC-MS measurement.
  • FIG. 3 shows the results of 50 repeated measurements (injection sample amount 10 pmol) for each sample in order to investigate the variation between the measurement runs for each phosphoinositide.
  • the dispersion coefficient was 8.4 to 12.0%, indicating that the variation between measurement runs was small.
  • Example 8 Separation of Phosphoinositide by Ion Mobility Separation
  • Example 8 demonstrates that separation by the position of the phosphate group of phosphoinositide by ion mobility separation is possible.
  • the PIP2 isomer was separated by a method other than a chiral column (mass spectrometer only). Attempts were made to separate intact PIP2 (C17: 0 / C20: 4-PI (3,5) P2, -PI (3,4) P2 and -PI (4,5) P2) by using ion mobility. Details are shown below.
  • PI (4,5) P2 could be separated from PI (3,5) P2 and PI (3,4) P2 due to the difference in compensation voltage (COV).
  • COV compensation voltage
  • Example 9 Analysis of evaluation of change in phosphoinositide composition
  • Example 9 shows that changes in phosphoinositide composition in drug-treated cells can be evaluated using the method of the present invention.
  • the elution order of the positional isomers of phosphate groups was confirmed in advance for each diacylglycerol species.
  • HEK293T cells human embryonic kidney epithelial cell line, Open biosystems (Colorado, USA) catalog number HCL4517
  • day 1 ⁇ 10 6 cells / 10 cm dish day 0
  • H 2 O 2 was added to the culture medium to a final concentration of 10 mM, and the cells were scraped and collected with a cell scraper after 0 minutes, 2 minutes, 5 minutes, and 15 minutes, respectively. After centrifuging for 3 minutes, the pellet was recovered, and further washed with PBS ( ⁇ ) to recover the cells.
  • Lipids adsorbed on the column were mixed with chloroform: methanol (1: 1, v / v) (3 mL) and chloroform: methanol: 28% aqueous ammonia: acetic acid (200: 100: 3: 0.9, v / v) ( 3 mL).
  • Highly acidic lipids including PIPs, PI and PS were then eluted with chloroform: methanol: HCl: water (12: 12: 1: 1, v / v) (1.5 mL). After adding 0.75 mL of water and 0.1 mL of 1M NaCl, the solution was shaken, centrifuged and the lower layer was collected.
  • FIG. 13 show an extracted ion chromatogram of 38: 4 phosphoinositide. It is shown that PI (4,5) P2 decreases and PI (3,4) P2 increases as the H 2 O 2 treatment time increases.
  • FIGS. 14A-D show how PIPs with different diacylglycerols change with H 2 O 2 treatment.
  • Statistical processing used one-way analysis of variance and Tukey's multiple comparison test. PIPs with different diacylglycerols were also shown to decrease PI (4,5) P2 and increase PI (3,4) P2 with increasing H 2 O 2 treatment time.
  • Example 10 Evaluation of changes in phosphoinositide composition in genetically engineered mice
  • Example 6 shows that changes in phosphoinositide composition in genetically engineered mice can be evaluated using the method of the present invention.
  • Example 6 the elution order of the positional isomers of phosphate groups was confirmed in advance for each diacylglycerol species.
  • INPP4B has the following dephosphorylation reaction PI (3,4,5) P3 ⁇ PI (3,4) P2 ⁇ PI (3)
  • P PTEN promotes the following dephosphorylation reaction PI (3,4,5) P3 ⁇ PI (4,5) P2 (Kofuji S et. Al., Cancer Discov. 2015 Jul; 5 (7): 730-9, Li Chew C et.al., Cancer Discov. 2015 Jul; 5 (7) : 740-51 and VoTT et.al., Cancer Discov. 2015 Jul; 5 (7): 697-700).
  • mice generated according to previous papers were used in the experiments. Specifically, mice were prepared as follows. A conditional targeting vector was constructed, and the gene fragment containing the 21st coding exon of the mouse Inpp4b gene was deleted by homologous recombination. One loxP site was introduced into intron 20 and two loxP sites were introduced into intron 21. The LacZ-PGK-Neo r cassette was inserted between the two lox sites in intron 21 in the antisense orientation relative to the transcription of Inpp4b.
  • the linear construct was introduced into 1 ⁇ 10 7 E14K mouse embryonic stem (ES) cells by electroporation (Sasaki T et. Al., Science 2000; 287: 1040-6).
  • ES cell colonies resistant to G418 0.3 mg / mL; Life Technologies
  • Recombinant clones were confirmed by standard Southern blots of HindIII digested genomic DNA fragments using a 590 bp probe.
  • Targeted ES cells were injected into C57BL / 6J blastocysts (CLEA Japan, Tokyo, Japan). Chimeric male mice were mated with C57BL / 6JJ female mice to achieve germline inheritance.
  • Inpp4b + / flox mice in which the selection cassette was deleted were produced by mating with MeuCre40 transgenic mice (Leneuve P et. Al., Nucleic Acids Res 2003; 31: e21). Similarly, Inpp4b + / ⁇ mice were produced by crossing Inpp4b + / flox mice with MeuCre40 mice. PCR confirmed that Inpp4b ⁇ / ⁇ mice were different from Inpp4b + / ⁇ mice and Inpp4b + / + mice.
  • An oligo primer common to the Inpp4A + allele and the Inpp4A ⁇ allele (5′-CCTGCCATGGGGTAGTTTTCT-3 ′), a primer specific for the Inpp4A + allele (5′-GTTTACATTTGACAGGGTGGTTGG-3 ′), and the Inpp4A ⁇ allele Primers specific for '-TGCTGTCGCCGAAGAAGTTA-3') were combined in the same PCR reaction.
  • Inpp4b + / ⁇ Pten +/ ⁇ mice were generated by crossing Inpp4b + / ⁇ mice with Pten +/ ⁇ mice (Suzuki A et al., Curr Biol 1998; 8: 1169-78).
  • Inpp4b + / ⁇ Pten +/ ⁇ mice were mated with Inpp4b + / ⁇ mice.
  • Triple mutants were made by crossing Inpp4b + / ⁇ Pten +/ ⁇ mice with Akt1 ⁇ / ⁇ mice or Akt2 ⁇ / ⁇ mice (purchased from Jackson Laboratory). All animal experiments were conducted with the review and approval of the Akita University Animal Experiment Committee.
  • mice prepared in this way the thyroid gland obtained from the following mice was used as a sample.
  • Each sample was subjected to the following lipid extraction and methylation treatment, and measured by chiral LC-MS / MS.
  • each mouse tissue was homogenized with 1.5 mL ice-cold methanol and 50 ⁇ L 0.2 pmol / ⁇ L 17: 0/20: 4-PI3P, 17: 0/20: 4.
  • Lipids adsorbed on the column were mixed with chloroform: methanol (1: 1, v / v) (3 mL) and chloroform: methanol: 28% aqueous ammonia: acetic acid (200: 100: 3: 0.9, v / v) ( 3 mL).
  • Highly acidic lipids including PIPs, PI and PS were then eluted with chloroform: methanol: HCl: water (12: 12: 1: 1, v / v) (1.5 mL). After adding 0.75 mL of water and 0.1 mL of 1M NaCl, the solution was shaken, centrifuged and the lower layer was collected.
  • PI (3,4) P2 was not observed in wild type and INPP4B ( ⁇ / ⁇ ) mice, but production was observed in PTEN (+/ ⁇ ) mice and INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ ) ) Further enhancement of production was observed in mice. This result is consistent with the reported activity of PTEN.
  • FIGS. 16A-D show how PIPs with different diacylglycerols are altered by genetic manipulation.
  • Statistical processing used one-way analysis of variance and Tukey's multiple comparison test. In mice knocked out of a gene that promotes PIP3 degradation, the amount of PIP3 was greatly increased as expected, but a decrease in PIP2 and PIP was not observed.
  • PI (3,4) P2 was not observed in wild type and INPP4B ( ⁇ / ⁇ ) mice, but production was observed in PTEN (+/ ⁇ ) mice and INPP4B ( ⁇ / ⁇ ) PTEN (+/ ⁇ ) ) Further enhancement of production was observed in mice.
  • Example 11 Separation and quantification of phosphate regioisomers of LPIPs
  • the present invention can be used for pharmaceuticals and their development.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention provides a lysophosphatidylinositol phosphate that is a novel phospholipid, and uses thereof. The present invention also provides a method for isolating and analyzing the binding site of the pohosphate group of the phospholipid. Specifically provided is a method for measuring, detecting or identifying a phospholipid in a sample, the method comprising: (A) a step for subjecting the sample to liquid column chromatography-mass spectrometry (LC-MS) or ion mobility spectrometry-mass spectrometry (IMS-MS); and (B) a step for identifying the position of the phopsphate group of the phospholipid on the basis of the peak elution position in the LC-MS.

Description

新規リン脂質およびその利用ならびにリン脂質分離測定法の開発Development of new phospholipids and their utilization and phospholipid separation measurement method

 本発明は、新規リン脂質およびその利用に関する。さらに、本発明は、リン脂質分離測定法に関する。より特定すると、アシル基をインタクトな状態で保持しつつホスファチジルイシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する技術に関する。詳細には、本発明は、質量分析(MS)を必要に応じてクロマトグラフィーまたはイオンモビリティ分離(IMS)と組み合わせて用いるリン脂質分離測定法を提供する。 The present invention relates to a novel phospholipid and use thereof. Furthermore, the present invention relates to a phospholipid separation measurement method. More specifically, the present invention relates to a technique for specifying the position of a phosphate group of phosphatidylicitol phosphate and / or lysophosphatidylinositol phosphate while keeping an acyl group intact. Specifically, the present invention provides a phospholipid separation measurement method using mass spectrometry (MS), optionally in combination with chromatography or ion mobility separation (IMS).

 脂質は膜構成因子、エネルギー源、シグナル伝達分子として、生命に必須の成分である。脂質の中でも特にリン脂質は、細胞内タンパク質を細胞膜や細胞内小器官へとターゲットし、その場所で活性を制御する時空間的レギュレータとして、多様な細胞機能の調節を司る重要な分子群である。しかし、水に難溶性であることや遺伝子の支配を直接受けないことから、解析には限界があり、研究の進んでない生化学の研究分野となっている。 Lipids are essential components of life as membrane constituents, energy sources, and signal transduction molecules. Among lipids, phospholipids are an important group of molecules that regulates various cellular functions as spatiotemporal regulators that target intracellular proteins to cell membranes and organelles and control their activity at those locations. . However, since it is sparingly soluble in water and not directly under the control of genes, it has limited analysis and has become a biochemical research field where research has not progressed.

 本発明者らはこのような未開拓の分野に、リン脂質代謝酵素やリン脂質結合ドメインの遺伝子改変マウスの作製という新しい技法を用いてチャレンジした。本発明者らの研究が世界的な先駆けとなり、細胞内リン脂質による生体機能調節機構の解明は、新たな研究分野と捉え直すことができるほどの展開をみせている。すなわち、種々の癌、アレルギー、肝脂肪化・線維化、心機能不全、神経変性、腸炎など多様な病態と個々のリン脂質の代謝酵素異常との関連を次々と見出され、新しい医薬開発にもつながる基礎研究成果として今後の発展が大きく期待される状況にある(非特許文献1)。 The present inventors challenged such an undeveloped field by using a new technique of producing a genetically modified mouse having a phospholipid metabolizing enzyme or a phospholipid binding domain. The research of the present inventors has become a pioneer in the world, and elucidation of the biological function regulation mechanism by intracellular phospholipid has been developed so that it can be regarded as a new research field. In other words, various medical conditions such as various cancers, allergies, hepatic steatosis / fibrosis, cardiac dysfunction, neurodegeneration, enterocolitis, etc. were found one after another, and abnormal metabolic enzymes of individual phospholipids were found one after another. As a result of basic research that leads to future development, future development is highly expected (Non-patent Document 1).

 一方、これまでの研究では、遺伝学的手法を適用できる代謝酵素が解析対象の中心となっており、リン脂質そのものの変動についての研究はほとんど進んでいない(非特許文献1)。これは、脂質の検出、同定、定量の方法が未開発であることに起因する。遺伝子とは異なり、現在においても、生体を構成する脂質の種類、数は未確定であり、多くの未知の脂質が発見されずに眠っていると考えられる。 On the other hand, in the research so far, metabolic enzymes to which genetic techniques can be applied have been the subject of analysis, and research on changes in phospholipid itself has hardly progressed (Non-patent Document 1). This is because lipid detection, identification and quantification methods have not been developed yet. Unlike genes, the type and number of lipids that make up living organisms are still uncertain, and many unknown lipids are thought to be sleeping without being discovered.

 また、リン脂質代謝酵素の発現異常が癌やメタボリックシンドローム等の病態に関連することが知られているが、その分子メカニズムの詳細は不明である。多くの疾患に関与するホスホイノシタイド(ホスファチジルイノシトールホスフェート、ホスファチジルイノシトールリン酸(塩)などともいう)には、8クラス(ホスファチジルイノシトール、ホスファチジルイノシトール-3-一リン酸、ホスファチジルイノシトール-4-一リン酸、ホスファチジルイノシトール-5-一リン酸、ホスファチジルイノシトール-3,4-二リン酸、ホスファチジルイノシトール-3,5-二リン酸、ホスファチジルイノシトール-4,5-二リン酸、ホスファチジルイノシトール-3,4,5-三リン酸)存在する。これら脂質または代謝産物は、各々のクラスが互いに異なった役割や機能を有し得、同様にその代謝酵素や受容体などは、多様な疾患治療薬の標的として、また、疾患マーカーとしての意義をもつ可能性がある。 Moreover, it is known that abnormal expression of phospholipid metabolizing enzymes is related to pathological conditions such as cancer and metabolic syndrome, but details of the molecular mechanism are unknown. Phosphoinositide (also referred to as phosphatidylinositol phosphate, phosphatidylinositol phosphate (salt), etc.) involved in many diseases includes 8 classes (phosphatidylinositol, phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate) Acid, phosphatidylinositol-5-monophosphate, phosphatidylinositol-3,4-diphosphate, phosphatidylinositol-3,5-diphosphate, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4 , 5-triphosphate). These lipids or metabolites may have different roles and functions in each class, and similarly their metabolic enzymes and receptors have significance as targets for various therapeutic drugs and as disease markers. There is a possibility.

Sasaki T. et al., Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res.2009 Nov;48(6):307-43, doi:10.1016/j.plipres.2009.06.001Sasaki T. Et al. , Mammarian phosphoinosideide kinases and phosphates. Prog Lipid Res. 2009 Nov; 48 (6): 307-43, doi: 10.016 / j. pripres. 2009.6.001 Kielkowska, A., et al.  A new approach to measuring phosphoinositides in cells by mass spectrometry. Adv Biol Requl 54, 131-141 (2014).Kielkouska, A.K. , Et al. A new approach to measuring phosphoinositides in cells by mass spectrometry. Adv Biol Request 54, 131-141 (2014).

 以上に鑑み、本発明者らは、質量分析を基盤とした、新しい脂質解析方法の開発に乗り出した。質量分析法を用いるメリットは、これまで解析対象のラジオアイソトープラベルを使用しなければ分析が不可能であった生体試料(ヒト臨床検体等)を解析することが可能となる点、また、アシル基の組成を判別することができる点(よって本発明にあるリゾリン脂質を発見できる)である。生体内の存在量が微量であること、また、多価のリン酸化を受けることで特に測定が困難なホスファチジルイノシトールリン酸群(本明細書において「PIPs」とも称する)の新しい測定方法を確立した。そして、この技術を用いることで、これまでに同定することが不可能であった未知のリゾホスファチジルイノシトールリン酸群(本明細書において「LPIPs」とも称する)を発見するに至った。LPIPsは、その同定方法や検出方法も、合成法も本発明の開示まで存在していなかったため、本発明による開示がLPIPsの物質としての最初の報告である。 In view of the above, the present inventors have begun to develop a new lipid analysis method based on mass spectrometry. The merit of using mass spectrometry is that it is possible to analyze biological samples (human clinical specimens, etc.) that could not be analyzed without using the radioisotope label to be analyzed. The composition of the lysophospholipid according to the present invention can be found. Established a new measurement method for the phosphatidylinositol phosphate group (also referred to as “PIPs” in this specification), which is extremely difficult to measure due to the presence of a small amount in the living body and multivalent phosphorylation. . By using this technique, an unknown lysophosphatidylinositol phosphate group (also referred to as “LPIPs” in the present specification) that could not be identified so far has been discovered. Since LPIPs did not exist until the disclosure of the present invention, neither the identification method, the detection method nor the synthesis method, the disclosure according to the present invention is the first report as a substance of LPIPs.

 また、本発明の測定法は、クロマトグラフィー-質量分析法により、ホスホイノシタイドおよびリゾホスホイノシタイド(リゾホスファチジルイノシトールホスフェート、リゾホスファチジルイノシトールリン酸(塩)などともいう)をアシル基を有した状態(本明細書において「インタクトな状態」ともいう。)で、そのリン酸基の位置を特定して測定、検出、同定することができることを予想外に見出したことによって、完成させた。特に、本発明は、アシル基(脂肪酸側鎖)の情報を有したホスホイノシタイド全8クラスおよびリゾホスホイノシタイド全8クラスを液体カラムクロマトグラフィー/質量分析法(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)で検出・同定した方法を初めて提供するものである。ここで使用されるカラムはキラルカラム、疎水性カラムなどを挙げることができるがこれらに限定されず、親水基、疎水基を分離する任意のクロマトグラフィーが利用可能であり得る。 In the measurement method of the present invention, phosphoinositide and lysophosphoinositide (also referred to as lysophosphatidylinositol phosphate, lysophosphatidylinositol phosphate (salt), etc.) having an acyl group are obtained by chromatography-mass spectrometry. (It is also referred to as “intact state” in the present specification), and was completed by unexpectedly finding that the position of the phosphate group can be specified, measured, detected, and identified. In particular, the present invention relates to all 8 classes of phosphoinositides and all 8 classes of lysophosphoinositides with information on acyl groups (fatty acid side chains) by liquid column chromatography / mass spectrometry (LC-MS) or ion mobility separation. -Provide for the first time a method detected and identified by mass spectrometry (IMS-MS). Examples of the column used here include a chiral column and a hydrophobic column, but are not limited thereto, and any chromatography that separates a hydrophilic group and a hydrophobic group may be used.

 したがって、本発明は以下を提供する。
(項目1A)
リゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸である化合物。
(項目2A)
1-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール一リン酸、1-アシル-リゾホスファチジルイノシトール二リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸、または2-アシル-リゾホスファチジルイノシトール三リン酸である項目1Aに記載の化合物。
(項目3A)
1-アシル-リゾホスファチジルイノシトール-3-一リン酸、1-アシル-リゾホスファチジルイノシトール-4-一リン酸、1-アシル-リゾホスファチジルイノシトール-5-一リン酸、2-アシル-リゾホスファチジルイノシトール-3-一リン酸、2-アシル-リゾホスファチジルイノシトール-4-一リン酸、2-アシル-リゾホスファチジルイノシトール-5-一リン酸、1-アシル-リゾホスファチジルイノシトール-3.4-二リン酸、1-アシル-リゾホスファチジルイノシトール-3.5-二リン酸、1-アシル-リゾホスファチジルイノシトール-4.5-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,4-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,5-二リン酸、2-アシル-リゾホスファチジルイノシトール-4,5-二リン酸、1-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸、または2-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸である項目1Aまたは2Aに記載の化合物。
(項目4A)
2-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸または2-アシル-リゾホスファチジルイノシトール三リン酸である項目1A~3Aのいずれか1項に記載の化合物。
(項目5A)
1-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
2-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
1-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;および
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸
からなる群より選択される、
項目1A~4Aのいずれか1項に記載の化合物。
(項目6A)
疾患マーカーとして使用するための、項目1A~5Aのいずれか1項に記載の化合物を含む組成物。
(項目7A)
前記疾患マーカーが、炎症マーカーまたはがんマーカーである、項目6Aに記載の組成物。
(項目8A)
前記がんは前立腺がんを含む、項目7Aに記載の組成物。
(項目9A)
ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸をアルキルアミンに接触させることで脱アシル化する工程を包含する、項目1A~5Aのいずれか1項に記載の化合物の製造方法。
(項目10A)
前記アルキルアミンは、メチルアミンである、項目9Aに記載の製造方法。
(項目11A)
 前記脱アシル化は、脱ジアシル化する条件より緩和な条件である、項目9Aまたは10Aに記載の製造方法。
(項目12A)
 前記緩和な条件は、脱ジアシル化する条件のうち反応時間の短縮、前記アルキルアミンの濃度の低減、反応温度、またはその組み合わせで達成される、項目11Aに記載の方法。
(項目13A)
 前記緩和な条件は、アルキルアミンとしてメチルアミンを用い、10分間以下の反応時間または該メチルアミンの濃度が約11%以下、反応温度が53℃以下あるいは該反応時間および該濃度および該反応温度の組み合わせである、項目11Aまたは12Aに記載の方法。
(項目14A)
(A) 1位と2位とに異なる質量のアシル基を有するホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を提供する工程であって、所望の質量を有するアシル基が1位または2位から選択される所望の位置に存在する、工程;
(B) 該ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を、アルキルアミンに接触させることで脱アシル化する工程、および
(C) 必要に応じて、所望の質量のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を取り出す工程
を包含する、所望の位置に所望のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を製造する方法。
(項目15A)
試料を、陰イオン交換樹脂に接触させることによりリン脂質を濃縮する工程;
該酸性リン脂質中のリン酸基を保護基で保護する工程;および
質量分析法により、該リン脂質中のリゾホスファチジルイノシトールリン酸塩を検出、同定または定量する工程、
を包含する、リゾホスファチジルイノシトールリン酸塩を検出、同定または定量する方法。
(項目16A)
さらに前記リン脂質中のホスファチジルイノシトールリン酸塩も検出、同定または定量する、項目15Aに記載の方法。
(項目17A)
前記保護基はアルキル基を含む、項目15Aまたは16Aに記載の方法。
(項目18A)
前記保護基はメチル基を含む、項目15A~17Aのいずれか1項に記載の方法。
(項目19A)
前記質量分析法は三連四重極質量分析計による選択反応モニタリング法(SRM)を含む、項目15A~18Aのいずれか1項に記載の方法。
(項目20A)
さらに、液体カラムクロマトグラフィーまたはイオンモビリティ分離を用いて前記リゾホスファチジルイノシトールリン酸塩の脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う工程を包含する、項目15A~19Aのいずれか1項に記載の方法。
(項目21A)
さらにリン酸基の位置を特定する、項目15A~20Aのいずれか1項に記載の方法。
(項目22A)
前記質量分析法において、アシルグリセロールをプロダクトイオン(フラグメントイオン)として選択して前記脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う、項目15A~21Aのいずれか一項に記載の方法。
(項目23A)
項目15A~22Aのいずれか一項に記載の検出、同定または定量により、がんの診断を行う方法。
(項目24A)
試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを測定、検出または同定する方法であって、該方法は
A)該試料を質量分析(MS)に適用する工程;および
B)該MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程
を包含する、方法。
(項目25A)
前記A)工程において、前記試料をさらにクロマトグラフィーに適用することを包含する、項目24Aに記載の方法。
(項目26A)
前記質量分析が液体カラムクロマトグラフィー-質量分析(LC-MS)であり、
前記特定する工程B)が、該LC-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程である、項目24Aまたは25Aに記載の方法。
(項目27A)
前記特定する工程において前記ホスファチジルイノシトールホスフェートに含まれるアシル基の分子量の合計も特定される、項目24A~26Aのいずれか1項に記載の方法。
(項目28A)
前記特定する工程において前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートに含まれるアシル基の種類も特定される、項目24A~27Aのいずれか1項に記載の方法。
(項目29A)
同一のランにおいて前記ホスファチジルイノシトールホスフェートおよびリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する、項目24A~28Aのいずれか1項に記載の方法。
(項目30A)
前記測定、検出または同定は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを他のイノシトール含有リン脂質から区別して行うことを特徴とする、項目24A~29Aのいずれか1項に記載の方法。
(項目31A)
前記試料は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートの分解がなされない条件で調製されたものである、項目24A~30Aのいずれか1項に記載の方法。
(項目32A)
前記条件は脱アシル化処理を行わないことを含む、項目31Aに記載の方法。
(項目33A)
前記液体カラムクロマトグラフィーは、キラルカラム、逆相カラム、親水基および疎水基を分離するカラムクロマトグラフィーからなる群より選択される、項目26A~32Aのいずれか1項に記載の方法。
(項目34A)
前記液体カラムクロマトグラフィーは、イオンモビリティ分離と組み合わせられる、項目24A~33Aのいずれか1項に記載の方法。
(項目35A)
前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを定量する工程をさらに包含する、項目24A~34Aのいずれか1項に記載の方法。
(項目36A)
前記試料はインタクトな試料である、項目24A~35Aのいずれか1項に記載の方法。
(項目37A)
前記特定は試料を標識せずに行われる、項目24A~36Aのいずれか1項に記載の方法。
(項目38A)
前記質量分析がイオンモビリティ分離-質量分析(IMS-MS)であり、
前記特定する工程B)が、該IMS-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程である、
項目24A~37Aのいずれか1項に記載の方法。
(項目39A)
項目25A~33A、35A~37Aのいずれかまたは複数の特徴を備える項目38Aに記載の方法。
(項目40A)
試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのアシル基およびリン酸基の位置を測定、検出または同定する装置であって、質量分析(MS)と、ホスファチジルイノシトールホスフェートの分解がなされない条件で該MSに該試料を適用する適用部とを含む装置。
(項目41A)
さらにクロマトグラフィー用の装置を含む項目40Aに記載の装置。
(項目42A)
前記質量分析が液体カラムクロマトグラフィー-質量分析(LC-MS)であり、前記適用部がホスファチジルイノシトールホスフェートの分解がなされない条件で該LC-MSに該試料を適用する適用部である、項目40Aまたは41Aに記載の装置。
(項目43A)
前記液体カラムクロマトグラフィーは、キラルカラム、逆相カラムなど親水基、疎水基を分離するすべてのカラムクロマトグラフィーからなる群より選択される、項目42Aに記載の装置。
(項目44A)
前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを検知または定量する手段をさらに含む、項目40A~43Aのいずれか1項に記載の装置。
(項目45A)
前記質量分析がイオンモビリティ分離-質量分析(IMS-MS)であり、前記適用部がホスファチジルイノシトールホスフェートの分解がなされない条件で該IMS-MSに該試料を適用する適用部である、項目40A~44Aのいずれか1項に記載の装置。
(項目46A)
試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを、アシル基を保持しつつ、リン酸基の位置に応じて分離または精製する方法であって、該方法は
A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;および
B)該LC-MSまたはIMS-MSにおけるLCまたはIMSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを収集する工程を包含する、方法。
(項目47A)
ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置について2以上存在する混合物から、該混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む試料を生産する方法であって、
 A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;および
 B)該LC-MSまたはIMS-MSにおけるLCまたはIMSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む画分を収集する工程
を包含する、方法。
(項目48A)
前記混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類は一種類である、項目47Aに記載の方法。
Accordingly, the present invention provides the following.
(Item 1A)
A compound which is lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate.
(Item 2A)
1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidyl The compound according to item 1A, which is inositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate.
(Item 3A)
1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate, 2-acyl-lysophosphatidylinositol- 3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidylinositol-3.4-diphosphate, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol-3,4-diphosphate, 2- Acyl-lysophosphatidylinositol-3,5-diphosphate, 2-acyl -With lysophosphatidylinositol-4,5-diphosphate, 1-acyl-lysophosphatidylinositol-3,4,5-triphosphate, or 2-acyl-lysophosphatidylinositol-3,4,5-triphosphate A compound according to item 1A or 2A.
(Item 4A)
Item 1A-3A which is 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate The compound according to any one of the above.
(Item 5A)
1-butanyl-lysophosphatidylinositol 4-monophosphate;
1-hexanyl-lysophosphatidylinositol 4-monophosphate;
1-octanyl-lysophosphatidylinositol 4-monophosphate;
1-hexadecanyl-lysophosphatidylinositol 4-monophosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate;
1-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
1-octadecanyl-lysophosphatidylinositol 4-monophosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4-monophosphate;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
2-butanyl-lysophosphatidylinositol 4-monophosphate;
2-hexanyl-lysophosphatidylinositol 4-monophosphate;
2-octanyl-lysophosphatidylinositol 4-monophosphate;
2-hexadecanyl-lysophosphatidylinositol 4-monophosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate;
2-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
2-octadecanyl-lysophosphatidylinositol 4-monophosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate;
2-9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4-monophosphate;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
1-butanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate;
1-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate;
1-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
2-butanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate;
2-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate;
2-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
1-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate; and 2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol Selected from the group consisting of 3,4,5-triphosphate,
The compound according to any one of items 1A to 4A.
(Item 6A)
A composition comprising the compound according to any one of items 1A to 5A for use as a disease marker.
(Item 7A)
Item 6. The composition according to Item 6A, wherein the disease marker is an inflammation marker or a cancer marker.
(Item 8A)
The composition of item 7A, wherein the cancer comprises prostate cancer.
(Item 9A)
Item 6. The method for producing a compound according to any one of Items 1A to 5A, comprising a step of deacylating phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with alkylamine. .
(Item 10A)
Item 9. The production method according to Item 9A, wherein the alkylamine is methylamine.
(Item 11A)
Item 10. The production method according to Item 9A or Item 10A, wherein the deacylation is a milder condition than a condition for dediacylation.
(Item 12A)
The method according to Item 11A, wherein the mild condition is achieved by shortening a reaction time, reducing a concentration of the alkylamine, a reaction temperature, or a combination thereof among the conditions for dediacylation.
(Item 13A)
The mild condition is that methylamine is used as the alkylamine, the reaction time is 10 minutes or less, or the concentration of the methylamine is about 11% or less, the reaction temperature is 53 ° C. or less, or the reaction time, the concentration, and the reaction temperature. The method according to item 11A or 12A, which is a combination.
(Item 14A)
(A) a step of providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different mass acyl groups at the 1-position and the 2-position, wherein the acyl group having a desired mass is Existing in a desired position selected from the 1st or 2nd position;
(B) deacylating the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with an alkylamine, and (C) an acyl having a desired mass, if necessary. Removing lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having a group, lysophosphatidylinositol monophosphate having a desired acyl group at a desired position, lysophosphatidylinositol A process for producing diphosphate or lysophosphatidylinositol triphosphate.
(Item 15A)
Concentrating the phospholipid by contacting the sample with an anion exchange resin;
Protecting a phosphate group in the acidic phospholipid with a protecting group; and detecting, identifying or quantifying lysophosphatidylinositol phosphate in the phospholipid by mass spectrometry;
For detecting, identifying or quantifying lysophosphatidylinositol phosphate.
(Item 16A)
The method according to Item 15A, further comprising detecting, identifying or quantifying phosphatidylinositol phosphate in the phospholipid.
(Item 17A)
The method of item 15A or 16A, wherein the protecting group comprises an alkyl group.
(Item 18A)
The method according to any one of Items 15A to 17A, wherein the protecting group comprises a methyl group.
(Item 19A)
The method according to any one of Items 15A to 18A, wherein the mass spectrometry includes a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer.
(Item 20A)
Further, any one of items 15A to 19A, further comprising a step of detecting, identifying or quantifying the fatty acid side chain and / or phosphate group of the lysophosphatidylinositol phosphate using liquid column chromatography or ion mobility separation. 2. The method according to item 1.
(Item 21A)
Item 20. The method according to any one of Items 15A to 20A, which further specifies the position of a phosphate group.
(Item 22A)
Item 21A to Item 21A, wherein in the mass spectrometry, acylglycerol is selected as a product ion (fragment ion) to detect, identify or quantify the fatty acid side chain and / or phosphate group. Method.
(Item 23A)
A method for diagnosing cancer by detection, identification or quantification according to any one of items 15A to 22A.
(Item 24A)
A method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample, the method comprising: A) applying the sample to mass spectrometry (MS); and B) a peak in the MS And locating the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate according to the elution position of the phosphatidylinositol phosphate.
(Item 25A)
The method according to Item 24A, further comprising applying the sample to chromatography in the step A).
(Item 26A)
The mass spectrometry is liquid column chromatography-mass spectrometry (LC-MS);
The method according to item 24A or 25A, wherein the specifying step B) is a step of specifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the LC-MS. .
(Item 27A)
Item 26. The method according to any one of Items 24A to 26A, wherein the total molecular weight of the acyl groups contained in the phosphatidylinositol phosphate is also specified in the specifying step.
(Item 28A)
The method according to any one of Items 24A to 27A, wherein in the identifying step, the kind of acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also identified.
(Item 29A)
The method according to any one of items 24A to 28A, wherein the position of the phosphate group of said phosphatidylinositol phosphate and lysophosphatidylinositol phosphate is specified in the same run.
(Item 30A)
30. The method according to any one of items 24A to 29A, wherein the measurement, detection or identification is performed by distinguishing phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate from other inositol-containing phospholipids.
(Item 31A)
31. The method according to any one of items 24A to 30A, wherein the sample is prepared under a condition that does not decompose phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
(Item 32A)
The method according to Item 31A, wherein the condition includes not performing a deacylation treatment.
(Item 33A)
The method according to any one of items 26A to 32A, wherein the liquid column chromatography is selected from the group consisting of a chiral column, a reverse phase column, and a column chromatography that separates a hydrophilic group and a hydrophobic group.
(Item 34A)
The method of any one of items 24A-33A, wherein the liquid column chromatography is combined with ion mobility separation.
(Item 35A)
The method of any one of items 24A-34A, further comprising quantifying the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
(Item 36A)
The method of any one of items 24A-35A, wherein the sample is an intact sample.
(Item 37A)
The method according to any one of Items 24A to 36A, wherein the identification is performed without labeling the sample.
(Item 38A)
The mass spectrometry is ion mobility separation-mass spectrometry (IMS-MS);
The specifying step B) is a step of specifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the IMS-MS.
The method according to any one of items 24A to 37A.
(Item 39A)
The method of item 38A, comprising any one or more of the items 25A-33A, 35A-37A.
(Item 40A)
An apparatus for measuring, detecting or identifying the position of acyl group and phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample under conditions where mass spectrometry (MS) and phosphatidylinositol phosphate are not decomposed And an application unit that applies the sample to the MS.
(Item 41A)
The device according to Item 40A, further comprising a chromatography device.
(Item 42A)
Item 40A, wherein the mass spectrometry is liquid column chromatography-mass spectrometry (LC-MS), and the application unit is an application unit that applies the sample to the LC-MS under conditions in which phosphatidylinositol phosphate is not decomposed. Or the apparatus of 41A.
(Item 43A)
42. The apparatus according to Item 42A, wherein the liquid column chromatography is selected from the group consisting of all column chromatography that separates hydrophilic groups and hydrophobic groups such as chiral columns and reverse phase columns.
(Item 44A)
The apparatus according to any one of items 40A-43A, further comprising means for detecting or quantifying said phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.
(Item 45A)
The mass spectrometry is ion mobility separation-mass spectrometry (IMS-MS), and the application section is an application section that applies the sample to the IMS-MS under the condition that phosphatidylinositol phosphate is not decomposed. The apparatus of any one of 44A.
(Item 46A)
A method for separating or purifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample according to the position of a phosphate group while retaining an acyl group, the method comprising: A) Steps applied to graphy-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) the elution position of the peak from the eluate of LC or IMS in the LC-MS or IMS-MS Collecting phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at the position of interest specified by.
(Item 47A)
From a mixture of two or more of the phosphate group positions of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate, from the number of types of phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate contained in the mixture A method for producing a sample comprising a phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a small number of positions, comprising:
A) applying the sample to liquid column chromatography-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) LC or IMS in the LC-MS or IMS-MS Collecting a fraction containing phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a target position specified by the elution position of the peak from the eluate.
(Item 48A)
47. The method according to Item 47A, wherein the number of the phosphatidylinositol phosphate and / or the lysophosphatidylinositol phosphate contained in the mixture is less than the number of types of the phosphate group.

 さらに、本発明は以下を提供する。
(1B)試料中のホスファチジルイノシトールホスフェートを測定、検出または同定する方法であって、該方法は
A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)に適用する工程;および
B)該LC-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程
を包含する、方法。
(2B)前記特定する工程において前記ホスファチジルイノシトールホスフェートに含まれるアシル基の有無も特定される、項目1Bに記載の方法。
(3B)前記特定する工程において前記ホスファチジルイノシトールホスフェートに含まれるアシル基の分子量の合計も特定される、項目1Bまたは2Bに記載の方法。
(4B)前記特定する工程において前記ホスファチジルイノシトールホスフェートに含まれるアシル基の種類も特定される、項目1B~3Bのいずれか1項に記載の方法。
(5B)前記測定、検出または同定は、ホスファチジルイノシトールホスフェートを他のイノシトール含有リン脂質から区別して行うことを特徴とする、項目1B~4Bのいずれか1項に記載の方法。
(6B)前記試料は、ホスファチジルイノシトールホスフェートの分解がなされない条件で調製されたものである、項目1B~5Bのいずれか1項に記載の方法。
(7B)前記条件は脱アシル化処理を行わないことを含む、項目6Bに記載の方法。
(8B)前記液体カラムクロマトグラフィーは、キラルカラム、逆相カラム、親水基および疎水基を分離するカラムクロマトグラフィーからなる群より選択される、項目1B~7Bのいずれか1項に記載の方法。
(9B)前記液体カラムクロマトグラフィーは、イオンモビリティ分離と組み合わせられる、項目1B~8Bのいずれか1項に記載の方法。
(10B)前記ホスファチジルイノシトールホスフェートを定量する工程をさらに包含する、項目1B~9Bのいずれか1項に記載の方法。
(11B)前記試料はインタクトな試料である、項目1B~10Bのいずれか1項に記載の方法。
(12B)前記特定は試料を標識せずに行われる、項目1B~11Bのいずれか1項に記載の方
法。
(13B)試料中のホスファチジルイノシトールホスフェートを測定、検出または同定する方法であって、該方法は
A)該試料をイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;およびB)該IMS-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程
を包含する、方法。
(14B)項目2B~8B、10B~12Bのいずれかまたは複数の特徴を備える項目13Bに記載の方法。
(15B)試料中のホスファチジルイノシトールホスフェートのアシル基およびリン酸基の位置を測定、検出または同定する装置であって、液体カラムクロマトグラフィー-質量分析(LC-MS)と、ホスファチジルイノシトールホスフェートの分解がなされない条件で該LC-MSに該試料を適用する適用部とを含む装置。
(16B)前記液体カラムクロマトグラフィーは、キラルカラム、逆相カラムなど親水基、疎水基を分離するすべてのカラムクロマトグラフィーからなる群より選択される、項目15Bに記載の装置。
(17B)前記ホスファチジルイノシトールホスフェートを検知または定量する手段をさらに含む、項目15Bまたは16Bに記載の装置。
(17B2)項目2B~12Bのいずれかまたは複数の特徴を備える項目15B~17Bのいずれか1項に記載の装置。
(18B)試料中のホスファチジルイノシトールホスフェートのアシル基およびリン酸基の位置を測定、検出または同定する装置であって、イオンモビリティ分離-質量分析(IMS-MS)と、ホスファチジルイノシトールホスフェートの分解がなされない条件で該IMS-MSに該試料を適用する適用部とを含む装置。
(18B2)項目2B~12Bのいずれかまたは複数の特徴を備える項目18Bに記載の装置。
(19B)試料中のホスファチジルイノシトールホスフェートを、アシル基を保持しつつ、リン酸基の位置に応じて分離または精製する方法であって、該方法は
A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;および
B)該LC-MSまたはIMS-MSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートを収集する工程を包含する、方法。
(19B2)項目2B~12Bのいずれかまたは複数の特徴を備える項目19Bに記載の方法。
(20B)ホスファチジルイノシトールホスフェートのリン酸基の位置について2以上存在する混合物から、該混合物に含まれるホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類の位置にリン酸基を有するホスファチジルイノシトールホスフェートを含む試料を生産する方法であって、
 A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;および
 B)該LC-MSまたはIMS-MSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートを含む画分を収集する工程
を包含する、方法。
(21B)前記混合物に含まれるホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類は一種類である、項目20Bに記載の方法。
(21B2)項目2B~12Bのいずれかまたは複数の特徴を備える項目20Bまたは21Bに記載の方法。
Furthermore, the present invention provides the following.
(1B) a method for measuring, detecting or identifying phosphatidylinositol phosphate in a sample, the method comprising: A) applying the sample to liquid column chromatography-mass spectrometry (LC-MS); and B) A method comprising the step of locating the phosphate group of the phosphatidylinositol phosphate by the elution position of the peak in LC-MS.
(2B) The method according to Item 1B, wherein the presence or absence of an acyl group contained in the phosphatidylinositol phosphate is also specified in the specifying step.
(3B) The method according to item 1B or 2B, wherein the total molecular weight of the acyl groups contained in the phosphatidylinositol phosphate is also specified in the specifying step.
(4B) The method according to any one of items 1B to 3B, wherein the type of acyl group contained in the phosphatidylinositol phosphate is also specified in the specifying step.
(5B) The method according to any one of Items 1B to 4B, wherein the measurement, detection or identification is performed by distinguishing phosphatidylinositol phosphate from other inositol-containing phospholipids.
(6B) The method according to any one of items 1B to 5B, wherein the sample is prepared under a condition in which phosphatidylinositol phosphate is not decomposed.
(7B) The method according to Item 6B, wherein the condition includes not performing a deacylation treatment.
(8B) The method according to any one of Items 1B to 7B, wherein the liquid column chromatography is selected from the group consisting of a chiral column, a reverse phase column, and column chromatography for separating a hydrophilic group and a hydrophobic group.
(9B) The method according to any one of items 1B to 8B, wherein the liquid column chromatography is combined with ion mobility separation.
(10B) The method according to any one of items 1B to 9B, further comprising the step of quantifying the phosphatidylinositol phosphate.
(11B) The method according to any one of items 1B to 10B, wherein the sample is an intact sample.
(12B) The method according to any one of items 1B to 11B, wherein the specifying is performed without labeling the sample.
(13B) a method for measuring, detecting or identifying phosphatidylinositol phosphate in a sample, the method comprising: A) applying the sample to ion mobility separation-mass spectrometry (IMS-MS); and B) the IMS A method comprising locating the phosphate group of the phosphatidylinositol phosphate by the elution position of the peak in MS.
(14B) The method according to item 13B, comprising any one or more of items 2B to 8B, 10B to 12B.
(15B) An apparatus for measuring, detecting or identifying the positions of acyl groups and phosphate groups of phosphatidylinositol phosphate in a sample, wherein liquid column chromatography-mass spectrometry (LC-MS) and decomposition of phosphatidylinositol phosphate are performed. And an application unit that applies the sample to the LC-MS under conditions that are not performed.
(16B) The apparatus according to item 15B, wherein the liquid column chromatography is selected from the group consisting of all column chromatography that separates hydrophilic groups and hydrophobic groups, such as chiral columns and reversed phase columns.
(17B) The apparatus according to item 15B or 16B, further comprising means for detecting or quantifying the phosphatidylinositol phosphate.
(17B2) The apparatus according to any one of items 15B to 17B, comprising any one or a plurality of features of items 2B to 12B.
(18B) An apparatus for measuring, detecting or identifying the position of acyl group and phosphate group of phosphatidylinositol phosphate in a sample, wherein ion mobility separation-mass spectrometry (IMS-MS) and phosphatidylinositol phosphate are not decomposed. And an application unit that applies the sample to the IMS-MS under non-operating conditions.
(18B2) The apparatus according to item 18B, comprising any one or more of the items 2B to 12B.
(19B) A method for separating or purifying phosphatidylinositol phosphate in a sample according to the position of a phosphate group while retaining an acyl group, the method comprising: A) liquid column chromatography-mass spectrometry of the sample (LC-MS) or a step applied to ion mobility separation-mass spectrometry (IMS-MS); and B) from the eluate of the LC-MS or IMS-MS to the target position specified by the elution position of the peak Collecting a phosphatidylinositol phosphate having a phosphate group.
(19B2) The method according to item 19B, comprising any one or more of the items 2B to 12B.
(20B) A phosphatidyl group having a phosphate group at a kind of position less than the number of kinds of the phosphate group of the phosphatidylinositol phosphate included in the mixture from a mixture of two or more phosphate groups of the phosphatidylinositol phosphate A method for producing a sample comprising inositol phosphate, comprising:
A) applying the sample to liquid column chromatography-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) from the eluate of the LC-MS or IMS-MS, Collecting a fraction containing a phosphatidylinositol phosphate having a phosphate group at a target position specified by an elution position of a peak.
(21B) The method according to item 20B, wherein the number of the phosphoric acid group positions of the phosphatidylinositol phosphate contained in the mixture is less than the number of kinds.
(21B2) The method according to item 20B or 21B, comprising any one or more of the items 2B to 12B.

 これまでの分析方法はリン酸化の位置異性体を分離することができず3つのアイソマーの総和で測定していたが、質量分析法(MS)を必要に応じてクロマトグラフィーまたはイオンモビリティ分離(IMS)と組み合わせて用いることでアイソマーを分離して測定できる方法を開発した。1つの実施形態では、本発明は、キラルカラムを用いることで8種類のPIPsおよびLPIPsアイソマーをインタクトな状態で分離して測定できる分析法に関する。例示的な分析にはtriple quadrapole mass spectrometerによるMRM/SRMが用いられる。Q1はインタクトなプレカーサーイオンを設定し、Q3にはイノシトールホスフェートが脱離したDAGもしくはMAGをプロダクトイオンとして設定される。 Previous analytical methods were unable to separate the regioisomers of phosphorylation and were measured by the sum of the three isomers, but mass spectrometry (MS) was performed by chromatography or ion mobility separation (IMS) as required. ) Has been developed to separate and measure isomers. In one embodiment, the present invention relates to an analytical method that can separate and measure eight PIPs and LPIPs isomers intact using a chiral column. An exemplary analysis uses MRM / SRM with triple quadrole mass spectrometer. Q1 sets an intact precursor ion, and Q3 sets DAG or MAG from which inositol phosphate is eliminated as a product ion.

 本発明はまた、以下を提供する。
(1C)リゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸である化合物。
(2C)1-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール一リン酸、1-アシル-リゾホスファチジルイノシトール二リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸、または2-アシル-リゾホスファチジルイノシトール三リン酸である項目1Cに記載の化合物。
(3C)1-アシル-リゾホスファチジルイノシトール-3-一リン酸、1-アシル-リゾホスファチジルイノシトール-4-一リン酸、1-アシル-リゾホスファチジルイノシトール-5-一リン酸、2-アシル-リゾホスファチジルイノシトール-3-一リン酸、2-アシル-リゾホスファチジルイノシトール-4-一リン酸、2-アシル-リゾホスファチジルイノシトール-5-一リン酸、1-アシル-リゾホスファチジルイノシトール-3.4-二リン酸、1-アシル-リゾホスファチジルイノシトール-3.5-二リン酸、1-アシル-リゾホスファチジルイノシトール-4.5-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,4-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,5-二リン酸、2-アシル-リゾホスファチジルイノシトール-4,5-二リン酸、1-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸、または2-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸である項目1Cまたは2Cに記載の化合物。
(4C)2-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸または2-アシル-リゾホスファチジルイノシトール三リン酸である項目1C~3Cのいずれか一項に記載の化合物。
(5C)1-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
2-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
1-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;および
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸
からなる群より選択される、
項目1C~4Cのいずれか一項に記載の化合物。
(6C)がんマーカーとして使用するための、項目1C~5Cのいずれか1項に記載の化合物を含む組成物。
(7C)前記がんは前立腺がんを含む、項目6Cに記載の組成物。
(8C)ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸をアルキルアミンに接触させることで脱アシル化する工程を包含する、項目1C~5Cのいずれか一項に記載の化合物または項目6Cまたは7Cに記載の組成物の製造方法。
(9C)前記アルキルアミンは、メチルアミンである、項目8Cに記載の製造方法。
(10C) 前記脱アシル化は、脱ジアシル化する条件より緩和な条件である、項目8Cまたは9Cに記載の製造方法。
(11C)前記緩和な条件は、脱ジアシル化する条件のうち反応時間の短縮、前記アルキルアミンの濃度の低減、反応温度、またはその組み合わせで達成される、項目10Cに記載の方法。
(12C)前記緩和な条件は、アルキルアミンとしてメチルアミンを用い、10分間以下の反応時間または該メチルアミンの濃度が約11%以下、反応温度が53℃以下あるいは該反応時間および該濃度および該反応温度の組み合わせである、項目10Cまたは11Cに記載の方法。
(13C)(A)1位と2位とに異なる質量のアシル基を有するホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を提供する工程であって、所望の質量を有するアシル基が1位または2位から選択される所望の位置に存在する、工程;(B)該ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を、アルキルアミンに接触させることで脱アシル化する工程、および(C)必要に応じて、所望の質量のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を取り出す工程を包含する、所望の位置に所望のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を製造する方法。
(14C)(A)試料を、陰イオン交樹脂に接触させることによりリン脂質を濃縮する工程;(B)該酸性リン脂質中のリン酸基を保護基で保護する工程;および(C)質量分析法により、該リン脂質中にリゾホスファチジルイノシトールリン酸塩を検出、同定または定量する工程、を包含する、リゾホスファチジルイノシトールリン酸塩を検出、同定または定量する方法。
(15C)前記保護基はアルキル基を含む、項目14Cに記載の方法。
(16C)前記保護基はメチル基を含む、項目14Cまたは15Cに記載の方法。
(17C)前記質量分析法は三連四重極質量分析計による選択反応モニタリング法(SRM)を含む、項目14C~16Cのいずれか一項に記載の方法。
(18C)さらに、逆相カラムクロマトグラフィーを用いて前記リゾホスファチジルイノシトールリン酸塩の脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う工程を包含する、項目14C~17Cのいずれか一項に記載の方法。
(19C)前記逆相カラムクロマトグラフィーにおいて、ジアシルグリセロールをプロダクトイオン(フラグメントイオン)として選択して前記脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う、項目18Cに記載の方法。
(20C)項目14C~19Cのいずれか一項に記載の検出、同定または定量により、がんの診断を行う方法。
The present invention also provides the following.
(1C) A compound which is lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate.
(2C) 1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl The compound according to item 1C, which is lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate.
(3C) 1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate, 2-acyl-lyso Phosphatidylinositol-3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidylinositol-3-4-2 Phosphoric acid, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol-3,4-diphosphate 2-acyl-lysophosphatidylinositol-3,5-diphosphate, -Acyl-lysophosphatidylinositol-4,5-diphosphate, 1-acyl-lysophosphatidylinositol-3,4,5-triphosphate, or 2-acyl-lysophosphatidylinositol-3,4,5-triphosphate The compound according to item 1C or 2C, which is an acid.
(4C) Item 1C which is 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate The compound according to any one of ˜3C.
(5C) 1-butanyl-lysophosphatidylinositol 4-monophosphate;
1-hexanyl-lysophosphatidylinositol 4-monophosphate;
1-octanyl-lysophosphatidylinositol 4-monophosphate;
1-hexadecanyl-lysophosphatidylinositol 4-monophosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate;
1-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
1-octadecanyl-lysophosphatidylinositol 4-monophosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4-monophosphate;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
2-butanyl-lysophosphatidylinositol 4-monophosphate;
2-hexanyl-lysophosphatidylinositol 4-monophosphate;
2-octanyl-lysophosphatidylinositol 4-monophosphate;
2-hexadecanyl-lysophosphatidylinositol 4-monophosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate;
2-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
2-octadecanyl-lysophosphatidylinositol 4-monophosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate;
2-9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4-monophosphate;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
1-butanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate;
1-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate;
1-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
2-butanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate;
2-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate;
2-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
1-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate; and 2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol Selected from the group consisting of 3,4,5-triphosphate,
The compound according to any one of Items 1C to 4C.
(6C) A composition comprising the compound according to any one of items 1C to 5C for use as a cancer marker.
(7C) The composition according to item 6C, wherein the cancer comprises prostate cancer.
(8C) The compound according to any one of items 1C to 5C, comprising a step of deacylating phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with alkylamine. Or the manufacturing method of the composition of item 6C or 7C.
(9C) The method according to Item 8C, wherein the alkylamine is methylamine.
(10C) The production method according to item 8C or 9C, wherein the deacylation is a milder condition than a condition for dediacylation.
(11C) The method according to item 10C, wherein the mild condition is achieved by shortening a reaction time, reducing a concentration of the alkylamine, a reaction temperature, or a combination thereof among the conditions for dediacylation.
(12C) The mild condition is that methylamine is used as the alkylamine, the reaction time is 10 minutes or less, or the methylamine concentration is about 11% or less, the reaction temperature is 53 ° C. or less, or the reaction time, the concentration, and the concentration The method according to item 10C or 11C, which is a combination of reaction temperatures.
(13C) (A) A step of providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having acyl groups with different masses at the 1-position and the 2-position, and having a desired mass An acyl group is present at a desired position selected from the 1-position or 2-position; (B) contacting the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate with an alkylamine; And (C) optionally removing lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having a desired mass of acyl group. At the desired position How to the production of lyso-phosphatidyl inositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having an acyl group.
(14C) (A) a step of concentrating the phospholipid by contacting the sample with an anionic resin; (B) a step of protecting a phosphate group in the acidic phospholipid with a protecting group; and (C) a mass. A method for detecting, identifying or quantifying lysophosphatidylinositol phosphate, comprising the step of detecting, identifying or quantifying lysophosphatidylinositol phosphate in said phospholipid by an analytical method.
(15C) The method according to item 14C, wherein the protecting group comprises an alkyl group.
(16C) The method according to item 14C or 15C, wherein the protecting group comprises a methyl group.
(17C) The method according to any one of items 14C to 16C, wherein the mass spectrometry includes a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer.
(18C) Any of items 14C to 17C, further comprising the step of detecting, identifying or quantifying the fatty acid side chain and / or phosphate group of the lysophosphatidylinositol phosphate using reverse phase column chromatography. The method according to one item.
(19C) The method according to item 18C, wherein in the reverse phase column chromatography, diacylglycerol is selected as a product ion (fragment ion) to detect, identify or quantify the fatty acid side chain and / or phosphate group.
(20C) A method for diagnosing cancer by detection, identification or quantification according to any one of items 14C to 19C.

 本発明において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本発明のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present invention, it is contemplated that the one or more features described above may be provided in further combinations in addition to the explicit combinations. Still further embodiments and advantages of the invention will be recognized by those of ordinary skill in the art upon reading and understanding the following detailed description as needed.

 本発明は、新しい脂質を提供することで、これらの脂質の生命機能を解明し、医療応用を図ることができる。また、新しい創薬標的を提示することができる。また、本発明は、新しい測定法を提供することによって、新たな診断、検出法を提供することができる。 The present invention provides new lipids to elucidate the vital functions of these lipids and can be applied to medical applications. In addition, new drug discovery targets can be presented. In addition, the present invention can provide a new diagnosis and detection method by providing a new measurement method.

 また、本発明を用いると、インタクトの状態で、ホスホイノシタイドおよび/またはリゾホスホイノシタイドを、リン酸基の位置で分離して、測定、検出または同定することができることから、生体内の詳細な分析を行うことができる。このような情報は生体の情報、薬理情報、医薬品の開発、治療、診断等において有用である。 In addition, when the present invention is used, phosphoinositide and / or lysophosphoinositide can be separated at the position of a phosphate group and measured, detected or identified in an intact state. Analysis can be performed. Such information is useful in biological information, pharmacological information, drug development, treatment, diagnosis, and the like.

図1Aは、「三連四重極質量分析計でのSRMによる測定および検出方法」の原理を説明する模式図である。FIG. 1A is a schematic diagram for explaining the principle of “measurement and detection method by SRM in a triple quadrupole mass spectrometer”. 図1Bは、本発明の化合物の合成の条件検討のための実験結果を示す。従来の脱アシル化反応条件では生成されず、反応時間の短縮(上段)やメチルアミン濃度の低下(下段)によってLPIP1が得られることを示す例である。縦軸は反応生成物の収率(%)を示し、横軸は時間(分)を示す。FIG. 1B shows the experimental results for studying the conditions for the synthesis of the compounds of the present invention. In this example, LPIP1 is not produced under the conventional deacylation reaction conditions, but LPIP1 can be obtained by shortening the reaction time (upper stage) or decreasing the methylamine concentration (lower stage). The vertical axis represents the yield (%) of the reaction product, and the horizontal axis represents time (minutes). 図1Cは反応温度の検討結果を示す。原料として17:0/20:4 PI4Pを用いた。生成物は17:0 LPIP1と20:4 LPIP1である。縦軸はLPIP1生成物の収率(%)を示す。FIG. 1C shows the results of examining the reaction temperature. 17: 0/20: 4 PI4P was used as a raw material. The products are 17: 0 LPIP1 and 20: 4 LPIP1. The vertical axis shows the yield (%) of LPIP1 product. 図2Aから2Gは、リン酸化パターンが異なる7種類のLPIPsを、図1に示す緩和な条件での脱アシル化反応により合成できることを示すものである。いずれの場合においても、アシル基が異なるLPIPsを合成することができることを、17:0、20:4をもつLPIPsの生成により例示している。図2Aは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI3P、目的生成物:17:0 LPI3P(上):ms1=754.390、ms2=327.290;20:4 LPI3P(下):ms1=788.370、ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。2A to 2G show that seven types of LPIPs having different phosphorylation patterns can be synthesized by a deacylation reaction under mild conditions shown in FIG. In either case, the ability to synthesize LPIPs with different acyl groups is illustrated by the generation of LPIPs with 17: 0, 20: 4. FIG. 2A shows the identification data of a synthetic product of the compound of the present invention. Raw material: 17: 0/20: 4 PI3P, target product: 17: 0 LPI3P (top): ms1 = 754.390, ms2 = 327.290; 20: 4 LPI3P (bottom): ms1 = 788.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図2Bは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI4P、目的生成物:17:0 LPI4P(上):ms1=754.390、ms2=327.290;20:4 LPI4P(下):ms1=788.370、ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 2B shows the identification data of a synthetic product of the compound of the present invention. Raw material: 17: 0/20: 4 PI4P, target product: 17: 0 LPI4P (top): ms1 = 754.390, ms2 = 327.290; 20: 4 LPI4P (bottom): ms1 = 788.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図2Cは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI5P、目的生成物:17:0 LPI5P(上):ms1=754.390、ms2=327.290;20:4 LPI5P(下):ms1=788.370、ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 2C shows identification data for a synthetic product of the compounds of the present invention. Raw material: 17: 0/20: 4 PI5P, target product: 17: 0 LPI5P (top): ms1 = 754.390, ms2 = 327.290; 20: 4 LPI5P (bottom): ms1 = 788.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図2Dは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI(3,4)P2、目的生成物:17:0 LPI(3,4)P2(上):ms1=862.390、ms2=327.290;20:4 LPI(3,4)P2(下):ms1=896.370、ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 2D shows identification data for a synthetic product of the compounds of the present invention. Raw material: 17: 0/20: 4 PI (3,4) P2, target product: 17: 0 LPI (3,4) P2 (top): ms1 = 862.390, ms2 = 327.290; 20: 4 LPI (3 4) P2 (bottom): ms1 = 896.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図2Eは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI(3,5)P2、目的生成物:17:0 LPI(3,5)P2(上):ms1=862.390、ms2=327.290;20:4 LPI(3,5)P2(下):ms1=896.370,ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 2E shows identification data for a synthetic product of the compounds of the present invention. Raw material: 17: 0/20: 4 PI (3,5) P2, target product: 17: 0 LPI (3,5) P2 (top): ms1 = 862.390, ms2 = 327.290; 20: 4 LPI (3 5) P2 (bottom): ms1 = 896.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図2Fは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI(4,5)P2、目的生成物:L17:0 PI(4,5)P2(上):ms1=862.390、ms2=327.290;20:4 LPI(4,5)P2(下):ms1=896.370、ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 2F shows identification data of a synthetic product of the compound of the present invention. Raw material: 17: 0/20: 4 PI (4,5) P2, target product: L17: 0 PI (4,5) P2 (top): ms1 = 862.390, ms2 = 327.290; 20: 4 LPI (4 5) P2 (bottom): ms1 = 896.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図2Gは本発明の化合物の合成品の同定データを示す。原料:17:0/20:4 PI(3,4,5)P3、目的生成物:17:0 LPI(3,4,5)P3(上):ms1=970.390、ms2=327.290;20:4 LPI(3,4,5)P3(下):ms1=1004.370、ms2=361.270。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 2G shows identification data for a synthetic product of the compounds of the invention. Raw material: 17: 0/20: 4 PI (3,4,5) P3, target product: 17: 0 LPI (3,4,5) P3 (top): ms1 = 970.390, ms2 = 327.290; 20: 4 LPI (3,4,5) P3 (bottom): ms1 = 1004.370, ms2 = 361.270. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図3A~3Fにおいて、Thermo Fisher ScientificTM Q ExactiveTM plus(ハイブリッド四重極-オービトラップ質量分析計)を用いて精密質量を測定することで、本発明の構造の同定(LPIP1、LPIP2、およびLPIP3の構造確認)を行った結果を示す。図3Aは、37:4 PI(4)P(sn-1 17:0、sn-2 20:4 PI(4)P)の緩和な脱アシル化反応(図1参照)によって生ずる二種のLPI(4)Pについて、LPI(4)PならびにLPI(4)Pに由来するフラグメントの精密質量分析を行った結果を示す。縦軸は相対的存在量を示し、横軸は時間(分)を示す。In Figure 3A ~ 3F, Thermo Fisher Scientific TM Q Exactive TM plus ( hybrid quadrupole - Orbitrap mass spectrometer) by measuring accurate mass using the identification of the structure of the present invention (LPIP1, LPIP2, and LPIP3 The result of the confirmation of the structure is shown. FIG. 3A shows two types of LPI produced by a mild deacylation reaction (see FIG. 1) of 37: 4 PI (4) P (sn-1 17: 0, sn-2 20: 4 PI (4) P). (4) About P, the result of having performed the exact mass spectrometry of the fragment derived from LPI (4) P and LPI (4) P is shown. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図3Bは、37:4 PI(4)P、脱アシル化反応後の生成物とそのフラグメントの構造式を示す。FIG. 3B shows the structural formula of 37: 4 PI (4) P, the product after the deacylation reaction, and fragments thereof. 図3Cは、37:4 PI(4,5)P2(sn-1 17:0、sn-2 20:4 PI(4,5)P2)の緩和な脱アシル化反応によって生ずる二種のLPI(4,5)P2について、LPI(4,5)P2ならびにLPI(4,5)P2に由来するフラグメントの精密質量分析を行った結果を示す。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 3C shows two types of LPIs produced by a mild deacylation reaction of 37: 4 PI (4,5) P2 (sn-1 17: 0, sn-2 20: 4 PI (4,5) P2). 4,5) P2 shows the results of accurate mass analysis of LPI (4,5) P2 and fragments derived from LPI (4,5) P2. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図3Dは、37:4 PI(4,5)P2、脱アシル化反応後の生成物とそのフラグメントの構造式を示すFIG. 3D shows the structural formula of 37: 4 PI (4,5) P2, the product after the deacylation reaction, and its fragment. 図3Eは、37:4 PI(3,4,5)P3(sn-1 17:0、sn-2 20:4 PI(3,4,5)P3)の緩和な脱アシル化反応によって生ずる二種のLPI(3,4,5)P3について、LPI(3,4,5)P3ならびにLPI(3,4,5)P3に由来するフラグメントの精密質量分析を行った結果を示す。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 3E shows a two-dimensional reaction resulting from a mild deacylation reaction of 37: 4 PI (3,4,5) P3 (sn-1 17: 0, sn-2 20: 4 PI (3,4,5) P3). The result of carrying out the accurate mass spectrometry of the fragment derived from LPI (3,4,5) P3 and LPI (3,4,5) P3 is shown for the species LPI (3,4,5) P3. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図3Fは、37:4 PI(3,4,5)P3、脱アシル化反応後の生成物とそのフラグメントの構造式を示す。FIG. 3F shows the structural formula of 37: 4 PI (3,4,5) P3, the product after the deacylation reaction, and its fragment. 図4Aは、イノシトールリン脂質のスピン系の概要を表す。実線で囲った箇所は連続したJカップリングで連結しているH核の集団を示し、破線で囲った箇所はH核と31P核がJカップリングしている箇所を示す。FIG. 4A represents an overview of the spin system of inositol phospholipids. A portion surrounded by a solid line indicates a group of 1 H nuclei connected by continuous 3 J coupling, and a portion surrounded by a broken line indicates a portion where 1 H nuclei and 31 P nuclei are 3 J coupled. 図4Bは、Brain PI4P(Avanti Polar Lipids、アラバマ、米国)のNMRスペクトルから観察された化学構造を示す。1-ステアロイル-2-アラキドニル-sn-グリセロ-3-ホスホ-(1’-ミオ-イノシトール-4’-モノホスフェート)の構造式およびH-1D、TOCSYスペクトルのシグナルから観察された化学構造を示す。脂肪酸、グリセロールおよびイノシトールのシグナルが一通り観測された。C1のCHは磁気的非等価であった。アラキドン酸のaCH、bCHおよびgCHは分離して観測された。FIG. 4B shows the chemical structure observed from the NMR spectrum of Brain PI4P (Avanti Polar Lipids, Alabama, USA). The chemical structure of 1-stearoyl-2-arachidonyl-sn-glycero-3-phospho- (1′-myo-inositol-4′-monophosphate) and the chemical structure observed from the signals of 1 H-1D and TOCSY spectra Show. A series of fatty acid, glycerol and inositol signals were observed. CH 2 of C1 was magnetically non-equivalent. Arachidonic acids aCH 2 , bCH 2 and gCH 2 were observed separately. 図4Cは、実施例1の試料1(16:0 LPI4P)のH-1D、TOCSY スペクトルから観察された化学構造を示す。16:0 LPI4Pの構造式およびH-1D、TOCSYスペクトルから観察された化学構造を示す。脂肪酸、グリセロール骨格のC1およびC3のシグナルが観測された。4ppm前後の領域に、イノシトール環と考えられるシグナルが、弱く観測された。多価不飽和脂肪酸のシグナルは観測されなかった。FIG. 4C shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of Sample 1 of Example 1 (16: 0 LPI4P). The chemical structure observed from the structural formula of 16: 0 LPI4P and 1 H-1D and TOCSY spectra is shown. Fatty acid and glycerol skeleton C1 and C3 signals were observed. In the region around 4 ppm, a signal considered to be an inositol ring was weakly observed. No signal of polyunsaturated fatty acids was observed. 図4Dは、実施例1の試料2(17:0 LPI(4,5)P2)のH-1D、TOCSYスペクトルから観察された化学構造を示す。17:0 LPI(4,5)P2の構造式およびH-1D、TOCSYスペクトルのシグナルから観察された化学構造を示す。脂肪酸、グリセロール骨格のC1およびC3のシグナルが観測された。C1、C3、aCH(およびbCH)のマイナーシグナルが観測された。4ppm前後の領域に、イノシトール環と考えられるシグナルが、弱く観測された。FIG. 4D shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of Sample 2 of Example 1 (17: 0 LPI (4,5) P2). 17: 0 shows the chemical structure observed from the structural formula of LPI (4,5) P2 and the signals of 1 H-1D and TOCSY spectra. Fatty acid and glycerol skeleton C1 and C3 signals were observed. Minor signals of C1, C3, aCH 2 (and bCH 2 ) were observed. In the region around 4 ppm, a signal considered to be an inositol ring was weakly observed. 図4Eは、実施例1の試料3(18:0 LPI(4,5)P2)のH-1D、TOCSYスペクトルから観察された化学構造を示す。18:0 LPI(4,5)P2の構造式およびH-1D、TOCSYスペクトルのシグナルから観察された化学構造を示す。脂肪酸、グリセロール骨格のC1およびC3のシグナルが観測された。C1、C3、aCH(およびbCH)のマイナーシグナルが観測され、これは、試料1および2よりも弱かった。4ppm前後の領域に、イノシトール環と考えられるシグナルが、弱く観測された。FIG. 4E shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of sample 3 of Example 1 (18: 0 LPI (4,5) P2). 18: 0 shows the chemical structure observed from the structural formula of LPI (4,5) P2 and the signals of 1 H-1D and TOCSY spectra. Fatty acid and glycerol skeleton C1 and C3 signals were observed. A minor signal of C1, C3, aCH 2 (and bCH 2 ) was observed, which was weaker than samples 1 and 2. In the region around 4 ppm, a signal considered to be an inositol ring was weakly observed. 図4Fは、実施例1の試料5(17:0/20:4 PI(4,5)P2)のH-1D、TOCSYスペクトルから観察された化学構造を示す。17:0/20:4 PI(4,5)P2の構造式およびH-1D、TOCSYスペクトルのシグナルから観察された化学構造を示す。脂肪酸、グリセロール骨格のC1、C2、C3のシグナルが観測された。アラキドン酸のaCH、bCH、gCHが、分離して観測された。多価不飽和脂肪酸(-CH=CH-CH-CH=CH-、-CH=CH-)のシグナルはほとんど観測されなかった。FIG. 4F shows the chemical structure observed from the 1 H-1D, TOCSY spectrum of Sample 5 of Example 1 (17: 0/20: 4 PI (4,5) P2). 17: 0/20: 4 This shows the chemical structure observed from the structural formula of PI (4,5) P2 and the signals of 1 H-1D and TOCSY spectra. Fatty acid and glycerol skeleton C1, C2, and C3 signals were observed. Arachidonic acids aCH 2 , bCH 2 , gCH 2 were observed separately. Signals of polyunsaturated fatty acids (—CH═CH—CH 2 —CH═CH—, —CH═CH—) were hardly observed. 図5A~5Dにおいて、本発明の化合物について、生物試料(培養癌細胞株)における存在に関するデータを示す。図5AはHEK293T細胞にLPIPsが存在することを示す。縦軸はホスファチジルセリン(PS)1nmolに対する化合物の存在量(pmol)を表し、横軸は、分子種を表す。5A-5D show data relating to the presence of a compound of the invention in a biological sample (cultured cancer cell line). FIG. 5A shows the presence of LPIPs in HEK293T cells. The vertical axis represents the abundance (pmol) of the compound relative to 1 nmol of phosphatidylserine (PS), and the horizontal axis represents the molecular species. 図5BはJurkat細胞にLPIPsが存在することを示す。縦軸はホスファチジルセリン(PS)1nmolに対する化合物の存在量(pmol)を表し、横軸は、分子種を表す。FIG. 5B shows the presence of LPIPs in Jurkat cells. The vertical axis represents the abundance (pmol) of the compound relative to 1 nmol of phosphatidylserine (PS), and the horizontal axis represents the molecular species. 図5CはHEK293T細胞に存在するLPIP3とそのフラグメントの精密質量測定結果を示す。縦軸は相対的存在量を示し、横軸はm/z(質量/電荷数)を示す。FIG. 5C shows the results of accurate mass measurement of LPIP3 and fragments thereof present in HEK293T cells. The vertical axis represents relative abundance, and the horizontal axis represents m / z (mass / number of charges). 図5DはHEK293T細胞に存在するLPIP3とそのフラグメントの溶出時間の一致を示す。縦軸は相対的存在量を示し、横軸は時間(分)を示す。FIG. 5D shows the coincidence of elution times of LPIP3 present in HEK293T cells and fragments thereof. The vertical axis represents relative abundance, and the horizontal axis represents time (minutes). 図6A~6Dにおいて、本発明の化合物について、生物試料(マウス、ヒト)における存在に関するデータを示す。図6Aはマウス心臓、大腸、肝臓、脳(全脳)、脾臓にLPIPsが存在することを示す。縦軸はホスファチジルセリン(PS)1nmolに対する化合物の存在量(pmol)を表し、横軸は細胞の種類を表す。6A-6D show data relating to the presence in biological samples (mouse, human) for the compounds of the present invention. FIG. 6A shows that LPIPs are present in the mouse heart, large intestine, liver, brain (whole brain), and spleen. The vertical axis represents the abundance (pmol) of the compound relative to 1 nmol of phosphatidylserine (PS), and the horizontal axis represents the cell type. 図6Bはマウス血清にLPIPsが存在することを示す。縦軸は血清1μLに対する化合物の存在量(fmol)を表し、横軸は、分子種を表す。FIG. 6B shows the presence of LPIPs in mouse serum. The vertical axis represents the abundance (fmol) of the compound relative to 1 μL of serum, and the horizontal axis represents the molecular species. 図6Cはマウス血漿にLPIPsが存在することを示す。縦軸は血漿1μLに対する化合物の存在量(fmol)を表し、横軸は、分子種を表す。FIG. 6C shows the presence of LPIPs in mouse plasma. The vertical axis represents the abundance (fmol) of the compound relative to 1 μL of plasma, and the horizontal axis represents the molecular species. 図6Dはヒト血清にLPIPsが存在することを示す。縦軸は血清1μLに対する化合物の存在量(fmol)を表し、横軸は、分子種を表す。FIG. 6D shows the presence of LPIPs in human serum. The vertical axis represents the abundance (fmol) of the compound relative to 1 μL of serum, and the horizontal axis represents the molecular species. 図7Aは上段にマウス前立腺重量(縦軸は、重量(mg)を示し、横軸は、組織の種類を表す。)、下段に前立腺HE染色像を示しており、Ptenを欠損するマウスが前立腺癌を発症することを示す。FIG. 7A shows mouse prostate weight in the upper row (vertical axis indicates weight (mg), horizontal axis indicates tissue type), and lower row shows prostate HE-stained image. Indicates that cancer develops. 図7Bは、前立腺癌の発症に伴い、前立腺におけるLPIPsレベルが上昇することを示す。縦軸はホスファチジルセリン(PS)1nmolに対するLPIPsレベル(A.U.(arbitrary unit))を表し、横軸のCtrlは、正常マウスを指し、PTEN KOは、がん抑制遺伝子Ptenを前立腺特異的に欠損するマウスを指す。FIG. 7B shows that LPIPs levels in the prostate increase with the development of prostate cancer. The vertical axis represents LPIPs level (AU (arbitrary unit)) for 1 nmol of phosphatidylserine (PS), the horizontal axis Ctrl indicates normal mice, and PTEN KO expresses the tumor suppressor gene Pten in a prostate-specific manner. Refers to a deficient mouse. 図8は、起炎性物質である補体成分5aによる刺激に伴い、骨髄球でLPIP3が生成されることを示す。縦軸は、10個の細胞に対するLPIP3の存在量(pmol)を示し、横軸の「-」は、補体成分5aによる刺激がされていないことを指し、「+」は、補体成分5aによる刺激がされていることを指す。FIG. 8 shows that LPIP3 is generated in myelocytes upon stimulation with complement component 5a, which is a inflammatory substance. The vertical axis indicates the abundance (pmol) of LPIP3 with respect to 10 6 cells, the horizontal axis “−” indicates that stimulation by the complement component 5a is not performed, and “+” indicates the complement component This means that stimulation by 5a is being performed. 図9Aおよび図9Bは、キラルカラムによる17:0/20:4ホスホイノシタイドの分離を示す図である。各グラフは表示されるリン酸基のホスホイノシタイド試料を質量分析計で測定した場合のクロマトグラムであり、横軸は保持時間(分)を表し、縦軸はピークトップのシグナル強度(cps)を100%としたときの相対的なシグナル強度を表す。図9Aの左欄はPI、中央の欄は、上から、PI(3)P、PI(4)PおよびPI(5)Pをそれぞれ示し、右欄はそれらの混合物(PIP1mix)を示す。右から2番目の欄は、PI(3,5)P,PI(3,4)P2PI(4,5)P2およびそれらの混合物をそれぞれ示す。図9Bの左欄は、上からPI(3,5)P2、PI(3,4)P2およびPI(4,5)P2をそれぞれ示し、中央はそれらの混合物(PIP2mix)を示し、右欄はPI(3,4,5)P3を示す。9A and 9B are diagrams showing the separation of 17: 0/20: 4 phosphoinositides on a chiral column. Each graph is a chromatogram when the phosphoric acid group phosphoinositide sample displayed is measured with a mass spectrometer, the horizontal axis represents retention time (minutes), and the vertical axis represents peak-top signal intensity (cps). Represents the relative signal intensity with respect to 100%. The left column of FIG. 9A shows PI, the center column shows PI (3) P, PI (4) P and PI (5) P from the top, respectively, and the right column shows their mixture (PIP1mix). The second column from the right shows PI (3,5) P, PI (3,4) P2PI (4,5) P2 and mixtures thereof, respectively. The left column of FIG. 9B shows PI (3,5) P2, PI (3,4) P2 and PI (4,5) P2 from the top, the center shows their mixture (PIP2mix), and the right column shows PI (3,4,5) P3 is shown. 図9Aおよび図9Bは、キラルカラムによる17:0/20:4ホスホイノシタイドの分離を示す図である。各グラフは表示されるリン酸基のホスホイノシタイド試料を質量分析計で測定した場合のクロマトグラムであり、横軸は保持時間(分)を表し、縦軸はピークトップのシグナル強度(cps)を100%としたときの相対的なシグナル強度を表す。図9Aの左欄はPI、中央の欄は、上から、PI(3)P、PI(4)PおよびPI(5)Pをそれぞれ示し、右欄はそれらの混合物(PIP1mix)を示す。右から2番目の欄は、PI(3,5)P,PI(3,4)P2PI(4,5)P2およびそれらの混合物をそれぞれ示す。図9Bの左欄は、上からPI(3,5)P2、PI(3,4)P2およびPI(4,5)P2をそれぞれ示し、中央はそれらの混合物(PIP2mix)を示し、右欄はPI(3,4,5)P3を示す。9A and 9B are diagrams showing the separation of 17: 0/20: 4 phosphoinositides on a chiral column. Each graph is a chromatogram when the phosphoric acid group phosphoinositide sample displayed is measured with a mass spectrometer, the horizontal axis represents retention time (minutes), and the vertical axis represents peak-top signal intensity (cps). Represents the relative signal intensity with respect to 100%. The left column of FIG. 9A shows PI, the center column shows PI (3) P, PI (4) P and PI (5) P from the top, respectively, and the right column shows their mixture (PIP1mix). The second column from the right shows PI (3,5) P, PI (3,4) P2PI (4,5) P2 and mixtures thereof, respectively. The left column of FIG. 9B shows PI (3,5) P2, PI (3,4) P2 and PI (4,5) P2 from the top, the center shows their mixture (PIP2mix), and the right column shows PI (3,4,5) P3 is shown. 図10は、7種類の量(0.02、0.05、0.1、0.2、5、10、50pmol)の表示されるリン酸基の17:0/20:4ホスホイノシタイドを、質量分析計で測定したとき(各注入量で4回繰り返し測定)のシグナル強度(ピーク面積)から作成した検量線を示す。4回繰り返し測定の平均を黒点で表し、標準偏差をエラーバーで表す。上段は左からPI、PI(3)P、PI(4)Pを示し、中段は左からPI(5)P,PI(3,5)P,PI(3,4)P2を示し、下段は左より、PI(4,5)P2,PI(3,4,5),P3を示す。FIG. 10 shows seven different amounts (0.02, 0.05, 0.1, 0.2, 5, 10, 50 pmol) of the indicated phosphate group 17: 0/20: 4 phosphoinositide. The calibration curve prepared from the signal intensity (peak area) when measured with a mass spectrometer (repeatedly measured four times for each injection amount) is shown. The average of 4 repeated measurements is represented by black dots, and the standard deviation is represented by error bars. The upper row shows PI, PI (3) P, and PI (4) P from the left, the middle row shows PI (5) P, PI (3,5) P, and PI (3,4) P2 from the left, and the lower row. From the left, PI (4,5) P2, PI (3,4,5), P3 are shown. 図11は、表示されるリン酸基の17:0/20:4ホスホイノシタイド10pmolを質量分析計で50回繰り返し測定したときのシグナル強度(cps)の変動を示す。縦軸はシグナル強度(cps)を、横軸は注入回数を表す。10回目の注入において、PI(3)Pは1番目に強いシグナル強度を与え、PI(4)Pは2番目に強いシグナル強度を与え、PI(5)Pは3番目に強いシグナル強度を与え、PI(3、4)P2は4番目に強いシグナル強度を与え、PI(3、5)P2は5番目に強いシグナル強度を与え、PIは6番目に強いシグナル強度を与え、PI(4,5)P2は7番目に強いシグナル強度を与え、PI(3,4,5)P3は最も弱いシグナル強度を与えた。FIG. 11 shows fluctuations in signal intensity (cps) when 10 pmol of 17: 0/20: 4 phosphoinositide of the displayed phosphate group was measured 50 times with a mass spectrometer. The vertical axis represents signal intensity (cps), and the horizontal axis represents the number of injections. In the 10th injection, PI (3) P gives the first strongest signal strength, PI (4) P gives the second strongest signal strength, and PI (5) P gives the third strongest signal strength. , PI (3,4) P2 gives the fourth strongest signal strength, PI (3,5) P2 gives the fifth strongest signal strength, PI gives the sixth strongest signal strength, PI (4, 5) P2 gave the seventh strongest signal intensity and PI (3,4,5) P3 gave the weakest signal intensity. 図12は、イオンモビリティによる17:0/20:4各ホスホイノシタイド(PI(3,4)P2、PI(3,5)P2、PI(4,5)P2)の分離を示す。横軸は補償電圧(COV、V)を表し、縦軸はシグナル強度(cps)を表す。それぞれのホスホイノシタイドの測定結果を重ね合わせて示している。FIG. 12 shows the separation of 17: 0/20: 4 phosphoinositides (PI (3,4) P2, PI (3,5) P2, PI (4,5) P2) by ion mobility. The horizontal axis represents compensation voltage (COV, V), and the vertical axis represents signal intensity (cps). The measurement results of each phosphoinositide are shown superimposed. 図13は、細胞をH処理した場合の細胞のホスホイノシタイド組成の変化を、キラルカラムと質量分析計とを組み合わせて測定した結果として示す。各グラフにおいて、横軸は保持時間を表し、縦軸はピークトップのシグナル強度(cps)を100%としたときの相対的なシグナル強度を表す。グラフは、上段から、H処理0分時点、2分時点、5分時点、15分時点の結果を表し、左から、PI、PIP、PIP2およびPIP3に相当する質量についての結果を表す。FIG. 13 shows the change in phosphoinositide composition of cells when the cells were treated with H 2 O 2 as a result of measurement using a combination of a chiral column and a mass spectrometer. In each graph, the horizontal axis represents the retention time, and the vertical axis represents the relative signal intensity when the peak top signal intensity (cps) is 100%. The graph shows the results of the H 2 O 2 treatment at 0 minute, 2 minutes, 5 minutes, and 15 minutes from the top, and the results for the mass corresponding to PI, PIP, PIP2 and PIP3 from the left. . 図14A~Dは、細胞をH処理した場合の細胞のそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。左欄のグラフにおいて、横軸はホスホイノシタイド中のジアシルグリセロールの種類を表し、縦軸は4回測定の平均として算出された細胞10個に含まれる各ホスホイノシタイドの量(pmol)を標準偏差とともに表す。各ジアシルグリセロールの種類について、左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。右欄のグラフにおいて、縦軸は4回測定の平均として算出された細胞10個に含まれる同じリン酸置換を有するホスホイノシタイドの合計量(pmol)を標準偏差とともに表し、横軸は左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。4回繰り返し測定の結果であり、繰り返し測定の平均を、標準偏差(エラーバー)とともに示す。一元配置分散分析、Tukeyの多重比較検定を用いて統計処理した場合に、***はp<0.001であることを、**はp<0.01であることを、はp<0.05であることをそれぞれ表す。FIGS. 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value. In the graph of the left column, the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation. For each type of diacylglycerol, the results at the 0 minute point, the 2 minute point, the 5 minute point, and the 15 minute point of H 2 O 2 treatment are shown from the left. In the graph in the right column, the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation, the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar). ANOVA, when statistical processing using the multiple comparison test of Tukey, that *** is p <0.001, that ** is p <0.01, *, p < Each represents 0.05. 図14A~Dは、細胞をH処理した場合の細胞のそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。左欄のグラフにおいて、横軸はホスホイノシタイド中のジアシルグリセロールの種類を表し、縦軸は4回測定の平均として算出された細胞10個に含まれる各ホスホイノシタイドの量(pmol)を標準偏差とともに表す。各ジアシルグリセロールの種類について、左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。右欄のグラフにおいて、縦軸は4回測定の平均として算出された細胞10個に含まれる同じリン酸置換を有するホスホイノシタイドの合計量(pmol)を標準偏差とともに表し、横軸は左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。4回繰り返し測定の結果であり、繰り返し測定の平均を、標準偏差(エラーバー)とともに示す。一元配置分散分析、Tukeyの多重比較検定を用いて統計処理した場合に、***はp<0.001であることを、**はp<0.01であることを、はp<0.05であることをそれぞれ表す。FIGS. 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value. In the graph of the left column, the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation. For each type of diacylglycerol, the results at the 0 minute point, the 2 minute point, the 5 minute point, and the 15 minute point of H 2 O 2 treatment are shown from the left. In the graph in the right column, the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation, the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar). ANOVA, when statistical processing using the multiple comparison test of Tukey, that *** is p <0.001, that ** is p <0.01, *, p < Each represents 0.05. 図14A~Dは、細胞をH処理した場合の細胞のそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。左欄のグラフにおいて、横軸はホスホイノシタイド中のジアシルグリセロールの種類を表し、縦軸は4回測定の平均として算出された細胞10個に含まれる各ホスホイノシタイドの量(pmol)を標準偏差とともに表す。各ジアシルグリセロールの種類について、左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。右欄のグラフにおいて、縦軸は4回測定の平均として算出された細胞10個に含まれる同じリン酸置換を有するホスホイノシタイドの合計量(pmol)を標準偏差とともに表し、横軸は左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。4回繰り返し測定の結果であり、繰り返し測定の平均を、標準偏差(エラーバー)とともに示す。一元配置分散分析、Tukeyの多重比較検定を用いて統計処理した場合に、***はp<0.001であることを、**はp<0.01であることを、はp<0.05であることをそれぞれ表す。FIGS. 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value. In the graph of the left column, the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation. For each type of diacylglycerol, the results at the 0 minute point, the 2 minute point, the 5 minute point, and the 15 minute point of H 2 O 2 treatment are shown from the left. In the graph in the right column, the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation, the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar). ANOVA, when statistical processing using the multiple comparison test of Tukey, that *** is p <0.001, that ** is p <0.01, *, p < Each represents 0.05. 図14A~Dは、細胞をH処理した場合の細胞のそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。左欄のグラフにおいて、横軸はホスホイノシタイド中のジアシルグリセロールの種類を表し、縦軸は4回測定の平均として算出された細胞10個に含まれる各ホスホイノシタイドの量(pmol)を標準偏差とともに表す。各ジアシルグリセロールの種類について、左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。右欄のグラフにおいて、縦軸は4回測定の平均として算出された細胞10個に含まれる同じリン酸置換を有するホスホイノシタイドの合計量(pmol)を標準偏差とともに表し、横軸は左からH処理0分時点、2分時点、5分時点、15分時点の結果を表す。4回繰り返し測定の結果であり、繰り返し測定の平均を、標準偏差(エラーバー)とともに示す。一元配置分散分析、Tukeyの多重比較検定を用いて統計処理した場合に、***はp<0.001であることを、**はp<0.01であることを、はp<0.05であることをそれぞれ表す。FIGS. 14A to 14D show changes in the phosphoinositide composition for each diacylglycerol of the cells and the total amount of each phosphoinositide when the cells were treated with H 2 O 2 and quantification calculated from the measurement results of the chiral column-mass spectrometer Shown as a value. In the graph of the left column, the horizontal axis represents the type of diacylglycerol in phosphoinositide Tide, the amount of each phosphoinositide tide vertical axis contained in the cell 106 which is calculated as the average of four measurements a (pmol) Expressed with standard deviation. For each type of diacylglycerol, the results at the 0 minute point, the 2 minute point, the 5 minute point, and the 15 minute point of H 2 O 2 treatment are shown from the left. In the graph in the right column, the vertical axis represents the total amount of phosphoinositide Tide with the same phosphate substitutions contained in the cell 106 which is calculated as the average of four measurements a (pmol) with standard deviation, the horizontal axis represents the left To H 2 O 2 treatment at 0 min, 2 min, 5 min, and 15 min. It is a result of four repeated measurements, and the average of repeated measurements is shown together with a standard deviation (error bar). ANOVA, when statistical processing using the multiple comparison test of Tukey, that *** is p <0.001, that ** is p <0.01, *, p < Each represents 0.05. 図15は、マウスを遺伝子改変した場合のマウスの甲状腺(臓器)におけるホスホイノシタイド組成の変化を、キラルカラムと質量分析計とを組み合わせて測定した結果として示す。各グラフにおいて、横軸は保持時間を表し、縦軸はピークトップのシグナル強度(cps)を100%としたときの相対的なシグナル強度を表す。グラフは、上段から、野生型、INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-)のマウスについての結果を表し、左から、PI、PIP、PIP2およびPIP3に相当する質量についての結果を表す。FIG. 15 shows changes in the phosphoinositide composition in the thyroid gland (organ) of the mouse when the mouse is genetically modified as a result of measurement using a combination of a chiral column and a mass spectrometer. In each graph, the horizontal axis represents the retention time, and the vertical axis represents the relative signal intensity when the peak top signal intensity (cps) is 100%. The graph shows the results for wild type, INPP4B (− / −), PTEN (+/−), and INPP4B (− / −) PTEN (+/−) mice from the top, and from the left, PI, PIP , The results for masses corresponding to PIP2 and PIP3. 図16A~Cは、マウスを遺伝子改変した場合のマウスの甲状腺(臓器)におけるそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。図16AおよびBのグラフにおいて、横軸はホスホイノシタイド中のジアシルグリセロールの種類を表し、縦軸は3回(野生型)、4回(INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-))測定の平均として算出された組織1mgに含まれる各ホスホイノシタイドの量(pmol)を標準偏差とともに表す。各ジアシルグリセロールの種類について、左から野生型、INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-)のマウスについての結果を表す。FIGS. 16A to 16C show the change in phosphoinositide composition for each diacylglycerol and the total amount of each phosphoinositide in the thyroid gland (organ) of the mouse when the mouse is genetically modified from the measurement results of the chiral column-mass spectrometer. It is shown as a quantitative value. In the graphs of FIGS. 16A and B, the horizontal axis represents the type of diacylglycerol in phosphoinositide, and the vertical axis represents 3 times (wild type), 4 times (INPP4B (− / −), PTEN (+/−), And the amount (pmol) of each phosphoinositide contained in 1 mg of tissue calculated as an average of the INPP4B (− / −) PTEN (+/−)) measurement, together with the standard deviation. For each diacylglycerol type, the results for wild type, INPP4B (− / −), PTEN (+/−), and INPP4B (− / −) PTEN (+/−) mice are shown from the left. 図16A~Cは、マウスを遺伝子改変した場合のマウスの甲状腺(臓器)におけるそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。図16AおよびBのグラフにおいて、横軸はホスホイノシタイド中のジアシルグリセロールの種類を表し、縦軸は3回(野生型)、4回(INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-))測定の平均として算出された組織1mgに含まれる各ホスホイノシタイドの量(pmol)を標準偏差とともに表す。各ジアシルグリセロールの種類について、左から野生型、INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-)のマウスについての結果を表す。FIGS. 16A to 16C show the change in phosphoinositide composition for each diacylglycerol and the total amount of each phosphoinositide in the thyroid gland (organ) of the mouse when the mouse is genetically modified from the measurement results of the chiral column-mass spectrometer. It is shown as a quantitative value. In the graphs of FIGS. 16A and B, the horizontal axis represents the type of diacylglycerol in phosphoinositide, and the vertical axis represents 3 times (wild type), 4 times (INPP4B (− / −), PTEN (+/−), And the amount (pmol) of each phosphoinositide contained in 1 mg of tissue calculated as an average of the INPP4B (− / −) PTEN (+/−)) measurement, together with the standard deviation. For each diacylglycerol type, the results for wild type, INPP4B (− / −), PTEN (+/−), and INPP4B (− / −) PTEN (+/−) mice are shown from the left. 図16A~Cは、マウスを遺伝子改変した場合のマウスの甲状腺(臓器)におけるそれぞれのジアシルグリセロールごとのホスホイノシタイド組成の変化および各ホスホイノシタイド総量を、キラルカラム-質量分析計の測定結果から計算した定量値として示す。図16Cのグラフにおいて、縦軸は3回(野生型)、4回(INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-))測定の平均として算出された組織1mgに含まれる同じリン酸置換を有するホスホイノシタイドの合計量(pmol)を標準偏差とともに表し、横軸は左から野生型、INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-)のマウスについての結果を表す。3回(野生型)、4回(INPP4B(-/-)、PTEN(+/-)、およびINPP4B(-/-)PTEN(+/-))繰り返し測定の結果であり、繰り返し測定の平均を、標準偏差(エラーバー)とともに示す。一元配置分散分析、Tukeyの多重比較検定を用いて統計処理した場合に、***はp<0.001であることを、**はp<0.01であることを、はp<0.05であることをそれぞれ表す。FIGS. 16A to 16C show changes in the phosphoinositide composition for each diacylglycerol and the total amount of each phosphoinositide in the thyroid gland (organ) of the mouse when the mouse is genetically modified from the measurement results of the chiral column-mass spectrometer. It is shown as a quantitative value. In the graph of FIG. 16C, the vertical axis represents the average of three times (wild type), four times (INPP4B (− / −), PTEN (+/−), and INPP4B (− / −) PTEN (+/−)) measurements. The total amount (pmol) of phosphoinositides having the same phosphate substitution contained in 1 mg of tissue calculated as follows is expressed with standard deviation, and the horizontal axis from the left is wild type, INPP4B (− / −), PTEN (+/− ) And INPP4B (− / −) PTEN (+/−) mice. 3 (wild type), 4 times (INPP4B (− / −), PTEN (+/−), and INPP4B (− / −) PTEN (+/−)) repeated measurement results, the average of repeated measurements , With standard deviation (error bar). ANOVA, when statistical processing using the multiple comparison test of Tukey, that *** is p <0.001, that ** is p <0.01, *, p < Each represents 0.05. 図17は、カラムクロマトグラフィーによるリゾリン脂質のリン酸位置異性体の分離が可能であることを示す図である。各グラフにおいて、横軸は保持時間を表し、縦軸はピークトップのシグナル強度(cps)を100%としたときの相対的なシグナル強度を表す。左欄は、上から、17:0のリゾPI(3)P、リゾPI(4)P、リゾPI(5)Pの結果を示す。右欄は、上から、17:0のリゾPI(3,5)P2、リゾPI(3,4)P2、リゾPI(4,5)P2の結果を示す。FIG. 17 is a diagram showing that it is possible to separate phosphoric acid position isomers of lysophospholipid by column chromatography. In each graph, the horizontal axis represents the retention time, and the vertical axis represents the relative signal intensity when the peak top signal intensity (cps) is 100%. The left column shows the results of lyso PI (3) P, lyso PI (4) P, and lyso PI (5) P at 17: 0 from the top. The right column shows the results of lyso PI (3, 5) P2, lyso PI (3,4) P2, and lyso PI (4, 5) P2 at 17: 0 from the top.

 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present invention will be described while showing the best mode. Throughout this specification, it should be understood that the singular forms also include the plural concept unless specifically stated otherwise. Thus, it should be understood that singular articles (eg, “a”, “an”, “the”, etc. in the case of English) also include the plural concept unless otherwise stated. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.

 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。 Hereinafter, definitions of terms particularly used in this specification and / or basic technical contents will be described as appropriate.

 (リン脂質)
 本発明は、新規リン脂質、ならびにリン脂質であるホスホイノシタイドおよびリゾホスホイノシタイドをサブクラスで分離して測定、検出または同定する技術を提供する。
(Phospholipid)
The present invention provides a novel phospholipid and a technology for measuring, detecting or identifying phospholipids phosphoinositide and lysophosphoinositide separated by subclass.

 本明細書において、「ホスファチジルイノシトールリン酸」または「ホスファチジルイノシトールホスフェート」とは、交換可能に用いられ、グリセリン(プロパン-1,2,3-トリオール、グリセロールとも称する)のsn-1位およびsn-2位にアシル基が結合し、sn-3位に結合したイノシトールがX個リン酸化されているものをいう。リン酸基は1個、2個または3個結合することができ、この場合、「ホスファチジルイノシトールXリン酸」(Xは一、二または三)と称する。本明細書では、各種ホスファチジルイノシトールXリン酸を総称して「ホスホイノシタイド」、「ホスファチジルイノシトールリン酸類」または「PIPs」ともいう。リン酸基は、イノシトール上の位置で示すことができ、例えば、ホスファチジルイノシトール-3-一リン酸、ホスファチジルイノシトール-4-一リン酸、ホスファチジルイノシトール-5-一リン酸、ホスファチジルイノシトール-3,4-二リン酸、ホスファチジルイノシトール-3,5-二リン酸、ホスファチジルイノシトール-4,5-二リン酸、ホスファチジルイノシトール-3,4,5-三リン酸などと表記する。 In the present specification, “phosphatidylinositol phosphate” or “phosphatidylinositol phosphate” are used interchangeably and refer to the sn-1 position and sn− of glycerol (also referred to as propane-1,2,3-triol, glycerol). An inositol bonded to the sn-3 position is phosphorylated with X inositol bonded to the 2-position. One, two or three phosphate groups can be attached, in this case referred to as “phosphatidylinositol X phosphate” (where X is one, two or three). In this specification, various phosphatidylinositol X phosphates are collectively referred to as “phosphoinositide”, “phosphatidylinositol phosphates”, or “PIPs”. The phosphate group can be indicated at a position on inositol, such as phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate, phosphatidylinositol-3,4 -Described as diphosphate, phosphatidylinositol-3,5-diphosphate, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, etc.

 本発明において初めて、アシル基を保持したまま、このPIPsのリン酸基の位置を同定する方法が提供された。本発明において、本発明が提供する同定方法を用いることによって、生体中のPIPsのリン酸基の詳細な情報を理解することができることが示された。特に、アシル基を保持したままPIPsのリン酸基の情報を分析することができることから、真の意味で生体中の情報を分析できるという意味で本発明は従来技術では分析できなかった詳細な情報を提供する可能性を有する。なお、本発明では、特に断らない限り、イノシトールはmyoイノシトールであり、脂肪酸の結合型はエステル型である。任意のアシル基およびリン酸基の位置(イノシトール上)を有するPIPを製造することができ、例えば、Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66~76により任意の種類のPIPを製造することができる。これまでホスホイノシタイドはRI-labelないしnon-labelの脱アシル化されたグリセロホスホイノシタイドの分離、もしくは特異的結合タンパク質による分子プローブ、抗体を用いることで分析されてきた。そういった意味では、インタクトなホスホイノシタイドを測定できる分析方法はいまだにない。従来ホスホイノシタイドの一種であるPIP3に関してはRPLC-MS/MSを用いた分析法が報告されているが、この分析法では3つのアイソマーが存在するPIP1とPIP2は分離することができず3アイソマーの総和で測定されている。 For the first time in the present invention, a method for identifying the position of the phosphate group of the PIPs while retaining the acyl group was provided. In the present invention, it was shown that the detailed information of the phosphate group of PIPs in the living body can be understood by using the identification method provided by the present invention. In particular, since the information on the phosphate group of PIPs can be analyzed while retaining the acyl group, the present invention is a detailed information that cannot be analyzed by the prior art in the sense that information in the living body can be analyzed in a true sense. Have the potential to provide In the present invention, unless otherwise specified, inositol is myo-inositol and the fatty acid bond type is an ester type. PIPs with arbitrary acyl and phosphate group positions (on inositol) can be prepared, see, for example, Stuart J. et al. Conway et al. , Org. Biomol. Chem. , 2010, 8, 66-76, any kind of PIP can be manufactured. So far, phosphoinositides have been analyzed by separation of RI-label or non-label deacylated glycerophosphoinositides, or by using molecular probes and antibodies with specific binding proteins. In that sense, there are still no analytical methods that can measure intact phosphoinositide. Conventionally, an analysis method using RPLC-MS / MS has been reported for PIP3, which is a type of phosphoinositide, but PIP1 and PIP2, which have three isomers, cannot be separated in this analysis method. Is measured as the sum of

 本明細書において、「リゾホスファチジルイノシトールリン酸」または「リゾホスファチジルイノシトールホスフェート」とは、交換可能に用いられ、ホスファチジルイノシトールから1個のアシル基が除去され、sn-3位に結合したイノシトールがX個リン酸化されているものをいう。リン酸基は1個、2個または3個結合することができ、この場合、「リゾホスファチジルイノシトールXリン酸」(Xは一、二または三)と称する。本明細書では、各種リゾホスファチジルイノシトールXリン酸を総称して「リゾホスホイノシタイド」、「リゾホスファチジルイノシトールリン酸類」または「LPIPs」ともいう。リン酸基は、イノシトール上の位置で示すことができ、例えば、リゾホスファチジルイノシトール-3,4,5-三リン酸などと表記する。本発明において初めて、このLPIPsを同定する方法が提供され、また、合成する方法も提供された。本発明において、本発明が提供する同定方法を用いることによって、生体にもLPIPsが存在していることも示された。また、PIPsと同様に、LPIPsについてもリン酸基の位置を同定することができた。なお、本発明では、特に断らない限り、イノシトールはmyoイノシトールであり、脂肪酸の結合型はエステル型である。 In the present specification, “lysophosphatidylinositol phosphate” or “lysophosphatidylinositol phosphate” is used interchangeably, and one acyl group is removed from phosphatidylinositol and inositol bonded to the sn-3 position is X Individual phosphorylated. One, two or three phosphate groups can be attached, in this case referred to as “lysophosphatidylinositol X phosphate” (where X is one, two or three). In the present specification, various lysophosphatidylinositol X phosphates are collectively referred to as “lysophosphoinositide”, “lysophosphatidylinositol phosphates”, or “LPIPs”. The phosphate group can be represented by a position on inositol, and is expressed as, for example, lysophosphatidylinositol-3,4,5-triphosphate. For the first time in the present invention, a method for identifying these LPIPs was provided, and a method for synthesis was also provided. In the present invention, it was shown that LPIPs are also present in the living body by using the identification method provided by the present invention. Similarly to PIPs, the position of the phosphate group could be identified for LPIPs. In the present invention, unless otherwise specified, inositol is myo-inositol and the fatty acid bond type is an ester type.

 本明細書において用語「sn-」は、Stereospecifically Numberedの略で、グリセリン誘導体の炭素原子を立体特異的番号付けで表記したときに用いる。グリセリン誘導体がラセミ体のときはrac-をつけ、立体化学が不明のときはX-をつける。LPIPsは、そのアシル基の結合位置の相違により、sn-1-LPIPsあるいはsn-2-LPIPsの2種類が存在する。実際の表示については、アシル基の位置をそのまま使用し、1-アシル-ホスファチジルイノシトールXリン酸、2-アシル-ホスファチジルイノシトールXリン酸のように使用する。本明細書においてsnに関する情報がない場合は、特に区別しないで説明するか総称(上位概念)として用いる場合である。 In this specification, the term “sn-” is an abbreviation for “Stereospecifically Numbered”, and is used when the carbon atoms of a glycerin derivative are represented by stereospecific numbering. If the glycerin derivative is racemic, add rac-; if the stereochemistry is unknown, add X-. There are two types of LPIPs, sn-1-LPIPs or sn-2-LPIPs, depending on the position of the acyl group binding. For the actual display, the position of the acyl group is used as it is, such as 1-acyl-phosphatidylinositol X phosphate, 2-acyl-phosphatidylinositol X phosphate. When there is no information regarding sn in this specification, it is the case where it explains without distinguishing in particular or uses it as a generic name (superordinate concept).

 所望の脂肪酸さえ入手できれば、これを用いて対応するPIPsを製造し本発明の合成法に適用し所望の脂肪酸基を有するLPIPsを製造することができる。 If only the desired fatty acid is available, the corresponding PIPs can be produced using this and applied to the synthesis method of the present invention to produce LPIPs having the desired fatty acid group.

 本発明において具体的な実施形態としては、以下を挙げることができる。
・一リン酸、sn-1位のもの
1-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸<パルミチル>;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸<パルミトレニイニル>;
1-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸<ステアリル>;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸<オレイニル>;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸<リノール酸>;
1-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸<γリノレン酸>;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸<アラキドン酸>;
1-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
・一リン酸、sn-2位のもの
2-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸<パルミチル>;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸<パルミトレニイニル>;
2-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸<ステアリル>;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸<オレイニル>;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸<リノール酸>;
2-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸<γリノレン酸>;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸<アラキドン酸>;
2-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
・二リン酸、sn-1位のもの
1-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸<パルミチル>;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸<パルミトレニイニル>;
1-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸<ステアリル>;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸<オレイニル>;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸<リノール酸>;
1-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸<γリノレン酸>;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸<アラキドン酸>;
1-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4,5-二リン酸;
・二リン酸、sn-2位のもの
2-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸<パルミチル>;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸<パルミトレニイニル>;
2-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸<ステアリル>;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸<オレイニル>;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸<リノール酸>;
2-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸<γリノレン酸>;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸<アラキドン酸>;
2-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4,5-二リン酸;
・三リン酸、sn-1位のもの
1-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸<パルミチル>;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸<パルミトレニイニル>;
1-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸<ステアリル>;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸<オレイニル>;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール3,4,5-三リン酸<リノール酸>;
1-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール3,4,5-三リン酸<γリノレン酸>;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸<アラキドン酸>;
1-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
・三リン酸、sn-2位のもの
2-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸<パルミチル>;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸<パルミトレニイニル>;
2-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸<ステアリル>;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸<オレイニル>;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール3,4,5-三リン酸<リノール酸>;
2-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール3,4,5-三リン酸<γリノレン酸>;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸<アラキドン酸>;
2-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸
 これらの脂肪酸または脂肪酸に基づくアシル基は、本発明の開示に基づいて、本発明のリゾホスファチジルイノシトールリン酸類においてsn-1位またはsn-2位のいずれにおいても結合した形式で入手可能であることが理解される。
Specific embodiments of the present invention include the following.
Monophosphate, sn-1-position 1-butanyl-lysophosphatidylinositol 4-monophosphate;
1-hexanyl-lysophosphatidylinositol 4-monophosphate;
1-octanyl-lysophosphatidylinositol 4-monophosphate;
1-hexadecanyl-lysophosphatidylinositol 4-monophosphate <palmityl>;
1-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate <palmitreniinyl>;
1-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
1-octadecanyl-lysophosphatidylinositol 4-monophosphate <stearyl>;
1-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate <Oleinyl>;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4-monophosphate <linoleic acid>;
1-6Z, 9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4-monophosphate <γ-linolenic acid>;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate <arachidonic acid>;
1-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
Monophosphate, sn-2-position 2-butanyl-lysophosphatidylinositol 4-monophosphate;
2-hexanyl-lysophosphatidylinositol 4-monophosphate;
2-octanyl-lysophosphatidylinositol 4-monophosphate;
2-hexadecanyl-lysophosphatidylinositol 4-monophosphate <palmityl>;
2-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate <palmitreniinyl>;
2-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
2-octadecanyl-lysophosphatidylinositol 4-monophosphate <stearyl>;
2-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate <Oleinyl>;
2-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4-monophosphate <linoleic acid>;
2-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4-monophosphate <γ-linolenic acid>;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate <arachidonic acid>;
2-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
Diphosphate, sn-1-position 1-butanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate <palmityl>;
1-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate <palmitreniinyl>;
1-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octadecanyl-lysophosphatidylinositol 4,5-diphosphate <stearyl>;
1-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate <Oleinyl>;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate <linoleic acid>;
1-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate <γ-linolenic acid>;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate <arachidonic acid>;
1-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
1-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4,5-diphosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4,5-diphosphate;
Diphosphate, sn-2 position 2-butanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate <palmityl>;
2-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate <palmitreniinyl>;
2-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octadecanyl-lysophosphatidylinositol 4,5-diphosphate <stearyl>;
2-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate <Oleinyl>;
2-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate <linoleic acid>;
2-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate <γ-linolenic acid>;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate <arachidonic acid>;
2-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
2-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4,5-diphosphate;
2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4,5-diphosphate;
Triphosphate, sn-1-position 1-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-hexanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate <palmityl>;
1-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate <palmitreniinyl>;
1-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate <stearyl>;
1-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate <Oleinyl>;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 3,4,5-triphosphate <linoleic acid>;
1-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 3,4,5-triphosphate <γ-linolenic acid>;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate <arachidonic acid>;
1-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 3,4,5-triphosphate;
Triphosphate, sn-2 position 2-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-hexanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate <palmityl>;
2-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate <palmitreniinyl>;
2-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate <stearyl>;
2-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate <Oleinyl>;
2-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 3,4,5-triphosphate <linoleic acid>;
2-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 3,4,5-triphosphate <γ-linolenic acid>;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate <arachidonic acid>;
2-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 3,4,5-triphosphate These fatty acids or acyl groups based on fatty acids are based on It is understood that the lysophosphatidylinositol phosphates of the invention are available in a bound form at either the sn-1 or sn-2 position.

 本明細書において「アシル(基)」とは、当該分野において通常の意味で使用され、有機酸(カルボン酸;脂肪酸)からヒドロキシル基が除去されてつくられる基をいう。広義には、ホルミル基HCO-,アセチル基CHCO-,マロニル基-COCHCO-,ベンゾイル基CCO-,シンナモイル基CCH=CHCO-などが含まれ、ケトン誘導体なども挙げられる。ホスファチジルイノシトールリン酸およびリゾホスファチジルイノシトールリン酸類に含まれるアシル基は、好ましい実施形態では、脂肪酸を形成することから脂肪酸基とも称される。本明細書では、脂肪酸は、その炭素数と二重結合の数で表すことができ、例えば、アラキドン酸は(20:4)と表され得る。二重結合の位置をさらに特定する場合は、cisやtransの表示、またはEまたはZの表示について、すべての位置を特定するか、またはω3系、ω6系等の系統で表示することができる。 As used herein, “acyl (group)” is used in the ordinary sense in the art and refers to a group formed by removing a hydroxyl group from an organic acid (carboxylic acid; fatty acid). In a broad sense, formyl group HCO—, acetyl group CH 3 CO—, malonyl group —COCH 2 CO—, benzoyl group C 6 H 5 CO—, cinnamoyl group C 6 H 5 CH═CHCO—, etc. are included, and ketone derivatives And so on. Acyl groups contained in phosphatidylinositol phosphates and lysophosphatidylinositol phosphates are also referred to as fatty acid groups because they form fatty acids in a preferred embodiment. As used herein, a fatty acid can be represented by its carbon number and the number of double bonds, for example, arachidonic acid can be represented as (20: 4). When further specifying the position of the double bond, it is possible to specify all positions for the display of cis and trans, or the display of E or Z, or display in a system such as ω3 system, ω6 system, or the like.

 本明細書では一般に以下の脂肪酸およびそれに基づくアシル基が使用されるが、これらに限定されず、任意の鎖長、任意の二重結合を有する脂肪酸を使用することができることが理解される。例えば、炭素数について言えば、1以上、代表的には1~30、通常は4~30の範囲のものが挙げられ、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個等を挙げることができるが、これらに限定されない。また二重結合の個数は0個、1個、2個、3個、4個、5個、6個、7個等炭素数に応じて許容し得る任意の数を採用することができる。二重結合の位置は、ω-3系、ω-6系、ω-9系等が代表的であり、このほか、ω-5系や、ω-7系なども確認されており、これらの任意の入手可能なものを利用することができる。脂肪酸には三重結合が含まれていてもよく、その個数は0個、1個、2個、3個、4個、5個、6個、7個等炭素数に応じて許容し得る任意の数を採用することができる。 In the present specification, the following fatty acids and acyl groups based thereon are generally used, but the present invention is not limited thereto, and it is understood that fatty acids having any chain length and any double bond can be used. For example, as for the number of carbon atoms, one or more, typically 1 to 30, usually 4 to 30 may be mentioned, 1, 2, 3, 4, 5, 6, 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24, 25, 26, 27, 28, 29, 30 and the like, but is not limited thereto. The number of double bonds may be any number that can be allowed according to the number of carbon atoms, such as 0, 1, 2, 3, 4, 5, 6, 7, and the like. The position of the double bond is typically the ω-3 system, ω-6 system, ω-9 system, etc. In addition, the ω-5 system, the ω-7 system, etc. have been confirmed. Any available one can be used. The fatty acid may contain a triple bond, and the number thereof is 0, 1, 2, 3, 4, 5, 6, 7, etc. Numbers can be employed.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 (分離技術:クロマトグラフィー、質量分析、イオンモビリティ分離)
 本明細書において「クロマトグラフィー」とは、当該分野において使用される通常の意味で用いられ、媒体が物質のカラムまたはキャピラリー通路を均一に通過(浸透)するときに、媒体中の1種または複数の成分が選択的に遅延するプロセスを意味する。遅延は、バルク媒体(すなわち、移動相)が固定相(複数可)に対して移動するとき、1つまたは複数の固定相とこの媒体の間の混合物成分の分布によって生じる。「クロマトグラフィー」の例には、液体クロマトグラフィー(LC)、およびガスクロマトグラフィー(GC)が含まれる。1つの実施形態では、クロマトグラフィーを用いて、リン酸基の結合位置が識別され得る。
(Separation techniques: chromatography, mass spectrometry, ion mobility separation)
As used herein, “chromatography” is used in the ordinary sense used in the art, and when the medium passes (permeates) uniformly through a column or capillary passage of a substance, one or more in the medium. Means a process in which the components of are selectively delayed. The delay is caused by the distribution of the mixture components between one or more stationary phases and this medium as the bulk medium (ie, mobile phase) moves relative to the stationary phase (s). Examples of “chromatography” include liquid chromatography (LC) and gas chromatography (GC). In one embodiment, chromatography can be used to identify the binding position of a phosphate group.

 本明細書において「ガスクロマトグラフィー」または「GC」とは、当該分野において使用される通常の意味で用いられ、気体が物質のカラムまたはキャピラリー通路を均一に通過(浸透)するときに、気体中の1種または複数の成分が選択的に遅延するプロセスを意味する。遅延は、バルク気体(すなわち、移動相)が固定相(複数可)に対して移動するとき、1つまたは複数の固定相とこの気体の間の混合物成分の分布によって生じる。 As used herein, “gas chromatography” or “GC” is used in the ordinary sense used in the art, and when a gas uniformly passes (permeates) through a column or capillary passage of a substance, Means a process in which one or more components are selectively delayed. The delay is caused by the distribution of the mixture components between one or more stationary phases and this gas as the bulk gas (ie, mobile phase) moves relative to the stationary phase (s).

 本明細書において「液体クロマトグラフィー」または「LC」とは、当該分野において使用される通常の意味で用いられ、流体が物質のカラムまたはキャピラリー通路を均一に通過(浸透)するときに、流体溶液の1種または複数の成分が選択的に遅延するプロセスを意味する。遅延は、バルク流体(すなわち、移動相)が固定相(複数可)に対して移動するとき、1つまたは複数の固定相とこの流体の間の混合物成分の分布によって生じる。「液体クロマトグラフィー」の例には、逆相液体クロマトグラフィー(RPLC)、イオンクロマトグラフィー(IC)、高速液体クロマトグラフィー(HPLC)、および乱流液体クロマトグラフィー(TFLC)(高乱流液体クロマトグラフィー(HTLC)またはハイスループット液体クロマトグラフィーとも称される)が含まれる。本明細書で使用されるとき、用語「高速液体クロマトグラフィー」または「HPLC」(「高圧液体クロマトグラフィー」とも称される)は、固定相、典型的には高密度充填カラムを通して、加圧下で移動相を押し出すことにより分離度が向上する液体クロマトグラフィーを指す。好ましい実施形態では、HPLCが利用される。充填剤の分離モードには、順相、逆相、分配、キラル、イオン交換、分子ふるい、アフィニティーカラム等が挙げられ、親水基、疎水基を分離する任意のカラムクロマトグラフィーが利用され得るが、中でも、キラル、逆相、順相、イオン交換カラムが好ましい。1つの好ましい実施形態では、キラルカラムを用いると、他のカラムを用いずにリン酸基の結合位置をすべて識別することができることが本発明において示されている。 As used herein, “liquid chromatography” or “LC” is used in the ordinary sense used in the art, and when a fluid passes uniformly (permeates) through a column or capillary passage of matter, Means a process in which one or more components are selectively delayed. The delay is caused by the distribution of the mixture components between one or more stationary phases and this fluid as the bulk fluid (ie, mobile phase) moves relative to the stationary phase (s). Examples of “liquid chromatography” include reverse phase liquid chromatography (RPLC), ion chromatography (IC), high performance liquid chromatography (HPLC), and turbulent liquid chromatography (TFLC) (high turbulent liquid chromatography). (Also referred to as (HTLC) or high-throughput liquid chromatography). As used herein, the term “high performance liquid chromatography” or “HPLC” (also referred to as “high pressure liquid chromatography”) is used under pressure through a stationary phase, typically a dense packed column. It refers to liquid chromatography whose resolution is improved by extruding the mobile phase. In a preferred embodiment, HPLC is utilized. Separation modes of the filler include normal phase, reverse phase, partition, chiral, ion exchange, molecular sieve, affinity column, etc., and any column chromatography that separates hydrophilic groups and hydrophobic groups can be used. Of these, chiral, reverse phase, normal phase, and ion exchange columns are preferred. In one preferred embodiment, it has been shown in the present invention that when a chiral column is used, all the binding positions of phosphate groups can be identified without using another column.

 キラルカラムとしては、例えば、多糖誘導体キラルカラム、タンパク質結合型キラルカラム、化学結合型光学活性クラウンエーテル型キラルカラム、クラウンエーテル型キラルカラム、両性イオン分子型カラムカラム、アニオン交換型キラルカラム、配位子交換型キラルカラム、ポリメタクリレート型キラルカラム、多糖誘導体キラルカラム(例えば、株式会社ダイセル(大阪、日本)から販売されるもの)を挙げることができるがそれらに限定されない。 Examples of chiral columns include polysaccharide derivative chiral columns, protein-bonded chiral columns, chemically bonded optically active crown ether chiral columns, crown ether chiral columns, zwitterionic molecular column columns, anion exchange chiral columns, ligand exchange chiral columns, poly Examples thereof include, but are not limited to, methacrylate-type chiral columns and polysaccharide derivative chiral columns (for example, those sold by Daicel Corporation (Osaka, Japan)).

 液体クロマトグラフィーでの分析において、試料または試料の成分は、入口でLCカラムに適用され、溶媒または溶媒混合物と共に溶出され、および出口で排出されてもよい。種々の溶媒モードが、目的とする分析物(複数可)を溶出するために選択され得る。例えば、液体クロマトグラフィーは、勾配モード、アイソクラチックモード、または多型(すなわち混合)モードを用いて行ってもよい。クロマトグラフィー中、材料の分離は、溶離液(「移動相」ともいう)、溶出モード、勾配条件、温度等の選択などの変数により影響される。 In analysis by liquid chromatography, the sample or sample components may be applied to the LC column at the inlet, eluted with the solvent or solvent mixture, and discharged at the outlet. Various solvent modes can be selected to elute the analyte (s) of interest. For example, liquid chromatography may be performed using a gradient mode, an isocratic mode, or a polymorphic (ie, mixed) mode. During chromatography, the separation of materials is affected by variables such as the choice of eluent (also referred to as “mobile phase”), elution mode, gradient conditions, temperature, and the like.

 本明細書において「イオンモビリティ分離(IMS)」とは、イオン化された化合物を、その嵩高さ(衝突断面積)によって分離する手法であり、単独でまたは質量分析またはクロマトグラフィーなどと組み合わせて用いられる。1950年代に開発された移動度によりイオンを分離する技術であり、爆発物の検出などに広く用いられている。IMSでは、代表的に、比較的高圧(大気圧から数mbar)のガスセル内を、電場によりイオンが移動する際に、イオンと中性ガス分子が衝突することにより決定される移動度に応じて分離を行う。例示として、DMS型(Differential ion Mobility Spectrometry)も利用され得る。例示的な実施形態では、気体状のイオンがNガスで満たされたIMSセルを通過する際、嵩高い化合物ほどN2分子との衝突が頻繁に起こり、移動度が低下する。それにより生じる通過時間(Drift Time)の差により化合物を分離することができる。質量分析(MS)と組み合わせることで、分子量が同一の成分の分離分析や、イオンの立体構造の解析を行うことができる。 In this specification, “ion mobility separation (IMS)” is a technique for separating ionized compounds by their bulkiness (collision cross section), and is used alone or in combination with mass spectrometry or chromatography. . This technology was developed in the 1950s to separate ions based on mobility and is widely used for detecting explosives. In IMS, typically, when ions move in a gas cell at a relatively high pressure (from atmospheric pressure to several mbar) by an electric field, depending on the mobility determined by collision of ions and neutral gas molecules. Perform separation. As an example, a DMS type (Differential ion Mobility Spectrometry) may also be used. In an exemplary embodiment, when a gaseous ion passes through an IMS cell filled with N 2 gas, a bulkier compound has more frequent collisions with N 2 molecules and lower mobility. The compounds can be separated by the difference in the transit time (Drift Time) caused thereby. By combining with mass spectrometry (MS), separation analysis of components having the same molecular weight and analysis of ion steric structure can be performed.

 本明細書において「質量分析」または「MS」とは、当該分野において使用される通常の意味で用いられ、化合物をその質量により同定するための分析手法を指し、原子、分子、クラスター等の粒子を何らかの方法で気体状のイオンとし(イオン化)、真空中で運動させ電磁気力等を用いて、あるいは飛行時間差等によりそれらイオンを質量電荷比に応じて分離・検出する技術をいう。MSは、イオンをこの質量対電荷比、すなわち「m/z」に基づきフィルタし、検出し、および測定する方法を指す。近年の検出感度や質量分解能の飛躍的な向上に伴い、益々その応用範囲が広がり、多くの分野で活用されている。代表的には、Clark J et al., Nat Methods. 2011 March ; 8(3): 267-272.doi:10.1038/nmeth.1564.に例示される方法を用いることができる。MS技術は、一般には、(1)化合物をイオン化して荷電化合物を形成するステップ:および(2)荷電化合物の分子量を検出し、質量対電荷比を計算するステップを含む。化合物は、適切な手段によりイオン化および検出し得る。「質量分析計」は、一般には、イオン化装置、質量分析器およびイオン検出器を含む。一般に、目的とする1つまたは複数の分子がイオン化され、イオンはこの後、質量分析機器に導入され、ここでイオンは、磁場および電場の組み合わせのために、質量(「m」)および電荷(「z」)に依存する空間中の経路を辿る。質量分析計についての総説は、例えば、Jurgen H、「マススペクトロメトリー」、丸善出版(2014)を参照のこと。質量分析計には、例えば、磁場型、四重極型、飛行時間型等が挙げられるが、定量性が良く、ダイナミックレンジが広く直線性が良好な四重極型を使用することが好ましい。定量におけるイオンの検出は、目的とするイオンのみを選択的に検出する、選択イオンモニタリングや、1つ目の質量分析部で精製したイオン種のうち1つを前駆イオンとして選択し、2つ目の質量分析部で、その前駆イオンの開裂によって生じるプロダクトイオンを検出する、選択反応モニタリング(SRM)等が挙げられる。SRMでは、選択性が増し、ノイズが減ることによってシグナル/ノイズ比が向上する。 In this specification, “mass spectrometry” or “MS” is used in the ordinary sense used in the field, and refers to an analytical method for identifying a compound by its mass, and is a particle such as an atom, molecule, or cluster. Is a technique for separating and detecting ions according to the mass-to-charge ratio by making them into gaseous ions by some method (ionization), moving them in a vacuum and using electromagnetic force, etc., or by a time-of-flight difference. MS refers to a method of filtering, detecting, and measuring ions based on this mass-to-charge ratio, or “m / z”. With the dramatic improvement in detection sensitivity and mass resolution in recent years, the range of application is increasingly widened and used in many fields. Typically, the method exemplified in Clark J et al., Nat Methods. 2011 March; 8 (3): 267-272.doi: 10.1038 / nmeth.1564. Can be used. MS techniques generally include (1) ionizing a compound to form a charged compound: and (2) detecting the molecular weight of the charged compound and calculating a mass to charge ratio. The compound can be ionized and detected by appropriate means. A “mass spectrometer” generally includes an ionizer, a mass analyzer, and an ion detector. In general, the molecule or molecules of interest are ionized and the ions are then introduced into a mass spectrometer where the ions are subject to mass (“m”) and charge (for combination of magnetic and electric fields). Follow a path in space that depends on "z"). For a review of mass spectrometers, see, for example, Jurgen H, “Mass Spectrometry”, Maruzen Publishing (2014). Examples of the mass spectrometer include a magnetic field type, a quadrupole type, and a time-of-flight type, and it is preferable to use a quadrupole type that has good quantitativeness, a wide dynamic range, and good linearity. For the detection of ions in the quantification, one of the ion species purified by the selected ion monitoring or the first mass analysis unit that selectively detects only the target ions is selected as the precursor ion, and the second ion is detected. And selective reaction monitoring (SRM) that detects product ions generated by cleavage of the precursor ions in the mass spectrometer. In SRM, the signal / noise ratio is improved by increasing selectivity and reducing noise.

 本明細書で使用されるとき、用語「分解能」または「分解能(FWHM)」(「m/Δm50%」としても当技術分野で公知の)は、最大高さの50%での質量ピークの幅(全幅半値、「FWHM」)で除した観察された質量対電荷比を指す。本発明でも、分解能が高い分析器を用いることが好ましい。分解能が高くなるほど、定性性および定量性が良くなり得る。 As used herein, the term “resolution” or “resolution (FWHM)” (also known in the art as “m / Δm50%”) is the width of the mass peak at 50% of the maximum height. Refers to the observed mass to charge ratio divided by (full width half maximum, “FWHM”). Also in the present invention, it is preferable to use an analyzer having a high resolution. The higher the resolution, the better the qualitative and quantitative properties.

 実際の配置では、バルブおよびコネクター配管の慎重な選択により、2つ以上のクロマトグラフィーカラムは、いずれの手動ステップも必要とすることなく材料が次から次へと通過するように、必要に応じて接続されてもよい。好ましい実施形態において、バルブおよび配管の選択は、必要なステップを実行するように予めプログラムされたコンピュータにより制御される。最も好ましくは、クロマトグラフィーシステムはまた、このようなオンライン方式で検出システム、例えば、MSシステムにも接続される。故に、オペレーターは、試料のトレーをオートサンプラーに入れ得、残りのオペレーションはコンピュータ制御下で行われ、選択された全ての試料の精製および分析をもたらす。 In an actual arrangement, careful selection of valves and connector piping allows two or more chromatographic columns to be passed as needed so that material passes from one to the next without the need for any manual steps. It may be connected. In the preferred embodiment, the selection of valves and piping is controlled by a computer preprogrammed to perform the necessary steps. Most preferably, the chromatography system is also connected to a detection system, such as an MS system, in such an online manner. Thus, the operator can place a tray of samples into the autosampler and the remaining operations are performed under computer control, resulting in the purification and analysis of all selected samples.

 本明細書において、「クロマトグラフィー-質量分析(C-MS)」とは、クロマトグラフ(例えば、ガスクロマトグラフ、液体クロマトグラフなど)と質量分析計とを組み合わせた装置を用いて行う分析方法を意味する。例えば、質量分析部が複数結合したタンデム型の質量分析(C-MS/MS)等も用いることもできる。C-MSにおけるイオン化を行う場合、例えば、大気圧化学イオン化法、ESI、大気圧光イオン化法等を利用することができる。 In this specification, “chromatography-mass spectrometry (C-MS)” means an analysis method performed using an apparatus combining a chromatograph (eg, gas chromatograph, liquid chromatograph, etc.) and a mass spectrometer. To do. For example, tandem mass spectrometry (C-MS / MS) in which a plurality of mass spectrometry units are combined may be used. When performing ionization in C-MS, for example, atmospheric pressure chemical ionization, ESI, atmospheric pressure photoionization, or the like can be used.

 本明細書において、「液体カラムクロマトグラフィー-質量分析(LC-MS)」とは、液体クロマトグラフと質量分析計とを組み合わせた装置を用いて行う分析方法を意味する。例えば、質量分析部が複数結合したタンデム型の質量分析(LC-MS/MS)等も用いることもできる。LC-MSにおけるイオン化を行う場合、例えば、大気圧化学イオン化法、ESI、大気圧光イオン化法等を利用することができる。 In this specification, “liquid column chromatography-mass spectrometry (LC-MS)” means an analysis method performed using an apparatus in which a liquid chromatograph and a mass spectrometer are combined. For example, tandem mass spectrometry (LC-MS / MS) in which a plurality of mass spectrometry units are combined can also be used. When performing ionization in LC-MS, for example, atmospheric pressure chemical ionization, ESI, atmospheric pressure photoionization, or the like can be used.

 本明細書において、「イオンモビリティ分離-質量分析(IMS-MS)」とはイオンモビリティ分離(IMS)と質量分析計とを組み合わせた装置を用いて行う分析方法を意味する。例えば、質量分析部が複数結合したタンデム型の質量分析(IMS-MS/MS)等も用いることもできる。IMS-MSにおけるイオン化を行う場合、例えば、大気圧化学イオン化法、ESI、大気圧光イオン化法等を利用することができる。IMS-MSは、質量分析計だけでは不可能なm/zが同一の妨害成分の分離や、イオンの立体構造解析を可能とし、より特異的で詳細な情報を科学者にもたらすことができる。 In this specification, “ion mobility separation-mass spectrometry (IMS-MS)” means an analysis method performed using an apparatus combining ion mobility separation (IMS) and a mass spectrometer. For example, tandem mass spectrometry (IMS-MS / MS) in which a plurality of mass spectrometry units are combined may be used. When performing ionization in IMS-MS, for example, atmospheric pressure chemical ionization, ESI, atmospheric pressure photoionization, or the like can be used. IMS-MS enables separation of interfering components having the same m / z, which is impossible with a mass spectrometer alone, and analysis of the three-dimensional structure of ions, and can provide more specific and detailed information to scientists.

 本明細書において、「測定」とは、当該分野において使用される通常の意味で用いられ、ある対象について、量がどれほどか測って求めることをいう。本明細書において「検出」とは、当該分野において使用される通常の意味で用いられ、物質や成分等を検査して見つけだすことをいい、「同定」とは、ある対象について、そのものにかかわる既存の分類のなかからそれの帰属先をさがす行為をいい、化学分野において使用される場合、対象となる物質の化学物質としての同一性を決定する(例えば、化学構造を決定する)ことをいい、「定量」とは、対象となる物質の存在する量を決定することをいう。 In this specification, “measurement” is used in the normal sense used in the field, and refers to determining how much a certain object is measured. In this specification, “detection” is used in the usual meaning used in the field, refers to finding out a substance, component, etc., and “identification” refers to an existing object related to itself. This refers to the act of finding the attribution of the classification from the classification of the substance, and when used in the chemical field, it refers to determining the identity of the target substance as a chemical substance (for example, determining the chemical structure), “Quantitative” refers to determining the amount of a target substance.

 本明細書において、「ラン」とは、当該分野において使用される通常の意味で用いられ、質量分析、クロマトグラフィーおよびイオンモビリティ分離などの分離手段において試料をローディングし、試料中の成分を分離し、必要に応じて洗浄するまでの一連の工程を指す。通常、異なる試料は、混同を避けるために異なるランにおいて測定される。測定対象が複数存在する場合、同一のランにおいて全ての測定対象を測定できることが有利であるが、試料中の測定対象ごとの測定系に対する適応性、ダイナミックレンジおよび分離度などを考慮してランは複数に分割してもよい。 In this specification, the term “run” is used in the ordinary meaning used in the art, and the sample is loaded in a separation means such as mass spectrometry, chromatography, and ion mobility separation to separate components in the sample. , Refers to a series of steps until washing as necessary. Usually, different samples are measured in different runs to avoid confusion. When there are multiple measurement objects, it is advantageous to be able to measure all measurement objects in the same run, but the run is considered in consideration of adaptability to the measurement system for each measurement object in the sample, dynamic range, and separation degree. You may divide into several.

 本明細書で使用されるとき、体液試料中の分析物の「量」は、一般には、試料の体積中で検出し得る分析物の質量を反映する絶対値を指す。しかし、量は、別の分析物量と比較した相対量も企図する。例えば、試料中の分析物の量は、試料中に通常存在する分析物の対照レベルまたは正常レベルより大きい量であってもよい。 As used herein, the “amount” of an analyte in a body fluid sample generally refers to an absolute value that reflects the mass of the analyte that can be detected in the volume of the sample. However, an amount also contemplates a relative amount compared to another analyte amount. For example, the amount of analyte in the sample may be an amount greater than the control or normal level of analyte normally present in the sample.

 用語「約」は、イオンの質量の測定を含まない定量的測定に関連して本明細書で使用されるとき、示された値プラスまたはマイナス10%を指す。質量分析機器は、所与の分析物の質量の決定においてわずかに異なり得る。イオンの質量またはイオンの質量/電荷比との関連において用語「約」は、+/-0.5原子質量単位を指す。 The term “about” refers to the indicated value plus or minus 10% as used herein in connection with a quantitative measurement that does not include a measurement of the mass of an ion. Mass spectrometers can be slightly different in determining the mass of a given analyte. The term “about” in the context of ion mass or ion mass / charge ratio refers to +/− 0.5 atomic mass units.

 本明細書において「アルキルアミン」とは、アミン(NH-)基が結合したアルキル基をいう。代表的には、メチルアミン、エチルアミン、プロパンアミン等を挙げることができるがこれらに限定されない。脂肪族アミンまたはアミノアルカンともいう。 As used herein, “alkylamine” refers to an alkyl group to which an amine (NH 2 —) group is bonded. Typical examples include, but are not limited to, methylamine, ethylamine, propanamine and the like. Also referred to as aliphatic amine or aminoalkane.

 本明細書において「陰イオン交換樹脂」とは、当該分野において通常の意味で用いられ、代表的には樹脂の表面に塩基性の基が結合され、陰イオンと結合する性質を有するため陰イオンの濃縮等をすることができる。 In the present specification, the term “anion exchange resin” is used in the ordinary sense in the art, and typically has a property in which a basic group is bonded to the surface of the resin and binds to an anion. Can be concentrated.

 本明細書において「酸性リン脂質」とは、リン脂質のうち、リン酸基の陰性電荷が塩基によって打ち消されていないリン脂質をいい、ホスファチジン酸(PA)、ホスファチジルセリン(PS)、ホスファチジルイノシトール(PI)などが該当する。 As used herein, “acidic phospholipid” refers to a phospholipid in which the negative charge of the phosphate group is not canceled by a base, and includes phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol ( PI).

 本明細書において、リン酸基の「保護基」とは、当該分野において使用される任意の物を使用することができる。保護基については、例えば、Clark J et al, Nat Methods. 2011 March;8(3):267-272.doi:10.1038/nmeth.1564.に例示されており、ベンジル基、p-メトキシベンジル基、tert-ブチル基などを挙げることができる。 In the present specification, as the “protecting group” for the phosphate group, any substance used in the art can be used. Protecting groups are exemplified in, for example, Clark J et al, Nat Methods. 2011 March; 8 (3): 267-272.doi: 10.1038 / nmeth.1564. Benzyl group, p-methoxybenzyl group, Examples thereof include a tert-butyl group.

 本明細書において「ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートの分解がなされない条件」とは、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートからアシル基などの構成要素が分解し、脱離しない条件をいう。「ホスファチジルイノシトールホスフェートの分解がなされない条件」は、ホスファチジルイノシトールホスフェートからアシル基などの構成要素が分解し、脱離しない条件であり、「リゾホスファチジルイノシトールホスフェートの分解がなされない条件」は、リゾホスファチジルイノシトールホスフェートからアシル基などの構成要素が分解し、脱離しない条件であり、「ホスファチジルイノシトールホスフェートおよびリゾホスファチジルイノシトールホスフェートの分解がなされない条件」とは、ホスファチジルイノシトールホスフェートおよびリゾホスファチジルイノシトールホスフェートからアシル基などの構成要素が分解し、脱離しない条件である。このような条件は、試料をそのままクロマトグラフィー、イオンモビリティ分離またはMSに適用することのほか、脱アシル化処理を含まない条件で他の処理を行ってクロマトグラフィー、イオンモビリティ分離またはMSに適用できる試料を調製することを含み、このほか、例えば、試料を変性させる処理を行わないこと、リン酸基に保護基を導入する処理を行うことが含まれる。 In the present specification, “the conditions under which phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate are not decomposed” means a condition in which components such as acyl groups are not decomposed and eliminated from phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. Say. “Conditions under which phosphatidylinositol phosphate is not decomposed” refers to conditions in which components such as acyl groups are decomposed from phosphatidylinositol phosphate and do not leave, and “Conditions under which lysophosphatidylinositol phosphate is not decomposed” refers to lysophosphatidyl. The conditions under which components such as acyl groups are not decomposed and eliminated from inositol phosphate, and the conditions under which phosphatidylinositol phosphate and lysophosphatidylinositol phosphate are not decomposed are the conditions under which phosphatidylinositol phosphate and lysophosphatidylinositol phosphate This is a condition in which components such as are decomposed and do not desorb. Such conditions can be applied to chromatography, ion mobility separation, or MS by applying other treatments under conditions that do not include deacylation, in addition to applying the sample directly to chromatography, ion mobility separation, or MS. In addition to the preparation of the sample, for example, the treatment of denaturing the sample is not performed, and the treatment of introducing a protecting group into the phosphate group is included.

 本明細書において「脱アシル化処理を行わない」とは、脱アシル化、例えば、ホスホリパーゼA類(ホスホリパーゼA、A等)による処理、メチルアミン等のアルキルアミンの存在下での処理(脱ジアシル化条件を開示するSerunian, et al., Methods in Enzymol. Vol., 198, 1991, pp. 78-87、特にpp.82-83、およびFujii et al. Folia Pharmacol Jpn. Vol. 142, 2013, pp. 236-240、特にpp.238-239を参照のこと)を行わないことを言う。 In this specification, “no deacylation treatment” means deacylation, for example, treatment with phospholipases A (phospholipase A 1 , A 2 etc.), treatment in the presence of alkylamine such as methylamine ( Serunian, et al., Methods in Enzymol. Vol., 198, 1991, pp. 78-87, especially pp. 82-83, and Fujii et al. Folia Pharmacol Jpn. 2013, pp. 236-240, especially pp. 238-239).

 本明細書において、「インタクトな(試料)」とは、分析対象となる試料を想定した場合、その試料を変性させないことをいう。試料の変性として、加熱による変性、空気中の酸素、湿気、熱、光、金属イオン、微生物または酵素などの作用による酸化、水系溶媒中における加水分解等が挙げられる。インタクトな状態であるためには、例えば、試料を調製後速やかに凍らせてその後の操作を行うまで-80℃で保管することなどが挙げられる。 In this specification, “intact (sample)” means that when a sample to be analyzed is assumed, the sample is not denatured. Examples of sample denaturation include denaturation by heating, oxidation in the air, moisture, heat, light, metal ions, microorganisms or enzymes, and hydrolysis in an aqueous solvent. In order to be in an intact state, for example, the sample is frozen immediately after preparation and stored at −80 ° C. until the subsequent operation is performed.

 本明細書において、「標識しない」、「標識せずに」とは、分析対象となる試料に標識を付さないことを言う。本明細書において「標識」とは、目的となる分子または物質を他から識別するための存在(例えば、物質、エネルギー、電磁波など)をいう。そのような標識方法としては、RI(ラジオアイソトープ)法、蛍光法、ビオチン法、化学発光法等を挙げることができる。本発明のマーカーまたはそれを捕捉する因子または手段を複数、蛍光法によって標識する場合には、蛍光発光極大波長が互いに異なる蛍光物質によって標識を行う。本発明では、このような標識を利用して、使用される検出手段に検出され得るように目的とする対象を改変することができる。そのような改変は、当該分野において公知であり、当業者は標識におよび目的とする対象に応じて適宜そのような方法を実施することができる。 In this specification, “not labeled” and “without labeling” means that a sample to be analyzed is not labeled. In this specification, the “label” refers to a presence (for example, a substance, energy, electromagnetic wave, etc.) for distinguishing a target molecule or substance from others. Examples of such a labeling method include RI (radioisotope) method, fluorescence method, biotin method, chemiluminescence method and the like. When a plurality of markers of the present invention or a factor or means for capturing them are labeled by the fluorescence method, the labeling is performed with fluorescent substances having different fluorescence emission maximum wavelengths. In the present invention, by using such a label, the target object can be modified so that it can be detected by the detection means used. Such modifications are known in the art, and those skilled in the art can appropriately carry out such methods depending on the label and the target object.

 本明細書において「診断」とは、被験体における疾患、障害、状態(例えば、脂質メディエーターに起因する疾患、障害、状態等)などに関連する種々のパラメータを同定し、そのような疾患、障害、状態の現状または未来を判定することをいう。本発明の方法、装置、システムを用いることによって、体内の状態を調べることができ、そのような情報を用いて、被験体における疾患、障害、状態、投与すべき処置または予防のための処方物または方法などの種々のパラメータを選定することができる。本明細書において、狭義には、「診断」は、現状を診断することをいうが、広義には「早期診断」、「予測診断」、「事前診断」等を含む。本発明の診断方法は、原則として、身体から出たものを利用することができ、医師などの医療従事者の手を離れて実施することができることから、産業上有用である。本明細書において、医師などの医療従事者の手を離れて実施することができることを明確にするために、特に「予測診断、事前診断もしくは診断」を「支援」すると称することがある。本発明の技術は、このような診断技術に応用可能である。本発明の技術を用いてホスホイノシタイドおよび/またはリゾホスホイノシタイドの存在またはそのリン酸基の位置を特定して、このような各種診断に応用することができる。 As used herein, “diagnosis” identifies various parameters related to a disease, disorder, condition (eg, a disease, disorder, condition, etc. caused by a lipid mediator) in a subject, and such a disease, disorder , Refers to determining the current state or future of the state. By using the methods, devices, and systems of the present invention, conditions within the body can be examined, and such information can be used to formulate a disease, disorder, condition, treatment to be administered or prevention in a subject. Alternatively, various parameters such as methods can be selected. In the present specification, “diagnosis” in a narrow sense means diagnosis of the current state, but in a broad sense includes “early diagnosis”, “predictive diagnosis”, “preliminary diagnosis”, and the like. The diagnostic method of the present invention is industrially useful because, in principle, the diagnostic method of the present invention can be used from the body and can be performed away from the hands of medical personnel such as doctors. In this specification, in order to clarify that it can be performed away from the hands of medical personnel such as doctors, in particular, “predictive diagnosis, prior diagnosis or diagnosis” may be referred to as “support”. The technique of the present invention can be applied to such a diagnostic technique. By using the technique of the present invention, the presence of phosphoinositide and / or lysophosphoinositide or the position of the phosphate group thereof can be specified and applied to such various diagnoses.

 本明細書において「治療」とは、ある疾患または障害(例えば、がん等の障害、脂質メディエーターに起因する疾患、障害等)について、そのような状態になった場合に、そのような疾患または障害の悪化を防止、好ましくは、現状維持、より好ましくは、軽減、さらに好ましくは消退させることをいい、患者の疾患、もしくは疾患に伴う1つ以上の症状の、症状改善効果あるいは予防効果を発揮しうることを含む。事前に診断を行って適切な治療を行うことは「コンパニオン治療」といい、そのための診断薬を「コンパニオン診断薬」ということがある。本発明の技術を用いてホスホイノシタイドおよび/またはリゾホスホイノシタイドの存在またはそのリン酸基の結合位置を特定できると、特定の疾患状態と関連づけられ得ることからこのようなコンパニオン治療またはコンパニオン診断において有用であり得る。 As used herein, “treatment” refers to a certain disease or disorder (for example, a disorder such as cancer, a disease caused by a lipid mediator, a disorder, etc.), when such a condition or Prevents the deterioration of the disorder, preferably maintains the current state, more preferably reduces, and even more preferably eliminates the disorder, or exhibits the symptom improving effect or preventing effect of one or more symptoms associated with the disease. It includes what can be done. Diagnosing in advance and performing appropriate treatment is referred to as “companion treatment”, and the diagnostic agent therefor is sometimes referred to as “companion diagnostic agent”. The ability to identify the presence of phosphoinositide and / or lysophosphoinositide or the binding position of its phosphate group using the techniques of the present invention can be associated with a particular disease state and thus such companion therapy or companion diagnosis May be useful.

 本明細書において「予防」とは、ある疾患または障害(例えば、がん、脂質メディエーターに関連する疾患や障害など)について、そのような状態になる前に、そのような状態にならないようにすることをいう。本発明のPIPsおよび/またはLPIPsを用いて、診断を行い、必要に応じて本発明の薬剤を用いて例えば、疾患等の予防をするか、あるいは予防のための対策を講じることができる可能性が有る。本明細書において「予防薬(剤)」とは、広義には、目的の状態(例えば、がん、脂質メディエーターに関連する疾患や障害など)を予防できるあらゆる薬剤をいう。 As used herein, “prevention” refers to preventing a certain disease or disorder (for example, cancer, a disease or disorder related to lipid mediators, etc.) from entering such a state before such a state occurs. That means. Possibility that diagnosis can be performed using the PIPs and / or LPIPs of the present invention, and if necessary, for example, prevention of diseases or the like can be taken using the drug of the present invention. There is. In the present specification, the term “prophylactic agent (agent)” refers to any agent that can prevent a target condition (for example, cancer, diseases and disorders related to lipid mediators, etc.).

 本明細書において「予後」という用語は、がん等の障害、脂質メディエーターに起因する疾患、障害などに起因する死亡または進行が起こる可能性を予測することを意味する。予後因子とは疾患の自然経過に関する変数のことであり、これらは、いったん疾患を発症した患者の再発率等に影響を及ぼす。予後の悪化に関連した臨床的指標には、例えば、本発明で使用される任意の細胞指標が含まれる。予後因子は、しばしば、患者を異なった病態をもつサブグループに分類するために用いられる。本発明の技術を用いてホスファチジルイノシトールおよび/またはリゾホスファチジルイノシトールの存在またはそのリン酸基の結合位置を特定できると、特定の疾患状態と関連づけられ得ることから予後因子を提供する技術として有用であり得る。 As used herein, the term “prognosis” means predicting the possibility of death or progression due to a disorder such as cancer, a disease caused by a lipid mediator, or a disorder. Prognostic factors are variables related to the natural course of the disease, and these affect the recurrence rate of patients who have once developed the disease. Clinical indicators associated with worse prognosis include, for example, any cellular indicator used in the present invention. Prognostic factors are often used to classify patients into subgroups with different pathologies. If the presence of phosphatidylinositol and / or lysophosphatidylinositol or the binding position of its phosphate group can be identified using the technology of the present invention, it is useful as a technology for providing a prognostic factor because it can be associated with a specific disease state. obtain.

 本明細書において「検出機器(機)(器)」とは、広義には、目的の対象を検出または検査することができるあらゆる機器をいう。本発明では、クロマトグラフィー、イオンモビリティ分離装置および質量分析器なども検出機器に含まれる。 In this specification, “detection device (device)” means, in a broad sense, any device that can detect or inspect a target object. In the present invention, a chromatography, an ion mobility separation device, a mass analyzer, and the like are also included in the detection device.

 本明細書において「診断機器(機)(器)」とは、広義には、目的の状態(例えば、がん、脂質メディエーターに関連する疾患や障害など)を診断できるあらゆる薬剤をいう。 In this specification, the term “diagnostic device (device)” means, in a broad sense, any drug capable of diagnosing a target condition (for example, cancer, diseases and disorders related to lipid mediators, etc.).

 本明細書において「薬剤」、「剤」または「因子」(いずれも英語ではagentに相当する)は、広義には、交換可能に使用され、意図する目的を達成することができる限りどのような物質または他の要素(例えば、光、放射能、熱、電気などのエネルギー)でもあってもよい。そのような物質としては、例えば、タンパク質(抗体等も含む)、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、脂質、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子など)、これらの複合分子が挙げられるがそれらに限定されない。 In this specification, “drug”, “agent” or “factor” (both corresponding to “agent” in English) are used interchangeably in a broad sense, and so long as they can achieve their intended purpose. It may also be a substance or other element (eg energy such as light, radioactivity, heat, electricity). Examples of such substances include proteins (including antibodies, etc.), polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (for example, DNA such as cDNA and genomic DNA, mRNA and the like) RNA), polysaccharides, oligosaccharides, lipids, small organic molecules (for example, hormones, ligands, signaling substances, small organic molecules, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals, etc.) However, the present invention is not limited thereto.

 本明細書において「検出薬(剤)」または「検査薬(剤)」とは、広義には、目的の対象を検出または検査することができるあらゆる薬剤をいう。 In this specification, “detection agent (agent)” or “test agent (agent)” refers to any agent that can detect or inspect a target object in a broad sense.

 本明細書において「診断薬(剤)」とは、広義には、目的の状態(例えば、がん、脂質メディエーターに関連する疾患や障害など)を診断できるあらゆる薬剤をいう。 In this specification, “diagnostic agent (agent)” broadly refers to any agent capable of diagnosing a target condition (for example, cancer, diseases and disorders related to lipid mediators, etc.).

 本明細書において「治療薬(剤)」とは、広義には、目的の状態(例えば、がん、脂質メディエーターに関連する疾患や障害など)を治療できるあらゆる薬剤をいう。 In this specification, the term “therapeutic agent (agent)” refers to any agent that can treat a target condition (for example, cancer, diseases or disorders related to lipid mediators, etc.).

 本明細書において「がん」とは、本発明のマーカーで検出可能な任意のがんをいい、例えば、肝細胞がん、食道扁平上皮がん、乳がん、膵がん、頭頸部の扁平細胞がんまたは腺がん、結腸直腸がん、腎がん、脳がん(腫瘍)、前立腺がん、小細胞および非小細胞肺がん、膀胱がん、骨または関節がん、子宮がん、子宮頸がん、多発性骨髄腫、造血器悪性腫瘍、リンパ腫、ホジキン病、非ホジキンリンパ腫、皮膚がん、メラノーマ、扁平細胞がん、白血病、肺がん、卵巣がん、胃がん、カポジ肉腫、喉頭がん、内分泌がん、甲状腺がん、副甲状腺がん、下垂体がん、副腎がん、胆管細胞がん、子宮内膜症、食道がん、肝がん、NSCLC、骨肉腫、膵がん、SCLC、軟部組織腫瘍、AML、およびCMLが含まれるが、これらに限定されない。 As used herein, “cancer” refers to any cancer detectable with the marker of the present invention, such as hepatocellular carcinoma, squamous cell carcinoma of the esophagus, breast cancer, pancreatic cancer, and squamous cells of the head and neck. Cancer or adenocarcinoma, colorectal cancer, kidney cancer, brain cancer (tumor), prostate cancer, small and non-small cell lung cancer, bladder cancer, bone or joint cancer, uterine cancer, child Cervical cancer, multiple myeloma, hematopoietic malignancy, lymphoma, Hodgkin disease, non-Hodgkin lymphoma, skin cancer, melanoma, squamous cell cancer, leukemia, lung cancer, ovarian cancer, gastric cancer, Kaposi sarcoma, laryngeal cancer Endocrine cancer, thyroid cancer, parathyroid cancer, pituitary cancer, adrenal cancer, cholangiocarcinoma, endometriosis, esophageal cancer, liver cancer, NSCLC, osteosarcoma, pancreatic cancer, Includes but is not limited to SCLC, soft tissue tumors, AML, and CML. .

 本明細書において「炎症」とは、本発明のマーカーで検出可能な任意の炎症をいい、マクロファージ等炎症に関連する血液細胞の活性化(炎症細胞の走化性、活性酸素産生、貪食、酵素分泌反応など)を伴い得る。例示的な炎症として、例えば、関節炎、腱炎、滑液包炎、乾癬、嚢胞性線維症、シェーグレン症候群、巨細胞性動脈炎、進行性全身性硬化症(強皮症)、脊椎炎、多発性筋炎、皮膚筋炎、天疱瘡、類天疱瘡、橋本甲状腺炎、胆管炎、炎症性腸疾患(IBD、例えばクローン病、潰瘍性大腸炎)、大腸炎、炎症性皮膚疾患、肺炎、石綿肺、珪肺、気管支拡張症、滑石肺、塵肺、サルコイドーシス、遅延型過敏反応(例えば、ツタウルシ皮膚炎)、気道の炎症、成人呼吸窮迫症候群(ARDS)、脳炎、即時型過敏反応、喘息、花粉症、アレルギー、急性アナフィラキシー、再灌流傷害、関節リウマチ、糸球体腎炎、腎盂腎炎、蜂巣炎、膀胱炎、胆嚢炎、同種移植片拒絶反応、宿主対移植片拒絶、虫垂炎、動脈炎、眼瞼炎、細気管支炎、気管支炎、子宮頸管炎、胆管炎、絨毛羊膜炎、結膜炎、涙腺炎、皮膚筋炎、心内膜炎、子宮内膜炎、腸炎、全腸炎、上顆炎、精巣上体炎、筋膜炎、結合組織炎、胃炎、胃腸炎、歯肉炎、回腸炎、虹彩炎、喉頭炎、脊髄炎、心筋炎、腎炎、臍炎、卵巣炎、精巣炎、骨炎、中耳炎、膵炎、耳下腺炎、心膜炎、咽頭炎、胸膜炎、静脈炎、肺炎、直腸炎、前立腺炎、鼻炎、卵管炎、副鼻腔炎、口内炎、滑膜炎、睾丸炎、扁桃炎、尿道炎、膀胱炎、ブドウ膜炎、膣炎、血管炎、外陰炎、外陰膣炎、血管炎、骨髄炎、視神経炎、脊髄炎、および筋膜炎などの、急性または慢性の炎症を伴う疾患または障害が含まれるが、これらに限定されない。 As used herein, “inflammation” refers to any inflammation detectable with the marker of the present invention, and activation of blood cells related to inflammation such as macrophages (inflammatory cell chemotaxis, active oxygen production, phagocytosis, enzyme A secretory reaction, etc.). Exemplary inflammations include, for example, arthritis, tendinitis, bursitis, psoriasis, cystic fibrosis, Sjogren's syndrome, giant cell arteritis, progressive systemic sclerosis (scleroderma), spondylitis, multiple Dermatomyositis, dermatomyositis, pemphigus, pemphigoid, Hashimoto's thyroiditis, cholangitis, inflammatory bowel disease (IBD, eg Crohn's disease, ulcerative colitis), colitis, inflammatory skin disease, pneumonia, asbestosis, Silicosis, bronchiectasis, talc lung, pneumoconiosis, sarcoidosis, delayed hypersensitivity reaction (eg poison ivy dermatitis), respiratory tract inflammation, adult respiratory distress syndrome (ARDS), encephalitis, immediate hypersensitivity reaction, asthma, hay fever, allergy , Acute anaphylaxis, reperfusion injury, rheumatoid arthritis, glomerulonephritis, pyelonephritis, cellulitis, cystitis, cholecystitis, allograft rejection, host versus graft rejection, appendicitis, arteritis, blepharitis, bronchiolitis ,bronchitis Cervicitis, cholangitis, chorioamnionitis, conjunctivitis, lacrimal inflammation, dermatomyositis, endocarditis, endometritis, enteritis, total enteritis, epicondylitis, epididymis, fasciitis, connective tissue inflammation Gastritis, gastroenteritis, gingivitis, ileitis, iritis, laryngitis, myelitis, myocarditis, nephritis, umbilitis, ovitis, testicularitis, osteomyelitis, otitis media, pancreatitis, parotitis, pericarditis Pharyngitis, pleurisy, phlebitis, pneumonia, proctitis, prostatitis, rhinitis, fallopianitis, sinusitis, stomatitis, synovitis, testicularitis, tonsillitis, urethritis, cystitis, uveitis, vagina Includes, but is not limited to, diseases or disorders with acute or chronic inflammation, such as inflammation, vasculitis, vulvitis, vulvovaginitis, vasculitis, osteomyelitis, optic neuritis, myelitis, and fasciitis .

 本明細書において「がんマーカー」とは、腫瘍マーカーとも称され、がんの診断や治療後の経過観察、再発や転移の発見に有効な生体物質または生体において見出される物質をいう。代表的には血中の物質を測定することで、がんの診断等を行うことができることができる。この場合その血中の物質ががんマーカーに該当する。 In the present specification, the “cancer marker” is also referred to as a tumor marker, and refers to a biological substance that is effective for cancer diagnosis, follow-up after treatment, discovery of recurrence or metastasis, or a substance found in the living body. Typically, cancer diagnosis and the like can be performed by measuring substances in the blood. In this case, the substance in the blood corresponds to the cancer marker.

 本明細書において「マーカー」とは、ある状態(例えば、機能性、形質転換状態、疾患状態、障害状態、あるいは増殖能、分化状態のレベル、有無等)にあるかまたはその危険性があるかどうかを追跡する示標となる物質をいう。本明細書において「疾患マーカー」とは、疾患状態にあるかまたはその危険性があるかどうかを追跡する示標となる物質をいう。本発明において、ある状態(例えば、疾患状態、健康状態、細胞または組織の分化障害などの疾患)についての検出、診断、予備的検出、予測または事前診断は、本発明が提供する検出方法の他、マーカーに特異的な薬剤、剤、因子または手段、あるいはそれらを含む組成物、キットまたはシステム等を用いて実現することができる。 As used herein, the term “marker” is in a certain state (for example, functionality, transformation state, disease state, disorder state, proliferative ability, level of differentiation state, presence / absence, etc.) or is there a risk thereof? A substance that serves as an indicator for tracking whether or not. As used herein, “disease marker” refers to a substance that serves as an indicator for tracking whether a disease state is present or at risk. In the present invention, detection, diagnosis, preliminary detection, prediction, or prior diagnosis for a certain state (for example, a disease state, a health state, a disease such as a cell or tissue differentiation disorder) is the detection method provided by the present invention. Further, it can be realized by using a marker-specific drug, agent, factor or means, or a composition, kit or system containing the same.

 本明細書において「精製された」物質または生物学的因子(例えば、DNAワクチン、核酸構築物、プラスミドDNAなどの核酸またはタンパク質など)とは、その物質または生物学的因子に天然に随伴する因子の少なくとも一部が除去されたものをいう。従って、通常、精製された生物学的因子におけるその生物学的因子の純度は、その生物学的因子が通常存在する状態よりも高い(すなわち濃縮されている)。本明細書中で使用される用語「精製された」は、好ましくは少なくとも75重量%、より好ましくは少なくとも85重量%、よりさらに好ましくは少なくとも95重量%、そして最も好ましくは少なくとも98重量%の、同型の生物学的因子が存在することを意味する。本発明で用いられる物質または生物学的因子は、好ましくは「精製された」物質である。本明細書で使用される「単離された」物質または生物学的因子(例えば、核酸またはタンパク質など)とは、その物質または生物学的因子に天然に随伴する因子が実質的に除去されたものをいう。本明細書中で使用される用語「単離された」は、その目的に応じて変動するため、必ずしも純度で表示される必要はないが、必要な場合、好ましくは少なくとも75重量%、より好ましくは少なくとも85重量%、よりさらに好ましくは少なくとも95重量%、そして最も好ましくは少なくとも98重量%の、同型の生物学的因子が存在することを意味する。本発明で用いられる物質は、好ましくは「単離された」物質または生物学的因子である。 As used herein, a “purified” substance or biological agent (eg, a nucleic acid or protein such as a DNA vaccine, nucleic acid construct, plasmid DNA, etc.) refers to an agent that naturally accompanies the substance or biological agent. This means that at least a part has been removed. Thus, typically, the purity of a biological agent in a purified biological agent is higher (ie, enriched) than the state in which the biological agent is normally present. The term “purified” as used herein is preferably at least 75% by weight, more preferably at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight, Means the presence of the same type of biological agent. The substance or biological agent used in the present invention is preferably a “purified” substance. As used herein, an “isolated” substance or biological agent (such as a nucleic acid or protein) is substantially free of the factors that naturally accompany the substance or biological agent. Say things. The term “isolated” as used herein does not necessarily have to be expressed in purity, as it will vary depending on its purpose, but is preferably at least 75% by weight, more preferably if necessary. Means that there is at least 85%, more preferably at least 95%, and most preferably at least 98% by weight of the same type of biological agent. The materials used in the present invention are preferably “isolated” materials or biological agents.

 一般的に、本発明の組成物、医薬、剤(治療剤、予防剤等)等は、治療有効量の医薬または有効成分、および薬学的に許容しうるキャリアもしくは賦形剤を含む。本明細書において「薬学的に許容しうる」は、動物、そしてより詳細にはヒトにおける使用のため、政府の監督官庁に認可されたか、あるいは薬局方または他の一般的に認められる薬局方に列挙されていることを意味する。 In general, the compositions, medicaments, agents (therapeutic agents, prophylactic agents, etc.) of the present invention comprise a therapeutically effective amount of a medicament or active ingredient, and a pharmaceutically acceptable carrier or excipient. As used herein, “pharmaceutically acceptable” refers to a licensed or otherwise recognized pharmacopoeia of a government for use in animals, and more particularly in humans, by a government supervisory authority. It means that it is enumerated.

 本発明の一実施形態において「患者」は、ヒトが主に想定されるが、適用可能である限りヒトを除く哺乳動物であってもよい。 In one embodiment of the present invention, a “patient” is mainly assumed to be a human, but may be a mammal other than a human as long as it is applicable.

 本明細書において「被験体(者)」とは、本発明の予防、治療等の対象となる対象をいい、ヒト、またはヒトを除く哺乳動物(例えば、マウス、モルモット、ハムスター、ラット、ネズミ、ウサギ、ブタ、ヒツジ、ヤギ、ウシ、ウマ、ネコ、イヌ、マーモセット、サル、またはチンパンジー等の1種以上)を含む。 As used herein, “subject (person)” refers to a subject to be used for the prevention or treatment of the present invention, and is a human or a mammal other than a human (eg, mouse, guinea pig, hamster, rat, rat, Including one or more of a rabbit, pig, sheep, goat, cow, horse, cat, dog, marmoset, monkey, or chimpanzee).

 本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、検査薬、診断薬、治療薬、試薬、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、検査薬、診断薬、治療薬、試薬、標識などをどのように使用するか、あるいは、どのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、検査薬、診断薬、治療薬、試薬、標識等の使い方などを記載した指示書などが含まれる。検査機器、診断機器等を組み合わせる場合は、「キット」は「システム」として提供され得る。 In this specification, the “kit” is a unit provided with a portion to be provided (eg, a test agent, a diagnostic agent, a therapeutic agent, a reagent, a label, an instruction, etc.) usually divided into two or more compartments. Say. This kit form is preferred when it is intended to provide a composition that should not be provided in admixture for stability or the like, but preferably used in admixture immediately before use. Such kits preferably include instructions describing how to use or how to handle the provided moiety (eg, test, diagnostic, therapeutic, reagent, label, etc.). In the present specification, when the kit is used as a reagent kit, the kit describes how to use a test agent, a diagnostic agent, a therapeutic agent, a reagent, a label, and the like. This includes instructions, etc. When combining test equipment, diagnostic equipment, etc., a “kit” can be provided as a “system”.

 本明細書において「指示書」は、本発明を使用する方法を医師または他の使用者に対する説明を記載したものである。この指示書は、本発明の検出方法、診断薬の使い方、または医薬などを投与することを指示する文言が記載されている。また、指示書には、マーカーの検出および判断する方法を指示する文言が記載されていてもよい。この指示書は、本発明が実施される国の監督官庁(例えば、日本であれば厚生労働省、米国であれば食品医薬品局(FDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)であり、通常は紙媒体で提供されるが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。 In the present specification, the “instruction sheet” describes the method for using the present invention for a doctor or other user. This instruction manual includes a word indicating that the detection method of the present invention, how to use a diagnostic agent, or administration of a medicine or the like is given. In addition, the instruction sheet may include a word indicating a method for detecting and determining the marker. This instruction is prepared in accordance with the format prescribed by the national supervisory authority (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States, etc. in the United States) where the present invention is implemented, and is approved by the supervisory authority. It is clearly stated that it has been received. The instruction sheet is a so-called package insert and is usually provided in a paper medium, but is not limited thereto, and is in a form such as an electronic medium (for example, a homepage or an e-mail provided on the Internet). But it can be provided.

 (好ましい実施形態)
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
(Preferred embodiment)
Hereinafter, preferred embodiments of the present invention will be described. The embodiments provided below are provided for a better understanding of the present invention, and it is understood that the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make appropriate modifications within the scope of the present invention with reference to the description in the present specification. It will also be appreciated that the following embodiments of the invention may be used alone or in combination.

 <リゾホスファチジルイノシトールリン酸類(LPIPs)>
 1つの局面において、本発明は、リゾホスファチジルイノシトール一リン酸(lyso-phosphatidylinositol monophosphate(LPIP1))、リゾホスファチジルイノシトール二リン酸(lyso-phosphatidylinositol bisphosphate(LPIP2))またはリゾホスファチジルイノシトール三リン酸(lyso-phosphatidylinositol trisphosphate(LPIP3))である化合物を提供する。ホスファチジルイノシトールリン酸類の研究は比較的早期からなされており、近年では相当程度の内容が判明するに至っている(佐々木ら、医学のあゆみ Vol. 248, No. 13, (2014)pp.1039-1049)。ホスホイノシタイド/イノシ卜ールリン脂質(PIPs)は形質膜,オルガネラ膜を構成するといわれており、そのヘッドグループは炭素6員環と多価のリン酸基により他のグリセロリン脂質と比較してきわだって大きく、また、電荷に富むPIPs代謝系は増殖、分化、運動、老化、死といった幅広い生命現象に関与するとされている。したがって、本発明において初めて同定された本発明の脂質(LPIPs)そのものや、その代謝酵素や受容体などは、多様な疾患治療薬の標的として、また、疾患マーカーとして有用であり得る。また、脂質代謝は重要な研究対象の一つであるため試薬として、これらの脂質が実験用試薬として利用される。
<Lysophosphatidylinositol phosphates (LPIPs)>
In one aspect, the present invention relates to lyso-phosphatidylinositol monophosphate (LPIP1), lysophosphatidylinositol diphosphate (LPIP2) or lysophosphatidylinositol triphosphate (lyso-phosphatidylinositol monophosphate (LPIP2)). A compound that is phosphatidylinositol trisphosphate (LPIP3)) is provided. Studies on phosphatidylinositol phosphates have been made relatively early, and in recent years a considerable amount of content has been found (Sasaki et al., History of Medicine Vol. 248, No. 13, (2014) pp.1039-1049). ). Phosphoinositide / inosyl phospholipids (PIPs) are said to constitute plasma membranes and organelle membranes, and their head group is significantly larger than other glycerophospholipids due to the six-membered carbon ring and polyvalent phosphate groups. In addition, the PIPs metabolic system rich in electric charge is considered to be involved in a wide range of life phenomena such as proliferation, differentiation, movement, aging, and death. Therefore, the lipids (LPIPs) of the present invention identified for the first time in the present invention, their metabolic enzymes, receptors, and the like can be useful as targets for various therapeutic drugs and as disease markers. Since lipid metabolism is one of the important research subjects, these lipids are used as experimental reagents as reagents.

 PIPsのリゾ体(LPIPs)については、従来測定が不可能であったことから、同定された報告はない。本発明において、本発明者らは、DEAE cellulose等の陰イオン交換樹脂による酸性リン脂質の濃縮、次いでTMSジアゾメタンによるリン酸基の保護、次いで三連四重極質量分析計でのSRM法の組合せによる解析方法を開発した。この方法を用いることで、既知のイノシトールリン脂質とは異なる構造体である本発明のLPIP1、LPIP2、LPIP3を見出すことに成功した。また、LPIPsについては、合成法も知られていなかったことから、製造することもできなかった。したがって、一般的な化学物質の命名規則で記載はできるものの、LPIPsは物質として存在が確認されておらず、知られていなかったといえる。本発明では、LPIPsを検出し同定することができる技術を開発することによって、生体内においてLPIPsが存在すること(ここで、生体内に存在するものは「天然型LPIPs」ともいう。)を見出し、また、合成法も開発することができ、生体内に存在するLPIPsの提供の他、合成することによって「非天然型」LPIPsを含むLPIPsについても提供することができるようになった。 For lyso form of PIPs (LPIPs), since no conventional measurement was possible, there was no report identified. In the present invention, the inventors have concentrated acidic phospholipids with an anion exchange resin such as DEAE cellulose, then protected phosphate groups with TMS diazomethane, and then combined the SRM method with a triple quadrupole mass spectrometer. Analytical method was developed. By using this method, the inventors succeeded in finding LPIP1, LPIP2, and LPIP3 of the present invention, which are structures different from known inositol phospholipids. Also, LPIPs could not be produced because the synthesis method was not known. Therefore, although it can be described by a general naming rule for chemical substances, LPIPs have not been confirmed as substances and can be said to have not been known. In the present invention, by developing a technique capable of detecting and identifying LPIPs, it is found that LPIPs exist in a living body (here, those existing in a living body are also referred to as “natural LPIPs”). Also, synthetic methods can be developed, and in addition to providing LPIPs existing in vivo, LPIPs including “non-natural type” LPIPs can be provided by synthesis.

 LPIPsは、生体内に存在することも本発明において示された。例えば、実施例において示されるように、種々の哺乳動物培養細胞株やマウス前立腺癌組織において見出され、LPIP3等の特定の分子種ではがん細胞において優先的に発現しているようであることも明らかになった。また、見出されたLPIPsの何種類かは、がんに特異的にまたは優先的に発現していることが見出された。LPIPsと類似の構造を有するPIPsについては、従来解析が進んでおり、例えば、がん抑制遺伝子PTENの変異や発現低下は、ヒト癌の約半数に認められる頻度の高い異常であることが知られている。現在のところ、PTENが分解する(PTENの基質である)PIP3の変動が発癌、進展と関連あると考えられているが、実際にPIP3の変動を示した報告はほとんど存在せず(Thanh-Trang T. Vo and David A. Fruman, Cancer Discov; 5(7); 697-700, 2015; Kofuji et al., Cancer Discov; 5(7); 730-9. 2015)、本発明のLPIPsが、がんの脂質メディエーターとして働いている可能性も考えることができる。また、高感度測定によって、LPIPsは細胞内のみならず細胞外にも存在することが分かった。血液や尿など採取が比較的容易な検体でこれらの脂質を測定することは、検査医学的にも有用である。 LPIPs are also shown in the present invention to be present in vivo. For example, as shown in the Examples, it is found in various mammalian cell lines and mouse prostate cancer tissues, and seems to be preferentially expressed in cancer cells in specific molecular species such as LPIP3. It became clear. It was also found that some of the found LPIPs are specifically or preferentially expressed in cancer. PIPs having a structure similar to LPIPs have been analyzed in the past. For example, it is known that mutations and decreased expression of the tumor suppressor gene PTEN are abnormalities that are frequently observed in about half of human cancers. ing. At present, it is thought that fluctuations in PIP3 (which is a substrate for PTEN), which degrades PTEN, are related to carcinogenesis and progression, but there are few reports that actually showed fluctuations in PIP3 (Thanh-Trang). T. Vo and David A. Fruman, Cancer Discov; 5 (7); 697-700, 2015; Kofuji et al., Cancer Discov; 5 (7); 730-9. 2015), LPIPs of the present invention are The possibility of working as a lipid mediator can also be considered. Moreover, it was found by high sensitivity measurement that LPIPs exist not only in cells but also outside cells. Measuring these lipids with a sample that is relatively easy to collect, such as blood and urine, is also useful in laboratory medicine.

 PIPsの変動(例えば、代謝、分解等)については、測定技術が未熟であったことから、未解明のままであるものが多い。本発明において新規の物質としてLPIPsが見出され、かつ、LPIPsにおいてがんに優先的に発現するものがあることが判明したことから、がんまたはその他の脂質メディエーターが関連する疾患において血液、尿等の検体を用いて医療検査や診断に応用することができる。一般にリン脂質の対応するリゾ体への代謝にはホスホリパーゼA類(ホスホリパーゼA、A等)が関与することが知られているが、ホスホリパーゼA、Aは基質特異性がきわめて高く、異なる型のリン脂質には反応しない。例えば、ホスファチジルコリンを基質とするサブタイプのものはホスファチジルセリンには反応しないとされている。また、PIPsを基質とするものは知られていない。本発明により、リゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸、およびリゾホスファチジルイノシトール三リン酸が見出された。生体内に見いだされた「リゾホスファチジルイノシトール一リン酸」については、リン酸基は4位であり、sn-1位またはsn-2位に以下の脂肪酸が結合している種が見出された:16:0、16:1(9Z)、18:0、18:1(9Z)、18:2(9Z,12Z)、20:3(8Z,11Z,14Z)、20:4(5Z,8Z,11Z,14Z)、22:4(7Z,10Z,13Z,16Z)、22:5(7Z,10Z,13Z,16Z,19Z)、22:6(4Z,7Z,10Z,13Z,16Z,19Z)。生体内に見いだされた「リゾホスファチジルイノシトール二リン酸」については、リン酸基は4,5位であり、sn-1位またはsn-2位に以下の脂肪酸が結合している種が見出された:16:0、16:1(9Z)、18:0、18:1(9Z)、18:2(9Z,12Z)、18:3(6Z,9Z,12Z)、20:3(8Z,11Z,14Z)、20:4(5Z,8Z,11Z,14Z)。生体内に見いだされた「リゾホスファチジルイノシトール三リン酸」については、sn-1位またはsn-2位に以下の脂肪酸が結合している種が見出された:16:0、16:1(9Z)、18:0、18:1(9Z)、20:4(5Z,8Z,11Z,14Z)。これらの分子種は、PIPsにおいて見出される脂肪酸種と類似していることから、ホスファチジルイノシトールリン酸塩に対して特異性を有する、従来知られていないホスホリパーゼAまたはホスホリパーゼAの存在が示唆される。上記脂肪酸の分子種については、存在量の多寡はあるものの生体内においてsn-1およびsn-2のいずれにも見出されるようである。 Many changes in PIPs (for example, metabolism, degradation, etc.) remain unexplained because measurement techniques are immature. Since LPIPs have been found as novel substances in the present invention, and it has been found that some LPIPs are preferentially expressed in cancer, blood, urine in diseases associated with cancer or other lipid mediators It can be applied to medical examinations and diagnosis using specimens such as. In general, it is known that phospholipases A (phospholipases A 1 , A 2, etc.) are involved in the metabolism of phospholipids to the corresponding lyso form, but phospholipases A 1 and A 2 have extremely high substrate specificity, It does not respond to different types of phospholipids. For example, it is said that a subtype having phosphatidylcholine as a substrate does not react with phosphatidylserine. Moreover, what uses PIPs as a substrate is not known. In accordance with the present invention, lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate, and lysophosphatidylinositol triphosphate have been found. As for “lysophosphatidylinositol monophosphate” found in the living body, a phosphate group is located at the 4-position, and a species in which the following fatty acids are bonded to the sn-1 position or the sn-2 position was found. : 16: 0, 16: 1 (9Z), 18: 0, 18: 1 (9Z), 18: 2 (9Z, 12Z), 20: 3 (8Z, 11Z, 14Z), 20: 4 (5Z, 8Z) , 11Z, 14Z), 22: 4 (7Z, 10Z, 13Z, 16Z), 22: 5 (7Z, 10Z, 13Z, 16Z, 19Z), 22: 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z) . As for “lysophosphatidylinositol diphosphate” found in vivo, the phosphate group is located at the 4th and 5th positions, and the following fatty acids are found bound to the sn-1 or sn-2 position. 16: 0, 16: 1 (9Z), 18: 0, 18: 1 (9Z), 18: 2 (9Z, 12Z), 18: 3 (6Z, 9Z, 12Z), 20: 3 (8Z) , 11Z, 14Z), 20: 4 (5Z, 8Z, 11Z, 14Z). For “lysophosphatidylinositol triphosphate” found in vivo, the following fatty acids were found to bind to the sn-1 or sn-2 position: 16: 0, 16: 1 ( 9Z), 18: 0, 18: 1 (9Z), 20: 4 (5Z, 8Z, 11Z, 14Z). These molecular species are similar to the fatty acid species found in PIPs, suggesting the presence of a previously unknown phospholipase A 1 or phospholipase A 2 that has specificity for phosphatidylinositol phosphates. The The fatty acid molecular species are likely to be found in both sn-1 and sn-2 in vivo, although there are many abundances.

 1つの実施形態において、本発明は、1-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール一リン酸、1-アシル-リゾホスファチジルイノシトール二リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸、または2-アシル-リゾホスファチジルイノシトール三リン酸である化合物を提供する。アシル基としては、対応する脂肪酸が入手可能である限り、どのような種類のアシル基でもよい。本発明のリゾホスファチジルイノシトールリン酸類は、ホスファチジルイノシトールリン酸類を出発材料として製造することができることが本発明において見出されている。したがって、本明細書において引用したConwayの方法をもとに、入手した脂肪酸をホスファチジルイノシトールリン酸類に導入することによって、本発明のリゾホスファチジルイノシトールリン酸類の製造法の出発材料として用いることができる。 In one embodiment, the invention provides 1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol. Compounds are provided that are diphosphate, 1-acyl-lysophosphatidylinositol triphosphate, or 2-acyl-lysophosphatidylinositol triphosphate. The acyl group may be any kind of acyl group as long as the corresponding fatty acid is available. It has been found in the present invention that the lysophosphatidylinositol phosphates of the present invention can be produced starting from phosphatidylinositol phosphates. Therefore, by introducing the obtained fatty acid into phosphatidylinositol phosphates based on the Conway method cited in this specification, it can be used as a starting material for the production method of lysophosphatidylinositol phosphates of the present invention.

 1つの好ましい実施形態では、本発明は、2-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸または2-アシル-リゾホスファチジルイノシトール三リン酸である化合物を提供する。 In one preferred embodiment, the present invention provides 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidyl. A compound that is inositol triphosphate is provided.

 本発明の化合物は、リゾホスファチジルイノシトールリン酸類においてリン酸基はイノシトールにおける任意の場所に結合したものを利用することができ、好ましくは、3位、4位および5位のうち1つ、2つまたは3つの位置に結合したものを用いることができる。したがって、3-一リン酸型、4-一リン酸型、5-一リン酸型、3,4-二リン酸型、3,5-二リン酸型、4,5-二リン酸型、3,4,5-三リン酸型が好ましい例として例示される。1つの実施形態では、本発明は、1-アシル-リゾホスファチジルイノシトール-3-一リン酸、1-アシル-リゾホスファチジルイノシトール-4-一リン酸、1-アシル-リゾホスファチジルイノシトール-5-一リン酸、2-アシル-リゾホスファチジルイノシトール-3-一リン酸、2-アシル-リゾホスファチジルイノシトール-4-一リン酸、2-アシル-リゾホスファチジルイノシトール-5-一リン酸、1-アシル-リゾホスファチジルイノシトール-3.4-二リン酸、1-アシル-リゾホスファチジルイノシトール-3.5-二リン酸、1-アシル-リゾホスファチジルイノシトール-4.5-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,4-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,5-二リン酸、2-アシル-リゾホスファチジルイノシトール-4,5-二リン酸、1-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸、または2-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸である化合物を提供する。 As the compound of the present invention, lysophosphatidylinositol phosphates can be used in which the phosphate group is bonded to any position in inositol, and preferably one of 2, 3, and 5 positions. Or what was couple | bonded with three positions can be used. Therefore, 3-monophosphate type, 4-monophosphate type, 5-monophosphate type, 3,4-diphosphate type, 3,5-diphosphate type, 4,5-diphosphate type, The 3,4,5-triphosphate type is exemplified as a preferred example. In one embodiment, the present invention provides 1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate Acid, 2-acyl-lysophosphatidylinositol-3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidyl Inositol-3.4-diphosphate, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol- 3,4-diphosphate, 2-acyl-lysophosphatidylinositol -3,5-diphosphate, 2-acyl-lysophosphatidylinositol-4,5-diphosphate, 1-acyl-lysophosphatidylinositol-3,4,5-triphosphate, or 2-acyl-lysophosphatidyl Provided is a compound that is inositol-3,4,5-triphosphate.

 具体的な実施形態では、本発明は、例示的に、以下の化合物を提供するが、本発明の具体的化合物は、以下に限定されるものではない。 In a specific embodiment, the present invention illustratively provides the following compound, but the specific compound of the present invention is not limited to the following.

  (化1)

Figure JPOXMLDOC01-appb-I000002
(Chemical 1)
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

 <LPIPsの用途>
 別の局面において、本発明は、本発明の化合物(リゾホスファチジルイノシトールリン酸類等)を含む疾患マーカーとして使用するための組成物を提供する。このような化合物としては、本明細書中の<リゾホスファチジルイノシトールリン酸類(LPIPs)>に記載される任意の実施形態を1つまたは複数組み合わせて採用され得ることが理解される。そのような例としては、例えば、リゾホスファチジルイノシトール一リン酸(LPIP1)、リゾホスファチジルイノシトール二リン酸(LPIP2)またはリゾホスファチジルイノシトール三リン酸(LPIP3)、それらの組合せを挙げることができ、特に、LPIP3について、がん組織において、その発現レベルが有意に上昇したことが示されており、本発明の化合物は、特に生体内に存在する物質の場合は、炎症マーカーまたはがんマーカーとして使用することができ、合成品についても、炎症マーカーまたはがんマーカーの検出の際の対照または標準品として有用であることが理解される。
<Uses of LPIPs>
In another aspect, the present invention provides a composition for use as a disease marker comprising a compound of the present invention (such as lysophosphatidylinositol phosphates). It is understood that as such a compound, any embodiment described in <lysophosphatidylinositol phosphates (LPIPs)> in this specification may be employed in combination of one or more. Examples of such may include, for example, lysophosphatidylinositol monophosphate (LPIP1), lysophosphatidylinositol diphosphate (LPIP2) or lysophosphatidylinositol triphosphate (LPIP3), in particular, LPIP3 has been shown to have a significantly increased expression level in cancer tissues, and the compound of the present invention should be used as an inflammation marker or a cancer marker, particularly in the case of substances present in vivo. It is understood that a synthetic product is also useful as a control or standard for detection of an inflammatory marker or a cancer marker.

 本発明の化合物ががんマーカーとして使用される場合、対象となるがんに制限はないが、例えば、肝細胞がん、食道扁平上皮がん、乳がん、膵がん、頭頸部の扁平細胞がんまたは腺がん、結腸直腸がん、腎がん、脳がん(腫瘍)、前立腺がん、小細胞および非小細胞肺がん、膀胱がん、骨または関節がん、子宮がん、子宮頸がん、多発性骨髄腫、造血器悪性腫瘍、リンパ腫、ホジキン病、非ホジキンリンパ腫、皮膚がん、メラノーマ、扁平細胞がん、白血病、肺がん、卵巣がん、胃がん、カポジ肉腫、喉頭がん、内分泌がん、甲状腺がん、副甲状腺がん、下垂体がん、副腎がん、胆管細胞がん、子宮内膜症、食道がん、肝がん、NSCLC、骨肉腫、膵がん、SCLC、軟部組織腫瘍、AML、およびCMLが含まれるが、これらに限定されず、また好ましくは、前立腺がん等が包含されることが理解される。 When the compound of the present invention is used as a cancer marker, the target cancer is not limited. For example, hepatocellular carcinoma, esophageal squamous cell carcinoma, breast cancer, pancreatic cancer, and squamous cells in the head and neck Or adenocarcinoma, colorectal cancer, kidney cancer, brain cancer (tumor), prostate cancer, small and non-small cell lung cancer, bladder cancer, bone or joint cancer, uterine cancer, cervical cancer Cancer, multiple myeloma, hematopoietic malignancy, lymphoma, Hodgkin disease, non-Hodgkin lymphoma, skin cancer, melanoma, squamous cell cancer, leukemia, lung cancer, ovarian cancer, gastric cancer, Kaposi sarcoma, laryngeal cancer, Endocrine cancer, thyroid cancer, parathyroid cancer, pituitary cancer, adrenal cancer, cholangiocarcinoma, endometriosis, esophageal cancer, liver cancer, NSCLC, osteosarcoma, pancreatic cancer, SCLC , Soft tissue tumors, AML, and CML. Not, and preferably, it is understood that prostate cancer, and the like.

 本発明の化合物が炎症マーカーとして使用される場合、対象となる炎症に制限はないが、例えば、関節炎、腱炎、滑液包炎、乾癬、嚢胞性線維症、シェーグレン症候群、巨細胞性動脈炎、進行性全身性硬化症(強皮症)、脊椎炎、多発性筋炎、皮膚筋炎、天疱瘡、類天疱瘡、橋本甲状腺炎、胆管炎、炎症性腸疾患(IBD、例えばクローン病、潰瘍性大腸炎)、大腸炎、炎症性皮膚疾患、肺炎、石綿肺、珪肺、気管支拡張症、滑石肺、塵肺、サルコイドーシス、遅延型過敏反応(例えば、ツタウルシ皮膚炎)、気道の炎症、成人呼吸窮迫症候群(ARDS)、脳炎、即時型過敏反応、喘息、花粉症、アレルギー、急性アナフィラキシー、再灌流傷害、関節リウマチ、糸球体腎炎、腎盂腎炎、蜂巣炎、膀胱炎、胆嚢炎、同種移植片拒絶反応、宿主対移植片拒絶、虫垂炎、動脈炎、眼瞼炎、細気管支炎、気管支炎、子宮頸管炎、胆管炎、絨毛羊膜炎、結膜炎、涙腺炎、皮膚筋炎、心内膜炎、子宮内膜炎、腸炎、全腸炎、上顆炎、精巣上体炎、筋膜炎、結合組織炎、胃炎、胃腸炎、歯肉炎、回腸炎、虹彩炎、喉頭炎、脊髄炎、心筋炎、腎炎、臍炎、卵巣炎、精巣炎、骨炎、中耳炎、膵炎、耳下腺炎、心膜炎、咽頭炎、胸膜炎、静脈炎、肺炎、直腸炎、前立腺炎、鼻炎、卵管炎、副鼻腔炎、口内炎、滑膜炎、睾丸炎、扁桃炎、尿道炎、膀胱炎、ブドウ膜炎、膣炎、血管炎、外陰炎、外陰膣炎、血管炎、骨髄炎、視神経炎、脊髄炎、および筋膜炎などの、急性または慢性の炎症を伴う疾患または障害が含まれるが、これらに限定されない。 When the compound of the present invention is used as an inflammation marker, the target inflammation is not limited, for example, arthritis, tendinitis, bursitis, psoriasis, cystic fibrosis, Sjogren's syndrome, giant cell arteritis , Progressive systemic sclerosis (scleroderma), spondylitis, polymyositis, dermatomyositis, pemphigus, pemphigoid, Hashimoto's thyroiditis, cholangitis, inflammatory bowel disease (IBD such as Crohn's disease, ulcerative) Colitis), colitis, inflammatory skin disease, pneumonia, asbestosis, silicosis, bronchiectasis, talc lung, pneumoconiosis, sarcoidosis, delayed type hypersensitivity reaction (eg poison ivy dermatitis), airway inflammation, adult respiratory distress syndrome (ARDS), encephalitis, immediate hypersensitivity reaction, asthma, hay fever, allergy, acute anaphylaxis, reperfusion injury, rheumatoid arthritis, glomerulonephritis, pyelonephritis, cellulitis, cystitis, cholecystitis, allograft rejection, Main graft rejection, appendicitis, arteritis, blepharitis, bronchiolitis, bronchitis, cervicitis, cholangitis, chorioamnionitis, conjunctivitis, lacrimal inflammation, dermatomyositis, endocarditis, endometritis, Enteritis, panenteritis, epicondylitis, epididymis, fasciitis, connective tissue inflammation, gastritis, gastroenteritis, gingivitis, ileitis, iritis, laryngitis, myelitis, myocarditis, nephritis, umbilitis, Ovariitis, testitis, osteomyelitis, otitis media, pancreatitis, parotitis, pericarditis, pharyngitis, pleurisy, phlebitis, pneumonia, proctitis, prostatitis, rhinitis, fallopianitis, sinusitis, stomatitis, Synovitis, testicular inflammation, tonsillitis, urethritis, cystitis, uveitis, vaginitis, vasculitis, vulvitis, vulvovaginitis, vasculitis, osteomyelitis, optic neuritis, myelitis, fasciitis, etc. Including, but not limited to, diseases or disorders associated with acute or chronic inflammation.

 炎症マーカーまたはがんマーカー等の疾患マーカーとして使用する場合、本発明のLPIPsは、本明細書において開示した検出方法また他の方法(例えば、免疫学的手法、放射性物質を用いる細胞学的手法等)を用いることができる。放射性物質を使用する場合、PIPsの手法(佐々木ら、医学のあゆみVol. 248, No. 13, (2014) pp.1039-1049参照)に倣い、放射性同位体(RI)により標識した細胞内LPIPsを高速液体クロマトグラフィー(HPLC)で分離し放射活性を得ることが想定される。 When used as a disease marker such as an inflammation marker or a cancer marker, the LPIPs of the present invention can be used for the detection method and other methods disclosed in the present specification (for example, immunological techniques, cytological techniques using radioactive substances, etc.) ) Can be used. When radioactive materials are used, intracellular LPIPs labeled with radioactive isotopes (RI) following the PIPs method (see Sasaki et al., Ayumi Sci. Vol. 248, No. 13, (2014) pp. 1039-1049) Are separated by high performance liquid chromatography (HPLC) to obtain radioactivity.

 本発明のLPIPsの検出、同定、品質管理等は、本発明に記載の検出方法を用いるほか、マーカーとなるLPIPsに結合する物質や相互作用分子を用いることによって実現することができる。本発明の関連において、マーカーとなる物質に「結合する物質」または「相互作用分子」は、少なくとも一時的にマーカーとなる物質(例えば、LPIPs)等の分子に結合し、そして好ましくは、結合したことを表示しうる(例えば標識されるか標識可能な状態である)、分子または物質である。LPIPs等の分子に結合する物質はLPIPs等の分子の受容体や転移酵素(判明した場合)であってもよく、その他の例としては、抗体、アンチセンス・オリゴヌクレオチド、siRNA、低分子量分子(LMW)、結合性ペプチド、アプタマー、リボザイムおよびペプチド模倣体(peptidomimetic)等を挙げることができ、例えばLPIPs等の分子に対して特異的な結合性タンパク質も含まれる。本明細書において、LPIPs等の分子について「結合性タンパク質」とは、LPIPs等の分子に(好ましくは、特異的に)結合する種類のタンパク質を指し、そしてLPIPs等の分子に対して惹起されるポリクローナル抗体またはモノクローナル抗体等の抗体、抗体フラグメントおよびタンパク質骨格を含むがこれらに限定されない。このようなタンパク質の代表例としては抗体があり、このような抗体は当該分野において公知の手法を用いて実施することができる。 The detection, identification, quality control, and the like of the LPIPs of the present invention can be realized by using a substance or an interacting molecule that binds to LPIPs serving as a marker, in addition to using the detection method described in the present invention. In the context of the present invention, a “substance that binds” or “interacting molecule” to a marker substance binds and preferably binds to a molecule, such as a substance that is at least temporarily marker (eg, LPIPs). A molecule or substance that can indicate (eg, is labeled or is ready to be labeled). Substances that bind to molecules such as LPIPs may be receptors for molecules such as LPIPs or transferases (if known), and other examples include antibodies, antisense oligonucleotides, siRNAs, low molecular weight molecules ( LMW), binding peptides, aptamers, ribozymes, peptidomimetics, and the like, including, for example, binding proteins specific for molecules such as LPIPs. As used herein, “binding protein” for a molecule such as LPIPs refers to a type of protein that binds (preferably specifically) to a molecule such as LPIPs, and is induced to a molecule such as LPIPs. Including but not limited to antibodies such as polyclonal or monoclonal antibodies, antibody fragments and protein backbones. A typical example of such a protein is an antibody, and such an antibody can be carried out using a technique known in the art.

 <LPIPsの製造法>
 別の局面において、本発明は、ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸をアルキルアミンに接触させることで脱アシル化する工程を包含する本発明の化合物(リゾホスファチジルイノシトールリン酸類)の製造方法。
<Manufacturing method of LPIPs>
In another aspect, the present invention relates to a compound of the present invention (lysophosphatidylinositol) comprising the step of deacylating phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with alkylamine. (Phosphate) production method.

 好ましい実施形態では、前記アルキルアミンは、メチルアミンである。 In a preferred embodiment, the alkylamine is methylamine.

 さらに好ましい実施形態では、前記脱アシル化は、適切な濃度(例えば、10.7%以下)のメチルアミン等のアルキルアミンの存在下で、脱アシル化が促進する温度(例えば、室温~約80℃等を挙げることができ、代表的には約53℃が使用され得る。)にて、適宜の時間インキュベートする(参考文献として、脱ジアシル化条件を開示するSerunian, et al., Methods in Enzymol. Vol., 198, 1991, pp. 78-87、特にpp.82-83参照、Fujii et al. Folia Pharmacol Jpn. Vol. 142, 2013, pp. 236-240、特にpp.238-239参照。これらの文献ではsn-1およびsn-2の両方のアシル基が切断される条件のみを開示しており、本明細書では「脱ジアシル化」と称することがある。)。例えば、これらの条件では、メチルアミンの濃度を約10.7%とし50~120分間の条件で反応がなされている。本発明では、SerunianやFujiiの条件(脱ジアシル化条件)を緩和する方向に変更することで、予想外にもsn-1あるいはsn-2の一方のアシル基のみが切断される(本明細書で「脱モノアシル」と称する)条件を見出した。本発明では、SerunianやFujiiの条件と同じメチルアミン濃度10.7%であれば、約30分間以下等の短時間の期間に供することで、予想外にもモノアシルのみが切断され、sn-1 LPIPsまたはsn-2 LPIPsが生成することを見出した。あるいは、メチルアミンの濃度を2.13%にした場合に、120分間の反応条件で予想外にもモノアシルのみが切断され、LPIPが生成することを見出した。 In a more preferred embodiment, the deacylation is carried out at a temperature (eg, room temperature to about 80 ° C.) at which the deacylation promotes in the presence of an appropriate concentration (eg, 10.7% or less) of an alkylamine such as methylamine. Incubate for an appropriate period of time (typically, about 53 ° C. can be used.) As a reference, Serunian, et al., Methods in Enzymol disclosing the dediacylation conditions Vol., 198, 1991, pp. 78-87, especially pp. 82-83, Fujii et al. Folia Pharmacol Jpn. Vol. 142, 2013, pp. 236-240, especially pp. 238-239. These documents only disclose conditions under which both sn-1 and sn-2 acyl groups are cleaved, and may be referred to herein as "dediacylation"). For example, under these conditions, the reaction is carried out at a methylamine concentration of about 10.7% for 50 to 120 minutes. In the present invention, only the acyl group of sn-1 or sn-2 is unexpectedly cleaved by changing the Serunian or Fujii conditions (dediacylation conditions) to be relaxed (this specification). (Referred to as “demonoacyl”). In the present invention, if the methylamine concentration is 10.7%, which is the same as that of Serunian and Fujii, the monoacyl is unexpectedly cleaved by using it for a short period of time such as about 30 minutes or less, and sn-1 We found that LPIPs or sn-2 LPIPs are generated. Alternatively, it was found that when the concentration of methylamine was 2.13%, only monoacyl was cleaved unexpectedly under the reaction conditions of 120 minutes to produce LPIP.

 本明細書において、「脱アシル化」とは、ホスファチジルイノシトールリン酸(一リン酸、二リン酸、三リン酸であり得る。PIPsともいう。)における1位および/または2位の脂肪酸結合が切断されアシル基が切断(脱離)することをいう。本明細書で特に言及しない場合は、「脱アシル化」は1つのアシル基が切断(脱離)する「脱モノアシル化」と2つのアシル基が切断(脱離)する「脱ジアシル化」の両方の反応を含みうる。本明細書で通常使用される場合、「脱モノアシル化」を含む。「脱モノアシル化」は、sn-1位のものおよびsn-2のもののいずれかであり得る。 In the present specification, “deacylation” means that the fatty acid bond at the 1-position and / or 2-position in phosphatidylinositol phosphate (which may be monophosphate, diphosphate, or triphosphate, also referred to as PIPs). It means that the acyl group is cleaved and cleaved (eliminated). Unless otherwise specified herein, “deacylation” includes “demonoacylation” in which one acyl group is cleaved (eliminated) and “dediacylation” in which two acyl groups are cleaved (eliminated). Both reactions can be included. As used herein, it includes “demonoacylation”. “Demonoacylation” can be either of the sn-1 position or of the sn-2.

 1つの具体的な実施形態では、乾固したPIPsにメチルアミン/HO/メタノール/n-ブタノール=1.92/38.08/40/10(脱アシル化反応液)を添加し、53℃で5分間インキュベートする。氷冷した脱アシル化反応液を加え反応を停止する(氷上に1分静置の後、乾固し、生成物の測定を行った例示的な結果を図1で示す)。溶媒の組成、反応温度、反応時間、触媒(代表的には、メチルアミン)の濃度等の各種条件の一つまたは複数(全部であってもよい)は、脱モノアシル化が生じる限り、適宜変更することができる。好ましい実施形態では、メチルアミンの量は、1~3%とすれば、本発明の目的を達成し得ることが理解される。 In one specific embodiment, methylamine / H 2 O / methanol / n-butanol = 1.92 / 38.08 / 40/10 (deacylation reaction solution) was added to the dried PIPs, and 53 Incubate at 5 ° C for 5 minutes. An ice-cooled deacylation reaction solution is added to stop the reaction (an exemplary result obtained by allowing to stand on ice for 1 minute and then drying to measure the product is shown in FIG. 1). One or more (or all) of various conditions such as solvent composition, reaction temperature, reaction time, catalyst (typically methylamine) concentration, etc. may be appropriately changed as long as demonoacylation occurs. can do. In a preferred embodiment, it is understood that the object of the present invention can be achieved if the amount of methylamine is 1-3%.

 本発明の製造方法における使用される出発物質である、ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸は、当該分野において公知の方法で製造することができるか、市販のものを使用することができる。例えば、Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66-76により任意の種類のPIPを製造することができる。 The starting material used in the production method of the present invention, phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate, can be produced by a method known in the art or commercially available Can be used. For example, any kind of PIP can be manufactured by Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66-76.

 また、原料を作り分けることで、所望の位置に所望のアシル基を有するリゾ体を簡便に分離する方法も提供される。別の局面において、本発明は、(A)1位と2位とに異なる質量のアシル基を有するホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を提供する工程であって、所望の質量を有するアシル基が所望の位置(1位または2位)に存在する、工程;(B)該ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を、アルキルアミンに接触させることで脱アシル化する工程(通常、本明細書に記載される脱モノアシル化条件で行われる。)、および(C)所望の質量のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を取り出す工程を包含する、所望の位置に所望のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を製造する方法(作り分け方法)を提供する。 Also provided is a method for easily separating a lysozyme having a desired acyl group at a desired position by making raw materials separately. In another aspect, the present invention provides (A) providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different mass acyl groups at the 1-position and 2-position, An acyl group having a desired mass is present at a desired position (position 1 or position 2); (B) the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate with an alkylamine Deacylation by contact with (usually performed under the demonoacylation conditions described herein), and (C) lysophosphatidylinositol monophosphate having a desired mass of acyl groups, lyso Phosphatidylinositol diphosphate or lysophosphatidylinos A method for producing lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having a desired acyl group at a desired position, which comprises a step of taking out the triphosphate. )I will provide a.

 本発明の作り分け方法において、1位と2位とに異なる質量のアシル基を有するホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸は、Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66~76を参考にして、製造することができ、以下に詳述される。脱アシル化は、上述した条件を適宜適用することができる。所望のリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸の取り出しは、質量、疎水性等の差異で分離することができる任意の手段を用いることができる。例えば、クロマトグラフィーなどを用いることができる。もちろん、精製しないで使用することができる場合は、精製工程は必須ではない。 In the method of making the present invention, phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different masses of acyl groups at the 1-position and the 2-position are obtained from Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66-76 can be used as a reference and will be described in detail below. For the deacylation, the above-mentioned conditions can be appropriately applied. The desired lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate can be removed by any means that can be separated by differences in mass, hydrophobicity, and the like. For example, chromatography can be used. Of course, the purification step is not essential if it can be used without purification.

 以下に、所望の脂肪酸基およびリン酸基を有する出発物質(PIPs等)の一般製造スキームを示す。出発物質(PIPs等)はStuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66~76に網羅的に製造例が記載されており、ホスホロアミダイト前駆体(ジアシルグリセロールリン酸誘導体)等から製造することができる。 The following is a general production scheme for starting materials (PIPs and the like) having desired fatty acid groups and phosphate groups. Starting materials (PIPs, etc.) are comprehensively described in Stuart J. Conway et al., Org. Biomol. Chem., 2010, 8, 66-76, and phosphoramidite precursors (diacylglycerol phosphorus). Acid derivatives) and the like.

 (ホスホロアミダイト前駆体の一般製造例) (Example of general production of phosphoramidite precursor)

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

 (ここで、RおよびRは、それぞれ独立して任意の脂肪酸残基であり、RおよびRはそれぞれ独立して水素またはアルキル基(例えば、メチル、エチル等の炭素数1~12等のアルキル基)であり、PG、PGP1およびPGP2は、それぞれ独立して保護基である。保護基としては例えば、ベンジル基、p-メトキシベンジル基、tert-ブチル基等を挙げることができるがこれらに限定されない。ベンジル基を用いる場合は脱離する際に水素添加をするため二重結合を含む脂肪酸残基を導入する場合には使用しないことが好ましい。)
 化合物P-1(たとえば(+)-1-O-(4-メトキシベンジル)-2-O-メトキシメチル-グリセロール)とカルボン酸ハロゲン化物を適切な条件下に付すことで(たとえばP-1のジクロロメタン溶液にジメチルアミノピリジン(DMAP)および塩化アセチルを0℃で添加し、室温で撹拌することで)化合物P-2を得る。化合物P-2を適切な条件下に付すことで(たとえばトリフルオロ酢酸を用いることで)ヒドロキシ基の保護基PGP1(たとえばメトキシメチル基)を脱保護して化合物P-3を得る。化合物P-3とカルボン酸ハロゲン化物とを適切な条件下に付すことで(たとえば化合物P-3のジクロロメタン溶液にジメチルアミノピリジン(DMAP)および塩化オクタデカノイルを0℃で添加し、室温で撹拌することで)化合物P-4を得る。化合物P-4を適切な条件下に付すことで(たとえば2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)やヘキサニトラセリウム(IV)酸アンモニウム(CAN)を用いることで)ヒドロキシ基の保護基PGP2(たとえば4-メトキシベンジル基)を脱保護して化合物P-5を得る。化合物P-5とアミノホスフィン(たとえば(4-メトキシベンジルオキシ)ビス(N,N-ジイソプロピルアミノ)ホスフィン)とを適切な条件下に付すことで(たとえばジクロロメタン溶液中室温で1H-テトラゾールを添加し、撹拌させることで)ホスホロアミダイトP-6を得る。
(Where R 1 and R 2 are each independently any fatty acid residue, and R B and R C are each independently hydrogen or an alkyl group (for example, 1 to 12 carbon atoms such as methyl, ethyl, etc. an alkyl group) and the like, PG a, PG P1 and PG P2 as are each independently a protecting group. protecting groups such as benzyl group, p- methoxybenzyl group, be mentioned tert- butyl group (However, it is not limited to these. When a benzyl group is used, it is preferably not used when a fatty acid residue containing a double bond is introduced because hydrogenation is carried out upon elimination.)
Compound P-1 (eg (+)-1-O- (4-methoxybenzyl) -2-O-methoxymethyl-glycerol) and carboxylic acid halide under appropriate conditions (eg P-1 Compound P-2 is obtained by adding dimethylaminopyridine (DMAP) and acetyl chloride to a dichloromethane solution at 0 ° C. and stirring at room temperature. By subjecting compound P-2 to appropriate conditions (for example, by using trifluoroacetic acid), the protecting group PG P1 (for example, methoxymethyl group) of the hydroxy group is deprotected to obtain compound P-3. Compound P-3 and a carboxylic acid halide are subjected to appropriate conditions (for example, dimethylaminopyridine (DMAP) and octadecanoyl chloride are added to a dichloromethane solution of compound P-3 at 0 ° C. and stirred at room temperature. Compound P-4 is obtained. By subjecting compound P-4 to appropriate conditions (for example, by using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) or ammonium hexanitrerium (IV) acid (CAN)) The protecting group PG P2 (for example, 4-methoxybenzyl group) of the hydroxy group is deprotected to give compound P-5. Compound 1-5 and aminophosphine (eg (4-methoxybenzyloxy) bis (N, N-diisopropylamino) phosphine) are subjected to appropriate conditions (eg 1H-tetrazole is added at room temperature in dichloromethane solution). To give phosphoramidite P-6.

 (イノシトール前駆体の一般製造例) (General production example of inositol precursor)

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

(PG、PG、およびPGは、それぞれ独立して保護基である。保護基としては例えば、メトキシベンジル等を挙げることができるがこれらに限定されない。)
 化合物I-1を適切な条件に付すことで(たとえば化合物I-1のDMF溶液に4-メトキシベンジルクロリドと水素化ナトリウムとを0℃で添加し、室温で撹拌することで)保護基PG(たとえば4-メトキシベンジル基)を導入した化合物I-2を得る。化合物I-2を適切な条件に付すことで(たとえば化合物I-2のDMF溶液にクロロメチルメチルエーテルと水素化ナトリウムとを0℃で添加し、室温で撹拌することで)保護基PG(たとえばメトキシメチル基)を導入した化合物I-3を得る。化合物I-3を適切な条件に付すことで(たとえば化合物I-3のジクロロメタン/ヘキサン溶液に水素化ジイソブチルアルミニウム(DIBAL)を0℃で添加し、室温で撹拌することで)化合物I-4を得る。化合物I-4を適切な条件に付すことで(たとえば化合物I-4のDMF溶液に4-メトキシベンジルクロリドと水素化ナトリウムとを0℃で添加し、室温で撹拌することで)保護基PG(たとえば4-メトキシベンジル基)を導入した化合物I-5を得る。化合物I-5を適切な条件に付すことで(たとえば化合物I-5のメタノール溶液に塩酸を添加し、還流させることで)化合物I-6を得る。化合物I-6を適切な条件に付すことで(たとえば化合物I-6のジクロロメタン溶液にトルエンスルホン酸一水和物と
(PG 1 , PG A , and PG 2 are each independently a protecting group. Examples of the protecting group include, but are not limited to, methoxybenzyl and the like.)
Compound I-1 with subjecting to suitable conditions (e.g. the compound I-1 of DMF was added 4-methoxybenzyl chloride and sodium hydride was added at 0 ° C., by stirring at room temperature) protecting group PG A Compound I-2 into which (for example, 4-methoxybenzyl group) is introduced is obtained. By subjecting compound I-2 to appropriate conditions (for example, by adding chloromethyl methyl ether and sodium hydride to a DMF solution of compound I-2 at 0 ° C. and stirring at room temperature), protecting group PG 1 ( For example, compound I-3 into which a methoxymethyl group is introduced is obtained. By subjecting compound I-3 to appropriate conditions (for example, by adding diisobutylaluminum hydride (DIBAL) to a dichloromethane / hexane solution of compound I-3 at 0 ° C. and stirring at room temperature), compound I-4 obtain. By subjecting compound I-4 to appropriate conditions (for example, by adding 4-methoxybenzyl chloride and sodium hydride to a DMF solution of compound I-4 at 0 ° C. and stirring at room temperature), the protecting group PG 2 Compound (I-5) into which (for example, 4-methoxybenzyl group) is introduced is obtained. By subjecting compound I-5 to appropriate conditions (for example, adding hydrochloric acid to a methanol solution of compound I-5 and refluxing), compound I-6 is obtained. By subjecting compound I-6 to appropriate conditions (for example, a solution of compound I-6 in dichloromethane with toluenesulfonic acid monohydrate)

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

を添加して還流後、光学分割を行い、次いで、光学分割後得られた化合物のジクロロメタン溶液にトルエンスルホン酸一水和物と And then refluxing, followed by optical resolution, followed by toluenesulfonic acid monohydrate and dichloromethane solution of the compound obtained after optical resolution.

Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011

を添加し反応させることにより、化合物I-7(たとえば To react with compound I-7 (for example,

Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012

)を得る。化合物I-7を適切な条件に付すことで、ヒドロキシ基1個、保護基PGで保護されたヒドロキシ基m個、PGで保護されたヒドロキシ基n個を有する化合物I-8(l、m、nは0以上6以下の整数であり、l、m、nの合計は6である)を得る。 ) By subjecting compound I-7 to appropriate conditions, compound I-8 (l, l) having 1 hydroxy group, m hydroxy groups protected with protecting group PG 1 and n hydroxy groups protected with PG 2 is obtained. m and n are integers of 0 or more and 6 or less, and the sum of l, m, and n is 6.

 (ホスファチジルイノシトールの一般製造例) (Example of general production of phosphatidylinositol)

Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013

 (式中、l、m、nは0以上6以下の整数であり、l、m、nの合計は6である)
 イノシトール前駆体PI-1(たとえば1D-2,3,4,5,6-ペンタ-O-(4’-メトキシベンジル)-1-O-(メトキシメチル)-myo-イノシトール)のヒドロキシ基に適切なリン試薬(たとえばビス(4-メトキシベンジルオキシ)(N,N-ジイソプロピルアミノ)ホスフィン)を用い、適切な条件下に付すことで(たとえばPI-1のジクロロメタン溶液に1H-テトラゾールを添加し、室温で10~14時間撹拌を行うことで)リン酸基で修飾されたPI-2(たとえば1D-2,3,4,5,6-ペンタ-O-(4’-メトキシベンジル)-1-O-(メトキシメチル)-myo-イノシトール-4-(ビス(4-メトキシベンジルオキシ)ホスフェート))を得る。PI-2を適切な条件に付すことで(たとえばトリフルオロ酢酸を用いることで)保護基PG(たとえばメトキシメチル基)を脱保護したPI-3(たとえば1D-2,3,4,5,6-ペンタ-O-(4’-メトキシベンジル)-myo-イノシトール-4-(ビス(4-メトキシベンジルオキシ)ホスフェート))を得る。PI-3とホスホロアミダイト前駆体(たとえば(1-アセチルオキシ-2’-オクタデカノイルオキシプロピル)(4-メトキシベンジル)ジイソプロピルホスホロアミダイト)とを適切な条件に付すことで(たとえばPI-3のジクロロメタン溶液に1H-テトラゾールおよび(1-アセチルオキシ-2-オクタデカノイルオキシプロピル)(4-メトキシベンジル)ジイソプロピルホスホロアミダイト)を添加して室温で10~14時間撹拌後、メタクロロ過安息香酸(mCPBA)を-78℃で添加し、室温で20分撹拌することで)PI-4を得る。PI-4を適切な条件(たとえばPI-4のアセトニトリル溶液にヘキサニトラセリウム(IV)酸アンモニウム(CAN)を添加し、室温で45分間撹拌を行うことで)保護基PG(たとえば4-ベンジル基)を脱保護したPI-5(たとえば1D-myo-イノシトール-1-(1’-O-アセチル-2’-O-オクタデカノイル-sn-グリセラ-3-イルホスフェート))を得る。
(In the formula, l, m and n are integers of 0 or more and 6 or less, and the total of l, m and n is 6.)
Suitable for the hydroxy group of inositol precursor PI-1 (eg 1D-2,3,4,5,6-penta-O- (4′-methoxybenzyl) -1-O- (methoxymethyl) -myo-inositol) A suitable phosphorus reagent (eg bis (4-methoxybenzyloxy) (N, N-diisopropylamino) phosphine) under appropriate conditions (eg adding 1H-tetrazole to a solution of PI-1 in dichloromethane, PI-2 modified with a phosphate group (for example, 1D-2,3,4,5,6-penta-O- (4′-methoxybenzyl) -1-) by stirring at room temperature for 10 to 14 hours O- (methoxymethyl) -myo-inositol-4- (bis (4-methoxybenzyloxy) phosphate)) is obtained. By subjecting PI-2 to appropriate conditions (for example, by using trifluoroacetic acid), the protective group PG 1 (for example, methoxymethyl group) is deprotected PI-3 (for example, 1D-2,3,4,5, 6-Penta-O- (4′-methoxybenzyl) -myo-inositol-4- (bis (4-methoxybenzyloxy) phosphate)) is obtained. By subjecting PI-3 and a phosphoramidite precursor (eg (1-acetyloxy-2′-octadecanoyloxypropyl) (4-methoxybenzyl) diisopropyl phosphoramidite) to the appropriate conditions (eg PI— 1-tetrazole and (1-acetyloxy-2-octadecanoyloxypropyl) (4-methoxybenzyl) diisopropyl phosphoramidite) were added to a dichloromethane solution of No. 3 and stirred at room temperature for 10-14 hours, then metachloroperbenzoic acid PI-4 is obtained by adding acid (mCPBA) at −78 ° C. and stirring for 20 minutes at room temperature. The protective group PG 2 (eg 4-benzyl) is added to PI-4 under appropriate conditions (for example, by adding ammonium hexanitracelium (IV) to a solution of PI-4 in acetonitrile and stirring for 45 minutes at room temperature). PI-5 (eg, 1D-myo-inositol-1- (1′-O-acetyl-2′-O-octadecanoyl-sn-glycera-3-yl phosphate)) is obtained by deprotecting the group.

 上記製造法により製造されるホスファチジルイノシトールリン酸にはたとえば以下の式 Phosphatidylinositol phosphate produced by the above production method includes, for example, the following formula

Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014

に表されるものが挙げられるが、これらに限定されるものではない。 However, it is not limited to these.

 (Lyso-ホスファチジルイノシトールリン酸の一般製造例) (General production example of Lyso-phosphatidylinositol phosphate)

Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015

 ホスファチジルイノシトール1(たとえば1D-myo-イノシトール-1-(1’-O-アセチル-2’-O-オクタデカノイル-sn-グリセラ-3-イルホスフェート)の溶液(たとえば、クロロホルム/メタノール(9/1)溶液が挙げられるが、溶液調製のための溶媒の比率は適宜変更することができ、また、反応を促進する限り別の溶媒を用いることもできる。)をN2等の不活性ガスで乾固の後に適切な試薬(たとえばメチルアミン溶液(例示的な溶媒としてメチルアミン/水/メタノール/1-ブタノール(4.8/35.2/40/10)が挙げられるがこれに限定されない。溶液調製のための溶媒およびメチルアミンの比率は適宜変更することができ、また、反応を促進する限り別の溶媒を用いることもできる。)を適切な温度(たとえば53℃)で添加して、適切な時間(たとえば、5分間を例示できるが、これより長くても短くても脱モノアシル化が達成される限り伸縮可能である。例えば、1分間や30秒間でも脱モノアシル化が生じることが観察されている。)で適切な温度(たとえば53℃が例示されるが、これより高くても低くても脱モノアシル化が達成される限り上下可能である。)で撹拌し、(例えば、氷冷により)反応をクエンチし、後処理を適切に行い、目的とするLyso-ホスファチジルイノシトールを得る。ここでもしアシル基の脱離反応が位置選択的に進行しなかったとしても、ホスファチジルイノシトール1に導入されているアシル基CORとCORが異なっている場合(たとえばCORがアセチル基であり、CORがオクタデカノイル基である場合)、アシル基が1個のみ脱離した化合物である2と3は、分子量が異なることから、それぞれの化合物を分離・精製することが可能である。 A solution of phosphatidylinositol 1 (eg 1D-myo-inositol-1- (1′-O-acetyl-2′-O-octadecanoyl-sn-glycera-3-yl phosphate) (eg chloroform / methanol (9 / 1) A solution may be mentioned, but the ratio of the solvent for preparing the solution can be appropriately changed, and another solvent can be used as long as the reaction is promoted.) Is dried with an inert gas such as N 2. After solidification, a suitable reagent (for example, but not limited to, a methylamine solution (example solvents include methylamine / water / methanol / 1-butanol (4.8 / 35.2 / 40/10). The ratio of the solvent for the preparation and methylamine can be appropriately changed, and another solvent can be used as long as the reaction is accelerated. It can be added at a temperature (eg, 53 ° C.) and exemplified for a suitable time (eg, 5 minutes), but can be stretched as long as it is longer or shorter as long as demonoacylation is achieved. It has been observed that demonoacylation occurs in 30 seconds.) Suitable temperatures (eg, 53 ° C. are exemplified, but can be raised or lowered as long as demonoacylation is achieved at higher or lower temperatures. The reaction is quenched (for example, with ice cooling) and the work-up is appropriately performed to obtain the desired Lyso-phosphatidylinositol, where the acyl group elimination reaction proceeds regioselectively. even not, if the acyl group is introduced into phosphatidylinositol 1 COR 1 and COR 2 is different (e.g. COR 1 is an acetyl group, COR 2 If a octadecanoyl group), 2 and 3 acyl group is a compound desorbed only one, since the molecular weight are different, it is possible to separate and purify each compound.

 <検出方法>
 別の局面では、本発明は、リゾホスファチジルイノシトールリン酸塩を検出、同定または定量する方法であって、(A)試料を、陰イオン交樹脂に接触させることによりリン脂質を濃縮する工程;(B)該リン脂質中のリン酸基を保護基で保護する工程;および(C)質量分析により、該リン脂質中にリゾホスファチジルイノシトールリン酸塩を検出、同定または定量する工程を包含する、酸性リン脂質を検出、同定または定量する方法を提供する。リゾホスファチジルイノシトールリン酸塩を含むホスホイノシタイドは、多くのリン酸基をもつことや、(生体脂質抽出物中の存在量が)微量であるために試料中の他の脂質によるイオンサプレッションを受けることなどから、従来は不可能とされている解析が最も困難な膜リン脂質となっているが、本発明の方法を用いれば、リゾホスファチジルイノシトールリン酸塩を検出、同定および定量することができるようになった。本発明の方法は、数百amol~数fmolを定量下限とすることができ、生体内で存在するか不明であった、多種類のLPIPsを測定することができた。このように様々な生体微量サンプルでの絶対定量が可能な、質量分析をベースとした方法が本発明により提供される。
<Detection method>
In another aspect, the present invention provides a method for detecting, identifying or quantifying lysophosphatidylinositol phosphate, wherein (A) concentrating a phospholipid by contacting a sample with an anionic resin; B) protecting the phosphate group in the phospholipid with a protecting group; and (C) detecting, identifying or quantifying lysophosphatidylinositol phosphate in the phospholipid by mass spectrometry. Methods for detecting, identifying or quantifying phospholipids are provided. Phosphoinositides, including lysophosphatidylinositol phosphate, have many phosphate groups and are traced to ions by other lipids in the sample due to their trace amounts (abundance in biological lipid extracts) Therefore, it has become the most difficult membrane phospholipid that has been impossible to analyze in the past, but by using the method of the present invention, lysophosphatidylinositol phosphate can be detected, identified and quantified. It became so. The method of the present invention was able to set several hundred amol to several fmol as the lower limit of quantification, and was able to measure many types of LPIPs that were unknown whether they existed in vivo. Thus, the present invention provides a mass spectrometry based method capable of absolute quantification with various biological trace samples.

 従来の測定技術では、PIPs類は測定することが可能となっていたが、リゾホスファチジルイノシトールリン酸塩類を識別し、検出することができることが本発明において見出された。したがって、本発明は、リゾホスファチジルイノシトールリン酸塩類をも識別して検出する技術を史上初めて提供するものである。 In the conventional measurement technique, PIPs can be measured, but it has been found in the present invention that lysophosphatidylinositol phosphates can be identified and detected. Therefore, the present invention provides for the first time a technique for identifying and detecting lysophosphatidylinositol phosphates.

 好ましくは、本発明のリン酸基の保護基としては、保護することができる限り、どのようなものでも用いることができるが、好ましくは質量分析において障害とならないか質量分析前に脱離させることができるものがよく、例えば、アルキル基(例えば、メチル基)等を挙げることができる。好ましくは、前記保護基はアルキル基を含み、さらに好ましくはメチル基を含む。 Preferably, any protecting group for the phosphate group of the present invention can be used as long as it can be protected, but preferably it does not become an obstacle in mass spectrometry or is desorbed before mass spectrometry. For example, an alkyl group (for example, a methyl group) can be exemplified. Preferably, the protecting group contains an alkyl group, more preferably a methyl group.

 本発明で使用される質量分析法は、任意の技術を使用することができるが、好ましくは、三連四重極質量分析計による選択反応モニタリング法(SRM)を含む。 Although any technique can be used for the mass spectrometry used in the present invention, it preferably includes a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer.

 本発明で用いられるSRMにおいては、さらに、逆相カラムクロマトグラフィーを用いて前記リゾホスファチジルイノシトールリン酸塩の脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う工程を包含する。 The SRM used in the present invention further includes a step of detecting, identifying or quantifying the fatty acid side chain and / or phosphate group of the lysophosphatidylinositol phosphate using reverse phase column chromatography.

 好ましくは、前記逆相カラムクロマトグラフィーにおいて、ジアシルグリセロールをプロダクトイオン(フラグメントイオン)として選択して前記脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行うことができる。 Preferably, in the reverse phase column chromatography, diacylglycerol can be selected as a product ion (fragment ion) to detect, identify or quantify the fatty acid side chain and / or phosphate group.

 具体的なホスホイノシタイド測定技術については、以下が例示される。 Specific examples of the phosphoinositide measurement technique are as follows.

 この方法を検討した結果、LPIPsも測定することができることが判明した。 As a result of examining this method, it was found that LPIPs can also be measured.

 一つの局面において、PIP1、PIP2については各々3種類のアイソマー(リン酸化された水酸基の位置が違う構造異性体)の総和としての定量を行う。以下、その手順を概説する。 In one aspect, PIP1 and PIP2 are each quantified as the sum of three types of isomers (structural isomers with different positions of phosphorylated hydroxyl groups). The procedure is outlined below.

 1 生体内のリゾホスファチジルイノシトールリン酸塩類等のホスホイノシタイドの高回収Bligh-Dyer法により得られた総脂質画分をさらに陰イオン交換カラム(DEAEセルロースカラム)を用いて分画する。各リン脂質極性部位のイオン交換能の違いによって徐々に分離・溶出し、ホスホイノシタイドを多く含んだ画分を高回収することができ、リゾホスファチジルイノシトールリン酸塩類もまた同様に高回収することができる。 1. The total lipid fraction obtained by the high recovery Bligh-Dyer method of phosphoinositide such as lysophosphatidylinositol phosphates in vivo is further fractionated using an anion exchange column (DEAE cellulose column). Gradually separate and elute according to the difference in ion exchange capacity of each phospholipid polar site, and fractions rich in phosphoinositide can be recovered at a high rate, and lysophosphatidylinositol phosphates should be recovered at a high rate as well. Can do.

 2 分子の安定化
 イノシトール環に多くのリン酸基をもつホスホイノシタイドは、不安定かつ金属をはじめとする多くの材質に吸着しやすい性質をもつため、リゾホスファチジルイノシトールリン酸塩類もまたも同様の性質を有すると考えられる。そのためホスホイノシタイドは回収後から測定までの待機時間の間に分析用バイアル中で急速に損なわれ、検出した溶出ピークにはテーリングがみられる。本発明者らはホスホイノシタイドを高回収後、リン酸基にメチル化を施すことで分解・吸着を抑えた安定誘導体を作製し堅牢な分析を行う。このような手法は、リゾホスファチジルイノシトールリン酸塩類にも応用可能である。
2 Stabilization of molecules Since phosphoinositides with many phosphate groups in the inositol ring are unstable and easily adsorb to many materials including metals, lysophosphatidylinositol phosphates are also the same. It is thought that it has the property of. Therefore, phosphoinositide is rapidly damaged in the analytical vial during the waiting time from collection to measurement, and tailing is seen in the detected elution peak. The present inventors perform a robust analysis by producing a stable derivative that suppresses decomposition / adsorption by methylating a phosphate group after high recovery of phosphoinositide. Such a technique can also be applied to lysophosphatidylinositol phosphates.

 3 高感度分析法
 ホスホイノシタイドおよびリゾホスファチジルイノシトールリン酸塩類の測定には、高感度かつ定量性に優れた分析法である三連四重極質量分析計による選択反応モニタリング法(SRM)を用いる。ホスホイノシタイドはその構造から負イオンとして検出しやすいが、本発明の分析法ではリン酸基にメチル化等の保護化を施しているため正イオンとして検出しやすくなる。リゾホスファチジルイノシトールリン酸塩類もまた同様の性状を示す。各分子種はジアシルグリセロール(DG)を特徴的なフラグメントイオンとして選択する。分析は逆相カラム(C8)により脂肪酸側鎖の疎水性の違いを利用して各分子種ごとに分離・溶出する。同じ分子種の各ホスホイノシタイドはリン酸基の数の違いによりPIP3、PIP2、PIP1の順に溶出するため、この溶出時間の相違を利用して分析する。定量解析はGaussian法によりスムージングを行った各分子種のクロマトグラムのピーク面積を数値化し、それを生体内にほとんど存在しない各種17:0/20:4合成品を用いて作製した検量線に当てはめて算出する。本発明のこの分析法は、高感度かつ定量性に優れ、培養細胞以外にもヒト臨床検体や動物組織由来試料での解析が可能である。リゾホスファチジルイノシトールリン酸塩類についても、同様の分析が可能であり、分子量の相違はもとより、LPIP3、LPIP2、LPIP1の順に溶出するため、この溶出時間の相違を利用して分析し、適宜Gaussian法によりスムージングを行った各分子種のクロマトグラムのピーク面積を数値化し、標準品と対比し、作製した検量線に当てはめて算出することができる。
3 Sensitive Analytical Method For the measurement of phosphoinositide and lysophosphatidylinositol phosphates, a selective reaction monitoring method (SRM) using a triple quadrupole mass spectrometer, which is a highly sensitive and highly quantitative analytical method, is used. . Phosphoinositide is easy to detect as a negative ion due to its structure, but in the analysis method of the present invention, it is easy to detect as a positive ion because the phosphate group is protected such as methylation. Lysophosphatidylinositol phosphates also show similar properties. Each molecular species selects diacylglycerol (DG) as a characteristic fragment ion. Analysis is carried out by reverse phase column (C8) using the difference in hydrophobicity of fatty acid side chains to separate and elute each molecular species. Each phosphoinositide of the same molecular species elutes in the order of PIP3, PIP2, and PIP1 due to the difference in the number of phosphate groups, and therefore, analysis is performed using this difference in elution time. For quantitative analysis, the peak area of the chromatogram of each molecular species that has been smoothed by the Gaussian method is digitized, and this is applied to a calibration curve prepared using various 17: 0/20: 4 synthetic products that are hardly present in the living body. To calculate. This analysis method of the present invention is highly sensitive and excellent in quantification, and can be analyzed with human clinical specimens and animal tissue-derived samples in addition to cultured cells. The same analysis can be performed for lysophosphatidylinositol phosphates. In addition to the differences in molecular weight, LPIP3, LPIP2, and LPIP1 are eluted in this order. The peak area of the chromatogram of each molecular species subjected to smoothing can be digitized, compared with a standard product, and applied to the prepared calibration curve for calculation.

 本発明は、疾患マーカーでもあり得るリゾホスファチジルイノシトールリン酸塩類を他の物質から区別して検出する技術を提供するものであるため、これにより、がんの診断を行うこともできる。 Since the present invention provides a technique for distinguishing and detecting lysophosphatidylinositol phosphates, which can also be disease markers, from other substances, it can also diagnose cancer.

 LPIPsの前駆体と考えられるジアシル型のイノシトールリン脂質(PIPs)の代謝異常は、種々の病態に関連することが知られており、治療標的、診断マーカーとしての有用性が見出されている。したがって、ジアシル型のイノシトールリン脂質(PIPs)と構造的に密接な関連のある本発明のLPIPsもまた、種々の病態に関連することが知られており、治療標的、診断マーカーとしての有用性を有することが期待される。具体的には以下のような用途が想定される。また、生化学第83巻第6号,pp.525―535,201で説明されているように、脂質メディエーターとしてのリゾホスファチジルイノシトールとその受容体GPR55のようなGタンパク質レセプター等を含め種々の活性があることが知られている。したがって、リゾホスファチジルイノシトールが様々な形でリン酸化された本発明の化合物は、リゾホスファチジルイノシトールやその受容体との関係でも、直接的または間接的に種々の生理学的用途と関連することが期待される。また、Fujii et al. Folia Pharmacol Jpn. Vol. 142, 2013, pp. 236-240で説明されているように、ホスホリパーゼCの作用でPIPsから生じるイノシトールポリリン酸群は細胞内のカルシウム動態などを制御しており、カルシウム動態の異常は精神疾患、筋疾患、心疾患をはじめ多岐にわたる病態に関連している。したがって、イノシトールポリリン酸群と構造的に密接な関連のある本発明のLPIPsもまた、治療標的、診断マーカーとしての有用性を有することが期待される。 Metabolic abnormalities of diacyl-type inositol phospholipids (PIPs), which are considered to be LPIPs precursors, are known to be associated with various pathological conditions, and their usefulness as therapeutic targets and diagnostic markers have been found. Therefore, the LPIPs of the present invention, which are structurally closely related to diacyl-type inositol phospholipids (PIPs), are also known to be related to various pathological conditions, and have usefulness as therapeutic targets and diagnostic markers. Expected to have. Specifically, the following uses are assumed. Also, Biochemistry Vol. 83, No. 6, pp. As described in 525-535, 201, it is known to have various activities including lysophosphatidylinositol as a lipid mediator and a G protein receptor such as its receptor GPR55. Therefore, the compound of the present invention in which lysophosphatidylinositol is phosphorylated in various forms is expected to be directly or indirectly related to various physiological uses in relation to lysophosphatidylinositol and its receptor. The Also, as described in Fujii et al. Folia Pharmacol Jpn. Vol. 142, 2013, pp. 236-240, the inositol polyphosphate group produced from PIPs by the action of phospholipase C controls intracellular calcium kinetics and the like. In addition, abnormal calcium dynamics are associated with a wide variety of conditions including mental illness, muscle disease, and heart disease. Therefore, the LPIPs of the present invention that are structurally closely related to the inositol polyphosphate group are also expected to have utility as therapeutic targets and diagnostic markers.

 (ホスファチジルイノシトールホスフェートおよびリゾホスファチジルイノシトールホスフェートの測定、検出および同定)
 1つの局面において、本発明は、試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを測定、検出または同定する方法を提供する。この方法はA)該試料を質量分析(MS)に適用する工程;およびB)該MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程を包含する。一つの実施形態では、試料はさらにクロマトグラフィーに適用される。一つの実施形態では、試料はさらにイオンモビリティ分離(IMS)に適用される。
(Measurement, detection and identification of phosphatidylinositol phosphate and lysophosphatidylinositol phosphate)
In one aspect, the present invention provides a method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample. The method comprises A) applying the sample to mass spectrometry (MS); and B) identifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the MS Is included. In one embodiment, the sample is further applied to chromatography. In one embodiment, the sample is further applied to ion mobility separation (IMS).

 本発明におけるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の特定は、一つの実施形態では、標準品との比較によって行うことができる。あるいは、あらかじめ標準品での溶出位置や溶出時間を算出し設定しておくことにより、それと比較することで、特定を行うことができる。また、PIPsおよびLPIPsであることを同定する方法として、例えば、リン酸やイノシトールの安定同位体(13Cや重水素)をあらかじめ試料に添加することで天然のものと置き換えることができるかどうかを調べる方法が挙げられる。 In one embodiment, the position of the phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate can be specified by comparison with a standard product. Alternatively, the elution position and elution time of a standard product can be calculated and set in advance, and the identification can be performed by comparing with the calculation. In addition, as a method for identifying PIPs and LPIPs, for example, whether stable isotopes of phosphoric acid and inositol ( 13C and deuterium) can be added to a sample in advance can be replaced with natural ones. There is a method to investigate.

 別の局面において、本発明は、試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを測定、検出または同定する方法を提供する。この方法はA)該試料をイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;およびB)該IMS-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程を包含する。 In another aspect, the present invention provides a method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample. The method comprises A) applying the sample to ion mobility separation-mass spectrometry (IMS-MS); and B) depending on the elution position of the peak in the IMS-MS, the phosphorous of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. Including the step of identifying the position of the acid group.

 1つの実施形態では、本発明における特定する工程において前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートに含まれるアシル基の有無も特定されることが特徴である。試料中のリン脂質類には、アシル基がないものも存在するが、本発明の測定では脱アシル化されないことから、インタクトの状態で測定が可能であり、それゆえ、アシル基の有無も特定することができる。 In one embodiment, the presence or absence of an acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is specified in the specifying step in the present invention. Some phospholipids in the sample do not have an acyl group, but they are not deacylated by the measurement of the present invention, and therefore can be measured in an intact state. Therefore, the presence or absence of an acyl group is also specified. can do.

 1つの実施形態では、本発明における特定する工程において前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートに含まれるアシル基の分子量の合計も特定される。本発明の測定では、質量分析によって、分子量が特定される。従って、いったんホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートであることが特定されるとその分子量から結合しているアシル基の分子量の合計が特定されることとなる。 In one embodiment, the total molecular weight of acyl groups contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also specified in the specifying step in the present invention. In the measurement of the present invention, the molecular weight is specified by mass spectrometry. Therefore, once it is specified that the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is specified, the total molecular weight of the acyl group bonded is specified from the molecular weight.

 好ましい実施形態では、本発明における特定する工程において前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートに含まれるアシル基の種類も特定される。本発明の測定では、質量分析によって、分子量が特定される。従って、いったんホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートであることが特定されるとその分子量から結合しているアシル基の分子量の合計が特定され、さらにホスファチジルイノシトールホスフェートの場合モノアシル体が質量分析で特定されるため、アシル基の一方の分子量が特定される。一方の分子量が特定されると他方の分子量も特定され、分子量からアシル基の種類が特定されることとなる。MSおよびMS/MSによる測定の結果に基づいて分子量からアシル基の種類を特定する方法は、例えば、Clark J et al., Nat Methods. 2011 Mar;8(3):267-72. doi:10.1038/nmethを参考にすることができる。 In a preferred embodiment, the type of acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also specified in the specifying step in the present invention. In the measurement of the present invention, the molecular weight is specified by mass spectrometry. Therefore, once it is identified that it is phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate, the total molecular weight of the bound acyl group is determined from its molecular weight, and in the case of phosphatidylinositol phosphate, In order to be specified, the molecular weight of one of the acyl groups is specified. When one molecular weight is specified, the other molecular weight is also specified, and the type of acyl group is specified from the molecular weight. A method for identifying the type of acyl group from the molecular weight based on the results of measurement by MS and MS / MS is described, for example, in Clark J et al. , Nat Methods. 2011 Mar; 8 (3): 267-72. Doi: 10.1038 / nmeth can be referred to.

 1つの実施形態では、本発明における測定、検出または同定は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを他のイノシトール含有リン脂質から区別して行うことを特徴とする。このようなことができるのは、本発明の測定、検出または同定の方法において、アシル基を保持したまま測定等ができるからであり、より具体的に説明すると、ホスファチジルホスフェートと、リゾホスファチジルイノシトールホスフェートと、グリセロホスホイノシトールなどのイノシトール含有リン酸とは、アシル基が保持される測定を行うことでアシル基の分子量の分が相違として区別することができる。 In one embodiment, the measurement, detection or identification in the present invention is characterized in that phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is distinguished from other inositol-containing phospholipids. This is because the measurement, detection or identification method of the present invention can be carried out while retaining the acyl group. More specifically, phosphatidyl phosphate and lysophosphatidylinositol phosphate can be used. And inositol-containing phosphoric acid such as glycerophosphoinositol can be distinguished from each other in that the molecular weight of the acyl group is different by measuring the retention of the acyl group.

 1つの実施形態では、本発明の測定対象である試料は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートの分解がなされない条件で調製されたものである。 In one embodiment, the sample to be measured according to the present invention is prepared under conditions where phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate are not decomposed.

 したがって、本発明の測定、検出または同定において、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートの分解がなされない条件は、分解がなされない任意の条件を挙げることができ、特に、脱アシル化処理を行わないことを含み、このほか、試料を変性させる処理を行わないこと、リン酸基に保護基を導入する処理を行うことなどの条件を挙げることができる。 Therefore, in the measurement, detection or identification of the present invention, the conditions in which phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate are not degraded can include any conditions in which degradation is not performed, and in particular, deacylation treatment is performed. In addition to this, there are other conditions such as not performing a treatment for denaturing the sample and performing a treatment for introducing a protecting group into a phosphate group.

 本発明で使用される液体カラムクロマトグラフィーは、キラルカラム、逆相カラム、順相カラム、イオン交換カラム等を用いることができ、親水基、疎水基を分離する任意のカラムクロマトグラフィーを用いることができる。 As the liquid column chromatography used in the present invention, a chiral column, a reverse phase column, a normal phase column, an ion exchange column or the like can be used, and any column chromatography which separates a hydrophilic group and a hydrophobic group can be used. .

 本発明で使用される場合、クロマトグラフィー(ガスクロマトグラフィーまたは液体カラムクロマトグラフィー)は、イオンモビリティ分離と組み合わせられ得る。理論に束縛されることを望まないが、本発明では、イオンモビリティ分離により、より明確に、ホスホイノシタイドおよび/またはリゾホスホイノシタイドのリン酸基の位置を分離することができることが示されており、任意のクロマトグラフィー(例えば、液体カラムクロマトグラフィー)をイオンモビリティ分離と組み合わせ、さらに質量分析を行うことで、アシル基を保持したままホスホイノシタイドおよび/またはリゾホスホイノシタイドのリン酸基の位置を分離して測定、検出または同定することができる。あるいは、イオンモビリティ分離を利用しない場合でも、質量分析(MS)を用いることによってアシル基を保持したままホスホイノシタイドのリン酸基の位置を分離して測定、検出または同定することができ、また、さらにキラルカラムを用いた液体クロマトグラフィーなどのクロマトグラフィーと組み合わせてリン酸基の位置を分離して測定、検出または同定することができる。あるいは、イオンモビリティ分離を用いる場合は、クロマトグラフィーを使用せずそのまま質量分析と組わせてもよい。 As used in the present invention, chromatography (gas chromatography or liquid column chromatography) can be combined with ion mobility separation. Without wishing to be bound by theory, the present invention shows that ion mobility separation can more clearly separate the position of the phosphate group of phosphoinositide and / or lysophosphoinositide. Any chromatography (eg, liquid column chromatography) combined with ion mobility separation and further mass spectrometry can be used to analyze the phosphate group of phosphoinositide and / or lysophosphoinositide while retaining the acyl group. The position can be separated and measured, detected or identified. Alternatively, even when ion mobility separation is not used, the position of the phosphate group of phosphoinositide can be separated and measured, detected or identified while retaining the acyl group by using mass spectrometry (MS), and Furthermore, the position of the phosphate group can be separated and measured, detected or identified in combination with chromatography such as liquid chromatography using a chiral column. Or when using ion mobility separation, you may combine with mass spectrometry as it is, without using chromatography.

 本発明の好ましい実施形態では、本発明の方法は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを定量する工程をさらに包含する。 In a preferred embodiment of the invention, the method of the invention further comprises the step of quantifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate.

 1つの実施形態では、本発明で使用される試料は、インタクトな試料である。ここで、試料がインタクトであるとは、ホスホイノシタイドおよびリゾホスホイノシタイドのアシル基が保持される条件を含み、例えば、加熱による変性、空気中の酸素、湿気、熱、光、金属イオン、微生物あるいは酵素などの作用による酸化、水系溶媒中における加水分解、メチルアミン等のアルキルアミン存在下での脱アシル化等を受けていない状態などを挙げることができるがこれらに限定されない。 In one embodiment, the sample used in the present invention is an intact sample. Here, that the sample is intact includes conditions under which acyl groups of phosphoinositide and lysophosphoinositide are retained, such as denaturation by heating, oxygen in the air, moisture, heat, light, metal ions, Examples thereof include, but are not limited to, oxidation by the action of microorganisms or enzymes, hydrolysis in an aqueous solvent, deacylation in the presence of an alkylamine such as methylamine, and the like.

 1つの実施形態では、本発明において、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の特定は、試料を標識せずに行われる。蛍光標識や放射性同位体での標識を行うことが必要でないことから、生体内の試料について生体のそのままの状況またはそれに類似する条件下での分析を行うことができ、より生体の情報を反映した解析を行うことができる。 In one embodiment, in the present invention, the position of the phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is determined without labeling the sample. Since it is not necessary to label with a fluorescent label or radioisotope, it is possible to perform analysis under the condition of the living body as it is or similar conditions to the sample in the living body, reflecting more living body information Analysis can be performed.

 (測定、検出または同定装置)
 1つの局面において、本発明は、試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのアシル基およびリン酸基の位置を測定、検出または同定する装置を提供する。ここで、この装置は、質量分析装置を含み、好ましくはさらにクロマトグラフィー用の装置またはイオンモビリティ分離用の装置を含み、例えば、クロマトグラフィー用の装置はガスクロマトグラフィーおよび液体クロマトグラフィー用の少なくとも1つの装置を含みうる。理論に束縛されることを望まないが、本明細書において液体カラムクロマトグラフィーと質量分析装置を用いてホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを測定することができていることから、ガスクロマトグラフィーにおいても同様に分離可能であり測定することができると理解される。リン酸位置異性体間の分離をより正確に行う場合は、クロマトグラフィー用の装置またはイオンモビリティ分離用の装置と組み合わせることが好ましい。具体的な実施形態としては、本発明は、質量分析(MS)装置と、ホスファチジルイノシトールホスフェートの分解がなされない条件で該MSに該試料を適用する適用部とを含む。より具体的な実施形態としては、本発明は、液体カラムクロマトグラフィー-質量分析(LC-MS)装置と、ホスファチジルイノシトールホスフェートの分解がなされない条件で該LC-MSに該試料を適用する適用部とを含む。
(Measurement, detection or identification device)
In one aspect, the present invention provides an apparatus for measuring, detecting or identifying the positions of acyl and phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample. Here, the apparatus comprises a mass spectrometer, preferably further comprising a chromatography apparatus or an ion mobility separation apparatus, for example the chromatography apparatus is at least one for gas chromatography and liquid chromatography. One device may be included. Without wishing to be bound by theory, it is possible to measure phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in this specification using liquid column chromatography and a mass spectrometer. It is understood that the separation can be similarly performed and can be measured. In order to more accurately separate phosphoric acid position isomers, it is preferable to combine with a chromatographic apparatus or an ion mobility separation apparatus. As a specific embodiment, the present invention includes a mass spectrometer (MS) apparatus and an application unit that applies the sample to the MS under a condition that the phosphatidylinositol phosphate is not decomposed. As a more specific embodiment, the present invention includes a liquid column chromatography-mass spectrometry (LC-MS) apparatus and an application unit that applies the sample to the LC-MS under conditions in which phosphatidylinositol phosphate is not decomposed. Including.

 別の局面において、本発明は、試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのアシル基およびリン酸基の位置を測定、検出または同定する装置を提供する。ここで、この装置は、イオンモビリティ分離-質量分析(IMS-MS)装置と、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートの分解がなされない条件で該IMS-MSに該試料を適用する適用部とを含む。 In another aspect, the present invention provides an apparatus for measuring, detecting or identifying the positions of acyl groups and phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample. Here, the apparatus includes an ion mobility separation-mass spectrometry (IMS-MS) apparatus and an application unit that applies the sample to the IMS-MS under a condition in which phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is not decomposed. Including.

 本発明において、LC-MSを用いる場合、必要に応じて、イオンモビリティ分離を行う手段を含んでいてもよい。 In the present invention, when LC-MS is used, means for performing ion mobility separation may be included as necessary.

 本明細書において使用される液体カラムクロマトグラフィーは、キラルカラム、逆相カラム、順相カラム、イオン交換カラム、親水基、疎水基を分離するカラムからなる群より選択される。 The liquid column chromatography used in the present specification is selected from the group consisting of chiral columns, reverse phase columns, normal phase columns, ion exchange columns, columns that separate hydrophilic groups and hydrophobic groups.

 1つの実施形態では、前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを検知または定量する手段をさらに含む。このような見地または定量する手段としては、例えば、得られた検出ピークを内部標準と比較して計算して定量する方法などが挙げられる。 In one embodiment, it further comprises means for detecting or quantifying the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. As such a viewpoint or means for quantifying, for example, a method of calculating and quantifying the obtained detection peak in comparison with an internal standard can be mentioned.

 (ホスホイノシタイドおよび/またはリゾホスホイノシタイドの分離・精製および純品生産)
 1つの局面において、本発明は、試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを、アシル基を保持しつつ、リン酸基の位置に応じて分離または精製する方法を提供する。この方法はA)該試料を質量分析(MS)に適用する工程;およびB)該MSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを収集する工程を包含する。1つの実施形態では、試料はさらにクロマトグラフィーまたはイオンモビリティ分離(IMS)に適用される。
(Separation and purification of phosphoinositide and / or lysophosphoinositide and production of pure products)
In one aspect, the present invention provides a method for separating or purifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample depending on the position of a phosphate group while retaining an acyl group. The method comprises A) applying the sample to mass spectrometry (MS); and B) from the eluate of the MS, a phosphatidylinositol phosphate having a phosphate group at the target position identified by the elution position of the peak and / or Or collecting lysophosphatidylinositol phosphate. In one embodiment, the sample is further applied to chromatography or ion mobility separation (IMS).

 1つの局面において、本発明は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置について2以上存在する混合物から、該混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類(例えば、1種類)の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む試料を生産する方法を提供する。この方法は、A)該試料をクロマトグラフィー、イオンモビリティ分離(IMS)または質量分析(MS)に適用する工程;およびB)該クロマトグラフィー、IMSまたはMSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む画分を収集する工程を包含する。1つの実施形態では、試料はクロマトグラフィー、イオンモビリティ分離および質量分析の任意の組み合わせに適用される。 In one aspect, the present invention provides a mixture of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate contained in the mixture from a mixture of two or more of the phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. Provided is a method for producing a sample comprising phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates having phosphate groups at fewer (eg, one) positions than the number of acid group positions. The method includes: A) applying the sample to chromatography, ion mobility separation (IMS) or mass spectrometry (MS); and B) identifying the elution from the chromatography, IMS or MS by the elution position of the peak. Collecting a fraction containing a phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a desired target position. In one embodiment, the sample is applied to any combination of chromatography, ion mobility separation and mass spectrometry.

 本発明において、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを収集する技術は、当該分野で知られる任意の技術を用いることができ、例えば、オートサンプラーなどの適宜の機器を用いることができ、あるいは手動で収集してもよい。 In the present invention, any technique known in the art may be used as a technique for collecting phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a target position specified by the elution position of the peak. For example, an appropriate device such as an autosampler can be used, or the data can be collected manually.

 ここで、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置について2以上存在する混合物としては、生体試料、食品、代謝物や他の任意のホスホイノシタイドおよび/またはリゾホスファチジルイノシトールホスフェートを含むまたは含むと推定される任意の試料を挙げることができる。特に、本発明において、混合物は、一リン酸体のホスファチジルイノシトール(ホスファチジルイノシトール-3-一リン酸、ホスファチジルイノシトール-4-一リン酸、ホスファチジルイノシトール-5-一リン酸)の3つのアイソマーのうちの2つまたは3つのアイソマーを含み得、同様に一リン酸体のリゾホスファチジルイノシトールの3つのアイソマーのうちの2つまたは3つのアイソマーを含み得、二リン酸体のホスファチジルイノシトール(ホスファチジルイノシトール-3,4-二リン酸、ホスファチジルイノシトール-3,5-二リン酸、ホスファチジルイノシトール-4,5-二リン酸)のうちの2つまたは3つのアイソマーを含み得、同様に二リン酸体のリゾホスファチジルイノシトールの3つのアイソマーのうちの2つまたは3つのアイソマーを含み得、これらを分離して、該混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類(例えば、1種類)の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む試料が生成され得る。本明細書では、1種類の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび1種類の位置にリン酸基を有するリゾホスファチジルイノシトールホスフェートは、それぞれ、7つの種類のリン酸基の結合パターンがある任意のアイソマーであり得、これらは、ホスファチジルイノシトール-3-一リン酸、ホスファチジルイノシトール-4-一リン酸、ホスファチジルイノシトール-5-一リン酸、ホスファチジルイノシトール-3,4-二リン酸、ホスファチジルイノシトール-3,5-二リン酸、ホスファチジルイノシトール-4,5-二リン酸、ホスファチジルイノシトール-3,4,5-三リン酸、およびこれらのリゾ体である。混合物からその一部での分離することができる技術も本発明の対象である。 Here, phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate mixture containing two or more phosphate groups include biological samples, foods, metabolites and any other phosphoinositide and / or lysophosphatidylinositol phosphate. Any sample containing or presumed to contain can be mentioned. In particular, in the present invention, the mixture is composed of three isomers of monophosphate phosphatidylinositol (phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate). 2 or 3 isomers, as well as 2 or 3 isomers of the 3 isomers of the monophosphate lysophosphatidylinositol, and the diphosphate phosphatidylinositol (phosphatidylinositol-3 , 4-diphosphate, phosphatidylinositol-3,5-diphosphate, phosphatidylinositol-4,5-diphosphate), as well as diphosphate lysates Of the three isomers of phosphatidylinositol One or three isomers, which are separated and less than the number of types of phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates phosphate groups contained in the mixture (eg, one) Samples containing phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates with phosphate groups in position can be generated. In this specification, the phosphatidylinositol phosphate having a phosphate group at one position and the lysophosphatidylinositol phosphate having a phosphate group at one position each have a binding pattern of seven kinds of phosphate groups. These are phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate, phosphatidylinositol-3,4-diphosphate, phosphatidylinositol- 3,5-diphosphate, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, and their lysates. Techniques that can be separated in part from the mixture are also the subject of the present invention.

 本明細書において「混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類」とは、混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数をnとした場合、n-1以下であることを意味する。好ましくは、混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類は1であるが、それに限定されず、1種類、2種類、3種類、4種類などでもよい。特に、一リン酸体のホスファチジルイノシトール(ホスファチジルイノシトール-3-一リン酸、ホスファチジルイノシトール-4-一リン酸、ホスファチジルイノシトール-5-一リン酸)の3つのアイソマー、一リン酸体のリゾホスファチジルイノシトールの3つのアイソマー、二リン酸体のホスファチジルイノシトール(ホスファチジルイノシトール-3,4-二リン酸、ホスファチジルイノシトール-3,5-二リン酸、ホスファチジルイノシトール-4,5-二リン酸)の3つのアイソマー、または二リン酸体のリゾホスファチジルイノシトールの3つのアイソマーを分離することができることが有利であり得る。 In the present specification, “the number of phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates contained in the mixture is less than the number of types of phosphate groups of the lysophosphatidylinositol phosphates” means phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates contained in the mixture When the number of types of the position of the phosphoric acid group is n, it means n-1 or less. Preferably, the number of phosphatidylinositol phosphates and / or lysophosphatidylinositol phosphates contained in the mixture is less than the number of types of the phosphate groups of the phosphatidylinositol phosphate, but is not limited thereto, but is not limited to one, two, three There may be four types. In particular, three isomers of monophosphate phosphatidylinositol (phosphatidylinositol-3-monophosphate, phosphatidylinositol-4-monophosphate, phosphatidylinositol-5-monophosphate), monophosphate lysophosphatidylinositol Three isomers of the diphosphate phosphatidylinositol (phosphatidylinositol-3,4-diphosphate, phosphatidylinositol-3,5-diphosphate, phosphatidylinositol-4,5-diphosphate) Alternatively, it may be advantageous to be able to separate the three isomers of the diphosphate lysophosphatidylinositol.

 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその3rd Ed.(2001); Ausubel, F.M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel, F.M.(1989). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M.A.(1990).PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F.M.(1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F.M. (1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M.A. et al.(1995).PCR Strategies, Academic Press; Ausubel, F.M.(1999).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J.J. et al.(1999). PCR Applications: Protocols for Functional Genomics, Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
(General technology)
Molecular biological techniques, biochemical techniques, and microbiological techniques used in this specification are well known and commonly used in the art, for example, Sambrook J. et al. (1989). Molecular Cloning. : A Laboratory Manual, Cold Spring Harbor and its 3rd Ed. (2001); Ausubel, FM (1987) .Current Protocols in Molecular Biology, Greene Pub.Associates and Wiley-Interscience; Ausubel, FM (1989). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub.Associates and Wiley-Interscience; Innis, MA (1990) .PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, FM (1992). Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub.Associates; Ausubel, FM (1995) .Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Innis, MA et al. (1995) .PCR Strategies, Academic Press; Ausubel, FM (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, JJ et al. (1999). PCR Applications: Protocols for It is described in Functional Genomics, Academic Press, a separate volume of experimental medicine "Gene Transfer & Expression Analysis Experimental Method" Yodosha, 1997, etc., and related portions (which may be all) are incorporated herein by reference. The

 人工的に合成した遺伝子を作製するためのDNA合成技術および核酸化学については、例えば、Gait, M.J.(1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M.J.(1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F.(1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R.L. et al.(1992). The Biochemistry of the Nucleic Acids, Chapman &H all; Shabarova, Z. et al.(1994).Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G.M. et al.(1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, G.T.(I996). Bioconjugate Techniques, Academic Pressなどに記載されており、これらは本明細書において関連する部分が参考として援用される。 For DNA synthesis technology and nucleic acid chemistry to produce artificially synthesized genes, see, for example, Gait, MJ (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, MJ (1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F. (1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, RL et al. (1992). The Biochemistry of the Nucleic Acids, Chapman & Chapman & Chapman & Chapman & Chapman & Chapman & Shap et al. (1994) .Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, GM et al. (1996) .Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, Tech (jud. Which are incorporated herein by reference in the relevant part.

 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。 In this specification, “or” is used when “at least one or more” of the items listed in the sentence can be adopted. The same applies to “or”. In this specification, when “within range” of “two values” is specified, the range includes two values themselves.

 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety to the same extent as if they were specifically described.

 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 As described above, the present invention has been described by showing preferred embodiments for easy understanding. In the following, the present invention will be described based on examples, but the above description and the following examples are provided only for the purpose of illustration, not for the purpose of limiting the present invention. Accordingly, the scope of the present invention is not limited to the embodiments or examples specifically described in the present specification, but is limited only by the scope of the claims.

 以下に実施例を記載する。ホスホイノシタイドの一つの構造特性であるグリセロールのsn-1,2位水酸基に結合する脂肪酸鎖の多様性(分子種)に着目した研究はほとんどなされていない。細胞内ホスホイノシタイドレベルの測定法としては、放射性同位元素によって標識された脱アシル化ホスホイノシタイドを分析するHPLC法が主流である。しかし、この半定量分析手法は対象試料に制限があり(vivoでは困難)、何より分子種レベルの測定はできない。そこで発明者らは、LC-MS/MSを用いて、定量性に優れた新規分析手法を確立した。この分析手法は幅広い生体試料を対象とした、分子種レベルでのホスホイノシタイド分析が可能である。 Examples are described below. There has been little research focusing on the diversity (molecular species) of fatty acid chains that bind to the sn-1,2-hydroxyl group of glycerol, which is one structural characteristic of phosphoinositide. As a method for measuring intracellular phosphoinositide levels, an HPLC method for analyzing deacylated phosphoinositide labeled with a radioisotope is the mainstream. However, this semi-quantitative analysis method is limited in the target sample (difficult in vivo), and above all, measurement at the molecular species level is impossible. Therefore, the inventors established a new analysis method with excellent quantitativeness using LC-MS / MS. This analysis method enables phosphoinositide analysis at the molecular species level for a wide range of biological samples.

 必要な場合、以下の実施例で用いる動物の取り扱いは、全ての動物実験(生体試料の調製等)は、秋田大学の動物実験ガイドラインに従って実施した。また、ヒトを対象とする場合には、ヘルシンキ宣言に基づいて行った。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、和光純薬、ナカライ、R&D Systems、USCN Life Science INC等)の同等品でも代用可能である。 When necessary, handling of animals used in the following examples was carried out in accordance with the guidelines for animal experiments at Akita University for all animal experiments (biological sample preparation, etc.). In addition, in the case of targeting humans, it was conducted based on the declaration of Helsinki. The reagents described in the examples were used specifically for the reagents, but equivalent products from other manufacturers (Sigma-Aldrich, Wako Pure Chemicals, Nakarai, R & D Systems, USCN Life Science INC, etc.) can be substituted.

 (略号)
 本明細書において説明した略称の他、以下の略称も用いる。
(Abbreviation)
In addition to the abbreviations described in this specification, the following abbreviations are also used.

 PI:ホスファチジルイノシトール
 PI3PまたはPI(3)P:ホスファチジルイノシトール-3-一リン酸
 PI4PまたはPI(4)P:ホスファチジルイノシトール-4-一リン酸
 PI5PまたはPI(5)P:ホスファチジルイノシトール-5-一リン酸
 (PI3PまたはPI4PまたはPI5PをPIP1と表記する)
 PI(3,4)P:ホスファチジルイノシトール-3,4-二リン酸
 PI(3,5)P:ホスファチジルイノシトール-3,5-二リン酸
 PI(4,5)P:ホスファチジルイノシトール-4,5-二リン酸
 (PI(3,4)PまたはPI(3,5)PまたはPI(4,5)PをPIP2と表記する)
 PI(3,4,5)P:ホスファチジルイノシトール-3,4,5-三リン酸
 (PI(3,4,5)PをPIP3と表記する)
PIP1,PIP2,PIP3をPIPsと総称する。
PI: phosphatidylinositol PI3P or PI (3) P: phosphatidylinositol-3-monophosphate PI4P or PI (4) P: phosphatidylinositol-4-monophosphate PI5P or PI (5) P: phosphatidylinositol-5-mono Phosphoric acid (PI3P or PI4P or PI5P is expressed as PIP1)
PI (3,4) P 2 : Phosphatidylinositol-3,4-diphosphate PI (3,5) P 2 : Phosphatidylinositol-3,5-diphosphate PI (4,5) P 2 : Phosphatidylinositol- 4,5 diphosphate (PI (3,4) P 2 or PI (3,5) P 2 or PI (4,5) P 2 and referred to as PIP2)
PI (3,4,5) P 3 : Phosphatidylinositol-3,4,5-triphosphate (PI (3,4,5) P 3 is expressed as PIP3)
PIP1, PIP2, and PIP3 are collectively referred to as PIPs.

 PIPsのグリセロールのsn-1水酸基またはsn-2水酸基のいずれか一方のみを介して脂肪酸もしくは炭化水素と結合した構造物をLPIPsと総称する。 Structures bonded to fatty acids or hydrocarbons through only one of the sn-1 hydroxyl group and sn-2 hydroxyl group of glycerol of PIPs are collectively referred to as LPIPs.

 (実施例1:リゾホスファチジルイノシトールリン酸類の製造および同定)
 本実施例では、リゾホスファチジルイノシトールリン酸類の製造を行い、その新規物質の新規同定法も開発した。
(Example 1: Production and identification of lysophosphatidylinositol phosphates)
In this example, lysophosphatidylinositol phosphates were produced, and a novel identification method for the new substance was also developed.

 (化学物質)
 以下の試料を標準試料および出発原料として用いた。
(Chemical substance)
The following samples were used as standard samples and starting materials.

 (材料および方法)
 (使用材料)
 出発原料として用いるホスファチジルイノシトールリン酸である17:0/20:4-PI3P、17:0/20:4-PI4P、17:0/20:4-PI5P、17:0/20:4-PI(3,4)P、17:0/20:4-PI(3,5)P、17:0/20:4-PI(4,5)P、17:0/20:4-PI(3,4,5)Pおよびその他のグリセロリン脂質標準合成品は、Avanti Polar Lipids(Alabaster,AL,USA)から購入した。トリメチルシリルジアゾメタン(TMS-ジアゾメタン)は、東京化成から購入した。超純水はKantoChemicals(Tokyo,Japan)から入手した。他のすべての溶媒は、HPLCまたはLC-MSグレードであり、他の化学試薬は分析グレードであった。これらは、Wako Pure Chemicalsより入手した。
(Materials and methods)
(Materials used)
Phosphatidylinositol phosphates used as starting materials are 17: 0/20: 4-PI3P, 17: 0/20: 4-PI4P, 17: 0/20: 4-PI5P, 17: 0/20: 4-PI ( 3,4) P 2 , 17: 0/20: 4-PI (3,5) P 2 , 17: 0/20: 4-PI (4,5) P 2 , 17: 0/20: 4-PI (3,4,5) P 3 and other glycerophospholipids standard synthetic were purchased from Avanti Polar lipids (Alabaster, AL, USA). Trimethylsilyldiazomethane (TMS-diazomethane) was purchased from Tokyo Kasei. Ultrapure water was obtained from Kanto Chemicals (Tokyo, Japan). All other solvents were HPLC or LC-MS grade and other chemical reagents were analytical grade. These were obtained from Wako Pure Chemicals.

 (合成方法)
 出発原料としてホスファチジルイノシトールリン酸(一リン酸、二リン酸および三リン酸)を用いて、メチルアミンとのO→Nトランスアシレーション反応による脱アシル化を行った。脱アシル化は、1つのアシルのみが脱アシル化できるように、以下の条件を設定した:
(Synthesis method)
Using phosphatidylinositol phosphate (monophosphate, diphosphate and triphosphate) as a starting material, deacylation was carried out by O → N transacylation reaction with methylamine. Deacylation was set up with the following conditions so that only one acyl can be deacylated:

Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016

 (実験条件)
 クロロホルム/メタノール(1/1)に溶解した100pmolの1-ヘプタデカノイル-2-アラキドノイル-sn-グリセロ-3-ホスホ-1’-myo-イノシトール-4’一リン酸(1-heptadecanoyl-2-arachidonoyl-sn-glycero-3-phospho-1'-myo-inositol-4'-monophosphate)(17:0/20:4-PI4P)をNガスで乾固し、0.3mLの2.13%メチルアミン溶液(メチルアミン/水/メタノール/1-ブタノール(1.92/38.08/40/10))あるいは10.7%メチルアミン溶液(メチルアミン/水/メタノール/1-ブタノール(9.6/30.4/40/10))を53℃あるいは37℃で添加して、撹拌後53℃あるいは37℃で0,5,10,30,60,120分間静置し、氷冷メタノール溶液を加えることにより反応をクエンチした。反応物をNガスで乾固し、目的とするリゾホスファチジルイノシトール一リン酸(LPIP1:収率約0~40%)を、リン酸基のメチル化保護を行い、三連四重極質量分析計による以下の方法で測定した。
(Experimental conditions)
100 pmol 1-heptadecanoyl-2-arachidonoyl-sn-glycero-3-phospho-1'-myo-inositol-4 'monophosphate dissolved in chloroform / methanol (1/1) (1-heptadecanoyl-2-arachidonoyl-) sn-glycero-3-phospho-1'-myo-inositol-4'-monophosphate) (17: 0/20: 4-PI4P) to dryness with N 2 gas, 0.3 mL of 2.13% methylamine Solution (methylamine / water / methanol / 1-butanol (1.92 / 38.08 / 40/10)) or 10.7% methylamine solution (methylamine / water / methanol / 1-butanol (9.6 / 30.4 / 40/10)) at 53 ° C. or 37 ° C., and after stirring, let stand at 53 ° C. or 37 ° C. for 0.5, 10, 10, 30, 60, 120 minutes, and add ice-cold methanol solution Queuing the reaction by I started. The reaction product was dried with N 2 gas, the target lysophosphatidylinositol monophosphate (LPIP1: yield 0-40%) was protected by methylation of the phosphate group, and triple quadrupole mass spectrometry The measurement was carried out by the following method.

 (測定および検出)
 「三連四重極質量分析計でのSRMによる測定および検出方法」を以下に記す。
(Measurement and detection)
The “measurement and detection method by SRM with a triple quadrupole mass spectrometer” is described below.

 LPIPsリン酸基のメチル化反応:質量分析計での高感度測定のために、LPIPsリン酸基のメチル化保護反応を行った。LPIPsを含む検体をクロロホルム/メタノール(1/1) 800μLに溶解しトリメチルシリルジアゾメタン150μLを加え室温で5分間反応させた。反応を氷酢酸10μLを加えクエンチした。メタノール/水/クロロホルム(48:47:3)800μLとクロロホルム400μLを加え撹拌後、有機層をNガスで乾固させた。メタノール/70%エチルアミン(1:0.13%)、v/v)27μLと水9μLを加え、撹拌した。 LPIPs phosphate group methylation reaction: LPIPs phosphate group methylation protection reaction was performed for highly sensitive measurement with a mass spectrometer. A specimen containing LPIPs was dissolved in 800 μL of chloroform / methanol (1/1), 150 μL of trimethylsilyldiazomethane was added, and the mixture was reacted at room temperature for 5 minutes. The reaction was quenched by adding 10 μL of glacial acetic acid. After adding 800 μL of methanol / water / chloroform (48: 47: 3) and 400 μL of chloroform and stirring, the organic layer was dried with N 2 gas. Methanol / 70% ethylamine (1: 0.13%), v / v) 27 μL and water 9 μL were added and stirred.

 LC-ESIMS/MS系:LC-ESIMS/MS分析を、非金属インジェクター部分および25μL PEEKチューブのサンプルループを備えるHTC PALオートサンプラー(CTC Analytics,Zwingen,Switzerland)と結合した、UltiMate 3000 LC system(Thermo-Fisher Scientific,Waltham,MA)とともにTSQ-Vantage(Thermo-Fisher Scientific)を用いることで行った。PIPs画分を移動相A(アセトニトリル/HO=4/1,0.13%エチルアミン(70%溶液),v/v))/移動相B(2-プロパノール/アセトニトリル=4/1,0.13%エチルアミン(70%溶液),v/v))比を70%/30%(0~1分)、1~3分にかけて10%/90%のグラジエントをかけ、引き続き10%/90%(3~7.5分)、70%/30%(7.5~13分)を用いたグラジエントによって分離した。流速は、220μL/分であり、クロマトグラフィーを60℃でGL sciences Inertsil Bio C18 150×1.0(粒子径1.9μm)カラムを用いて行った。典型的には、試料10μLを注入した。 LC-ESIMS / MS system: The Ultimate-Mate 3000 LC system (Tm) coupled LC-ESIMS / MS analysis with a HTC PAL autosampler (CTC Analytics, Zwingen, Switzerland) with a non-metal injector portion and a sample loop of 25 μL PEEK tube. -Using TSQ-Vantage (Thermo-Fisher Scientific) together with Fisher Scientific, Waltham, MA. The PIPs fraction was added to mobile phase A (acetonitrile / H 2 O = 4/1, 0.13% ethylamine (70% solution), v / v)) / mobile phase B (2-propanol / acetonitrile = 4 / 1,0). .13% ethylamine (70% solution), v / v)) ratio 70% / 30% (0-1 min), 10% / 90% gradient over 1-3 min, followed by 10% / 90% (3-7.5 minutes), separated by gradient using 70% / 30% (7.5-13 minutes). The flow rate was 220 μL / min and chromatography was performed at 60 ° C. using a GL sciences Inertsil Bio C18 150 × 1.0 (particle size 1.9 μm) column. Typically, 10 μL of sample was injected.

 質量分析の条件
 イオンスプレー電圧を3.0kVに設定した。加熱されたキャピラリー温度を270°Cに設定した。他のパラメータを製造者の推奨にしたがって設定した。MS系をXcaliburソフトウェアを用いて調整した。ポジティブイオンモードにおける選択反応モニタリング(SRM)法によってLPIPsを測定した。SRMモードにおける個々のLPIPsの測定条件を表2にまとめた。LPIP1、LPIP2、およびLPIP3を親イオンのm/z値(Q1)と娘イオンとして測定するモノアシルグリセロールのm/z値(Q2)の組合せによって同定した。その模式図を図1-1に示す。
Conditions for mass spectrometry The ion spray voltage was set to 3.0 kV. The heated capillary temperature was set at 270 ° C. Other parameters were set according to manufacturer's recommendations. The MS system was calibrated using Xcalibur software. LPIPs were measured by the selective reaction monitoring (SRM) method in positive ion mode. Table 2 summarizes the measurement conditions of individual LPIPs in the SRM mode. LPIP1, LPIP2, and LPIP3 were identified by the combination of the m / z value (Q1) of the parent ion and the m / z value (Q2) of monoacylglycerol measured as the daughter ion. A schematic diagram is shown in FIG. 1-1.

Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017

 (結果)
 横軸に反応時間を、縦軸に17:0 LPIP1あるいは20:4 LPIP1の生成量(クロマトグラム上の原料と反応生成物のピーク面積比から得た収率)を図1-1示す。従来法(メチルアミン濃度10.7%による120分間インキュベーション)では、LPIP1は検出されず、これは反応時間を60分に短縮しても同様であった。反応時間をさらに短縮して5,10,30分とすることによってはじめて、LPIP1が検出された。17:0 LPIP1と20:4 LPIP1の両者が生成された。従来法より低いメチルアミン濃度2.14%による反応でも同様の反応時間依存性の傾向が認められた。この場合、反応時間60分、120分でも少量のLPIP1が検出され、5,10,30分ではより多くのLPIP1が検出された。
(result)
The abscissa represents the reaction time, and the ordinate represents the production amount of 17: 0 LPIP1 or 20: 4 LPIP1 (the yield obtained from the peak area ratio of the raw material to the reaction product on the chromatogram). In the conventional method (incubation for 120 minutes with a methylamine concentration of 10.7%), LPIP1 was not detected, even when the reaction time was shortened to 60 minutes. LPIP1 was detected only when the reaction time was further reduced to 5, 10, and 30 minutes. Both 17: 0 LPIP1 and 20: 4 LPIP1 were generated. A similar reaction time-dependent tendency was observed in the reaction with a methylamine concentration of 2.14%, which is lower than that of the conventional method. In this case, a small amount of LPIP1 was detected even at reaction times of 60 minutes and 120 minutes, and more LPIP1 was detected at 5, 10, and 30 minutes.

 図1-2に示すように、反応は温度に依存しており、10.7%メチルアミン、37℃、10分間インキュベーションでは、53℃での反応より高い収率でLPIP1が得られた。 As shown in FIG. 1-2, the reaction depends on the temperature. Incubation at 10.7% methylamine at 37 ° C. for 10 minutes yielded LPIP1 in a higher yield than the reaction at 53 ° C.

 (考察)
 メチルアミンを用いたこの方法は従来、イノシトールリン脂質を含むリン脂質の親水基には影響を与えず、二つのアシル基を完全に脱アシル化する目的で汎用されているように、イノシトールに結合するリン酸の位置が変更しないことが知られており(Serunian LA, et al. Methods Enzymol. 1991;198:78-87, Fujii et al. Folia Pharmacol Jpn. 2013; 142: 236-240)、それより緩和な条件であれば、リン酸基の位置や数は変更しない。反応時間の短縮、メチルアミン濃度の低減、反応温度の低下、その組合せによって、脱アシル化の程度を調節することにより、1つのアシルのみを脱アシル化でき、出発物質として用いるジアシル型PIPsに対応したLPIPsを合成できる。次に、表3に、本実施例で市販のPIPs合成品を原材料として合成することができるLPIPsの例を示し、表4には、リン酸基の位置まで確定することができる例を示す。表中の数字は、炭素数と二重結合の数を示す。二重結合があるものについては、16:1=9-ヘキサデセン酸(パルミトレイン酸);18:1=cis-9-オクタデセン酸(オレイン酸);20:4=5,8,11,14-イコサテトラエン酸(アラキドン酸);22:6=4,7,10,13,16,19-ドコサヘキサエン酸である。
(Discussion)
This method using methylamine does not affect the hydrophilic groups of phospholipids, including inositol phospholipids, but binds to inositol as is widely used for the complete deacylation of two acyl groups. It is known that the position of phosphoric acid does not change (Serunian LA, et al. Methods Enzymol. 1991; 198: 78-87, Fujii et al. Folia Pharmacol Jpn. 2013; 142: 236-240) If the conditions are more relaxed, the position and number of phosphate groups are not changed. By adjusting the degree of deacylation by shortening the reaction time, reducing the methylamine concentration, reducing the reaction temperature, and a combination thereof, only one acyl can be deacylated, corresponding to diacyl-type PIPs used as starting materials LPIPs can be synthesized. Next, Table 3 shows examples of LPIPs that can be synthesized using a commercially available PIPs synthetic product as a raw material in this example, and Table 4 shows an example in which the position of the phosphate group can be determined. The numbers in the table indicate the number of carbon atoms and the number of double bonds. For those with double bonds, 16: 1 = 9-hexadecenoic acid (palmitoleic acid); 18: 1 = cis-9-octadecenoic acid (oleic acid); 20: 4 = 5,8,11,14-icosatetraene Acid (arachidonic acid); 22: 6 = 4,7,10,13,16,19-docosahexaenoic acid.

Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019

 図2(図2A~図2G)において、リン酸化パターンが異なる7種類のPIPs原料(アシル基は17:0、20:4)から製造したそれぞれのLPIPsの結果を図示する。出発原料として17:0/20:4-PI3P、17:0/20:4-PI4P、17:0/20:4-PI5P、17:0/20:4-PI(3,4)P、17:0/20:4-PI(3,5)P、17:0/20:4-PI(4,5)P、17:0/20:4-PI(3,4,5)Pを用い、10.7%メチルアミン存在下53℃、10分間インキュベーションの後に、氷冷メタノール溶液を加えることにより反応をクエンチした。反応物をN2ガスで乾固し、目的とするLPIPsのリン酸基のメチル化保護を行い、三連四重極質量分析計による上記の方法で測定した。いずれのPIPsを原料としても、上記メチルアミン反応でLPIPsの生成が認められた。 In FIG. 2 (FIGS. 2A to 2G), the results of LPIPs produced from seven kinds of PIPs raw materials (acyl groups are 17: 0, 20: 4) having different phosphorylation patterns are illustrated. 17: 0/20: 4-PI3P, 17: 0/20: 4-PI4P, 17: 0/20: 4-PI5P, 17: 0/20: 4-PI (3,4) P 2 as starting materials, 17: 0/20: 4-PI (3,5) P 2 , 17: 0/20: 4-PI (4,5) P 2 , 17: 0/20: 4-PI (3,4,5) with P 3, 10.7% methylamine presence 53 ° C., after incubation for 10 min the reaction was quenched by addition of ice-cold methanol. The reaction product was dried with N2 gas, the methylation protection of the phosphate group of the target LPIPs was performed, and measurement was performed by the above method using a triple quadrupole mass spectrometer. Using any PIPs as a raw material, the production of LPIPs was observed by the methylamine reaction.

 (化合物の同定)
 本発明の化合物を同定するために、LPIPsの構造を裏付ける特異的フラグメントの精密質量測定を行った。「ハイブリッド四重極-オービトラップ質量分析計を用いた測定および検出方法」を以下に記す。使用した機器は、上述の三連四重極質量分析計よりも高い質量精度をもつOrbitrap Q-Exactive Plusであり、その使用条件は以下のとおりである。
(Identification of compounds)
In order to identify the compounds of the present invention, accurate mass measurements of specific fragments supporting the structure of LPIPs were performed. The “measurement and detection method using a hybrid quadrupole-orbitrap mass spectrometer” is described below. The instrument used is Orbitrap Q-Exclusive Plus, which has higher mass accuracy than the above-described triple quadrupole mass spectrometer, and the use conditions are as follows.

 LC-ESI MS/MS系:LC-ESI MS/MS分析を、Ultimate 3000 LC system(Thermo-Fisher Scientific, Waltham, MA)とともにOrbitrap Q-Exactive Plus(Thermo-Fisher Scientific, Waltham, MA)を用いることで行った。PIPs画分を移動相A(アセトニトリル/HO=4/1,0.13%エチルアミン(70%溶液),v/v))/移動相B(2-プロパノール/アセトニトリル=4/1,0.13%エチルアミン(70%溶液),v/v))比を70%/30%(0~1分)、1~3分にかけて10%/90%のグラジエントをかけ、引き続き10%/90%(3~7.5分)、70%/30%(7.5~13分)を用いたグラジエントによって分離した。流速は、220μL/分であり、クロマトグラフィーを60℃でGL sciences Inertsil Bio C18 150×1.0(粒子径1.9μm)カラムを用いて行った。 LC-ESI MS / MS system: LC-ESI MS / MS analysis is performed using Ultimate 3000 LC system (Thermo-Fisher Scientific, Waltham, MA) and Orbitrap Q-Exactive Plus (Thermo-SciMA). I went there. The PIPs fraction was added to mobile phase A (acetonitrile / H 2 O = 4/1, 0.13% ethylamine (70% solution), v / v)) / mobile phase B (2-propanol / acetonitrile = 4 / 1,0). .13% ethylamine (70% solution), v / v)) ratio 70% / 30% (0-1 min), 10% / 90% gradient over 1-3 min, followed by 10% / 90% (3-7.5 minutes), separated by gradient using 70% / 30% (7.5-13 minutes). The flow rate was 220 μL / min and chromatography was performed at 60 ° C. using a GL sciences Inertsil Bio C18 150 × 1.0 (particle size 1.9 μm) column.

 なお、図5Cおよび図5Dの分析については、代替的に以下の条件で行った。PIPs画分を移動相A(メタノール/HO/70%エチルアミン(20:80:0.13,v/v))/移動相B(メタノール/HO/2-プロパノール/70%エチルアミン(5:5:90:0.13、v/v))比を90%/10%(0~0.1分)、0.1~3分にかけて70%/30%のグラジエントをかけ、引き続き10%/90%(3~15分)を用いたグラジエントによって分離した。流速は、30μL/分であり、クロマトグラフィーを30°CでWaters X-Bridge C8(3.5mm、1.0x150mm)カラムを用いて行った。
 典型的には、試料10μLを注入した。質量分析の条件としては、イオンスプレー電圧を3.0kVに設定した。加熱されたキャピラリー温度を250℃に設定した。他のパラメータを製造者の推奨にしたがって設定した。MS系をXcaliburソフトウェアを用いて調整した。ポジティブイオンモードにおける選択イオンモニタリング法(Selected Ion Monitoring;SIM)および並列反応モニタリング法(Parallel reaction monitoring;PRM)によってLPIPsを測定した。
In addition, about the analysis of FIG. 5C and FIG. 5D, it carried out on the following conditions instead. The PIPs fraction was added to mobile phase A (methanol / H 2 O / 70% ethylamine (20: 80: 0.13, v / v)) / mobile phase B (methanol / H 2 O / 2-propanol / 70% ethylamine ( 5: 5: 90: 0.13, v / v)) ratio of 90% / 10% (0-0.1 min), with a gradient of 70% / 30% over 0.1-3 min, followed by 10 Separation by a gradient with% / 90% (3-15 min). The flow rate was 30 μL / min and chromatography was performed at 30 ° C. using a Waters X-Bridge C8 (3.5 mm, 1.0 × 150 mm) column.
Typically, 10 μL of sample was injected. As conditions for mass spectrometry, the ion spray voltage was set to 3.0 kV. The heated capillary temperature was set to 250 ° C. Other parameters were set according to manufacturer's recommendations. The MS system was calibrated using Xcalibur software. LPIPs were measured by selected ion monitoring (SIM) and parallel reaction monitoring (PRM) in positive ion mode.

 17:0/20:4-PI4P、17:0/20:4-PI(4,5)P、17:0/20:4-PI(3,4,5)P合成品を上述のように10.7%メチルアミン存在下53℃、10分間インキュベーションすることにより調製したLPIPsを試料として、本発明の化合物が合成されていることを確認した。LPIP1,LPIP2,LPIP3について特異的フラグメントの同定により、本発明の構造が同定できたといえる理論は以下のとおりである。 17: 0/20: 4-PI4P, 17: 0/20: 4-PI (4,5) P 2 , 17: 0/20: 4-PI (3,4,5) P 3 Thus, it was confirmed that the compounds of the present invention were synthesized using LPIPs prepared by incubation at 53 ° C. for 10 minutes in the presence of 10.7% methylamine as a sample. The theory that the structure of the present invention can be identified by identifying specific fragments of LPIP1, LPIP2, and LPIP3 is as follows.

 図3Aのクロマトグラムおよび図3Bの出発物質、生成物質、フラグメントの構造式を参照しながらLPIP1の同定について説明する。37:4 PI(4)P(sn-1 17:0、sn-2 20:4 PI(4)P)の緩和な脱アシル化反応(図1参照)によって生ずる二種のLPI(4)Pについて、LPI(4)PならびにLPI(4)Pに由来するフラグメントの精密質量分析を行った結果を、LPIP1合成反応の代表例として示す。図3Aに17:0 LPIP(一段目)とそのフラグメントイオン(二段目)、20:4 LPIP(三段目)とそのフラグメントイオン(四段目)の精密質量測定結果を、決定された分子式とともに示す。 The identification of LPIP1 will be described with reference to the chromatogram in FIG. 3A and the structural formulas of the starting material, product, and fragment in FIG. 3B. Two types of LPI (4) P produced by mild deacylation of 37: 4 PI (4) P (sn-1 17: 0, sn-2 20: 4 PI (4) P) (see FIG. 1) The results of accurate mass spectrometry of LPI (4) P and fragments derived from LPI (4) P are shown as representative examples of LPIP1 synthesis reaction. In FIG. 3A, the accurate mass measurement results of 17: 0 LPIP 1 (first stage) and its fragment ion (second stage) and 20: 4 LPIP 1 (third stage) and its fragment ion (fourth stage) are determined. Together with the molecular formula.

 反応生成物中にm/z=754.3902の物質(一段目)、ならびに、m/z=788.3749の物質(三段目)が検出された。これらと、17:0 LPIP1(3メチル化体、エチルアミン付加体)、ならびに、20:4 LPIP1(3メチル化体、エチルアミン付加)の分子式から求められるm/z理論値との誤差は0.03ppm(5ppm以下)、ならびに、0.47ppm(5ppm以下)であったことから、17:0 LPIP1ならびに20:4 LPIP1と同じ組成式をもつ物質が、上記脱アシル化反応により生成されたことが明らかとなった。 In the reaction product, a substance having m / z = 754.902 (first stage) and a substance having m / z = 788.3749 (third stage) were detected. The error between these values and the theoretical m / z value obtained from the molecular formulas of 17: 0 LPIP1 (3-methylated product, ethylamine adduct) and 20: 4 LPIP1 (3-methylated product, ethylamine added) is 0.03 ppm. (5 ppm or less) and 0.47 ppm (5 ppm or less), it is clear that substances having the same composition formula as 17: 0 LPIP1 and 20: 4 LPIP1 were produced by the deacylation reaction. It became.

 次に、一段目に検出される物質を含むm/z=754.3902±1.0の範囲で検出されうる物質を分解して生じる物質(フラグメントイオン)を検出した結果を二段目に示し、三段目に検出される物質を含むm/z=788.3749±1.0の範囲で検出されうる物質のフラグメントイオン
を四段目に示す。
Next, the results of detecting substances (fragment ions) generated by decomposing substances that can be detected in the range of m / z = 754.902 ± 1.0 including the substances detected in the first stage are shown in the second stage. The fragment ion of the substance that can be detected in the range of m / z = 788.3749 ± 1.0 including the substance detected in the third stage is shown in the fourth stage.

 一段目に示した物質m/z=754.3902は、その部分構造として二段目に検出されるm/z327.2892とm/z383.0507をもつ。m/z327.2892は17:0モノアシルグリセロール(17:0 MG)(水酸基が一つ抜けた1価プラスイオン)の分子式から求められるm/z理論値との誤差が0.48ppm(5ppm以下)であり、m/z383.0507はイノシトール二リン酸(3メチル化体、プロトン付加体として検出)の分子式から求められるm/z理論値との誤差が1.16ppm(5ppm以下)であった。よって、一段目の物質の構造式が確定され、m/z=754.3902は17:0 LPIP1(3メチル化体、エチルアミン付加体として検出)であることが確認された。 The substance m / z = 754.902 shown in the first stage has m / z 327.2892 and m / z 383.0507 detected in the second stage as its partial structure. m / z 327.2892 has an error of 0.48 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of 17: 0 monoacylglycerol (17: 0 MG) (monovalent positive ion with one hydroxyl group missing). M / z 383.0507 had an error of 1.16 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of inositol diphosphate (trimethylated, detected as a proton adduct). . Therefore, the structural formula of the first-stage substance was determined, and m / z = 754.902 was confirmed to be 17: 0 LPIP1 (detected as a 3-methylated product and an ethylamine adduct).

 一方、三段目に示した物質m/z=788.3749は、その部分構造として四段目に検出されるm/z361.2736とm/z383.0511をもつ。m/z361.2736は20:4モノアシルグリセロール(20:4 MG)(水酸基が一つ抜けた1価プラスイオン)の分子式から求められるm/z理論値との誤差が0.45ppm(5ppm以下)であり、m/z383.0511はイノシトール二リン酸(3メチル化体、プロトン付加体として検出)の分子式から求められるm/z理論値との誤差が2.18ppm(5ppm以下)であった。よって、三段目の物質の構造式が確定され、m/z=788.3749は20:4 LPIP1(3メチル化体、エチルアミン付加体として検出)であることが確認された。 On the other hand, the substance m / z = 788.3749 shown in the third stage has m / z 361.2736 and m / z 383.0511 detected in the fourth stage as its partial structure. m / z 361.22736 has an error of 0.45 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of 20: 4 monoacylglycerol (20: 4 MG) (monovalent positive ion from which one hydroxyl group is missing). M / z 383.0511 had an error of 2.18 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of inositol diphosphate (detected as trimethylated and protonated adducts). . Therefore, the structural formula of the third-stage substance was confirmed, and m / z = 788.3749 was confirmed to be 20: 4 LPIP1 (detected as a 3-methylated product and an ethylamine adduct).

 図3Cのクロマトグラムおよび図3Dの反応出発物質、生成物質、フラグメントの構造式を参照しながらLPIP2の同定について説明する。図3Cは、37:4 PI(4,5)P2(sn-1 17:0、sn-2 20:4 PI(4,5)P2)の緩和な脱アシル化反応によって生ずる二種のLPI(4,5)P2について、LPI(4,5)P2ならびにLPI(4,5)P2に由来するフラグメントの精密質量分析を行った結果を、LPIP2合成反応の代表例として示す。17:0 LPIP(一段目)とそのフラグメントイオン(二段目)、20:4 LPIP(三段目)とそのフラグメントイオン(四段目)の精密質量測定結果を、決定された分子式とともに示す。 The identification of LPIP2 will be described with reference to the chromatogram in FIG. 3C and the structural formulas of the reaction starting material, product, and fragment in FIG. 3D. FIG. 3C shows two types of LPIs produced by a mild deacylation reaction of 37: 4 PI (4,5) P2 (sn-1 17: 0, sn-2 20: 4 PI (4,5) P2) ( As a representative example of LPIP2 synthesis reaction, the results of accurate mass spectrometry of fragments derived from LPI (4,5) P2 and LPI (4,5) P2 are shown for 4,5) P2. 17: 0 LPIP 2 (first step) and its fragment ion (second step), 20: 4 LPIP 2 (third step) and its fragment ion (fourth step) accurate mass measurement results together with the determined molecular formula Show.

 反応生成物中にm/z=862.3916の物質(一段目)、ならびに、m/z=896.3695の物質(三段目)が検出された。これらと、17:0 LPIP2(5メチル化体、エチルアミン付加体)、ならびに、20:4 LPIP2(5メチル化体、エチルアミン付加体として検出)の分子式から求められるm/z理論値との誤差は4.35ppm(5ppm以下)、ならびに、3.00ppm(5ppm以下)であったことから、17:0 LPIP2ならびに20:4 LPIP2と同じ組成式をもつ物質が、上記反応により生成されたことが明らかとなった。 In the reaction product, a substance with m / z = 862.3916 (first stage) and a substance with m / z = 8966.3695 (third stage) were detected. The error between these values and the theoretical m / z values obtained from the molecular formulas of 17: 0 LPIP2 (5-methylated product, ethylamine adduct) and 20: 4 LPIP2 (detected as 5-methylated product, ethylamine adduct) is Since it was 4.35 ppm (5 ppm or less) and 3.00 ppm (5 ppm or less), it was clear that substances having the same composition formula as 17: 0 LPIP2 and 20: 4 LPIP2 were produced by the above reaction. It became.

 次に、一段目に検出される物質を含むm/z=862.3916±1.0の範囲で検出されうる物質を分解して生じる物質(フラグメントイオン)を検出した結果を二段目に示し、三段目に検出される物質を含むm/z=896.3695±1.0の範囲で検出されうる物質のフラグメントイオン
を四段目に示す。
Next, the results of detecting substances (fragment ions) generated by decomposing substances that can be detected in the range of m / z = 862.3916 ± 1.0 including the substances detected in the first stage are shown in the second stage. The fragment ion of the substance that can be detected in the range of m / z = 896.3695 ± 1.0 including the substance detected in the third stage is shown in the fourth stage.

 一段目に示した物質m/z=862.3916は、その部分構造として二段目に検出されるm/z=327.2894とm/z=491.0487をもつ。m/z=327.2894は17:0 モノアシルグリセロール(17:0 MG)(水酸基が一つ抜けた1価プラスイオン)の分子式から求められるm/z理論値との誤差が0.01ppm(5ppm以下)であり、m/z=491.0487はイノシトール三リン酸(5メチル化体、プロトン付加体として検出)の分子式から求められるm/z理論値との誤差が1.69ppm(5ppm以下)であった。よって、一段目の物質の構造式が確定され、m/z=862.3916は17:0 LPIP2(5メチル化体、エチルアミン付加体として検出)であることが確認された。 The substance m / z = 862.3916 shown in the first stage has m / z = 327.2894 and m / z = 491.0487 detected in the second stage as its partial structure. m / z = 327.2894 has an error of 0.01 ppm from the theoretical value of m / z determined from the molecular formula of 17: 0 monoacylglycerol (17: 0 MG) (monovalent positive ion from which one hydroxyl group is missing) ( M / z = 491.0487 has an error of 1.69 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of inositol triphosphate (5-methylated, detected as proton adduct). )Met. Therefore, the structural formula of the first-stage substance was confirmed, and m / z = 862.3916 was confirmed to be 17: 0 LPIP2 (detected as a 5-methylated product and an ethylamine adduct).

 一方、三段目に示した物質m/z=896.3695は、その部分構造として四段目に検出されるm/z=361.2737とm/z=491.0488をもつ。m/z=361.2737は20:4 モノアシルグリセロール(20:4 MG)(水酸基が一つ抜けた1価プラスイオン)の分子式から求められるm/z理論値との誤差が0.11ppm(5ppm以下)であり、m/z=491.0488はイノシトール三リン酸(5メチル化体、プロトン付加体として検出)の分子式から求められるm/z理論値との誤差が1.88ppm(5ppm以下)であった。よって、三段目の物質の構造式が確定され、m/z=896.3695は20:4 LPIP2(3メチル化体、エチルアミン付加体として検出)であることが確認された。 On the other hand, the substance m / z = 8966.3695 shown in the third stage has m / z = 361.737 and m / z = 491.0488 detected in the fourth stage as its partial structure. m / z = 361.737 has an error of 0.11 ppm from the theoretical value of m / z determined from the molecular formula of 20: 4 monoacylglycerol (20: 4 MG) (monovalent positive ion from which one hydroxyl group is missing). M / z = 491.0488 is 1.88 ppm (5 ppm or less) from the theoretical value of m / z determined from the molecular formula of inositol triphosphate (5-methylated, detected as proton adduct). )Met. Therefore, the structural formula of the third-stage substance was confirmed, and m / z = 896.3695 was confirmed to be 20: 4 LPIP2 (detected as a 3-methylated product and an ethylamine adduct).

 図3Eのクロマトグラムおよび図3Fの反応出発物質、生成物質、フラグメントの構造式を参照しながらLPIP3の同定について説明する。図3Eは、37:4 PI(3,4,5)P3(sn-1 17:0、sn-2 20:4 PI(3,4,5)P3)の緩和な脱アシル化反応によって生ずる二種のLPI(3,4,5)P3について、LPI(3,4,5)P3ならびにLPI(3,4,5)P3に由来するフラグメントの精密質量分析を行った結果を示す。17:0 LPIP(一段目)とそのフラグメントイオン(二段目)、20:4 LPIP(三段目)とそのフラグメントイオン(四段目)の精密質量測定結果を、決定された分子式とともに示す。反応生成物中にm/z=970.3843の物質(一段目)、ならびに、m/z=1004.3726の物質(三段目)が検出された。これらと、17:0 LPIP3(7メチル化体、エチルアミン付加体)、ならびに、20:4 LPIP3(7メチル化体、エチルアミン付加体)の分子式から求められるm/z理論値との誤差は1.18ppm(5ppm以下)、ならびに、2.72ppm(5ppm以下)であったことから、17:0 LPIP3ならびに20:4 LPIP3と同じ組成式をもつ物質が、上記反応により生成されたことが明らかとなった。 The identification of LPIP3 will be described with reference to the chromatogram in FIG. 3E and the structural formulas of the reaction starting material, product, and fragment in FIG. 3F. FIG. 3E shows the results of a mild deacylation reaction of 37: 4 PI (3,4,5) P3 (sn-1 17: 0, sn-2 20: 4 PI (3,4,5) P3). The result of carrying out the accurate mass spectrometry of the fragment derived from LPI (3,4,5) P3 and LPI (3,4,5) P3 is shown for the species LPI (3,4,5) P3. 17: 0 LPIP 3 (first step) and its fragment ion (second step), 20: 4 LPIP 3 (third step) and its fragment ion (fourth step) accurate mass measurement results together with the determined molecular formula Show. A substance with m / z = 970.3843 (first stage) and a substance with m / z = 1004.3726 (third stage) were detected in the reaction product. The error between these values and the theoretical m / z value obtained from the molecular formulas of 17: 0 LPIP3 (7 methylated product, ethylamine adduct) and 20: 4 LPIP3 (7 methylated product, ethylamine adduct) is 1. Since it was 18 ppm (5 ppm or less) and 2.72 ppm (5 ppm or less), it became clear that substances having the same composition formula as 17: 0 LPIP3 and 20: 4 LPIP3 were produced by the above reaction. It was.

 次に、一段目に検出される物質を含むm/z=970.3843±1.0の範囲で検出されうる物質を分解して生じる物質(フラグメントイオン)を検出した結果を二段目に示し、三段目に検出される物質を含むm/z=1004.3726±1.0の範囲で検出されうる物質のフラグメントイオンを四段目に示す。 Next, the result of detecting the substance (fragment ion) generated by decomposing the substance that can be detected in the range of m / z = 970.3843 ± 1.0 including the substance detected in the first stage is shown in the second stage. The fragment ions of the substance that can be detected in the range of m / z = 1004.3726 ± 1.0 including the substance detected in the third stage are shown in the fourth stage.

 一段目に示した物質m/z=970.3843は、その部分構造として二段目に検出されるm/z=327.2891とm/z=599.0455をもつ。m/z=327.2894は17:0モノアシルグリセロール(17:0 MG)(水酸基が一つ抜けた1価プラスイオン)の分子式から求められるm/z理論値との誤差が0.85ppm(5ppm以下)であり、m/z=599.0455はイノシトール四リン酸(7メチル化体、プロトン付加体として検出)の分子式から求められるm/z理論値との誤差が0.01ppm(5ppm以下)であった。よって、一段目の物質の構造式が確定され、m/z=970.3843は17:0LPIP3(7メチル化体、エチルアミン付加体として検出)であることが確認された。 The substance m / z = 970.3843 shown in the first stage has m / z = 327.2891 and m / z = 599.0455 detected in the second stage as its partial structure. m / z = 327.2894 has an error of 0.85 ppm from the theoretical value of m / z obtained from the molecular formula of 17: 0 monoacylglycerol (17: 0 MG) (a monovalent positive ion from which one hydroxyl group is missing) ( M / z = 599.455 is 0.01 ppm (5 ppm or less) from the theoretical value of m / z obtained from the molecular formula of inositol tetraphosphate (7-methylated, detected as proton adduct). )Met. Therefore, the structural formula of the first-stage substance was confirmed, and m / z = 970.3843 was confirmed to be 17: 0LPIP3 (detected as a 7-methylated product and an ethylamine adduct).

 他方、三段目に示した物質m/z=1004.3726は、その部分構造として四段目に検出されるm/z=361.2735とm/z=599.0444をもつ。m/z=361.2735は20:4モノアシルグリセロール(20:4 MG)(水酸基が一つ抜けた1価プラスイオンとして検出)の分子式から求められるm/z理論値との誤差が0.62ppm(5ppm以下)であり、m/z=599.0444はイノシトール四リン酸(7メチル化体、プロトン付加体として検出)の分子式から求められるm/z理論値との誤差が1.94ppm(5ppm以下)であった。よって、三段目の物質の構造式が確定され、m/z=1004.3726は20:4LPIP3(7メチル化体、エチルアミン付加体として検出)であることが確認された。 On the other hand, the substance m / z = 1004.3726 shown in the third stage has m / z = 361.735 and m / z = 599.444 detected in the fourth stage as its partial structure. m / z = 361.735 has an error of 0. 0 from the theoretical value of m / z determined from the molecular formula of 20: 4 monoacylglycerol (20: 4 MG) (detected as a monovalent positive ion with one hydroxyl group missing). 62 ppm (5 ppm or less), and m / z = 599.444 has an error of 1.94 ppm from the theoretical value of m / z determined from the molecular formula of inositol tetraphosphate (7-methylated, detected as proton adduct). 5 ppm or less). Therefore, the structural formula of the third-stage substance was confirmed, and m / z = 1004.3726 was confirmed to be 20: 4LPIP3 (detected as a 7-methylated product and an ethylamine adduct).

 以上図3A~図3Fが、精密質量測定によるLPIPsの同定の証明になる。 3A to 3F are proof of identification of LPIPs by accurate mass measurement.

 (考察)
 生成物と生成物由来フラグメントの構造(フラグメント)の精密質量の決定によって、上記結果に記すように生成物の構造が一義的に決定された。「ハイブリッド四重極-オービトラップ質量分析計用いた測定および検出方法」によって得られた結果は、「三連四重極質量分析計でのSRMによる測定および検出方法」と同様に、PIPsの適切なメチルアミン処理によってLPIPsが生じることを示しており、二つの測定法は共に、LPIPsの検出と測定に適していると考えられた。
(Discussion)
By determining the exact mass of the structure of the product and product-derived fragment (fragment), the structure of the product was uniquely determined as noted in the above results. The results obtained by “Measurement and detection method using hybrid quadrupole-orbitrap mass spectrometer” are the same as those of “Measurement and detection method by SRM with triple quadrupole mass spectrometer”. It has been shown that LPIPs are generated by a proper methylamine treatment, and both measurement methods were considered to be suitable for detection and measurement of LPIPs.

 (LPIPsのNMR解析)
 合成したLPIPsについてNMRによって構造を決定した。NMRによる脂質の構造決定について、当業者は適切に構造決定を行うことができ、例えば、H化学シフトは、Ong et al.,Mol. Biosys.(2009)5,288-298などに記載されているものを参照することができる。
(NMR analysis of LPIPs)
The structure of the synthesized LPIPs was determined by NMR. Regarding the structure determination of lipids by NMR, those skilled in the art can appropriately determine the structure, for example, 1 H chemical shift is described in Ong et al. Mol. Biosys. (2009) 5, 288-298 can be referred to.

 グリセロール骨格において、1位は約3.7ppm、2位は約5.2ppm、3位は約4.1ppmの化学シフトを与えるため、sn-1とsn-2の区別が可能である。 In the glycerol skeleton, the first position gives a chemical shift of about 3.7 ppm, the second position about 5.2 ppm, and the third position about 4.1 ppm, so that it is possible to distinguish between sn-1 and sn-2.

 脂肪酸のa位、b位について、aCHは約2.3ppm、bCHは約1.6ppmの化学シフトを与えるため、sn-1とsn-2の区別が可能である。 As for the a-position and b-position of the fatty acid, aCH 2 gives a chemical shift of about 2.3 ppm and bCH 3 gives a chemical shift of about 1.6 ppm, so that it is possible to distinguish between sn-1 and sn-2.

 多価不飽和脂肪酸の多価不飽和部分は、約2.8ppm、約5.3ppmの化学シフトを与えるため、リゾリン脂質中の脂肪酸の種類の推定に利用可能である。 Since the polyunsaturated portion of the polyunsaturated fatty acid gives a chemical shift of about 2.8 ppm and about 5.3 ppm, it can be used to estimate the type of fatty acid in the lysophospholipid.

 リン原子は、0~2ppm(31P、リゾリン脂質化に伴い約0.5ppm低磁場シフト)の化学シフトを与えるため、反応進行度の調査等に利用可能である。 The phosphorus atom gives a chemical shift of 0 to 2 ppm ( 31 P, about 0.5 ppm low magnetic field shift with lysophospholipidation), and can be used for investigation of reaction progress.

 例えば、図4Aに示すようにNMRから脂質の構造を決定することができる。 For example, the lipid structure can be determined from NMR as shown in FIG. 4A.

 以下の試料についてNMR測定を行った。また、Brain PI4P (Avanti Polar Lipids、アラバマ、米国)1mgのNMR測定も行った。
・試料1) 16:0 LPI4P 5~7nmol
・試料2) 17:0 LPI(4,5)P2 4~6nmol
・試料3) 18:0 LPI(4,5)P2 4~6nmol
・試料4) 32:0(16:0/16:0) PI4P 10nmol
・試料5) 37:4 (17:0/20:4) PI(4,5)P2 10nmol
・試料6) Brain PI(4,5)P2(大部分が38:4(18:0/20:4)) 10nmol
 試料1~3は、上記の実施例に従って調製した。試料4~6は、Avanti Polar Lipids(アラバマ、米国)から購入した。
NMR measurement was performed on the following samples. Brain PI4P (Avanti Polar Lipids, Alabama, USA) 1 mg NMR measurement was also performed.
Sample 1) 16: 0 LPI4P 5-7 nmol
Sample 2) 17: 0 LPI (4,5) P2 4-6 nmol
Sample 3) 18: 0 LPI (4,5) P2 4-6 nmol
Sample 4) 32: 0 (16: 0/16: 0) PI4P 10 nmol
Sample 5) 37: 4 (17: 0/20: 4) PI (4,5) P2 10 nmol
Sample 6) Brain PI (4,5) P2 (mostly 38: 4 (18: 0/20: 4)) 10 nmol
Samples 1-3 were prepared according to the above examples. Samples 4-6 were purchased from Avanti Polar Lipids (Alabama, USA).

 試料1~6に、それぞれ約500mLのCDCl:CDOD=1:1を添加して、Vortexで溶解させた。H-1D、TOCSYスペクトルを測定した(37℃、約半日)。pH=6.0のDO中EDTA-2Cs溶液100mLを添加した(J. Lipids Res. (1988) 29、679-689)。31P-NMRスペクトルを測定した(37℃、約2日)。ここで、試料6のみ、H-1D、TOCSYスペクトルの測定を25℃で行った。Brain PI4P 1mgのNMR測定時間は、他の試料の約1/10であり、31P-1Dでは約1/100であった。 About 500 mL of CDCl 3 : CD 3 OD = 1: 1 was added to each of samples 1 to 6 and dissolved in Vortex. 1 H-1D, TOCSY spectra were measured (37 ° C., about half a day). 100 mL of an EDTA-2Cs solution in D 2 O at pH = 6.0 was added (J. Lipids Res. (1988) 29, 679-689). 31 P-NMR spectrum was measured (37 ° C., about 2 days). Here, for sample 6 only, 1 H-1D and TOCSY spectra were measured at 25 ° C. The NMR measurement time of 1 mg of Brain PI4P was about 1/10 of that of the other samples, and about 1/100 of 31 P-1D.

 イノシトール炭素位置の帰属のためBrain PI4PについてNMR解析を行ったところ、イノシトール炭素位置を帰属させることができた。 In order to assign the inositol carbon position, NMR analysis was performed on Brain PI4P, and the inositol carbon position could be assigned.

 試料4(32:0 PI4P)では、脂肪酸、グリセロール骨格のC1、C2、C3のシグナルが観測され、多価不飽和脂肪酸のシグナルは観測されなかった。 In sample 4 (32: 0 PI4P), signals of C1, C2, and C3 of fatty acid and glycerol skeleton were observed, but signals of polyunsaturated fatty acid were not observed.

 試料6(Brain PI(4,5)P2)では、脂肪酸、グリセロール骨格のC1、C2、C3のシグナルが観測され、多価不飽和脂肪酸のシグナルはほとんど観測されなかった。 In sample 6 (Brain PI (4, 5) P2), signals of fatty acids and C1, C2, and C3 of the glycerol skeleton were observed, and signals of polyunsaturated fatty acids were hardly observed.

 測定の結果、大部分は目的の化合物由来のシグナルであることが確認された。試料1~3および5について、NMRから確認された構造を図4B~4Fに示す。
(結論)
 NMRにおいて、約5~10nmolの試料量で、リゾリン脂質の脂肪酸およびグリセロール骨格の少なくとも一部のシグナルを観測することが可能であり、リゾリン脂質の構造を決定することができた。また、約50nmolの試料量があれば、全ての水素原子およびリン原子のシグナルを観測することが可能である。
As a result of the measurement, it was confirmed that most of the signals were derived from the target compound. The structures confirmed by NMR for Samples 1 to 3 and 5 are shown in FIGS. 4B to 4F.
(Conclusion)
In NMR, it was possible to observe signals of at least part of the fatty acid and glycerol skeleton of lysophospholipid with a sample amount of about 5 to 10 nmol, and the structure of lysophospholipid could be determined. Moreover, if there is a sample amount of about 50 nmol, it is possible to observe signals of all hydrogen atoms and phosphorus atoms.

 (実施例2:生物試料における分析およびLPIPsの分離(培養細胞))
 本実施例では、生物試料におけるLPIPsの分離および分析についての実験を行った。生物試料としてはヒト培養細胞株を利用した。
(Example 2: Analysis in biological sample and separation of LPIPs (cultured cells))
In this example, experiments were conducted on the separation and analysis of LPIPs in biological samples. A human cultured cell line was used as the biological sample.

 (材料および方法)
 (培養細胞株)HEK293T(ヒト胎児由来腎臓上皮細胞株、Open biosysytemsカタログ番号HCL4517)、Jurkat(ヒト急性T細胞性白血病細胞由来細胞株、ATCCカタログ番号TIB-152)は提供元の推奨する条件で培養、維持した。
(Materials and methods)
(Cultivated cell line) HEK293T (human embryo-derived kidney epithelial cell line, Open biosystems catalog number HCL4517), Jurkat (human acute T-cell leukemia cell-derived cell line, ATCC catalog number TIB-152) under the conditions recommended by the provider Cultured and maintained.

 (リン脂質の抽出)脂質の抽出は、Bligh & Dyer法(EG Bligh et al, Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917, 10.1139/o59-099)に基づいて行った。 (Phospholipid extraction) Lipid extraction was performed based on the Bligh & Dyer method (EG Bligh et al, Canadian Journal of Biochemistry and Physiology, 1959, 37 (8): 911-917, 10.1139 / o59-099). .

 PIPsの分析のために、培養細胞およびマウス組織を氷冷メタノール1.5mLによりセルスクレイパーで削り取るかまたは均質化し、吸着防止剤として1nmol/μL 8:0/8:0-PI(4,5)P(2μL)を添加した。次いで、200fmol/μL 17:0/20:4-PI4P,17:0/20:4-PI(4,5)P2、17:0/20:4-PI(3,4,5)P、17:0/20:4-PI、17:1-LPIおよび17:0/20:4-PS 50μLを内部標準として添加し、2N HCl(0.75mL)、水(0.75mL)、1M NaCl(0.2mL)およびクロロホルム(3mL)を添加し、次いで撹拌、遠心分離した。遠心分離後、下層を収集した。 For analysis of PIPs, cultured cells and mouse tissue were scraped or homogenized with 1.5 mL of ice-cold methanol with a cell scraper and 1 nmol / μL 8: 0/8: 0-PI (4,5) as an adsorption inhibitor. P 2 (2 μL) was added. Then, 200 fmol / μL 17: 0/20: 4-PI4P, 17: 0/20: 4-PI (4,5) P 2, 17: 0/20: 4-PI (3,4,5) P 3 17: 0/20: 4-PI, 17: 1-LPI and 17: 0/20: 4-PS   50 μL was added as an internal standard, 2N HCl (0.75 mL), water (0.75 mL), 1M NaCl (0.2 mL) and chloroform (3 mL) were added, then stirred and centrifuged. After centrifugation, the lower layer was collected.

 (DEAEセルロースによる分離)
 上述の手法で抽出したリン脂質をDEAE-セルロースカラムに加える前に、メタノール1.5mLを各サンプルに添加した。カラムに吸着した脂質は、クロロホルム/メタノール(1:1,v/v)(3mL)およびクロロホルム/メタノール/28%アンモニア水/酢酸(200:100:3:0.9,v/v)(3mL)を用いて順次洗浄した。次いでLPIPsを含む高度酸性脂質を、クロロホルム/メタノール/HCl/水(12:12:1:1,v/v)(1.5mL)により溶出した。水(0.75mL)および1M NaCl(0.1mL)の添加後、溶液を、撹拌、遠心分離し下層を収集した。
(Separation by DEAE cellulose)
Before adding the phospholipid extracted by the above procedure to the DEAE-cellulose column, 1.5 mL of methanol was added to each sample. The lipids adsorbed on the column were chloroform / methanol (1: 1, v / v) (3 mL) and chloroform / methanol / 28% aqueous ammonia / acetic acid (200: 100: 3: 0.9, v / v) (3 mL). ) To wash sequentially. Highly acidic lipids containing LPIPs were then eluted with chloroform / methanol / HCl / water (12: 12: 1: 1, v / v) (1.5 mL). After the addition of water (0.75 mL) and 1 M NaCl (0.1 mL), the solution was stirred and centrifuged to collect the lower layer.

 (リン酸基のメチル化)
 0.6MのTMS-ジアゾメタンのヘキサン溶液(150μL)の添加後、試料を室温で10分間インキュベートした(Nature Methods 8, 267-272(2011))。次いで、氷酢酸(15μL)および洗浄液(クロロホルム/メタノール/水(3:48:47,v/v)0.7mL)を各溶液に添加した。溶液を、撹拌、遠心分離し下層を収集した。各サンプルを窒素ガス下、乾燥させ、メタノール/70%エチルアミン(100:0.065、v/v)24μLに再溶解させ、水8μLを添加した。得られたLPIPsを含む酸性リン脂質が豊富な画分を、調製してから1日以内で分析した。
(Methylation of phosphate group)
After the addition of 0.6 M TMS-diazomethane in hexane (150 μL), the sample was incubated at room temperature for 10 minutes (Nature Methods 8, 267-272 (2011)). Glacial acetic acid (15 μL) and washings (chloroform / methanol / water (3:48:47, v / v) 0.7 mL) were then added to each solution. The solution was stirred and centrifuged to collect the lower layer. Each sample was dried under nitrogen gas, redissolved in 24 μL of methanol / 70% ethylamine (100: 0.065, v / v), and 8 μL of water was added. The resulting fractions rich in acidic phospholipids containing LPIPs were analyzed within one day of preparation.

 (分析手法)
 定量性に優れた「三連四重極質量分析計でのSRMによる測定および検出方法」により行った。ジアシル型であるPIPsの分子種解析に基づいて、生体試料に含まれると予想されるLPIPs分子種について、選択反応モニタリング(SRM)を行った。TSQ Vantageを用い、Q1:親イオンのm/zおよびQ3:プロダクトイオンであるモノアシルグリセロールのm/zとした。質量分析データはピーク面積を定量し、各々の分子種の存在量を内部標準物質として添加したLPIを基に算出した。付加物イオンは、[M+CHCHNHである。本実施例で各LPIPsの検出に用いたQ1、Q3で指定するm/z値のリストを表5に示す。
(Analysis method)
The measurement was carried out according to the “measurement and detection method by SRM with a triple quadrupole mass spectrometer” having excellent quantitative properties. Based on molecular species analysis of diacyl-type PIPs, selective reaction monitoring (SRM) was performed on LPIPs molecular species expected to be contained in biological samples. Using TSQ Vantage, Q1: m / z of parent ion and Q3: m / z of monoacylglycerol as product ion. Mass spectrometric data was calculated based on LPI quantified peak areas and the abundance of each molecular species added as an internal standard. The adduct ion is [M + CH 3 CH 2 NH 3 ] + . Table 5 shows a list of m / z values designated by Q1 and Q3 used for detecting each LPIP in this embodiment.

Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020

 (分析結果)
 図5AにHEK293T細胞、図5BにJurkat細胞での、LPIP1、LPIP2、LPIP3の存在を示す。横軸は脂肪酸構成が異なる分子種、縦軸はPS 1nmolを含む細胞由来リン脂質中での存在量を示す。炭素数16~22、二重結合が0~6の多様なアシル基をもつLPIPsが細胞内に見出された。LPIP1、LPIP2はPSの数百分の1から数十分の1程度、LPIP3は数百分の1から数千分の1程度のレベルで存在する微量リン脂質であった。
(result of analysis)
FIG. 5A shows the presence of LPIP1, LPIP2, and LPIP3 in HEK293T cells and FIG. 5B in Jurkat cells. The horizontal axis represents molecular species having different fatty acid structures, and the vertical axis represents the abundance in cell-derived phospholipids containing PS 1 nmol. LPIPs having various acyl groups having 16 to 22 carbon atoms and 0 to 6 double bonds were found in cells. LPIP1 and LPIP2 were trace amounts of phospholipids present at a level of 1 / hundred to several tenths of PS, and LPIP3 was present at a level of 1 / hundred to several thousandths.

 またHEK293T細胞の脂質抽出物の「ハイブリッド四重極-オービトラップ質量分析計を用いた測定および検出方法」による解析で、18:0 LPIP3とその特異的フラグメントを検出した結果を図5C、図5Dに示す。 5K and 5D show the results of detection of 18: 0 LPIP3 and its specific fragments in the analysis of HEK293T cell lipid extract by “Measurement and detection method using hybrid quadrupole-orbitrap mass spectrometer”. Shown in

 図5Cの上段に示すように、m/z=984.4024のピークを検出し、これは18:0 LPIP3(7メチル化体、メチルアミン付加)のm/z理論値(984.4012)との誤差は1.2673ppm(5ppm以下)であったことから、18:0 LPIP3と同じ組成式をもつ物質が、HEK293細胞の脂質抽出液に含まれることが明らかとなった。図5D下段に示すように、m/z=984.4024±0.2の範囲で検出されるイオンのフラグメントとしてm/z341.3047とm/z599.0449のピークが検出された。前者は18:0 モノアシルグリセロール(水酸基が一つ抜けた1価プラスイオン)、後者はイノシトール四リン酸(7メチル化体、プロトン付加)のm/zと一致するもので、共に理論値からの誤差が5ppm以下(1.0460と1.0539)であった((図3E参照)後者のピークについては、LPIP3合成品から生じるフラグメントイオンと同一のイオンである)。図5Cの下段のm/z341.3047とm/z599.0449が、図5Dの上段のm/z=984.4024由来のイオン断片であるならば、これらピークが検出される時間は一致する。図5Dにm/z=984.4024の溶出時間に一致して、m/z341.3047とm/z599.0449が検出されることを示す。 As shown in the upper part of FIG. 5C, a peak at m / z = 9844.424 was detected, which was the m / z theoretical value (9844.401) of 18: 0 LPIP3 (7 methylated product, methylamine addition). The error was 1.2673 ppm (5 ppm or less), and thus it became clear that a substance having the same composition formula as 18: 0 LPIP3 was contained in the lipid extract of HEK293 cells. As shown in the lower part of FIG. 5D, peaks of m / z 341.3047 and m / z 599.0449 were detected as ion fragments detected in the range of m / z = 9844.424 ± 0.2. The former is 18: 0 monoacylglycerol (monovalent positive ion with one hydroxyl group missing) and the latter is consistent with the m / z of inositol tetraphosphate (7-methylated, protonated). Error of 5 ppm or less (1.0460 and 1.0539) (see (FIG. 3E), the latter peak is the same ion as the fragment ion generated from the LPIP3 synthesized product). If m / z 341.3047 and m / z 599.449 in the lower part of FIG. 5C are ion fragments derived from m / z = 9844.424 in the upper part of FIG. 5D, the times when these peaks are detected coincide. FIG. 5D shows that m / z 341.3047 and m / z 599.449 are detected, consistent with an elution time of m / z = 9844.424.

 CHCHNH 付加体を以下に示す。

Figure JPOXMLDOC01-appb-I000021
The CH 3 CH 2 NH 3 + adduct is shown below.
Figure JPOXMLDOC01-appb-I000021

 付加前は以下のとおりである。 Before the addition, it is as follows.

Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022

 脱水酸基体を以下に示す。 The dehydroxylated product is shown below.

Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023

 脱水酸化前を以下に示す。 The pre-dehydration oxidation is shown below.

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024

 H付加体を以下に示す。 H + adducts are shown below.

Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025

 付加前は以下のとおりである。 Before the addition, it is as follows.

Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026

 (実施例3:生物試料における分析およびLPIPsの分離(マウス組織およびヒト血液試料)
 次に、本実施例では、生物試料におけるLPIPsの分離および分析についての実験を別の試料を用いて行った。生物試料としてはマウスあるいはヒトの組織あるいは血清あるいは血漿でのLPIPsを利用した。
Example 3: Analysis and separation of LPIPs in biological samples (mouse tissue and human blood samples)
Next, in this example, an experiment for separation and analysis of LPIPs in a biological sample was performed using another sample. As biological samples, LPIPs in mouse or human tissues or serum or plasma were used.

 マウス:C57BL/6J<日本クレア株式会社から購入>、12-16週齢臓器/組織:脳、心臓、肝臓、大腸の調製は以下の通り行った。マウスを頸椎脱臼し、仰向けに固定した後に開腹した。PBSで灌流脱血後に単離した臓器を、速やかに液体窒素で凍結した。脂質抽出直前に解凍し、ホモジナイザーで均一化した。リン脂質の抽出およびDEAEセルロースによる分離およびメチル化反応は、実施例2に準じて行った。分析も実施例2と同様に「三連四重極質量分析計でのSRMによる測定および検出方法」で行った。血清:麻酔薬(ケタミン)を腹腔投与3分後に開腹し、心臓より血液を採取した。採取した血液を室温で15分静置した後に、4℃にて12時間静置した。遠心(600g、30分)で血餅を取り除き、血清を調製した。リン脂質の抽出およびDEAEセルロースによる分離およびメチル化反応は、実施例2に準じて行った。分析も実施例2と同様に「三連四重極質量分析計でのSRMによる測定および検出方法」で行った。 Mouse: C57BL / 6J <purchased from Clea Japan Co., Ltd.>, 12-16 weeks old organ / tissue: Brain, heart, liver, large intestine were prepared as follows. Mice were dislocated from the cervical vertebrae, fixed on their back and then laparotomized. Organs isolated after perfusion and blood removal with PBS were immediately frozen in liquid nitrogen. Thawed immediately before lipid extraction and homogenized with a homogenizer. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”. Serum: An anesthetic (ketamine) was opened 3 minutes after intraperitoneal administration, and blood was collected from the heart. The collected blood was allowed to stand at room temperature for 15 minutes and then allowed to stand at 4 ° C. for 12 hours. The clot was removed by centrifugation (600 g, 30 minutes), and serum was prepared. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.

 血漿:麻酔薬(ケタミン)を腹腔投与3分後に開腹し、下腹部大動脈より血液0.5mlを採取した。採取した血液を氷冷した2mg EDTA-2Na入りの1.5mLチューブに回収し、撹拌および遠心(600g、30分)後の上清を血漿試料を調製した。リン脂質の抽出およびDEAEセルロースによる分離およびメチル化反応は、実施例2に準じて行った。分析も実施例2と同様に「三連四重極質量分析計でのSRMによる測定および検出方法」で行った。 Plasma: The abdominal cavity was opened 3 minutes after administration of anesthetic (ketamine) and 0.5 ml of blood was collected from the lower abdominal aorta. The collected blood was collected in a 1.5 mL tube containing 2 mg of EDTA-2Na cooled with ice, and a plasma sample was prepared from the supernatant after stirring and centrifugation (600 g, 30 minutes). Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.

 ヒト血清:末梢静脈から試験管に採血を行い、採取した血液を室温で15分静置した後に、4℃にて12時間静置した。遠心(600g、30分)で血餅を取り除き、血清を調製した。リン脂質の抽出およびDEAEセルロースによる分離およびメチル化反応は、実施例3と同様に行った。分析は実施例2と同様に「三連四重極質量分析計でのSRMによる測定および検出方法」で行った。 Human serum: Blood was collected from a peripheral vein into a test tube, and the collected blood was allowed to stand at room temperature for 15 minutes, and then allowed to stand at 4 ° C. for 12 hours. The clot was removed by centrifugation (600 g, 30 minutes), and serum was prepared. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed in the same manner as in Example 3. The analysis was carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.

 (結果)
 図6Aに示すように、マウス組織にLPIPsが存在することが明らかとなった。さらに、図6Bに示す血清、図6Cに示す血漿など、生体内の液性成分としてLPIPsが存在することから、細胞で産生されたLPIPsが分泌されたり、あるいは、LPIPsの生成や分解(例えばLPIP1のリン酸化によるLPIP2の生成など)が細胞外でも起こることが示唆された。図6Dに示すようにヒト血清にもLPIPsが存在した。
(result)
As shown in FIG. 6A, it was revealed that LPIPs were present in the mouse tissue. Furthermore, since LPIPs are present as liquid components in the living body such as the serum shown in FIG. 6B and the plasma shown in FIG. It was suggested that the production of LPIP2 by phosphorylation of the protein also occurs outside the cell. LPIPs were also present in human serum as shown in FIG. 6D.

 (考察)
 マウス、ヒト由来の試料に加え、別の実験から、酵母、ショウジョウバエにもLPIPsは存在することなどを見出しており、多くの生物種において、細胞内、細胞外にLPIPsが存在することが判明した。
(Discussion)
In addition to samples derived from mice and humans, other experiments have found that LPIPs are also present in yeast and Drosophila, and it has been found that LPIPs exist intracellularly and extracellularly in many biological species. .

 (実施例4:がんマーカーとしての利用)
 本実施例では、新規LPIPsの有用性について検討した。
(Example 4: Use as a cancer marker)
In this example, the usefulness of novel LPIPs was examined.

 (材料および方法)
 PTENflox/floxマウス(対象マウス)ならびにPB-Cre4:PTENflox/floxマウス(前立腺特異的Pten欠損マウス)♂、16wk
 臓器:前立腺
 試料の調製は以下の通り行った。マウスを頸椎脱臼し、仰向けに固定した後に開腹し、実体顕微鏡下で単離した前立腺を、速やかに液体窒素で凍結した。脂質抽出直前に解凍し、ホモジナイザーで均一化した。リン脂質の抽出およびDEAEセルロースによる分離およびメチル化反応は、実施例2に準じて行った。分析も実施例2と同様に「三連四重極質量分析計でのSRMによる測定および検出方法」で行った。
(Materials and methods)
PTEN flox / flox mice (subject mice) and PB-Cre4: PTEN flox / flox mice (prostate-specific Pten deficient mice) ♂, 16 wk
Organ: Prostate Samples were prepared as follows. Mice were dislocated from the cervical spine, fixed on the back and then laparotomized, and the prostate isolated under a stereomicroscope was immediately frozen in liquid nitrogen. Thawed immediately before lipid extraction and homogenized with a homogenizer. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were performed according to Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.

 (結果)
 図7Aに、正常マウス(Ctrl)あるいはがん抑制遺伝子Ptenを前立腺特異的に欠損するマウス(PTEN KO)の前立腺について、上段に組織重量を、下段にHE染色による組織像を表す。Pten欠損は前立腺がんを発症することがわかる。図7Bに示すように、対照となる正常前立腺と比して、前立腺がん組織で16:0LPIPsが上昇していることが明らかとなった。特にLPIP3においては、正常組織では検出限界以下であるところ、腫瘍形成に伴って顕著な上昇が見出された。LPIPsの変動は発がんと相関することから、がんの治療標的やがんを反映するバイオマーカーとしてのLPIPsの有用性が期待される。
(result)
FIG. 7A shows the tissue weight in the upper row and the tissue image by HE staining in the lower row of the prostate of a normal mouse (Ctrl) or a mouse (PTEN KO) that specifically lacks the tumor suppressor gene Pten. It can be seen that Pten deficiency causes prostate cancer. As shown in FIG. 7B, it was revealed that 16: 0 LPIPs were increased in prostate cancer tissue as compared to the normal prostate as a control. In particular, in LPIP3, a significant increase was found with tumor formation when the normal tissue was below the detection limit. Since the fluctuation of LPIPs correlates with carcinogenesis, the usefulness of LPIPs as biomarkers reflecting cancer treatment targets and cancer is expected.

 (実施例5:炎症マーカーとしての利用)
 (材料および方法)
 C57BL/6J<日本クレア株式会社から購入>、12-16週齢
 マウスを頸椎脱臼した後に解剖し、足部大腿骨を得た。得られた大腿骨より骨髄球、好中球を回収し、起炎症性物質である補体成分C5aにより刺激した。リン脂質の抽出およびDEAEセルロースによる分離およびメチル化反応は、実施例2と同様に行った。分析も実施例2と同様に「三連四重極質量分析計でのSRMによる測定および検出方法」で行った。
(Example 5: Use as an inflammation marker)
(Materials and methods)
C57BL / 6J <purchased from Clea Japan Co., Ltd.>, 12-16 week old mice were dissected after dislocation of the cervical vertebrae to obtain the foot femur. Myelospheres and neutrophils were collected from the obtained femur and stimulated with complement component C5a, which is an inflammatory substance. Extraction of phospholipid, separation with DEAE cellulose and methylation reaction were carried out in the same manner as in Example 2. The analysis was also carried out in the same manner as in Example 2, “Measurement and detection method by SRM with triple quadrupole mass spectrometer”.

 (結果)
 図8に示すように、好中球、マクロファージ等炎症に関連する血液細胞の活性化に関与する補体成分C5a刺激に伴い、18:0 LPIP3が上昇する。LPIP3が炎症細胞の走化性、活性酸素産生、貪食、酵素分泌反応などに関与する可能性が提示され、炎症の治療標的としての有用性を期待することができる。
(result)
As shown in FIG. 8, 18: 0 LPIP3 is increased with stimulation of complement component C5a involved in the activation of blood cells related to inflammation such as neutrophils and macrophages. The possibility that LPIP3 is involved in chemotaxis of inflammatory cells, active oxygen production, phagocytosis, enzyme secretion reaction, etc. is presented, and it can be expected to be useful as a therapeutic target for inflammation.

 (実施例6)カラムによるホスホイノシタイドの分離
 本実施例では、LC-MSでのホスホイノシタイド(PIPs)のリン酸基の位置による分離が可能であることを実証した。
(Example 6) Separation of phosphoinositide by column In this example, it was demonstrated that separation by the position of the phosphate group of phosphoinositide (PIPs) in LC-MS was possible.

 (材料および方法)
 (使用材料)
 以下の分析対象の試料として用いたホスファチジルイノシトールリン酸(ホスホイノシタイド)をAvanti Polar Lipids(アラバマ州、米国)から購入した。
17:0-20:4 PI(3)P(LM-1900)
17:0-20:4 PI(4)P(LM-1901)
17:0-20:4 PI(5)P(LM-1902)
17:0-20:4 PI(3,4)P2(LM-1903)
17:0-20:4 PI(4,5)P2(LM-1904)
17:0-20:4 PI(3,5)P2(LM-1905)
17:0-20:4 PI(3,4,5)P3(LM-1906)
17:0-20:4 PI(LM-1502)
その他のグリセロリン脂質標準合成品
 利用したすべての溶媒は、HPLCまたはLC-MSグレードであり、他の化学試薬は分析グレードであった。トリメチルシリルジアゾメタン(TMS-ジアゾメタン)は、東京化成から購入した。超純水はKantoChemicals(Tokyo,Japan)から入手した。
(Materials and methods)
(Materials used)
Phosphatidylinositol phosphate (phosphoinositide) used as a sample for analysis below was purchased from Avanti Polar Lipids (Alabama, USA).
17: 0-20: 4 PI (3) P (LM-1900)
17: 0-20: 4 PI (4) P (LM-1901)
17: 0-20: 4 PI (5) P (LM-1902)
17: 0-20: 4 PI (3,4) P2 (LM-1903)
17: 0-20: 4 PI (4,5) P2 (LM-1904)
17: 0-20: 4 PI (3, 5) P2 (LM-1905)
17: 0-20: 4 PI (3,4,5) P3 (LM-1906)
17: 0-20: 4 PI (LM-1502)
Other Glycerophospholipid Standard Synthetic Products All solvents utilized were HPLC or LC-MS grade and other chemical reagents were analytical grade. Trimethylsilyldiazomethane (TMS-diazomethane) was purchased from Tokyo Kasei. Ultrapure water was obtained from Kanto Chemicals (Tokyo, Japan).

 それぞれのホスホイノシタイドを、ガラスバイアル(4mLサイズ)中で100μM濃度になるようにクロロホルム:メタノール=1:1に溶解し、-30℃の冷凍庫内で保存した。 Each phosphoinositide was dissolved in chloroform: methanol = 1: 1 so as to have a concentration of 100 μM in a glass vial (4 mL size), and stored in a freezer at −30 ° C.

 この保存溶液から以下の試料を調製した。 The following samples were prepared from this stock solution.

 各ホスホイノシタイド単独(100μM 1μL)
 PI(3)P+PI(4)P+PI(5)P(それぞれ、100μM 1μLずつ)
 PI(3,4)P2+PI(4,5)P2+PI(3,5)P2(それぞれ、100μM 1μLずつ)
 各試料をTMSジアゾメタンで処理して、リン酸基を保護した。具体的には、各試料を0.6M TMSジアゾメタン150μLで処理(22~25℃)し、5分後に氷酢酸15μLを添加してメチル化反応を止めた。その後、それぞれの試料に対してクロロホルム:メタノール:水(3:48:47)混合液を700μL加え、遠心分離後、有機層(下層)をスピッツ試験管に分注し、窒素ガス濃縮器により蒸発乾固させて、それぞれ、アセトニトリル100μLに再溶解してLC-MS測定用の試料とした。
Each phosphoinositide alone (100 μM 1 μL)
PI (3) P + PI (4) P + PI (5) P (each 100 μM 1 μL)
PI (3,4) P2 + PI (4,5) P2 + PI (3,5) P2 (each 100 μM 1 μL)
Each sample was treated with TMS diazomethane to protect the phosphate groups. Specifically, each sample was treated with 150 μL of 0.6 M TMS diazomethane (22-25 ° C.), and after 5 minutes, 15 μL of glacial acetic acid was added to stop the methylation reaction. Thereafter, 700 μL of a mixed solution of chloroform: methanol: water (3:48:47) was added to each sample, and after centrifugation, the organic layer (lower layer) was dispensed into a Spitz test tube and evaporated with a nitrogen gas concentrator. Each sample was dried and redissolved in 100 μL of acetonitrile to prepare a sample for LC-MS measurement.

 (測定条件)
 LC-MSによる測定は以下の条件で行った。
(Measurement condition)
The measurement by LC-MS was performed under the following conditions.

 (使用機器)
質量分析装置:QTRAP6500 with SelexION System(ABSciex、東京、日本)
ポンプ:Nexera X2 system(島津製作所、京都、日本)
オートサンプラー:PAL HTC-xt(AMR、東京、日本)
カラム:CHIRALPAK IC-3、2.1mm x 250mm、粒径3μm(DAICEL corporation、大阪、日本)
流速:0.1mL/分
注入試料量:10μL
 (クロマトグラフィー条件)
  移動相A:アセトニトリル+5mM酢酸アンモニウム
  移動相B:メタノール+5mM酢酸アンモニウム
*これらの試薬は、全て和光純薬(東京、日本)から購入したLC-MS用グレードのものを使用した。
(Used equipment)
Mass spectrometer: QTRAP6500 with SelexION System (ABSciex, Tokyo, Japan)
Pump: Nexera X2 system (Shimadzu Corporation, Kyoto, Japan)
Autosampler: PAL HTC-XT (AMR, Tokyo, Japan)
Column: CHIRALPAK IC-3, 2.1 mm x 250 mm, particle size 3 μm (DAICEL corporation, Osaka, Japan)
Flow rate: 0.1 mL / min Injection sample volume: 10 μL
(Chromatographic conditions)
Mobile phase A: acetonitrile + 5 mM ammonium acetate Mobile phase B: methanol + 5 mM ammonium acetate * All these reagents were LC-MS grades purchased from Wako Pure Chemical (Tokyo, Japan).

 グラジエント条件(リニアグラジエント)
  0分、移動相B=40%
  1分、移動相B=40%
  3分、移動相B=85%
  14分、移動相B=85%
  15分、移動相B=40%
  20分、移動相B=40%
・質量分析計条件
  イオン化法:エレクトロスプレー(正イオンモード)
  測定メソッド:多重反応モニタリング(MRM)
  制御ソフトウェア:Analyst 1.6.2(Sciex、東京、日本)
  測定メソッドは以下のものを用いた。
Gradient condition (linear gradient)
0 minutes, mobile phase B = 40%
1 minute, mobile phase B = 40%
3 minutes, mobile phase B = 85%
14 minutes, mobile phase B = 85%
15 minutes, mobile phase B = 40%
20 minutes, mobile phase B = 40%
・ Mass spectrometer conditions Ionization method: Electrospray (positive ion mode)
Measurement method: Multiple reaction monitoring (MRM)
Control software: Analyst 1.6.2 (Sciex, Tokyo, Japan)
The following measurement methods were used.

 ソフトウェア:Software Version:Analyst 1.6.2 図1は、内部サロゲート標準としてC17:0/C20:4-PI(3)P、-PI(4)P、-PI(5)Pを測定したクロマトグラムとC17:0/C20:4-PI(3,5)P2、-PI(3,4)P2、-PI(4,5)P2を測定したクロマトグラムのデータを示す。PIP1の3つのアイソマーはPI(3)P、PI(4)P、PI(5)Pの順に溶出され分離した。PIP2の3つのアイソマーはPI(3,5)P2、PI(3,4)P2、PI(4,5)P2の順に溶出され分離した。 Software: Software Version: Analyst 1.6.2 Figure 1 shows the chromatogram of C17: 0 / C20: 4-PI (3) P, -PI (4) P, -PI (5) P as internal surrogate standards Data of the chromatogram obtained by measuring Gram and C17: 0 / C20: 4-PI (3,5) P2, -PI (3,4) P2, and -PI (4,5) P2 are shown. The three isomers of PIP1 were eluted and separated in the order of PI (3) P, PI (4) P, and PI (5) P. The three isomers of PIP2 were eluted and separated in the order of PI (3,5) P2, PI (3,4) P2, and PI (4,5) P2.

 以下に使用したQ1のプレカーサーイオンと、Q3のプロダクトイオンとの組み合わせを示す。 The combination of the precursor ion of Q1 and the product ion of Q3 used below is shown.

Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027

Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028

Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029

 <質量分析の測定条件>
Parameter Table(Period1 Experiment1)
CUR:20.00
CAD:9.00
IS:5500.00
TEM:100.00
GS1:50.00
GS2:50.00
DP 100.00
EP 10.00
CXP 12.00
Resolution tables
Quad1 Positive Unit Scan Speed=10Da/s
 (キャリブレーション条件)
 ポリプロピレングリコール(PPG)をキャリブレーション用の試薬として用いたところ以下の結果となった。
IE1 1.800
Mass(Da) Offset Value
  59.050  0.010
 175.133 -0.035
 500.380 -0.194
 616.464 -0.268
 906.673 -0.421
1254.925 -0.617
1545.134 -0.782
1952.427 -1.013
Quad3 Positive Unit Scan Speed=10Da/s
IE3 1.000
Mass(Da) Offset Value
  59.050   0.005
 175.133  -0.012
 500.380  -0.085
 616.464  -0.105
 906.673  -0.183
1254.925  -0.270
1545.134  -0.329
1952.427  -0.429
Calibration tables
Quad1 Positive Unit Resolution Scan Speed=10Da/s
Mass(Da) Dac Value
 175.133 18682
 500.380 53678
 616.464 66162
 906.673 97393
1254.925 134868
1545.134 166099
1952.427 209933
Quad3 Positive Unit Resolution Scan Speed=10Da/s
Mass(Da) Dac Value
  59.050 6189
 175.133 18637
 500.380 53564
 616.464 66028
 906.673 97195
1254.925 134603
1545.134 165759
1952.427 209490
 (装置パラメータ)
Detector Parameters(Positive):
CEM 1800.0
(ソフトウェアバージョン)
software version:Analyst 1.6.2
 以上のように、取得したデータは、Analyst(Sciex、東京、日本)またはMulti Quant(Sciex、東京、日本)を使用して解析した。
<Measurement conditions for mass spectrometry>
Parameter Table (Period1 Experiment1)
CUR: 20.00
CAD: 9.00
IS: 5500.00
TEM: 100.00
GS1: 50.00
GS2: 50.00
DP 100.00
EP 10.00
CXP 12.00
Resolution tables
Quad1 Positive Unit Scan Speed = 10 Da / s
(Calibration conditions)
When polypropylene glycol (PPG) was used as a calibration reagent, the following results were obtained.
IE1 1.800
Mass (Da) Offset Value
59.050 0.010
175.133 -0.035
500.380 -0.194
616.464 -0.268
906.673 -0.421
1254.925 -0.617
1545.134 -0.782
1952.427 -1.013
Quad3 Positive Unit Scan Speed = 10 Da / s
IE3 1.000
Mass (Da) Offset Value
59.050 0.005
175.133 -0.012
500.380 -0.085
616.464 -0.105
906.673 -0.183
1254.925 -0.270
1545.134 -0.329
1952.427 -0.429
Calibration tables
Quad1 Positive Unit Resolution Scan Speed = 10 Da / s
Mass (Da) Dac Value
175.133 18682
500.380 53678
616.464 66162
906.673 97393
1254.925 134868
1545.134 166099
1952.427 209933
Quad3 Positive Unit Resolution Scan Speed = 10 Da / s
Mass (Da) Dac Value
59.050 6189
175.133 18637
500.380 53564
616.464 66028
906.673 97195
1254.925 134603
1545.134 165759
1952.427 209490
(Device parameter)
Detector Parameters (Positive):
CEM 1800.0
(software version)
software version: Analyst 1.6.2
As described above, the acquired data was analyzed using Analyst (Sciex, Tokyo, Japan) or Multi Quant (Sciex, Tokyo, Japan).

 17:0/20:4合成品を用いたアイソマー分離の結果を図1に示す。リン酸基の数が異なるホスホイノシタイドは異なる保持時間で溶出された。リン酸基の位置のみが異なる3種類の異性体を混合した場合でも(PIPまたはPIP2の混合物)、カラムにより20分の測定メソッドで良好に分離することができた。このようにホスホイノシタイドのリン酸基位置異性体による分離によって、位置異性体特異的な分析が可能となる。 FIG. 1 shows the results of isomer separation using a 17: 0/20: 4 synthetic product. Phosphoinositides with different numbers of phosphate groups were eluted with different retention times. Even when three types of isomers differing only in the position of the phosphate group were mixed (mixture of PIP or PIP2), they could be separated well by a 20-minute measurement method using a column. As described above, the separation of the phosphoinositide by the phosphate group positional isomer enables regioisomer-specific analysis.

 また、MSおよびMS/MSの測定結果を利用することで、ホスホイノシタイドのアシル基の種類の組み合わせを特定することも可能であることが確かめられた(アシル基の種類の特定については、Clark J et al., Nat Methods. 2011 Mar;8(3):267-72. doi:10.1038/nmethも参照可能である)。そのため、本発明の方法を用いて、ホスホイノシタイドのリン酸基の位置およびアシル基の種類を特定することができる。 It was also confirmed that it is possible to specify the combination of acyl group types of phosphoinositide by using the measurement results of MS and MS / MS (for the specification of the acyl group type, Clark J et al., Nat Methods. 2011 Mar; 8 (3): 267-72. Doi: 10.1038 / nmeth can also be referred to). Therefore, the position of the phosphoric acid group and the kind of acyl group of phosphoinositide can be specified using the method of the present invention.

 (実施例7)ホスホイノシタイドの定量
 LC-MS/MSによるホスホイノシタイドの定量の精度を調べるために種々の試料量、および反復測定による影響を試験した。
(Example 7) Quantification of phosphoinositide In order to examine the accuracy of quantification of phosphoinositide by LC-MS / MS, the effects of various sample amounts and repeated measurements were examined.

 試料調製
 実施例6と同様に、合成17:0/20:4ホスホイノシタイド試料を調製した。
Sample Preparation A synthetic 17: 0/20: 4 phosphoinositide sample was prepared as in Example 6.

 この試料に、以下のメチル化処理を施した。試料を、0.6M TMSジアゾメタン150μLで処理(22~25℃)し、5分後に氷酢酸15μLを添加してメチル化反応を止めた。その後、それぞれの試料に対してクロロホルム:メタノール:水(3:48:47)混合液を700μL加え、遠心分離後、有機層(下層)をスピッツ試験管に分注し、窒素ガス濃縮器により蒸発乾固させて、それぞれ、アセトニトリル100μLに再溶解してLC-MS測定用の試料とした。 This sample was subjected to the following methylation treatment. The sample was treated with 150 μL of 0.6 M TMS diazomethane (22-25 ° C.), and after 5 minutes, 15 μL of glacial acetic acid was added to stop the methylation reaction. Thereafter, 700 μL of a mixed solution of chloroform: methanol: water (3:48:47) was added to each sample, and after centrifugation, the organic layer (lower layer) was dispensed into a Spitz test tube and evaporated with a nitrogen gas concentrator. Each sample was dried and redissolved in 100 μL of acetonitrile to prepare a sample for LC-MS measurement.

 8種類の17:0/20:4ホスホイノシタイド(PI(3)P、PI(4)P、PI(5)P、PI(3,4)P2、PI(4,5)P2、PI(3,5)P2、PI(3,4,5)P3およびPI)について、それぞれ、0.02、0.05、0.1、0.2、5、10および50pmol(各注入量で4回繰り返し測定)を注入してLC-MS測定した場合のシグナル強度(ピーク面積)を比較した。検量線の結果を図2に示す。 Eight types of 17: 0/20: 4 phosphoinositide (PI (3) P, PI (4) P, PI (5) P, PI (3,4) P2, PI (4,5) P2, PI ( 3,5) P2, PI (3,4,5) P3 and PI), respectively, 0.02, 0.05, 0.1, 0.2, 5, 10 and 50 pmol (4 times at each injection volume) The signal intensity (peak area) when LC-MS measurement was performed by injecting repeated measurement) was compared. The result of the calibration curve is shown in FIG.

 また、各検量線の計算式等を以下の表に示す。 In addition, the calculation formula of each calibration curve is shown in the following table.

Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030

 C17:0/C20:4-PIPsのキャリブレーション曲線の結果、0.002pmolから50pmolの範囲で線形性が得られた。検出限界(LOD)は0.005~0.033pmolであり、定量限界(LOQ)は0.014~0.099pmolであった。 As a result of the calibration curve of C17: 0 / C20: 4-PIPs, linearity was obtained in the range of 0.002 pmol to 50 pmol. The limit of detection (LOD) was 0.005 to 0.033 pmol, and the limit of quantification (LOQ) was 0.014 to 0.099 pmol.

 これらの結果から、pmolレベルまたはさらにそれ未満の微量のホスホイノシタイドについても、良好な定量結果が得られることが確かめられた。 From these results, it was confirmed that good quantitative results could be obtained even for trace amounts of phosphoinositide at or below the pmol level.

 また、同様にそれぞれのホスホイノシタイドについて測定ラン間のばらつきを調べるために、それぞれの試料について50回の反復測定(注入試料量10pmol)を行った結果を図3に示す。分散係数は、8.4~12.0%であり、測定ラン間のばらつきは小さいことが示された。 Similarly, FIG. 3 shows the results of 50 repeated measurements (injection sample amount 10 pmol) for each sample in order to investigate the variation between the measurement runs for each phosphoinositide. The dispersion coefficient was 8.4 to 12.0%, indicating that the variation between measurement runs was small.

 調製した試料中でホスホイノシタイドは安定しており、試料間の測定タイミングの差による定量結果への影響は小さいことが予測される。すなわち、これらの結果は、開発した分析法は定量性と再現性に優れていることを示している。 ホ ス ホ Phosphoinositide is stable in the prepared sample, and it is expected that the influence on the quantitative result due to the difference in measurement timing between samples is small. In other words, these results indicate that the developed analytical method is excellent in quantification and reproducibility.

 (実施例8)イオンモビリティ分離によるホスホイノシタイドの分離
 実施例8は、イオンモビリティ分離によるホスホイノシタイドのリン酸基の位置による分離が可能であることを実証する。
Example 8 Separation of Phosphoinositide by Ion Mobility Separation Example 8 demonstrates that separation by the position of the phosphate group of phosphoinositide by ion mobility separation is possible.

 キラルカラム以外の方法(質量分析装置のみ)でPIP2アイソマーを分離した。イオンモビリティを用いることでインタクトなPIP2(C17:0/C20:4-PI(3,5)P2、-PI(3,4)P2および-PI(4,5)P2)の分離を試みた。以下に詳細を示す。 The PIP2 isomer was separated by a method other than a chiral column (mass spectrometer only). Attempts were made to separate intact PIP2 (C17: 0 / C20: 4-PI (3,5) P2, -PI (3,4) P2 and -PI (4,5) P2) by using ion mobility. Details are shown below.

 Avanti Polar Lipids(アラバマ州、米国)から購入した以下のホスホイノシタイド;
17:0-20:4 PI(3,4)P2(LM-1903)
17:0-20:4 PI(4,5)P2(LM-1904)
17:0-20:4 PI(3,5)P2(LM-1905)
から、実施例6と同様に、MS分析用の試料を調製した。
The following phosphoinositide purchased from Avanti Polar Lipids (Alabama, USA);
17: 0-20: 4 PI (3,4) P2 (LM-1903)
17: 0-20: 4 PI (4,5) P2 (LM-1904)
17: 0-20: 4 PI (3, 5) P2 (LM-1905)
Thus, a sample for MS analysis was prepared in the same manner as in Example 6.

 測定は以下の条件で行った。
MS:
 装置:Q TRAP 6500、SelexIONシステム(ABSciex、東京、日本)
 制御ソフト:Analyst1.6.2、PeakView(Sciex、東京、日本)
 イオン化/イオン源:ESI/IonDrive(Sciex、東京、日本)
 シリンジポンプ:7μL/分
イオン源パラメータ:
 カーテンガス:20
 コリジョンガス:Medium
 イオンスプレー電圧:5500V(正イオンモード)
 温度:500℃
 イオン源ガス1:70psi
 イオン源ガス2:50psi
 結果を図12に示す。図12に示すように、補償電圧(COV)の違いによりPI(4,5)P2を、PI(3,5)P2およびPI(3,4)P2から分離することができた。このようにカラムを用いなくてもホスホイノシタイドの位置異性体を分離できることが示された。なお、測定に用いたC17:0/C20:4-PIP2はメチル化していないものであった。
The measurement was performed under the following conditions.
MS:
Equipment: Q TRAP 6500, SelexION system (ABSciex, Tokyo, Japan)
Control software: Analyst 1.6.2, PeakView (Sciex, Tokyo, Japan)
Ionization / ion source: ESI / IonDrive (Sciex, Tokyo, Japan)
Syringe pump: 7 μL / min Ion source parameters:
Curtain gas: 20
Collision gas: Medium
Ion spray voltage: 5500V (positive ion mode)
Temperature: 500 ° C
Ion source gas 1: 70 psi
Ion source gas 2: 50 psi
The results are shown in FIG. As shown in FIG. 12, PI (4,5) P2 could be separated from PI (3,5) P2 and PI (3,4) P2 due to the difference in compensation voltage (COV). Thus, it was shown that regioisomers of phosphoinositide can be separated without using a column. C17: 0 / C20: 4-PIP2 used for the measurement was not methylated.

 また、イオンモビリティをLCと組み合わせたさらなる実験を行ったところ、ホスホイノシタイドをより選択性高く検出することができた。 Furthermore, further experiments combining ion mobility with LC revealed that phosphoinositide could be detected with higher selectivity.

 (実施例9:ホスホイノシタイド組成の変化の評価の分析)
 本実施例では、本発明の方法を使用することで、薬剤処理した細胞におけるホスホイノシタイド組成の変化を評価することができることを示す。実施例6と同様に、それぞれのジアシルグリセロール種について、リン酸基の位置異性体の溶出順序を事前に確認した。
(Example 9: Analysis of evaluation of change in phosphoinositide composition)
This example shows that changes in phosphoinositide composition in drug-treated cells can be evaluated using the method of the present invention. As in Example 6, the elution order of the positional isomers of phosphate groups was confirmed in advance for each diacylglycerol species.

 HEK293T細胞(ヒト胎児由来腎臓上皮細胞株、Open biosysytems(コロラド、米国)カタログ番号HCL4517)を、提供元の推奨する条件で1X10細胞/10cmディッシュになるまで培養した(0日目)。2日目に最終濃度10mMとなるように培養培地にHを添加し、それぞれ、0分後、2分後、5分後および15分後にセルスクレイパーで細胞を削りとり収集し、800g、3分間の遠心分離後ペレットを回収し、さらにPBS(-)で洗浄して細胞を回収した。 HEK293T cells (human embryonic kidney epithelial cell line, Open biosystems (Colorado, USA) catalog number HCL4517) were cultured under the conditions recommended by the supplier until day 1 × 10 6 cells / 10 cm dish (day 0). On the second day, H 2 O 2 was added to the culture medium to a final concentration of 10 mM, and the cells were scraped and collected with a cell scraper after 0 minutes, 2 minutes, 5 minutes, and 15 minutes, respectively. After centrifuging for 3 minutes, the pellet was recovered, and further washed with PBS (−) to recover the cells.

 その後、以下の脂質抽出およびメチル化処理を行い、キラルLC-MS/MSによって測定した。
リン脂質の抽出
 PIPs分析のために、細胞試料に、50μLの0.2pmol/μL 17:0/20:4-PI3P、17:0/20:4-PI4P、17:0/20:4-PI5P、17:0/20:4-PI(3,5)P2、17:0/20:4-PI(3,4)P2、17:0/20:4-PI(4,5)P2、17:0/20:4-PI(3,4,5)P3、2pmol/μL 17:0/20:4-PI、および17:0/20:4-PSを添加し、これらを内部サロゲート標準とした。次に、2μLの1nmol/μL 8:0/8:0-PI(4,5)P2(吸着防止剤として)、0.75mLの2N HCl、0.75mLの水、0.2mLの1M NaClおよび3mLのクロロホルムを添加し、振り混ぜた。遠心分離した後、下層を収集し、1.5mLのメタノールを各試料に添加した後、DEAEセルロースカラム(Santa Cruz Biotechnology、テキサス、米国)にアプライした。カラムに吸着された脂質を、クロロホルム:メタノール(1:1、v/v)(3mL)およびクロロホルム:メタノール:28%アンモニア水溶液:酢酸(200:100:3:0.9、v/v)(3mL)で順次洗浄した。次に、PIPs、PIおよびPSを含む高度酸性脂質をクロロホルム:メタノール:HCl:水(12:12:1:1、v/v)(1.5mL)で溶離させた。0.75mLの水および0.1mLの1M NaClを添加した後、溶液を振り混ぜ、遠心分離し、下層を収集した。150μLの0.6M TMS-ジアゾメタン(ヘキサン中)を添加した後、試料を10分間室温でインキュベートした(Nature Methods)。次に、20μLの氷酢酸および0.7mLの洗浄溶液(クロロホルム:メタノール:水(3:48:47、v/v))をそれぞれの溶液に添加した。溶液を振り混ぜ、遠心分離し、下層を収集した。各試料を窒素ガス下で乾燥させ、アセトニトリルに再溶解させた。得られたPIPs濃縮分画を調製から1日以内に分析した。
Thereafter, the following lipid extraction and methylation treatment were performed, and measurement was performed by chiral LC-MS / MS.
Phospholipid extraction For PIPs analysis, 50 μL of 0.2 pmol / μL 17: 0/20: 4-PI3P, 17: 0/20: 4-PI4P, 17: 0/20: 4-PI5P 17: 0/20: 4-PI (3,5) P2, 17: 0/20: 4-PI (3,4) P2, 17: 0/20: 4-PI (4,5) P2, 17 : 0/20: 4-PI (3,4,5) P3, 2 pmol / μL 17: 0/20: 4-PI, and 17: 0/20: 4-PS, which were added to the internal surrogate standard did. Then 2 μL of 1 nmol / μL 8: 0/8: 0-PI (4,5) P2 (as an adsorption inhibitor), 0.75 mL of 2N HCl, 0.75 mL of water, 0.2 mL of 1M NaCl and 3 mL of chloroform was added and shaken. After centrifugation, the lower layer was collected and 1.5 mL of methanol was added to each sample before being applied to a DEAE cellulose column (Santa Cruz Biotechnology, Texas, USA). Lipids adsorbed on the column were mixed with chloroform: methanol (1: 1, v / v) (3 mL) and chloroform: methanol: 28% aqueous ammonia: acetic acid (200: 100: 3: 0.9, v / v) ( 3 mL). Highly acidic lipids including PIPs, PI and PS were then eluted with chloroform: methanol: HCl: water (12: 12: 1: 1, v / v) (1.5 mL). After adding 0.75 mL of water and 0.1 mL of 1M NaCl, the solution was shaken, centrifuged and the lower layer was collected. After the addition of 150 μL of 0.6M TMS-diazomethane (in hexane), the sample was incubated for 10 minutes at room temperature (Nature Methods). Next, 20 μL glacial acetic acid and 0.7 mL wash solution (chloroform: methanol: water (3:48:47, v / v)) were added to each solution. The solution was shaken and centrifuged, and the lower layer was collected. Each sample was dried under nitrogen gas and redissolved in acetonitrile. The resulting PIPs-enriched fraction was analyzed within 1 day of preparation.

 メチル化処理は、実施例6と同様に、各試料をTMSジアゾメタンで処理することによって行った。
LC-ESI MS/MSシステム
 試料の分析は、実施例6と同様に以下の条件で行った。
質量分析装置:QTRAP 6500(ABSciex、東京、日本)
ポンプ:Nexera X2 system(島津製作所、京都、日本)
オートサンプラー:PAL HTC(CTC Analytics,Zwingen,スイス)
カラム:CHIRALPAK IC-3、2.1mm x 250mm、粒径3μm(DAICEL corporation、大阪、日本)
インジェクタ:非金属インジェクタユニット
サンプルループ:25μL PEEKチューブ
流速:0.1mL/分
注入試料量:10μL
温度:室温
 (クロマトグラフィー条件)
  移動相A:アセトニトリル+5mM酢酸アンモニウム
  移動相B:メタノール+5mM酢酸アンモニウム
*これらの試薬は、全て和光純薬(東京、日本)から購入したLC-MS用グレードのものを使用した。
The methylation treatment was performed by treating each sample with TMS diazomethane in the same manner as in Example 6.
LC-ESI MS / MS system The sample was analyzed under the following conditions in the same manner as in Example 6.
Mass spectrometer: QTRAP 6500 (ABSciex, Tokyo, Japan)
Pump: Nexera X2 system (Shimadzu Corporation, Kyoto, Japan)
Autosampler: PAL HTC (CTC Analytics, Zwingen, Switzerland)
Column: CHIRALPAK IC-3, 2.1 mm x 250 mm, particle size 3 μm (DAICEL corporation, Osaka, Japan)
Injector: Non-metal injector unit Sample loop: 25 μL PEEK tube flow rate: 0.1 mL / min Injection sample volume: 10 μL
Temperature: Room temperature (chromatographic conditions)
Mobile phase A: acetonitrile + 5 mM ammonium acetate Mobile phase B: methanol + 5 mM ammonium acetate * All these reagents were LC-MS grades purchased from Wako Pure Chemical (Tokyo, Japan).

 グラジエント条件(リニアグラジエント)
  0分、移動相B=40%
  1分、移動相B=40%
  3分、移動相B=85%
  14分、移動相B=85%
  15分、移動相B=40%
  20分、移動相B=40%
・質量分析計条件
 イオン化法:エレクトロスプレー(正イオンモード)
 測定メソッド:多重反応モニタリング(MRM)
 測定結果を図13および図14に示す。
Gradient condition (linear gradient)
0 minutes, mobile phase B = 40%
1 minute, mobile phase B = 40%
3 minutes, mobile phase B = 85%
14 minutes, mobile phase B = 85%
15 minutes, mobile phase B = 40%
20 minutes, mobile phase B = 40%
・ Mass spectrometer conditions Ionization method: Electrospray (positive ion mode)
Measurement method: Multiple reaction monitoring (MRM)
The measurement results are shown in FIGS.

 図13の結果は、38:4のホスホイノシタイドの抽出イオンクロマトグラムを示す。H処理時間が増加するほど、PI(4,5)P2が減少し、PI(3,4)P2が増大することが示される。 The results in FIG. 13 show an extracted ion chromatogram of 38: 4 phosphoinositide. It is shown that PI (4,5) P2 decreases and PI (3,4) P2 increases as the H 2 O 2 treatment time increases.

 図14A~Dの結果は、異なるジアシルグリセロールを有するPIPsがH処理によってどのように変化するかを示す。統計処理は、一元配置分散分析、Tukeyの多重比較検定を用いた。異なるジアシルグリセロールを有するPIPsについても、H処理時間が増加するほど、PI(4,5)P2が減少し、PI(3,4)P2が増大することが示された。 The results in FIGS. 14A-D show how PIPs with different diacylglycerols change with H 2 O 2 treatment. Statistical processing used one-way analysis of variance and Tukey's multiple comparison test. PIPs with different diacylglycerols were also shown to decrease PI (4,5) P2 and increase PI (3,4) P2 with increasing H 2 O 2 treatment time.

 このように、本発明の方法を使用することで、薬剤処理した細胞におけるホスホイノシタイド組成(ジアシルグリセロールの種類、PIPsにおけるリン酸基の数および位置)の変化を詳細に観察することができる。 Thus, by using the method of the present invention, changes in the phosphoinositide composition (the type of diacylglycerol, the number and position of phosphate groups in PIPs) in the drug-treated cells can be observed in detail.

 (実施例10:遺伝子操作したマウスにおけるホスホイノシタイド組成の変化の評価)
 本実施例では、本発明の方法を使用することで、遺伝子操作したマウスにおけるホスホイノシタイド組成の変化を評価することができることを示す。実施例6と同様に、それぞれのジアシルグリセロール種について、リン酸基の位置異性体の溶出順序を事前に確認した。
(Example 10: Evaluation of changes in phosphoinositide composition in genetically engineered mice)
This example shows that changes in phosphoinositide composition in genetically engineered mice can be evaluated using the method of the present invention. As in Example 6, the elution order of the positional isomers of phosphate groups was confirmed in advance for each diacylglycerol species.

 ホスホイノシタイドの代謝に関わる2つの遺伝子(INPP4BおよびPTEN)を操作した場合のホスホイノシタイド組成の変化を観察した。 Changes in phosphoinositide composition were observed when two genes (INPP4B and PTEN) involved in phosphoinositide metabolism were manipulated.

 INPP4Bは、以下の脱リン化反応
  PI(3,4,5)P3→PI(3,4)P2→PI(3)P
を促進し、PTENは以下の脱リン化反応
  PI(3,4,5)P3→PI(4,5)P2
を促進することが報告されている(Kofuji S et.al., Cancer Discov. 2015 Jul;5(7):730-9、Li Chew C et.al., Cancer Discov. 2015 Jul;5(7):740-51およびVo TT et.al., Cancer Discov. 2015 Jul;5(7):697-700)。
INPP4B has the following dephosphorylation reaction PI (3,4,5) P3 → PI (3,4) P2 → PI (3) P
PTEN promotes the following dephosphorylation reaction PI (3,4,5) P3 → PI (4,5) P2
(Kofuji S et. Al., Cancer Discov. 2015 Jul; 5 (7): 730-9, Li Chew C et.al., Cancer Discov. 2015 Jul; 5 (7) : 740-51 and VoTT et.al., Cancer Discov. 2015 Jul; 5 (7): 697-700).

 以前の論文(Kofuji S et.al., Cancer Discov. 2015 Jul;5(7):730-9)に従って作製したマウスを実験に使用した。具体的には、マウスは以下の通りに作製した。コンディショナル標的化ベクターを構築し、マウスInpp4b遺伝子の21番目のコーディングエクソンを含む遺伝子断片を相同組み換えによって削除した。1つのloxP部位をイントロン20に導入し、2つのloxP部位をイントロン21に導入した。LacZ-PGK-Neoカセットを、イントロン21内の2つのlox部位の間にInpp4bの転写に対してアンチセンス方向で挿入した。直鎖の構築物を1×10個のE14Kマウス胚性幹(ES)細胞にエレクトロポレーションによって導入した(Sasaki T et.al., Science 2000;287:1040-6)。G418(0.3mg/mL;Life Technologies)に抵抗性のES細胞コロニーを、標準的なPCRによってスクリーニングして相同組み換えを起こしたコロニーを選択した。組み換えクローンは、590bpのプローブを使用したHindIII消化ゲノムDNA断片の標準的なサザンブロットによって確認した。標的化したES細胞を、C57BL/6Jの胚盤胞(日本クレア株式会社、東京、日本)に注入した。キメラ雄性マウスをC57BL/6JJ雌性マウスと交配させて生殖系列の遺伝を達成した。MeuCre40遺伝子導入マウス(Leneuve P et.al., Nucleic Acids Res 2003;31:e21)と交配させることで選択カセットを削除したInpp4b+/floxマウスを作製した。同様に、Inpp4b+/floxマウスをMeuCre40マウスと交配させることでInpp4b+/Δマウスを作製した。PCRによって、Inpp4bΔ/Δマウスが、Inpp4b+/ΔマウスおよびInpp4b+/+マウスと異なることを確認した。Inpp4A対立遺伝子およびInpp4AΔ対立遺伝子に共通のオリゴプライマー(5’-CCTGCCATGGGTAGATTTCT-3’)、Inpp4A対立遺伝子(5’-GTTTACATTTGACAGGGTGGTTGG-3’)に特異的なプライマー、およびInpp4AΔ対立遺伝子(5’-TGCTGTCGCCGAAGAAGTTA-3’)に特異的なプライマーを同一のPCR反応において組み合わせた。Inpp4b+/ΔPten+/-マウスは、Inpp4b+/ΔマウスをPten+/-マウスと交配させることで作製した(Suzuki A et al., Curr Biol 1998;8:1169-78)。Inpp4bΔ/ΔPten+/-マウスを作製するために、Inpp4b+/ΔPten+/-マウスをInpp4b+/Δマウスと交配させた。Inpp4b+/ΔPten+/-マウスをAkt1-/-マウスまたはAkt2-/-マウス(Jackson Laboratoryから購入)と交配させることで三重変異体を作製した。全ての動物実験は、秋田大学動物実験委員会のレビューおよび承認を得て行った。 Mice generated according to previous papers (Kofuji S et. Al., Cancer Discov. 2015 Jul; 5 (7): 730-9) were used in the experiments. Specifically, mice were prepared as follows. A conditional targeting vector was constructed, and the gene fragment containing the 21st coding exon of the mouse Inpp4b gene was deleted by homologous recombination. One loxP site was introduced into intron 20 and two loxP sites were introduced into intron 21. The LacZ-PGK-Neo r cassette was inserted between the two lox sites in intron 21 in the antisense orientation relative to the transcription of Inpp4b. The linear construct was introduced into 1 × 10 7 E14K mouse embryonic stem (ES) cells by electroporation (Sasaki T et. Al., Science 2000; 287: 1040-6). ES cell colonies resistant to G418 (0.3 mg / mL; Life Technologies) were screened by standard PCR to select colonies that had undergone homologous recombination. Recombinant clones were confirmed by standard Southern blots of HindIII digested genomic DNA fragments using a 590 bp probe. Targeted ES cells were injected into C57BL / 6J blastocysts (CLEA Japan, Tokyo, Japan). Chimeric male mice were mated with C57BL / 6JJ female mice to achieve germline inheritance. Inpp4b + / flox mice in which the selection cassette was deleted were produced by mating with MeuCre40 transgenic mice (Leneuve P et. Al., Nucleic Acids Res 2003; 31: e21). Similarly, Inpp4b + / Δ mice were produced by crossing Inpp4b + / flox mice with MeuCre40 mice. PCR confirmed that Inpp4b Δ / Δ mice were different from Inpp4b + / Δ mice and Inpp4b + / + mice. An oligo primer common to the Inpp4A + allele and the Inpp4A Δ allele (5′-CCTGCCATGGGGTAGTTTTCT-3 ′), a primer specific for the Inpp4A + allele (5′-GTTTACATTTGACAGGGTGGTTGG-3 ′), and the Inpp4A Δ allele Primers specific for '-TGCTGTCGCCGAAGAAGTTA-3') were combined in the same PCR reaction. Inpp4b + / Δ Pten +/− mice were generated by crossing Inpp4b + / Δ mice with Pten +/− mice (Suzuki A et al., Curr Biol 1998; 8: 1169-78). To create Inpp4b Δ / Δ Pten +/− mice, Inpp4b + / Δ Pten +/− mice were mated with Inpp4b + / Δ mice. Triple mutants were made by crossing Inpp4b + / Δ Pten +/− mice with Akt1 − / − mice or Akt2 − / − mice (purchased from Jackson Laboratory). All animal experiments were conducted with the review and approval of the Akita University Animal Experiment Committee.

 このように作製したマウスのうち以下のマウスから取得した甲状腺を試料として使用した。
・C57/B6Jマウス(雄性または雌性、5~6月齢)(N=3)
・INPP4B(-/-)マウス(雄性または雌性、5~8月齢)(N=4)
・PTEN(+/-)マウス(雄性または雌性、5~7月齢)(N=4)
・INPP4B(-/-)PTEN(+/-)マウス(雄性または雌性、5~7月齢)(N=4)
 それぞれの試料に対して、以下の脂質抽出およびメチル化処理を行い、キラルLC-MS/MSによって測定した。
リン脂質の抽出
 PIPs分析のために、それぞれのマウス組織を1.5mLの氷冷メタノールとともにホモジネートし、50μLの0.2pmol/μL 17:0/20:4-PI3P、17:0/20:4-PI4P、17:0/20:4-PI5P、17:0/20:4-PI(3,5)P2、17:0/20:4-PI(3,4)P2、17:0/20:4-PI(4,5)P2、17:0/20:4-PI(3,4,5)P3、2pmol/μL 17:0/20:4-PI、および17:0/20:4-PSを添加し、これらを内部サロゲート標準とした。次に、2μLの1nmol/μL 8:0/8:0-PI(4,5)P2(吸着防止剤として)、0.75mLの2N HCl、0.75mLの水、0.2mLの1M NaClおよび3mLのクロロホルムを添加し、振り混ぜた。遠心分離した後、下層を収集し、1.5mLのメタノールを各試料に添加した後、DEAEセルロースカラム(Santa Cruz Biotechnology、テキサス、米国)にアプライした。カラムに吸着された脂質を、クロロホルム:メタノール(1:1、v/v)(3mL)およびクロロホルム:メタノール:28%アンモニア水溶液:酢酸(200:100:3:0.9、v/v)(3mL)で順次洗浄した。次に、PIPs、PIおよびPSを含む高度酸性脂質をクロロホルム:メタノール:HCl:水(12:12:1:1、v/v)(1.5mL)で溶離させた。0.75mLの水および0.1mLの1M NaClを添加した後、溶液を振り混ぜ、遠心分離し、下層を収集した。150μLの0.6M TMS-ジアゾメタン(ヘキサン中)を添加した後、試料を10分間室温でインキュベートした(Nature Methods)。次に、20μLの氷酢酸および0.7mLの洗浄溶液(クロロホルム:メタノール:水(3:48:47、v/v))をそれぞれの溶液に添加した。溶液を振り混ぜ、遠心分離し、下層を収集した。各試料を窒素ガス下で乾燥させ、アセトニトリルに再溶解させた。得られたPIPs濃縮分画を調製から1日以内に分析した。
Of the mice prepared in this way, the thyroid gland obtained from the following mice was used as a sample.
C57 / B6J mice (male or female, 5-6 months old) (N = 3)
INPP4B (− / −) mice (male or female, 5-8 months old) (N = 4)
PTEN (+/-) mice (male or female, 5-7 months old) (N = 4)
INPP4B (− / −) PTEN (+/−) mice (male or female, 5-7 months old) (N = 4)
Each sample was subjected to the following lipid extraction and methylation treatment, and measured by chiral LC-MS / MS.
Phospholipid extraction For PIPs analysis, each mouse tissue was homogenized with 1.5 mL ice-cold methanol and 50 μL 0.2 pmol / μL 17: 0/20: 4-PI3P, 17: 0/20: 4. PI4P, 17: 0/20: 4-PI5P, 17: 0/20: 4-PI (3,5) P2, 17: 0/20: 4-PI (3,4) P2, 17: 0/20 : 4-PI (4,5) P2, 17: 0/20: 4-PI (3,4,5) P3, 2 pmol / μL 17: 0/20: 4-PI, and 17: 0/20: 4 -PS was added and these served as internal surrogate standards. Then 2 μL of 1 nmol / μL 8: 0/8: 0-PI (4,5) P2 (as an adsorption inhibitor), 0.75 mL of 2N HCl, 0.75 mL of water, 0.2 mL of 1M NaCl and 3 mL of chloroform was added and shaken. After centrifugation, the lower layer was collected and 1.5 mL of methanol was added to each sample before being applied to a DEAE cellulose column (Santa Cruz Biotechnology, Texas, USA). Lipids adsorbed on the column were mixed with chloroform: methanol (1: 1, v / v) (3 mL) and chloroform: methanol: 28% aqueous ammonia: acetic acid (200: 100: 3: 0.9, v / v) ( 3 mL). Highly acidic lipids including PIPs, PI and PS were then eluted with chloroform: methanol: HCl: water (12: 12: 1: 1, v / v) (1.5 mL). After adding 0.75 mL of water and 0.1 mL of 1M NaCl, the solution was shaken, centrifuged and the lower layer was collected. After the addition of 150 μL of 0.6M TMS-diazomethane (in hexane), the sample was incubated for 10 minutes at room temperature (Nature Methods). Next, 20 μL glacial acetic acid and 0.7 mL wash solution (chloroform: methanol: water (3:48:47, v / v)) were added to each solution. The solution was shaken and centrifuged, and the lower layer was collected. Each sample was dried under nitrogen gas and redissolved in acetonitrile. The resulting PIPs-enriched fraction was analyzed within 1 day of preparation.

 メチル化処理は、実施例6と同様に、各試料をTMSジアゾメタンで処理することによって行った。
LC-ESI MS/MSシステム
 試料の分析は、実施例6と同様に以下の条件で行った。
質量分析装置:QTRAP 6500(ABSciex、東京、日本)
ポンプ:Nexera X2 system(島津製作所、京都、日本)
オートサンプラー:PAL HTC(CTC Analytics、Zwingen、スイス)
カラム:CHIRALPAK IC-3、2.1mm x 250mm、粒径3μm(DAICEL corporation、大阪、日本)
インジェクタ:非金属インジェクタユニット
サンプルループ:25mL PEEKチューブ
流速:0.1mL/分
注入試料量:10μL
温度:室温
 (クロマトグラフィー条件)
  移動相A:アセトニトリル+5mM酢酸アンモニウム
  移動相B:メタノール+5mM酢酸アンモニウム
*これらの試薬は、全て和光純薬(東京、日本)から購入したLC-MS用グレードのものを使用した。
The methylation treatment was performed by treating each sample with TMS diazomethane in the same manner as in Example 6.
LC-ESI MS / MS system The sample was analyzed under the following conditions in the same manner as in Example 6.
Mass spectrometer: QTRAP 6500 (ABSciex, Tokyo, Japan)
Pump: Nexera X2 system (Shimadzu Corporation, Kyoto, Japan)
Autosampler: PAL HTC (CTC Analytics, Zwingen, Switzerland)
Column: CHIRALPAK IC-3, 2.1 mm x 250 mm, particle size 3 μm (DAICEL corporation, Osaka, Japan)
Injector: Non-metal injector unit Sample loop: 25 mL PEEK tube flow rate: 0.1 mL / min Injection sample volume: 10 μL
Temperature: Room temperature (chromatographic conditions)
Mobile phase A: acetonitrile + 5 mM ammonium acetate Mobile phase B: methanol + 5 mM ammonium acetate * All these reagents were LC-MS grades purchased from Wako Pure Chemical (Tokyo, Japan).

 グラジエント条件(リニアグラジエント)
  0分、移動相B=40%
  1分、移動相B=40%
  3分、移動相B=85%
  14分、移動相B=85%
  15分、移動相B=40%
  20分、移動相B=40%
・質量分析計条件
  イオン化法:エレクトロスプレー(正イオンモード)
  測定メソッド:多重反応モニタリング(MRM)
 測定結果を図15および図16に示す。
Gradient condition (linear gradient)
0 minutes, mobile phase B = 40%
1 minute, mobile phase B = 40%
3 minutes, mobile phase B = 85%
14 minutes, mobile phase B = 85%
15 minutes, mobile phase B = 40%
20 minutes, mobile phase B = 40%
・ Mass spectrometer conditions Ionization method: Electrospray (positive ion mode)
Measurement method: Multiple reaction monitoring (MRM)
The measurement results are shown in FIGS.

 図15の結果は38:4のホスホイノシタイドの抽出イオンクロマトグラムを示す。PI(3,4)P2は、野生型およびINPP4B(-/-)マウスでは観察されなかったが、PTEN(+/-)マウスにおいて産生が観察され、INPP4B(-/-)PTEN(+/-)マウスではさらに産生の増強が観察された。この結果は、報告されているPTENの活性と矛盾しない。 15 shows the extracted ion chromatogram of 38: 4 phosphoinositide. PI (3,4) P2 was not observed in wild type and INPP4B (− / −) mice, but production was observed in PTEN (+/−) mice and INPP4B (− / −) PTEN (+/−) ) Further enhancement of production was observed in mice. This result is consistent with the reported activity of PTEN.

 図16A~Dの結果は、異なるジアシルグリセロールを有するPIPsが遺伝子操作によってどのように変化するかを示す。統計処理は、一元配置分散分析、Tukeyの多重比較検
定を用いた。PIP3の分解を促進する遺伝子をノックアウトしたマウスでは予想通りPIP3の量が大きく増えたがPIP2およびPIPの減少は観察されなかった。PI(3,4)P2は、野生型およびINPP4B(-/-)マウスでは観察されなかったが、PTEN(+/-)マウスにおいて産生が観察され、INPP4B(-/-)PTEN(+/-)マウスではさらに産生の増強が観察された。
The results in FIGS. 16A-D show how PIPs with different diacylglycerols are altered by genetic manipulation. Statistical processing used one-way analysis of variance and Tukey's multiple comparison test. In mice knocked out of a gene that promotes PIP3 degradation, the amount of PIP3 was greatly increased as expected, but a decrease in PIP2 and PIP was not observed. PI (3,4) P2 was not observed in wild type and INPP4B (− / −) mice, but production was observed in PTEN (+/−) mice and INPP4B (− / −) PTEN (+/−) ) Further enhancement of production was observed in mice.

 このように、本発明の方法を使用することで、遺伝子操作したマウスにおけるホスホイノシタイド組成(ジアシルグリセロールの種類、PIPsにおけるリン酸基の数および位置)の変化を詳細に観察することができる。 Thus, by using the method of the present invention, changes in the phosphoinositide composition (type of diacylglycerol, the number and position of phosphate groups in PIPs) in genetically engineered mice can be observed in detail.

 (実施例11:LPIPsのリン酸位置異性体の分離および定量)
 本実施例は、LPIPsのリン酸位置異性体を分離および定量可能であることを示す。
(Example 11: Separation and quantification of phosphate regioisomers of LPIPs)
This example shows that the phosphate regioisomers of LPIPs can be separated and quantified.

 17:0/20:4 PIPs合成品を出発材料として使用して、実施例1の方法に従い、17:0のリゾPI(3)P、リゾPI(4)P、リゾPI(5)P、リゾPI(3,5)P2、リゾPI(3,4)P2、リゾPI(4,5)P2をそれぞれ調製した。 17: 0/20: 4 Using lysed PIPs as a starting material, according to the method of Example 1, 17: 0 lysoPI (3) P, lysoPI (4) P, lysoPI (5) P, Lyso PI (3, 5) P2, lyso PI (3,4) P2, and lyso PI (4, 5) P2 were prepared, respectively.

 測定条件は、Q1のプレカーサーイオンと、Q3のプロダクトイオンとの組み合わせを以下のように設定した以外は実施例6と同様であった。
17:0 リゾPIP1
Q1:726.5(Da) Q3:327.3(Da)
17:0 リゾPIP2
Q1:834.5(Da) Q3:327.3(Da)
 実施例6と同様に分析した結果を図17に示す。リン酸基の位置のみが異なる3種類の異性体は異なる保持時間で観察された。このことから、リゾホスホイノシタイドのリン酸基位置異性体による分離によって、定量的な位置異性体特異的な分析が可能となる。そのため、本発明の方法を用いて、リゾホスホイノシタイドについても、リン酸基の位置およびアシル基の種類の解析が可能となる。
The measurement conditions were the same as in Example 6 except that the combination of the precursor ion of Q1 and the product ion of Q3 was set as follows.
17: 0 Reso PIP1
Q1: 726.5 (Da) Q3: 327.3 (Da)
17: 0 lyso PIP2
Q1: 834.5 (Da) Q3: 327.3 (Da)
The result of analysis in the same manner as in Example 6 is shown in FIG. Three isomers differing only in the position of the phosphate group were observed with different retention times. From this, quantitative regioisomer-specific analysis becomes possible by separation of the lysophosphoinositide with a phosphate group positional isomer. Therefore, it is possible to analyze the position of the phosphate group and the type of acyl group for lysophosphoinositide using the method of the present invention.

 (注記)
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。なお、本出願は、日本国特許庁に2016年7月22日に出願された特願2016-144177および2017年3月16日に出願された特願2017-51354に対して優先権主張をするものであり、これらの出願のその全体が、本明細書において参考として援用される。
(Note)
As mentioned above, although this invention has been illustrated using preferable embodiment of this invention, it is understood that the scope of this invention should be construed only by the claims. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood. This application claims priority to Japanese Patent Application No. 2016-144177 filed on July 22, 2016 and Japanese Patent Application No. 2017-51354 filed on March 16, 2017. And the entirety of these applications is incorporated herein by reference.

 本発明は、医薬品およびその開発に利用可能である。
 
The present invention can be used for pharmaceuticals and their development.

Claims (48)

リゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸である化合物。 A compound which is lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate. 1-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール一リン酸、1-アシル-リゾホスファチジルイノシトール二リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸、または2-アシル-リゾホスファチジルイノシトール三リン酸である請求項1に記載の化合物。 1-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol monophosphate, 1-acyl-lysophosphatidylinositol diphosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidyl The compound according to claim 1, which is inositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate. 1-アシル-リゾホスファチジルイノシトール-3-一リン酸、1-アシル-リゾホスファチジルイノシトール-4-一リン酸、1-アシル-リゾホスファチジルイノシトール-5-一リン酸、2-アシル-リゾホスファチジルイノシトール-3-一リン酸、2-アシル-リゾホスファチジルイノシトール-4-一リン酸、2-アシル-リゾホスファチジルイノシトール-5-一リン酸、1-アシル-リゾホスファチジルイノシトール-3.4-二リン酸、1-アシル-リゾホスファチジルイノシトール-3.5-二リン酸、1-アシル-リゾホスファチジルイノシトール-4.5-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,4-二リン酸、2-アシル-リゾホスファチジルイノシトール-3,5-二リン酸、2-アシル-リゾホスファチジルイノシトール-4,5-二リン酸、1-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸、または2-アシル-リゾホスファチジルイノシトール-3,4,5-三リン酸である請求項1に記載の化合物。 1-acyl-lysophosphatidylinositol-3-monophosphate, 1-acyl-lysophosphatidylinositol-4-monophosphate, 1-acyl-lysophosphatidylinositol-5-monophosphate, 2-acyl-lysophosphatidylinositol- 3-monophosphate, 2-acyl-lysophosphatidylinositol-4-monophosphate, 2-acyl-lysophosphatidylinositol-5-monophosphate, 1-acyl-lysophosphatidylinositol-3.4-diphosphate, 1-acyl-lysophosphatidylinositol-3.5-diphosphate, 1-acyl-lysophosphatidylinositol-4.5-diphosphate, 2-acyl-lysophosphatidylinositol-3,4-diphosphate, 2- Acyl-lysophosphatidylinositol-3,5-diphosphate, 2-acyl -With lysophosphatidylinositol-4,5-diphosphate, 1-acyl-lysophosphatidylinositol-3,4,5-triphosphate, or 2-acyl-lysophosphatidylinositol-3,4,5-triphosphate A compound according to claim 1. 2-アシル-リゾホスファチジルイノシトール一リン酸、2-アシル-リゾホスファチジルイノシトール二リン酸、1-アシル-リゾホスファチジルイノシトール三リン酸または2-アシル-リゾホスファチジルイノシトール三リン酸である請求項1に記載の化合物。 The 2-acyl-lysophosphatidylinositol monophosphate, 2-acyl-lysophosphatidylinositol diphosphate, 1-acyl-lysophosphatidylinositol triphosphate or 2-acyl-lysophosphatidylinositol triphosphate Compound. 1-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
1-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
2-ブタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4-一リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4-一リン酸;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4-一リン酸;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4-一リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z-ドコサテトラエニル-リゾホスファチジルイノシトール4-一リン酸;
2-7Z,10Z,13Z,16Z,19Z-ドコサペンタエニル-リゾホスファチジルイノシトール4-一リン酸;
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール4-一リン酸;
1-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ブタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-6Z,9Z,12Z-オクタデカンジエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-8Z,11Z,14Z-イコサトリエニル-リゾホスファチジルイノシトール4,5-二リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール4,5-二リン酸;
1-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
1-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ブタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘキサデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-9Z-ヘキサデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-ヘプタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-オクタデカニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-9Z-オクタデセニル-リゾホスファチジルイノシトール3,4,5-三リン酸;
2-5Z,8Z,11Z,14Z-イコサテトラエニル-リゾホスファチジルイノシトール3,4,5-三リン酸;および
2-4Z,7Z,10Z,13Z,16Z,19Z-ドコサヘキサエニル-リゾホスファチジルイノシトール3,4,5-三リン酸
からなる群より選択される、
請求項1に記載の化合物。
1-butanyl-lysophosphatidylinositol 4-monophosphate;
1-hexanyl-lysophosphatidylinositol 4-monophosphate;
1-octanyl-lysophosphatidylinositol 4-monophosphate;
1-hexadecanyl-lysophosphatidylinositol 4-monophosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate;
1-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
1-octadecanyl-lysophosphatidylinositol 4-monophosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4-monophosphate;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
1-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
2-butanyl-lysophosphatidylinositol 4-monophosphate;
2-hexanyl-lysophosphatidylinositol 4-monophosphate;
2-octanyl-lysophosphatidylinositol 4-monophosphate;
2-hexadecanyl-lysophosphatidylinositol 4-monophosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 4-monophosphate;
2-heptadecanyl-lysophosphatidylinositol 4-monophosphate;
2-octadecanyl-lysophosphatidylinositol 4-monophosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 4-monophosphate;
2-9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4-monophosphate;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4-monophosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z-docosatetraenyl-lysophosphatidylinositol 4-monophosphate;
2-7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenyl-lysophosphatidylinositol 4-monophosphate;
2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 4-monophosphate;
1-butanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octanyl-lysophosphatidylinositol 4,5-diphosphate;
1-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate;
1-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-octadecanyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate;
1-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate;
1-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate;
1-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
2-butanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octanyl-lysophosphatidylinositol 4,5-diphosphate;
2-hexadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 4,5-diphosphate;
2-heptadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-octadecanyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 4,5-diphosphate;
2-9Z, 12Z-octadecandienyl-lysophosphatidylinositol 4,5-diphosphate;
2-6Z, 9Z, 12Z-octadecanedienyl-lysophosphatidylinositol 4,5-diphosphate;
2-8Z, 11Z, 14Z-icosatrienyl-lysophosphatidylinositol 4,5-diphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 4,5-diphosphate;
1-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate;
1-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-butanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-hexadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-9Z-hexadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-heptadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-octadecanyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-9Z-octadecenyl-lysophosphatidylinositol 3,4,5-triphosphate;
2-5Z, 8Z, 11Z, 14Z-icosatetraenyl-lysophosphatidylinositol 3,4,5-triphosphate; and 2-4Z, 7Z, 10Z, 13Z, 16Z, 19Z-docosahexaenyl-lysophosphatidylinositol Selected from the group consisting of 3,4,5-triphosphate,
The compound of claim 1.
疾患マーカーとして使用するための、請求項1~5のいずれか1項に記載の化合物を含む組成物。 A composition comprising the compound according to any one of claims 1 to 5 for use as a disease marker. 前記疾患マーカーが、炎症マーカーまたはがんマーカーである、請求項6に記載の組成物。 The composition according to claim 6, wherein the disease marker is an inflammation marker or a cancer marker. 前記がんは前立腺がんを含む、請求項7に記載の組成物。 The composition of claim 7, wherein the cancer comprises prostate cancer. ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸をアルキルアミンに接触させることで脱アシル化する工程を包含する、請求項1に記載の化合物の製造方法。 The method for producing a compound according to claim 1, comprising a step of deacylating phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with alkylamine. 前記アルキルアミンは、メチルアミンである、請求項9に記載の製造方法。 The production method according to claim 9, wherein the alkylamine is methylamine.  前記脱アシル化は、脱ジアシル化する条件より緩和な条件である、請求項9に記載の製造方法。 The production method according to claim 9, wherein the deacylation is a milder condition than a condition for dediacylation.  前記緩和な条件は、脱ジアシル化する条件のうち反応時間の短縮、前記アルキルアミンの濃度の低減、反応温度、またはその組み合わせで達成される、請求項11に記載の方法。 The method according to claim 11, wherein the mild condition is achieved by shortening a reaction time, reducing a concentration of the alkylamine, a reaction temperature, or a combination thereof among the conditions for dediacylation.  前記緩和な条件は、アルキルアミンとしてメチルアミンを用い、10分間以下の反応時間または該メチルアミンの濃度が約11%以下、反応温度が53℃以下あるいは該反応時間および該濃度および該反応温度の組み合わせである、請求項11に記載の方法。 The mild condition is that methylamine is used as the alkylamine, the reaction time is 10 minutes or less, or the concentration of the methylamine is about 11% or less, the reaction temperature is 53 ° C. or less, or the reaction time, the concentration, and the reaction temperature. The method of claim 11, which is a combination. (A) 1位と2位とに異なる質量のアシル基を有するホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を提供する工程であって、所望の質量を有するアシル基が1位または2位から選択される所望の位置に存在する、工程;
(B) 該ホスファチジルイノシトール一リン酸、ホスファチジルイノシトール二リン酸またはホスファチジルイノシトール三リン酸を、アルキルアミンに接触させることで脱アシル化する工程、および
(C) 必要に応じて、所望の質量のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を取り出す工程
を包含する、所望の位置に所望のアシル基を有するリゾホスファチジルイノシトール一リン酸、リゾホスファチジルイノシトール二リン酸またはリゾホスファチジルイノシトール三リン酸を製造する方法。
(A) a step of providing phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate having different mass acyl groups at the 1-position and the 2-position, wherein the acyl group having a desired mass is Existing in a desired position selected from the 1st or 2nd position;
(B) deacylating the phosphatidylinositol monophosphate, phosphatidylinositol diphosphate or phosphatidylinositol triphosphate by contacting with an alkylamine, and (C) an acyl having a desired mass, if necessary. Removing lysophosphatidylinositol monophosphate, lysophosphatidylinositol diphosphate or lysophosphatidylinositol triphosphate having a group, lysophosphatidylinositol monophosphate having a desired acyl group at a desired position, lysophosphatidylinositol A process for producing diphosphate or lysophosphatidylinositol triphosphate.
試料を、陰イオン交換樹脂に接触させることによりリン脂質を濃縮する工程;
該酸性リン脂質中のリン酸基を保護基で保護する工程;および
質量分析法により、該リン脂質中のリゾホスファチジルイノシトールリン酸塩を検出、同定または定量する工程、
を包含する、リゾホスファチジルイノシトールリン酸塩を検出、同定または定量する方法。
Concentrating the phospholipid by contacting the sample with an anion exchange resin;
Protecting a phosphate group in the acidic phospholipid with a protecting group; and detecting, identifying or quantifying lysophosphatidylinositol phosphate in the phospholipid by mass spectrometry;
For detecting, identifying or quantifying lysophosphatidylinositol phosphate.
さらに前記リン脂質中のホスファチジルイノシトールリン酸塩も検出、同定または定量する、請求項15に記載の方法。 16. The method of claim 15, further comprising detecting, identifying or quantifying phosphatidylinositol phosphate in the phospholipid. 前記保護基はアルキル基を含む、請求項15または16に記載の方法。 The method of claim 15 or 16, wherein the protecting group comprises an alkyl group. 前記保護基はメチル基を含む、請求項15または16に記載の方法。 The method according to claim 15 or 16, wherein the protecting group comprises a methyl group. 前記質量分析法は三連四重極質量分析計による選択反応モニタリング法(SRM)を含む、請求項15または16に記載の方法。 17. The method according to claim 15 or 16, wherein the mass spectrometry includes a selective reaction monitoring method (SRM) with a triple quadrupole mass spectrometer. さらに、液体カラムクロマトグラフィーまたはイオンモビリティ分離を用いて前記リゾホスファチジルイノシトールリン酸塩の脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う工程を包含する、請求項19に記載の方法。 The method according to claim 19, further comprising the step of detecting, identifying or quantifying fatty acid side chains and / or phosphate groups of the lysophosphatidylinositol phosphate using liquid column chromatography or ion mobility separation. . さらにリン酸基の位置を特定する、請求項20に記載の方法。 21. The method according to claim 20, further comprising locating a phosphate group. 前記質量分析法において、アシルグリセロールをプロダクトイオン(フラグメントイオン)として選択して前記脂肪酸側鎖および/またはリン酸基の検出、同定または定量を行う、請求項15~21のいずれか一項に記載の方法。 In the mass spectrometry, acylglycerol is selected as a product ion (fragment ion) to detect, identify or quantify the fatty acid side chain and / or phosphate group. the method of. 請求項15~22のいずれか一項に記載の検出、同定または定量により、がんの診断を行う方法。 A method for diagnosing cancer by detection, identification or quantification according to any one of claims 15 to 22. 試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを測定、検出または同定する方法であって、該方法は
A)該試料を質量分析(MS)に適用する工程;および
B)該MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程
を包含する、方法。
A method for measuring, detecting or identifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample, the method comprising: A) applying the sample to mass spectrometry (MS); and B) a peak in the MS And locating the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate according to the elution position of the phosphatidylinositol phosphate.
前記A)工程において、前記試料をさらにクロマトグラフィーに適用することを包含する、請求項24に記載の方法。 The method according to claim 24, further comprising applying the sample to chromatography in the step A). 前記質量分析が液体カラムクロマトグラフィー-質量分析(LC-MS)であり、
前記特定する工程B)が、該LC-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程である、請求項24に記載の方法。
The mass spectrometry is liquid column chromatography-mass spectrometry (LC-MS);
The method according to claim 24, wherein the specifying step B) is a step of specifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the LC-MS.
前記特定する工程において前記ホスファチジルイノシトールホスフェートに含まれるアシル基の分子量の合計も特定される、請求項24~26のいずれか1項に記載の方法。 The method according to any one of claims 24 to 26, wherein the total molecular weight of acyl groups contained in the phosphatidylinositol phosphate is also specified in the specifying step. 前記特定する工程において前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートに含まれるアシル基の種類も特定される、請求項24~26のいずれか1項に記載の方法。 The method according to any one of claims 24 to 26, wherein the type of acyl group contained in the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate is also specified in the specifying step. 同一のランにおいて前記ホスファチジルイノシトールホスフェートおよびリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する、請求項24~26のいずれか1項に記載の方法。 The method according to any one of claims 24 to 26, wherein the position of the phosphate group of the phosphatidylinositol phosphate and the lysophosphatidylinositol phosphate is specified in the same run. 前記測定、検出または同定は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを他のイノシトール含有リン脂質から区別して行うことを特徴とする、請求項24~29のいずれか1項に記載の方法。 The method according to any one of claims 24 to 29, wherein the measurement, detection or identification is carried out by distinguishing phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate from other inositol-containing phospholipids. 前記試料は、ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートの分解がなされない条件で調製されたものである、請求項24~30のいずれか1項に記載の方法。 The method according to any one of claims 24 to 30, wherein the sample is prepared under conditions that do not degrade phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. 前記条件は脱アシル化処理を行わないことを含む、請求項31に記載の方法。 32. The method of claim 31, wherein the condition comprises not performing a deacylation process. 前記液体カラムクロマトグラフィーは、キラルカラム、逆相カラム、親水基および疎水基を分離するカラムクロマトグラフィーからなる群より選択される、請求項26~32のいずれか1項に記載の方法。 The method according to any one of claims 26 to 32, wherein the liquid column chromatography is selected from the group consisting of a chiral column, a reverse phase column, and column chromatography for separating a hydrophilic group and a hydrophobic group. 前記液体カラムクロマトグラフィーは、イオンモビリティ分離と組み合わせられる、請求項24~33のいずれか1項に記載の方法。 The method according to any one of claims 24 to 33, wherein the liquid column chromatography is combined with ion mobility separation. 前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを定量する工程をさらに包含する、請求項24~34のいずれか1項に記載の方法。 The method according to any one of claims 24 to 34, further comprising quantifying the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. 前記試料はインタクトな試料である、請求項24~35のいずれか1項に記載の方法。 The method according to any one of claims 24 to 35, wherein the sample is an intact sample. 前記特定は試料を標識せずに行われる、請求項24~36のいずれか1項に記載の方法。 The method according to any one of claims 24 to 36, wherein the identification is performed without labeling the sample. 前記質量分析がイオンモビリティ分離-質量分析(IMS-MS)であり、
前記特定する工程B)が、該IMS-MSにおけるピークの溶出位置により該ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置を特定する工程である、
請求項24に記載の方法。
The mass spectrometry is ion mobility separation-mass spectrometry (IMS-MS);
The specifying step B) is a step of specifying the position of the phosphate group of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate by the elution position of the peak in the IMS-MS.
25. A method according to claim 24.
請求項27~33、35~37のいずれかまたは複数の特徴を備える請求項38に記載の方法。 The method of claim 38, comprising any one or more of the features of claims 27-33, 35-37. 試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのアシル基およびリン酸基の位置を測定、検出または同定する装置であって、質量分析(MS)と、ホスファチジルイノシトールホスフェートの分解がなされない条件で該MSに該試料を適用する適用部とを含む装置。 An apparatus for measuring, detecting or identifying the position of acyl group and phosphate group of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample under conditions where mass spectrometry (MS) and phosphatidylinositol phosphate are not decomposed And an application unit that applies the sample to the MS. さらにクロマトグラフィー用の装置を含む請求項40に記載の装置。 41. The device of claim 40 further comprising a chromatography device. 前記質量分析が液体カラムクロマトグラフィー-質量分析(LC-MS)であり、前記適用部がホスファチジルイノシトールホスフェートの分解がなされない条件で該LC-MSに該試料を適用する適用部である、請求項40に記載の装置。 The mass spectrometry is liquid column chromatography-mass spectrometry (LC-MS), and the application section is an application section that applies the sample to the LC-MS under a condition in which phosphatidylinositol phosphate is not decomposed. 40. The apparatus according to 40. 前記液体カラムクロマトグラフィーは、キラルカラム、逆相カラムなど親水基、疎水基を分離するすべてのカラムクロマトグラフィーからなる群より選択される、請求項42に記載の装置。 43. The apparatus according to claim 42, wherein the liquid column chromatography is selected from the group consisting of all column chromatography that separates hydrophilic groups and hydrophobic groups, such as chiral columns and reverse phase columns. 前記ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを検知または定量する手段をさらに含む、請求項40~43のいずれか1項に記載の装置。 The apparatus according to any one of claims 40 to 43, further comprising means for detecting or quantifying the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate. 前記質量分析がイオンモビリティ分離-質量分析(IMS-MS)であり、前記適用部がホスファチジルイノシトールホスフェートの分解がなされない条件で該IMS-MSに該試料を適用する適用部である、請求項40に記載の装置。 41. The mass spectrometry is ion mobility separation-mass spectrometry (IMS-MS), and the application section is an application section that applies the sample to the IMS-MS under conditions in which phosphatidylinositol phosphate is not decomposed. The device described in 1. 試料中のホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを、アシル基を保持しつつ、リン酸基の位置に応じて分離または精製する方法であって、該方法は
A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;および
B)該LC-MSまたはIMS-MSにおけるLCまたはIMSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを収集する工程を包含する、方法。
A method for separating or purifying phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate in a sample according to the position of a phosphate group while retaining an acyl group, the method comprising: A) Steps applied to graphy-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) the elution position of the peak from the eluate of LC or IMS in the LC-MS or IMS-MS Collecting phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at the position of interest specified by.
ホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置について2以上存在する混合物から、該混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む試料を生産する方法であって、
 A)該試料を液体カラムクロマトグラフィー-質量分析(LC-MS)またはイオンモビリティ分離-質量分析(IMS-MS)に適用する工程;および
 B)該LC-MSまたはIMS-MSにおけるLCまたはIMSの溶出物から、ピークの溶出位置により特定された目的の位置にリン酸基を有するホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートを含む画分を収集する工程
を包含する、方法。
From a mixture of two or more of the phosphate group positions of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate, from the number of types of phosphate groups of phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate contained in the mixture A method for producing a sample comprising a phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a small number of positions, comprising:
A) applying the sample to liquid column chromatography-mass spectrometry (LC-MS) or ion mobility separation-mass spectrometry (IMS-MS); and B) LC or IMS in the LC-MS or IMS-MS Collecting a fraction containing phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate having a phosphate group at a target position specified by the elution position of the peak from the eluate.
前記混合物に含まれるホスファチジルイノシトールホスフェートおよび/またはリゾホスファチジルイノシトールホスフェートのリン酸基の位置の種類の数より少ない種類は一種類である、請求項47に記載の方法。 48. The method according to claim 47, wherein the number of the phosphatidylinositol phosphate and / or lysophosphatidylinositol phosphate contained in the mixture is less than the number of types of the phosphate group.
PCT/JP2017/026563 2016-07-22 2017-07-21 Novel phospholipid, uses thereof and development of phospholipid separation and measurement method Ceased WO2018016645A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018528909A JP7549306B2 (en) 2016-07-22 2017-07-21 Development of novel phospholipids and their applications, as well as methods for separating and measuring phospholipids
JP2022085341A JP2022118008A (en) 2016-07-22 2022-05-25 Novel phospholipid and use thereof, and development of phospholipid separation measurement method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-144177 2016-07-22
JP2016144177 2016-07-22
JP2017-051354 2017-03-16
JP2017051354 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018016645A1 true WO2018016645A1 (en) 2018-01-25

Family

ID=60992619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026563 Ceased WO2018016645A1 (en) 2016-07-22 2017-07-21 Novel phospholipid, uses thereof and development of phospholipid separation and measurement method

Country Status (2)

Country Link
JP (2) JP7549306B2 (en)
WO (1) WO2018016645A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424596A (en) * 2018-09-10 2021-02-26 株式会社岛津制作所 Method for separating phosphoinositide from biological membrane
WO2022252443A1 (en) * 2021-05-31 2022-12-08 上海市食品药品检验研究院 Method for qualitatively analyzing phospholipid components in platycodon grandiflorum and performing c=c localization on phospholipid components in platycodon grandiflorum
CN115684414A (en) * 2022-11-01 2023-02-03 山西振东制药股份有限公司 Method for detecting lysolecithin in doxorubicin hydrochloride lipidosome injection and application
CN117233281A (en) * 2023-09-14 2023-12-15 上海奥锐特生物科技有限公司 Detection method of 2-cyanoethyl-N,N,N’,N’-tetraisopropylphosphoramidite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025009258A1 (en) * 2023-07-03 2025-01-09 株式会社島津製作所 Analysis method using lysophosphatidylcholine compound containing stable isotope element in choline moiety

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157993A (en) * 1986-12-23 1988-06-30 Nippon Oil & Fats Co Ltd Production of mixed acid-type 1,2-diacyl-3-glyceryl phosphatidylinositol
JPH05504351A (en) * 1990-02-09 1993-07-08 プライム ヨーロピアン セラピュティカルス エス.ピー.エイ Method for preparing L-α-glycerylphosphoryl-D-myo-inositol and its salts
JPH05213976A (en) * 1991-09-27 1993-08-24 Merck & Co Inc Antibacterial agent
JP2002510386A (en) * 1997-03-21 2002-04-02 アタイアジン テクノロジーズ,インコーポレーテッド Method for detecting cancer associated with changes in lysophospholipid concentration
WO2003087109A1 (en) * 2002-04-12 2003-10-23 Silbiotec Due S.A. Medicaments containing glycerophosphoinositol-4-phosphate derivatives
WO2006090711A1 (en) * 2005-02-22 2006-08-31 Fukuyama University Method of analyzing physiologically active lysophospholipid
JP2009530624A (en) * 2006-03-24 2009-08-27 フェノメノーム ディスカバリーズ インク Biomarker useful for diagnosing prostate cancer and method thereof
JP2014521949A (en) * 2011-07-28 2014-08-28 メタノミクス ゲーエムベーハー Means and methods for diagnosing and monitoring heart failure in a subject
JP2014523444A (en) * 2011-07-19 2014-09-11 エスティーシー. ユーエヌエム An intraperitoneally administered nanocarrier that releases a therapeutic load based on the inflammatory environment of the cancer
WO2014179424A2 (en) * 2013-05-02 2014-11-06 The Chancellor, Masters And Scholars Of The University Of Oxford Lipidomic biomarkers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201018124D0 (en) 2010-10-27 2010-12-08 Glaxo Group Ltd Polymorphs and salts

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157993A (en) * 1986-12-23 1988-06-30 Nippon Oil & Fats Co Ltd Production of mixed acid-type 1,2-diacyl-3-glyceryl phosphatidylinositol
JPH05504351A (en) * 1990-02-09 1993-07-08 プライム ヨーロピアン セラピュティカルス エス.ピー.エイ Method for preparing L-α-glycerylphosphoryl-D-myo-inositol and its salts
JPH05213976A (en) * 1991-09-27 1993-08-24 Merck & Co Inc Antibacterial agent
JP2002510386A (en) * 1997-03-21 2002-04-02 アタイアジン テクノロジーズ,インコーポレーテッド Method for detecting cancer associated with changes in lysophospholipid concentration
WO2003087109A1 (en) * 2002-04-12 2003-10-23 Silbiotec Due S.A. Medicaments containing glycerophosphoinositol-4-phosphate derivatives
WO2006090711A1 (en) * 2005-02-22 2006-08-31 Fukuyama University Method of analyzing physiologically active lysophospholipid
JP2009530624A (en) * 2006-03-24 2009-08-27 フェノメノーム ディスカバリーズ インク Biomarker useful for diagnosing prostate cancer and method thereof
JP2014523444A (en) * 2011-07-19 2014-09-11 エスティーシー. ユーエヌエム An intraperitoneally administered nanocarrier that releases a therapeutic load based on the inflammatory environment of the cancer
JP2014521949A (en) * 2011-07-28 2014-08-28 メタノミクス ゲーエムベーハー Means and methods for diagnosing and monitoring heart failure in a subject
WO2014179424A2 (en) * 2013-05-02 2014-11-06 The Chancellor, Masters And Scholars Of The University Of Oxford Lipidomic biomarkers

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL CHEMISTRY: "Innovation in Analytical Chemistry", ANALYTICAL CHEMISTRY, vol. 83, 2011, pages 6628 - 6634, XP055456020 *
JOURNAL OF CHROMATOGRAPHY A, vol. 1279, 2013, pages 98 - 107 *
KIELKOWSKA ANNA ET AL.: "A new approach to measuring phosphoinositides in cells by mass spectrometry", ADVANCES IN BIOLOGICAL REGULATION, vol. 54, 2014, pages 131 - 141, XP055456106 *
LIPIDS, vol. 22, no. 3, 1987, pages 144 - 147 *
RICHARD B. VAN BREEMEN ET AL.: "Identification of carrot inositol phospholipids by fats atom bombardment mass spectrometry", LIPIDS, vol. 25, no. 6, 1990, pages 328 - 334, XP055458022 *
WHEELER J J ET AL.: "Phosphorylation of lysophosphatidylinositol by carrot membranes", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1086, 1991, pages 310 - 316, XP027222693 *
YUICHIRO NISHIO ET AL.: "Quantification of Phosphatidylinositol 3,4,5-Trisphosphate by Liposome Lysis Assay with Specific Monoclonal Antibodies", ANALYTICAL BIOCHEMISTRY, vol. 285, 2000, pages 270 - 273, XP055456021 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424596A (en) * 2018-09-10 2021-02-26 株式会社岛津制作所 Method for separating phosphoinositide from biological membrane
US20210310999A1 (en) * 2018-09-10 2021-10-07 Shimadzu Corporation Biological membrane phosphoinositide separation method
US12117426B2 (en) * 2018-09-10 2024-10-15 Shimadzu Corporation Biological membrane phosphoinositide separation method
WO2022252443A1 (en) * 2021-05-31 2022-12-08 上海市食品药品检验研究院 Method for qualitatively analyzing phospholipid components in platycodon grandiflorum and performing c=c localization on phospholipid components in platycodon grandiflorum
CN115684414A (en) * 2022-11-01 2023-02-03 山西振东制药股份有限公司 Method for detecting lysolecithin in doxorubicin hydrochloride lipidosome injection and application
CN117233281A (en) * 2023-09-14 2023-12-15 上海奥锐特生物科技有限公司 Detection method of 2-cyanoethyl-N,N,N’,N’-tetraisopropylphosphoramidite

Also Published As

Publication number Publication date
JP2022118008A (en) 2022-08-12
JPWO2018016645A1 (en) 2019-06-13
JP7549306B2 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
JP2022118008A (en) Novel phospholipid and use thereof, and development of phospholipid separation measurement method
Meng et al. Simultaneous 3-nitrophenylhydrazine derivatization strategy of carbonyl, carboxyl and phosphoryl submetabolome for LC-MS/MS-based targeted metabolomics with improved sensitivity and coverage
Zemski Berry et al. MALDI imaging of lipid biochemistry in tissues by mass spectrometry
Kanagawa et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy
Xia et al. Multiple-omics techniques reveal the role of glycerophospholipid metabolic pathway in the response of Saccharomyces cerevisiae against hypoxic stress
Clark et al. Dictyostelium uses ether‐linked inositol phospholipids for intracellular signalling
Naguib et al. p53 mutations change phosphatidylinositol acyl chain composition
Li et al. Isomer selective comprehensive lipidomics analysis of phosphoinositides in biological samples by liquid chromatography with data independent acquisition tandem mass spectrometry
Dalmau et al. Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells
Dewulf et al. The synthesis of branched-chain fatty acids is limited by enzymatic decarboxylation of ethyl-and methylmalonyl-CoA
Guo et al. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA)
Scherer et al. Metabolism, function and mass spectrometric analysis of bis (monoacylglycero) phosphate and cardiolipin
EP3499232A1 (en) Method for the direct detection and/or quantification of at least one compound with a molecular weight of at least 200
Bollinger et al. Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry [S]
Kim et al. Quantitative structural characterization of phosphatidylinositol phosphates from biological samples
Wakelam et al. Lipidomic analysis of signaling pathways
Eylem et al. Gas chromatography-mass spectrometry based 18O stable isotope labeling of Krebs cycle intermediates
Lissina et al. A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis
Li et al. Isomer-selective analysis of inositol phosphates with differential isotope labelling by phosphate methylation using liquid chromatography with tandem mass spectrometry
Ghosh et al. A novel mass assay to measure phosphatidylinositol-5-phosphate from cells and tissues
McDonald et al. Approaches to lipid analysis
Liu et al. Facile synthesis of amino-functionalized magnetic materials for efficient enrichment of anionic metabolites from biological samples
Momchilova et al. Phosphatidylethanolamine and phosphatidylcholine are sources of diacylglycerol in ras-transformed NIH 3T3 fibroblasts
Schlame Assays of cardiolipin levels
CN106290336A (en) The analysis method of biologically effective phosphorus in algae and water plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831161

Country of ref document: EP

Kind code of ref document: A1