WO2018016642A1 - Transmitter, receiver, and program - Google Patents

Transmitter, receiver, and program Download PDF

Info

Publication number
WO2018016642A1
WO2018016642A1 PCT/JP2017/026533 JP2017026533W WO2018016642A1 WO 2018016642 A1 WO2018016642 A1 WO 2018016642A1 JP 2017026533 W JP2017026533 W JP 2017026533W WO 2018016642 A1 WO2018016642 A1 WO 2018016642A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information
unit
transmission
time
Prior art date
Application number
PCT/JP2017/026533
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 誠
葵 恋塚
悠貴 外園
諭拡 田代
博之 森川
壮太郎 大原
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2018528906A priority Critical patent/JP7051107B2/en
Publication of WO2018016642A1 publication Critical patent/WO2018016642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present invention relates to a transmission device, a reception device, and a program.
  • This application is based on US Patent Application No. 62 / 365,390 filed provisionally in the United States on July 22, 2016 and Japanese Patent Application No. 2017-42218 filed in Japan on March 6, 2017. Claim priority and incorporate the contents here.
  • An object of the present invention is to provide a transmission device, a reception device, and a program that saves the trouble of setting communication.
  • One embodiment of the present invention includes a frame time and a gap time of an imaging device using a rolling shutter method, a transmission time per packet of information that is configured by a plurality of packets and is transmitted to the imaging device, and a packet that configures the information
  • a transmission control unit that performs transmission control of the information according to the number of retransmissions based on the number of packets of the transmission, and a light emitting unit that transmits the information by emitting light with a light emission pattern based on transmission control by the transmission control unit Device.
  • the number of retransmissions is such that the number of packets is equal to or greater than a ratio of a product of the number of retransmissions and the transmission time and a sum of the gap time and the transmission time.
  • the frame time is less than or equal to the frame time.
  • the light emitting unit includes three or more light emitting elements, and at least one of the other light emitting elements is disposed on an arrangement axis on which at least two of the light emitting elements are disposed. It is a transmitter that has not been performed.
  • the packet includes identification information indicating whether the packet is a leading packet or a subordinate packet, and the information amount of the identification information indicating the subordinate packet among the identification information includes a leading packet.
  • This is a transmission device that is smaller than the information amount of the identification information indicating.
  • One embodiment of the present invention is a transmission device that includes a light receiving sensor that receives light, and starts transmitting information based on a blinking pattern of light captured by the light receiving sensor.
  • a frame time and a gap time of an imaging apparatus based on a rolling shutter method, a transmission time per packet of the information configured by a plurality of packets and transmitted to the imaging apparatus, and the information A transmission control unit that performs transmission control of the information based on the number of retransmissions based on the number of packets that constitutes the light emitting unit, and a light emitting unit that transmits the information by emitting light by a light emission pattern based on transmission control by the transmission control unit And a start / stop unit that starts or stops at least one of the transmission control unit, the light emitting unit, and the light receiving sensor based on a predetermined condition.
  • the predetermined condition is a time based on a blinking interval of light received by the light receiving sensor
  • the start / stop unit permits the light emission based on the predetermined condition.
  • the light emission permission unit is configured to start and stop the light emission based on a determination result of whether or not the light receiving sensor receives light during a period in which the activation stop unit activates the light emission permission unit. This is a transmission device that permits light emission of the unit.
  • the predetermined condition is a time based on a blinking interval of light received by the light receiving sensor
  • the start / stop unit permits the light emission based on the predetermined condition.
  • the light emission permission unit is configured to start and stop the light emission based on a determination result of whether or not the light receiving sensor receives light during a period in which the activation stop unit activates the light emission permission unit. This is a transmission device that permits light emission of the unit.
  • a transmission control unit that performs transmission control of information, a light emitting unit that transmits the information by emitting light with a light emission pattern based on transmission control by the transmission control unit, and light reception A light reception sensor, a reception state determination unit that determines a reception state of the information based on a light reception state of the light reception sensor, and a determination result determined by the reception state determination unit; And a retransmission control unit that retransmits information.
  • the information is transmitted for each segment composed of a plurality of packets, and the time taken to transmit the segment is the reception delay time of the segment of the imaging device and the imaging device. A time longer than the time required for switching between the light emitting state in which the light is emitted and the non-light emitting state in which the light is not emitted.
  • the transmission apparatus retransmits the previously transmitted segment as the information.
  • One embodiment of the present invention includes a transmission control unit that performs transmission control of information, and a light-emitting unit that transmits the information by emitting light according to a light emission pattern based on transmission control by the transmission control unit.
  • the control unit is a transmission device that emits a light emission pattern indicating that the transmission of the information is completed when the transmission of the information is completed.
  • the transmission control unit includes the frame information and the gap time of the imaging device based on a rolling shutter method, and a plurality of packets that are transmitted to the imaging device. It is a transmission apparatus which transmits by the number of retransmissions based on the transmission time per packet and the number of packets of the packets constituting the information.
  • an imaging unit using a rolling shutter system a frame time and a gap time of the imaging unit, a transmission time per packet of information configured by a plurality of packets, and the information are configured.
  • a light-emitting unit that transmits the information by a light-emission pattern based on the number of retransmissions based on the number of packets of the packet includes a decoding unit that decodes the information based on a light-emission pattern image captured by the imaging unit.
  • Another aspect of the present invention is a receiving device further comprising: a light emitting unit that emits light; and a light emission control unit that causes the light emitting unit to emit a light emission pattern according to a reception state of the information of the device itself. .
  • the decoding unit is a receiving device that decodes the information by acquiring a temporal change of a light emission pattern indicated by the light emission pattern image by using a plurality of scanning rows.
  • a frame time and a gap time of an imaging unit using a rolling shutter method a transmission time per packet of information configured by a plurality of packets, and a packet of the information configuring the information Based on the light emission pattern image acquired in the acquisition step, the light emission unit transmitting the information by the light emission pattern based on the number of retransmissions based on the number of packets acquires the light emission pattern image captured by the imaging unit And a decoding step for decoding the information.
  • FIG. 4 is a flowchart illustrating an example of an operation of the transmission apparatus according to the first embodiment. It is a figure which shows an example of the external appearance structure of the transmitter which concerns on 2nd Embodiment, and a receiver. It is a figure which shows an example of a structure of a transmitter and a receiver. It is a flowchart which shows an example of operation
  • LED-camera communication -IoT device construction-A small LED and sensor data visualization function can be implemented at a cost of about 100 yen-High functionality LED attached to home appliances-Not only simple internal information such as ON / OFF, but also error information and Sending detailed internal information such as response procedures using LEDs
  • Burst-like packet loss due to gap between frames ⁇ Burst-like packet loss occurs due to incapable imaging time (gap time) between frames ⁇ Communication between smartphone and LED control microcomputer is only unidirectional, so information is transmitted from LED only within frame time Impossible to do
  • a transmission apparatus comprising: a transmission control unit that performs transmission control of information; and a light emitting unit that transmits information by emitting light by a light emission pattern based on transmission control by the transmission control unit.
  • the number of retransmissions is based on a relational expression indicating that the number of packets is not less than the ratio of the product of the number of retransmissions and the transmission time and the sum of the gap time and the transmission time and not more than the ratio of the transmission time and the frame time.
  • the light emitting unit includes three or more light emitting elements, and at least one of the other light emitting elements is not disposed on the arrangement axis where at least two of the light emitting elements are disposed.
  • the packet includes identification information indicating whether the packet is the leading packet or the subordinate packet, and the amount of identification information indicating the subordinate packet out of the identification information is less than the amount of identification information indicating the leading packet. apparatus.
  • a receiving device comprising: a light emitting unit that transmits information using a pattern; and a decoding unit that decodes information based on a light emission pattern image captured by the image capturing unit.
  • the decoding unit is a receiving device that decodes information by acquiring a temporal change of a light emission pattern indicated by a light emission pattern image by using a plurality of scanning rows.
  • FIG. 1 is a diagram illustrating an example of communication using a rolling shutter phenomenon. As shown in FIG. 1, the smartphone captures 30 images per second.
  • the smartphone is an example of a receiving device or an imaging device.
  • the smartphone images the light from the light emitting unit 13 by a rolling shutter method.
  • the rolling shutter system is a system that generates a captured image by sequentially exposing a part of an image sensor (not shown).
  • the smartphone partially exposes every 100 ⁇ s. More specifically, the smartphone exposes the pixel row R1.
  • the light emitting unit 13 emits light. For this reason, white indicating that the light emitting unit 13 emits light is recorded in the pixel corresponding to the pixel row R1 in the captured image.
  • the smartphone exposes the pixel column R2 100 ⁇ s after imaging the pixel column R1.
  • the light emitting unit 13 is turned off. For this reason, black indicating that the light emitting unit 13 is turned off is recorded in the pixel corresponding to the pixel row R2 in the captured image.
  • the smartphone exposes the pixel row R3.
  • the light emitting unit 13 emits light.
  • white indicating that the light emitting unit 13 emits light is recorded in the pixel corresponding to the pixel row R3 in the captured image.
  • the smartphone sequentially exposes all the pixel columns of the image sensor. It is also referred to as one frame that the imaging device sequentially exposes the pixel rows to take one image.
  • a captured image captured by the smartphone is also referred to as a light emission pattern image.
  • the smartphone includes a decoding unit that decodes information based on the light emission pattern image.
  • the decoding unit performs decoding based on information in which predetermined pixel information and information to be decoded are associated with each other.
  • white and black included in the captured image are each one piece of information. More specifically, the decoding unit decodes white as 1 and black as 0. Note that the information decoded by the decoding unit is not limited to this.
  • the decoding unit may decode white as 0 and black as 1.
  • FIG. 2 is a diagram illustrating an example of packet loss.
  • the imaging device generates a captured image for each frame described above.
  • the time taken to image one frame is also referred to as a frame time.
  • a gap time is generated.
  • the gap time is a time during which imaging cannot be performed.
  • the imaging device cannot capture light from the light emitting unit during the gap time.
  • Information indicated by light emitted during the gap time is packet loss. Note that the frame time and the gap time have different lengths depending on the imaging device.
  • FIG. 3 is a diagram illustrating an example of a packet repetitive communication method.
  • the transmission device repeatedly transmits S times for each block composed of N packets.
  • N is an integer indicating the number of packets transmitted at a time.
  • S is an integer indicating the number of times of repeated transmission. The same applies to S in the following equations.
  • Expression (1) is a retransmission based on the frame time and gap time of the imaging device, the transmission time per packet of information configured by a plurality of packets and transmitted to the imaging device, and the number of packets of the packets constituting the information. This is an expression for deriving the number of times.
  • TF included in Equation (1) is the frame time of the imaging apparatus described above.
  • TG included in Equation (1) is the gap time of the above-described imaging device.
  • the TP included in Equation (1) is the time required to transmit one packet.
  • the packet count N is equal to or greater than the ratio of the product of the retransmission count N and the transmission time TP to the sum of the gap time TG and the transmission time TP, and the transmission time TP and the frame time. It is determined based on a relational expression indicating that the ratio is equal to or less than the ratio to TF.
  • This relational expression is the above-described expression (1).
  • the transmission device includes a transmission control unit. The transmission control unit performs transmission control of information by repeatedly transmitting N packets calculated from Equation (1) S times.
  • FIG. 4 is a diagram illustrating an example of a configuration of a sequenceless packet.
  • the packet includes identification information indicating whether the packet is the head packet or the subordinate packet.
  • the information amount of the identification information indicating the subordinate packet is smaller than the information amount of the identification information indicating the head packet.
  • a conventional packet is composed of a printable, a sequence portion, and a data portion.
  • information of Bsbit length is stored.
  • One bit can represent a binary value.
  • the binary values correspond to a state where the light emitting unit emits light and a state where the light emitting unit is turned off.
  • information on the BDbit length is stored.
  • A0 and A1 are also indicated as A when they are not distinguished.
  • B0 and B1 are also described as B.
  • Different types of blocks are identified by A and B. As an example, A is allocated to even-numbered blocks. B is assigned to an odd-numbered block.
  • A0 and B0 are not distinguished, they are also described as 0.
  • A1 and B1 are not distinguished, they are also described as 1.
  • the order of packets in the block is determined based on 0 and 1. As an example, the leading packet is set to 0. Further, the packet other than the head is set to 1.
  • FIG. 5 is a diagram illustrating an example of a communication range expansion method.
  • the light emitting unit illustrated in FIG. 5 includes a plurality of light emitting elements. Light from a plurality of light emitting elements is exposed in the pixel column direction of the imaging device.
  • the communication range expansion method is a method in which a light emitting unit is imaged as one captured image, and this captured image is selected as a demodulation point by scanning a plurality of columns.
  • the scan direction is a direction perpendicular to the pixel row of the rolling shutter system.
  • the decoding unit decodes the information by acquiring the temporal change of the light emission pattern indicated by the light emission pattern image by using a plurality of scan strings.
  • the smartphone sets a plurality of areas in the pixel column direction, and decodes information for each area.
  • a plurality of regions is an example of a scan row. This region is a region based on the arrangement of a plurality of light emitting elements to be imaged.
  • the smartphone exposes light from a plurality of light emitting elements corresponding to this region.
  • the smartphone decodes light from the light emitting element for each region. Thereby, the smart phone can decode more information based on the captured image in which the information from a several light emitting element was contained in one pixel row.
  • 5 (i) and 5 (iv) includes three or more light emitting elements, and at least one of the other light emitting elements is arranged on the arrangement axis on which at least two of the light emitting elements are arranged. It has not been.
  • the arrangement of the light emitting elements shown in FIGS. 5 (i) and 5 (iv) is also referred to as alternately arranging the light emitting elements. By arranging the light emitting elements alternately, the communicable range can be expanded while suppressing the communication error rate.
  • FIG. 6 is a diagram illustrating an example of the transmission apparatus according to the first embodiment and an IoT device that performs wireless communication.
  • An IoT device is a device that allows a plurality of objects to exchange information.
  • Conventional IoT devices using wireless communication have problems such as antennas for wireless communication and difficulty in operation.
  • the transmission device of the present embodiment only needs to include an LED that is a light emitting unit, and can reduce the size and cost of production. In the transmission device of the present embodiment, the LED emits visible light. Thereby, the smart phone which is a receiver can be held over the light which an operator can visually recognize. With this operation, the operator can intuitively acquire information from the receiving device.
  • FIG. 7 is a diagram illustrating a method for increasing the communication speed.
  • S that is the number of repeated transmissions of one block may be minimized.
  • this S is introduced into the above-described equation (1). It is calculated whether there exists N satisfying the formula (1) in which S is introduced. As described above, N is the number of packets constituting one block. When N satisfying the above-described equation (1) exists, the S is the number of repeated transmissions minimized. If there is no N satisfying the above-described expression (1), 1 is added to the value substituted for S until there is an N satisfying the expression (1), and whether there is an N satisfying the expression (1). calculate.
  • FIG. 8 is a diagram illustrating an example of evaluation results of the transmission device and the reception device according to the first embodiment.
  • FIG. 8 shows the result of evaluating a smartphone which is a seven-type receiving device.
  • FIG. 9 is a flowchart S1 illustrating an example of the operation of the transmission apparatus according to the first embodiment.
  • This transmission device includes a sensor, a transmission control unit, and a light emitting unit.
  • the sensor measures the surrounding environment.
  • the sensor generates measurement information indicating the measurement result.
  • the measurement information is an example of information.
  • the transmission control unit performs measurement information transmission control by the transmission method described above.
  • a light emission part transmits measurement information by light-emitting by the light emission pattern based on the transmission control by a transmission control part.
  • the transmission device acquires measurement information from the sensor (step S110).
  • the transmission control unit converts the measurement information acquired from the sensor into a plurality of packets (step S120).
  • the transmission control unit generates a light emission pattern based on the converted plurality of packets (step S130).
  • This light emission pattern is a light emission pattern based on the number of retransmissions based on the transmission time per packet and the number of packets constituting the measurement information.
  • the transmission control unit changes the light emission state of the light emitting unit based on the generated light emission pattern (step S140).
  • the transmission control unit determines whether or not the measurement information has been transmitted (step S150). If the transmission control unit has not finished transmitting the measurement information (step S150; NO), the transmission control unit reads the next light emission state from the generated light emission pattern (step S160). The transmission control unit changes the light emitting unit to the read light emission state.
  • the transmission device includes a light emitting unit and a transmission control unit.
  • the transmission control unit performs information transmission control based on the number of retransmissions described above for a plurality of packets.
  • the light emitting unit emits light with a light emission pattern based on transmission control of the transmission control unit.
  • the receiving device includes an imaging unit and a decoding unit.
  • the imaging unit images light from the transmission device as a light emission pattern by a rolling shutter method.
  • the decoding unit decodes information output from the transmission device based on the light emission pattern image.
  • the operator acquires information from the transmission device by imaging the transmission device using the imaging function of the reception device.
  • the transmission device and the reception device can save time and effort for setting communication.
  • the transmission device can transmit information by light from the light emitting unit, the transmission device is a small casing as compared with a transmission device that performs wireless communication. Since the transmission device is a small housing, the manufacturing cost can be suppressed.
  • the rolling shutter method has been described with respect to the method for exposing each pixel row, the present invention is not limited to this.
  • an image sensor that exposes each pixel row it may be recorded for each pixel column.
  • exposure may be sequentially performed for each pixel.
  • the smartphone may restore the information in the order of exposure by the rolling shutter system of the image sensor.
  • FIG. 10 is a diagram illustrating an example of an external configuration of the transmission device 10 and the reception device 20 according to the second embodiment.
  • the transmitting device 10 operates with power from a battery (not shown). In this example, the transmission device 10 starts transmitting information when receiving light.
  • the receiving device 20 acquires information transmitted from the transmitting device 10.
  • the transmission device 10 includes a light receiving unit 13 that receives light.
  • the light receiving unit 13 generates a light intensity signal indicating the intensity of the received light.
  • the transmission device 10 starts outputting information when the light receiving unit 13 receives light.
  • the transmission device 10 outputs measurement information measured by the sensor 14 by causing the light emitting unit 12 to emit light.
  • the receiving device 20 images the light emission pattern emitted from the light emitting unit 12 by the imaging unit 21 as a light emission pattern image.
  • the receiving device 20 decodes information based on the light emission pattern image.
  • the receiving device 20 displays the decoded information on the display unit 23.
  • FIG. 11 is a diagram illustrating an example of the configuration of the transmission device 10 and the reception device 20.
  • the transmission device 10 includes a sensor 14, a calculation unit 11, a light emitting unit 12, a light receiving unit 13, and a start / stop unit 15. As described above, the sensor 14 measures the surrounding environment. The sensor 14 outputs the measured information as measurement information to the calculation unit 11.
  • the calculation unit 11 includes a signal acquisition unit 114, a reception signal generation unit 113, a transmission determination unit 112, and a transmission control unit 111.
  • the signal acquisition unit 114, the reception signal generation unit 113, and the transmission determination unit 112 are examples of a light emission permission unit.
  • the signal acquisition unit 114 acquires a light intensity signal from the light receiving unit 13.
  • the signal acquisition unit 114 outputs the light intensity signal acquired from the light receiving unit 13 to the reception signal generation unit 113.
  • the reception signal generation unit 113 acquires the light intensity signal from the signal acquisition unit 114.
  • the received signal generation unit 113 stores the light intensity signals acquired from the signal acquisition unit 114 in the order of acquisition.
  • the acquired light intensity signals arranged in chronological order are also referred to as blinking patterns.
  • the reception signal generation unit 113 outputs the blink pattern to the transmission determination unit 112.
  • the transmission determination unit 112 permits the light emitting unit 12 to emit light when the light blinking pattern captured by the light receiving unit 13 is a predetermined blinking pattern. Specifically, the transmission determination unit 112 acquires a blinking pattern from the reception signal generation unit 113. The transmission determination unit 112 determines whether or not to transmit measurement information based on the blinking pattern acquired from the reception signal generation unit 113. In the following description, the result determined by the reception signal generation unit 113 is also referred to as a transmission determination result. The transmission determination unit 112 outputs the transmission determination result to the transmission control unit 111.
  • the transmission control unit 111 acquires measurement information from the sensor 14.
  • the transmission control unit 111 acquires a transmission determination result from the transmission determination unit 112.
  • the transmission control unit 111 includes the frame time and gap time of the receiving device 20 using the rolling shutter method, and information that is configured by a plurality of packets and transmitted to the receiving device 20.
  • Transmission control of the measurement information acquired from the sensor 14 is performed based on the number of retransmissions based on the transmission time per packet and the number of packets of the packets constituting the measurement information. In other words, the transmission control unit 111 controls the light emission state of the light emitting unit 12 by this transmission control.
  • the light emitting unit 12 emits light with a light emission pattern based on transmission control by the transmission control unit 111. In other words, the light emitting unit 12 performs the number of retransmissions based on the frame time and gap time of the imaging unit 21, the transmission time per packet of information composed of a plurality of packets, and the number of packets of the packets constituting the measurement information.
  • the measurement information is transmitted by the light emission pattern.
  • the light emitting unit 12 outputs measurement information based on the light emission pattern.
  • the start / stop unit 15 starts or stops at least one of the transmission control unit 111, the light emitting unit 12, and the light receiving unit 13 based on a predetermined condition.
  • the start / stop unit 15 starts or stops the calculation unit 11.
  • the predetermined condition which is a condition for the activation / stop unit 15 to activate or deactivate, is a time based on the blinking interval of light received by the light receiving sensor.
  • the predetermined condition includes at least one of a condition for elapse of time, a condition for determining whether or not the light receiving unit 13 receives light, and a condition for determining whether the blink pattern is a predetermined blink pattern.
  • the activation stop unit 15 activates the calculation unit 11 as a predetermined time elapses.
  • the start / stop unit 15 does not stop the calculation unit 11 under the time elapse condition.
  • the start / stop unit 15 stops the calculation unit 11 when it is determined that the transmission determination result of the transmission determination unit 112 is not transmitted.
  • the receiving device 20 includes an imaging unit 21, a decoding unit 22, a display unit 23, a light emission control unit 24, and a flash 25.
  • the imaging unit 21 captures an image using a rolling shutter method.
  • the decoding unit 22 decodes the measurement information based on the light emission pattern image.
  • the light emission pattern image is an image in which the light emitting unit 12 is imaged by the imaging unit 21.
  • the decoding unit 22 causes the display unit 23 to display the decoded measurement information.
  • the display unit 23 displays measurement information.
  • the light emission control unit 24 blinks the flash 25.
  • FIG. 12 is a flowchart S ⁇ b> 2 illustrating an example of the operation of the transmission device 10. Note that the processing procedure shown here is an example, and the processing procedure may be omitted or a processing procedure may be added.
  • the activation stop unit 15 activates the sensor 14 (step S210).
  • the activation stop unit 15 activates the calculation unit 11 (step S220).
  • the signal acquisition unit 114 acquires a light intensity signal from the sensor 14.
  • the signal acquisition unit 114 supplies the light intensity signal acquired from the sensor 14 to the reception signal generation unit 113.
  • the reception signal generation unit 113 acquires the light intensity signal from the signal acquisition unit 114.
  • the reception signal generation unit 113 generates a blinking pattern based on the light intensity signal acquired from the signal acquisition unit 114.
  • the reception signal generation unit 113 supplies the generated blinking pattern to the transmission determination unit 112.
  • the transmission determination unit 112 acquires a blinking pattern from the reception signal generation unit 113.
  • the transmission determination unit 112 performs transmission determination based on the blinking pattern acquired from the reception signal generation unit 113 (step S230).
  • the reception signal generator 113 determines whether or not the activation condition is satisfied (step S240).
  • step S240 When the predetermined condition is satisfied (step S240; YES), the reception signal generation unit 113 stops the start or stop operation of the start / stop unit 15 and executes the process of the flowchart S1.
  • step S240 If the predetermined condition is not satisfied (step S240; NO), the reception signal generation unit 113 causes the start / stop unit 15 to stop the operation of the calculation unit 11 (step S250).
  • the start / stop unit 15 does not process anything for a predetermined time (step S260).
  • the start / stop unit 15 repeats the processing from step S210 after a predetermined time has elapsed.
  • FIG. 13 is a diagram illustrating an example of the operation of the transmission determination unit 112.
  • FIG. 13A is a diagram in which the light emission states of the flash 25 are arranged in time series.
  • FIG. 13B is a diagram illustrating an example of a blinking pattern received by the light receiving unit 13.
  • the light emission state of the flash 25 is off from time t0 to time t1.
  • the light receiving unit 13 does not receive light from time t0 to time t1.
  • the start / stop unit 15 repeats starting and stopping of the calculation unit 11 eight times from time t0 to time t1.
  • the time interval Tsleep is an example of the predetermined time shown in step S260 described above.
  • the flash 25 emits light with the light emission pattern FPT1.
  • the light emission state of the flash 25 is a lighting state from time t1 to time t2.
  • the time during which the flash 25 is kept on is also referred to as a time interval Tflash.
  • the light receiving unit 13 receives light between time t1 and time t2.
  • the light emission state of the flash 25 is a lighting state from time t3 to time t4, from time t5 to time t6, and from time t7 to time t8.
  • the light receiving unit 13 receives light from time t3 to time t4, from time t5 to time t6, from time t7 to time t8, and from time t1 to time t2.
  • the light emission state of the flash 25 is off from time t2 to time t3.
  • the light receiving unit 13 does not receive light between time t2 and time t3.
  • the light emission state of the flash 25 is off from time t4 to time t5, from time t6 to time t7, and from time t7 to time t8.
  • the light receiving unit 13 does not receive light from time t4 to time t5, from time t6 to time t7, and from time t7 to time t8.
  • the blink pattern includes four consecutive blinks. Since the four consecutive blink patterns are the predetermined blink patterns, the transmission determination unit 112 permits the transmission control unit 111 to transmit. In other words, the transmission determination unit 112 permits the light emitting unit 12 to emit light because the light blinking pattern captured by the light receiving unit 13 is a predetermined blinking pattern. The transmission device 10 starts outputting measurement information.
  • FIG. 14 is a diagram illustrating an example of the operation of the start / stop unit 15 in which the stop time is controlled.
  • FIG. 14A is a diagram in which the light emission states of the flash 25 are arranged in time series.
  • FIG. 14B is a diagram illustrating an example of a blinking pattern received by the light receiving unit 13.
  • the transmission determining unit 112 emits light from the light emitting unit 12 based on the determination result of whether or not the light receiving unit 13 is receiving light during the period in which the activation stopping unit 15 activates the transmission determining unit 112. Allow. Specifically, the time interval Tsleep1 shown in FIG. 14B is longer than the above-described time interval Tsleep. This is because the start / stop unit 15 changes the time lapse condition, which is a predetermined condition of the start / stop unit 15, to a longer time lapse condition when the light receiving unit 13 continues to receive no light a plurality of times. It is because it is changed. The start / stop unit 15 is changed to a stop time of the time interval Tsleep2 when the light receiving unit 13 receives light. This time interval Tsleep2 is the same time as the time interval Tsleep described above.
  • the light emission state of the flash 25 is in the off state from time t20 to time t21.
  • the light receiving unit 13 does not receive light from time t20 to time t21.
  • the interval from time t20 to time t21 is the time interval Tsleep1 described above.
  • the start / stop unit 15 repeats starting and stopping of the calculation unit 11 three times from time t20 to time t23.
  • the flash 25 emits light with the light emission pattern FPT1 described above.
  • the light emission state of the flash 25 is a lighting state from time t23 to time t24.
  • the light emission state of the flash 25 is a lighting state from time t25 to time t26, from time t27 to time t28, and from time t29 to time t30.
  • the light emission state of the flash 25 is off from time t24 to time t25.
  • the light emission state of the flash 25 is a light-off state between time t26 and time t27 and between time t28 and time t29.
  • the light receiving unit 13 does not receive light from time t23 to time t24 because the calculation unit 11 is stopped.
  • the light receiving unit 13 does not receive light because the calculation unit 11 is stopped.
  • the light receiving unit 13 receives light from time t27 to time t28 and from time t29 to time t30, respectively.
  • the blinking included in the predetermined blinking pattern determined by the transmission determination unit 112 may be performed twice. Thereby, the frequency
  • the transmission device 10 may change the time elapse condition according to the light receiving state of the light receiving unit 13. Thereby, the transmission apparatus 10 can suppress power consumption more than the case where the conditions of time passage are not changed.
  • the transmission determination unit 112 may determine whether the light from the flash 25 is received or whether ambient light is received based on the intensity of light received by the light receiving unit 13. In this case, the blinking pattern only needs to include information indicating the intensity of light. Specifically, the transmission determining unit 112 compares the intensity of the light received immediately before with the latest received light intensity. More specifically, the transmission determining unit 112 receives the received light when the difference between the intensity of the previously received light and the intensity of the latest received light is higher than a predetermined threshold. It is determined that the light is from the device 20. The transmission determining unit 112 determines that the received light is the environmental light when the difference between the intensity of the light received immediately before and the intensity of the latest received light is lower than a predetermined threshold. judge.
  • the transmission determination unit 112 suppresses erroneous transmission due to ambient light. By suppressing erroneous transmission, the power consumption of the transmission device 10 can be further suppressed. Moreover, the transmission determination part 112 can suppress the frequency
  • the transmission device 10 includes a start / stop unit 15, a calculation unit 11, a light receiving unit 13, and a light emitting unit 12.
  • the calculation unit 11 includes a transmission control unit 111 and a transmission determination unit 112.
  • the start / stop unit 15 starts or stops the operation of the calculation unit 11 based on a predetermined condition.
  • the transmission determination unit 112 determines whether to transmit information based on the blinking pattern of light received by the light receiving unit 13 during activation.
  • the transmission control unit 111 starts light emission control of the light emitting unit 12 when the transmission determination unit 112 determines to transmit information.
  • the transmission apparatus 10 can suppress power consumption. Since the transmission device 10 can suppress power consumption, it can operate for a long period of time. Since the transmission apparatus 10 can operate for a long period of time, it can be set in a place where it is not necessary to acquire frequently measured information or a place where there is no existing wireless communication network.
  • the transmission determination unit 112 determines that transmission is performed in the case of a predetermined blinking pattern, but this is not essential.
  • the transmission determination unit 112 may determine to transmit even when the light receiving unit 13 receives light once.
  • the transmission determination unit 112 can suppress transmission by ambient light other than the flash 25 in the case where the transmission determination unit 112 determines that transmission is performed in the case of a predetermined blinking pattern. Thereby, the transmission apparatus 10 can suppress power consumption.
  • the start / stop unit 15 has been described to be configured to start or stop the calculation unit 11, but is not limited thereto.
  • the start / stop unit 15 may have a sleep function when the calculation unit is a microcomputer.
  • the sleep function is a function that alternately repeats starting and stopping of the microcomputer with a predetermined time interval.
  • the calculation unit 11 may include a start / stop unit 15.
  • the start / stop unit 15 has a sleep function, the number of components constituting the start / stop unit 15 can be reduced. For this reason, the transmitter 10 can be configured at low cost.
  • the start / stop unit 15 may be configured to switch the energization state of the light emitting unit 12. In the case of this configuration, the transmission device 10 can suppress the power consumed by the light emitting unit 12 emitting light.
  • the transmission apparatus 10 has been described with respect to the case where communication is performed by causing the light control unit 111 to control the light emitting unit 12 to blink the light, but is not limited thereto.
  • the transmission device 10 may transmit information to the reception device 20 by other methods such as wireless communication.
  • the transmission device 10 may include a light receiving sensor that receives light, and may be a transmission device that starts transmitting information based on a blinking pattern of light captured by the light receiving sensor.
  • the transmission device 10 is driven by a battery having a limited amount of power that can be used.
  • the transmission device 10 can suppress the amount of power used for detecting the blinking pattern of light by having a period in which the light receiving unit 13 receives light and a period in which light is not received.
  • FIG. 15 is a diagram illustrating an example of the configuration of the transmission device 10a according to the third embodiment.
  • the transmitting device 10a When receiving the light, the transmitting device 10a starts transmitting information.
  • the receiving device 20a acquires information transmitted from the transmitting device 10.
  • the transmission device 10a includes a light receiving unit 13 that receives light. When the light receiving unit 13 receives light, the transmission device 10a starts outputting information.
  • the transmission device 10a outputs measurement information measured by the sensor 14 by causing the light emitting unit 12 to emit light.
  • the receiving device 20a captures the light emission pattern emitted from the light emitting unit 12 by the imaging unit 21 as a light emission pattern image.
  • the receiving device 20a decodes information based on the light emission pattern image.
  • the receiving device 20a causes the flash 25 to emit a response pattern that is a light emission pattern corresponding to the decoded information.
  • the light receiving unit 13 receives the response pattern from the flash 25.
  • the transmission device 10a determines whether or not the transmitted measurement information has been received normally based on the received response pattern.
  • the transmission device 10a includes a calculation unit 11a.
  • the calculation unit 11a includes a transmission control unit 111a, a retransmission control unit 115, a reception state determination unit 116, and a signal acquisition unit 114.
  • the transmission control unit 111a acquires measurement information from the sensor 14.
  • the transmission control unit 111 includes a frame time and a gap time of the receiving device 20a using a rolling shutter method, a transmission time per packet of information configured by a plurality of packets and transmitted to the receiving device 20a, and a packet constituting measurement information
  • the transmission control of the measurement information acquired from the sensor 14 is performed based on the number of retransmissions based on the number of packets.
  • the transmission control unit 111a transmits information for each segment.
  • a segment is composed of a plurality of packets.
  • the transmission time of this segment includes the reception delay time of the segment of the receiving device 20a, the light emitting state in which the light of the flash 25 that emits light from the receiving device 20a is emitted, and the non-light emitting state in which no light is emitted. It is longer than the time required for switching.
  • the transmission control unit 111a acquires retransmission information from the retransmission control unit 115.
  • the retransmission information is a signal indicating a request for retransmission of a packet that has already been transmitted.
  • the reception state determination unit 116 determines the reception state of information of the reception device 20 a based on the light reception state of the light receiving unit 13. Specifically, the reception state determination unit 116 determines that the reception device 20a has received information when the light receiving unit 13 receives light. When the light receiving unit 13 is not receiving light, the reception state determination unit 116 determines that the receiving device 20a cannot receive information.
  • the retransmission control unit 115 causes the transmission control unit 111a to retransmit the segment based on the determination result determined by the reception state determination unit 116. Specifically, when the reception state determination unit 116 determines that the information has not been received, the retransmission control unit 115 sends retransmission information indicating packet retransmission to the transmission control unit 111a. Output.
  • the transmission control unit 111a When the transmission control unit 111a acquires a retransmission signal from the retransmission control unit 115, the transmission control unit 111a retransmits the previous segment.
  • the receiving device 20a includes an imaging unit 21, a decoding unit 22a, a display unit 23, a light emission control unit 24a, and a flash 25.
  • the decoding unit 22a decodes the measurement information based on the light emission pattern image.
  • the light emission pattern image is an image in which the light emitting unit 12 is imaged by the imaging unit 21.
  • the decoding unit 22a outputs decoding success information indicating that decoding is successful to the light emission control unit 24a.
  • the decoding unit 22a causes the display unit 23 to display the decoded measurement information.
  • the decoding unit 22a outputs decoding failure information indicating that the decoding has failed to the light emission control unit 24a.
  • the light emission control unit 24a causes the flash 25 to emit a light emission pattern corresponding to the reception state of the measurement information of the own device. Specifically, the light emission control unit 24a acquires decoding success information or decoding failure information from the decoding unit 22a. The light emission control unit 24a causes the flash 25 to emit light when the decoding success information is acquired. The light emission control unit 24a turns off the flash 25 when the decoding failure information is acquired.
  • FIG. 16 is a flowchart S3 illustrating an example of the operation of the transmission device 10a. Note that the processing procedure shown here is an example, and the processing procedure may be omitted or a processing procedure may be added.
  • the reception state determination unit 116 starts monitoring the reception state of the reception device 20a (step S310).
  • the receiving device 20a maintains the lighting state of the flash 25 when it is in a receivable state.
  • the transmission control unit 111a transmits the first segment (step S320).
  • the imaging unit 21 images the first segment.
  • the transmission control unit 111a transmits a second segment that is the next segment after the first segment (step S330).
  • the decoding unit 22a determines whether or not all the packets included in the first segment have been decoded.
  • the decoding unit 22a outputs decoding failure information to the light emission control unit 24a.
  • the light emission control unit 24a turns off the flash 25 when the decoding failure information is acquired.
  • the reception state determination unit 116 determines whether retransmission is necessary (step S340).
  • the retransmission control unit 115 When retransmission is necessary (step S340; YES), the retransmission control unit 115 outputs a retransmission signal to the transmission control unit 111a.
  • the transmission control unit 111a acquires a retransmission signal from the transmission control unit 111a.
  • the transmission control unit 111a transmits the first segment, which is the previous segment (step S350).
  • the transmission control unit 111a repeats step S330 to step S340. If re-transmission is not necessary (step S340; NO), the transmission control unit 111a determines whether or not transmission of all measurement information has been completed (step S360).
  • step S360 If transmission of all measurement information has not been completed (step S360; NO), the remaining segments are sequentially transmitted. If all the transmission of measurement information has been completed (step S360; YES), the reception state determination unit 116 ends the monitoring of the reception state of the reception device 20a (step S370).
  • FIG. 17 is a diagram illustrating an example of bidirectional communication between the transmission device 10a and the reception device 20a.
  • the transmission device 10a transmits the segment SEG120 between time t70 and time t71.
  • the segment SEG120 starts to be received by the receiving device 20a at time t80 and ends at time t81.
  • the decoding unit 22a decodes the packet included in the segment SEG120.
  • the decryption unit 22a turns off the flash 25 when the decryption fails.
  • the time interval TR is a reception delay time until the receiving device 20a receives the segment SEG120.
  • the time interval TFC is a time required for switching the light emission state of the receiving device 20a.
  • the time interval Tsensor shown in FIG. 17 is the time required for reading by the sensor 14.
  • the time interval Tc shown in FIG. 17 is a time required for the re-transmission control of the segment by the receiving device 20a.
  • the transmission device 10a transmits the segment SEG121 between time t72 and time t73.
  • the segment SEG 121 starts to be received by the receiving device 20a at time t82 and ends at time t84.
  • the transmission device 10a checks the light emission state of the flash 25.
  • the receiving device 20a turns off the flash 25 from time t83 to time t86.
  • the transmission device 10a confirms that the flash 25 is turned off while the segment SEG 121 is being transmitted.
  • the transmission device 10a retransmits the segment SEG120 in which the reception device 20a failed to decode between time t74 and time t75.
  • the receiving device 20a receives the retransmitted segment SEG120 between time t85 and time t87.
  • the transmitting apparatus 10a checks the reception state of the segment SEG 121 while retransmitting the segment SEG 120.
  • the transmitting apparatus 10a confirms the reception state of the segment SEG121 between time t86 and time t89.
  • the transmission device 10a transmits the segment SEG122 after the re-transmission of the segment SEG120.
  • the segment SEG 122 is transmitted from time t76 to time t77.
  • the receiving device 20a receives the segment SEG122 between time t88 and time t90.
  • the receiving device 20a performs communication by turning on the flash 25 when the packet included in the segment is successfully decoded and turning off the flash 25 when decoding of the packet included in the segment fails.
  • the method was explained.
  • environmental light which is light other than the flash 25 provided in the receiving device 20a, is disposed outdoors and is misrecognized as light indicating that the packet has been successfully decoded.
  • FIG. 18 is a diagram illustrating an example of second bidirectional communication between the transmission device 10a and the reception device 20a.
  • the receiving device 20a changes the lighting state of the flash 25 when the packet decoding is successful.
  • the receiving device 20a does not change the lighting state of the flash 25 when the packet decoding fails.
  • the lighting state of the flash 25 is a state where the flash 25 is turned on and a state where the flash 25 is turned off.
  • the operation other than changing the lighting state of the flash 25 according to the successful decoding of the packet and not changing the lighting state of the flash 25 when the packet decoding fails is the same operation as the above-described bidirectional communication.
  • the transmission device 10a transmits the segment SEG180 between time t180 and time t181.
  • the segment SEG 180 starts to be received by the receiving device 20a at time t190 and ends at time t191.
  • the decoding unit 22a decodes the packet included in the segment SEG180. Since the decoding unit 22a has successfully decoded the packet of the segment SEG180, the decoding unit 22a changes the lighting state of the flash 25 at time t193. In this example, the flash device 25 is turned on when the receiving device 20a starts decoding the segment SEG180. For this reason, since the receiving device 20a has successfully decoded the segment SEG180 packet, the receiving device 20a turns off the flash 25 at time t193.
  • the transmission device 10a transmits the segment SEG181 between time t182 and time t183.
  • the segment SEG181 is received by the receiving device 20a at time t192, and is ended at time t194.
  • the transmission device 10a determines whether the light receiving unit 13 is receiving light, thereby confirming the light emission state of the flash 25 of the transmission device 10a.
  • the receiving device 20a turns off the flash 25 from time t192 to time t194.
  • the reception state determination unit 116 determines that the segment SEG180, which is the previous segment, has been received by determining that the flash 25 is turned off during transmission of the segment SEG181.
  • the decoding unit 22a Upon receiving the segment SEG181, the decoding unit 22a decodes the packet included in the segment SEG181. Since the decoding unit 22a failed to decode the packet of the segment SEG181, the lighting state of the flash 25 is not changed at time t196. In this example, the flash device 25 is turned off at the time when the receiving device 20a starts decoding the segment SEG181. For this reason, the receiving device 20a does not change the lighting state of the flash 25 at time t195 because the decoding of the packet of the segment SEG181 has failed. In other words, the receiving device 20a keeps the flash 25 off at time t195.
  • the transmission device 10a transmits the segment SEG182 between time t184 and time t185.
  • the segment SEG182 starts to be received by the receiving device 20a at time t195 and ends at time t197.
  • the transmission device 10a determines whether the light receiving unit 13 is receiving light, thereby confirming the light emission state of the flash 25 of the transmission device 10a.
  • the receiving device 20a since decoding of the segment SEG 181 has failed, the receiving device 20a turns off the flash 25 from time t196 to time t199.
  • the reception state determination unit 116 determines that the segment SEG 181 has not been received by determining that the lighting state of the flash 25 remains off.
  • the decoding unit 22a Upon receiving the segment SEG182, the decoding unit 22a decodes the packet included in the segment SEG182. Since the decoding unit 22a has successfully decoded the packet of the segment SEG182, the decoding unit 22a changes the lighting state of the flash 25 at time t199. At the time when the receiving device 20a starts decoding the segment SEG182, the flash 25 is turned off. For this reason, since the receiving device 20a has successfully decoded the segment SEG182 packet, the receiving device 20a turns on the flash 25 at time t199.
  • the transmitting apparatus 10a retransmits the segment SEG181 in which the receiving apparatus 20a failed to decode between time t186 and time t187.
  • the receiving device 20a receives the retransmitted segment SEG181 between time t197 and time t19A. While retransmitting the segment SEG181, the transmission device 10a checks the reception status of the segment SEG182.
  • the transmission device 10a determines the reception state of the segment SEG182 between time t199 and time t19C.
  • the transmission device 10a determines that the segment SEG182 has been received by determining that the lighting state of the flash 25 has changed.
  • the transmission device 10a transmits the segment SEG183 after the re-transmission of the segment SEG181.
  • the segment SEG183 is transmitted from time t188 to time t189.
  • the receiving device 20a receives the segment SEG183 between time t19C and time t19D.
  • the receiving device 20a that performs the second two-way communication changes the lighting state of the flash 25 when successfully decoding the packet included in the segment, and decodes the packet included in the segment. If it fails, the lighting state of the flash 25 is not changed. By comprising in this way, it can suppress that the result of communication between the transmitter 10a and the receiver 20a is misrecognized by environmental light. Thereby, the transmission device 10a can stabilize communication with the reception device 20a.
  • the transmission device 10a may stop the segment transmission when it is determined that the packet decoding has failed a predetermined number of times.
  • the ambient light changes more irregularly than the change in the lighting state of the flash 25.
  • the transmitting device 10a has a shorter time than when determining that the packet has been successfully decoded by turning on the flash 25. You can stop sending segments. That is, when the position of the receiving device 20a moves and the segment cannot be received during the two-way communication, the transmitting device 10a can stop the segment transmission in a shorter time. Thereby, the transmission apparatus 10a can suppress consumption of the electric power of the battery with which the transmission apparatus 10a is provided.
  • the transmission device 10a includes the calculation unit 11a.
  • the computing unit 11a includes a transmission control unit 111a, a retransmission control unit 115, and a reception state determination unit 116.
  • the transmission device 10a transmits the segment without waiting for the delay of the reception device 20a.
  • the reception state determination unit 116 determines whether or not the reception device 20a has successfully received the segment based on the light reception state of the light receiving unit 13. If the result determined by the reception state determination unit 116 indicates that retransmission is necessary, the retransmission control unit 115 causes the transmission control unit 111a to retransmit the previous segment. Thereby, the transmission device 10a transmits information regardless of the reception state of the reception device 20a. Further, the transmission device 10a retransmits only the segments that the reception device 20a could not receive. Thereby, the transmission apparatus 10a can transmit information efficiently.
  • the transmission control unit 111a transmits the measurement information for each segment, but is not limited thereto.
  • the transmission control unit 111a may transmit measurement information for each packet.
  • the transmission control unit 111a has described the configuration for retransmitting the previously transmitted segment, but is not limited thereto.
  • the transmission control unit 111a may retransmit from the head segment of the information.
  • the transmission control unit 111 included in the transmission apparatuses of the second embodiment and the third embodiment includes information, which includes a frame time and a gap time of an imaging apparatus using a rolling shutter method, and a plurality of packets.
  • information which includes a frame time and a gap time of an imaging apparatus using a rolling shutter method, and a plurality of packets.
  • the transmission apparatuses from the first embodiment to the third embodiment described above may emit a light emission pattern indicating that the transmission of information is completed when the transmission of information is completed.
  • the receiving device ends the imaging based on the light emission pattern indicating that the transmission of information has ended. Thereby, the receiving device can determine that all the information from the transmitting device has been received.
  • information indicating that the transmission of information has been completed may be set in the above-described packet printable in the light emission pattern indicating that the transmission of information has been completed.
  • the program for realizing the functions of the arbitrary components in the transmission device, the reception device, the transmission device 10, the transmission device 10a, the reception device 20, and the reception device 20a described above is recorded on a computer-readable recording medium (memory).
  • the program may be recorded (stored) on a medium, and the program may be read into a computer system and executed.
  • the “computer system” here includes an operating system (OS) or hardware such as peripheral devices.
  • the “computer-readable recording medium” means a portable disk such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD (Compact Disc) -ROM, or a hard disk built in the computer system. Refers to the device.
  • the “computer-readable recording medium” means a volatile memory (RAM: Random Access) inside a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Memory that holds a program for a certain period of time, such as Memory).
  • RAM Random Access
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing a part of the functions described above.
  • the above program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

This transmitter is provided with: a transmission control unit that controls the transmission of information in accordance with the number of retransmissions based on a frame time and a gap time of a rolling shutter-type imaging device, a per packet transmission time of information that comprises multiple packets and is transmitted to the imaging device, and the number of packets constituting the information; and a light-emitting unit that transmits information by emitting light in an emission pattern based on transmission control performed by the transmission control unit.

Description

送信装置、受信装置及びプログラムTransmitting apparatus, receiving apparatus, and program
 本発明は、送信装置、受信装置及びプログラムに関する。
 本願は、2016年7月22日に、米国に仮出願された米国特許出願第62/365,390号及び、2017年3月6日に、日本に出願された特願2017-42218号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a transmission device, a reception device, and a program.
This application is based on US Patent Application No. 62 / 365,390 filed provisionally in the United States on July 22, 2016 and Japanese Patent Application No. 2017-42218 filed in Japan on March 6, 2017. Claim priority and incorporate the contents here.
 従来、複数の機器間を無線通信することにより情報をやりとりするシステムが知られている。 Conventionally, a system for exchanging information by wireless communication between a plurality of devices is known.
特開2016-129007号公報Japanese Unexamined Patent Publication No. 2016-129007
 従来は、センサが取得した情報を、無線通信することにより他の装置に送信する場合には、事前に機器間の通信の設定を行う必要があった。この通信の設定は、手間であった。
 本発明の課題は、通信の設定の手間を抑えた、送信装置、受信装置及びプログラムを提供することにある。
Conventionally, when information acquired by a sensor is transmitted to another device by wireless communication, it is necessary to set communication between devices in advance. This communication setting was troublesome.
An object of the present invention is to provide a transmission device, a reception device, and a program that saves the trouble of setting communication.
 本発明の一態様は、ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され前記撮像装置に送信される情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数によって、前記情報の送信制御を行う送信制御部と、前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部とを備える送信装置である。 One embodiment of the present invention includes a frame time and a gap time of an imaging device using a rolling shutter method, a transmission time per packet of information that is configured by a plurality of packets and is transmitted to the imaging device, and a packet that configures the information A transmission control unit that performs transmission control of the information according to the number of retransmissions based on the number of packets of the transmission, and a light emitting unit that transmits the information by emitting light with a light emission pattern based on transmission control by the transmission control unit Device.
 また、本発明の他の態様は、前記再送回数は、前記パケット数が、前記再送回数及び前記送信時間の積と前記ギャップ時間及び前記送信時間の和との比以上であり、かつ前記送信時間と前記フレーム時間との比以下であることを示す関係式に基づいて定められている送信装置である。 In another aspect of the present invention, the number of retransmissions is such that the number of packets is equal to or greater than a ratio of a product of the number of retransmissions and the transmission time and a sum of the gap time and the transmission time. And the frame time is less than or equal to the frame time.
 また、本発明の他の態様は、前記発光部は、3以上の発光素子を備え、前記発光素子のうち少なくとも2つが配置される配置軸線上に、他の前記発光素子のうち少なくとも1つが配置されていない送信装置である。 According to another aspect of the present invention, the light emitting unit includes three or more light emitting elements, and at least one of the other light emitting elements is disposed on an arrangement axis on which at least two of the light emitting elements are disposed. It is a transmitter that has not been performed.
 また、本発明の他の態様は、パケットには、当該パケットが先頭パケットか従属パケットかを示す識別情報が含まれ、前記識別情報のうち、従属パケットを示す識別情報の情報量が、先頭パケットを示す識別情報の情報量よりも少ない送信装置である。 According to another aspect of the present invention, the packet includes identification information indicating whether the packet is a leading packet or a subordinate packet, and the information amount of the identification information indicating the subordinate packet among the identification information includes a leading packet. This is a transmission device that is smaller than the information amount of the identification information indicating.
 本発明の一態様は、光を受光する受光センサを備え、前記受光センサがとらえた光の明滅パターンに基づいて、情報の送信を開始する送信装置である。 One embodiment of the present invention is a transmission device that includes a light receiving sensor that receives light, and starts transmitting information based on a blinking pattern of light captured by the light receiving sensor.
 また、本発明の他の態様は、ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され前記撮像装置に送信される前記情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数によって、前記情報の送信制御を行う送信制御部と、前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部と、前記送信制御部と前記発光部と前記受光センサとのうち少なくとも1つを所定の条件に基づいて起動又は停止させる前記起動停止部とを更に備える送信装置である。 According to another aspect of the present invention, a frame time and a gap time of an imaging apparatus based on a rolling shutter method, a transmission time per packet of the information configured by a plurality of packets and transmitted to the imaging apparatus, and the information A transmission control unit that performs transmission control of the information based on the number of retransmissions based on the number of packets that constitutes the light emitting unit, and a light emitting unit that transmits the information by emitting light by a light emission pattern based on transmission control by the transmission control unit And a start / stop unit that starts or stops at least one of the transmission control unit, the light emitting unit, and the light receiving sensor based on a predetermined condition.
 また、本発明の他の態様は、前記所定の条件とは、前記受光センサが受光する光の明滅間隔に基づく時間であって、前記起動停止部は、前記所定の条件に基づいて前記発光許可部を起動及び停止させ、前記発光許可部は、前記起動停止部が前記発光許可部を起動させている期間において前記受光センサが光を受光しているか否かの判定結果に基づいて、前記発光部の発光を許可する送信装置である。 According to another aspect of the present invention, the predetermined condition is a time based on a blinking interval of light received by the light receiving sensor, and the start / stop unit permits the light emission based on the predetermined condition. The light emission permission unit is configured to start and stop the light emission based on a determination result of whether or not the light receiving sensor receives light during a period in which the activation stop unit activates the light emission permission unit. This is a transmission device that permits light emission of the unit.
 また、本発明の他の態様は、前記所定の条件とは、前記受光センサが受光する光の明滅間隔に基づく時間であって、前記起動停止部は、前記所定の条件に基づいて前記発光許可部を起動及び停止させ、前記発光許可部は、前記起動停止部が前記発光許可部を起動させている期間において前記受光センサが光を受光しているか否かの判定結果に基づいて、前記発光部の発光を許可する送信装置である。 According to another aspect of the present invention, the predetermined condition is a time based on a blinking interval of light received by the light receiving sensor, and the start / stop unit permits the light emission based on the predetermined condition. The light emission permission unit is configured to start and stop the light emission based on a determination result of whether or not the light receiving sensor receives light during a period in which the activation stop unit activates the light emission permission unit. This is a transmission device that permits light emission of the unit.
 また、本発明の一態様は、情報の送信制御を行う送信制御部と、前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部と、光を受光する受光センサと、前記受光センサの受光の状態に基づいて、前記情報の受信の状態を判定する受信状態判定部と、前記受信状態判定部が判定した判定結果に基づいて、前記送信制御部に前記情報を再送信させる再送信制御部とを備える送信装置である。 According to another embodiment of the present invention, a transmission control unit that performs transmission control of information, a light emitting unit that transmits the information by emitting light with a light emission pattern based on transmission control by the transmission control unit, and light reception A light reception sensor, a reception state determination unit that determines a reception state of the information based on a light reception state of the light reception sensor, and a determination result determined by the reception state determination unit; And a retransmission control unit that retransmits information.
 また、本発明の他の態様は、前記情報は、複数のパケットによって構成されるセグメント毎に送信され、前記セグメントの送信にかかる時間は、撮像装置の前記セグメントの受信遅延時間と、前記撮像装置の光が発光される発光部の前記光が発光される発光状態と前記光が発光されない非発光状態との切り替えにかかる時間よりも長い時間であって、前記再送信制御部は、自装置が1つ前に送信したセグメントを前記情報として再送信させる送信装置である。 According to another aspect of the present invention, the information is transmitted for each segment composed of a plurality of packets, and the time taken to transmit the segment is the reception delay time of the segment of the imaging device and the imaging device. A time longer than the time required for switching between the light emitting state in which the light is emitted and the non-light emitting state in which the light is not emitted. The transmission apparatus retransmits the previously transmitted segment as the information.
 また、本発明の一態様は、情報の送信制御を行う送信制御部と、前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部とを備え、前記送信制御部は、前記情報の送信が終了した場合には、前記情報の送信が終了したことを示す発光パターンを発光させる送信装置である。 One embodiment of the present invention includes a transmission control unit that performs transmission control of information, and a light-emitting unit that transmits the information by emitting light according to a light emission pattern based on transmission control by the transmission control unit. The control unit is a transmission device that emits a light emission pattern indicating that the transmission of the information is completed when the transmission of the information is completed.
 また、本発明の他の態様は、前記送信制御部は、前記情報を、ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され前記撮像装置に送信される前記情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数によって送信する送信装置である。 According to another aspect of the present invention, the transmission control unit includes the frame information and the gap time of the imaging device based on a rolling shutter method, and a plurality of packets that are transmitted to the imaging device. It is a transmission apparatus which transmits by the number of retransmissions based on the transmission time per packet and the number of packets of the packets constituting the information.
 また、本発明の一態様は、ローリングシャッター方式による撮像部と、前記撮像部のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって前記情報を送信する発光部が前記撮像部によって撮像された発光パターン画像に基づいて、前記情報を復号する復号部とを備える受信装置である。 Further, according to one aspect of the present invention, an imaging unit using a rolling shutter system, a frame time and a gap time of the imaging unit, a transmission time per packet of information configured by a plurality of packets, and the information are configured. A light-emitting unit that transmits the information by a light-emission pattern based on the number of retransmissions based on the number of packets of the packet includes a decoding unit that decodes the information based on a light-emission pattern image captured by the imaging unit.
 また、本発明の他の態様は、光を発光する発光部と、自装置の前記情報の受信の状態に応じた発光パターンを前記発光部に発光させる発光制御部とを更に備える受信装置である。 Another aspect of the present invention is a receiving device further comprising: a light emitting unit that emits light; and a light emission control unit that causes the light emitting unit to emit a light emission pattern according to a reception state of the information of the device itself. .
 また、本発明の他の態様は、前記復号部は、前記発光パターン画像が示す発光パターンの経時変化を複数の走査列によって取得することにより前記情報を復号する受信装置である。 In another aspect of the present invention, the decoding unit is a receiving device that decodes the information by acquiring a temporal change of a light emission pattern indicated by the light emission pattern image by using a plurality of scanning rows.
 また、本発明の一態様は、コンピュータに、ローリングシャッター方式による撮像部のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって前記情報を送信する発光部が前記撮像部によって撮像された発光パターン画像を取得する取得ステップと、前記取得ステップにおいて取得される前記発光パターン画像に基づいて、前記情報を復号する復号ステップとを実行させるためのプログラムである。 Further, according to one embodiment of the present invention, a frame time and a gap time of an imaging unit using a rolling shutter method, a transmission time per packet of information configured by a plurality of packets, and a packet of the information configuring the information Based on the light emission pattern image acquired in the acquisition step, the light emission unit transmitting the information by the light emission pattern based on the number of retransmissions based on the number of packets acquires the light emission pattern image captured by the imaging unit And a decoding step for decoding the information.
 本発明によれば、通信の設定の手間を抑えた、送信装置、受信装置及びプログラムを提供することができる。 According to the present invention, it is possible to provide a transmission device, a reception device, and a program that saves the trouble of setting communication.
ローリングシャッター現象を利用した通信の一例を示す図である。It is a figure which shows an example of the communication using a rolling shutter phenomenon. パケットロスの一例を示す図である。It is a figure which shows an example of a packet loss. パケット繰り返し通信方式の一例を示す図である。It is a figure which shows an example of a packet repetition communication system. シーケンスレス化されたパケットの構成の一例を示す図である。It is a figure which shows an example of a structure of the packet made into sequenceless. 通信範囲拡大手法の一例を示す図である。It is a figure which shows an example of the communication range expansion method. 第1の実施形態にかかる送信装置と、無線通信するIoTデバイスとの一例を示す図である。It is a figure which shows an example of the transmission apparatus concerning 1st Embodiment, and the IoT device which communicates by radio | wireless. 信速度の高速化する方法を示す図である。It is a figure which shows the method of speeding up communication speed. 第1の実施形態の送信装置及び受信装置の評価結果の一例を示す図である。It is a figure which shows an example of the evaluation result of the transmitter of 1st Embodiment, and a receiver. 第1の実施形態に係る送信装置の動作の一例を示す流れ図である。4 is a flowchart illustrating an example of an operation of the transmission apparatus according to the first embodiment. 第2の実施形態に係る送信装置と、受信装置との外観構成の一例を示す図である。It is a figure which shows an example of the external appearance structure of the transmitter which concerns on 2nd Embodiment, and a receiver. 送信装置及び受信装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a transmitter and a receiver. 送信装置の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of a transmitter. 送信判定部の動作の一例を示す図である。It is a figure which shows an example of operation | movement of a transmission determination part. 停止時間が制御される起動停止部の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the starting stop part by which stop time is controlled. 第3の実施形態に係る送信装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the transmitter which concerns on 3rd Embodiment. 送信装置の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of a transmitter. 送信装置と受信装置との双方向通信の一例を示す図である。It is a figure which shows an example of the bidirectional | two-way communication with a transmitter and a receiver. 送信装置と受信装置との第2の双方向通信の一例を示す図である。It is a figure which shows an example of the 2nd bidirectional | two-way communication with a transmitter and a receiver.
[第1の実施形態]
 以下、図面を参照して、本発明に係るLED(light emitting diode)-カメラ間通信におけるフレーム間ロスに対処したパケット繰り返し送信方式について説明する。LEDとは、発光部の一例である。
[First Embodiment]
Hereinafter, with reference to the drawings, a description will be given of a packet repetitive transmission method for dealing with an interframe loss in LED (light emitting diode) -camera communication according to the present invention. The LED is an example of a light emitting unit.
[あらまし]
 筆者らは,ディスプレイを持たないデバイスの内部情報取得手段として,スマートフォン向けLED-カメラ間通信の研究を進めている.LEDにスマートフォンカメラをかざして情報取得を行う本通信は,デバイスに元々付属するLEDに通信機能を持たせることによる「低コスト・省スペース性」,目に見える光にスマートフォンをかざし1対1の通信を行う「直感性」に優れている.ローリングシャッター現象を利用し,1枚1枚の撮影フレームから多ビット情報を読みだすLED-カメラ間通信では,ギャップ時間と呼ばれるフレーム間に存在する撮像不能な時間により,バースト的パケットロスが発生することが課題となる.また,スマートフォンの機種によってギャップ時間の長さが異なるため,機種に依存しない対応策が求められる.本稿では,パケットロスのバースト性に着目したパケット繰り返し送信によって,データロスのない通信が実現できることを示すとともに,繰り返し送信回数などのパラメータ設定が同一設定で多機種に対応可能なことを示す.
[Summary]
The authors are researching LED-camera communication for smartphones as a means of acquiring internal information for devices that do not have a display. This communication, in which information is obtained by holding a smartphone camera over an LED, is a “one-to-one” method that provides low-cost and space-saving by providing a communication function to the LED originally attached to the device. Excellent “intuition” for communication. In the LED-camera communication that reads out multi-bit information from each shooting frame using the rolling shutter phenomenon, bursty packet loss occurs due to the non-imaging time that exists between frames called gap time. Is a problem. In addition, since the length of the gap time varies depending on the model of the smartphone, a countermeasure that does not depend on the model is required. In this paper, we show that communication without data loss can be realized by packet repetitive transmission focusing on the burstiness of packet loss, and that it is possible to support multiple models with the same setting of parameter settings such as the number of repetitive transmissions.
[キーワード]
 スマートフォン向けLED-カメラ間通信,ローリングシャッター現象,可視光通信
[keyword]
LED-camera communication for smartphones, rolling shutter phenomenon, visible light communication
[IoTデバイスとスマートフォンとの通信]
・無線を用いた通信
 - NFC:アンテナサイズの面から小型化が困難
 - BLEやWi-Fi:直感性の欠如
・LED-カメラ間通信
 - モノ側にはLEDのみがあればよく,小型化・低コスト化が容易
 - 目に見える光にスマートフォンをかざす直感性
[Communication between IoT device and smartphone]
・ Communication using wireless-NFC: Difficult to downsize due to antenna size-BLE and Wi-Fi: Lack of intuition-Communication between LED and camera-Only the LED needs to be on the mono side, downsizing Easy to reduce costs-Intuition to hold your smartphone over visible light
[LED-カメラ間通信のユースケース]
・IoTデバイス構築
 - 小型LEDで,センサデータの可視化機能を100円程度のコストで実装
・家電機器に付属するLEDの高機能化
 - ON/OFFなどの簡単な内部情報だけでなく,エラー情報や対応手順などの詳細な内部情報を,LEDを使って発信
[Use case of LED-camera communication]
-IoT device construction-A small LED and sensor data visualization function can be implemented at a cost of about 100 yen-High functionality LED attached to home appliances-Not only simple internal information such as ON / OFF, but also error information and Sending detailed internal information such as response procedures using LEDs
[ローリングシャッター現象を利用した通信]
・スマートフォンは1秒間に30枚のフレーム(画像)を撮影ローリングシャッター現象・フレーム中のピクセルはピクセル列ごとに露光
・LED点滅情報をフレーム中の縞模様に反映
・専用のフォトダイオードなしで高速な通信が可能
[Communication using the rolling shutter phenomenon]
・ Smartphone captures 30 frames (images) per second Rolling shutter phenomenon ・ Pixels in the frame are exposed for each pixel row ・ LED blinking information is reflected in the stripe pattern in the frame ・ High speed without a dedicated photodiode Communication is possible
[課題:フレーム間ギャップによるバースト的パケットロス]
・フレーム間に存在する撮像不能時間(ギャップ時間)により,バースト的パケットロスが発生
・スマートフォン・LED制御用マイコン間の通信は片方向のみであるため,同期しフレーム時間内のみLEDから情報を発信することは不可能
[Problem: Burst-like packet loss due to gap between frames]
・ Burst-like packet loss occurs due to incapable imaging time (gap time) between frames ・ Communication between smartphone and LED control microcomputer is only unidirectional, so information is transmitted from LED only within frame time Impossible to do
[パケット繰り返し送信方式]
・Nパケットで構成されるブロックごとにS回繰り返し送信
TF:フレーム時間, TG:ギャップ時間, TS:フレーム時間, TP:1パケット時間→フレーム間ギャップによるデータロスを効率的に防ぐためのN,Sの設定方法を導出
[Repeated packet transmission method]
Repeated transmission S times for each block composed of N packets TF: Frame time, TG: Gap time, TS: Frame time, TP: 1 packet time → N to efficiently prevent data loss due to gap between frames, Derived S setting method
[実装評価]
・送信機
 - 5mm 白色LED,ATtiny10
・受信機
 - ASUS(登録商標) ZenFone(登録商標) 2 Laser ZE601KL (Android(登録商標))
・ パラメータ設定
 - TP=2.78ms,N=6,S=2
・結果
 - 通信速度1.44kbpsのロスなし通信を実現
[Implementation evaluation]
・ Transmitter-5mm white LED, ATtiny10
Receiver-ASUS (registered trademark) ZenFone (registered trademark) 2 Laser ZE601KL (Android (registered trademark))
-Parameter setting-TP = 2.78 ms, N = 6, S = 2
・ Results-Realize lossless communication at a communication speed of 1.44 kbps.
[まとめ]
・「小型・低コスト」,「直感的」なLED-スマートフォン間通信の設計
・フレーム間ギャップによるパケットロス対策に向けたパケット繰り返し送信
・直径5mmの白色LEDとATtiny10による省資源実装で,パケットロス無しで1.44kbpsのスループットを達成可能なことを実証
[Summary]
・ “Compact, low cost”, “intuitive” LED-smartphone design ・ Packet repetitive transmission for packet loss countermeasures due to gap between frames ・ Packet loss with resource saving implementation by white LED of 5mm diameter and ATtiny10 Demonstrated that 1.44 kbps throughput can be achieved without
 ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され撮像装置に送信される情報の1パケットあたりの送信時間と、情報を構成するパケットのパケット数とに基づく再送回数によって、情報の送信制御を行う送信制御部と、送信制御部による送信制御に基づく発光パターンによって発光することにより、情報を送信する発光部とを備える送信装置。 According to the number of retransmissions based on the frame time and gap time of the imaging device based on the rolling shutter method, the transmission time per packet of information configured by a plurality of packets and transmitted to the imaging device, and the number of packets of packets constituting the information A transmission apparatus comprising: a transmission control unit that performs transmission control of information; and a light emitting unit that transmits information by emitting light by a light emission pattern based on transmission control by the transmission control unit.
 再送回数は、パケット数が、再送回数及び送信時間の積とギャップ時間及び送信時間の和との比以上であり、かつ送信時間とフレーム時間との比以下であることを示す関係式に基づいて定められている送信装置。 The number of retransmissions is based on a relational expression indicating that the number of packets is not less than the ratio of the product of the number of retransmissions and the transmission time and the sum of the gap time and the transmission time and not more than the ratio of the transmission time and the frame time. Specified transmitter.
 発光部は、3以上の発光素子を備え、発光素子のうち少なくとも2つが配置される配置軸線上に、他の発光素子のうち少なくとも1つが配置されていない送信装置。 The light emitting unit includes three or more light emitting elements, and at least one of the other light emitting elements is not disposed on the arrangement axis where at least two of the light emitting elements are disposed.
 パケットには、当該パケットが先頭パケットか従属パケットかを示す識別情報が含まれ、識別情報のうち、従属パケットを示す識別情報の情報量が、先頭パケットを示す識別情報の情報量よりも少ない送信装置。 The packet includes identification information indicating whether the packet is the leading packet or the subordinate packet, and the amount of identification information indicating the subordinate packet out of the identification information is less than the amount of identification information indicating the leading packet. apparatus.
 ローリングシャッター方式による撮像部と、撮像部のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって情報を送信する発光部が撮像部によって撮像された発光パターン画像に基づいて、情報を復号する復号部と を備える受信装置。 Light emission by the number of retransmissions based on an imaging unit using a rolling shutter system, a frame time and a gap time of the imaging unit, a transmission time per packet of information composed of a plurality of packets, and the number of packets of packets constituting the information A receiving device comprising: a light emitting unit that transmits information using a pattern; and a decoding unit that decodes information based on a light emission pattern image captured by the image capturing unit.
復号部は、発光パターン画像が示す発光パターンの経時変化を複数の走査列によって取得することにより情報を復号する受信装置。 The decoding unit is a receiving device that decodes information by acquiring a temporal change of a light emission pattern indicated by a light emission pattern image by using a plurality of scanning rows.
 コンピュータに、ローリングシャッター方式による撮像部のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって情報を送信する発光部が撮像部によって撮像された発光パターン画像を取得する取得ステップと、取得ステップにおいて取得される発光パターン画像に基づいて、情報を復号する復号ステップとを実行させるためのプログラム。 A light emission pattern based on the number of retransmissions based on the frame time and gap time of the imaging unit using a rolling shutter system, the transmission time per packet of information composed of a plurality of packets, and the number of packets of packets constituting the information. A program for causing a light emitting unit that transmits information to acquire a light emission pattern image captured by the imaging unit, and a decoding step for decoding information based on the light emission pattern image acquired in the acquisition step .
[ローリングシャッターについて]
 図1は、ローリングシャッター現象を利用した通信の一例を示す図である。
 図1に示すように、スマートフォンは、1秒間に30枚の画像を撮像する。ここで、スマートフォンとは、受信装置又は撮像装置の一例である。
[About rolling shutter]
FIG. 1 is a diagram illustrating an example of communication using a rolling shutter phenomenon.
As shown in FIG. 1, the smartphone captures 30 images per second. Here, the smartphone is an example of a receiving device or an imaging device.
 スマートフォンは、発光部13からの光をローリングシャッター方式によって撮像する。ローリングシャッター方式とは、不図示の撮像素子のうちの一部分を、順次露光させることにより、撮像画像を生成する方式である。この一例では、スマートフォンは、100μsごとに、一部分露光する。より具体的には、スマートフォンは、ピクセル列R1を露光する。このピクセル列R1が露光されているときは、発光部13は発光している。このため、撮像画像のうち、ピクセル列R1に対応する画素には、発光部13が発光したことを示す白色が記録される。 The smartphone images the light from the light emitting unit 13 by a rolling shutter method. The rolling shutter system is a system that generates a captured image by sequentially exposing a part of an image sensor (not shown). In this example, the smartphone partially exposes every 100 μs. More specifically, the smartphone exposes the pixel row R1. When the pixel row R1 is exposed, the light emitting unit 13 emits light. For this reason, white indicating that the light emitting unit 13 emits light is recorded in the pixel corresponding to the pixel row R1 in the captured image.
 次に、ピクセル列R1を撮像した100μs後に、スマートフォンは、ピクセル列R2を露光する。このピクセル列R2が露光されているときは、発光部13は消灯している。
このため、撮像画像のうち、ピクセル列R2に対応する画素には、発光部13が消灯したことを示す黒色が記録される。
Next, the smartphone exposes the pixel column R2 100 μs after imaging the pixel column R1. When the pixel row R2 is exposed, the light emitting unit 13 is turned off.
For this reason, black indicating that the light emitting unit 13 is turned off is recorded in the pixel corresponding to the pixel row R2 in the captured image.
 次に、ピクセル列R3を撮像した100μs後に、スマートフォンは、ピクセル列R3を露光する。このピクセル列R3が露光されているときは、発光部13は発光している。
このため、撮像画像のうち、ピクセル列R3に対応する画素には、発光部13が発光したことを示す白色が記録される。同様に、スマートフォンは、撮像素子の全てのピクセル列について、順次露光する。撮像装置がピクセル列を順次露光して1枚の画像を撮影することを、1フレームとも記載する。このスマートフォンが撮像した撮像画像を、発光パターン画像とも記載する。スマートフォンは、この発光パターン画像に基づいて、情報を復号する復号部を備える。具体的には、復号部は、予め定められた画素の情報と復号する情報とがそれぞれ対応付けられた情報に基づいて復号する。この一例では、撮像画像に含まれる白色と黒色とが、それぞれ1つの情報である。より具体的には、復号部は、白色を1と復号し、黒色を0と復号する。なお、復号部が復号する情報は、これに限られない。復号部は、白色を0と復号してもよく、黒色を1と復号してもよい。
Next, after 100 μs of imaging the pixel row R3, the smartphone exposes the pixel row R3. When the pixel row R3 is exposed, the light emitting unit 13 emits light.
For this reason, white indicating that the light emitting unit 13 emits light is recorded in the pixel corresponding to the pixel row R3 in the captured image. Similarly, the smartphone sequentially exposes all the pixel columns of the image sensor. It is also referred to as one frame that the imaging device sequentially exposes the pixel rows to take one image. A captured image captured by the smartphone is also referred to as a light emission pattern image. The smartphone includes a decoding unit that decodes information based on the light emission pattern image. Specifically, the decoding unit performs decoding based on information in which predetermined pixel information and information to be decoded are associated with each other. In this example, white and black included in the captured image are each one piece of information. More specifically, the decoding unit decodes white as 1 and black as 0. Note that the information decoded by the decoding unit is not limited to this. The decoding unit may decode white as 0 and black as 1.
[パケットロスの一例]
 次に、図2を参照して、パケットロスの一例について説明する。
 図2は、パケットロスの一例を示す図である。
 撮像装置は、上述したフレーム単位で撮像画像を生成する。この1フレームの撮像にかかる時間を、フレーム時間とも記載する。撮像装置が1フレーム撮像すると、ギャップ時間が生じる。ギャップ時間とは、撮像が出来ない時間のことである。撮像装置は、ギャップ時間の間には、発光部からの光を撮像することができない。このギャップ時間の間に発光された光が示す情報が、パケットロスである。なお、フレーム時間及びギャップ時間は、撮像装置によって長さがそれぞれ異なる。
[Example of packet loss]
Next, an example of packet loss will be described with reference to FIG.
FIG. 2 is a diagram illustrating an example of packet loss.
The imaging device generates a captured image for each frame described above. The time taken to image one frame is also referred to as a frame time. When the imaging device captures one frame, a gap time is generated. The gap time is a time during which imaging cannot be performed. The imaging device cannot capture light from the light emitting unit during the gap time. Information indicated by light emitted during the gap time is packet loss. Note that the frame time and the gap time have different lengths depending on the imaging device.
[パケット繰り返し通信方式の一例]
 次に、図3を参照して、パケット繰り返し通信方式について説明する。
 図3は、パケット繰り返し通信方式の一例を示す図である。
 送信装置は、Nパケットで構成されるブロックごとにS回繰り返し送信する。ここで、フレーム間ギャップによるデータロスを効率的に防ぐためのN及びSの設定方法を導出する方法について説明する。Nとは、一度に送信するパケットの数を示す整数である。以下の説明の数式におけるNも同様である。Sとは、繰り返し送信する回数を示す整数である。以下の数式におけるSも同様である。
[Example of packet repeat communication method]
Next, referring to FIG. 3, the packet repetitive communication method will be described.
FIG. 3 is a diagram illustrating an example of a packet repetitive communication method.
The transmission device repeatedly transmits S times for each block composed of N packets. Here, a method for deriving a method for setting N and S for efficiently preventing data loss due to an inter-frame gap will be described. N is an integer indicating the number of packets transmitted at a time. The same applies to N in the mathematical expressions described below. S is an integer indicating the number of times of repeated transmission. The same applies to S in the following equations.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)は、撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され撮像装置に送信される情報の1パケットあたりの送信時間と、情報を構成するパケットのパケット数とに基づく再送回数を導出した式である。ここで、式(1)に含まれるTFとは、上述した撮像装置のフレーム時間である。式(1)に含まれるTGとは、上述した撮像装置のギャップ時間である。式(1)に含まれるTPとは、1パケットを送信するのに要する時間である。 Expression (1) is a retransmission based on the frame time and gap time of the imaging device, the transmission time per packet of information configured by a plurality of packets and transmitted to the imaging device, and the number of packets of the packets constituting the information. This is an expression for deriving the number of times. Here, TF included in Equation (1) is the frame time of the imaging apparatus described above. TG included in Equation (1) is the gap time of the above-described imaging device. The TP included in Equation (1) is the time required to transmit one packet.
 より具体的には、この再送回数Sは、パケット数Nが、再送回数N及び送信時間TPの積とギャップ時間TG及び送信時間TPの和との比以上であり、かつ送信時間TPとフレーム時間TFとの比以下であることを示す関係式に基づいて定められている。この関係式とは、上述した式(1)である。
 送信装置は、送信制御部を備える。送信制御部は、式(1)から算出されるNパケットを、S回繰り返し送信することにより、情報の送信制御を行う。
More specifically, in this retransmission count S, the packet count N is equal to or greater than the ratio of the product of the retransmission count N and the transmission time TP to the sum of the gap time TG and the transmission time TP, and the transmission time TP and the frame time. It is determined based on a relational expression indicating that the ratio is equal to or less than the ratio to TF. This relational expression is the above-described expression (1).
The transmission device includes a transmission control unit. The transmission control unit performs transmission control of information by repeatedly transmitting N packets calculated from Equation (1) S times.
[シーケンスレス化されたパケットの一例]
 次に、図4を参照して、パケットのシーケンスレス化について説明する。
 図4は、シーケンスレス化されたパケットの構成の一例を示す図である。
[An example of a sequenceless packet]
Next, referring to FIG. 4, the sequencelessness of the packet will be described.
FIG. 4 is a diagram illustrating an example of a configuration of a sequenceless packet.
 この一例では、パケットには、当該パケットが先頭パケットか従属パケットかを示す識別情報が含まれる。この識別情報のうち、従属パケットを示す識別情報の情報量が、先頭パケットを示す識別情報の情報量よりも少ない。具体的には、従来のパケットは、プリンアブルと、シーケンス部と、データ部とによって構成される。このシーケンス部には、Bsbit長の情報が記憶される。1bitは、2値を表現することができる。また、この2値が、それぞれ、発光部が発光した状態と、発光部が消灯した状態とに対応する。データ部には、BDbit長の情報が記憶される。 In this example, the packet includes identification information indicating whether the packet is the head packet or the subordinate packet. Of this identification information, the information amount of the identification information indicating the subordinate packet is smaller than the information amount of the identification information indicating the head packet. Specifically, a conventional packet is composed of a printable, a sequence portion, and a data portion. In this sequence part, information of Bsbit length is stored. One bit can represent a binary value. The binary values correspond to a state where the light emitting unit emits light and a state where the light emitting unit is turned off. In the data part, information on the BDbit length is stored.
 シーケンスレス化されたパケットには、プリンアブルに、A0、A1、B0、B1の4種類のプリンアブルが設定される。以下の説明では、A0及びA1のことを区別しない場合には、Aとも記載する。以下の説明では、B0及びB1のことを区別しない場合には、Bとも記載する。このAとBとによって、異なる種類のブロックを識別する。一例として、Aは偶数番号のブロックに割り振られる。また、Bは、奇数番号のブロックに割り振られる。以下の説明では、A0及びB0を区別しない場合には、0とも記載する。A1及びB1を区別しない場合には、1とも記載する。この0と、1とによって、ブロック内におけるパケットの順番を判別する。一例として、先頭のパケットを0とする。また、先頭以外のパケットを1とする。 In the sequenceless packet, four types of printables A0, A1, B0, and B1 are set as printables. In the following description, A0 and A1 are also indicated as A when they are not distinguished. In the following description, when B0 and B1 are not distinguished, they are also described as B. Different types of blocks are identified by A and B. As an example, A is allocated to even-numbered blocks. B is assigned to an odd-numbered block. In the following description, when A0 and B0 are not distinguished, they are also described as 0. When A1 and B1 are not distinguished, they are also described as 1. The order of packets in the block is determined based on 0 and 1. As an example, the leading packet is set to 0. Further, the packet other than the head is set to 1.
[通信可能範囲拡大手法]
 次に、図5を参照して、通信範囲拡大手法について説明する。
 図5は、通信範囲拡大手法の一例を示す図である。
 図5に示す発光部には、複数の発光素子が含まれる。撮像装置のピクセル列方向には、複数の発光素子からの光が露光される。通信範囲拡大の手法とは、発光部を1つの撮像画像として撮像し、この撮像画像を複数列スキャンによって復調点選択する方法である。スキャン方向とは、ローリングシャッター方式のピクセル列と垂直の方向である。復号部は、発光パターン画像が示す発光パターンの経時変化を複数の走査列によって取得することにより情報を復号する。具体的には、スマートフォンは、ピクセル列の方向に複数の領域を設定し、この領域毎に情報を復号する。複数の領域とは、走査列の一例である。この領域は、撮像される複数の発光素子の配置に基づく領域である。スマートフォンは、この領域と対応する複数の発光素子からの光を露光する。スマートフォンは、領域毎に発光素子からの光を復号する。これにより、スマートフォンは、1つのピクセル列に複数の発光素子からの情報が含まれた撮像画像に基づいてより多くの情報を復号することができる。
[Communication range expansion method]
Next, a communication range expansion method will be described with reference to FIG.
FIG. 5 is a diagram illustrating an example of a communication range expansion method.
The light emitting unit illustrated in FIG. 5 includes a plurality of light emitting elements. Light from a plurality of light emitting elements is exposed in the pixel column direction of the imaging device. The communication range expansion method is a method in which a light emitting unit is imaged as one captured image, and this captured image is selected as a demodulation point by scanning a plurality of columns. The scan direction is a direction perpendicular to the pixel row of the rolling shutter system. The decoding unit decodes the information by acquiring the temporal change of the light emission pattern indicated by the light emission pattern image by using a plurality of scan strings. Specifically, the smartphone sets a plurality of areas in the pixel column direction, and decodes information for each area. A plurality of regions is an example of a scan row. This region is a region based on the arrangement of a plurality of light emitting elements to be imaged. The smartphone exposes light from a plurality of light emitting elements corresponding to this region. The smartphone decodes light from the light emitting element for each region. Thereby, the smart phone can decode more information based on the captured image in which the information from a several light emitting element was contained in one pixel row.
 図5(i)及び図5(iv)に示す発光部は、3以上の発光素子を備え、発光素子のうち少なくとも2つが配置される配置軸線上に、他の発光素子のうち少なくとも1つが配置されていない。以下の説明では、図5(i)及び図5(iv)に示す発光素子の配置のことを、発光素子を互い違いに配置するとも記載する。発光素子を互い違いに配置することにより、通信のエラー率を抑えつつ通信可能範囲を拡大することができる。 5 (i) and 5 (iv) includes three or more light emitting elements, and at least one of the other light emitting elements is arranged on the arrangement axis on which at least two of the light emitting elements are arranged. It has not been. In the following description, the arrangement of the light emitting elements shown in FIGS. 5 (i) and 5 (iv) is also referred to as alternately arranging the light emitting elements. By arranging the light emitting elements alternately, the communicable range can be expanded while suppressing the communication error rate.
[IoTデバイスとスマートフォンとの通信]
 次に、図6を参照して、IoT(Internet of Things)デバイスとスマートフォンとの通信について説明する。
 図6は、第1の実施形態にかかる送信装置と、無線通信するIoTデバイスとの一例を示す図である。
 IoTデバイスとは、複数の物同士が情報を交換することができるデバイスのことである。従来の無線通信によるIoTデバイスでは、無線通信のためのアンテナや、操作のしにくさといった課題があった。本実施形態の送信装置には、発光部であるLEDを備えていればよく、小型化と、生産にかかる費用を抑えることができる。また、本実施形態の送信装置は、LEDが可視光を発光する。これにより、操作者が目視可能な光に、受信装置であるスマートフォンをかざすことができる。このかざす動作によって、操作者は、直感的に受信装置から情報を取得することができる。
[Communication between IoT device and smartphone]
Next, communication between an IoT (Internet of Things) device and a smartphone will be described with reference to FIG.
FIG. 6 is a diagram illustrating an example of the transmission apparatus according to the first embodiment and an IoT device that performs wireless communication.
An IoT device is a device that allows a plurality of objects to exchange information. Conventional IoT devices using wireless communication have problems such as antennas for wireless communication and difficulty in operation. The transmission device of the present embodiment only needs to include an LED that is a light emitting unit, and can reduce the size and cost of production. In the transmission device of the present embodiment, the LED emits visible light. Thereby, the smart phone which is a receiver can be held over the light which an operator can visually recognize. With this operation, the operator can intuitively acquire information from the receiving device.
[通信速度の高速化]
 次に、図7を参照して通信速度の高速化について説明する。
 図7は、通信速度の高速化する方法を示す図である。
 通信速度の高速化には、1ブロックの繰り返し送信回数であるSを最小化すればよい。
このSに2を代入し、上述した式(1)に、このSを導入する。このSが導入された式(1)を満たすNが存在するかを算出する。上述したように、Nとは、1ブロックを構成するパケットの数である。
 上述した式(1)を満たすNが存在する場合には、そのSが、最小化された繰り返し送信回数である。
 上述した式(1)を満たすNが存在しない場合には、式(1)を満たすNが存在するまでSに代入した値に1を加算し、式(1)を満たすNが存在するかを算出する。
[Increased communication speed]
Next, an increase in communication speed will be described with reference to FIG.
FIG. 7 is a diagram illustrating a method for increasing the communication speed.
In order to increase the communication speed, S that is the number of repeated transmissions of one block may be minimized.
By substituting 2 for this S, this S is introduced into the above-described equation (1). It is calculated whether there exists N satisfying the formula (1) in which S is introduced. As described above, N is the number of packets constituting one block.
When N satisfying the above-described equation (1) exists, the S is the number of repeated transmissions minimized.
If there is no N satisfying the above-described expression (1), 1 is added to the value substituted for S until there is an N satisfying the expression (1), and whether there is an N satisfying the expression (1). calculate.
[実装評価]
 次に、図8を参照して、第1の実施形態の送信装置及び受信装置の評価結果について説明する。
 図8は、第1の実施形態の送信装置及び受信装置の評価結果の一例を示す図である。
 図8には7機種の受信装置であるスマートフォンを評価した結果が示される。
[Implementation evaluation]
Next, evaluation results of the transmission device and the reception device of the first embodiment will be described with reference to FIG.
FIG. 8 is a diagram illustrating an example of evaluation results of the transmission device and the reception device according to the first embodiment.
FIG. 8 shows the result of evaluating a smartphone which is a seven-type receiving device.
[第1の実施形態に係る送信装置の動作の概要]
 次に、図9を参照して、第1の実施形態に係る送信装置の動作の概要について説明する。
 図9は、第1の実施形態に係る送信装置の動作の一例を示す流れ図S1である。
[Outline of Operation of Transmitting Device According to First Embodiment]
Next, an overview of the operation of the transmission apparatus according to the first embodiment will be described with reference to FIG.
FIG. 9 is a flowchart S1 illustrating an example of the operation of the transmission apparatus according to the first embodiment.
 この送信装置は、センサと、送信制御部と、発光部とを備える。センサは、周囲の環境を測定する。センサは、測定した結果を示す測定情報を生成する。ここで測定情報とは、情報の一例である。送信制御部は、上述した送信方法によって、測定情報の送信制御を行う。発光部は、送信制御部による送信制御に基づく発光パターンによって発光することにより、測定情報を送信する。 This transmission device includes a sensor, a transmission control unit, and a light emitting unit. The sensor measures the surrounding environment. The sensor generates measurement information indicating the measurement result. Here, the measurement information is an example of information. The transmission control unit performs measurement information transmission control by the transmission method described above. A light emission part transmits measurement information by light-emitting by the light emission pattern based on the transmission control by a transmission control part.
 送信装置は、センサから測定情報を取得する(ステップS110)。送信制御部は、センサから取得した測定情報を、複数のパケットに変換する(ステップS120)。送信制御部は、変換した複数のパケットに基づいて、発光パターンを生成する(ステップS130)。この発光パターンは、1パケットあたりの送信時間と、測定情報を構成するパケットのパケット数とに基づく再送回数に基づく発光パターンである。 The transmission device acquires measurement information from the sensor (step S110). The transmission control unit converts the measurement information acquired from the sensor into a plurality of packets (step S120). The transmission control unit generates a light emission pattern based on the converted plurality of packets (step S130). This light emission pattern is a light emission pattern based on the number of retransmissions based on the transmission time per packet and the number of packets constituting the measurement information.
 送信制御部は、生成した発光パターンに基づいて、発光部の発光の状態を変化させる(ステップS140)。送信制御部は、測定情報の送信を終えたか否かを判定する(ステップS150)。送信制御部は、測定情報の送信を終えていない場合(ステップS150;NO)には、生成した発光パターンのうちから、次の発光の状態を読み出す(ステップS160)。送信制御部は、発光部を、読み出した発光の状態に変化させる。送信制御部は、測定情報の送信を終えた場合には、処理を終了する(ステップS150;YES)。 The transmission control unit changes the light emission state of the light emitting unit based on the generated light emission pattern (step S140). The transmission control unit determines whether or not the measurement information has been transmitted (step S150). If the transmission control unit has not finished transmitting the measurement information (step S150; NO), the transmission control unit reads the next light emission state from the generated light emission pattern (step S160). The transmission control unit changes the light emitting unit to the read light emission state. A transmission control part complete | finishes a process, when transmission of measurement information is complete | finished (step S150; YES).
 以上説明したように、送信装置は、発光部と、送信制御部を備える。送信制御部は、複数のパケットを上述した再送回数によって情報の送信制御を行う。発光部は、送信制御部の送信制御に基づく発光パターンによって発光する。受信装置は、撮像部と、復号部とを備える。撮像部は、ローリングシャッター方式によって、送信装置からの光を発光パターンとして撮像する。復号部は、この発光パターン画像に基づいて、送信装置から出力される情報を復号する。操作者は、受信装置の撮像機能によって送信装置を撮像することにより、送信装置からの情報を取得する。これにより、送信装置及び受信装置は、それぞれ通信の設定の手間を抑えることができる。
 また、送信装置は、発光部からの光によって情報を送信することができるので、無線通信する送信装置と比較して小型の筐体である。送信装置は小型の筐体であるため、製造コストを抑制することができる。
As described above, the transmission device includes a light emitting unit and a transmission control unit. The transmission control unit performs information transmission control based on the number of retransmissions described above for a plurality of packets. The light emitting unit emits light with a light emission pattern based on transmission control of the transmission control unit. The receiving device includes an imaging unit and a decoding unit. The imaging unit images light from the transmission device as a light emission pattern by a rolling shutter method. The decoding unit decodes information output from the transmission device based on the light emission pattern image. The operator acquires information from the transmission device by imaging the transmission device using the imaging function of the reception device. As a result, the transmission device and the reception device can save time and effort for setting communication.
Further, since the transmission device can transmit information by light from the light emitting unit, the transmission device is a small casing as compared with a transmission device that performs wireless communication. Since the transmission device is a small housing, the manufacturing cost can be suppressed.
 なお、上述した説明では、ローリングシャッター方式を、ピクセル列ごとに露光する方法について説明したがこれに限られない。ピクセル行毎に露光する撮像素子の場合には、ピクセル列ごとに記録されればよい。また、ローリングシャッター方式は、ピクセルごとに順次露光されてもよい。スマートフォンは、撮像素子のローリングシャッター方式が露光する順に情報を復元すればよい。 In the above description, although the rolling shutter method has been described with respect to the method for exposing each pixel row, the present invention is not limited to this. In the case of an image sensor that exposes each pixel row, it may be recorded for each pixel column. Further, in the rolling shutter system, exposure may be sequentially performed for each pixel. The smartphone may restore the information in the order of exposure by the rolling shutter system of the image sensor.
[第2の実施形態]
[送信装置の起動制御]
 次に、図10を参照して、送信装置と、受信装置とが情報を交換する構成について説明する。なお、上述した第1の実施形態と同一の構成及び動作については、同一の符号を付してその説明を省略する。
 図10は、第2の実施形態に係る送信装置10と、受信装置20との外観構成の一例を示す図である。
[Second Embodiment]
[Startup control of transmitter]
Next, a configuration in which information is exchanged between the transmission device and the reception device will be described with reference to FIG. In addition, about the structure and operation | movement same as 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
FIG. 10 is a diagram illustrating an example of an external configuration of the transmission device 10 and the reception device 20 according to the second embodiment.
 送信装置10は、不図示の電池からの電力により動作する。この一例では、送信装置10は、光を受光すると、情報の送信を開始する。受信装置20は、送信装置10から送信される情報を取得する。
 具体的には、送信装置10は、光を受光する受光部13を備える。受光部13は、受光した光の強さを示す光強度信号を生成する。送信装置10は、受光部13が光を受光すると、情報の出力を開始する。送信装置10は、発光部12を発光させることにより、センサ14が測定した測定情報を出力する。受信装置20は、発光部12から発光される発光パターンを撮像部21によって、発光パターン画像として撮像する。受信装置20は、発光パターン画像に基づいて情報を復号する。受信装置20は、復号した復号した情報を表示部23に表示させる。
The transmitting device 10 operates with power from a battery (not shown). In this example, the transmission device 10 starts transmitting information when receiving light. The receiving device 20 acquires information transmitted from the transmitting device 10.
Specifically, the transmission device 10 includes a light receiving unit 13 that receives light. The light receiving unit 13 generates a light intensity signal indicating the intensity of the received light. The transmission device 10 starts outputting information when the light receiving unit 13 receives light. The transmission device 10 outputs measurement information measured by the sensor 14 by causing the light emitting unit 12 to emit light. The receiving device 20 images the light emission pattern emitted from the light emitting unit 12 by the imaging unit 21 as a light emission pattern image. The receiving device 20 decodes information based on the light emission pattern image. The receiving device 20 displays the decoded information on the display unit 23.
[送信装置10及び受信装置20の構成の一例]
 次に、図11を参照して、送信装置10及び受信装置20の構成について説明する。
 図11は、送信装置10及び受信装置20の構成の一例を示す図である。
[Example of Configuration of Transmitting Device 10 and Receiving Device 20]
Next, the configuration of the transmission device 10 and the reception device 20 will be described with reference to FIG.
FIG. 11 is a diagram illustrating an example of the configuration of the transmission device 10 and the reception device 20.
 送信装置10は、センサ14と、演算部11と、発光部12と、受光部13と、起動停止部15とを備える。上述したように、センサ14は、周囲の環境を測定する。センサ14は、測定した情報を測定情報として演算部11に対して出力する。 The transmission device 10 includes a sensor 14, a calculation unit 11, a light emitting unit 12, a light receiving unit 13, and a start / stop unit 15. As described above, the sensor 14 measures the surrounding environment. The sensor 14 outputs the measured information as measurement information to the calculation unit 11.
 演算部11は、信号取得部114と、受信信号生成部113と、送信判定部112と、送信制御部111とを備える。信号取得部114、受信信号生成部113及び送信判定部112は、発光許可部の一例である。
 信号取得部114は、受光部13から光強度信号を取得する。信号取得部114は、受光部13から取得した光強度信号を、受信信号生成部113に対して出力する。
 受信信号生成部113は、信号取得部114から光強度信号を取得する。受信信号生成部113には、信号取得部114から取得された光強度信号が、取得された順に記憶される。この取得された時系列順に並べられた光強度信号のことを、明滅パターンとも記載する。受信信号生成部113は、明滅パターンを、送信判定部112に対して出力する。
The calculation unit 11 includes a signal acquisition unit 114, a reception signal generation unit 113, a transmission determination unit 112, and a transmission control unit 111. The signal acquisition unit 114, the reception signal generation unit 113, and the transmission determination unit 112 are examples of a light emission permission unit.
The signal acquisition unit 114 acquires a light intensity signal from the light receiving unit 13. The signal acquisition unit 114 outputs the light intensity signal acquired from the light receiving unit 13 to the reception signal generation unit 113.
The reception signal generation unit 113 acquires the light intensity signal from the signal acquisition unit 114. The received signal generation unit 113 stores the light intensity signals acquired from the signal acquisition unit 114 in the order of acquisition. The acquired light intensity signals arranged in chronological order are also referred to as blinking patterns. The reception signal generation unit 113 outputs the blink pattern to the transmission determination unit 112.
 送信判定部112は、受光部13がとらえた光の明滅パターンが所定の明滅パターンである場合に、発光部12の発光を許可する。具体的には、送信判定部112は、受信信号生成部113から明滅パターンを取得する。送信判定部112は、受信信号生成部113から取得した明滅パターンに基づいて、測定情報を送信するか否かを判定する。以下の説明では、受信信号生成部113が判定した結果のことを、送信判定結果とも記載する。送信判定部112は、送信判定結果を、送信制御部111に対して出力する。 The transmission determination unit 112 permits the light emitting unit 12 to emit light when the light blinking pattern captured by the light receiving unit 13 is a predetermined blinking pattern. Specifically, the transmission determination unit 112 acquires a blinking pattern from the reception signal generation unit 113. The transmission determination unit 112 determines whether or not to transmit measurement information based on the blinking pattern acquired from the reception signal generation unit 113. In the following description, the result determined by the reception signal generation unit 113 is also referred to as a transmission determination result. The transmission determination unit 112 outputs the transmission determination result to the transmission control unit 111.
 送信制御部111は、センサ14から測定情報を取得する。送信制御部111は、送信判定部112から送信判定結果を取得する。送信制御部111は、送信判定部112から取得する送信判定結果に基づいて、ローリングシャッター方式による受信装置20のフレーム時間及びギャップ時間と、複数のパケットによって構成され受信装置20に送信される情報の1パケットあたりの送信時間と、測定情報を構成するパケットのパケット数とに基づく再送回数によって、センサ14から取得した測定情報の送信制御を行う。言い換えると、送信制御部111は、この送信制御によって発光部12の発光の状態を制御する。 The transmission control unit 111 acquires measurement information from the sensor 14. The transmission control unit 111 acquires a transmission determination result from the transmission determination unit 112. Based on the transmission determination result acquired from the transmission determination unit 112, the transmission control unit 111 includes the frame time and gap time of the receiving device 20 using the rolling shutter method, and information that is configured by a plurality of packets and transmitted to the receiving device 20. Transmission control of the measurement information acquired from the sensor 14 is performed based on the number of retransmissions based on the transmission time per packet and the number of packets of the packets constituting the measurement information. In other words, the transmission control unit 111 controls the light emission state of the light emitting unit 12 by this transmission control.
 発光部12は、送信制御部111による送信制御に基づく発光パターンによって発光する。言い換えると、発光部12は、撮像部21のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、測定情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって測定情報を送信する。発光部12は、この発光パターンによって測定情報を出力する。 The light emitting unit 12 emits light with a light emission pattern based on transmission control by the transmission control unit 111. In other words, the light emitting unit 12 performs the number of retransmissions based on the frame time and gap time of the imaging unit 21, the transmission time per packet of information composed of a plurality of packets, and the number of packets of the packets constituting the measurement information. The measurement information is transmitted by the light emission pattern. The light emitting unit 12 outputs measurement information based on the light emission pattern.
 起動停止部15は、送信制御部111と発光部12と受光部13とのうち少なくとも1つを所定の条件に基づいて起動又は停止させる。この一例では、起動停止部15は、演算部11を、起動又は停止させる。ここで、起動停止部15が起動又は停止させる条件である所定の条件とは、受光センサが受光する光の明滅間隔に基づく時間である。具体的には、所定の条件には、時間経過の条件と、受光部13が光を受光したか否かの条件と、明滅パターンが所定の明滅パターンか否かの条件と、のうちの少なくとも1つの条件である。
より具体的には、起動停止部15は、所定の時間経過に応じて、演算部11を起動させる。起動停止部15は、送信判定部112の送信判定結果が、送信すると判定した場合には、時間経過の条件では、演算部11を停止させない。起動停止部15は、送信判定部112の送信判定結果が送信しないと判定した場合には、演算部11を停止させる。
The start / stop unit 15 starts or stops at least one of the transmission control unit 111, the light emitting unit 12, and the light receiving unit 13 based on a predetermined condition. In this example, the start / stop unit 15 starts or stops the calculation unit 11. Here, the predetermined condition, which is a condition for the activation / stop unit 15 to activate or deactivate, is a time based on the blinking interval of light received by the light receiving sensor. Specifically, the predetermined condition includes at least one of a condition for elapse of time, a condition for determining whether or not the light receiving unit 13 receives light, and a condition for determining whether the blink pattern is a predetermined blink pattern. One condition.
More specifically, the activation stop unit 15 activates the calculation unit 11 as a predetermined time elapses. When the transmission determination result of the transmission determination unit 112 determines that transmission is to be performed, the start / stop unit 15 does not stop the calculation unit 11 under the time elapse condition. The start / stop unit 15 stops the calculation unit 11 when it is determined that the transmission determination result of the transmission determination unit 112 is not transmitted.
 受信装置20は、撮像部21と、復号部22と、表示部23と、発光制御部24と、フラッシュ25とを備える。
 撮像部21は、ローリングシャッター方式によって撮像する。
 復号部22は、発光パターン画像に基づいて、測定情報を復号する。発光パターン画像とは、発光部12が撮像部21によって撮像された画像である。復号部22は、復号した測定情報を、表示部23に表示させる。表示部23は、測定情報を表示する。
The receiving device 20 includes an imaging unit 21, a decoding unit 22, a display unit 23, a light emission control unit 24, and a flash 25.
The imaging unit 21 captures an image using a rolling shutter method.
The decoding unit 22 decodes the measurement information based on the light emission pattern image. The light emission pattern image is an image in which the light emitting unit 12 is imaged by the imaging unit 21. The decoding unit 22 causes the display unit 23 to display the decoded measurement information. The display unit 23 displays measurement information.
 発光制御部24は、フラッシュ25を明滅させる。 The light emission control unit 24 blinks the flash 25.
[送信装置10の動作の概要]
 次に、図12を参照して、送信装置10の動作の概要について説明する。
 図12は、送信装置10の動作の一例を示す流れ図S2である。なお、ここに示す処理手順は、一例であって、処理手順の省略や処理手順の追加が行われてもよい。
[Outline of operation of transmitting apparatus 10]
Next, an outline of the operation of the transmission apparatus 10 will be described with reference to FIG.
FIG. 12 is a flowchart S <b> 2 illustrating an example of the operation of the transmission device 10. Note that the processing procedure shown here is an example, and the processing procedure may be omitted or a processing procedure may be added.
 起動停止部15は、センサ14を起動させる(ステップS210)。起動停止部15は、演算部11を起動させる(ステップS220)。
 信号取得部114は、センサ14から光強度信号を取得する。信号取得部114は、センサ14から取得した光強度信号を、受信信号生成部113に対して供給する。受信信号生成部113は、信号取得部114から光強度信号を取得する。受信信号生成部113は、信号取得部114から取得した光強度信号に基づいて、明滅パターンを生成する。受信信号生成部113は、生成した明滅パターンを、送信判定部112に対して供給する。送信判定部112は、受信信号生成部113から明滅パターンを取得する。送信判定部112は、受信信号生成部113から取得した明滅パターンに基づいて、送信判定をする(ステップS230)。受信信号生成部113は、起動条件を満たすか否かを判定する(ステップS240)。
The activation stop unit 15 activates the sensor 14 (step S210). The activation stop unit 15 activates the calculation unit 11 (step S220).
The signal acquisition unit 114 acquires a light intensity signal from the sensor 14. The signal acquisition unit 114 supplies the light intensity signal acquired from the sensor 14 to the reception signal generation unit 113. The reception signal generation unit 113 acquires the light intensity signal from the signal acquisition unit 114. The reception signal generation unit 113 generates a blinking pattern based on the light intensity signal acquired from the signal acquisition unit 114. The reception signal generation unit 113 supplies the generated blinking pattern to the transmission determination unit 112. The transmission determination unit 112 acquires a blinking pattern from the reception signal generation unit 113. The transmission determination unit 112 performs transmission determination based on the blinking pattern acquired from the reception signal generation unit 113 (step S230). The reception signal generator 113 determines whether or not the activation condition is satisfied (step S240).
 受信信号生成部113は、所定の条件を満たす場合(ステップS240;YES)には、起動停止部15の起動又は停止動作を止め、流れ図S1の処理を実行する。 When the predetermined condition is satisfied (step S240; YES), the reception signal generation unit 113 stops the start or stop operation of the start / stop unit 15 and executes the process of the flowchart S1.
 受信信号生成部113は、所定の条件を満たさない場合(ステップS240;NO)には、起動停止部15に演算部11の動作を停止させる(ステップS250)。起動停止部15は、所定の時間、何も処理しない(ステップS260)。起動停止部15は、所定の時間経過後、ステップS210からの処理を繰り返す。 If the predetermined condition is not satisfied (step S240; NO), the reception signal generation unit 113 causes the start / stop unit 15 to stop the operation of the calculation unit 11 (step S250). The start / stop unit 15 does not process anything for a predetermined time (step S260). The start / stop unit 15 repeats the processing from step S210 after a predetermined time has elapsed.
 ここで、図13を参照して、送信判定部112が判定する動作の具体例について説明する。
 図13は、送信判定部112の動作の一例を示す図である。
 図13(a)は、フラッシュ25の発光の状態を時系列に並べた図である。図13(b)は、受光部13が受光した明滅パターンの一例を示す図である。
Here, a specific example of the operation determined by the transmission determination unit 112 will be described with reference to FIG.
FIG. 13 is a diagram illustrating an example of the operation of the transmission determination unit 112.
FIG. 13A is a diagram in which the light emission states of the flash 25 are arranged in time series. FIG. 13B is a diagram illustrating an example of a blinking pattern received by the light receiving unit 13.
 フラッシュ25の発光の状態は、時刻t0から時刻t1までの間、消灯状態である。受光部13は、時刻t0から時刻t1までの間、光を受光していない。また、起動停止部15は、時刻t0から時刻t1までの間に、8回、演算部11の起動と停止とを繰り返す。
時間間隔Tsleepとは、上述したステップS260に示す所定の時間の一例である。
The light emission state of the flash 25 is off from time t0 to time t1. The light receiving unit 13 does not receive light from time t0 to time t1. In addition, the start / stop unit 15 repeats starting and stopping of the calculation unit 11 eight times from time t0 to time t1.
The time interval Tsleep is an example of the predetermined time shown in step S260 described above.
 この一例では、フラッシュ25は、発光パターンFPT1で発光する。具体的には、フラッシュ25の発光の状態は、時刻t1から時刻t2までの間、点灯状態である。以下の説明では、このフラッシュ25が点灯状態を維持する時間を、時間間隔Tflashとも記載する。受光部13は、時刻t1から時刻t2までの間に、光を受光する。同様に、フラッシュ25の発光の状態は、時刻t3から時刻t4までの間、時刻t5から時刻t6までの間及び時刻t7から時刻t8までの間、点灯状態である。同様に、受光部13は、時刻t3から時刻t4までの間、時刻t5から時刻t6までの間及び時刻t7から時刻t8までの間、時刻t1から時刻t2までの間に、光を受光する。 In this example, the flash 25 emits light with the light emission pattern FPT1. Specifically, the light emission state of the flash 25 is a lighting state from time t1 to time t2. In the following description, the time during which the flash 25 is kept on is also referred to as a time interval Tflash. The light receiving unit 13 receives light between time t1 and time t2. Similarly, the light emission state of the flash 25 is a lighting state from time t3 to time t4, from time t5 to time t6, and from time t7 to time t8. Similarly, the light receiving unit 13 receives light from time t3 to time t4, from time t5 to time t6, from time t7 to time t8, and from time t1 to time t2.
 フラッシュ25の発光の状態は、時刻t2から時刻t3までの間、消灯状態である。受光部13は、時刻t2から時刻t3までの間に、光を受光していない。同様に、フラッシュ25の発光の状態は、時刻t4から時刻t5までの間、時刻t6から時刻t7までの間及び時刻t7から時刻t8までの間、消灯状態である。同様に、受光部13は、時刻t4から時刻t5までの間、時刻t6から時刻t7までの間及び時刻t7から時刻t8までの間、光を受光していない。 The light emission state of the flash 25 is off from time t2 to time t3. The light receiving unit 13 does not receive light between time t2 and time t3. Similarly, the light emission state of the flash 25 is off from time t4 to time t5, from time t6 to time t7, and from time t7 to time t8. Similarly, the light receiving unit 13 does not receive light from time t4 to time t5, from time t6 to time t7, and from time t7 to time t8.
 この一例では、明滅パターンには、連続した4回の明滅が含まれる。この連続した4回の明滅パターンが、所定の明滅パターンであるため、送信判定部112は、送信制御部111の送信を許可する。言い換えると、送信判定部112は、受光部13がとらえた光の明滅パターンが所定の明滅パターンであるために発光部12の発光を許可する。送信装置10は、測定情報の出力を開始する。 In this example, the blink pattern includes four consecutive blinks. Since the four consecutive blink patterns are the predetermined blink patterns, the transmission determination unit 112 permits the transmission control unit 111 to transmit. In other words, the transmission determination unit 112 permits the light emitting unit 12 to emit light because the light blinking pattern captured by the light receiving unit 13 is a predetermined blinking pattern. The transmission device 10 starts outputting measurement information.
[停止時間の制御について]
 次に、図14を参照して、演算部11の停止時間を制御する構成について説明する。
 図14は、停止時間が制御される起動停止部15の動作の一例を示す図である。
 図14(a)は、フラッシュ25の発光の状態を時系列に並べた図である。図14(b)は、受光部13が受光した明滅パターンの一例を示す図である。
[About control of stop time]
Next, a configuration for controlling the stop time of the computing unit 11 will be described with reference to FIG.
FIG. 14 is a diagram illustrating an example of the operation of the start / stop unit 15 in which the stop time is controlled.
FIG. 14A is a diagram in which the light emission states of the flash 25 are arranged in time series. FIG. 14B is a diagram illustrating an example of a blinking pattern received by the light receiving unit 13.
 この構成では、送信判定部112は、起動停止部15が送信判定部112を起動させている期間において受光部13が光を受光しているか否かの判定結果に基づいて、発光部12の発光を許可する。具体的には、図14(b)に示す時間間隔Tsleep1は、上述した時間間隔Tsleepよりも長い。これは、起動停止部15は、受光部13が複数回、光を受光しない状態が続いた場合に、起動停止部15の所定の条件である時間経過の条件を、より長い時間経過の条件に変更されるためである。起動停止部15は、受光部13が光を受光すると、時間間隔Tsleep2の停止時間に変更される。この時間間隔Tsleep2は、上述した時間間隔Tsleepと同じ時間である。 In this configuration, the transmission determining unit 112 emits light from the light emitting unit 12 based on the determination result of whether or not the light receiving unit 13 is receiving light during the period in which the activation stopping unit 15 activates the transmission determining unit 112. Allow. Specifically, the time interval Tsleep1 shown in FIG. 14B is longer than the above-described time interval Tsleep. This is because the start / stop unit 15 changes the time lapse condition, which is a predetermined condition of the start / stop unit 15, to a longer time lapse condition when the light receiving unit 13 continues to receive no light a plurality of times. It is because it is changed. The start / stop unit 15 is changed to a stop time of the time interval Tsleep2 when the light receiving unit 13 receives light. This time interval Tsleep2 is the same time as the time interval Tsleep described above.
 具体的には、フラッシュ25の発光の状態は、時刻t20から時刻t21までの間、消灯状態である。受光部13は、時刻t20から時刻t21までの間、光を受光していない。この時刻t20から時刻t21までの間隔が、上述した時間間隔Tsleep1である。
 起動停止部15は、時刻t20から時刻t23までの間に、3回、演算部11の起動と停止とを繰り返す。
Specifically, the light emission state of the flash 25 is in the off state from time t20 to time t21. The light receiving unit 13 does not receive light from time t20 to time t21. The interval from time t20 to time t21 is the time interval Tsleep1 described above.
The start / stop unit 15 repeats starting and stopping of the calculation unit 11 three times from time t20 to time t23.
 この一例では、フラッシュ25は、上述した発光パターンFPT1で発光する。具体的には、フラッシュ25の発光の状態は、時刻t23から時刻t24までの間、点灯状態である。同様に、フラッシュ25の発光の状態は、時刻t25から時刻t26までの間、時刻t27から時刻t28までの間及び時刻t29から時刻t30までの間、点灯状態である。フラッシュ25の発光の状態は、時刻t24から時刻t25までの間、消灯状態である。同様に、フラッシュ25の発光の状態は、時刻t26から時刻t27までの間及び時刻t28から時刻t29までの間に、消灯状態である。
 受光部13は、時刻t23から時刻t24までの間は、演算部11が停止されているために、光を受光しない。受光部13は、時刻t24から時刻t27までも同様に、演算部11が停止されているために、光を受光しない。受光部13は、時刻t27から時刻t28までの間及び時刻t29から時刻t30までの間に、それぞれ光を受光する。
In this example, the flash 25 emits light with the light emission pattern FPT1 described above. Specifically, the light emission state of the flash 25 is a lighting state from time t23 to time t24. Similarly, the light emission state of the flash 25 is a lighting state from time t25 to time t26, from time t27 to time t28, and from time t29 to time t30. The light emission state of the flash 25 is off from time t24 to time t25. Similarly, the light emission state of the flash 25 is a light-off state between time t26 and time t27 and between time t28 and time t29.
The light receiving unit 13 does not receive light from time t23 to time t24 because the calculation unit 11 is stopped. Similarly, from time t24 to time t27, the light receiving unit 13 does not receive light because the calculation unit 11 is stopped. The light receiving unit 13 receives light from time t27 to time t28 and from time t29 to time t30, respectively.
 ここで、時間間隔Tflashと、時間間隔Tsleep2との時間間隔を概ね同じ時間間隔に設定する場合には、送信判定部112が判定する所定の明滅パターンに含まれる明滅の繰り返しは2回でよい。これにより、送信装置10が測定情報を出力するまでの起動又は停止の判定回数を抑制することができる。これにより、送信装置10は、受信装置20へ測定情報を送信開始するまで時間を短縮することができる。 Here, when the time interval Tflash and the time interval Tsleep2 are set to substantially the same time interval, the blinking included in the predetermined blinking pattern determined by the transmission determination unit 112 may be performed twice. Thereby, the frequency | count of determination of starting or a stop until the transmitter 10 outputs measurement information can be suppressed. Thereby, the transmission apparatus 10 can shorten time until transmission of measurement information to the reception apparatus 20 is started.
 以上説明したように、送信装置10は、時間経過の条件を、受光部13の受光の状態に応じて変更してもよい。これにより、送信装置10は、時間経過の条件を変更しない場合よりも電力の消費を抑えることができる。 As described above, the transmission device 10 may change the time elapse condition according to the light receiving state of the light receiving unit 13. Thereby, the transmission apparatus 10 can suppress power consumption more than the case where the conditions of time passage are not changed.
[光強度信号について]
 送信判定部112は、受光部13が受光する光の強さによって、フラッシュ25からの光を受光しているか、環境光を受光しているかを判定してもよい。この場合には、明滅パターンには、光の強さを示す情報が含まれていればよい。
 具体的には、送信判定部112は、1つ前に受光した光の強さと、最も新しい受光した光の強さとを比較する。より具体的には、送信判定部112は、1つ前に受光した光の強さと、最も新しい受光した光の強さとの差が、所定の閾値よりも高い場合には、受光した光が受信装置20からの光であると判定する。また、送信判定部112は、1つ前に受光した光の強さと、最も新しい受光した光の強さとの差が、所定の閾値よりも低い場合には、受光した光が環境光であると判定する。
[Light intensity signal]
The transmission determination unit 112 may determine whether the light from the flash 25 is received or whether ambient light is received based on the intensity of light received by the light receiving unit 13. In this case, the blinking pattern only needs to include information indicating the intensity of light.
Specifically, the transmission determining unit 112 compares the intensity of the light received immediately before with the latest received light intensity. More specifically, the transmission determining unit 112 receives the received light when the difference between the intensity of the previously received light and the intensity of the latest received light is higher than a predetermined threshold. It is determined that the light is from the device 20. The transmission determining unit 112 determines that the received light is the environmental light when the difference between the intensity of the light received immediately before and the intensity of the latest received light is lower than a predetermined threshold. judge.
 これにより、送信判定部112は、環境光による誤送信を抑制する。誤送信を抑制することにより、送信装置10の電力消費をより抑えることができる。また、送信判定部112は、測定情報を出力するまでの起動又は停止の判定回数を抑制することができる。これにより、送信装置10は、受信装置20へ測定情報を送信開始するまで時間を短縮することができる。 Thereby, the transmission determination unit 112 suppresses erroneous transmission due to ambient light. By suppressing erroneous transmission, the power consumption of the transmission device 10 can be further suppressed. Moreover, the transmission determination part 112 can suppress the frequency | count of determination of starting or a stop until outputting measurement information. Thereby, the transmission apparatus 10 can shorten time until transmission of measurement information to the reception apparatus 20 is started.
[第2の実施形態のまとめ]
 送信装置10は、起動停止部15と、演算部11、受光部13、発光部12とを備える。演算部11は、送信制御部111と、送信判定部112とを備える。
 起動停止部15は、所定の条件に基づいて、演算部11の動作を起動又は停止させる。
送信判定部112は、起動中に受光部13が受光した光の明滅パターンに基づいて、情報を送信するか否かを判定する。送信制御部111は、送信判定部112が情報を送信すると判定する場合には、発光部12の発光制御を開始する。これにより、送信装置10は、電力の消費を抑えることができる。送信装置10は、電力の消費を抑えることができるため、長期間稼働することができる。送信装置10は、長期間稼働することができるため、頻繁に測定した情報を取得する必要が無い場所や、既存の無線通信網が無い場所などに設定することができる。
[Summary of Second Embodiment]
The transmission device 10 includes a start / stop unit 15, a calculation unit 11, a light receiving unit 13, and a light emitting unit 12. The calculation unit 11 includes a transmission control unit 111 and a transmission determination unit 112.
The start / stop unit 15 starts or stops the operation of the calculation unit 11 based on a predetermined condition.
The transmission determination unit 112 determines whether to transmit information based on the blinking pattern of light received by the light receiving unit 13 during activation. The transmission control unit 111 starts light emission control of the light emitting unit 12 when the transmission determination unit 112 determines to transmit information. Thereby, the transmission apparatus 10 can suppress power consumption. Since the transmission device 10 can suppress power consumption, it can operate for a long period of time. Since the transmission apparatus 10 can operate for a long period of time, it can be set in a place where it is not necessary to acquire frequently measured information or a place where there is no existing wireless communication network.
 なお、上述した説明では、送信判定部112は、所定の明滅パターンの場合に、送信すると判定したが、必須ではない。送信判定部112は、受光部13が光を1度受光した場合にも、送信すると判定してもよい。送信判定部112は、所定の明滅パターンの場合に送信すると判定する構成の場合には、フラッシュ25以外の環境光によって送信されることを抑制することができる。これにより、送信装置10は、電力の消費を抑えることができる。 In the above description, the transmission determination unit 112 determines that transmission is performed in the case of a predetermined blinking pattern, but this is not essential. The transmission determination unit 112 may determine to transmit even when the light receiving unit 13 receives light once. The transmission determination unit 112 can suppress transmission by ambient light other than the flash 25 in the case where the transmission determination unit 112 determines that transmission is performed in the case of a predetermined blinking pattern. Thereby, the transmission apparatus 10 can suppress power consumption.
 なお、上述した説明では、起動停止部15は、演算部11を起動又は停止させる構成について説明したがこれに限られない。起動停止部15は、演算部がマイクロコンピュータの場合には、スリープ機能であってもよい。このスリープ機能は、所定の時間間隔を空けてマイクロコンピュータの起動又は停止を交互に繰り返す機能である。言い換えると、演算部11は、起動停止部15を備えてもよい。起動停止部15がスリープ機能の場合には、起動停止部15を構成する部品を減らすことができる。このため、送信装置10を安価に構成することができる。
 また、起動停止部15は、発光部12の通電の状態を切り替える構成であってもよい。
この構成の場合には、送信装置10は、発光部12が発光することにより消費される電力を抑制することができる。
In the above description, the start / stop unit 15 has been described to be configured to start or stop the calculation unit 11, but is not limited thereto. The start / stop unit 15 may have a sleep function when the calculation unit is a microcomputer. The sleep function is a function that alternately repeats starting and stopping of the microcomputer with a predetermined time interval. In other words, the calculation unit 11 may include a start / stop unit 15. When the start / stop unit 15 has a sleep function, the number of components constituting the start / stop unit 15 can be reduced. For this reason, the transmitter 10 can be configured at low cost.
Further, the start / stop unit 15 may be configured to switch the energization state of the light emitting unit 12.
In the case of this configuration, the transmission device 10 can suppress the power consumed by the light emitting unit 12 emitting light.
 なお、上述した説明では、送信装置10は、発光部12を送信制御部111が制御することにより、光を明滅させることにより通信を行う場合について説明したがこれに限られない。送信装置10は、無線通信などの他の方法によって受信装置20に対して情報を送信してもよい。言い換えると、送信装置10は、光を受光する受光センサを備え、受光センサがとらえた光の明滅パターンに基づいて、情報の送信を開始する送信装置であってもよい。
 上述したように、送信装置10は、使用できる電力量が限られた電池などによって駆動される。送信装置10は、受光部13が光を受光する期間と、光を受光しない期間とを有することにより、この光の明滅パターンの検出に用いる電力量を抑制することができる。
In the above description, the transmission apparatus 10 has been described with respect to the case where communication is performed by causing the light control unit 111 to control the light emitting unit 12 to blink the light, but is not limited thereto. The transmission device 10 may transmit information to the reception device 20 by other methods such as wireless communication. In other words, the transmission device 10 may include a light receiving sensor that receives light, and may be a transmission device that starts transmitting information based on a blinking pattern of light captured by the light receiving sensor.
As described above, the transmission device 10 is driven by a battery having a limited amount of power that can be used. The transmission device 10 can suppress the amount of power used for detecting the blinking pattern of light by having a period in which the light receiving unit 13 receives light and a period in which light is not received.
[第3の実施形態]
[双方向通信について]
 ここまでは、送信装置が測定情報の送信を開始する構成について説明した。次に、図15を参照して、送信装置10aと、受信装置20aとが双方向通信する構成について説明する。なお、上述した第1の実施形態及び第2の実施形態と同一の構成及び動作については、同一の符号を付してその説明を省略する。
 図15は、第3の実施形態に係る送信装置10aの構成の一例を示す図である。
[Third Embodiment]
[About bidirectional communication]
Up to this point, the configuration in which the transmission device starts transmitting measurement information has been described. Next, a configuration in which the transmission device 10a and the reception device 20a perform two-way communication will be described with reference to FIG. In addition, about the same structure and operation | movement as 1st Embodiment and 2nd Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
FIG. 15 is a diagram illustrating an example of the configuration of the transmission device 10a according to the third embodiment.
 送信装置10aは、光を受光すると、情報の送信を開始する。受信装置20aは、送信装置10から送信される情報を取得する。
 具体的には、送信装置10aは、光を受光する受光部13を備える。送信装置10aは、受光部13が光を受光すると、情報の出力を開始する。送信装置10aは、発光部12を発光させることにより、センサ14が測定した測定情報を出力する。受信装置20aは、発光部12から発光される発光パターンを撮像部21によって、発光パターン画像として撮像する。受信装置20aは、発光パターン画像に基づいて情報を復号する。受信装置20aは、復号した情報に応じた発光パターンである応答パターンをフラッシュ25に発光させる。受光部13は、フラッシュ25からの応答パターンを受光する。送信装置10aは、受光した応答パターンに基づいて、送信した測定情報が正常に受け取れたか否かを判定する。
When receiving the light, the transmitting device 10a starts transmitting information. The receiving device 20a acquires information transmitted from the transmitting device 10.
Specifically, the transmission device 10a includes a light receiving unit 13 that receives light. When the light receiving unit 13 receives light, the transmission device 10a starts outputting information. The transmission device 10a outputs measurement information measured by the sensor 14 by causing the light emitting unit 12 to emit light. The receiving device 20a captures the light emission pattern emitted from the light emitting unit 12 by the imaging unit 21 as a light emission pattern image. The receiving device 20a decodes information based on the light emission pattern image. The receiving device 20a causes the flash 25 to emit a response pattern that is a light emission pattern corresponding to the decoded information. The light receiving unit 13 receives the response pattern from the flash 25. The transmission device 10a determines whether or not the transmitted measurement information has been received normally based on the received response pattern.
 送信装置10aは、演算部11aを備える。演算部11aは、送信制御部111aと、再送信制御部115と、受信状態判定部116と、信号取得部114とを備える。 The transmission device 10a includes a calculation unit 11a. The calculation unit 11a includes a transmission control unit 111a, a retransmission control unit 115, a reception state determination unit 116, and a signal acquisition unit 114.
 送信制御部111aは、センサ14から測定情報を取得する。送信制御部111は、ローリングシャッター方式による受信装置20aのフレーム時間及びギャップ時間と、複数のパケットによって構成され受信装置20aに送信される情報の1パケットあたりの送信時間と、測定情報を構成するパケットのパケット数とに基づく再送回数によって、センサ14から取得した測定情報の送信制御を行う。この一例では、送信制御部111aは、セグメント毎に情報を送信する。セグメントは、複数のパケットによって構成される。このセグメントの送信にかかる時間は、受信装置20aのセグメントの受信遅延時間と、受信装置20aの光が発光されるフラッシュ25の光が発光される発光状態と、光が発光されない非発光状態との切り替えにかかる時間よりも長い時間である。 The transmission control unit 111a acquires measurement information from the sensor 14. The transmission control unit 111 includes a frame time and a gap time of the receiving device 20a using a rolling shutter method, a transmission time per packet of information configured by a plurality of packets and transmitted to the receiving device 20a, and a packet constituting measurement information The transmission control of the measurement information acquired from the sensor 14 is performed based on the number of retransmissions based on the number of packets. In this example, the transmission control unit 111a transmits information for each segment. A segment is composed of a plurality of packets. The transmission time of this segment includes the reception delay time of the segment of the receiving device 20a, the light emitting state in which the light of the flash 25 that emits light from the receiving device 20a is emitted, and the non-light emitting state in which no light is emitted. It is longer than the time required for switching.
 また、送信制御部111aは、再送信制御部115から、再送信情報を取得する。再送信情報とは、既に送信済みのパケットの再送信の要求を示す信号である。 Also, the transmission control unit 111a acquires retransmission information from the retransmission control unit 115. The retransmission information is a signal indicating a request for retransmission of a packet that has already been transmitted.
 受信状態判定部116は、受光部13の受光の状態に基づいて、受信装置20aの情報の受信の状態を判定する。具体的には、受信状態判定部116は、受光部13が光を受光している場合には、受信装置20aが情報の受信ができていると判定する。受信状態判定部116は、受光部13が光を受光していない場合には、受信装置20aが情報の受信ができていないと判定する。
 再送信制御部115は、受信状態判定部116が判定した判定結果に基づいて、送信制御部111aにセグメントを再送信させる。具体的には、再送信制御部115は、受信状態判定部116が、情報の受信ができていないと判定する場合には、パケットの再送信を示す再送信情報を、送信制御部111aに対して出力する。
The reception state determination unit 116 determines the reception state of information of the reception device 20 a based on the light reception state of the light receiving unit 13. Specifically, the reception state determination unit 116 determines that the reception device 20a has received information when the light receiving unit 13 receives light. When the light receiving unit 13 is not receiving light, the reception state determination unit 116 determines that the receiving device 20a cannot receive information.
The retransmission control unit 115 causes the transmission control unit 111a to retransmit the segment based on the determination result determined by the reception state determination unit 116. Specifically, when the reception state determination unit 116 determines that the information has not been received, the retransmission control unit 115 sends retransmission information indicating packet retransmission to the transmission control unit 111a. Output.
 送信制御部111aは、再送信制御部115から再送信信号を取得した場合には、1つ前に送信したセグメントを再送信する。 When the transmission control unit 111a acquires a retransmission signal from the retransmission control unit 115, the transmission control unit 111a retransmits the previous segment.
 受信装置20aは、撮像部21と、復号部22aと、表示部23と、発光制御部24aと、フラッシュ25とを備える。 The receiving device 20a includes an imaging unit 21, a decoding unit 22a, a display unit 23, a light emission control unit 24a, and a flash 25.
 復号部22aは、発光パターン画像に基づいて、測定情報を復号する。発光パターン画像とは、発光部12が撮像部21によって撮像された画像である。
 復号部22aは、セグメントに含まれるパケットが復号できた場合には、発光制御部24aに対して復号が成功したことを示す復号成功情報を出力する。復号部22aは、復号した測定情報を、表示部23に表示させる。
 復号部22aは、セグメントに含まれるパケットが復号できない場合には、発光制御部24aに対して復号が失敗したことを示す復号失敗情報を出力する。
The decoding unit 22a decodes the measurement information based on the light emission pattern image. The light emission pattern image is an image in which the light emitting unit 12 is imaged by the imaging unit 21.
When the packet included in the segment can be decoded, the decoding unit 22a outputs decoding success information indicating that decoding is successful to the light emission control unit 24a. The decoding unit 22a causes the display unit 23 to display the decoded measurement information.
When the packet included in the segment cannot be decoded, the decoding unit 22a outputs decoding failure information indicating that the decoding has failed to the light emission control unit 24a.
 発光制御部24aは、自装置の測定情報の受信の状態に応じた発光パターンをフラッシュ25に発光させる。具体的には、発光制御部24aは、復号部22aから復号成功情報又は復号失敗情報を取得する。発光制御部24aは、復号成功情報を取得した場合には、フラッシュ25を発光させる。発光制御部24aは、復号失敗情報を取得した場合には、フラッシュ25を消灯させる。 The light emission control unit 24a causes the flash 25 to emit a light emission pattern corresponding to the reception state of the measurement information of the own device. Specifically, the light emission control unit 24a acquires decoding success information or decoding failure information from the decoding unit 22a. The light emission control unit 24a causes the flash 25 to emit light when the decoding success information is acquired. The light emission control unit 24a turns off the flash 25 when the decoding failure information is acquired.
[第3の実施形態に係る送信装置の動作の概要]
 次に、図16を参照して、送信装置10aの動作の概要について説明する。
 図16は、送信装置10aの動作の一例を示す流れ図S3である。なお、ここに示す処理手順は、一例であって、処理手順の省略や処理手順の追加が行われてもよい。
[Outline of Operation of Transmitting Device According to Third Embodiment]
Next, an outline of the operation of the transmission device 10a will be described with reference to FIG.
FIG. 16 is a flowchart S3 illustrating an example of the operation of the transmission device 10a. Note that the processing procedure shown here is an example, and the processing procedure may be omitted or a processing procedure may be added.
 受信状態判定部116は、受信装置20aの受信状態の監視を開始する(ステップS310)。受信装置20aは、受信可能な状態の場合には、フラッシュ25の点灯状態を維持する。送信制御部111aは、第1のセグメントを送信する(ステップS320)。撮像部21は、第1のセグメントを撮像する。送信制御部111aは、第1のセグメントの次のセグメントである第2のセグメントを送信する(ステップS330)。ここで、復号部22aは、第1のセグメントに含まれるパケットを全て復号できたか否かを判定する。
復号部22aは、第1のセグメントが復号できていない場合には、復号失敗情報を、発光制御部24aに対して出力する。発光制御部24aは、復号失敗情報を取得した場合には、フラッシュ25を消灯させる。受信状態判定部116は、再送信が必要か否かを判定する(ステップS340)。
The reception state determination unit 116 starts monitoring the reception state of the reception device 20a (step S310). The receiving device 20a maintains the lighting state of the flash 25 when it is in a receivable state. The transmission control unit 111a transmits the first segment (step S320). The imaging unit 21 images the first segment. The transmission control unit 111a transmits a second segment that is the next segment after the first segment (step S330). Here, the decoding unit 22a determines whether or not all the packets included in the first segment have been decoded.
When the first segment cannot be decoded, the decoding unit 22a outputs decoding failure information to the light emission control unit 24a. The light emission control unit 24a turns off the flash 25 when the decoding failure information is acquired. The reception state determination unit 116 determines whether retransmission is necessary (step S340).
 再送信が必要な場合(ステップS340;YES)には、再送信制御部115は、再送信信号を送信制御部111aに対して出力する。送信制御部111aは、送信制御部111aから再送信信号を取得する。送信制御部111aは、1つ前のセグメントである第1のセグメントを送信する(ステップS350)。送信制御部111aは、ステップS330からステップS340を繰り返す。
 再送信が必要ない場合(ステップS340;NO)には、送信制御部111aは、測定情報の全ての送信が完了したか否かを判定する(ステップS360)。
When retransmission is necessary (step S340; YES), the retransmission control unit 115 outputs a retransmission signal to the transmission control unit 111a. The transmission control unit 111a acquires a retransmission signal from the transmission control unit 111a. The transmission control unit 111a transmits the first segment, which is the previous segment (step S350). The transmission control unit 111a repeats step S330 to step S340.
If re-transmission is not necessary (step S340; NO), the transmission control unit 111a determines whether or not transmission of all measurement information has been completed (step S360).
 測定情報の全ての送信が完了していない場合(ステップS360;NO)には、残りのセグメントを順次送信する。
 測定情報の全ての送信が完了している場合(ステップS360;YES)には、受信状態判定部116は、受信装置20aの受信状態の監視を終了する(ステップS370)。
If transmission of all measurement information has not been completed (step S360; NO), the remaining segments are sequentially transmitted.
If all the transmission of measurement information has been completed (step S360; YES), the reception state determination unit 116 ends the monitoring of the reception state of the reception device 20a (step S370).
[双方向通信の具体例]
 次に、図17を参照して、送信装置10aと受信装置20aとの双方向通信の一例について説明する。
 図17は、送信装置10aと受信装置20aとの双方向通信の一例を示す図である。
[Specific examples of bidirectional communication]
Next, an example of bidirectional communication between the transmission device 10a and the reception device 20a will be described with reference to FIG.
FIG. 17 is a diagram illustrating an example of bidirectional communication between the transmission device 10a and the reception device 20a.
 送信装置10aは、時刻t70から時刻t71までの間にセグメントSEG120を送信する。セグメントSEG120は、受信装置20aによって時刻t80に受信が開始され、時刻t81に受信が終了される。復号部22aは、セグメントSEG120に含まれるパケットを復号する。復号部22aは、復号が失敗した場合には、フラッシュ25を消灯する。 The transmission device 10a transmits the segment SEG120 between time t70 and time t71. The segment SEG120 starts to be received by the receiving device 20a at time t80 and ends at time t81. The decoding unit 22a decodes the packet included in the segment SEG120. The decryption unit 22a turns off the flash 25 when the decryption fails.
 送信装置10aがセグメントSEG120の送信完了から、送信結果であるフラッシュ25の状態の変化を検出するまでには、時間間隔TRと時間間隔TFCとを加算した時間を要する。ここで、時間間隔TRとは、セグメントSEG120を受信装置20aが受信するまでの受信遅延時間である。時間間隔TFCとは、受信装置20aの発光状態の切り替えにかかる時間である。なお、図17に示す時間間隔Tsensorとは、センサ14の読み取りに要する時間である。また、図17に示す時間間隔Tcとは、受信装置20aが、セグメントの再送信制御に要する時間である。 It takes a time obtained by adding the time interval TR and the time interval TFC from the completion of the transmission of the segment SEG 120 until the transmission device 10a detects a change in the state of the flash 25 as a transmission result. Here, the time interval TR is a reception delay time until the receiving device 20a receives the segment SEG120. The time interval TFC is a time required for switching the light emission state of the receiving device 20a. Note that the time interval Tsensor shown in FIG. 17 is the time required for reading by the sensor 14. In addition, the time interval Tc shown in FIG. 17 is a time required for the re-transmission control of the segment by the receiving device 20a.
 送信装置10aは、時刻t72から時刻t73までの間にセグメントSEG121を送信する。セグメントSEG121は、受信装置20aによって時刻t82に受信が開始され、時刻t84に受信が終了される。送信装置10aは、このセグメントSEG121を送信している間に、フラッシュ25の発光の状態を確認する。ここで、セグメントSEG120の復号が失敗したため、受信装置20aは、時刻t83から時刻t86までの間、フラッシュ25を消灯する。送信装置10aは、このフラッシュ25の消灯を、セグメントSEG121を送信中に確認する。 The transmission device 10a transmits the segment SEG121 between time t72 and time t73. The segment SEG 121 starts to be received by the receiving device 20a at time t82 and ends at time t84. While transmitting the segment SEG 121, the transmission device 10a checks the light emission state of the flash 25. Here, since decoding of the segment SEG 120 has failed, the receiving device 20a turns off the flash 25 from time t83 to time t86. The transmission device 10a confirms that the flash 25 is turned off while the segment SEG 121 is being transmitted.
 送信装置10aは、時刻t74から時刻t75までの間に、受信装置20aが復号に失敗したセグメントSEG120を再送信する。受信装置20aは、この再送信されたセグメントSEG120を時刻t85から時刻t87までの間に受信する。
 送信装置10aは、セグメントSEG120を再送信している間に、セグメントSEG121の受信の状態を確認する。送信装置10aは、このセグメントSEG121の受信の状態を、時刻t86から時刻t89までの間に確認する。
The transmission device 10a retransmits the segment SEG120 in which the reception device 20a failed to decode between time t74 and time t75. The receiving device 20a receives the retransmitted segment SEG120 between time t85 and time t87.
The transmitting apparatus 10a checks the reception state of the segment SEG 121 while retransmitting the segment SEG 120. The transmitting apparatus 10a confirms the reception state of the segment SEG121 between time t86 and time t89.
 送信装置10aは、セグメントSEG120の再送信の終了後、セグメントSEG122を送信する。このセグメントSEG122の送信は、時刻t76から時刻t77までの間に行われる。受信装置20aは、セグメントSEG122を、時刻t88から時刻t90までの間に受信する。 The transmission device 10a transmits the segment SEG122 after the re-transmission of the segment SEG120. The segment SEG 122 is transmitted from time t76 to time t77. The receiving device 20a receives the segment SEG122 between time t88 and time t90.
[双方向通信の具体例 その2]
 ここまでは、受信装置20aは、セグメントに含まれるパケットの復号に成功した場合にはフラッシュ25を点灯し、セグメントに含まれるパケットの復号に失敗した場合にはフラッシュ25を消灯することにより通信する方法について説明した。ここで、送信装置10aが屋外に配置され、受信装置20aが備えるフラッシュ25からの以外の光である環境光を、パケットの復号に成功した事を示す光だと誤認識することがあった。
[Specific example of bidirectional communication # 2]
Up to this point, the receiving device 20a performs communication by turning on the flash 25 when the packet included in the segment is successfully decoded and turning off the flash 25 when decoding of the packet included in the segment fails. The method was explained. Here, there is a case where environmental light, which is light other than the flash 25 provided in the receiving device 20a, is disposed outdoors and is misrecognized as light indicating that the packet has been successfully decoded.
 次に、図18を参照して、この誤認識を抑制する送信装置10aと受信装置20aとの第2の双方向通信の一例について説明する。
 図18は、送信装置10aと受信装置20aとの第2の双方向通信の一例を示す図である。
 第2の双方向通信では、受信装置20aは、パケットの復号に成功した場合には、フラッシュ25の点灯の状態を変化させる。また、第2の双方向通信では、受信装置20aは、パケットの復号に失敗した場合には、フラッシュ25の点灯の状態を変化させない。フラッシュ25の点灯の状態とは、フラッシュ25が点灯している状態と、フラッシュ25が消灯している状態である。このパケットの復号の成功に応じてフラッシュ25の点灯の状態を変化させ、パケットの復号の失敗ではフラッシュ25の点灯の状態を変化させない以外の動作は、上述した双方向通信と同じ動作である。
Next, an example of second bidirectional communication between the transmission device 10a and the reception device 20a that suppresses this erroneous recognition will be described with reference to FIG.
FIG. 18 is a diagram illustrating an example of second bidirectional communication between the transmission device 10a and the reception device 20a.
In the second bidirectional communication, the receiving device 20a changes the lighting state of the flash 25 when the packet decoding is successful. In the second bidirectional communication, the receiving device 20a does not change the lighting state of the flash 25 when the packet decoding fails. The lighting state of the flash 25 is a state where the flash 25 is turned on and a state where the flash 25 is turned off. The operation other than changing the lighting state of the flash 25 according to the successful decoding of the packet and not changing the lighting state of the flash 25 when the packet decoding fails is the same operation as the above-described bidirectional communication.
 送信装置10aは、時刻t180から時刻t181までの間にセグメントSEG180を送信する。セグメントSEG180は、受信装置20aによって時刻t190に受信が開始され、時刻t191に受信が終了される。復号部22aは、セグメントSEG180に含まれるパケットを復号する。復号部22aは、セグメントSEG180のパケットの復号に成功したため、時刻t193にフラッシュ25の点灯の状態を変化させる。この一例では、受信装置20aは、セグメントSEG180の復号を開始した時点では、フラッシュ25が点灯している。このため、受信装置20aは、セグメントSEG180のパケットの復号に成功したため、時刻t193にフラッシュ25を消灯する。 The transmission device 10a transmits the segment SEG180 between time t180 and time t181. The segment SEG 180 starts to be received by the receiving device 20a at time t190 and ends at time t191. The decoding unit 22a decodes the packet included in the segment SEG180. Since the decoding unit 22a has successfully decoded the packet of the segment SEG180, the decoding unit 22a changes the lighting state of the flash 25 at time t193. In this example, the flash device 25 is turned on when the receiving device 20a starts decoding the segment SEG180. For this reason, since the receiving device 20a has successfully decoded the segment SEG180 packet, the receiving device 20a turns off the flash 25 at time t193.
 送信装置10aは、時刻t182から時刻t183までの間にセグメントSEG181を送信する。セグメントSEG181は、受信装置20aによって時刻t192に受信が開始され、時刻t194に受信が終了される。送信装置10aは、このセグメントSEG181を送信している間に、受光部13が光を受光しているか否かを判定することにより、送信装置10aのフラッシュ25の発光の状態を確認する。ここで、セグメントSEG180の復号が成功したため、受信装置20aは、時刻t192から時刻t194までの間、フラッシュ25を消灯している。受信状態判定部116は、このフラッシュ25の消灯を、セグメントSEG181を送信中に判定することにより、1つ前に送信したセグメントであるセグメントSEG180の受信ができていると判定する。 The transmission device 10a transmits the segment SEG181 between time t182 and time t183. The segment SEG181 is received by the receiving device 20a at time t192, and is ended at time t194. While transmitting the segment SEG181, the transmission device 10a determines whether the light receiving unit 13 is receiving light, thereby confirming the light emission state of the flash 25 of the transmission device 10a. Here, since the segment SEG 180 has been successfully decoded, the receiving device 20a turns off the flash 25 from time t192 to time t194. The reception state determination unit 116 determines that the segment SEG180, which is the previous segment, has been received by determining that the flash 25 is turned off during transmission of the segment SEG181.
 セグメントSEG181を受信した復号部22aは、セグメントSEG181に含まれるパケットを復号する。復号部22aは、セグメントSEG181のパケットの復号に失敗したため、時刻t196にフラッシュ25の点灯の状態を変化させない。この一例では、受信装置20aは、セグメントSEG181の復号を開始した時点では、フラッシュ25が消灯している。このため、受信装置20aは、セグメントSEG181のパケットの復号に失敗したため、時刻t195にフラッシュ25の点灯の状態を変化させない。言い換えると、受信装置20aは、時刻t195にフラッシュ25を消灯したままにする。 Upon receiving the segment SEG181, the decoding unit 22a decodes the packet included in the segment SEG181. Since the decoding unit 22a failed to decode the packet of the segment SEG181, the lighting state of the flash 25 is not changed at time t196. In this example, the flash device 25 is turned off at the time when the receiving device 20a starts decoding the segment SEG181. For this reason, the receiving device 20a does not change the lighting state of the flash 25 at time t195 because the decoding of the packet of the segment SEG181 has failed. In other words, the receiving device 20a keeps the flash 25 off at time t195.
 送信装置10aは、時刻t184から時刻t185までの間にセグメントSEG182を送信する。セグメントSEG182は、受信装置20aによって時刻t195に受信が開始され、時刻t197に受信が終了される。送信装置10aは、このセグメントSEG182を送信している間に、受光部13が光を受光しているか否かを判定することにより、送信装置10aのフラッシュ25の発光の状態を確認する。ここで、セグメントSEG181の復号が失敗したため、受信装置20aは、時刻t196から時刻t199までの間、フラッシュ25を消灯している。受信状態判定部116は、このフラッシュ25の点灯の状態が、消灯したままであることを判定することにより、セグメントSEG181の受信ができていないと判定する。 The transmission device 10a transmits the segment SEG182 between time t184 and time t185. The segment SEG182 starts to be received by the receiving device 20a at time t195 and ends at time t197. While transmitting the segment SEG182, the transmission device 10a determines whether the light receiving unit 13 is receiving light, thereby confirming the light emission state of the flash 25 of the transmission device 10a. Here, since decoding of the segment SEG 181 has failed, the receiving device 20a turns off the flash 25 from time t196 to time t199. The reception state determination unit 116 determines that the segment SEG 181 has not been received by determining that the lighting state of the flash 25 remains off.
 セグメントSEG182を受信した復号部22aは、セグメントSEG182に含まれるパケットを復号する。復号部22aは、セグメントSEG182のパケットの復号に成功したため、時刻t199にフラッシュ25の点灯の状態を変化させる。受信装置20aは、セグメントSEG182の復号を開始した時点では、フラッシュ25が消灯している。このため、受信装置20aは、セグメントSEG182のパケットの復号に成功したため、時刻t199にフラッシュ25を点灯させる。 Upon receiving the segment SEG182, the decoding unit 22a decodes the packet included in the segment SEG182. Since the decoding unit 22a has successfully decoded the packet of the segment SEG182, the decoding unit 22a changes the lighting state of the flash 25 at time t199. At the time when the receiving device 20a starts decoding the segment SEG182, the flash 25 is turned off. For this reason, since the receiving device 20a has successfully decoded the segment SEG182 packet, the receiving device 20a turns on the flash 25 at time t199.
 送信装置10aは、時刻t186から時刻t187までの間に、受信装置20aが復号に失敗したセグメントSEG181を再送信する。受信装置20aは、この再送信されたセグメントSEG181を時刻t197から時刻t19Aまでの間に受信する。
 送信装置10aは、セグメントSEG181を再送信している間に、セグメントSEG182の受信の状態を確認する。送信装置10aは、このセグメントSEG182の受信の状態を、時刻t199から時刻t19Cまでの間に判定する。送信装置10aは、フラッシュ25の点灯の状態が、変化したことを判定することにより、セグメントSEG182の受信ができていると判定する。
The transmitting apparatus 10a retransmits the segment SEG181 in which the receiving apparatus 20a failed to decode between time t186 and time t187. The receiving device 20a receives the retransmitted segment SEG181 between time t197 and time t19A.
While retransmitting the segment SEG181, the transmission device 10a checks the reception status of the segment SEG182. The transmission device 10a determines the reception state of the segment SEG182 between time t199 and time t19C. The transmission device 10a determines that the segment SEG182 has been received by determining that the lighting state of the flash 25 has changed.
 送信装置10aは、セグメントSEG181の再送信の終了後、セグメントSEG183を送信する。このセグメントSEG183の送信は、時刻t188から時刻t189までの間に行われる。受信装置20aは、セグメントSEG183を、時刻t19Cから時刻t19Dまでの間に受信する。 The transmission device 10a transmits the segment SEG183 after the re-transmission of the segment SEG181. The segment SEG183 is transmitted from time t188 to time t189. The receiving device 20a receives the segment SEG183 between time t19C and time t19D.
 以上説明したように、第2の双方向通信を行う受信装置20aは、セグメントに含まれるパケットの復号に成功した場合にはフラッシュ25の点灯の状態を変化させ、セグメントに含まれるパケットの復号に失敗した場合にはフラッシュ25の点灯の状態を変化させない。このように構成することにより、送信装置10aと、受信装置20aとの間の通信の結果が環境光によって誤認識されることが抑制できる。これにより、送信装置10aは、受信装置20aとの通信を安定させることができる。 As described above, the receiving device 20a that performs the second two-way communication changes the lighting state of the flash 25 when successfully decoding the packet included in the segment, and decodes the packet included in the segment. If it fails, the lighting state of the flash 25 is not changed. By comprising in this way, it can suppress that the result of communication between the transmitter 10a and the receiver 20a is misrecognized by environmental light. Thereby, the transmission device 10a can stabilize communication with the reception device 20a.
 また、送信装置10aは、パケットの復号に所定の回数、失敗したと判定したときに、セグメントの送信を止めてもよい。一般に、環境光は、フラッシュ25の点灯の状態の変化よりも不規則に変化する。送信装置10aは、フラッシュ25の点灯の状態の変化によってパケットの復号に成功したと判定することにより、フラッシュ25の点灯によってパケットの復号に成功したと判定する場合と比較して、より短い時間でセグメントの送信を止めることができる。つまり、送信装置10aは、双方向通信の途中に、受信装置20aの位置が移動してセグメントの受信ができない状態になると、より短い時間でセグメントの送信を止めることができる。これにより、送信装置10aは、送信装置10aが備える電池の電力の消費を抑制することができる。 Further, the transmission device 10a may stop the segment transmission when it is determined that the packet decoding has failed a predetermined number of times. In general, the ambient light changes more irregularly than the change in the lighting state of the flash 25. By determining that the packet has been successfully decoded by the change in the lighting state of the flash 25, the transmitting device 10a has a shorter time than when determining that the packet has been successfully decoded by turning on the flash 25. You can stop sending segments. That is, when the position of the receiving device 20a moves and the segment cannot be received during the two-way communication, the transmitting device 10a can stop the segment transmission in a shorter time. Thereby, the transmission apparatus 10a can suppress consumption of the electric power of the battery with which the transmission apparatus 10a is provided.
[第3の実施形態のまとめ]
 以上説明したように、送信装置10aは、演算部11aを備える。演算部11aは、送信制御部111aと、再送信制御部115と、受信状態判定部116とを備える。
 送信装置10aは、セグメントを受信装置20aの遅延を待つことなく送信する。受信状態判定部116は、受光部13の受光の状態に基づいて、受信装置20aがセグメントの受信に成功したか否かを判定する。再送信制御部115は、受信状態判定部116が判定した結果が、再送信が必要なことを示す場合には、送信制御部111aに対して1つ前に送信したセグメントを再送信させる。これにより、送信装置10aは、受信装置20aの受信の状態によらずに、情報を送信する。また、送信装置10aは、受信装置20aが受信できなかったセグメントのみを再送信する。これにより、送信装置10aは、効率よく情報を送信することができる。
[Summary of Third Embodiment]
As described above, the transmission device 10a includes the calculation unit 11a. The computing unit 11a includes a transmission control unit 111a, a retransmission control unit 115, and a reception state determination unit 116.
The transmission device 10a transmits the segment without waiting for the delay of the reception device 20a. The reception state determination unit 116 determines whether or not the reception device 20a has successfully received the segment based on the light reception state of the light receiving unit 13. If the result determined by the reception state determination unit 116 indicates that retransmission is necessary, the retransmission control unit 115 causes the transmission control unit 111a to retransmit the previous segment. Thereby, the transmission device 10a transmits information regardless of the reception state of the reception device 20a. Further, the transmission device 10a retransmits only the segments that the reception device 20a could not receive. Thereby, the transmission apparatus 10a can transmit information efficiently.
 なお、上述した説明では、送信制御部111aはセグメント毎に測定情報を送信したが、これに限られない。送信制御部111aは、パケット毎に測定情報を送信してもよい。 In the above description, the transmission control unit 111a transmits the measurement information for each segment, but is not limited thereto. The transmission control unit 111a may transmit measurement information for each packet.
 なお上述した説明では、送信制御部111aは、1つ前に送信したセグメントを再送信する構成について説明したがこれに限られない。送信制御部111aは、情報の先頭のセグメントから再送信してもよい。 In the above description, the transmission control unit 111a has described the configuration for retransmitting the previously transmitted segment, but is not limited thereto. The transmission control unit 111a may retransmit from the head segment of the information.
 上述した説明では、第2の実施形態及び第3の実施形態の送信装置が備える送信制御部111は、情報を、ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され撮像装置に送信される情報の1パケットあたりの送信時間と、情報を構成するパケットのパケット数とに基づく再送回数によって送信する場合について説明したが、これに限られない。第2の実施形態及び第3の実施形態の送信制御部111は、他の送信方法によって情報を送信してもよい。 In the above description, the transmission control unit 111 included in the transmission apparatuses of the second embodiment and the third embodiment includes information, which includes a frame time and a gap time of an imaging apparatus using a rolling shutter method, and a plurality of packets. Although a case has been described in which transmission is performed based on the number of retransmissions based on the transmission time per packet of information transmitted to the imaging apparatus and the number of packets of packets constituting the information, the present invention is not limited to this. The transmission control unit 111 of the second embodiment and the third embodiment may transmit information by other transmission methods.
 なお、上述した第1の実施形態から第3の実施形態までの送信装置は、情報の送信が終了した場合には、情報の送信が終了したことを示す発光パターンを発光させてもよい。受信装置は、情報の送信が終了したことを示す発光パターンに基づいて、撮像を終了する。
これにより、受信装置は、送信装置からの全ての情報が受信されたことを判別することができる。この情報の送信が終了したことを示す発光パターンには、具体的には、上述したパケットのプリンアブルに、情報の送信が終了したことを示す情報を設定すればよい。
Note that the transmission apparatuses from the first embodiment to the third embodiment described above may emit a light emission pattern indicating that the transmission of information is completed when the transmission of information is completed. The receiving device ends the imaging based on the light emission pattern indicating that the transmission of information has ended.
Thereby, the receiving device can determine that all the information from the transmitting device has been received. Specifically, information indicating that the transmission of information has been completed may be set in the above-described packet printable in the light emission pattern indicating that the transmission of information has been completed.
なお、上述した第1の実施形態から第3の実施形態までの送信装置の構成は、どの様に組み合わせてもよい。 In addition, you may combine how the structure of the transmission apparatus from 1st Embodiment mentioned above to 3rd Embodiment mentioned above.
 以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can.
 なお、以上に説明した送信装置、受信装置、送信装置10、送信装置10a、受信装置20及び受信装置20aにおける任意の構成部の機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体(記憶媒体)に記録(記憶)し、そのプログラムをコンピュータシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、オペレーティングシステム(OS:Operating System)あるいは周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD(Compact Disc)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークあるいは電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピュータシステム内部の揮発性メモリー(RAM:Random Access Memory)のように、一定時間プログラムを保持しているものも含むものとする。 It should be noted that the program for realizing the functions of the arbitrary components in the transmission device, the reception device, the transmission device 10, the transmission device 10a, the reception device 20, and the reception device 20a described above is recorded on a computer-readable recording medium (memory). The program may be recorded (stored) on a medium, and the program may be read into a computer system and executed. The “computer system” here includes an operating system (OS) or hardware such as peripheral devices. The “computer-readable recording medium” means a portable disk such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD (Compact Disc) -ROM, or a hard disk built in the computer system. Refers to the device. Further, the “computer-readable recording medium” means a volatile memory (RAM: Random Access) inside a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Memory that holds a program for a certain period of time, such as Memory).
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)あるいは電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Further, the above program may be for realizing a part of the functions described above. Further, the above program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
 10,10a…送信装置、11,11a…演算部、12…発光部、13…受光部、14
…センサ、15…起動停止部、20,20a…受信装置、21…撮像部、22,22a…
復号部、23…表示部、24…発光制御部、25…フラッシュ、111,111a…送信
制御部、112…送信判定部、113…受信信号生成部、114…信号取得部、115…
再送信制御部、116…受信状態判定部
DESCRIPTION OF SYMBOLS 10,10a ... Transmitter, 11, 11a ... Calculation part, 12 ... Light emission part, 13 ... Light-receiving part,
... sensor, 15 ... start / stop unit, 20, 20a ... receiving device, 21 ... imaging unit, 22, 22a ...
Decoding unit, 23 ... display unit, 24 ... light emission control unit, 25 ... flash, 111, 111a ... transmission control unit, 112 ... transmission determination unit, 113 ... received signal generation unit, 114 ... signal acquisition unit, 115 ...
Retransmission control unit, 116 ... reception state determination unit

Claims (16)

  1.  ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され前記撮像装置に送信される情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数によって、前記情報の送信制御を行う送信制御部と、
     前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部と
     を備える送信装置。
    Retransmission based on the frame time and gap time of the imaging device using the rolling shutter method, the transmission time per packet of information configured by a plurality of packets and transmitted to the imaging device, and the number of packets of the packets constituting the information A transmission control unit that performs transmission control of the information according to the number of times;
    A light emitting unit that transmits the information by emitting light by a light emission pattern based on transmission control by the transmission control unit.
  2.  前記再送回数は、
     前記パケット数が、前記再送回数及び前記送信時間の積と前記ギャップ時間及び前記送信時間の和との比以上であり、かつ前記送信時間と前記フレーム時間との比以下であることを示す関係式に基づいて定められている
     請求項1に記載の送信装置。
    The number of retransmissions is
    Relational expression indicating that the number of packets is equal to or greater than a ratio of a product of the number of retransmissions and the transmission time and a sum of the gap time and the transmission time, and is equal to or less than a ratio of the transmission time and the frame time. The transmission apparatus according to claim 1, wherein the transmission apparatus is determined based on
  3.  前記発光部は、
     3以上の発光素子を備え、前記発光素子のうち少なくとも2つが配置される配置軸線上に、他の前記発光素子のうち少なくとも1つが配置されていない
     請求項1又は請求項2に記載の送信装置。
    The light emitting unit
    The transmission device according to claim 1, further comprising: three or more light emitting elements, wherein at least one of the other light emitting elements is not disposed on an arrangement axis on which at least two of the light emitting elements are disposed. .
  4.  前記パケットには、当該パケットが先頭パケットか従属パケットかを示す識別情報が含まれ、
     前記識別情報のうち、従属パケットを示す識別情報の情報量が、先頭パケットを示す識別情報の情報量よりも少ない
     請求項1から請求項3のいずれか一項に記載の送信装置。
    The packet includes identification information indicating whether the packet is a head packet or a subordinate packet,
    The transmission apparatus according to any one of claims 1 to 3, wherein an information amount of identification information indicating a subordinate packet among the identification information is smaller than an information amount of identification information indicating a leading packet.
  5.  光を受光する受光センサ
    を備え、
     前記受光センサがとらえた光の明滅パターンに基づいて、情報の送信を開始する
     送信装置。
    It has a light receiving sensor that receives light,
    A transmission device that starts transmission of information based on a flickering pattern of light captured by the light receiving sensor.
  6.  ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され前記撮像装置に送信される前記情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数によって、前記情報の送信制御を行う送信制御部と、
     前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部と、
     前記送信制御部と前記発光部と前記受光センサとのうち少なくとも1つを所定の条件に基づいて起動又は停止させる起動停止部と
    を更に備える
    請求項5に記載の送信装置。
    Based on the frame time and gap time of the imaging device based on the rolling shutter method, the transmission time per packet of the information that is configured by a plurality of packets and transmitted to the imaging device, and the number of packets of the packets constituting the information A transmission control unit that performs transmission control of the information according to the number of retransmissions;
    A light emitting unit for transmitting the information by emitting light by a light emission pattern based on transmission control by the transmission control unit;
    The transmission device according to claim 5, further comprising an activation stop unit that activates or stops at least one of the transmission control unit, the light emitting unit, and the light receiving sensor based on a predetermined condition.
  7.  前記受光センサがとらえた光の明滅パターンが所定の明滅パターンである場合に、前記発光部の発光を許可する発光許可部
    を更に備える請求項6に記載の送信装置。
    The transmission device according to claim 6, further comprising: a light emission permission unit that permits light emission of the light emitting unit when a light blinking pattern captured by the light receiving sensor is a predetermined blinking pattern.
  8.  前記所定の条件とは、前記受光センサが受光する光の明滅間隔に基づく時間であって、
     前記起動停止部は、前記所定の条件に基づいて前記発光許可部を起動及び停止させ、
     前記発光許可部は、前記起動停止部が前記発光許可部を起動させている期間において前記受光センサが光を受光しているか否かの判定結果に基づいて、前記発光部の発光を許可する
     請求項7に記載の送信装置。
    The predetermined condition is a time based on a blinking interval of light received by the light receiving sensor,
    The start / stop unit starts and stops the light emission permission unit based on the predetermined condition,
    The light emission permission unit permits light emission of the light emission unit based on a determination result of whether or not the light receiving sensor receives light during a period in which the activation stop unit activates the light emission permission unit. Item 8. The transmission device according to Item 7.
  9.  情報の送信制御を行う送信制御部と、
     前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部と、
     光を受光する受光センサと、
     前記受光センサの受光の状態に基づいて、前記情報の受信の状態を判定する受信状態判定部と、
     前記受信状態判定部が判定した判定結果に基づいて、前記送信制御部に前記情報を再送信させる再送信制御部と
    を備える送信装置。
    A transmission control unit for performing transmission control of information;
    A light emitting unit for transmitting the information by emitting light by a light emission pattern based on transmission control by the transmission control unit;
    A light receiving sensor for receiving light;
    A reception state determination unit that determines a reception state of the information based on a light reception state of the light reception sensor;
    A transmission apparatus comprising: a retransmission control unit that causes the transmission control unit to retransmit the information based on a determination result determined by the reception state determination unit.
  10.  前記情報は、複数のパケットによって構成されるセグメント毎に送信され、前記セグメントの送信にかかる時間は、撮像装置の前記セグメントの受信遅延時間と、前記撮像装置の光が発光される発光部の前記光が発光される発光状態と前記光が発光されない非発光状態との切り替えにかかる時間よりも長い時間であって、
     前記再送信制御部は、
      自装置が1つ前に送信したセグメントを前記情報として再送信させる
     請求項9に記載の送信装置。
    The information is transmitted for each segment composed of a plurality of packets, and the transmission time of the segment is the reception delay time of the segment of the imaging device and the light emitting unit of the imaging device that emits light. A time longer than a time taken to switch between a light emitting state in which light is emitted and a non-light emitting state in which the light is not emitted,
    The retransmission control unit
    The transmission device according to claim 9, wherein a segment transmitted by the device itself one time before is retransmitted as the information.
  11.  情報の送信制御を行う送信制御部と、
     前記送信制御部による送信制御に基づく発光パターンによって発光することにより、前記情報を送信する発光部と
    を備え、
     前記送信制御部は、
      前記情報の送信が終了した場合には、前記情報の送信が終了したことを示す発光パターンを発光させる
     送信装置。
    A transmission control unit for performing transmission control of information;
    A light emitting unit that transmits the information by emitting light by a light emission pattern based on transmission control by the transmission control unit;
    The transmission control unit
    A transmission device that emits a light emission pattern indicating that transmission of the information is completed when transmission of the information is completed.
  12.  前記送信制御部は、
     前記情報を、ローリングシャッター方式による撮像装置のフレーム時間及びギャップ時間と、複数のパケットによって構成され前記撮像装置に送信される前記情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数によって送信する
    請求項9から請求項11のいずれか一項に記載の送信装置。
    The transmission control unit
    The information includes a frame time and a gap time of an imaging device using a rolling shutter method, a transmission time per packet of the information that is configured by a plurality of packets and is transmitted to the imaging device, and a packet of a packet that constitutes the information The transmission device according to any one of claims 9 to 11, wherein the transmission is performed based on the number of retransmissions based on the number.
  13.  ローリングシャッター方式による撮像部と、
     前記撮像部のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって前記情報を送信する発光部が前記撮像部によって撮像された発光パターン画像に基づいて、前記情報を復号する復号部と
     を備える受信装置。
    An imaging unit using a rolling shutter system;
    The information is transmitted by a light emission pattern based on the number of retransmissions based on the frame time and gap time of the imaging unit, the transmission time per packet of information composed of a plurality of packets, and the number of packets of the packets constituting the information. And a decoding unit that decodes the information based on a light emission pattern image captured by the imaging unit.
  14.  光を発光する発光部と、
     自装置の前記情報の受信の状態に応じた発光パターンを前記発光部に発光させる発光制御部と
     を更に備える請求項13に記載の受信装置。
    A light emitting unit that emits light;
    The receiving device according to claim 13, further comprising: a light emission control unit that causes the light emitting unit to emit a light emission pattern according to a reception state of the information of the device itself.
  15.  前記復号部は、
     前記発光パターン画像が示す発光パターンの経時変化を複数の走査列によって取得することにより前記情報を復号する
     請求項13又は請求項14に記載の受信装置。
    The decoding unit
    The receiving device according to claim 13 or 14, wherein the information is decoded by acquiring temporal changes of the light emission pattern indicated by the light emission pattern image by a plurality of scanning rows.
  16.  コンピュータに、
     ローリングシャッター方式による撮像部のフレーム時間及びギャップ時間と、複数のパケットによって構成される情報の1パケットあたりの送信時間と、前記情報を構成するパケットのパケット数とに基づく再送回数による発光パターンによって前記情報を送信する発光部が前記撮像部によって撮像された発光パターン画像を取得する取得ステップと、
     前記取得ステップにおいて取得される前記発光パターン画像に基づいて、前記情報を復号する復号ステップと
     を実行させるためのプログラム。
    On the computer,
    According to the light emission pattern based on the number of retransmissions based on the frame time and gap time of the imaging unit by the rolling shutter method, the transmission time per packet of information composed of a plurality of packets, and the number of packets of the packets constituting the information An acquisition step in which a light emitting unit that transmits information acquires a light emission pattern image captured by the imaging unit;
    And a decoding step of decoding the information based on the light emission pattern image acquired in the acquisition step.
PCT/JP2017/026533 2016-07-22 2017-07-21 Transmitter, receiver, and program WO2018016642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018528906A JP7051107B2 (en) 2016-07-22 2017-07-21 Transmitter, receiver and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662365390P 2016-07-22 2016-07-22
US62/365,390 2016-07-22
JP2017-042218 2017-03-06
JP2017042218 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018016642A1 true WO2018016642A1 (en) 2018-01-25

Family

ID=60993105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026533 WO2018016642A1 (en) 2016-07-22 2017-07-21 Transmitter, receiver, and program

Country Status (2)

Country Link
JP (1) JP7051107B2 (en)
WO (1) WO2018016642A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039587A (en) * 2019-06-03 2020-12-04 埃克斯特朗电子实业有限公司 Communication between a handheld device having a flashlight and an equipment having a light receiver
CN113037434A (en) * 2019-12-26 2021-06-25 深圳市瑞立视多媒体科技有限公司 Method and related equipment for solving synchronous communication packet loss of coding type active optical capturing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216780A (en) * 2004-01-30 2005-08-11 Matsushita Electric Works Ltd Illumination device
JP2012039556A (en) * 2010-08-11 2012-02-23 Sky G Labolatory Co Ltd Illumination light communication system
JP2012209952A (en) * 2012-06-05 2012-10-25 Hokuyo Automatic Co Optical data transmission apparatus, method of transmitting optical data, and optical communication device
WO2015121154A1 (en) * 2014-02-14 2015-08-20 Koninklijke Philips N.V. Coded light
WO2015121135A1 (en) * 2014-02-14 2015-08-20 Koninklijke Philips N.V. Signaling using idle period for coded light
WO2015173015A1 (en) * 2014-05-12 2015-11-19 Koninklijke Philips N.V. Detection of coded light

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670996B2 (en) 2014-09-26 2020-03-25 パナソニックIpマネジメント株式会社 Display device and display method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216780A (en) * 2004-01-30 2005-08-11 Matsushita Electric Works Ltd Illumination device
JP2012039556A (en) * 2010-08-11 2012-02-23 Sky G Labolatory Co Ltd Illumination light communication system
JP2012209952A (en) * 2012-06-05 2012-10-25 Hokuyo Automatic Co Optical data transmission apparatus, method of transmitting optical data, and optical communication device
WO2015121154A1 (en) * 2014-02-14 2015-08-20 Koninklijke Philips N.V. Coded light
WO2015121135A1 (en) * 2014-02-14 2015-08-20 Koninklijke Philips N.V. Signaling using idle period for coded light
WO2015173015A1 (en) * 2014-05-12 2015-11-19 Koninklijke Philips N.V. Detection of coded light

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039587A (en) * 2019-06-03 2020-12-04 埃克斯特朗电子实业有限公司 Communication between a handheld device having a flashlight and an equipment having a light receiver
CN113037434A (en) * 2019-12-26 2021-06-25 深圳市瑞立视多媒体科技有限公司 Method and related equipment for solving synchronous communication packet loss of coding type active optical capturing system
CN113037434B (en) * 2019-12-26 2022-04-15 深圳市瑞立视多媒体科技有限公司 Method and related equipment for solving synchronous communication packet loss of coding type active optical capturing system

Also Published As

Publication number Publication date
JP7051107B2 (en) 2022-04-11
JPWO2018016642A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
US9258472B2 (en) Control apparatus, control system, command transmission method, and non-transitory computer-readable storage medium
JP2013223047A (en) Transmission system, transmitting device, and receiving device
JP6653128B2 (en) Visible light communication system
WO2018016642A1 (en) Transmitter, receiver, and program
Ferrandiz-Lahuerta et al. A reliable asynchronous protocol for VLC communications based on the rolling shutter effect
WO2021129790A1 (en) Method for solving packet loss in synchronous communication in code-type active optical motion capture system, and related device
US11665432B2 (en) Illumination control for imaging systems with multiple image sensors
JP2013044735A (en) Projection control apparatus and projection control method
JP2019012329A (en) Optical id transmission device, and optical id communication system
CN104113737B (en) System for preventing monitoring video from being replaced and method thereof
RU2017138103A (en) METHOD AND DEVICE OF COMMUNICATION
JP5178549B2 (en) Information notification method and program
CN103701527A (en) Visible light information receiving method and device
US9252925B2 (en) Communication apparatus, communication system, and communication method
JP2016165068A (en) Luminaire and illumination system
JP6459620B2 (en) Light receiving unit, light emission control method and program
JP2009218898A (en) Visible light communication system
WO2013128943A1 (en) Wireless transmission device, wireless system, transfer device, and program
US9305200B2 (en) Information acquisition apparatus, information acquisition method, and non-transitory recording medium
TWI620420B (en) Visible light communication system and method
Hokazono et al. Iotorch: Reliable led-to-camera communication against inter-frame gaps and frame drops
KR101393486B1 (en) Method and apparatus of led visible light communication
JP2009218899A (en) Visible light communication system
JP2021029669A (en) Endoscope system, data processor, endoscope, communication connection method and computer program
US8385312B2 (en) Wireless communication terminal includes a setting section which sets frame transmission intervals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831158

Country of ref document: EP

Kind code of ref document: A1