WO2018016486A1 - Internal combustion engine control device and control method - Google Patents

Internal combustion engine control device and control method Download PDF

Info

Publication number
WO2018016486A1
WO2018016486A1 PCT/JP2017/025968 JP2017025968W WO2018016486A1 WO 2018016486 A1 WO2018016486 A1 WO 2018016486A1 JP 2017025968 W JP2017025968 W JP 2017025968W WO 2018016486 A1 WO2018016486 A1 WO 2018016486A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wall temperature
internal combustion
combustion engine
detected
Prior art date
Application number
PCT/JP2017/025968
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 外山
村井 淳
坂口 重幸
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018016486A1 publication Critical patent/WO2018016486A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine.
  • a wall temperature of a cylinder is detected or estimated as a combustion chamber temperature, and a target air-fuel ratio and an actual air-fuel ratio that are calculated based on the detected value or estimated value of the wall temperature.
  • a target air-fuel ratio and an actual air-fuel ratio that are calculated based on the detected value or estimated value of the wall temperature.
  • a detection error or estimation error may occur in the detected value or estimated value of the wall temperature due to various factors, and the detected value or estimated value of the wall temperature may deviate from the actual combustion chamber temperature. Therefore, since the fuel injection amount corrected using the detected value or estimated value of the wall temperature can deviate from the fuel injection amount suitable for the actual combustion chamber temperature, particularly when the internal combustion engine is restarted. Exhaust properties, fuel consumption rate, and drivability may be reduced.
  • the present invention improves the detection accuracy of the wall temperature detected as the combustion chamber temperature of the internal combustion engine, and improves the estimation accuracy of the wall temperature estimated as the combustion chamber temperature of the internal combustion engine. It is an object of the present invention to provide a control device and a control method for an internal combustion engine.
  • control apparatus and control method for an internal combustion engine corrects control parameters related to the control of the internal combustion engine based on the wall temperature of the combustion chamber detected or estimated as the temperature related to the combustion chamber of the internal combustion engine. Yes, the detected value or estimated value of the wall temperature used for correcting the control parameter is corrected based on the detected value of the coolant temperature of the internal combustion engine when combustion in the combustion chamber is stopped.
  • control device and control method for an internal combustion engine of the present invention it is possible to improve the detection accuracy of the wall temperature detected as the temperature in the combustion chamber of the internal combustion engine, and the combustion estimated as the temperature in the combustion chamber of the internal combustion engine The estimation accuracy of the wall temperature of the room can be improved.
  • FIG. 1 shows an example of an internal combustion engine to which a control device according to a first embodiment of the present invention is applied.
  • the internal combustion engine 1 is a power source mounted on a vehicle and includes a fuel injection valve 4 in an intake pipe (intake port) 3 upstream of the intake valve 2 of each cylinder.
  • the fuel injection valve 4 is controlled so as to inject fuel intermittently into the intake pipe 3 by matching the injection timing with the stroke of each cylinder.
  • the fuel stored in the fuel tank 5 is pumped to the fuel injection valve 4 by an electric fuel pump 6 disposed in the fuel tank 5.
  • Fuel injected by the fuel injection valve 4 into the intake pipe 3 is sucked into the combustion chamber 7 together with air through the intake valve 2 to form an air-fuel mixture.
  • the air-fuel mixture in the combustion chamber 7 is ignited and burned by spark ignition by the spark plug 8.
  • the combustion gas in the combustion chamber 7 is discharged to the exhaust pipe 10 through the exhaust valve 9.
  • the electronic control throttle 11 adjusts the intake air amount of the internal combustion engine 1 by changing the opening degree by the throttle motor 12.
  • the electronic control throttle 11 is disposed in an intake duct common to each cylinder upstream of the portion of the intake pipe 3 where the fuel injection valve 4 is disposed.
  • Cooling water discharged through the water jacket 13 around the combustion chamber 7 of the internal combustion engine 1 is guided to a radiator 16 provided with an electric radiator fan 15 via a first cooling water passage 14. It is burned.
  • the cooling water guided to the radiator 16 passes through the radiator core to which the fins are attached, the temperature of the cooling water is reduced by exchanging heat with the outside air, such as forced cooling air generated by the rotation of the radiator fan 15. To do. Then, the cooling water whose temperature has decreased is returned to the water jacket 13 of the internal combustion engine 1 through the second cooling water passage 17.
  • first cooling water passage 14 and the second cooling water passage 17 are connected to each other by a bypass passage 18 so that the cooling water discharged from the internal combustion engine 1 bypasses the radiator 16.
  • An electric thermostat 19 that opens and closes the passage area of the bypass passage 18 from fully open to fully closed in a stepwise or continuous manner is disposed at a joint portion between the bypass passage 18 and the second cooling water passage 17. The opening degree of the electric control thermostat 19 is controlled by inputting an external control signal, and the flow rate of the cooling water passing through the radiator 16 is changed.
  • a mechanical water pump (not shown) that circulates cooling water between the internal combustion engine 1 and the radiator 16 between the internal combustion engine 1 and the electric thermostat 19 in the second cooling water passage 17; Electric water pumps 20 are respectively provided.
  • a mechanical water pump (not shown) is attached to a cooling water inlet of the internal combustion engine 1 and is driven by using a rotational force generated in the internal combustion engine 1, such as a cam shaft.
  • the electric water pump 20 is driven by an electric motor 21 which is a drive source different from the internal combustion engine 1 so that the electric water pump 20 can be driven even when the internal combustion engine 1 is stopped by an idling stop function.
  • the control unit 22 including a microcomputer inputs output signals from various sensors that detect the operating state of the internal combustion engine 1. As various sensors, a water temperature sensor 23 for detecting the water temperature TW of the cooling water discharged from the internal combustion engine 1, an intake air temperature sensor 24 for detecting the intake air temperature TA of the internal combustion engine 1, and an intake air flow rate QA of the internal combustion engine 1 are detected.
  • An air flow sensor 25 that detects the fuel supply pressure PF from the fuel pump 6, a pump rotation sensor 27 that detects the rotational speed NP of the electric water pump 20, an outside air temperature sensor 28 that detects the outside air temperature TE, and an internal combustion engine
  • An engine rotation sensor 29 for detecting the engine rotation speed NE, a vehicle speed sensor 30 for detecting the vehicle speed V, an oil temperature sensor 31 for detecting the oil temperature TO of the lubricating oil of the internal combustion engine 1, and the depression amount of the accelerator pedal (accelerator opening) Degree)
  • An accelerator opening sensor 32 for detecting ACC is included.
  • the control unit 22 controls the fuel injection amount and injection timing by the fuel injection valve 4, the ignition timing by the spark plug 8, the opening degree of the electronic control throttle 11, and the like based on output signals from various sensors. Further, the control unit 22 controls the rotation speed of the electric water pump 20 and the radiator fan 15 so as to adjust the coolant temperature to a temperature according to the operating state of the internal combustion engine 1 based on the output signal from the water temperature sensor 23. The rotational speed, the opening degree of the electric control thermostat 19 and the like are controlled. Thus, the control unit 22 constitutes a control device for the internal combustion engine 1.
  • control unit 22 determines the inner wall of the combustion chamber 7 as the temperature (combustion chamber temperature) related to the combustion chamber 7 of the internal combustion engine 1 based on output signals from the water temperature sensor 23, the oil temperature sensor 31, the intake air temperature sensor 24, and the like. Estimate the wall temperature at. Furthermore, the control unit 22 includes a control parameter correction unit that corrects control parameters related to control of the internal combustion engine 1 such as, for example, fuel injection amount, injection timing, and ignition timing, based on the estimated wall temperature (wall temperature estimated value). It is out. The control unit 22 controls the internal combustion engine 1 based on the corrected control parameter. For example, the control unit 22 sets and outputs an injection pulse signal for controlling the injection operation by the fuel injection valve 4 based on the corrected fuel injection amount and the corrected injection timing.
  • control unit 22 controls energization to an ignition coil (not shown) so that spark discharge by the spark plug 8 is performed based on the corrected ignition timing.
  • the control parameters relating to the control of the internal combustion engine 1 may also include actuator control parameters used in control such as VTC (Valve Timing Control), EGR (Exhaust Gas Recirculation), VCR (Variable Compression Ratio).
  • the estimated wall temperature calculated by the control unit 22 includes a change in the operating state of the internal combustion engine 1 (for example, the vehicle is decelerated / stopped from constant speed driving of the vehicle and After that, an estimation error occurs due to various factors such as acceleration operation), individual differences of the internal combustion engine 1 or the external environment. For this reason, the estimated wall temperature may deviate from the actual wall temperature TC. Therefore, when the control unit 22 immediately corrects a control parameter (for example, fuel injection amount) related to the control of the internal combustion engine 1 using the estimated wall temperature value, the corrected control parameter is also suitable for the actual combustion chamber temperature. Since it may deviate from the control parameters, the exhaust properties, fuel consumption rate, and drivability of the internal combustion engine 1 may be reduced.
  • a control parameter for example, fuel injection amount
  • the control unit 22 includes a wall temperature correction unit that corrects the estimated wall temperature based on the detected value (water temperature detected value) of the coolant temperature TW during idling stop.
  • the wall temperature correction unit and the control parameter correction unit described above will be described as being executed by a computer that operates by reading a program stored in advance in a ROM (Read Only Memory) or the like of the control unit 22.
  • the present invention is not limited to this, and part or all of the wall temperature correction unit and the control parameter correction unit can be realized by a hardware configuration.
  • FIG. 2 shows that when the vehicle decelerates and stops from high-load running and enters an idling stop state and then accelerates again, the wall temperature TC (see the broken line in the figure) and the water temperature TW (in the figure) It shows schematically how the reference (see solid line) changes.
  • the wall temperature TC in the combustion chamber 7 is equal to the water stop state in which cooling water flow is stopped during idling stop. descend. After the idling stop is started and the idling stop state continues for a certain time, the temperature difference between the water temperature TW and the wall temperature TC converges to substantially zero.
  • the convergence time t r to the temperature difference between the water temperature TW and KabeAtsushi TC from the start of the idling stop converges to substantially zero becomes relatively long when the water stop state, the convergence time of the time when the t r a t rmax, when convergence time t rmax from the start of idling stop has elapsed should the wall temperature TC and the water temperature TW is substantially coincident.
  • this difference ⁇ D can be regarded as an estimation error of the estimated wall temperature value. it can.
  • control unit 22 stores in advance the convergence time trmax obtained by experiments, simulations, etc. in a memory such as a ROM, so that when the convergence time trmax has elapsed, the estimation error indicated by the difference ⁇ D is reduced. It is possible to correct the estimated wall temperature by removing it from the estimated temperature.
  • FIG. 3 shows an example of the calculation correction process for the estimated wall temperature value, which is repeatedly executed in the control unit 22 when the ignition switch is turned on.
  • step S101 the control unit 22 calculates the estimated wall temperature, the water temperature TW, the oil temperature TO, the amount of change in the intake air temperature TA, etc. calculated in step S101 executed previously. Based on the various parameters, a current estimated wall temperature value is calculated. Note that the control unit 22 assumes that the wall temperature TC coincides with the water temperature TW in the case of a cold start when the ignition switch is first turned on to execute step S101.
  • the initial value of the estimated wall temperature may be the detected value of the water temperature TW.
  • step S102 the control unit 22 determines whether or not to start idling stop. For example, based on output signals from the water temperature sensor 23, the vehicle speed sensor 30, and the like, the water temperature TW is equal to or higher than a temperature at which it is determined that the internal combustion engine 1 has been warmed up, and the vehicle speed V is a speed at which it is determined that the vehicle is stopped. In some cases, it can be determined to start idling stop. If the control unit 22 determines to start idling stop (Yes), the process proceeds to step S103. On the other hand, when the control unit 22 determines not to start the idling stop (No), the calculation correction process of the estimated wall temperature is terminated. When the internal combustion engine 1 is already in the idling stop state, the control unit 22 does not proceed from step S102 to step S103 and does not have to correct the estimated wall temperature. The same applies to the following embodiments and modifications thereof.
  • step S103 the control unit 22 counts an IS time IST that is an elapsed time from the start of idling stop.
  • step S104 the control unit 22 determines whether or not the IS time IST has reached the convergence time trmax . Then, the control unit 22, when judging the IS time IST reaches the convergence time t rmax is (Yes), it can be determined that the temperature difference between the water temperature TW and KabeAtsushi TC has converged substantially zero In order to correct the estimated wall temperature, the process proceeds to step S105. On the other hand, if the control unit 22 determines that the IS time IST has not reached the convergence time trmax (No), the control unit 22 returns the process to step S103 to continue counting the IS time IST.
  • step S105 the control unit 22 corrects the estimated wall temperature. Specifically, in step S105, the control unit 22 corrects the estimated wall temperature value by forcibly changing the current estimated wall temperature value to the same value as the detected value of the water temperature TW. Thereby, in step S101 performed next time, the control unit 22 calculates the next wall temperature estimated value based on the wall temperature estimated value from which the estimation error was removed in step S105.
  • step S101 when the control unit 22 calculates the current estimated wall temperature for each calculation cycle without using the previously calculated estimated wall temperature, the following can be performed. Namely, as shown in FIG. 4, the control unit 22, in step S104, IS and time IST is determined to have reached the convergence time t rmax (Yes), in step S104a, the detection value of the water temperature TW and the estimated wall temperature The difference ⁇ D from the value is calculated as a correction amount of the estimated wall temperature value. In step S105, the control unit 22 corrects the estimated wall temperature value by adding or subtracting the difference ⁇ D to the estimated wall temperature value calculated in step S101.
  • step S102 determines in step S102 that the idling stop is not started (No)
  • the control unit 22 advances the process to step S105 and calculates the estimated wall temperature based on the difference ⁇ D calculated in step S104a executed last time. Correct each time.
  • the temperature difference between the water temperature TW and the wall temperature TC in the internal combustion engine 1 converges to approximately zero in the water stop state from the start of the idling stop that stops the combustion in the combustion chamber 7. Since the estimated wall temperature value is corrected to the same value as the detected value of the water temperature TW when the convergence time trmax, which is the time, has elapsed, the estimation accuracy of the estimated wall temperature value can be improved. Then, the control parameter suitable for the actual combustion chamber temperature is calculated by correcting the control parameter (for example, the fuel injection amount) related to the control of the internal combustion engine 1 using the wall temperature estimated value corrected in this way. This makes it possible to suppress a decrease in the exhaust properties, fuel consumption rate, and drivability of the internal combustion engine 1.
  • FIG. 5 shows how the wall temperature TC and the water temperature TW change with time when the vehicle decelerates / stops from a high-load running and enters an idling stop state and then accelerates again, as in FIG. It shows schematically how to do it.
  • Changes in the wall temperature TC and the water temperature TW are different when the cooling water flow is stopped and when the cooling water is passed while idling is stopped. That is, when cooling water is passed during idling stop, the convergence is the time from the start of idling stop until the temperature difference between the water temperature TW (double solid line) and the wall temperature TC (double broken line) converges to substantially zero.
  • the convergence time t r As described in FIG. 2, when the water stop of the cooling water in the idling stop, KabeAtsushi TC (dashed from the start of the idling stop coolant temperature TW (solid line) ) And the convergence time trmax until the temperature difference converges to substantially zero. Accordingly, as shown in FIG. 6, in accordance with the flow rate of the cooling water is high during idling stop, you are possible to set the convergence time t r gradually shortened to. Therefore, the control unit 22 according to a first modification of the first embodiment, with respect to operation and correction processing of the estimated wall temperature value in FIG. 3, the set value of the convergence time t r in accordance with the flow rate of the cooling water in the idling stop Is changing.
  • FIG. 7 shows an example of the calculation correction process of the estimated wall temperature value that is repeatedly executed when the ignition switch is turned on in the control unit 22 according to the first modification of the first embodiment.
  • the description is abbreviate
  • the calculation correction process of the estimated wall temperature value performed by the control unit 22 according to the first modification of the first embodiment is the same as the calculation correction process of the estimated wall temperature value of FIG. The difference is that step S102a is added in between.
  • step S102a the control unit 22 sets the convergence time t r in accordance with the flow rate of the cooling water in the idling stop.
  • the convergence time tr is set based on the detected value of the rotational speed NP of the electric water pump 20.
  • the rotational speed NP of the electric water pump 20 increases, the flow rate of the cooling water increases. Therefore, the convergence time tr is set to be gradually shortened.
  • the convergence time tr is set to be gradually increased.
  • the control unit 22 uses a first data table in which the rotational speed NP of the electric water pump 20 and the convergence time tr are correlated through an experiment or the like, such as a ROM. Store in advance in the storage means. Then, the control unit 22 refers to the first data table in performing step S102a, to set the convergence time t r corresponding to the detected value of the rotation speed NP of the electric water pump 20. By thus changing the set value of the convergence time t r in accordance with the flow rate of the cooling water in the idling stop, it is possible to shorten the time from idle stop start-up it is possible to correct the estimated wall temperature value .
  • FIG. 8 shows an example of the calculation correction process of the estimated wall temperature value, which is repeatedly executed by the control unit 22 according to the second modification of the first embodiment when the ignition switch is turned on.
  • the calculation correction process of the estimated wall temperature value executed by the control unit 22 according to the second modification of the first embodiment is different from the calculation correction process of the estimated wall temperature value of FIG. 7 in that step S102b is used instead of step S102a. It differs in the point to execute.
  • step S102b the control unit 22 calculates the water temperature / outside temperature difference ⁇ T calculated from the detected value of the rotational speed NP of the electric water pump 20, the detected value of the water temperature TW, and the detected value of the outside air temperature TE, Based on the above, the convergence time tr is set.
  • the outside air temperature TE decreases, that is, if the water temperature / outside air temperature difference ⁇ T increases, the amount of heat released from the cooling water in the radiator 16 increases and the rate of decrease in the wall temperature TC increases.
  • the outside air temperature TE rises that is, if the water temperature / outside air temperature difference ⁇ T becomes small, the amount of heat released from the cooling water in the radiator 16 decreases, and the rate of decrease in the wall temperature TC becomes slow. Therefore, the convergence time tr is gradually shortened as the rotational speed NP of the electric water pump 20 increases, and the rotational speed NP of the electric water pump 20 decreases as in the first modification of the first embodiment.
  • the temperature is gradually shortened as the water temperature / outside air temperature difference ⁇ T becomes larger, and gradually set longer as the water temperature / outside air temperature difference ⁇ T becomes smaller.
  • control unit 22 according to a second modification of the first embodiment, the associating the rotational speed NP and the water temperature, the outside air temperature difference ⁇ T and the convergence time of the electric water pump 20 t r by experiment or the like 2
  • the data table is stored in advance in storage means such as a ROM. Then, the control unit 22 refers to the second data table when executing step S102b, so that the convergence time corresponding to the detected value of the rotational speed NP of the electric water pump 20 and the calculated value of the water temperature / outside air temperature difference ⁇ T is obtained.
  • Set tr the convergence time corresponding to the detected value of the rotational speed NP of the electric water pump 20 and the calculated value of the water temperature / outside air temperature difference ⁇ T is obtained.
  • step S102c can be added between step S102 and step S102a or step S102b. That is, if the control unit 22 determines in step S102 to start idling stop (Yes), in step S102c, the control unit 22 sets the rotational speed NP of the electric water pump 20 to make the flow rate of the cooling water relatively high. Increase.
  • step S102a or step S102b the rotational speed NP was increased in step S102c, or sets the convergence time t r in accordance with the the water temperature and outdoor air temperature difference ⁇ T this.
  • the set value of the convergence time t r may be corrected. The same applies to a third modification of the second embodiment to be described later.
  • FIG. 10 shows an example of an internal combustion engine 1A to which the control device according to the second embodiment is applied.
  • the internal combustion engine 1A includes a wall temperature sensor 33 that detects the wall temperature TC of the combustion chamber 7, and an output signal from the wall temperature sensor 33 is used as a control unit 22A that constitutes a control device for the internal combustion engine 1A. This is different from the first embodiment in that it is input to.
  • the control unit 22A determines control parameters (for example, fuel injection amount, injection timing, ignition timing, etc.) related to the control of the internal combustion engine 1A based on the detection value (wall temperature detection value) of the wall temperature TC detected by the wall temperature sensor 33. It is corrected.
  • the wall temperature sensor 33 is arranged independently on the inner wall of the combustion chamber 7, and is integrally formed with the spark plug 8 and a fuel injection valve when fuel is directly injected into the combustion chamber 7. Also good.
  • the wall temperature detection value includes variations in the linear output value and temperature characteristics of the wall temperature sensor 33, power supply voltage, A / D (Analog-to-Digital) conversion circuit, harness in the control unit 22A. Since detection errors may occur due to variations in connectors and the like, the wall temperature detection value may deviate from the wall temperature TC. Therefore, when the control unit 22A immediately corrects a control parameter (for example, fuel injection amount) related to the control of the internal combustion engine 1A using the detected wall temperature value, the corrected control parameter is suitable for the actual combustion chamber temperature. Since it may deviate from the control parameters, the exhaust property, fuel consumption rate, and drivability of the internal combustion engine 1A may be reduced.
  • a control parameter for example, fuel injection amount
  • control unit 22A corrects the detected wall temperature value detected by the wall temperature sensor 33 based on the detected value (water temperature detected value) of the water temperature TW during idling stop, as will be described later.
  • the correction principle of the detected wall temperature value is the same as the corrected principle of the estimated wall temperature value described with reference to FIG. 2 in the first embodiment. Since it can be described as a detection error, it will be omitted.
  • FIG. 11 shows an example of the acquisition correction process of the detected wall temperature value that is repeatedly executed when the ignition switch is turned on in the control unit 22A.
  • step S ⁇ b> 201 the control unit 22 ⁇ / b> A acquires the detected wall temperature value based on the output signal from the wall temperature sensor 33.
  • Steps S202 to S204 execute the same processes as steps S102 to S104 in the flowchart (see FIG. 3) showing an example of the calculation correction process of the estimated wall temperature by the control unit 22 of the first embodiment. Description is omitted.
  • step S204 determines in step S204 that the IS time IST has reached the convergence time trmax (Yes)
  • step S205 the difference ⁇ D between the detected value of the water temperature TW and the detected wall temperature is detected as the wall temperature. Calculated as a value correction amount.
  • step S206 the control unit 22A corrects the detected wall temperature by adding or subtracting the difference ⁇ D to the detected wall temperature acquired in step S201. Further, when it is determined in step S202 that the idling stop is not started (No), the control unit 22A advances the process to step S206, and acquires the detected wall temperature value based on the difference ⁇ D calculated in step S205 of the previous execution. Correct in degrees.
  • control unit 22A from the start of idling stop that stops combustion in the combustion chamber 7 until the temperature difference between the water temperature TW and the wall temperature TC in the internal combustion engine 1A converges to substantially zero in the water stop state. Since the difference ⁇ D between the detected value of the water temperature TW and the detected wall temperature is calculated and the detected wall temperature is corrected based on this difference ⁇ D when the convergence time trmax, which is time, has elapsed, the wall temperature The detection accuracy of the detection value can be improved. Then, using the wall temperature detection value corrected in this way, a control parameter suitable for the actual combustion chamber temperature is calculated by correcting a control parameter (for example, fuel injection amount) related to the control of the internal combustion engine 1A. This makes it possible to suppress the deterioration of the exhaust properties, fuel consumption rate, and drivability of the internal combustion engine 1A.
  • a control parameter for example, fuel injection amount
  • FIG. 12 shows an example of a wall temperature detection value acquisition correction process that is repeatedly executed when the ignition switch is turned on in the control unit 22A according to the first modification of the second embodiment.
  • the acquisition correction process of the detected wall temperature value performed by the control unit 22A according to the first modification of the second embodiment includes steps S202 and S203 as compared with the acquisition correction process of the detected wall temperature value in FIG. The difference is that step S202a is added in between.
  • step S202a the control unit 22A converges according to the detected value of the rotational speed NP of the electric water pump 20 during idling stop, similarly to step S102a (see FIG. 7) according to the first modification of the first embodiment.
  • Time tr is set.
  • the other processes are the same as the wall temperature detection value acquisition correction process in FIG.
  • FIG. 13 is a flowchart showing an example of a wall temperature detection value acquisition correction process repeatedly executed by the control unit 22A according to the second modification of the second embodiment when the ignition switch is turned on.
  • the wall temperature detection value acquisition correction process executed by the control unit 22A according to the second modification of the second embodiment is different from the wall temperature detection value acquisition correction process of FIG. 12 in that step S202b is used instead of step S202a. It differs in the point to execute.
  • step S202b the control unit 22A detects the detected value of the rotational speed NP of the electric water pump 20 and the detected value of the water temperature TW, as in step S102b (see FIG. 8) according to the second modification of the first embodiment. And the convergence time tr is set based on the calculated value of the water temperature / outside temperature difference ⁇ T calculated from the detected value of the outside temperature TE.
  • the other processes are the same as the wall temperature detection value acquisition correction process in FIG.
  • Control unit 22A according to a third modification of the second embodiment, similarly to the third modification of the first embodiment, the first and second modifications of the second embodiment, the convergence time t r
  • the flow rate of the cooling water during idling stop is changed to a relatively high flow rate. Thereby, it can suppress that idling stop is complete
  • Step s202c can be added between Step S202a and Step s202b. That is, if it is determined in step S202 that the idling stop is started (Yes), the control unit 22A determines that the rotational speed NP of the electric water pump 20 is set to a relatively high flow rate in step S202c. Increase. Then, the control unit 22A in step S202a or step S202b, in accordance with the rotational speed NP that increased in step S202c, or depending on the water temperature, the outside temperature difference ⁇ T in addition, to set the convergence time t r .
  • the control unit 22A uses the wall temperature sensor 33 based on the detected wall temperature and the detected value of the water temperature TW when the convergence time trmax has elapsed in the water stoppage state. Failure diagnosis processing for the wall temperature sensor 33 is performed to diagnose whether or not a failure has occurred.
  • FIG. 15 shows an example of failure diagnosis processing of the wall temperature sensor 33 that is repeatedly executed when the ignition switch is turned on in the control unit 22A according to the fourth modification of the second embodiment.
  • Steps S301 to S303 are the same as steps S202 to S204 of the wall temperature detection value acquisition correction process in FIG.
  • the control unit 22A determines that the idling stop is started in Step S301 (Yes), and if it is further determined in Step S303 that the IS time IST has reached the convergence time trmax (Yes), in Step S304, the wall temperature sensor 33 is determined.
  • Set the threshold for failure diagnosis Specifically, the control unit 22A calculates the upper limit threshold value TU by adding the detection error ⁇ of the wall temperature sensor 33 to the detected value of the water temperature TW, and calculates the upper limit threshold TU of the detected value of the water temperature TW.
  • the lower limit threshold TL is calculated by subtracting the detection error ⁇ .
  • the range from the upper limit threshold TU to the lower limit threshold TL is a normal range in which the wall temperature sensor 33 is diagnosed as normal.
  • step S305 the control unit 22A determines whether or not the detected wall temperature is not less than the lower threshold TL and not more than the upper threshold TU. If the control unit 22A determines that the detected wall temperature is not less than the lower limit threshold TL and not more than the upper limit threshold TU (Yes), the process proceeds to step S306, and the wall temperature sensor 33 is normal. Diagnose. On the other hand, if the control unit 22A determines that the detected wall temperature value is less than the lower limit threshold value TL or greater than the upper limit threshold value TU (No), the process proceeds to step S307, and the wall temperature sensor 33 has failed. Diagnose. When the control unit 22A determines that the idling stop is not started in step S301, the failure diagnosis process for the wall temperature sensor 33 is not performed (No).
  • the control unit 22A diagnoses that the wall temperature sensor 33 has failed, the control unit 22A sets a failure flag indicating a failure state from 0 to 1, for example, and stores it in a storage means such as a RAM (Random Access Memory).
  • a failure flag When the failure flag is set to 1, correction of the wall temperature detection value in the second embodiment including the first to third modifications is not performed, or depending on the wall temperature detection value The control parameter may not be corrected.
  • control unit 22,22A is, to set the convergence time t r in accordance with the flow rate of the cooling water is not limited to the detection value of the rotational speed of the electric water pump 20, for example, the measured values or the like of the cooling water flow rate, cooling Various parameters indicating the water flow rate can be used.
  • the estimated wall temperature value and the detected wall temperature value have been described as being corrected based on the detected value of the water temperature TW when the internal combustion engine 1, 1A is in the idling stop state.
  • the correction is not limited to when the fuel is in the state, but may be corrected based on the detected value of the water temperature TW when the fuel supply to the fuel injection valve 4 is shut off and the combustion in the combustion chamber 7 is stopped.
  • the convergence time t r to the temperature difference between the actual wall temperature TC and the water temperature TW of the cooling water from the stop of the combustion in the combustion chamber 7 at the time of deceleration of the vehicle (during engine braking) is converged to substantially zero
  • the convergence time tr2 when the convergence time tr 2 has elapsed, the estimated wall temperature value or the detected wall temperature value can be corrected to the same value as the detected value of the water temperature TW.
  • the internal combustion engine 1, 1 ⁇ / b> A rotates and the outside air is introduced into the combustion chamber 7, so that the convergence time tr 2 when the vehicle is decelerated is taken into consideration that the rate of decrease in the wall temperature TC increases.
  • the engine speed NE is less than the convergence time t rmax during idling stop is substantially zero
  • convergence time t r during deceleration of the vehicle may be set according to the engine rotational speed NE.
  • the control units 22 and 22A are provided with a time measuring means (timer) for counting an elapsed time since the ignition switch is turned off, and this time measuring means is configured so that electric power is always supplied from an in-vehicle power source.
  • the convergence time tr is changed according to the flow rate of the cooling water during idling stop or in addition to the water temperature / outside air temperature difference ⁇ T. In addition to these parameters or separately from these parameters, it can be changed according to the difference between the estimated wall temperature value at the start of the idling stop and the detected value of the water temperature TW.
  • the time until the temperature difference between the water temperature TW and the wall temperature TC converges to approximately zero is estimated to increase.
  • Runode it may be set to a large convergence time t r.
  • the temperature difference between the water temperature TW and KabeAtsushi TC had determined that converges to substantially zero.
  • the flow rate of the cooling water or the flow rate of the cooling water passing through the radiator 16 fluctuates during the idling stop
  • the temperature difference from the wall temperature TC does not necessarily converge to substantially zero.
  • the convergence time t r it may be used integrated flow rate of the cooling water that flows when to shut off the fuel supply to the fuel injection valve 4 has stopped the combustion in the combustion chamber 7.
  • the integrated flow rate of the cooling water can be calculated based on the integrated value of the rotational speed NP of the electric water pump 20, for example.
  • the control units 22 and 22A can determine whether or not the temperature difference between the water temperature TW and the wall temperature TC has converged to substantially zero based on the comparison result obtained by comparing the calculated integrated flow rate with the threshold value.
  • the integrated flow rate of the cooling water that is calculated based on the rotational speed NP to the integrated value of the correction rotation speed is corrected by opening the electrically controlled thermostat 19 of the electric water pump 20 using May be. Then, the control units 22 and 22A can determine whether or not the temperature difference between the water temperature TW and the wall temperature TC has converged to substantially zero based on the comparison result obtained by comparing the calculated integrated flow rate with the threshold value.
  • the threshold value is obtained as an integrated flow rate of the cooling water flowing until the temperature difference between the water temperature TW and the wall temperature TC converges to substantially zero while the combustion in the combustion chamber 7 is stopped by experiment or simulation. It is stored in advance in storage means such as a ROM of the units 22 and 22A.
  • the convergence time t r when the convergence time t r has elapsed from the start of the idling stop, i.e., the temperature difference between the water temperature TW and KabeAtsushi TC stop the combustion in the combustion chamber 7 is converged to substantially zero
  • the estimated wall temperature value or the detected wall temperature value is corrected at the timing when it is determined.
  • the estimated wall temperature value is determined before the temperature difference between the water temperature TW and the wall temperature TC has converged to substantially zero.
  • the detected wall temperature value can be corrected.
  • control unit 22,22A is previously stored temperature data wall temperature TC at each elapsed time from the start of the idling stop, a predetermined time before the elapsed convergence time t r is from the start of idling stop
  • the correction may be made by combining the estimated wall temperature value or the detected wall temperature value with the temperature data of the corresponding wall temperature TC.
  • the temperature data of the wall temperature TC at each elapsed time after the start of idling stop is obtained in advance by experiments or simulations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

According to the present invention, a control unit, which corrects the fuel injection amount of an internal combustion engine on the basis of a wall temperature estimation value (wall temperature detection value), corrects the wall temperature estimation value (wall temperature detection value) by changing the wall temperature estimation value (wall temperature detection value) to the same value as a cooling water temperature detection value when it is determined that the period of time that has elapsed since the start of idling stop has reached such a convergence time period as to allow a temperature difference between the cooling water temperature of the internal combustion engine and the wall temperature of a combustion chamber to be deemed to converge at substantially zero.

Description

内燃機関の制御装置及び制御方法Control device and control method for internal combustion engine
 本発明は、内燃機関の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for an internal combustion engine.
 従来の内燃機関の制御装置及び制御方法には、燃焼室温度としてシリンダの壁温を検出し又は推定し、この壁温の検出値又は推定値に基づいて算出された目標空燃比と実空燃比との比率により、燃料噴射量の補正を行うものが提案されている(例えば、特許文献1参照)。 In a conventional control device and control method for an internal combustion engine, a wall temperature of a cylinder is detected or estimated as a combustion chamber temperature, and a target air-fuel ratio and an actual air-fuel ratio that are calculated based on the detected value or estimated value of the wall temperature. There has been proposed one that corrects the fuel injection amount based on the ratio (for example, see Patent Document 1).
特開2007-231834号公報JP 2007-231834 A
 しかしながら、壁温の検出値又は推定値には様々な要因によって検出誤差又は推定誤差が生じ、壁温の検出値又は推定値が実際の燃焼室温度から乖離してしまう可能性がある。したがって、壁温の検出値又は推定値を用いて補正された燃料噴射量は、実際の燃焼室温度に適した燃料噴射量から乖離し得るため、特に内燃機関の再始動時において、内燃機関の排気性状、燃料消費率、運転性が低下するおそれがある。 However, a detection error or estimation error may occur in the detected value or estimated value of the wall temperature due to various factors, and the detected value or estimated value of the wall temperature may deviate from the actual combustion chamber temperature. Therefore, since the fuel injection amount corrected using the detected value or estimated value of the wall temperature can deviate from the fuel injection amount suitable for the actual combustion chamber temperature, particularly when the internal combustion engine is restarted. Exhaust properties, fuel consumption rate, and drivability may be reduced.
 そこで、本発明は以上のような問題点に鑑み、内燃機関の燃焼室温度として検出した壁温の検出精度を向上させ、また、内燃機関の燃焼室温度として推定した壁温の推定精度を向上させた内燃機関の制御装置及び制御方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention improves the detection accuracy of the wall temperature detected as the combustion chamber temperature of the internal combustion engine, and improves the estimation accuracy of the wall temperature estimated as the combustion chamber temperature of the internal combustion engine. It is an object of the present invention to provide a control device and a control method for an internal combustion engine.
 このため、本発明に係る内燃機関の制御装置及び制御方法は、内燃機関の燃焼室に関する温度として検出又は推定した燃焼室の壁温に基づいて、内燃機関の制御に関する制御パラメータを補正するものであり、かかる制御パラメータの補正に用いる壁温の検出値又は推定値を、燃焼室における燃焼を停止しているときの内燃機関の冷却水の水温検出値に基づいて補正している。 For this reason, the control apparatus and control method for an internal combustion engine according to the present invention corrects control parameters related to the control of the internal combustion engine based on the wall temperature of the combustion chamber detected or estimated as the temperature related to the combustion chamber of the internal combustion engine. Yes, the detected value or estimated value of the wall temperature used for correcting the control parameter is corrected based on the detected value of the coolant temperature of the internal combustion engine when combustion in the combustion chamber is stopped.
 本発明の内燃機関の制御装置及び制御方法によれば、内燃機関の燃焼室における温度として検出した壁温の検出精度を向上させることができ、また、内燃機関の燃焼室における温度として推定した燃焼室の壁温の推定精度を向上させることができる。 According to the control device and control method for an internal combustion engine of the present invention, it is possible to improve the detection accuracy of the wall temperature detected as the temperature in the combustion chamber of the internal combustion engine, and the combustion estimated as the temperature in the combustion chamber of the internal combustion engine The estimation accuracy of the wall temperature of the room can be improved.
第1実施形態における車両用の内燃機関の一例を示す概略図である。It is the schematic which shows an example of the internal combustion engine for vehicles in 1st Embodiment. 同実施形態における壁温推定値(検出値)の補正原理を示す説明図である。It is explanatory drawing which shows the correction principle of the wall temperature estimated value (detection value) in the embodiment. 同実施形態における壁温推定値の演算補正処理を示すフローチャートである。It is a flowchart which shows the calculation correction | amendment process of the wall temperature estimated value in the embodiment. 同実施形態における図3の変形例を示すフローチャートである。It is a flowchart which shows the modification of FIG. 3 in the embodiment. 同実施形態における冷却水の流量に応じて設定される収束時間を示す説明図である。It is explanatory drawing which shows the convergence time set according to the flow volume of the cooling water in the embodiment. 同実施形態における冷却水の流量と収束時間との関係を示す説明図である。It is explanatory drawing which shows the relationship between the flow volume of the cooling water in the same embodiment, and convergence time. 同実施形態の第1変形例による演算補正処理を示すフローチャートである。It is a flowchart which shows the calculation correction process by the 1st modification of the embodiment. 同実施形態の第2変形例による演算補正処理を示すフローチャートである。It is a flowchart which shows the calculation correction process by the 2nd modification of the embodiment. 同実施形態の第3変形例による演算補正処理を示すフローチャートである。It is a flowchart which shows the calculation correction process by the 3rd modification of the embodiment. 第2実施形態における車両用の内燃機関の一例を示す概略図である。It is the schematic which shows an example of the internal combustion engine for vehicles in 2nd Embodiment. 同実施形態における壁温検出値の取得補正処理を示すフローチャートである。It is a flowchart which shows the acquisition correction process of the wall temperature detection value in the embodiment. 同実施形態の第1変形例による取得補正処理を示すフローチャートである。It is a flowchart which shows the acquisition correction process by the 1st modification of the embodiment. 同実施形態の第2変形例による取得補正処理を示すフローチャートである。It is a flowchart which shows the acquisition correction process by the 2nd modification of the embodiment. 同実施形態の第3変形例による取得補正処理を示すフローチャートである。It is a flowchart which shows the acquisition correction process by the 3rd modification of the embodiment. 同実施形態の第4変形例による取得補正処理を示すフローチャートである。It is a flowchart which shows the acquisition correction process by the 4th modification of the embodiment. 壁温推定(検出)値の推定(検出)誤差を示す説明図である。It is explanatory drawing which shows the estimation (detection) error of a wall temperature estimation (detection) value.
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
[第1実施形態]
 図1は、本発明の第1実施形態に係る制御装置を適用した内燃機関の一例を示す。
 内燃機関1は、車両に搭載された動力源であり、各気筒の吸気バルブ2よりも上流側の吸気管(吸気ポート)3に燃料噴射弁4を備える。燃料噴射弁4は、各気筒の行程に噴射タイミングを合わせ、吸気管3内に燃料を間欠的に噴射するように制御される。燃料噴射弁4には、燃料タンク5内に配置された電動式の燃料ポンプ6により、燃料タンク5内に貯留されている燃料が圧送される。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
[First Embodiment]
FIG. 1 shows an example of an internal combustion engine to which a control device according to a first embodiment of the present invention is applied.
The internal combustion engine 1 is a power source mounted on a vehicle and includes a fuel injection valve 4 in an intake pipe (intake port) 3 upstream of the intake valve 2 of each cylinder. The fuel injection valve 4 is controlled so as to inject fuel intermittently into the intake pipe 3 by matching the injection timing with the stroke of each cylinder. The fuel stored in the fuel tank 5 is pumped to the fuel injection valve 4 by an electric fuel pump 6 disposed in the fuel tank 5.
 燃料噴射弁4が吸気管3内に噴射した燃料は、空気と共に吸気バルブ2を介して燃焼室7内に吸引されて混合気を形成する。燃焼室7内の混合気は、点火プラグ8による火花点火によって着火燃焼する。燃焼室7内の燃焼ガスは、排気バルブ9を介して排気管10に排出される。 Fuel injected by the fuel injection valve 4 into the intake pipe 3 is sucked into the combustion chamber 7 together with air through the intake valve 2 to form an air-fuel mixture. The air-fuel mixture in the combustion chamber 7 is ignited and burned by spark ignition by the spark plug 8. The combustion gas in the combustion chamber 7 is discharged to the exhaust pipe 10 through the exhaust valve 9.
 電子制御スロットル11は、スロットルモータ12によって開度が変更されることで、内燃機関1の吸入空気量を調整する。電子制御スロットル11は、吸気管3の燃料噴射弁4が配置される部分よりも上流側の各気筒共通の吸気ダクトに配置される。 The electronic control throttle 11 adjusts the intake air amount of the internal combustion engine 1 by changing the opening degree by the throttle motor 12. The electronic control throttle 11 is disposed in an intake duct common to each cylinder upstream of the portion of the intake pipe 3 where the fuel injection valve 4 is disposed.
 内燃機関1が燃焼室7の周囲に有するウォータジャケット13内を通過して排出された冷却水は、第1冷却水通路14を介して、電動式のラジエータファン15が併設されたラジエータ16に導かれる。ラジエータ16に導かれた冷却水は、フィンが取り付けられたラジエータコアを通過するときに、例えば、ラジエータファン15の回転により発生する強制冷却風等、外気と熱交換をして、その温度が低下する。そして、温度が低下した冷却水は、第2冷却水通路17を介して内燃機関1のウォータジャケット13へと戻される。 Cooling water discharged through the water jacket 13 around the combustion chamber 7 of the internal combustion engine 1 is guided to a radiator 16 provided with an electric radiator fan 15 via a first cooling water passage 14. It is burned. When the cooling water guided to the radiator 16 passes through the radiator core to which the fins are attached, the temperature of the cooling water is reduced by exchanging heat with the outside air, such as forced cooling air generated by the rotation of the radiator fan 15. To do. Then, the cooling water whose temperature has decreased is returned to the water jacket 13 of the internal combustion engine 1 through the second cooling water passage 17.
 また、内燃機関1から排出された冷却水がラジエータ16をバイパスするように、第1冷却水通路14と第2冷却水通路17とがバイパス通路18により連通接続されている。バイパス通路18と第2冷却水通路17との接合箇所には、バイパス通路18の通路面積を全開から全閉へ段階的又は連続的に開閉する電制サーモスタット19が配置されている。電制サーモスタット19は、外部からの制御信号を入力することで開度が制御され、ラジエータ16を通過する冷却水の流量割合を変化させる。 Further, the first cooling water passage 14 and the second cooling water passage 17 are connected to each other by a bypass passage 18 so that the cooling water discharged from the internal combustion engine 1 bypasses the radiator 16. An electric thermostat 19 that opens and closes the passage area of the bypass passage 18 from fully open to fully closed in a stepwise or continuous manner is disposed at a joint portion between the bypass passage 18 and the second cooling water passage 17. The opening degree of the electric control thermostat 19 is controlled by inputting an external control signal, and the flow rate of the cooling water passing through the radiator 16 is changed.
 第2冷却水通路17のうち内燃機関1と電制サーモスタット19との間には、内燃機関1とラジエータ16との間で冷却水を強制的に循環させる、機械式ウォータポンプ(図示省略)及び電動ウォータポンプ20が夫々配設されている。図外の機械式ウォータポンプは、内燃機関1の冷却水入口に取り付けられており、例えばカムシャフト等、内燃機関1において発生する回転力を利用して駆動される。電動ウォータポンプ20は、アイドリングストップ機能により内燃機関1が停止した場合にも駆動できるように、内燃機関1とは異なる駆動源である電動モータ21によって駆動される。 A mechanical water pump (not shown) that circulates cooling water between the internal combustion engine 1 and the radiator 16 between the internal combustion engine 1 and the electric thermostat 19 in the second cooling water passage 17; Electric water pumps 20 are respectively provided. A mechanical water pump (not shown) is attached to a cooling water inlet of the internal combustion engine 1 and is driven by using a rotational force generated in the internal combustion engine 1, such as a cam shaft. The electric water pump 20 is driven by an electric motor 21 which is a drive source different from the internal combustion engine 1 so that the electric water pump 20 can be driven even when the internal combustion engine 1 is stopped by an idling stop function.
 マイクロコンピュータを備えるコントロールユニット22は、内燃機関1の運転状態を検出する各種センサの出力信号を入力する。各種センサとしては、内燃機関1から排出された冷却水の水温TWを検出する水温センサ23、内燃機関1の吸入空気温度TAを検出する吸気温センサ24、内燃機関1の吸入空気流量QAを検出するエアフローセンサ25、燃料ポンプ6による燃料の供給圧PFを検出する燃圧センサ26、電動ウォータポンプ20の回転速度NPを検出するポンプ回転センサ27、外気温TEを検出する外気温センサ28、内燃機関1の機関回転速度NEを検出する機関回転センサ29、車速Vを検出する車速センサ30、内燃機関1の潤滑油の油温TOを検出する油温センサ31、及びアクセルペダルの踏み込み量(アクセル開度)ACCを検出するアクセル開度センサ32などが含まれる。 The control unit 22 including a microcomputer inputs output signals from various sensors that detect the operating state of the internal combustion engine 1. As various sensors, a water temperature sensor 23 for detecting the water temperature TW of the cooling water discharged from the internal combustion engine 1, an intake air temperature sensor 24 for detecting the intake air temperature TA of the internal combustion engine 1, and an intake air flow rate QA of the internal combustion engine 1 are detected. An air flow sensor 25 that detects the fuel supply pressure PF from the fuel pump 6, a pump rotation sensor 27 that detects the rotational speed NP of the electric water pump 20, an outside air temperature sensor 28 that detects the outside air temperature TE, and an internal combustion engine An engine rotation sensor 29 for detecting the engine rotation speed NE, a vehicle speed sensor 30 for detecting the vehicle speed V, an oil temperature sensor 31 for detecting the oil temperature TO of the lubricating oil of the internal combustion engine 1, and the depression amount of the accelerator pedal (accelerator opening) Degree) An accelerator opening sensor 32 for detecting ACC is included.
 そして、コントロールユニット22は、各種センサからの出力信号に基づいて、燃料噴射弁4による燃料噴射量及び噴射タイミング、点火プラグ8による点火時期、電子制御スロットル11の開度等を制御する。また、コントロールユニット22は、水温センサ23からの出力信号に基づいて、冷却水の水温を内燃機関1の運転状態に応じた温度に調節すべく、電動ウォータポンプ20の回転速度、ラジエータファン15の回転速度、電制サーモスタット19の開度等を制御する。これにより、コントロールユニット22は、内燃機関1の制御装置を構成している。 The control unit 22 controls the fuel injection amount and injection timing by the fuel injection valve 4, the ignition timing by the spark plug 8, the opening degree of the electronic control throttle 11, and the like based on output signals from various sensors. Further, the control unit 22 controls the rotation speed of the electric water pump 20 and the radiator fan 15 so as to adjust the coolant temperature to a temperature according to the operating state of the internal combustion engine 1 based on the output signal from the water temperature sensor 23. The rotational speed, the opening degree of the electric control thermostat 19 and the like are controlled. Thus, the control unit 22 constitutes a control device for the internal combustion engine 1.
 ここで、コントロールユニット22は、水温センサ23、油温センサ31、吸気温センサ24等からの出力信号に基づいて、内燃機関1の燃焼室7に関する温度(燃焼室温度)として燃焼室7の内壁における壁温を推定する。さらに、コントロールユニット22は、推定された壁温(壁温推定値)により、例えば、燃料噴射量、噴射タイミング、点火時期等の内燃機関1の制御に関する制御パラメータを補正する制御パラメータ補正部を含んでいる。そして、コントロールユニット22は、補正した制御パラメータに基づいて内燃機関1の制御を行う。例えば、コントロールユニット22は、補正した燃料噴射量及び補正した噴射タイミングに基づいて、燃料噴射弁4による噴射動作を制御する噴射パルス信号を設定・出力する。また例えば、コントロールユニット22は、補正した点火時期に基づいて点火プラグ8による火花放電がなされるように、図外の点火コイルに対する通電を制御する。なお、内燃機関1の制御に関する制御パラメータには、VTC(Valve Timing Control)、EGR(Exhaust Gas Recirculation)、VCR(Variable Compression Ratio)等の制御において用いられるアクチュエータの制御パラメータも含み得る。 Here, the control unit 22 determines the inner wall of the combustion chamber 7 as the temperature (combustion chamber temperature) related to the combustion chamber 7 of the internal combustion engine 1 based on output signals from the water temperature sensor 23, the oil temperature sensor 31, the intake air temperature sensor 24, and the like. Estimate the wall temperature at. Furthermore, the control unit 22 includes a control parameter correction unit that corrects control parameters related to control of the internal combustion engine 1 such as, for example, fuel injection amount, injection timing, and ignition timing, based on the estimated wall temperature (wall temperature estimated value). It is out. The control unit 22 controls the internal combustion engine 1 based on the corrected control parameter. For example, the control unit 22 sets and outputs an injection pulse signal for controlling the injection operation by the fuel injection valve 4 based on the corrected fuel injection amount and the corrected injection timing. In addition, for example, the control unit 22 controls energization to an ignition coil (not shown) so that spark discharge by the spark plug 8 is performed based on the corrected ignition timing. The control parameters relating to the control of the internal combustion engine 1 may also include actuator control parameters used in control such as VTC (Valve Timing Control), EGR (Exhaust Gas Recirculation), VCR (Variable Compression Ratio).
 ところで、図16に示すように、コントロールユニット22で演算された壁温推定値には、内燃機関1の運転状態の変化(例えば、車両の定速運転走行から減速・停止してアイドリングストップ状態となった後、加速運転を行う等)や、内燃機関1の個体差又は外部環境等、様々な要因によって推定誤差が生じる。このため、壁温推定値は実際の壁温TCから乖離する可能性がある。したがって、コントロールユニット22が、壁温推定値を用いて直ちに内燃機関1の制御に関する制御パラメータ(例えば、燃料噴射量等)を補正すると、補正された制御パラメータも、実際の燃焼室温度に適した制御パラメータから乖離し得るため、内燃機関1の排気性状、燃料消費率、運転性が低下するおそれがある。 By the way, as shown in FIG. 16, the estimated wall temperature calculated by the control unit 22 includes a change in the operating state of the internal combustion engine 1 (for example, the vehicle is decelerated / stopped from constant speed driving of the vehicle and After that, an estimation error occurs due to various factors such as acceleration operation), individual differences of the internal combustion engine 1 or the external environment. For this reason, the estimated wall temperature may deviate from the actual wall temperature TC. Therefore, when the control unit 22 immediately corrects a control parameter (for example, fuel injection amount) related to the control of the internal combustion engine 1 using the estimated wall temperature value, the corrected control parameter is also suitable for the actual combustion chamber temperature. Since it may deviate from the control parameters, the exhaust properties, fuel consumption rate, and drivability of the internal combustion engine 1 may be reduced.
 このため、コントロールユニット22は、後述するように、アイドリングストップ中における冷却水の水温TWの検出値(水温検出値)に基づいて壁温推定値を補正する壁温補正部を含んでいる。なお、この壁温補正部及び前述の制御パラメータ補正部は、コントロールユニット22のROM(Read Only Memory)等に予め記憶されたプログラムを読み込んで動作するコンピュータにより実行されるものとして説明する。ただし、これに限らず、ハードウェアの構成により壁温補正部及び制御パラメータ補正部の一部又は全部を実現することも可能である。 Therefore, as will be described later, the control unit 22 includes a wall temperature correction unit that corrects the estimated wall temperature based on the detected value (water temperature detected value) of the coolant temperature TW during idling stop. The wall temperature correction unit and the control parameter correction unit described above will be described as being executed by a computer that operates by reading a program stored in advance in a ROM (Read Only Memory) or the like of the control unit 22. However, the present invention is not limited to this, and part or all of the wall temperature correction unit and the control parameter correction unit can be realized by a hardware configuration.
 次に、壁温推定値の補正原理について説明する。
 図2は、車両が高負荷走行から減速・停止してアイドリングストップ状態となった後、再び加速したときに、時間に対して壁温TC(図中の破線参照)及び水温TW(図中の実線参照)がどのように変化するかを模式的に示している。
Next, the principle of correcting the estimated wall temperature will be described.
FIG. 2 shows that when the vehicle decelerates and stops from high-load running and enters an idling stop state and then accelerates again, the wall temperature TC (see the broken line in the figure) and the water temperature TW (in the figure) It shows schematically how the reference (see solid line) changes.
 図2において、内燃機関1がアイドリングストップ状態となると燃焼室7では燃焼が停止するため、アイドリングストップ中において冷却水の通水を停止した止水状態であっても燃焼室7における壁温TCは低下する。そして、アイドリングストップを開始してからアイドリングストップ状態が一定時間継続した後には、水温TWと壁温TCとの温度差は略零に収束する。ここで、アイドリングストップを開始してから水温TWと壁温TCとの温度差が略零に収束するまでの収束時間trは、止水状態のときに比較的長くなり、このときの収束時間trをtrmaxとすると、アイドリングストップを開始してから収束時間trmaxが経過したときには、壁温TCと水温TWとが略一致しているはずである。このため、壁温推定値(図中の一点鎖線参照)と水温TWの検出値との間に差分ΔDがある場合には、この差分ΔDを壁温推定値の推定誤差であるとみなすことができる。したがって、コントロールユニット22が、実験・シミュレーション等によって得られた収束時間trmaxをROM等のメモリに予め記憶することで、収束時間trmaxが経過したときに、差分ΔDで示される推定誤差を壁温推定値から除去して、壁温推定値の補正を行うことができる。 In FIG. 2, since combustion stops in the combustion chamber 7 when the internal combustion engine 1 enters the idling stop state, the wall temperature TC in the combustion chamber 7 is equal to the water stop state in which cooling water flow is stopped during idling stop. descend. After the idling stop is started and the idling stop state continues for a certain time, the temperature difference between the water temperature TW and the wall temperature TC converges to substantially zero. Here, the convergence time t r to the temperature difference between the water temperature TW and KabeAtsushi TC from the start of the idling stop converges to substantially zero becomes relatively long when the water stop state, the convergence time of the time when the t r a t rmax, when convergence time t rmax from the start of idling stop has elapsed should the wall temperature TC and the water temperature TW is substantially coincident. For this reason, when there is a difference ΔD between the estimated wall temperature value (see the alternate long and short dash line in the figure) and the detected value of the water temperature TW, this difference ΔD can be regarded as an estimation error of the estimated wall temperature value. it can. Therefore, the control unit 22 stores in advance the convergence time trmax obtained by experiments, simulations, etc. in a memory such as a ROM, so that when the convergence time trmax has elapsed, the estimation error indicated by the difference ΔD is reduced. It is possible to correct the estimated wall temperature by removing it from the estimated temperature.
 図3は、コントロールユニット22において、イグニッションスイッチのオンを契機として繰り返し実行される壁温推定値の演算補正処理の一例を示す。 FIG. 3 shows an example of the calculation correction process for the estimated wall temperature value, which is repeatedly executed in the control unit 22 when the ignition switch is turned on.
 ステップS101(図中ではS101と略記する。以下同様)では、コントロールユニット22が、前回実行したステップS101により演算された壁温推定値と水温TW、油温TO、吸入空気温度TAの変化量等の種々のパラメータとに基づいて、現在の壁温推定値を演算する。なお、コントロールユニット22は、イグニッションスイッチがオンにされて最初にステップS101を実行するときに、冷間始動である場合には、壁温TCは水温TWと一致しているものと推測されるので、壁温推定値の初期値を水温TWの検出値としてもよい。 In step S101 (abbreviated as S101 in the figure, the same applies hereinafter), the control unit 22 calculates the estimated wall temperature, the water temperature TW, the oil temperature TO, the amount of change in the intake air temperature TA, etc. calculated in step S101 executed previously. Based on the various parameters, a current estimated wall temperature value is calculated. Note that the control unit 22 assumes that the wall temperature TC coincides with the water temperature TW in the case of a cold start when the ignition switch is first turned on to execute step S101. The initial value of the estimated wall temperature may be the detected value of the water temperature TW.
 ステップS102では、コントロールユニット22が、アイドリングストップを開始するか否かを判定する。例えば、水温センサ23及び車速センサ30等からの出力信号に基づいて、水温TWが内燃機関1の暖機完了と判断される温度以上であり、かつ、車速Vが車両停止と判断される速度である場合には、アイドリングストップを開始する、と判定することができる。そして、コントロールユニット22が、アイドリングストップを開始すると判定した場合には(Yes)、処理をステップS103へ進める。一方、コントロールユニット22が、アイドリングストップを開始しないと判定した場合には(No)、壁温推定値の演算補正処理を終了する。なお、内燃機関1がすでにアイドリングストップ状態である場合には、コントロールユニット22は、ステップS102からステップS103へ進まず、壁温推定値の補正を行わなくてもよい。以下の実施形態及びその変形例でも同様である。 In step S102, the control unit 22 determines whether or not to start idling stop. For example, based on output signals from the water temperature sensor 23, the vehicle speed sensor 30, and the like, the water temperature TW is equal to or higher than a temperature at which it is determined that the internal combustion engine 1 has been warmed up, and the vehicle speed V is a speed at which it is determined that the vehicle is stopped. In some cases, it can be determined to start idling stop. If the control unit 22 determines to start idling stop (Yes), the process proceeds to step S103. On the other hand, when the control unit 22 determines not to start the idling stop (No), the calculation correction process of the estimated wall temperature is terminated. When the internal combustion engine 1 is already in the idling stop state, the control unit 22 does not proceed from step S102 to step S103 and does not have to correct the estimated wall temperature. The same applies to the following embodiments and modifications thereof.
 ステップS103では、コントロールユニット22が、アイドリングストップを開始してからの経過時間であるIS時間ISTのカウントを行う。
 ステップS104では、コントロールユニット22はIS時間ISTが収束時間trmaxに達したか否かを判定する。そして、コントロールユニット22は、IS時間ISTが収束時間trmaxに達したと判定した場合には(Yes)、水温TWと壁温TCとの温度差が略零に収束していると判断できるので、壁温推定値の補正を行うべく、処理をステップS105へ進める。一方、コントロールユニット22は、IS時間ISTが収束時間trmaxに達していないと判定した場合には(No)、IS時間ISTのカウントを続行すべく、処理をステップS103へ戻す。
In step S103, the control unit 22 counts an IS time IST that is an elapsed time from the start of idling stop.
In step S104, the control unit 22 determines whether or not the IS time IST has reached the convergence time trmax . Then, the control unit 22, when judging the IS time IST reaches the convergence time t rmax is (Yes), it can be determined that the temperature difference between the water temperature TW and KabeAtsushi TC has converged substantially zero In order to correct the estimated wall temperature, the process proceeds to step S105. On the other hand, if the control unit 22 determines that the IS time IST has not reached the convergence time trmax (No), the control unit 22 returns the process to step S103 to continue counting the IS time IST.
 ステップS105では、コントロールユニット22が壁温推定値の補正を行う。具体的には、ステップS105において、コントロールユニット22は、現在の壁温推定値を水温TWの検出値と同一の値に強制的に変更することで、壁温推定値の補正を行う。これにより、次回実行されるステップS101において、コントローユニット22は、ステップS105で推定誤差が除去された壁温推定値に基づいて、次の壁温推定値を演算する。 In step S105, the control unit 22 corrects the estimated wall temperature. Specifically, in step S105, the control unit 22 corrects the estimated wall temperature value by forcibly changing the current estimated wall temperature value to the same value as the detected value of the water temperature TW. Thereby, in step S101 performed next time, the control unit 22 calculates the next wall temperature estimated value based on the wall temperature estimated value from which the estimation error was removed in step S105.
 なお、ステップS101において、コントロールユニット22が、前回演算した壁温推定値を用いずに、演算周期毎に現在の壁温推定値を演算する場合には、以下のようにすることができる。すなわち、図4に示すように、コントロールユニット22は、ステップS104で、IS時間ISTが収束時間trmaxに達していると判定すると(Yes)、ステップS104aで、水温TWの検出値と壁温推定値との差分ΔDを壁温推定値の補正量として演算する。そして、コントロールユニット22は、ステップS105において、ステップS101で演算した壁温推定値に対して差分ΔDを加算又は減算して壁温推定値の補正を行う。また、コントロールユニット22は、ステップS102で、アイドリングストップを開始しないと判定したときには(No)、処理をステップS105へ進めて、前回実行のステップS104aで演算した差分ΔDにより、壁温推定値を演算する度に補正する。 In step S101, when the control unit 22 calculates the current estimated wall temperature for each calculation cycle without using the previously calculated estimated wall temperature, the following can be performed. Namely, as shown in FIG. 4, the control unit 22, in step S104, IS and time IST is determined to have reached the convergence time t rmax (Yes), in step S104a, the detection value of the water temperature TW and the estimated wall temperature The difference ΔD from the value is calculated as a correction amount of the estimated wall temperature value. In step S105, the control unit 22 corrects the estimated wall temperature value by adding or subtracting the difference ΔD to the estimated wall temperature value calculated in step S101. When the control unit 22 determines in step S102 that the idling stop is not started (No), the control unit 22 advances the process to step S105 and calculates the estimated wall temperature based on the difference ΔD calculated in step S104a executed last time. Correct each time.
 このようなコントロールユニット22によれば、燃焼室7における燃焼を停止するアイドリングストップの開始から、止水状態で内燃機関1における水温TWと壁温TCとの温度差が略零に収束するまでの時間である収束時間trmaxが経過したときに、壁温推定値を水温TWの検出値と同一の値にして補正しているので、壁温推定値の推定精度を向上させることができる。そして、このように補正された壁温推定値を用いて、内燃機関1の制御に関する制御パラメータ(例えば、燃料噴射量等)を補正することで、実際の燃焼室温度に適した制御パラメータを算出でき、内燃機関1の排気性状、燃料消費率、運転性の低下を抑制することが可能となる。 According to such a control unit 22, the temperature difference between the water temperature TW and the wall temperature TC in the internal combustion engine 1 converges to approximately zero in the water stop state from the start of the idling stop that stops the combustion in the combustion chamber 7. Since the estimated wall temperature value is corrected to the same value as the detected value of the water temperature TW when the convergence time trmax, which is the time, has elapsed, the estimation accuracy of the estimated wall temperature value can be improved. Then, the control parameter suitable for the actual combustion chamber temperature is calculated by correcting the control parameter (for example, the fuel injection amount) related to the control of the internal combustion engine 1 using the wall temperature estimated value corrected in this way. This makes it possible to suppress a decrease in the exhaust properties, fuel consumption rate, and drivability of the internal combustion engine 1.
(第1実施形態の第1変形例)
 次に、第1実施形態の第1変形例について説明する。
 図5は、図2と同様に、車両が高負荷走行から減速・停止してアイドリングストップ状態となった後、再び加速したときに、時間に対して壁温TC及び水温TWがどのように変化するかを模式的に示している。壁温TC及び水温TWの変化は、アイドリングストップ中において、冷却水の流通を停止した止水時と、冷却水を通水させた通水時とで異なる。すなわち、アイドリングストップ中における冷却水の通水時に、アイドリングストップの開始から水温TW(二重実線)と壁温TC(二重破線)との温度差が略零に収束するまでの時間である収束時間trをtr1とすると、収束時間tr1は、図2において説明したように、アイドリングストップ中の冷却水の止水時に、アイドリングストップの開始から水温TW(実線)と壁温TC(破線)との温度差が略零に収束するまでの収束時間trmaxよりも短くなる。したがって、図6に示すように、アイドリングストップ中における冷却水の流量が高くなるに従って、収束時間trを徐々に短くして設定することができる。そこで、第1実施形態の第1変形例に係るコントロールユニット22では、図3の壁温推定値の演算補正処理に対し、アイドリングストップ中における冷却水の流量に応じて収束時間trの設定値を変化させている。
(First modification of the first embodiment)
Next, a first modification of the first embodiment will be described.
FIG. 5 shows how the wall temperature TC and the water temperature TW change with time when the vehicle decelerates / stops from a high-load running and enters an idling stop state and then accelerates again, as in FIG. It shows schematically how to do it. Changes in the wall temperature TC and the water temperature TW are different when the cooling water flow is stopped and when the cooling water is passed while idling is stopped. That is, when cooling water is passed during idling stop, the convergence is the time from the start of idling stop until the temperature difference between the water temperature TW (double solid line) and the wall temperature TC (double broken line) converges to substantially zero. When time t r and t r1, the convergence time t r1, as described in FIG. 2, when the water stop of the cooling water in the idling stop, KabeAtsushi TC (dashed from the start of the idling stop coolant temperature TW (solid line) ) And the convergence time trmax until the temperature difference converges to substantially zero. Accordingly, as shown in FIG. 6, in accordance with the flow rate of the cooling water is high during idling stop, you are possible to set the convergence time t r gradually shortened to. Therefore, the control unit 22 according to a first modification of the first embodiment, with respect to operation and correction processing of the estimated wall temperature value in FIG. 3, the set value of the convergence time t r in accordance with the flow rate of the cooling water in the idling stop Is changing.
 図7は、第1実施形態の第1変形例に係るコントロールユニット22において、イグニッションスイッチのオンを契機として繰り返し実行される壁温推定値の演算補正処理の一例を示す。なお、第1実施形態と同一構成については、同一符号を付すことでその説明を省略又は簡潔にする。以下、同様である。 FIG. 7 shows an example of the calculation correction process of the estimated wall temperature value that is repeatedly executed when the ignition switch is turned on in the control unit 22 according to the first modification of the first embodiment. In addition, about the same structure as 1st Embodiment, the description is abbreviate | omitted or simplified by attaching | subjecting the same code | symbol. The same applies hereinafter.
 第1実施形態の第1変形例に係るコントロールユニット22が実行する、壁温推定値の演算補正処理は、図3の壁温推定値の演算補正処理に対して、ステップS102とステップS103との間にステップS102aを追加している点で異なる。 The calculation correction process of the estimated wall temperature value performed by the control unit 22 according to the first modification of the first embodiment is the same as the calculation correction process of the estimated wall temperature value of FIG. The difference is that step S102a is added in between.
 ステップS102aでは、コントロールユニット22は、アイドリングストップ中における冷却水の流量に応じて収束時間trを設定する。例えば、収束時間trは、電動ウォータポンプ20の回転速度NPの検出値に基づいて設定される。電動ウォータポンプ20の回転速度NPが高くなる場合には冷却水の流量は増大するので、収束時間trを徐々に短くして設定する一方、回転速度NPが低くなる場合には冷却水の流量は低下するので、収束時間trを徐々に長くして設定する。 In step S102a, the control unit 22 sets the convergence time t r in accordance with the flow rate of the cooling water in the idling stop. For example, the convergence time tr is set based on the detected value of the rotational speed NP of the electric water pump 20. When the rotational speed NP of the electric water pump 20 increases, the flow rate of the cooling water increases. Therefore, the convergence time tr is set to be gradually shortened. On the other hand, when the rotational speed NP decreases, the flow rate of the cooling water is set. Therefore, the convergence time tr is set to be gradually increased.
 具体的には、第1実施形態の第1変形例に係るコントロールユニット22は、実験等によって電動ウォータポンプ20の回転速度NPと収束時間trとを関連付けた第1データテーブルを、ROM等の記憶手段に予め記憶しておく。そして、コントロールユニット22は、ステップS102aを実行する際に第1データテーブルを参照することで、電動ウォータポンプ20の回転速度NPの検出値に対応する収束時間trを設定する。このようにアイドリングストップ中における冷却水の流量に応じて収束時間trの設定値を変化させることで、アイドリングストップ開始から壁温推定値の補正が可能になるまでの時間を短縮することができる。 Specifically, the control unit 22 according to the first modification of the first embodiment uses a first data table in which the rotational speed NP of the electric water pump 20 and the convergence time tr are correlated through an experiment or the like, such as a ROM. Store in advance in the storage means. Then, the control unit 22 refers to the first data table in performing step S102a, to set the convergence time t r corresponding to the detected value of the rotation speed NP of the electric water pump 20. By thus changing the set value of the convergence time t r in accordance with the flow rate of the cooling water in the idling stop, it is possible to shorten the time from idle stop start-up it is possible to correct the estimated wall temperature value .
(第1実施形態の第2変形例)
 次に、第1実施形態の第2変形例について説明する。
 第1実施形態の第2変形例に係るコントロールユニット22では、収束時間trの設定要素としてアイドリングストップ中における冷却水の流量を用いる、第1実施形態の第1変形例に対し、水温TWと外気温TEとの温度差である水温・外気温差ΔTを追加している。
(Second modification of the first embodiment)
Next, a second modification of the first embodiment will be described.
In the control unit 22 according to a second modification of the first embodiment, a flow rate of the cooling water in the idling stop as setting element of the convergence time t r, with respect to a first modification of the first embodiment, the coolant temperature TW A water temperature / outside temperature difference ΔT, which is a temperature difference from the outside temperature TE, is added.
 図8は、第1実施形態の第2変形例に係るコントロールユニット22が、イグニッションスイッチのオンを契機として繰り返し実行する、壁温推定値の演算補正処理の一例を示す。第1実施形態の第2変形例に係るコントロールユニット22が実行する、壁温推定値の演算補正処理は、図7の壁温推定値の演算補正処理に対し、ステップS102aに代えてステップS102bを実行する点で異なる。 FIG. 8 shows an example of the calculation correction process of the estimated wall temperature value, which is repeatedly executed by the control unit 22 according to the second modification of the first embodiment when the ignition switch is turned on. The calculation correction process of the estimated wall temperature value executed by the control unit 22 according to the second modification of the first embodiment is different from the calculation correction process of the estimated wall temperature value of FIG. 7 in that step S102b is used instead of step S102a. It differs in the point to execute.
 ステップS102bでは、コントロールユニット22は、電動ウォータポンプ20の回転速度NPの検出値と、水温TWの検出値と外気温TEの検出値とから演算された水温・外気温差ΔTの算出値と、に基づいて収束時間trを設定する。 In step S102b, the control unit 22 calculates the water temperature / outside temperature difference ΔT calculated from the detected value of the rotational speed NP of the electric water pump 20, the detected value of the water temperature TW, and the detected value of the outside air temperature TE, Based on the above, the convergence time tr is set.
 外気温TEが低下すれば、すなわち水温・外気温差ΔTが大きくなれば、ラジエータ16における冷却水からの放熱量が増大して壁温TCの低下速度は速くなる。一方、外気温TEが上昇すれば、すなわち水温・外気温差ΔTが小さくなれば、ラジエータ16における冷却水からの放熱量が減少して壁温TCの低下速度は遅くなる。したがって、収束時間trは、第1実施形態の第1変形例と同様に、電動ウォータポンプ20の回転速度NPが高くなるに従って徐々に短くし、電動ウォータポンプ20の回転速度NPが低くなるに従って徐々に長くして設定するだけでなく、水温・外気温差ΔTが大きくなるに従って徐々に短くし、水温・外気温差ΔTが小さくなるに従って徐々に長く設定する。 If the outside air temperature TE decreases, that is, if the water temperature / outside air temperature difference ΔT increases, the amount of heat released from the cooling water in the radiator 16 increases and the rate of decrease in the wall temperature TC increases. On the other hand, if the outside air temperature TE rises, that is, if the water temperature / outside air temperature difference ΔT becomes small, the amount of heat released from the cooling water in the radiator 16 decreases, and the rate of decrease in the wall temperature TC becomes slow. Therefore, the convergence time tr is gradually shortened as the rotational speed NP of the electric water pump 20 increases, and the rotational speed NP of the electric water pump 20 decreases as in the first modification of the first embodiment. In addition to setting the temperature gradually longer, the temperature is gradually shortened as the water temperature / outside air temperature difference ΔT becomes larger, and gradually set longer as the water temperature / outside air temperature difference ΔT becomes smaller.
 具体的には、第1実施形態の第2変形例に係るコントロールユニット22は、実験等によって電動ウォータポンプ20の回転速度NP及び水温・外気温差ΔTと収束時間trとを関連付けた第2データテーブルを、ROM等の記憶手段に予め記憶しておく。そして、コントロールユニット22は、ステップS102bを実行する際に第2データテーブルを参照することで、電動ウォータポンプ20の回転速度NPの検出値及び水温・外気温差ΔTの算出値に対応する収束時間trを設定する。このようにアイドリングストップ中における冷却水の流量及び水温・外気温差ΔTに応じて収束時間trの設定値を変化させることで、アイドリングストップ開始から壁温推定値の補正が可能になるまでの時間を第1実施形態の第1変形例よりも精度良く短縮することができる。 Specifically, the control unit 22 according to a second modification of the first embodiment, the associating the rotational speed NP and the water temperature, the outside air temperature difference ΔT and the convergence time of the electric water pump 20 t r by experiment or the like 2 The data table is stored in advance in storage means such as a ROM. Then, the control unit 22 refers to the second data table when executing step S102b, so that the convergence time corresponding to the detected value of the rotational speed NP of the electric water pump 20 and the calculated value of the water temperature / outside air temperature difference ΔT is obtained. Set tr . By thus changing the set value of the convergence time t r in accordance with the flow rate of the cooling water and the water temperature, the outside temperature difference ΔT in the idling stop, from the idling stop start-up it is possible to correct the estimated wall temperature value Time can be shortened more accurately than the first modification of the first embodiment.
(第1実施形態の第3変形例)
 次に、第1実施形態の第3変形例について説明する。
 前述した第1実施形態の第1変形例及び第2変形例に係るコントロールユニット22では、アイドリングストップ中における冷却水の流量に応じて、あるいは、これと水温・外気温差ΔTとに応じて収束時間trを設定していた。これに対し、第1実施形態の第3変形例に係るコントロールユニット22は、収束時間trの設定値をさらに小さくするために、アイドリングストップ中における冷却水の流量を比較的高い流量に変更する。これにより、水温TWと壁温TCとの温度差が略零に収束する前にアイドリングストップが終了することが減少し、壁温推定値の補正頻度低減を抑制できる。
(Third Modification of First Embodiment)
Next, a third modification of the first embodiment will be described.
In the control unit 22 according to the first modified example and the second modified example of the first embodiment described above, it converges according to the flow rate of cooling water during idling stop or according to this and the water temperature / outside air temperature difference ΔT. The time tr was set. In contrast, the control unit 22 according to a third modification of the first embodiment, in order to further reduce the set value of the convergence time t r, to change the flow rate of the cooling water in the idling stop at a relatively high flow rate . As a result, the idling stop is reduced before the temperature difference between the water temperature TW and the wall temperature TC converges to substantially zero, and a reduction in the correction frequency of the estimated wall temperature can be suppressed.
 収束時間trを意図的に短縮化するために、例えば、第1実施形態の第1変形例及び第2変形例に係るコントロールユニット22が実行する、図7又は図8の壁温推定値の演算補正処理において、図9に示すように、ステップS102とステップS102a又はステップS102bとの間に、ステップS102cを追加することができる。すなわち、コントロールユニット22は、ステップS102で、アイドリングストップを開始すると判定した場合には(Yes)、ステップS102cで、冷却水の流量を比較的高い流量にすべく電動ウォータポンプ20の回転速度NPを増大させる。そして、コントロールユニット22は、ステップS102a又はステップS102bで、ステップS102cで増大させた回転速度NP、あるいは、これと水温・外気温差ΔTとに応じて収束時間trを設定する。この場合、電動ウォータポンプ20の回転速度NPが一定回転速度に上昇するまでの時間を考慮して、収束時間trの設定値を補正してもよい。後述する第2実施形態の第3変形例についても同様である。 To intentionally shortening the convergence time t r, for example, the control unit 22 according to the first and second modifications of the first embodiment is executed, the estimated wall temperature value in FIG. 7 or 8 In the calculation correction process, as shown in FIG. 9, step S102c can be added between step S102 and step S102a or step S102b. That is, if the control unit 22 determines in step S102 to start idling stop (Yes), in step S102c, the control unit 22 sets the rotational speed NP of the electric water pump 20 to make the flow rate of the cooling water relatively high. Increase. Then, the control unit 22, in step S102a or step S102b, the rotational speed NP was increased in step S102c, or sets the convergence time t r in accordance with the the water temperature and outdoor air temperature difference ΔT this. In this case, in consideration of the time duration during which the rotational speed NP of the electric water pump 20 is increased at a constant rotational speed, the set value of the convergence time t r may be corrected. The same applies to a third modification of the second embodiment to be described later.
[第2実施形態]
 次に、本発明の第2実施形態に係る制御装置について説明する。
 図10は、第2実施形態に係る制御装置を適用した内燃機関1Aの一例を示す。
 図10に示すように、内燃機関1Aは、燃焼室7の壁温TCを検出する壁温センサ33を備え、壁温センサ33の出力信号を、内燃機関1Aの制御装置を構成するコントロールユニット22Aに入力している点で第1実施形態と異なる。コントロールユニット22Aは、壁温センサ33で検出された壁温TCの検出値(壁温検出値)により、内燃機関1Aの制御に関する制御パラメータ(例えば、燃料噴射量、噴射タイミング、点火時期等)を補正している。なお、壁温センサ33は、燃焼室7の内壁に単独で配置される他、点火プラグ8や、燃料を燃焼室7に直接噴射する場合の燃料噴射弁に組み込まれて一体的に形成されてもよい。
[Second Embodiment]
Next, a control device according to a second embodiment of the present invention will be described.
FIG. 10 shows an example of an internal combustion engine 1A to which the control device according to the second embodiment is applied.
As shown in FIG. 10, the internal combustion engine 1A includes a wall temperature sensor 33 that detects the wall temperature TC of the combustion chamber 7, and an output signal from the wall temperature sensor 33 is used as a control unit 22A that constitutes a control device for the internal combustion engine 1A. This is different from the first embodiment in that it is input to. The control unit 22A determines control parameters (for example, fuel injection amount, injection timing, ignition timing, etc.) related to the control of the internal combustion engine 1A based on the detection value (wall temperature detection value) of the wall temperature TC detected by the wall temperature sensor 33. It is corrected. The wall temperature sensor 33 is arranged independently on the inner wall of the combustion chamber 7, and is integrally formed with the spark plug 8 and a fuel injection valve when fuel is directly injected into the combustion chamber 7. Also good.
 再び図16を参照すると、壁温検出値には、壁温センサ33におけるリニア出力値及び温度特性等のばらつきや、コントロールユニット22Aにおける、電源電圧、A/D(Analog to Digital)変換回路、ハーネス、コネクタ等のばらつきに起因して検出誤差が生じ得るため、壁温検出値が壁温TCから乖離する可能性がある。したがって、コントロールユニット22Aが、壁温検出値を用いて直ちに内燃機関1Aの制御に関する制御パラメータ(例えば、燃料噴射量等)を補正すると、補正された制御パラメータは、実際の燃焼室温度に適した制御パラメータから乖離し得るため、内燃機関1Aの排気性状、燃料消費率、運転性が低下するおそれがある。 Referring to FIG. 16 again, the wall temperature detection value includes variations in the linear output value and temperature characteristics of the wall temperature sensor 33, power supply voltage, A / D (Analog-to-Digital) conversion circuit, harness in the control unit 22A. Since detection errors may occur due to variations in connectors and the like, the wall temperature detection value may deviate from the wall temperature TC. Therefore, when the control unit 22A immediately corrects a control parameter (for example, fuel injection amount) related to the control of the internal combustion engine 1A using the detected wall temperature value, the corrected control parameter is suitable for the actual combustion chamber temperature. Since it may deviate from the control parameters, the exhaust property, fuel consumption rate, and drivability of the internal combustion engine 1A may be reduced.
 このため、コントロールユニット22Aは、後述するように、アイドリングストップ中における水温TWの検出値(水温検出値)に基づいて、壁温センサ33で検出された壁温検出値を補正する。なお、壁温検出値の補正原理は、第1実施形態において図2を参照して説明した壁温推定値の補正原理と同様であり、壁温推定値及び推定誤差をそれぞれ壁温検出値及び検出誤差に読み替えて説明することができるため省略する。 Therefore, the control unit 22A corrects the detected wall temperature value detected by the wall temperature sensor 33 based on the detected value (water temperature detected value) of the water temperature TW during idling stop, as will be described later. The correction principle of the detected wall temperature value is the same as the corrected principle of the estimated wall temperature value described with reference to FIG. 2 in the first embodiment. Since it can be described as a detection error, it will be omitted.
 図11は、コントロールユニット22Aにおいて、イグニッションスイッチのオンを契機として繰り返し実行される壁温検出値の取得補正処理の一例を示す。
 ステップS201では、コントロールユニット22Aが、壁温センサ33からの出力信号に基づいて壁温検出値を取得する。
 ステップS202~ステップS204は、それぞれ、第1実施形態のコントロールユニット22による壁温推定値の演算補正処理の一例を示すフローチャート(図3参照)のステップS102~ステップS104と同様の処理を実行するので説明を省略する。
FIG. 11 shows an example of the acquisition correction process of the detected wall temperature value that is repeatedly executed when the ignition switch is turned on in the control unit 22A.
In step S <b> 201, the control unit 22 </ b> A acquires the detected wall temperature value based on the output signal from the wall temperature sensor 33.
Steps S202 to S204 execute the same processes as steps S102 to S104 in the flowchart (see FIG. 3) showing an example of the calculation correction process of the estimated wall temperature by the control unit 22 of the first embodiment. Description is omitted.
 コントロールユニット22Aは、ステップS204でIS時間ISTが収束時間trmaxに達している、と判定すると(Yes)、ステップS205において、水温TWの検出値と壁温検出値との差分ΔDを壁温検出値の補正量として演算する。そして、コントロールユニット22Aは、ステップS206において、ステップS201で取得した壁温検出値に対して差分ΔDを加算又は減算して壁温検出値の補正を行う。また、コントロールユニット22Aは、ステップS202でアイドリングストップを開始しないと判定したときには(No)、処理をステップS206へ進めて、前回実行のステップS205で演算した差分ΔDにより、壁温検出値を取得する度に補正する。 If the control unit 22A determines in step S204 that the IS time IST has reached the convergence time trmax (Yes), in step S205, the difference ΔD between the detected value of the water temperature TW and the detected wall temperature is detected as the wall temperature. Calculated as a value correction amount. In step S206, the control unit 22A corrects the detected wall temperature by adding or subtracting the difference ΔD to the detected wall temperature acquired in step S201. Further, when it is determined in step S202 that the idling stop is not started (No), the control unit 22A advances the process to step S206, and acquires the detected wall temperature value based on the difference ΔD calculated in step S205 of the previous execution. Correct in degrees.
 このようなコントロールユニット22Aによれば、燃焼室7における燃焼を停止するアイドリングストップの開始から、止水状態で内燃機関1Aにおける水温TWと壁温TCとの温度差が略零に収束するまでの時間である収束時間trmaxが経過したときに、水温TWの検出値と壁温検出値との差分ΔDを演算し、この差分ΔDに基づいて壁温検出値を補正しているので、壁温検出値の検出精度を向上させることができる。そして、このように補正された壁温検出値を用いて、内燃機関1Aの制御に関する制御パラメータ(例えば、燃料噴射量等)を補正することで、実際の燃焼室温度に適した制御パラメータを算出でき、内燃機関1Aの排気性状、燃料消費率、運転性の低下を抑制することが可能となる。 According to such a control unit 22A, from the start of idling stop that stops combustion in the combustion chamber 7 until the temperature difference between the water temperature TW and the wall temperature TC in the internal combustion engine 1A converges to substantially zero in the water stop state. Since the difference ΔD between the detected value of the water temperature TW and the detected wall temperature is calculated and the detected wall temperature is corrected based on this difference ΔD when the convergence time trmax, which is time, has elapsed, the wall temperature The detection accuracy of the detection value can be improved. Then, using the wall temperature detection value corrected in this way, a control parameter suitable for the actual combustion chamber temperature is calculated by correcting a control parameter (for example, fuel injection amount) related to the control of the internal combustion engine 1A. This makes it possible to suppress the deterioration of the exhaust properties, fuel consumption rate, and drivability of the internal combustion engine 1A.
(第2実施形態の第1変形例)
 次に、第2実施形態の第1変形例について説明する。
 第1実施形態の第1変形例において図5及び図6を参照して説明したように、アイドリングストップ中における冷却水の流量が高くなるに従って、アイドリングストップの開始から水温TWと壁温TCとの温度差が略零に収束するまでの時間である収束時間trは短くなる。そこで、第2実施形態の第1変形例に係るコントロールユニット22Aは、図11の壁温検出値の取得補正処理に対し、アイドリングストップ中における冷却水の流量に応じて収束時間trを変化させている。このようにすることで、アイドリングストップ開始から壁温検出値の補正が可能になるまでの時間を短縮することができる。
(First Modification of Second Embodiment)
Next, a first modification of the second embodiment will be described.
As described with reference to FIGS. 5 and 6 in the first modification of the first embodiment, as the flow rate of the cooling water during the idling stop increases, the water temperature TW and the wall temperature TC are increased from the start of the idling stop. convergence time temperature difference is the time to converge to approximately zero t r is shortened. Therefore, the control unit 22A according to a first modification of the second embodiment, with respect to obtaining correction processing wall temperature detection value of FIG. 11, by changing the convergence time t r in accordance with the flow rate of the cooling water in the idling stop ing. By doing so, it is possible to shorten the time from the start of idling stop until the wall temperature detection value can be corrected.
 図12は、第2実施形態の第1変形例に係るコントロールユニット22Aにおいて、イグニッションスイッチのオンを契機として繰り返し実行される壁温検出値の取得補正処理の一例を示す。第2実施形態の第1変形例に係るコントロールユニット22Aが実行する、壁温検出値の取得補正処理は、図11の壁温検出値の取得補正処理に対して、ステップS202とステップS203との間にステップS202aを追加している点で異なる。 FIG. 12 shows an example of a wall temperature detection value acquisition correction process that is repeatedly executed when the ignition switch is turned on in the control unit 22A according to the first modification of the second embodiment. The acquisition correction process of the detected wall temperature value performed by the control unit 22A according to the first modification of the second embodiment includes steps S202 and S203 as compared with the acquisition correction process of the detected wall temperature value in FIG. The difference is that step S202a is added in between.
 ステップS202aでは、コントロールユニット22Aは、第1実施形態の第1変形例に係るステップS102a(図7参照)と同様に、アイドリングストップ中における電動ウォータポンプ20の回転速度NPの検出値に応じて収束時間trを設定している。その他の処理については、図11の壁温検出値の取得補正処理と同様であるので説明を省略する。 In step S202a, the control unit 22A converges according to the detected value of the rotational speed NP of the electric water pump 20 during idling stop, similarly to step S102a (see FIG. 7) according to the first modification of the first embodiment. Time tr is set. The other processes are the same as the wall temperature detection value acquisition correction process in FIG.
(第2実施形態の第2変形例)
 次に、第2実施形態の第2変形例について説明する。
 第2実施形態の第2変形例に係るコントロールユニット22Aでは、収束時間trの設定要素として、アイドリングストップ中における冷却水の流量を用いる、第2実施形態の第1変形例に対し、水温TWと外気温TEとの温度差である水温・外気温差ΔTを追加している。
(Second Modification of Second Embodiment)
Next, a second modification of the second embodiment will be described.
In the control unit 22A according to a second modification of the second embodiment, as the setting element of the convergence time t r, using the flow rate of the cooling water in the idling stop, relative to the first modification of the second embodiment, the water temperature TW Water temperature / outside air temperature difference ΔT, which is a temperature difference between the air temperature and the outside air temperature TE, is added.
 図13は、第2実施形態の第2変形例に係るコントロールユニット22Aが、イグニッションスイッチのオンを契機として繰り返し実行する、壁温検出値の取得補正処理の一例を示すフローチャートである。第2実施形態の第2変形例に係るコントロールユニット22Aが実行する、壁温検出値の取得補正処理は、図12の壁温検出値の取得補正処理に対し、ステップS202aに代えてステップS202bを実行する点で異なる。 FIG. 13 is a flowchart showing an example of a wall temperature detection value acquisition correction process repeatedly executed by the control unit 22A according to the second modification of the second embodiment when the ignition switch is turned on. The wall temperature detection value acquisition correction process executed by the control unit 22A according to the second modification of the second embodiment is different from the wall temperature detection value acquisition correction process of FIG. 12 in that step S202b is used instead of step S202a. It differs in the point to execute.
 ステップS202bでは、コントロールユニット22Aは、第1実施形態の第2変形例に係るステップS102b(図8参照)と同様に、電動ウォータポンプ20の回転速度NPの検出値、及び、水温TWの検出値と外気温TEの検出値とから演算された水温・外気温差ΔTの算出値に基づいて収束時間trを設定する。その他の処理については、図11の壁温検出値の取得補正処理と同様であるので説明を省略する。 In step S202b, the control unit 22A detects the detected value of the rotational speed NP of the electric water pump 20 and the detected value of the water temperature TW, as in step S102b (see FIG. 8) according to the second modification of the first embodiment. And the convergence time tr is set based on the calculated value of the water temperature / outside temperature difference ΔT calculated from the detected value of the outside temperature TE. The other processes are the same as the wall temperature detection value acquisition correction process in FIG.
(第2実施形態の第3変形例)
 次に、第2実施形態の第3変形例について説明する。
 第2実施形態の第3変形例に係るコントロールユニット22Aは、第1実施形態の第3変形例と同様に、第2実施形態の第1変形例及び第2変形例において、収束時間trの設定値をさらに小さくするために、アイドリングストップ中における冷却水の流量を比較的高い流量に変更する。これにより、壁温TCが水温TWに収束する前にアイドリングストップが終了して、壁温検出値の補正頻度が減少することを抑制できる。
(Third Modification of Second Embodiment)
Next, a third modification of the second embodiment will be described.
Control unit 22A according to a third modification of the second embodiment, similarly to the third modification of the first embodiment, the first and second modifications of the second embodiment, the convergence time t r In order to further reduce the set value, the flow rate of the cooling water during idling stop is changed to a relatively high flow rate. Thereby, it can suppress that idling stop is complete | finished before wall temperature TC converges on water temperature TW, and the correction frequency of wall temperature detection value decreases.
 例えば、第2実施形態の第1変形例及び第2変形例に係るコントロールユニット22Aが実行する、図12又は図13の壁温検出値の取得補正処理において、図14に示すように、ステップS202とステップS202a又はステップs202bとの間に、ステップs202cを追加することができる。すなわち、コントロールユニット22Aは、ステップS202で、アイドリングストップを開始すると判定された場合には(Yes)、ステップS202cで、冷却水の流量を比較的高い流量にすべく電動ウォータポンプ20の回転速度NPを増大させる。そして、コントロールユニット22Aは、ステップS202a又はステップS202bで、ステップS202cで増大させた回転速度NPに応じて、あるいは、これに加えて水温・外気温差ΔTに応じて、収束時間trを設定する。 For example, in the wall temperature detection value acquisition correction process of FIG. 12 or 13 executed by the control unit 22A according to the first modification and the second modification of the second embodiment, as shown in FIG. Step s202c can be added between Step S202a and Step s202b. That is, if it is determined in step S202 that the idling stop is started (Yes), the control unit 22A determines that the rotational speed NP of the electric water pump 20 is set to a relatively high flow rate in step S202c. Increase. Then, the control unit 22A in step S202a or step S202b, in accordance with the rotational speed NP that increased in step S202c, or depending on the water temperature, the outside temperature difference ΔT in addition, to set the convergence time t r .
(第2実施形態の第4変形例)
 次に、第2実施形態の第4変形例について説明する。
 第2実施形態の第4変形例に係るコントロールユニット22Aは、止水状態で収束時間trmaxが経過したときに、壁温検出値と水温TWの検出値とに基づいて、壁温センサ33に故障が発生しているか否かを診断する、壁温センサ33の故障診断処理を行う。
(Fourth modification of the second embodiment)
Next, a fourth modification of the second embodiment will be described.
The control unit 22A according to the fourth modified example of the second embodiment uses the wall temperature sensor 33 based on the detected wall temperature and the detected value of the water temperature TW when the convergence time trmax has elapsed in the water stoppage state. Failure diagnosis processing for the wall temperature sensor 33 is performed to diagnose whether or not a failure has occurred.
 図15は、第2実施形態の第4変形例に係るコントロールユニット22Aにおいて、イグニッションスイッチのオンを契機として繰り返し実行される壁温センサ33の故障診断処理の一例を示す。ステップS301~ステップS303は、それぞれ、図11の壁温検出値の取得補正処理のステップS202~ステップS204と同様であるので説明を省略する。 FIG. 15 shows an example of failure diagnosis processing of the wall temperature sensor 33 that is repeatedly executed when the ignition switch is turned on in the control unit 22A according to the fourth modification of the second embodiment. Steps S301 to S303 are the same as steps S202 to S204 of the wall temperature detection value acquisition correction process in FIG.
 コントロールユニット22Aは、ステップS301でアイドリングストップを開始すると判定し(Yes)、さらにステップS303でIS時間ISTが収束時間trmaxに達したと判定した場合(Yes)、ステップS304において、壁温センサ33の故障診断用閾値を設定する。具体的には、コントロールユニット22Aは、水温TWの検出値に対して壁温センサ33の検出誤差αを加算して上限閾値TUを演算し、水温TWの検出値に対して壁温センサ33の検出誤差αを減算して下限閾値TLを演算する。上限閾値TUとから下限閾値TLまでの範囲は、壁温センサ33が正常であると診断される正常範囲である。 The control unit 22A determines that the idling stop is started in Step S301 (Yes), and if it is further determined in Step S303 that the IS time IST has reached the convergence time trmax (Yes), in Step S304, the wall temperature sensor 33 is determined. Set the threshold for failure diagnosis. Specifically, the control unit 22A calculates the upper limit threshold value TU by adding the detection error α of the wall temperature sensor 33 to the detected value of the water temperature TW, and calculates the upper limit threshold TU of the detected value of the water temperature TW. The lower limit threshold TL is calculated by subtracting the detection error α. The range from the upper limit threshold TU to the lower limit threshold TL is a normal range in which the wall temperature sensor 33 is diagnosed as normal.
 ステップS305では、コントロールユニット22Aは、壁温検出値が下限閾値TL以上かつ上限閾値TU以下であるか否かを判定する。そして、コントロールユニット22Aは、壁温検出値が下限閾値TL以上かつ上限閾値TU以下であると判定された場合には(Yes)、処理をステップS306へ進めて、壁温センサ33は正常であると診断する。一方、コントロールユニット22Aは、壁温検出値が下限閾値TL未満あるいは上限閾値TUより大きいと判定された場合には(No)、処理をステップS307へ進めて、壁温センサ33は故障していると診断する。なお、コントロールユニット22AがステップS301においてアイドリングストップを開始しないと判定した場合には、壁温センサ33の故障診断処理を行わない(No)。 In step S305, the control unit 22A determines whether or not the detected wall temperature is not less than the lower threshold TL and not more than the upper threshold TU. If the control unit 22A determines that the detected wall temperature is not less than the lower limit threshold TL and not more than the upper limit threshold TU (Yes), the process proceeds to step S306, and the wall temperature sensor 33 is normal. Diagnose. On the other hand, if the control unit 22A determines that the detected wall temperature value is less than the lower limit threshold value TL or greater than the upper limit threshold value TU (No), the process proceeds to step S307, and the wall temperature sensor 33 has failed. Diagnose. When the control unit 22A determines that the idling stop is not started in step S301, the failure diagnosis process for the wall temperature sensor 33 is not performed (No).
 コントロールユニット22Aは、壁温センサ33が故障していると診断した場合には、故障状態を示す故障フラグを例えば0から1に設定してRAM(Random Access Memory)等の記憶手段に記憶し、故障フラグが1に設定されている場合には、第1変形例~第3変形例を含む第2実施形態における壁温検出値の補正を行わないようにするか、あるいは、壁温検出値による制御パラメータの補正を行わないようにしてもよい。 When the control unit 22A diagnoses that the wall temperature sensor 33 has failed, the control unit 22A sets a failure flag indicating a failure state from 0 to 1, for example, and stores it in a storage means such as a RAM (Random Access Memory). When the failure flag is set to 1, correction of the wall temperature detection value in the second embodiment including the first to third modifications is not performed, or depending on the wall temperature detection value The control parameter may not be corrected.
 以上、本発明に係る内燃機関の制御装置及び制御方法を第1実施形態及び第2実施形態並びにそれらの変形例(以下、実施形態等という)に基づき具体的に説明したが、本発明は上記の実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で種々変更が可能である。例えば、コントロールユニット22,22Aが、冷却水の流量に応じて収束時間trを設定する場合、電動ウォータポンプ20の回転速度の検出値に限らず、例えば冷却水の流量の実測値等、冷却水の流量を示す様々なパラメータを用いることができる。 The control device and control method for an internal combustion engine according to the present invention have been specifically described above based on the first embodiment, the second embodiment, and their modifications (hereinafter referred to as embodiments). The present invention is not limited to the embodiment and the like, and various modifications can be made without departing from the scope of the invention. For example, the control unit 22,22A is, to set the convergence time t r in accordance with the flow rate of the cooling water is not limited to the detection value of the rotational speed of the electric water pump 20, for example, the measured values or the like of the cooling water flow rate, cooling Various parameters indicating the water flow rate can be used.
 上記の実施形態等において、壁温推定値及び壁温検出値は、内燃機関1,1Aがアイドリングストップ状態であるときの水温TWの検出値に基づいて補正されるものとして説明したが、アイドリングストップ状態であるときに限られず、燃料噴射弁4への燃料供給を遮断して燃焼室7における燃焼を停止しているときの水温TWの検出値に基づいて補正されればよい。 In the above embodiment and the like, the estimated wall temperature value and the detected wall temperature value have been described as being corrected based on the detected value of the water temperature TW when the internal combustion engine 1, 1A is in the idling stop state. The correction is not limited to when the fuel is in the state, but may be corrected based on the detected value of the water temperature TW when the fuel supply to the fuel injection valve 4 is shut off and the combustion in the combustion chamber 7 is stopped.
 例えば、車両の減速時(エンジンブレーキ時)に燃焼室7における燃焼を停止してから冷却水の水温TWと実際の壁温TCとの温度差が略零に収束するまでの収束時間trをtr2とすると、収束時間tr2が経過したときに、壁温推定値又は壁温検出値を水温TWの検出値と同一の値にして補正することができる。車両の減速時には内燃機関1,1Aが回転して燃焼室7には外気が導入されるので、壁温TCの低下速度が速くなることを考慮して、車両の減速時における収束時間tr2を、機関回転速度NEが略零であるアイドリングストップ中の収束時間trmaxよりも短くする等、車両の減速時における収束時間trは機関回転速度NEに応じて設定されてもよい。 For example, the convergence time t r to the temperature difference between the actual wall temperature TC and the water temperature TW of the cooling water from the stop of the combustion in the combustion chamber 7 at the time of deceleration of the vehicle (during engine braking) is converged to substantially zero Assuming that t r2 , when the convergence time tr 2 has elapsed, the estimated wall temperature value or the detected wall temperature value can be corrected to the same value as the detected value of the water temperature TW. When the vehicle is decelerated, the internal combustion engine 1, 1 </ b> A rotates and the outside air is introduced into the combustion chamber 7, so that the convergence time tr 2 when the vehicle is decelerated is taken into consideration that the rate of decrease in the wall temperature TC increases. , etc. the engine speed NE is less than the convergence time t rmax during idling stop is substantially zero, convergence time t r during deceleration of the vehicle may be set according to the engine rotational speed NE.
 また、例えば、イグニッションスイッチをオフ状態にして内燃機関1,1Aを停止してから収束時間trmaxが経過した場合には、水温TWと壁温TCとの温度差が略零に収束していると推測されるので、イグニッションスイッチをオン状態にして内燃機関1,1Aを始動したときに、壁温推定値又は壁温検出値を燃焼室7における燃焼前の水温TWの検出値と同一の値にして補正することができる。なお、コントロールユニット22,22Aは、イグニッションスイッチをオフ状態にしてからの経過時間をカウントする計時手段(タイマ)を備え、この計時手段には、車載電源から常時電力が供給されるように構成される。 Further, for example, when a convergence time t rmax stop the internal combustion engine 1,1A and the ignition switch is turned off has elapsed, the temperature difference between the water temperature TW and KabeAtsushi TC has converged substantially zero Therefore, when the internal combustion engine 1, 1A is started with the ignition switch turned on, the estimated wall temperature value or the detected wall temperature value is the same as the detected value of the water temperature TW before combustion in the combustion chamber 7. Can be corrected. The control units 22 and 22A are provided with a time measuring means (timer) for counting an elapsed time since the ignition switch is turned off, and this time measuring means is configured so that electric power is always supplied from an in-vehicle power source. The
 上記の実施形態等では、アイドリングストップ中における冷却水の流量に応じて、あるいは、これに加えて水温・外気温差ΔTに応じて、収束時間trを変化させている。これらのパラメータに加えて、あるいはこれらのパラメータとは別に、アイドリングストップの開始時における壁温推定値と水温TWの検出値との差分に応じて変化させることもできる。 In the above-described embodiment and the like, the convergence time tr is changed according to the flow rate of the cooling water during idling stop or in addition to the water temperature / outside air temperature difference ΔT. In addition to these parameters or separately from these parameters, it can be changed according to the difference between the estimated wall temperature value at the start of the idling stop and the detected value of the water temperature TW.
 例えば、アイドリングストップの開始時における壁温推定値と水温TWの検出値との差分が大きくなるに従って、水温TWと壁温TCとの温度差が略零に収束するまでの時間は長くなると推定されるので、収束時間trを大きく設定してもよい。 For example, as the difference between the estimated wall temperature at the start of idling stop and the detected value of the water temperature TW increases, the time until the temperature difference between the water temperature TW and the wall temperature TC converges to approximately zero is estimated to increase. Runode, it may be set to a large convergence time t r.
 上記の実施形態等において、アイドリングストップを開始してから収束時間trが経過したときに、水温TWと壁温TCとの温度差が略零に収束すると判断していた。しかし、アイドリングストップ中に、冷却水の流量や、冷却水がラジエータ16を通過する流量割合が変動した場合には、アイドリングストップを開始してから収束時間trが経過したときに、水温TWと壁温TCとの温度差が略零に収束するとは限らない。 In the above embodiments, etc., when the convergence time t r has elapsed from the start of the idling stop, the temperature difference between the water temperature TW and KabeAtsushi TC had determined that converges to substantially zero. However, when the flow rate of the cooling water or the flow rate of the cooling water passing through the radiator 16 fluctuates during the idling stop, the water temperature TW and the water temperature TW when the convergence time tr elapses after the idling stop is started. The temperature difference from the wall temperature TC does not necessarily converge to substantially zero.
 このため、収束時間trに代えて、例えば、燃料噴射弁4への燃料供給を遮断して燃焼室7における燃焼を停止しているときに流れる冷却水の積算流量を用いてもよい。冷却水の積算流量は、例えば、電動ウォータポンプ20の回転速度NPの積算値に基づいて演算できる。そして、コントロールユニット22,22Aは、演算した積算流量と閾値とを比較した比較結果に基づいて、水温TWと壁温TCとの温度差が略零に収束しているか否かを判断できる。また、収束時間trに代えて、例えば、電動ウォータポンプ20の回転速度NPを電制サーモスタット19の開度で補正した補正回転速度の積算値に基づいて演算された冷却水の積算流量を用いてもよい。そして、コントロールユニット22,22Aは、演算した積算流量と閾値とを比較した比較結果に基づいて、水温TWと壁温TCとの温度差が略零に収束しているか否かを判断できる。閾値は、実験又はシミュレーション等によって、燃焼室7における燃焼を停止している間に水温TWと壁温TCとの温度差が略零に収束するまでに流れる冷却水の積算流量として得られ、コントロールユニット22,22AのROM等の記憶手段に予め記憶される。 Therefore, instead of the convergence time t r, for example, it may be used integrated flow rate of the cooling water that flows when to shut off the fuel supply to the fuel injection valve 4 has stopped the combustion in the combustion chamber 7. The integrated flow rate of the cooling water can be calculated based on the integrated value of the rotational speed NP of the electric water pump 20, for example. Then, the control units 22 and 22A can determine whether or not the temperature difference between the water temperature TW and the wall temperature TC has converged to substantially zero based on the comparison result obtained by comparing the calculated integrated flow rate with the threshold value. In place of the convergence time t r, for example, the integrated flow rate of the cooling water that is calculated based on the rotational speed NP to the integrated value of the correction rotation speed is corrected by opening the electrically controlled thermostat 19 of the electric water pump 20 using May be. Then, the control units 22 and 22A can determine whether or not the temperature difference between the water temperature TW and the wall temperature TC has converged to substantially zero based on the comparison result obtained by comparing the calculated integrated flow rate with the threshold value. The threshold value is obtained as an integrated flow rate of the cooling water flowing until the temperature difference between the water temperature TW and the wall temperature TC converges to substantially zero while the combustion in the combustion chamber 7 is stopped by experiment or simulation. It is stored in advance in storage means such as a ROM of the units 22 and 22A.
 上記の実施形態等において、アイドリングストップの開始から収束時間trが経過したときに、すなわち、燃焼室7における燃焼を停止してから水温TWと壁温TCとの温度差が略零に収束していると判断されるタイミングで、壁温推定値又は壁温検出値を補正するものとして説明した。これに代えて、壁温推定値又は壁温検出値の補正頻度を向上すべく、水温TWと壁温TCとの温度差が略零に収束していると判断される前に壁温推定値又は壁温検出値を補正することができる。 In the above embodiments, etc., when the convergence time t r has elapsed from the start of the idling stop, i.e., the temperature difference between the water temperature TW and KabeAtsushi TC stop the combustion in the combustion chamber 7 is converged to substantially zero In the above description, it is assumed that the estimated wall temperature value or the detected wall temperature value is corrected at the timing when it is determined. Instead, in order to improve the correction frequency of the estimated wall temperature value or the detected wall temperature value, the estimated wall temperature value is determined before the temperature difference between the water temperature TW and the wall temperature TC has converged to substantially zero. Alternatively, the detected wall temperature value can be corrected.
 例えば、コントロールユニット22,22Aが、アイドリングストップを開始してからの各経過時間における壁温TCの温度データを予め記憶し、アイドリングストップを開始してから収束時間trが経過する前の所定時間において、対応する壁温TCの温度データに壁温推定値又は壁温検出値を合わせ込むことで補正してもよい。なお、アイドリングストップを開始してからの各経過時間における壁温TCの温度データは実験又はシミュレーション等によって予め求められる。 For example, the control unit 22,22A is previously stored temperature data wall temperature TC at each elapsed time from the start of the idling stop, a predetermined time before the elapsed convergence time t r is from the start of idling stop In this case, the correction may be made by combining the estimated wall temperature value or the detected wall temperature value with the temperature data of the corresponding wall temperature TC. Note that the temperature data of the wall temperature TC at each elapsed time after the start of idling stop is obtained in advance by experiments or simulations.
  1,1A…内燃機関
  4…燃料噴射弁
  7…燃焼室
  20…電動ウォータポンプ
  22,22A…コントロールユニット
  23…水温センサ
  27…ポンプ回転センサ
  28…外気温センサ
  29…機関回転センサ
  33…壁温センサ
  TW…水温
  NP…電動ウォータポンプの回転速度
  TE…外気温
  NE…機関回転速度
  TC…壁温
  tr…収束時間
DESCRIPTION OF SYMBOLS 1,1A ... Internal combustion engine 4 ... Fuel injection valve 7 ... Combustion chamber 20 ... Electric water pump 22, 22A ... Control unit 23 ... Water temperature sensor 27 ... Pump rotation sensor 28 ... Outside temperature sensor 29 ... Engine rotation sensor 33 ... Wall temperature sensor TW ... Water temperature NP ... Rotation speed of electric water pump TE ... Outside air temperature NE ... Engine rotation speed TC ... Wall temperature tr ... Convergence time

Claims (14)

  1.  内燃機関の燃焼室に関する温度として検出又は推定した前記燃焼室の壁温に基づいて、前記内燃機関の制御に関する制御パラメータを補正する制御パラメータ補正部と、
     前記燃焼室における燃焼を停止しているときの前記内燃機関の冷却水の水温検出値に基づいて、検出又は推定した前記壁温を補正する壁温補正部と、
    を含んで構成されたことを特徴とする、内燃機関の制御装置。
    A control parameter correction unit that corrects a control parameter related to the control of the internal combustion engine based on the wall temperature of the combustion chamber detected or estimated as a temperature related to the combustion chamber of the internal combustion engine;
    A wall temperature correction unit that corrects the detected or estimated wall temperature based on a detected value of the coolant temperature of the internal combustion engine when combustion in the combustion chamber is stopped;
    A control apparatus for an internal combustion engine, comprising:
  2.  前記壁温補正部は、前記冷却水の水温と実際の壁温との温度差が略零に収束していると判断したときに、検出又は推定した前記壁温を前記冷却水の水温検出値と同一の値にして補正することを特徴とする、請求項1に記載の内燃機関の制御装置。 When the wall temperature correction unit determines that the temperature difference between the cooling water temperature and the actual wall temperature has converged to substantially zero, the detected or estimated wall temperature is the water temperature detection value of the cooling water. The control apparatus for an internal combustion engine according to claim 1, wherein the correction is made to have the same value as.
  3.  前記壁温補正部は、前記燃焼室における燃焼を停止してから前記冷却水の水温と前記実際の壁温との温度差が略零に収束するまでの収束時間を予め記憶し、前記収束時間が経過したときに、検出又は推定した前記壁温を前記冷却水の水温検出値と同一の値にして補正することを特徴とする、請求項2に記載の内燃機関の制御装置。 The wall temperature correction unit stores in advance a convergence time from when the combustion in the combustion chamber is stopped until the temperature difference between the coolant temperature and the actual wall temperature converges to substantially zero, and the convergence time The control apparatus for an internal combustion engine according to claim 2, wherein the detected or estimated wall temperature is corrected to the same value as a detected water temperature of the cooling water when the time elapses.
  4.  前記収束時間は、前記冷却水の流量に応じて設定されていることを特徴とする、請求項3に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 3, wherein the convergence time is set according to a flow rate of the cooling water.
  5.  前記収束時間は、前記冷却水の流量が高くなるに従って短くなることを特徴とする、請求項4に記載の内燃機関の制御装置。 5. The control apparatus for an internal combustion engine according to claim 4, wherein the convergence time is shortened as the flow rate of the cooling water increases.
  6.  前記収束時間は、前記冷却水の水温と外気温との温度差と、前記冷却水の流量と、に応じて設定されていることを特徴とする、請求項3に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 3, wherein the convergence time is set according to a temperature difference between a water temperature and an outside air temperature of the cooling water and a flow rate of the cooling water. .
  7.  前記収束時間は、さらに前記内燃機関の機関回転速度に応じて設定されていることを特徴とする、請求項4に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 4, wherein the convergence time is further set according to an engine speed of the internal combustion engine.
  8.  前記壁温補正部は、前記冷却水の流量を強制的に増加させて、検出又は推定した前記壁温を補正することを特徴とする、請求項4に記載の内燃機関の制御装置。 5. The control apparatus for an internal combustion engine according to claim 4, wherein the wall temperature correction unit forcibly increases the flow rate of the cooling water to correct the detected or estimated wall temperature.
  9.  前記壁温補正部は、前記内燃機関がアイドリングストップ状態であるときの前記冷却水の水温検出値に基づいて、検出又は推定した前記壁温を補正することを特徴とする、請求項1に記載の内燃機関の制御装置。 The said wall temperature correction | amendment part correct | amends the said wall temperature detected or estimated based on the water temperature detection value of the said cooling water when the said internal combustion engine is an idling stop state. Control device for internal combustion engine.
  10.  前記壁温補正部は、イグニッションスイッチがオフ状態からオン状態に移行したときの前記冷却水の水温検出値に基づいて、検出又は推定した前記壁温を補正することを特徴とする、請求項1に記載の内燃機関の制御装置。 The said wall temperature correction | amendment part correct | amends the said detected or estimated wall temperature based on the water temperature detected value of the said cooling water when an ignition switch transfers to an ON state from an OFF state, The said wall temperature correction | amendment part correct | amends the detected or estimated wall temperature. The control apparatus of the internal combustion engine described in 1.
  11.  前記壁温補正部は、前記収束時間が経過したときに、前記内燃機関の燃焼室に関する温度として検出した前記壁温と、前記冷却水の水温検出値と、に基づいて、前記壁温を検出する検出部に故障が発生しているか否かを診断することを特徴とする、請求項3に記載の内燃機関の制御装置。 The wall temperature correction unit detects the wall temperature based on the wall temperature detected as the temperature related to the combustion chamber of the internal combustion engine and the detected water temperature of the cooling water when the convergence time has elapsed. The control device for an internal combustion engine according to claim 3, wherein a diagnosis is made as to whether or not a failure has occurred in the detecting unit.
  12.  前記壁温補正部は、前記検出部に故障が発生していると診断した場合に、検出した前記壁温の補正を中止することを特徴とする、請求項11に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 11, wherein the wall temperature correction unit stops the correction of the detected wall temperature when it is diagnosed that a failure has occurred in the detection unit. .
  13.  前記壁温補正部は、前記冷却水の水温と実際の壁温との温度差が略零に収束する前に、前記冷却水の水温検出値に基づいて、検出又は推定した前記壁温を補正することを特徴とする、請求項1に記載の内燃機関の制御装置。 The wall temperature correction unit corrects the detected or estimated wall temperature based on the detected water temperature of the cooling water before the temperature difference between the cooling water temperature and the actual wall temperature converges to substantially zero. The control apparatus for an internal combustion engine according to claim 1, wherein:
  14.  内燃機関の燃焼室に関する温度として検出又は推定した前記燃焼室の壁温に基づいて、前記内燃機関の制御に関する制御パラメータを補正し、
     前記燃焼室における燃焼を停止しているときの前記内燃機関の冷却水の水温検出値に基づいて、検出又は推定した前記壁温を補正する、
    内燃機関の制御方法。
    Based on the wall temperature of the combustion chamber detected or estimated as the temperature related to the combustion chamber of the internal combustion engine, the control parameter related to the control of the internal combustion engine is corrected,
    Correcting the detected or estimated wall temperature based on the detected value of the coolant temperature of the internal combustion engine when combustion in the combustion chamber is stopped,
    A method for controlling an internal combustion engine.
PCT/JP2017/025968 2016-07-19 2017-07-18 Internal combustion engine control device and control method WO2018016486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141871 2016-07-19
JP2016141871A JP2018013056A (en) 2016-07-19 2016-07-19 Control device and control method for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018016486A1 true WO2018016486A1 (en) 2018-01-25

Family

ID=60992437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025968 WO2018016486A1 (en) 2016-07-19 2017-07-18 Internal combustion engine control device and control method

Country Status (2)

Country Link
JP (1) JP2018013056A (en)
WO (1) WO2018016486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113212153A (en) * 2021-04-15 2021-08-06 东风汽车集团股份有限公司 Method, device, equipment and storage medium for high-low speed operation of fan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013090B2 (en) * 2018-02-27 2022-01-31 ダイハツ工業株式会社 Internal combustion engine control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137953A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Device for predicting oil diluting fuel and control device of internal combustion engine using it
JP2006336626A (en) * 2005-06-06 2006-12-14 Toyota Motor Corp Failure detection system of cooling device of internal combustion engine
JP2006342680A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cooling system of internal combustion engine
JP2011190769A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Device for control of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137953A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Device for predicting oil diluting fuel and control device of internal combustion engine using it
JP2006336626A (en) * 2005-06-06 2006-12-14 Toyota Motor Corp Failure detection system of cooling device of internal combustion engine
JP2006342680A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cooling system of internal combustion engine
JP2011190769A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Device for control of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113212153A (en) * 2021-04-15 2021-08-06 东风汽车集团股份有限公司 Method, device, equipment and storage medium for high-low speed operation of fan
CN113212153B (en) * 2021-04-15 2022-06-03 东风汽车集团股份有限公司 Method, device, equipment and storage medium for high-low speed operation of fan

Also Published As

Publication number Publication date
JP2018013056A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US7524106B2 (en) Abnormality diagnosis apparatus and method for water temperature sensor
JP4826560B2 (en) Fuel property detection device for internal combustion engine
US10408138B2 (en) Method and functional monitoring apparatus for functional monitoring of an apparatus for variable setting of a cylinder compression in a reciprocating-piston internal combustion engine
US9611812B2 (en) Valve reference position-learning device for internal combustion engine
JP5451687B2 (en) Engine control device
US8950379B2 (en) Measured fuel rail pressure adjustment systems and methods
JP2007002838A (en) Abnormality judgment device for pcv system
CN107687373B (en) Failure protection device of engine
JP2007211778A (en) Method and device for operating drive unit
JP2015059458A (en) Control device for cooling system
JP5086228B2 (en) Operation control device for internal combustion engine
JP5171738B2 (en) Electric throttle characteristic learning control device and method
WO2018016486A1 (en) Internal combustion engine control device and control method
JP5379722B2 (en) Water temperature sensor abnormality determination device
JP2010065572A (en) Burnt gas passing quantity calculating method and burnt gas passing quantity calculating device of exhaust gas recirculating system
US20140046573A1 (en) Control device and control method for internal combustion engine
JP2000220456A (en) Abnormality detecting device for thermostat
JP2009097347A (en) Device for controlling internal combustion engine
JP5246046B2 (en) Control device for internal combustion engine
JP2005048659A (en) Fuel temperature estimation device
JP2006177288A (en) Fuel system abnormality detection device for engine
JP5853856B2 (en) FAILURE DIAGNOSIS DEVICE FOR INTERNAL COMBUSTION ENGINE AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2009203813A (en) Fuel supply control device
JP4661747B2 (en) Engine stop control device
JP4892460B2 (en) Air quantity estimation device for internal combustion engine

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831002

Country of ref document: EP

Kind code of ref document: A1