WO2018016440A1 - Introduction agent, kit, substance introduction method, and screening method - Google Patents

Introduction agent, kit, substance introduction method, and screening method Download PDF

Info

Publication number
WO2018016440A1
WO2018016440A1 PCT/JP2017/025749 JP2017025749W WO2018016440A1 WO 2018016440 A1 WO2018016440 A1 WO 2018016440A1 JP 2017025749 W JP2017025749 W JP 2017025749W WO 2018016440 A1 WO2018016440 A1 WO 2018016440A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
cell
introduction
cells
membrane
Prior art date
Application number
PCT/JP2017/025749
Other languages
French (fr)
Japanese (ja)
Inventor
昌之 村田
ふみ 加納
真隆 村上
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2018528525A priority Critical patent/JP7093557B2/en
Publication of WO2018016440A1 publication Critical patent/WO2018016440A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to an introduction agent, a kit, a substance introduction method, and a screening method.
  • This application claims priority based on Japanese Patent Application No. 2016-141219 for which it applied to Japan on July 19, 2016, and uses the content here.
  • CPC Cell-penetrating-peptide
  • the present inventors have developed a reversible membrane perforation method using streptococcal toxin streptolysin O (SLO).
  • SLO streptococcal toxin streptolysin O
  • semi-intact cells in which the plasma membrane is partially permeable can be obtained.
  • semi-intact cells are prepared from other cells and organs by draining the original cytoplasm while maintaining the structure and function of organelles and cytoskeleton and their relative spatial arrangement almost intact. Can be “exchanged” for the cytoplasm.
  • a pathological environment can be constructed in a cell by exchanging the cytoplasm of a semi-intact cell with the cytoplasm obtained from the pathological cell.
  • cytoplasm can be added from the outside at the time of re-encapsulation of the cell membrane to promote resealing of the cell membrane and damage recovery can be promoted, but it is a problem that adjustment of the cytoplasm is a troublesome work.
  • the present invention has been made in view of the above circumstances, and can introduce an introduction agent, a kit, a substance introduction method, and a method that can reduce damage to cells and enable high-efficiency introduction of substances into cells. Screening methods are provided.
  • the introduction agent according to the first aspect of the present invention contains a cholesterol-dependent cytolytic toxin whose optimum pH for membrane perforation activity at 30 ° C. or higher and 40 ° C. or lower is in the range of 0 to less than 6, and is a substance to cells Used for introduction.
  • the cholesterol-dependent cytolytic toxin may be listeriolysin O.
  • the introduction rate of the substance having a molecular weight of 1 kDa to 15 kDa may be higher than the introduction rate of the substance having a molecular weight of 30 kDa to 200 kDa.
  • the pH of the introducing agent may be 6 or more and 10 or less.
  • the cholesterol-dependent cytolytic toxin content may be 0.01 ⁇ g / mL or more and 1 ⁇ g / mL or less.
  • the kit according to the second aspect of the present invention includes the introduction agent according to the first aspect and is used for introducing a substance into a cell.
  • the substance introduction method is a method including the step 1 of bringing the introduction agent according to the first aspect into contact with a cell to perforate a cell membrane and introducing the substance into the cell. Furthermore, after the step 1, a step 2 may be included in which a solution containing calcium ions is brought into contact with the cells in which the pores are formed, and the pores are re-encapsulated. In the step 2, the pores may be re-encapsulated without contacting a liquid containing foreign cytoplasm with the cells in which the pores are formed. In the step 1, the perforation may be performed by allowing the cholesterol-dependent cytolytic toxin to act on the cells under conditions of pH 6 or more and 10 or less. The molecular weight of the substance to be introduced may be 0.1 kDa or more and 20 kDa or less. The substance to be introduced may contain a nucleic acid.
  • the method for screening a substance according to the fourth aspect of the present invention is a method using the substance introduction method according to the third aspect, wherein the substance to be introduced into the cell is a test substance, and the introduction agent is brought into contact with the cell.
  • a step A in which a cell membrane is perforated and a test substance is introduced into the cell.
  • the cell into which the test substance is introduced or a preparation thereof is compared with a cell into which the test substance is not introduced or a preparation thereof. You may include the process B which evaluates the said to-be-tested substance.
  • the introduction agent, the kit, and the introduction method according to the above aspect damage to cells is difficult to occur, and a substance can be introduced into cells with high efficiency.
  • the screening method according to the above aspect since it is difficult to cause damage to cells and a test substance can be introduced into cells with high efficiency, screening of a test substance with high accuracy reflecting the original function of the cell is possible. It becomes.
  • FIG. 10 It is a schematic diagram explaining the substance introduction method of this embodiment. It is a figure which shows the measurement result of the fluorescein fluorescence (10 kDa) of the cell acquired in Example 1.
  • FIG. 10 It is a figure which shows the measurement result of the fluorescein fluorescence (40 kDa) of the cell acquired in Example 1.
  • FIG. It is a figure which shows the measurement result of the fluorescein fluorescence (70 kDa) of the cell acquired in Example 1.
  • FIG. It is a figure which shows the measurement result of the FITC fluorescence (150 kDa) of the cell acquired in Example 1.
  • Example 3 It is an image which shows the comparison result of the cell form of the reseal cell perforated by LLO and the reseal cell perforated by SLO acquired in Example 2.
  • Example 3 it is an image which shows the result of having detected the protein phosphorylated by PKA by Western blotting.
  • Example 3 it is an image which shows the result of having introduced the cell impermeable cAMP analog into the cell by the substance introduction method according to the present embodiment and confirming the function of the cAMP analog in the cell.
  • Example 4 it is an image which shows the result of having detected the protein phosphorylated by PKA by Western blotting.
  • FIG. 9B is a graph in which the brightness of “band-e”, which is a protein phosphorylated by PKA, with respect to the brightness of GAPDH is quantified from the detection result by Western blotting in FIG. 9A in Example 4.
  • FIG. 4 a membrane-impermeable cAMP analog or a membrane-permeable PKA activator (db-cAMP) is introduced into a cell by the substance introduction method according to this embodiment, and the cAMP analog or db-cAMP in the cell is introduced. It is an image which shows the result of having confirmed the function of this by Western blotting.
  • db-cAMP membrane-impermeable cAMP analog or a membrane-permeable PKA activator
  • Example 4 it is the graph which quantified the brightness
  • Example 4 it is an image which shows the result of having introduced the membrane impermeable cAMP analog into the cell by the substance introduction method according to this embodiment and confirming the function of the cAMP analog in the cell by Western blotting.
  • FIG. 10 is a schematic diagram of each step in Example 5.
  • Example 5 it is an image which shows the result of having introduced the membrane-impermeable AKT inhibitor into the cell by the substance introduction method according to the present embodiment and confirming the function of the AKT inhibitor in the cell by Western blotting.
  • Example 5 it is the graph which quantified the brightness
  • the introduction agent according to one embodiment of the present invention is used for substance introduction into cells, and the optimum pH of membrane perforation activity at 30 ° C. or more and 40 ° C. or less is in the range of 0 or more and less than 6. Contains cholesterol-dependent cytolytic toxin.
  • the introduction agent of the present embodiment will be described.
  • introducing a substance into a cell refers to introducing a substance into the inside of the cell membrane of a cell to which the substance is to be introduced.
  • the newly introduced substance may be the same kind of substance as the substance possessed by the cell into which the substance is to be introduced.
  • a nucleic acid having the same sequence as the nucleic acid of a cell that is a target of substance introduction is also included in the substance introduction into the cell.
  • the introduction agent of this embodiment is suitably used for the substance introduction method described later.
  • Examples of the substance to be introduced include those exemplified in the substance introduction method described later.
  • cholesterol-dependent cytolytic toxin refers to a substance that has membrane perforation activity that binds to cholesterol and forms pores in the cell membrane (perforates the cell membrane).
  • a toxin produced by streptococci is known as a cholesterol-dependent cytolytic toxin.
  • the toxin is a protein that binds to cholesterol on the cell membrane and then self-assembles on the cell membrane to form pores in the cell membrane.
  • the substance introduction means substance introduction through the pores formed in the cell membrane by cholesterol-dependent cytolytic toxin.
  • the substance can be introduced into cells with high efficiency and low damage.
  • a cell When a cell is to be treated while maintaining a good state of the cell, it is usually treated with a solution having a pH near neutral.
  • a cholesterol-dependent cytolytic toxin having an optimum pH in the range of 0 or more and less than 6 is used, the cell state is good and the membrane perforation activity is gently exerted. Is considered to be perforated.
  • the membrane perforation activity is at 30 ° C. or more and 40 ° C. or less, may be 33 ° C. or more and 38 ° C. or less, and may be 35 ° C. or more and 37 ° C. or less.
  • the optimum pH may be from pH 1 to less than 6, may be from pH 3 to 5.5, and may be from pH 4.5 to less than 5.5.
  • the optimum pH of the membrane perforation activity can be measured by a known method. For example, cholesterol-dependent cytolytic toxin is brought into contact with erythrocytes cultured at the above temperature and pH conditions. Next, the membrane perforation activity can be measured based on the degree of hemolytic activity (HU) of the blood cells from which the erythrocyte membrane is destroyed and hemoglobin is eluted. Furthermore, the pH at which membrane perforation activity is maximized can be determined as the optimum pH.
  • HU degree of hemolytic activity
  • the cholesterol-dependent cytolytic toxin in which the optimum pH for membrane perforation activity at 30 ° C. or more and 40 ° C. or less is in the range of 0 to less than 6, may be Listeriolysin O (LLO).
  • the introduction agent according to one embodiment of the present invention contains listeriolysin O (LLO) and is used for substance introduction into cells.
  • Listeriolysin O is a L. genus belonging to the genus Listeria. It is known to be produced by monocytogenes. LLO is L. It may be a monocytogenes LLO.
  • the toxin contained in the introduction agent of the present embodiment may be a protein having a function substantially equivalent to that of LLO.
  • LLO may be a naturally occurring protein of nature.
  • LLO may be a mutant or artificially modified protein having an amino acid sequence, modification, addition, or the like different from that of the natural type as long as it has a function equivalent to that of the natural type.
  • the reason why the LLO perforation causes less damage to the cells than the SLO perforation is probably because the diameter of the hole formed by the LLO is smaller than the diameter of the hole formed by the SLO.
  • it is considered that the outflow of cytoplasmic components is suppressed as compared with the reversible membrane perforation method using SLO, the cell is hardly damaged, and the cell state is improved.
  • the cell state is good, a good cell state can be realized without adding cytoplasm from the outside when the cell membrane is re-encapsulated (resealed).
  • the introduction rate of the substance introduced by the introduction agent of this embodiment is preferably such that the introduction rate of the substance having a molecular weight of 1 kDa to 15 kDa is higher than the introduction rate of a substance having a molecular weight of 30 kDa to 200 kDa, and a molecular weight of 7 kDa to 13 kDa. It is more preferable that the introduction rate of the substance is higher than the introduction rate of the substance having a molecular weight of 35 kDa to 55 kDa.
  • the introduction rate of the substance can be confirmed, for example, by the method described in the examples.
  • the present inventors measured the introduction rate of fluorescently labeled dextran having different molecular weights into cells, each having a molecular weight of 10 kDa, 40 kDa, 70 kDa, and 150 kDa, using LLO.
  • LLO In perforation by LLO, it was found that the introduction rate of dextran having a medium molecular weight (10 kDa) into cells was larger than that of dextran having other molecular weights (40 kDa, 70 kDa, 150 kDa).
  • SLO selective permeability of medium molecules has not been confirmed by reversible membrane perforation using SLO.
  • LLO it is considered that a pore having a diameter that can easily pass a substance having a molecular weight of 1 kDa to 15 kDa and that is difficult to pass a substance having a molecular weight of 30 kDa to 200 kDa can be formed. Therefore, it is considered that the substance that correlates with the molecular weight and can pass through the pores is sieved.
  • the fact that a substance can be introduced into a cell through a hole opened in the cell membrane can similarly cause components in the cell to flow out of the cell through the hole.
  • the molecular weight of enzymes contained in the cytoplasm is often about 20 kDa or less.
  • the introduction rate of substances with a molecular weight of 1 kDa or more and 15 kDa or less is higher than the introduction ratio of substances with a molecular weight of 30 kDa or more and 200 kDa or less, so that it is difficult to cause damage to cells. Can be introduced.
  • the introduction agent of this embodiment should just contain a cholesterol dependent cytolytic toxin.
  • the introduction agent of this embodiment may consist essentially of a cholesterol-dependent cytolytic toxin, or may contain an optional component other than the toxin.
  • substantially composed only of a cholesterol-dependent cytolytic toxin means that the introduction agent of the present embodiment comprises only a cholesterol-dependent cytolytic toxin, or detects any component other than the toxin. It means that only trace amount below the limit is included.
  • the content of cholesterol-dependent cytolytic toxin contained in 100% by mass of the introduction agent may be, for example, from 1% by mass to 100% by mass, or from 10% by mass to 98% by mass, 50 mass% or more and 90 mass% or less may be sufficient, and 60 mass% or more and 80 mass% or less may be sufficient.
  • the size of the substance that can pass through the pores varies depending on the concentration of cholesterol-dependent cytolytic toxin that acts on the cells. Therefore, the concentration of cholesterol-dependent cytolytic toxin that acts on cells may be adjusted according to the molecular weight of the substance to be introduced.
  • the form of the introduction agent is not particularly limited, and may be various forms such as a solid (powder, granule, etc.) and a liquid.
  • the powder include a dried product of cholesterol-dependent cytolytic toxin.
  • the moisture content of the powder may be 0% by mass or more and 20% by mass or less, and may be 5% by mass or more and 10% by mass or less.
  • the granular material include a compact of the powder.
  • the liquid include a dispersion or solution of cholesterol-dependent cytolytic toxin in which cholesterol-dependent cytolytic toxin is dispersed or dissolved in a medium.
  • the medium include aqueous solvents, and specific examples include various media used for cell culture such as water, buffer, and serum-free medium.
  • the introduction agent of this embodiment is preferably used for cultured cells, and may be added to a medium for culturing cultured cells.
  • the introduction agent of this embodiment may be provided and used as a medium in which cultured cells can be cultured.
  • culture refers to breeding or growing cells outside a living body (individual). The period of breeding or growth may be, for example, from 1 minute to 7 days, from 5 minutes to 16 hours, or from 10 minutes to 1 hour.
  • “medium” is a concept that generally refers to a cell culture medium.
  • the remaining components obtained by removing the cholesterol-dependent cytolytic toxin from the introduction agent are not limited to the medium, as long as the cells can be cultured even for a very short period of time. It may be a buffer or water.
  • components that can be contained in the medium include components contained in ordinary cell culture media. Specific examples of the component include nutritional components such as glucose, sodium chloride, vitamins and minerals, amino acids, growth factors, cell growth factors, differentiation-inducing factors, antibacterial agents, and antifungal agents. .
  • the content of cholesterol-dependent cytolytic toxin contained in the introduction agent is 0.01 ⁇ g / mL or more and 1 ⁇ g / mL or less per mL of the introduction agent. It is preferably 0.025 ⁇ g / mL or more and 0.6 ⁇ g / mL or less, more preferably 0.03 ⁇ g / mL or more and 0.5 ⁇ g / mL or less, and 0.05 ⁇ g / mL or more and 0.0. It is particularly preferably 3 ⁇ g / mL or less.
  • the introduction agent containing the cholesterol-dependent cytolytic toxin in the above-mentioned concentration range can cause less damage to the cells and make the substance introduction effect into the cells more uniform.
  • the introduction efficiency of a substance of medium molecule is high due to the influence of the diameter of pores formed in the cell membrane, but larger molecules can be introduced depending on the concentration.
  • the introduction rate of the substance having a molecular weight of 1 kDa or more and 15 kDa or less is higher than the introduction rate of the substance having a molecular weight of 30 kDa or more and 200 kDa or less
  • cholesterol contained in the introduction agent in the above concentration range The content of the dependent cytolytic toxin can be in the range of 0.05 ⁇ g / mL to 0.3 ⁇ g / mL.
  • the pH of the introduction agent may be pH 6 or more, 10 or less, 6.5 or more, 8 or less, or 7.0 or more, 7 .5 or less.
  • the pH is a measured value in a temperature range of 30 ° C. or higher and 40 ° C. or lower. With the introduction agent within the above range, the cells can be cultured better. Furthermore, it is preferable from the viewpoint that the membrane perforation activity of cholesterol-dependent cytolytic toxin having an optimum pH in the range of 0 to less than 6 is exhibited more gently.
  • LLO is considered to have an optimum pH in the range of 0 to less than 6, and has not been tried to be used for substance introduction.
  • the present inventors have surprisingly found that by using LLO, it is difficult to cause damage to cells, and substances can be introduced into cells with high efficiency.
  • the introduction agent of the present embodiment since it contains a cholesterol-dependent cytolytic toxin having an optimum pH in the range of 0 or more and less than 6, it is difficult to cause damage to the cell, and the substance is highly efficient in the cell. Can be introduced inside.
  • the kit which concerns on one Embodiment of this invention is equipped with the above-mentioned introduction agent, and is used for the substance introduction
  • the kit of this embodiment will be described based on the embodiment.
  • the kit of this embodiment may further include reagents such as a medium and a buffer, and reagents that promote reseal of the cell membrane such as calcium salt, ATP, and ATP regeneration system. .
  • the kit of this embodiment can be suitably used for the substance introduction method of this embodiment described later.
  • the kit of this embodiment can be provided with instructions describing the substance introduction method of this embodiment. In this way, by introducing reagents that can be used in the substance introduction method of the present embodiment, which will be described later, into a kit, the substance introduction method can be performed more easily and in a short time.
  • a substance introduction method is a method including the step 1 of bringing a substance into contact with a cell by bringing the aforementioned introduction agent into contact with the cell to perforate a cell membrane.
  • the introduction agent contains the cholesterol-dependent cytolytic toxin. That is, the substance introduction method of this embodiment may be a method including the step 1a of bringing the cholesterol-dependent cytolytic toxin into contact with a cell, perforating the cell membrane of the cell, and introducing the substance into the cell. .
  • the introduction agent that may be used in the substance introduction method may be a liquid containing cholesterol-dependent cytolytic toxin. Alternatively, it may be a medium containing cholesterol-dependent cytolytic toxin. Alternatively, it may be a liquid medium containing cholesterol-dependent cytolytic toxin.
  • the substance introduction method of the present embodiment will be described by taking as an example the case where the introduction agent is a liquid medium containing a cholesterol-dependent cytolytic toxin. By culturing the cells in the medium (introducing agent), the introducing agent is brought into contact with the cells.
  • the substance introduction method of the present embodiment will be described based on the embodiment with reference to FIG.
  • the substance introduction method of this embodiment is A perforating step of perforating a cell membrane by contacting the introduction agent with cells; An introducing step of introducing a substance into the cells through the holes formed in the cell membrane in the perforating step; After the introduction step, a re-encapsulation step of bringing a solution containing calcium ions into contact with the cells in which the pores are formed and re-encapsulating (resealing) the pores.
  • the perforation step is a step of perforating the cell membrane by bringing the introduction agent into contact with the cells.
  • (A) to (c) of FIG. 1 are schematic diagrams for explaining a perforation process.
  • the well W contains a medium M1 (introducing agent) containing cholesterol-dependent cytolytic toxin 1 (hereinafter sometimes referred to as “toxin 1”) and cells C. Contained.
  • toxin 1 cholesterol-dependent cytolytic toxin 1
  • examples of the cholesterol-dependent cytolytic toxin include those exemplified for the introduction agent.
  • toxin 1 when cell C is cultured in medium M1 (introducing agent) containing toxin 1, toxin 1 binds to cholesterol in the cell membrane of cell C, thereby binding to the cell membrane of cell C. To do.
  • the medium M1 containing the toxin 1 can be obtained, for example, by adding the toxin 1 to a known medium used for cell culture.
  • the medium component obtained by removing toxin 1 from medium M1 is not particularly limited, and a medium used for cell culture may be used, and a conventionally known medium may be used.
  • Specific examples of the known medium include, for example, DMEM (Dulbecco's Modified Eagle Medium), MEM (Minimum Essential Media), GMEM (Glasgow's MEM), and D-PBS (Dulbecco's Phosphate-Suffefer-Suffe medium Etc.
  • the concentration of toxin 1 contained in medium M1 (introducing agent) to be brought into contact with cells is preferably 0.01 ⁇ g / mL or more and 1 ⁇ g / mL or less, and 0.025 ⁇ g / mL or more and 0.6 ⁇ g / mL or less. Is more preferably 0.05 ⁇ g / mL or more and 0.3 ⁇ g / mL or less, and particularly preferably 0.08 ⁇ g / mL or more and 0.1 ⁇ g / mL or less.
  • the medium M1 containing the toxin 1 in the above-described concentration range has less damage to the cells and can make the substance introduction effect into the cells more uniform.
  • the amount ratio of the toxin 1 contained in the medium M1 and the cell C can be appropriately determined according to the cell type of the cell. For example, it is considered that the higher the cholesterol content in the cell membrane of the cell, the less the amount of toxin required for membrane perforation. When the cholesterol content in the cell membrane is high, the amount (concentration) of the toxin contained in the medium M1 may be adjusted to decrease, and when the cholesterol content in the cell membrane is low, the amount of the toxin contained in the medium M1 ( The density may be adjusted in the increasing direction.
  • cells C are preferably cultured at a temperature of 0 ° C. or higher and 10 ° C. or lower, and preferably cultured at a temperature of 2 ° C. or higher and 5 ° C. or lower. That is, the temperature of the medium M1 is preferably 0 ° C. or higher and 10 ° C. or lower, and more preferably 2 ° C. or higher and 5 ° C. or lower.
  • the temperature of the culture medium M1 may be controlled by placing the culture container in which the well W is formed on ice. In the temperature range, the membrane perforation activity of toxin 1 is suppressed.
  • the toxin 1 binds to the cell membrane of the cell C, but the action of perforation is hardly exerted, and the degree of perforation of the cell membrane can be controlled more easily.
  • the culture time for culturing the cells C in the medium M1 (introducing agent) containing the toxin 1 may be appropriately determined according to the type of toxin and the cell type.
  • An example of the culture time is about 1 to 30 minutes.
  • the cell into which the substance is introduced is not particularly limited, and examples thereof include cells such as animal cells, plant cells, and insect cells, and microorganisms such as Escherichia coli, Bacillus subtilis, and yeast.
  • the cells may constitute cell aggregates such as cell clusters, spheroids, tissues, embryoid bodies, organs and the like.
  • the medium M1 After culturing the cells in the medium M1 (introducing agent), the medium M1 is replaced with the medium M2 not containing the toxin 1, the cells are cultured in the medium M2, and the cell membrane of the cell C is perforated.
  • the toxins 1 other than those bound to the cells C are removed from the reaction system in the well W.
  • the cells C are preferably cultured at 30 ° C. or higher and 40 ° C. or lower, more preferably cultured at 33 ° C. or higher and 38 ° C. or lower, and cultured at 35 ° C. or higher and 37 ° C. or lower. More preferably. That is, the temperature of the medium M2 is preferably 30 ° C. or higher and 40 ° C. or lower, more preferably 33 ° C. or higher and 38 ° C. or lower, and further preferably 35 ° C. or higher and 37 ° C. or lower.
  • the membrane perforation activity of toxin 1 is more exerted, the cell membrane of cell C is perforated, and a cell Cp having a pore formed in the cell membrane is obtained. Since the toxin 1 other than the toxin 1 bound to the cell C is removed from the medium M2, it is possible to prevent the toxin 1 from entering the cell further from the hole and perforating the organelle in the cytoplasm.
  • the culture time for culturing the cells C in the medium M2 may be appropriately determined according to the type of toxin and the cell type.
  • An example of the culture time is about 1 to 30 minutes.
  • the medium M2 the medium exemplified in the medium M1 may be used, but the TB (Transport Buffer) medium used in the examples can be exemplified as a particularly preferable medium.
  • the TB medium is prepared in consideration of the composition of cytoplasmic ions, and the influence of perforation of the cell membrane can be reduced.
  • the perforation is preferably performed by allowing the toxin 1 to act on the cell C under the condition of pH 6 to 10, more preferably 6.5 to 8 and more preferably 7.0 to 7 More preferably, it is carried out under the condition of 5 or less. That is, the pH of the medium M2 is preferably 6 or more and 10 or less, more preferably 6.5 or more and 8 or less, and even more preferably 7.0 or more and 7.5 or less.
  • the pH is a measured value in a temperature range of 30 ° C. or higher and 40 ° C. or lower. Within the above range, the cells can be cultured more favorably, and the membrane perforation activity of toxin 1 is also exhibited more gently.
  • the perforation is preferably performed by allowing toxin 1 to act on cell C under conditions of 30 ° C. or higher and 40 ° C. or lower and pH 6 or higher and 10 or lower, and under conditions of 33 ° C. or higher and 38 ° C. or lower and pH 6.5 or higher and 8 or lower. More preferably, it is carried out under the conditions of 35 ° C. to 37 ° C. and pH 7.0 to 7.5. That is, the medium M2 is preferably 30 ° C. or higher and 40 ° C. or lower and pH 6 or higher and 10 or lower, more preferably 33 ° C. or higher and 38 ° C. or lower, and pH 6.5 or higher and 8 or lower, more preferably 35 ° C. or higher and 37 ° C. or lower, and pH 7.0 or higher. 5 or less is more preferable.
  • the introducing step is a step of introducing a substance into the cell through the hole formed in the cell membrane in the perforating step.
  • FIG. 1D is a schematic diagram for explaining the introduction process.
  • the well W contains a medium M3 containing the substance 3 to be introduced into the cells Cp, and cells Cp in which pores have been formed in the cell membrane in the perforation step.
  • the substance 3 passes through the hole formed in the cell Cp and is introduced into the cell membrane of the cell Cp.
  • the medium M3 containing the substance 3 can be obtained, for example, by adding the substance 3 to the medium M2 in the drilling step.
  • the amount of the substance 3 contained in the medium M3 can be appropriately set according to the type of the substance 3.
  • the substance introduced into the cell is not particularly limited as long as it can be introduced into the cell by the method.
  • the molecular weight of the substance may be, for example, a molecular weight of 0.1 kDa to 20 kDa, 1 kDa to 15 kDa, or 5 kDa to 10 kDa.
  • the substance introduced into the cell may have a property of impermeable to the cell membrane.
  • the “substance having cell membrane impermeability” means a substance that does not dissolve in the lipid bilayer of the cell membrane and cannot permeate the lipid bilayer. According to the substance introduction method of the present embodiment, even a cell membrane impermeable substance can be introduced into cells through the pores with high efficiency.
  • the substance to be introduced into the cells is contained in the medium M3.
  • the substance introduction technique is limited to the above technique as long as the substance can be introduced through the pores formed in the cell membrane. It is not something.
  • Examples of the method of introducing a substance include a method of bringing a substance into contact with the cell Cp, a method of spraying a substance directly on the cell Cp, a method of dropping a substance directly on the cell Cp, and the like.
  • the substance introduced into the cell may be a compound or an organic compound.
  • the substance may contain a nucleic acid.
  • the nucleic acid include antisense nucleic acid, miRNA, siRNA, shRNA, ribozyme, aptamer and the like. These compounds can be active ingredients of nucleic acid drugs. Compounds containing these nucleic acids are normally impermeable to cell membranes, but according to the substance introduction method of this embodiment, they can be efficiently introduced into cells.
  • the re-encapsulation step is a step of bringing the solution containing calcium ions into contact with the cells in which the pores are formed and re-encapsulating the pores after the introduction step.
  • FIG. 1E is a schematic diagram for explaining the re-encapsulation process. As shown in FIG. 1 (e), the medium M4 contains calcium ions (Ca 2+ ).
  • re-encapsulation means that the opening of the hole formed in the cell membrane in the perforation step is completely or partially closed. Re-encapsulation is caused by removal of toxin 1 from the cell membrane by at least one of endocytosis and exocytosis, and is promoted by the presence of calcium ions.
  • the cell Cp cultured in the medium M4 containing Ca 2+ has the cell membrane resealed to become a cell C.
  • the substance 3 introduced into the cell in the introduction step is efficiently held in the cell C by re-encapsulation.
  • the concentration of the calcium ions brought into contact with the cells may be 0.1 mmol / L or more and 10 mmol / L or less, and may be 0.5 mmol / L or more and 5 mmol / L or less. That is, the concentration of calcium ions contained in the medium M4 may be 0.1 mmol / L or more and 10 mmol / L or less, and may be 0.5 mmol / L or more and 5 mmol / L or less.
  • the liquid containing calcium ions can be obtained, for example, by adding a calcium salt to the medium M3 in the introduction step.
  • a calcium salt to be added examples include CaCl 2 .
  • the re-encapsulation step it is preferable to re-encapsulate the pores without bringing a solution containing foreign cytoplasm into contact with the cells in which the pores are formed.
  • the cytoplasm contains a factor that promotes at least one of endocytosis and exocytosis.
  • re-encapsulation was performed by bringing a solution containing foreign cytoplasm into contact with the cells in which the pores were formed.
  • the cytoplasm component is released to the outside by perforation, it is considered that it was effective to replenish the released cytoplasm.
  • re-encapsulation since it is difficult for damage to cells, re-encapsulation is considered to be performed well without adding cytoplasm from the outside when re-encapsulating the cell membrane.
  • foreign cytoplasm means the cytoplasm of cells other than the substance introduction target cell that has been treated with an introduction agent and perforated.
  • the cytoplasm of the cell Cp in which pores are formed in the cell membrane does not correspond to the foreign cytoplasm.
  • the foreign cytoplasm is a cytoplasm obtained from cells other than the cells C and Cp accommodated in the well W.
  • the type of foreign cytoplasm may be a cytoplasm of a different type of cell from the cell into which the substance is introduced, a cytoplasm of the same type of cell, or a cytoplasm prepared from a tissue.
  • a liquid containing a foreign cytoplasm may be brought into contact with the cells in which the pores are formed.
  • the foreign cytoplasm is at least one of the medium M3 and the medium M4.
  • the cells may be cultured by adding them.
  • cells may be cultured in a medium containing an ATP regeneration system, or cells may be cultured in a medium containing an ATP regeneration system in at least one of the introduction step and the re-encapsulation step.
  • the cells may be cultured by adding an ATP regeneration system to at least one of the medium M3 and the medium M4.
  • the ATP regeneration system include a combination of ATP, creatine kinase, and creatine phosphate.
  • the drilling process and the introduction process are performed as independent processes, but the drilling and the substance introduction may occur almost simultaneously.
  • the substance 3 is added to the M3 medium after the perforation process.
  • the substance 3 may be added to the medium M2 of the perforation process.
  • the re-encapsulation process was implemented in the substance introduction method of this embodiment, the re-encapsulation process is not an essential process in the substance introduction method of this embodiment.
  • Step 1 indicates the above-mentioned “drilling step” and the above-mentioned “introduction step”.
  • Step 1a indicates the above-mentioned “perforation step” and the above-mentioned “introduction step” in the case where cholesterol-dependent cytolytic toxin is used as a specific example of the introduction agent.
  • Step 2 indicates a re-encapsulation step.
  • the substance introduction method of the present embodiment by using the above-described introduction agent, it is difficult to cause damage to cells, and a substance can be introduced into cells with high efficiency.
  • a substance can be introduced into cells with high efficiency.
  • re-encapsulation is satisfactorily performed without adding cytoplasm from the outside, and the substance is retained in the cell.
  • the screening method according to an embodiment of the present invention is a method using the above-described substance introduction method, wherein the substance to be introduced into the cell is a test substance, and the introduction agent is contacted with the cell to perforate a cell membrane.
  • a method comprising the step A of introducing a test substance into the cell.
  • the screening method of this embodiment is: A perforation step of perforating a cell membrane by contacting the introduction agent with a cell; An introducing step of introducing a test substance into the cells through the holes formed in the cell membrane in the perforating step; An evaluation step of comparing the cell into which the test substance is introduced and the cell into which the test substance is not introduced, and evaluating the test substance.
  • test substances include expression products of gene libraries, synthetic low molecular weight compound libraries, peptide libraries, nucleic acid libraries, antibodies, bacterial release substances, cells (microorganisms, plant cells, animal cells) extracts and cultures. Examples include supernatants, purified or partially purified polypeptides, marine organisms, plant or animal extracts, soils, random phage peptide display libraries, and the like.
  • transduction method can be illustrated as a suitable thing.
  • the perforating step and the introducing step are as described in the substance introducing method. Moreover, as a method for introducing a test substance, the method exemplified in the above-described substance introduction method can be exemplified. Further, the perforation process and the introduction process may be independent processes, and the perforation and the substance introduction may occur almost simultaneously. Moreover, you may implement the above-mentioned re-encapsulation process after an introduction process and before an evaluation process. “Step A” indicates the above-mentioned “perforation step” and the above-mentioned “introduction step” when the substance to be introduced into the cell is a test substance. “Process B” refers to an evaluation process described later.
  • the test substance introduced into the cell can exert its function inside the cell.
  • the evaluation step is a step of evaluating the test substance by comparing a cell into which the test substance is introduced and a cell into which the test substance is not introduced. What is necessary is just to set a comparison item suitably according to the objective of screening. For example, if the active ingredient of a therapeutic or preventive agent for disease A is screened, the degree of phenotype associated with disease A may be used as a comparison item.
  • the test substance can be an active ingredient of a therapeutic or preventive agent for disease A.
  • the cell comparison may be performed on a cell preparation such as a cell extract, a slice, or an amplification product of a nucleic acid obtained from the cell.
  • the substance introduction method of the present embodiment since the substance introduction method of the present embodiment is used, it is difficult to cause damage to cells, the test substance can be introduced into cells with high efficiency, and the original function of the cell is reflected. High-accuracy screening of test substances becomes possible.
  • Listeriolysin O (CEDARLANE, model number: CLPRO320)
  • Streptricin O (SLO): (manufactured by Bio Academia, model number: 01-531)
  • FITC-dextran 150 (TdB, model number: FD150)
  • Dextran Fluorescein, 40,000 MW
  • Anionic, Lysine Fixable (Invitrogen, model number: D1845) Dextran, Fluorescein, 10,000 MW
  • Anionic, Lysine Fixable (Fluoro-Emerald): (Invitrogen, model number: D1820) Dextran, Fluorescein, 70,000 MW
  • Anionic, Lysine Fixable (Invitrogen, model number: D1822)
  • TB transport buffer: 25 mM Hepes, 1.15 mM KOAC, 250 ⁇ M MgCl 2 , 2 mM EGTA, pH 7.2
  • 37 Incubation was performed at 0 ° C. for 10 minutes to form perforations in the cell membrane.
  • Dextran was introduced into cells of less than or equal to 70%, 53% or less at 70 kDa, and 42% or less at 150 kDa. Under the conditions of the concentration used in this example, dextran up to about 10 kDa can freely pass through the pores formed by LLO, and in the case of dextran having a higher molecular weight, it can easily pass depending on the concentration of LLO. Was found to change.
  • Drilling step HeLa cells were cultured for 5 minutes on ice in DMEM (-FCS) containing LLO (0.15 ⁇ g / mL) or SLO (0.125 ⁇ g / mL) to act on LLO or SLO. The cells were washed with PBS, and then incubated at 37 ° C. for 10 minutes with TB containing warm propidium iodide (PI). PI is a cell membrane-impermeable nucleic acid stain, and only cells with holes in the cell membrane are stained.
  • Re-encapsulation step 1 mM CaCl 2 was added and incubated at 37 ° C. for 5 minutes, and the cell membrane was closed again.
  • resealed cells that had been punctured with LLO remained clean and intact, with or without the addition of cytoplasm.
  • SLO protruding membrane
  • Example 3 Functional analysis of cells after introduction of molecules by LLO 1
  • a membrane-impermeable molecule was introduced into the cell using LLO without the addition of exogenous cytoplasm and the function of the molecule in the cell was assayed. It was a membrane impermeable analog of cAMP used for introduction. Since cAMP activates PKA, the phosphorylation of the substrate protein by PKA after introduction of cAMP analog was verified.
  • the 150 kDa band was detected slightly stronger when cAMP active analog was introduced and significantly weaker when cAMP inactive analog was introduced, as in the intact control experiment. This means that the membrane-impermeable cAMP analog introduced by the LLO treatment certainly functions in the cell.
  • Example 4 Functional analysis of cells after molecule introduction by LLO 2 Next, again, a membrane-impermeable molecule was introduced into the cell using LLO without the addition of exogenous cytoplasm, and the intracellular function of the molecule was assayed. It was a membrane impermeable analog of cAMP used for introduction. Since cAMP activates PKA, the phosphorylation of the substrate protein by PKA after introduction of cAMP analog was verified.
  • FIG. 9A A lysate was prepared from the cultured cells, and a protein band phosphorylated by PKA was detected by Western blotting using an anti-phospho PKA substrate antibody. The results are shown in FIG. 9A.
  • “band-a” to “band-i” indicate a plurality of bands that change in a concentration-dependent manner with respect to db-cAMP.
  • GAPDH is a loading control.
  • band-e was used as an index of phosphorylation of the substrate protein when cAMP membrane impermeable analog was added to resealed cells by LLO.
  • FIG. 9B is a graph obtained by quantifying the band-e luminance with respect to the GAPDH luminance. Also from FIG. 9B, it was confirmed that the band-e luminance with respect to the GAPDH luminance increased in a concentration-dependent manner with respect to db-cAMP.
  • the band-e was remarkably detected when the cAMP active analog, which is a membrane-impermeable activator, was introduced, as in the intact control experiment.
  • the band-e was detected slightly weaker when db-cAMP, which is a membrane permeability activator, was introduced, compared to the intact control experiment.
  • FIG. 10B is a graph obtained by quantifying the band-e luminance with respect to the ⁇ -tubulin luminance from the detection result of Western blotting in FIG. 10A.
  • FIG. 10B also confirmed that the band-e luminance relative to the ⁇ -tubulin luminance was higher when the membrane-impermeable cAMP analog was introduced than when the membrane-permeable activator db-cAMP was introduced. .
  • the band-e was remarkably detected as in the intact control experiment.
  • the band-e was detected slightly weaker than the intact control experiment.
  • FIG. 11B is a graph obtained by quantifying the band-e luminance with respect to the ⁇ -tubulin luminance from the detection result of Western blotting in FIG. 11A. Also from FIG. 11B, it was confirmed that the band-e luminance with respect to the ⁇ -tubulin luminance increases when the substance introduction method of this embodiment is used.
  • db-cAMP a membrane permeability activator
  • Akt is a serine / threonine kinase having a PH (Plekstrin Homology) domain at the N-terminus.
  • Akt is an important intracellular signaling factor that controls cell death (apoptosis). Akt is activated by phosphorylation of Thr308 and Ser473. Therefore, the phosphorylation of Akt after introduction of the Akt inhibitor was verified.
  • Intracellular introduction of an Akt inhibitor using LLO was performed by the following method.
  • the schematic diagram of each process is shown to FIG. 12A.
  • the upper arrow shows the outline of the operation in each step.
  • the lower square indicates the type and timing of the reagent added for each sample.
  • Akt inhibitor a peptide (Akt-in) composed of an amino acid sequence represented by 1 mM of SEQ ID NO: 1 (AVDTHPDRLWAWEKF), a TAT-labeled peptide (TAT) composed of an amino acid sequence represented by SEQ ID NO: 2 (YGRKKRRQRRRAVTHPDRLWAWEKF) of 50 ⁇ M. -Akt-in) or 31.2 ⁇ M triciribine.
  • phosphorylated Akt was significantly and strongly detected by EGT stimulation in cells cultured in the absence of an Akt inhibitor.
  • phosphorylated Akt was detected significantly weaker than cells cultured in the absence of an Akt inhibitor.
  • FIG. 12C is a graph in which the luminance of phosphorylated Akt (P-Akt) with respect to the luminance of total Akt (Total-Akt) is quantified based on the detection result of Western blotting in FIG. 12B.
  • FIG. 12C also confirms that in the cells cultured in the absence of the Akt inhibitor, the brightness of phosphorylated Akt (P-Akt) relative to the brightness of total Akt (Total-Akt) is significantly increased by EGT stimulation. It was.
  • the brightness of phosphorylated Akt (P-Akt) relative to the brightness of total Akt (Total-Akt) is higher than in the cells cultured in the absence of the Akt inhibitor. It was confirmed that it decreased significantly.
  • total-Akt phosphorylated Akt
  • Total-Akt phosphorylated Akt
  • Akt-in membrane-impermeable Akt inhibitor
  • the introduction agent, kit, and introduction method of the present embodiment damage to cells is difficult to occur, and a substance can be introduced into cells with high efficiency.
  • the screening method of the present embodiment it is difficult to cause damage to cells, and the test substance can be introduced into the cell with high efficiency, so that it is possible to screen the test substance with high accuracy reflecting the original function of the cell. It becomes.

Abstract

This introduction agent includes a cholesterol-dependent cytolysin, for which the optimum membrane perforation activity pH at 30-40°C is at least 0 but less than 6, and is used in the introduction of a substance into a cell. This kit comprises the introduction agent and is used in the introduction of a substance into a cell. This substance introduction method includes a step 1 for perforating a cell membrane by bringing the introduction agent into contact with the cell and for introducing a substance into the cell. This screening method for a substance uses the substance introduction method, and the substance introduced into the cell is the substance to be screened.

Description

導入剤、キット、物質導入方法、及びスクリーニング方法Introduction agent, kit, substance introduction method, and screening method
 本発明は、導入剤、キット、物質導入方法、及びスクリーニング方法に関する。
 本願は、2016年7月19日に、日本に出願された特願2016-141219号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an introduction agent, a kit, a substance introduction method, and a screening method.
This application claims priority based on Japanese Patent Application No. 2016-141219 for which it applied to Japan on July 19, 2016, and uses the content here.
 従来、細胞に物質を導入し、それが細胞に及ぼす影響を評価することが行われている。例えば、病気への治療効果が期待される化合物が見いだされれば、治療薬の有効成分として使用できる可能性がある。
 これまでin vitroで活性を持ちながら、細胞膜透過性を持たない化合物は、細胞を用いたスクリーニングでその効用が検証できず見過ごされてきた。しかしながら、膜不透過性化合物を細胞内に導入できれば、これまで見逃されてきた活性のある化合物を新たに見つけることができる。また、それをリード化合物として優れた活性を持つ新規化合物を合成することも可能となる。
Conventionally, introduction of a substance into a cell and evaluation of the effect of the substance on the cell have been performed. For example, if a compound expected to have a therapeutic effect on a disease is found, it may be used as an active ingredient of a therapeutic agent.
So far, compounds that have activity in vitro but do not have cell membrane permeability have been overlooked because their utility could not be verified by screening using cells. However, if a membrane-impermeable compound can be introduced into a cell, an active compound that has been missed so far can be newly found. It is also possible to synthesize a novel compound having excellent activity using it as a lead compound.
 膜不透過性化合物を細胞内に導入する方法として、実用上有用なものは数限られている。Cell penetrating peptide(CPC)の結合はその一つであるが、化合物にペプチドの結合作業を行う必要があり煩雑であること、またCPCはエンドソーム内にトラップされがちで細胞質まで運搬される量は不明であり、細胞内での化合物の機能評価系として不安があることが問題点としてある。 There are a limited number of practically useful methods for introducing a membrane-impermeable compound into cells. Cell-penetrating-peptide (CPC) binding is one of them, but it is necessary to perform peptide binding to the compound, which is complicated, and the amount that CPC tends to be trapped in the endosome and transported to the cytoplasm is unknown However, there is a problem that there is anxiety as a function evaluation system of compounds in cells.
 これまでに本発明者らは、連鎖球菌毒素ストレプトリジンO(SLO)を用いた可逆的膜穿孔法を開発してきた。可逆的膜穿孔法を用いることで形質膜を部分的に透過性にしたセミインタクト細胞を得ることができる。特許文献1に示されるように、セミインタクト細胞では、オルガネラや細胞骨格の構造や機能及びそれらの相対的空間配置はほぼインタクトに保持したまま、元の細胞質を流出させて他の細胞や臓器から調製した細胞質と「交換」することができる。例えば、セミインタクト細胞の細胞質と、病態細胞から得た細胞質とを交換することにより、細胞内に病態環境を構築できる。 So far, the present inventors have developed a reversible membrane perforation method using streptococcal toxin streptolysin O (SLO). By using the reversible membrane perforation method, semi-intact cells in which the plasma membrane is partially permeable can be obtained. As shown in Patent Document 1, semi-intact cells are prepared from other cells and organs by draining the original cytoplasm while maintaining the structure and function of organelles and cytoskeleton and their relative spatial arrangement almost intact. Can be “exchanged” for the cytoplasm. For example, a pathological environment can be constructed in a cell by exchanging the cytoplasm of a semi-intact cell with the cytoplasm obtained from the pathological cell.
日本国特開2013-213688号公報Japanese Unexamined Patent Publication No. 2013-213688
 しかしながら、SLOを用いた可逆的膜穿孔法では、細胞に直径約30nmの比較的大きな孔を開け、細胞質交換が可能な程度の穿孔状態となる。そのため、該方法を化合物導入方法への使用に適用しようとした場合には、細胞へのダメージを生じさせることへの懸念がある。また、細胞膜の再封入時に外部より細胞質を加え、細胞膜のリシールを促進させ、ダメージの回復を進めることができるが、細胞質の調整が手間のかかる作業であることが問題点である。 However, in the reversible membrane perforation method using SLO, a relatively large pore having a diameter of about 30 nm is formed in the cell, and the perforation state is such that cytoplasm exchange is possible. Therefore, there is a concern about causing damage to cells when the method is applied to the compound introduction method. In addition, cytoplasm can be added from the outside at the time of re-encapsulation of the cell membrane to promote resealing of the cell membrane and damage recovery can be promoted, but it is a problem that adjustment of the cytoplasm is a troublesome work.
 本発明は、上記事情に鑑みてなされたものであって、細胞へのダメージを低減でき、物質の高効率な細胞内導入を可能とする導入剤、キット、物質導入方法、及び該方法を利用したスクリーニング方法を提供する。 The present invention has been made in view of the above circumstances, and can introduce an introduction agent, a kit, a substance introduction method, and a method that can reduce damage to cells and enable high-efficiency introduction of substances into cells. Screening methods are provided.
 すなわち、本発明は、以下の態様を含む。
本発明の第1態様に係る導入剤は、30℃以上40℃以下における膜穿孔活性の至適pHが、0以上6未満の範囲であるコレステロール依存性細胞溶解毒素を含有し、細胞への物質導入に用いられる。
 前記コレステロール依存性細胞溶解毒素が、リステリオリシンOであってもよい。
 上記第1態様に係る導入剤において、分子量1kDa以上15kDa以下の前記物質の導入率が、分子量30kDa以上200kDa以下の前記物質の導入率よりも高くてもよい。
 導入剤のpHが6以上10以下であってもよい。
 前記コレステロール依存性細胞溶解毒素の含有量が、0.01μg/mL以上1μg/mL以下であってもよい。
That is, the present invention includes the following aspects.
The introduction agent according to the first aspect of the present invention contains a cholesterol-dependent cytolytic toxin whose optimum pH for membrane perforation activity at 30 ° C. or higher and 40 ° C. or lower is in the range of 0 to less than 6, and is a substance to cells Used for introduction.
The cholesterol-dependent cytolytic toxin may be listeriolysin O.
In the introduction agent according to the first aspect, the introduction rate of the substance having a molecular weight of 1 kDa to 15 kDa may be higher than the introduction rate of the substance having a molecular weight of 30 kDa to 200 kDa.
The pH of the introducing agent may be 6 or more and 10 or less.
The cholesterol-dependent cytolytic toxin content may be 0.01 μg / mL or more and 1 μg / mL or less.
 本発明の第2態様に係るキットは、上記第1態様に係る導入剤を備え、細胞への物質導入に使用される。 The kit according to the second aspect of the present invention includes the introduction agent according to the first aspect and is used for introducing a substance into a cell.
 本発明の第3態様に係る物質導入方法は、上記第1態様に係る導入剤を細胞に接触させて細胞膜を穿孔し、物質を前記細胞に導入する工程1を含む方法である。
 更に、前記工程1の後、カルシウムイオンを含む液を、前記孔が形成された細胞に接触させ、前記孔を再封入する工程2を含んでもよい。
 前記工程2において、外来の細胞質を含む液を前記孔が形成された細胞に接触させずに、前記孔を再封入してもよい。
 前記工程1において、前記穿孔は、前記コレステロール依存性細胞溶解毒素を、pH6以上10以下の条件下で前記細胞に作用させて行ってもよい。
 導入する前記物質の分子量が、0.1kDa以上20kDa以下であってもよい。
 導入する前記物質が核酸を含んでもよい。
The substance introduction method according to the third aspect of the present invention is a method including the step 1 of bringing the introduction agent according to the first aspect into contact with a cell to perforate a cell membrane and introducing the substance into the cell.
Furthermore, after the step 1, a step 2 may be included in which a solution containing calcium ions is brought into contact with the cells in which the pores are formed, and the pores are re-encapsulated.
In the step 2, the pores may be re-encapsulated without contacting a liquid containing foreign cytoplasm with the cells in which the pores are formed.
In the step 1, the perforation may be performed by allowing the cholesterol-dependent cytolytic toxin to act on the cells under conditions of pH 6 or more and 10 or less.
The molecular weight of the substance to be introduced may be 0.1 kDa or more and 20 kDa or less.
The substance to be introduced may contain a nucleic acid.
 本発明の第4態様に係る物質のスクリーニング方法は、上記第3態様に係る物質導入方法を用いる方法であり、前記細胞に導入する前記物質が被験物質であり、前記導入剤を細胞に接触させて細胞膜を穿孔し、被験物質を前記細胞に導入する工程Aを含む方法である。
 上記第4態様に係る物質のスクリーニング方法において、更に、工程Aの後に、前記被験物質が導入された細胞又はその調整物と、被験物質が導入されていない細胞又はその調整物とを比較し、前記被験物質を評価する工程Bを含んでもよい。
The method for screening a substance according to the fourth aspect of the present invention is a method using the substance introduction method according to the third aspect, wherein the substance to be introduced into the cell is a test substance, and the introduction agent is brought into contact with the cell. A step A in which a cell membrane is perforated and a test substance is introduced into the cell.
In the method for screening a substance according to the fourth aspect, after step A, the cell into which the test substance is introduced or a preparation thereof is compared with a cell into which the test substance is not introduced or a preparation thereof, You may include the process B which evaluates the said to-be-tested substance.
 上記態様に係る導入剤、キット及び導入方法によれば、細胞へのダメージが生じ難く、高効率に物質を細胞内へと導入できる。
 上記態様に係るスクリーニング方法によれば、細胞へのダメージを生じさせ難く、被験物質を高効率に細胞内へと導入できるので、細胞本来の機能が反映された高精度な被験物質のスクリーニングが可能となる。
According to the introduction agent, the kit, and the introduction method according to the above aspect, damage to cells is difficult to occur, and a substance can be introduced into cells with high efficiency.
According to the screening method according to the above aspect, since it is difficult to cause damage to cells and a test substance can be introduced into cells with high efficiency, screening of a test substance with high accuracy reflecting the original function of the cell is possible. It becomes.
本実施形態の物質導入方法を説明する模式図である。It is a schematic diagram explaining the substance introduction method of this embodiment. 実施例1において取得された、細胞のフルオレセイン蛍光(10kDa)の測定結果を示す図である。It is a figure which shows the measurement result of the fluorescein fluorescence (10 kDa) of the cell acquired in Example 1. FIG. 実施例1において取得された、細胞のフルオレセイン蛍光(40kDa)の測定結果を示す図である。It is a figure which shows the measurement result of the fluorescein fluorescence (40 kDa) of the cell acquired in Example 1. FIG. 実施例1において取得された、細胞のフルオレセイン蛍光(70kDa)の測定結果を示す図である。It is a figure which shows the measurement result of the fluorescein fluorescence (70 kDa) of the cell acquired in Example 1. FIG. 実施例1において取得された、細胞のFITC蛍光(150kDa)の測定結果を示す図である。It is a figure which shows the measurement result of the FITC fluorescence (150 kDa) of the cell acquired in Example 1. FIG. 実施例2において取得された、LLOで穿孔されたリシール細胞と、SLOで穿孔されたリシール細胞との細胞形態の比較結果を示す画像である。It is an image which shows the comparison result of the cell form of the reseal cell perforated by LLO and the reseal cell perforated by SLO acquired in Example 2. 実施例3において、PKAによってリン酸化されるタンパク質を、Western blottingにより検出した結果を示す画像である。In Example 3, it is an image which shows the result of having detected the protein phosphorylated by PKA by Western blotting. 実施例3において、膜不透過性のcAMPアナログを本実施形態に係る物質導入方法により細胞に導入し、細胞内でのcAMPアナログの機能を確認した結果を示す画像である。In Example 3, it is an image which shows the result of having introduced the cell impermeable cAMP analog into the cell by the substance introduction method according to the present embodiment and confirming the function of the cAMP analog in the cell. 実施例4において、PKAによってリン酸化されるタンパク質を、Western blottingにより検出した結果を示す画像である。In Example 4, it is an image which shows the result of having detected the protein phosphorylated by PKA by Western blotting. 実施例4において、図9AのWestern blottingによる検出結果から、GAPDHの輝度に対するPKAによってリン酸化されるタンパク質である「band-e」の輝度を定量したグラフである。9B is a graph in which the brightness of “band-e”, which is a protein phosphorylated by PKA, with respect to the brightness of GAPDH is quantified from the detection result by Western blotting in FIG. 9A in Example 4. FIG. 実施例4において、膜不透過性のcAMPアナログ又は膜透過性PKA活性化剤(db-cAMP)を本実施形態に係る物質導入方法により細胞に導入し、細胞内でのcAMPアナログ又はdb-cAMPの機能をWestern blottingにより確認した結果を示す画像である。In Example 4, a membrane-impermeable cAMP analog or a membrane-permeable PKA activator (db-cAMP) is introduced into a cell by the substance introduction method according to this embodiment, and the cAMP analog or db-cAMP in the cell is introduced. It is an image which shows the result of having confirmed the function of this by Western blotting. 実施例4において、図10AのWestern blottingによる検出結果から、β-Tubulinの輝度に対するband-eの輝度を定量したグラフである。In Example 4, it is the graph which quantified the brightness | luminance of the band-e with respect to the brightness | luminance of (beta) -Tubulin from the detection result by Western blotting of FIG. 10A. 実施例4において、膜不透過性のcAMPアナログを本実施形態に係る物質導入方法により細胞に導入し、細胞内でのcAMPアナログの機能をWestern blottingにより確認した結果を示す画像である。In Example 4, it is an image which shows the result of having introduced the membrane impermeable cAMP analog into the cell by the substance introduction method according to this embodiment and confirming the function of the cAMP analog in the cell by Western blotting. 実施例4において、図11AのWestern blottingによる検出結果から、β-Tubulinの輝度に対するband-eの輝度を定量したグラフである。In Example 4, it is the graph which quantified the brightness | luminance of the band-e with respect to the brightness | luminance of (beta) -Tubulin from the detection result by Western blotting of FIG. 11A. 実施例5における各工程の概要図である。FIG. 10 is a schematic diagram of each step in Example 5. 実施例5において、膜不透過性のAKT阻害剤を本実施形態に係る物質導入方法により細胞に導入し、細胞内でのAKT阻害剤の機能をWestern blottingにより確認した結果を示す画像である。In Example 5, it is an image which shows the result of having introduced the membrane-impermeable AKT inhibitor into the cell by the substance introduction method according to the present embodiment and confirming the function of the AKT inhibitor in the cell by Western blotting. 実施例5において、図12BのWestern blottingによる検出結果から、総AKT(Total-AKT)の輝度に対するリン酸化AKT(P-AKT)の輝度を定量したグラフである。In Example 5, it is the graph which quantified the brightness | luminance of phosphorylated AKT (P-AKT) with respect to the brightness | luminance of total AKT (Total-AKT) from the detection result by Western blotting of FIG. 12B.
≪導入剤≫
 本発明の一実施形態に係る導入剤は、細胞への物質導入に使用されるものであって、30℃以上40℃以下における膜穿孔活性の至適pHが、0以上6未満の範囲であるコレステロール依存性細胞溶解毒素を含有する。
 以下、実施の形態に基づき、本実施形態の導入剤を説明する。
≪Introducing agent≫
The introduction agent according to one embodiment of the present invention is used for substance introduction into cells, and the optimum pH of membrane perforation activity at 30 ° C. or more and 40 ° C. or less is in the range of 0 or more and less than 6. Contains cholesterol-dependent cytolytic toxin.
Hereinafter, based on the embodiment, the introduction agent of the present embodiment will be described.
 本明細書において「細胞への物質導入」とは、物質導入の対象となる細胞の細胞膜よりも内側へと、新たに物質を導入することをいう。新たに導入される物質は、物質導入の対象となる細胞が有している物質と同種の物質であってもよい。例えば、物質導入の対象となる細胞が有する核酸と同一の配列を有する核酸を、新たに細胞に導入することも、細胞への物質導入に含まれる。 In the present specification, “introducing a substance into a cell” refers to introducing a substance into the inside of the cell membrane of a cell to which the substance is to be introduced. The newly introduced substance may be the same kind of substance as the substance possessed by the cell into which the substance is to be introduced. For example, newly introducing into a cell a nucleic acid having the same sequence as the nucleic acid of a cell that is a target of substance introduction is also included in the substance introduction into the cell.
 本実施形態の導入剤は、後述の物質導入方法に好適に用いられる。導入対象の物質については、後述の物質導入方法で例示するものが挙げられる。 The introduction agent of this embodiment is suitably used for the substance introduction method described later. Examples of the substance to be introduced include those exemplified in the substance introduction method described later.
 本明細書において、「コレステロール依存性細胞溶解毒素」とは、コレステロールと結合し、細胞膜に孔を形成させる(細胞膜を穿孔する)膜穿孔活性を有するものを指す。コレステロール依存性細胞溶解毒素としては、連鎖球菌が産生する毒素が知られている。該毒素はタンパク質であり、細胞膜上のコレステロールに結合した後、細胞膜上で自己集合して細胞膜に孔を形成する。
 細胞にコレステロール依存性細胞溶解毒素を接触させると、細胞膜に孔が形成され、形成された孔を通じて物質を導入できる。すなわち、前記物質導入とは、コレステロール依存性細胞溶解毒素によって細胞膜に形成された前記孔を介した、物質導入を意味する。
As used herein, “cholesterol-dependent cytolytic toxin” refers to a substance that has membrane perforation activity that binds to cholesterol and forms pores in the cell membrane (perforates the cell membrane). A toxin produced by streptococci is known as a cholesterol-dependent cytolytic toxin. The toxin is a protein that binds to cholesterol on the cell membrane and then self-assembles on the cell membrane to form pores in the cell membrane.
When the cell is contacted with cholesterol-dependent cytolytic toxin, pores are formed in the cell membrane, and the substance can be introduced through the formed pores. That is, the substance introduction means substance introduction through the pores formed in the cell membrane by cholesterol-dependent cytolytic toxin.
 コレステロール依存性細胞溶解毒素の活性には、至適pHの存在が知られている。例えば、コレステロール依存性細胞溶解毒であるリステリオリシンO(LLO)は、pHが6未満の範囲に、至適pHを有するとされる(参考資料1:Schuerch, D.W., Wilson-Kubalek, E.M. and Tweten, R.K.(2005) Molecular basis of listeriolysin O pH dependence. PNAS, 102, 12537-12542.)。
 本発明者らは、30℃以上40℃以下における膜穿孔活性の至適pHが、0以上6未満の範囲であるコレステロール依存性細胞溶解毒素を用いることにより、SLOを用いた場合よりも細胞へのダメージが少なく、高効率に物質を細胞内に導入可能なことを見出した。
 細胞の状態を良好に保ちつつ、細胞の処理を行おうとするとき、中性付近のpHを有する液で処理することが通常である。ここでpHが0以上6未満の範囲に至適pHを有するコレステロール依存性細胞溶解毒を用いると、細胞状態が良好で且つ膜穿孔活性が穏やかに発揮され、物質導入用途に好都合な程度に細胞が穿孔されるものと考えられる。
The existence of an optimum pH is known for the activity of cholesterol-dependent cytolytic toxin. For example, cholesterol dependent cytolytic toxin, Listeriolysin O (LLO), has an optimum pH in the range of less than 6 (Reference 1: Schuerch, DW, Wilson-Kubalek, EM and Tweten, RK (2005) Molecular basis of listeriolysin O pH dependence. PNAS, 102, 12537-12542.).
By using a cholesterol-dependent cytolytic toxin in which the optimum pH for membrane perforation activity at 30 ° C. or more and 40 ° C. or less is in the range of 0 or more and less than 6, it is possible to bring cells to cells more than when using SLO. It was found that the substance can be introduced into cells with high efficiency and low damage.
When a cell is to be treated while maintaining a good state of the cell, it is usually treated with a solution having a pH near neutral. Here, when a cholesterol-dependent cytolytic toxin having an optimum pH in the range of 0 or more and less than 6 is used, the cell state is good and the membrane perforation activity is gently exerted. Is considered to be perforated.
 上記膜穿孔活性は、30℃以上40℃以下におけるものであり、33℃以上38℃以下であってもよく、35℃以上37℃以下であってもよい。
 上記至適pHは、pH1以上6未満であってもよく、pH3以上5.5以下であってもよく、pH4.5以上5.5未満であってもよい。
The membrane perforation activity is at 30 ° C. or more and 40 ° C. or less, may be 33 ° C. or more and 38 ° C. or less, and may be 35 ° C. or more and 37 ° C. or less.
The optimum pH may be from pH 1 to less than 6, may be from pH 3 to 5.5, and may be from pH 4.5 to less than 5.5.
 上記膜穿孔活性の至適pHは公知の方法により測定できる。例えば、上記温度及びpH条件で培養している赤血球に対してコレステロール依存性細胞溶解毒素を接触させる。次いで、赤血球膜が破壊されてヘモグロビンが溶出される血球の溶血活性(hemolytic unit;HU)の程度を基準として膜穿孔活性を測定できる。さらに、膜穿孔活性が最大となるpHを、至適pHと判断できる。 The optimum pH of the membrane perforation activity can be measured by a known method. For example, cholesterol-dependent cytolytic toxin is brought into contact with erythrocytes cultured at the above temperature and pH conditions. Next, the membrane perforation activity can be measured based on the degree of hemolytic activity (HU) of the blood cells from which the erythrocyte membrane is destroyed and hemoglobin is eluted. Furthermore, the pH at which membrane perforation activity is maximized can be determined as the optimum pH.
 30℃以上40℃以下における膜穿孔活性の至適pHが、0以上6未満の範囲であるコレステロール依存性細胞溶解毒素とは、リステリオリシンO(LLO)であってよい。本発明の一実施形態に係る導入剤は、リステリオリシンO(LLO)を含有し、細胞への物質導入に用いられるものである。 The cholesterol-dependent cytolytic toxin in which the optimum pH for membrane perforation activity at 30 ° C. or more and 40 ° C. or less is in the range of 0 to less than 6, may be Listeriolysin O (LLO). The introduction agent according to one embodiment of the present invention contains listeriolysin O (LLO) and is used for substance introduction into cells.
 リステリオリシンO(LLO)は、Listeria属に属するL.monocytogenesによって生産されることが知られる。LLOはL.monocytogenesのLLOであってもよい。
 本実施形態の導入剤が含有する前記毒素は、LLOと実質的に同等の機能を有するタンパク質であってもよい。LLOは天然に存在する天然型のタンパク質であってもよい。又は、LLOは天然型と同等の機能を有するものであれば、天然型とは異なるアミノ酸配列、修飾、付加等を有する突然変異型又は人為的改変型のタンパク質であってもよい。
Listeriolysin O (LLO) is a L. genus belonging to the genus Listeria. It is known to be produced by monocytogenes. LLO is L. It may be a monocytogenes LLO.
The toxin contained in the introduction agent of the present embodiment may be a protein having a function substantially equivalent to that of LLO. LLO may be a naturally occurring protein of nature. Alternatively, LLO may be a mutant or artificially modified protein having an amino acid sequence, modification, addition, or the like different from that of the natural type as long as it has a function equivalent to that of the natural type.
 LLOによる穿孔が、SLOによる穿孔よりも細胞へのダメージが少ないのは、おそらく、LLOにより形成される孔の直径が、SLOにより形成される孔の直径よりも小さいためと考えられる。また、係る性質により、SLOを用いた可逆的膜穿孔法よりも細胞質の成分の流出が抑えられ、細胞へのダメージが生じ難く、細胞状態が良好となると考えられる。また、細胞状態が良好なため、細胞膜の再封入(リシール)時に外部より細胞質を加えずとも、良好な細胞状態を実現できる。 The reason why the LLO perforation causes less damage to the cells than the SLO perforation is probably because the diameter of the hole formed by the LLO is smaller than the diameter of the hole formed by the SLO. In addition, due to such properties, it is considered that the outflow of cytoplasmic components is suppressed as compared with the reversible membrane perforation method using SLO, the cell is hardly damaged, and the cell state is improved. In addition, since the cell state is good, a good cell state can be realized without adding cytoplasm from the outside when the cell membrane is re-encapsulated (resealed).
本実施形態の導入剤により導入される物質の導入率は、分子量1kDa以上15kDa以下の物質の導入率が、分子量30kDa以上200kDa以下の物質の導入率よりも高いことが好ましく、分子量7kDa以上13kDa以下の物質の導入率が、分子量35kDa以上55kDa以下の物質の導入率よりも高いことがより好ましい。
物質の導入率は、例えば、実施例に記載の手法により確認できる。本発明者らは、後述する実施例に示すように、LLOを用いて、分子量10kDa、40kDa、70kDa、及び150kDaの、それぞれ分子量の異なる蛍光標識デキストランの細胞への導入率を計測した。LLOによる穿孔では、中分子量(10kDa)のデキストランの細胞への導入率が、その他の分子量(40kDa、70kDa、150kDa)のデキストランよりも大きいことが判明した。
このような中分子の選択的な透過性は、SLOを用いた可逆的膜穿孔法では、確認されていない。
The introduction rate of the substance introduced by the introduction agent of this embodiment is preferably such that the introduction rate of the substance having a molecular weight of 1 kDa to 15 kDa is higher than the introduction rate of a substance having a molecular weight of 30 kDa to 200 kDa, and a molecular weight of 7 kDa to 13 kDa. It is more preferable that the introduction rate of the substance is higher than the introduction rate of the substance having a molecular weight of 35 kDa to 55 kDa.
The introduction rate of the substance can be confirmed, for example, by the method described in the examples. As shown in Examples described later, the present inventors measured the introduction rate of fluorescently labeled dextran having different molecular weights into cells, each having a molecular weight of 10 kDa, 40 kDa, 70 kDa, and 150 kDa, using LLO. In perforation by LLO, it was found that the introduction rate of dextran having a medium molecular weight (10 kDa) into cells was larger than that of dextran having other molecular weights (40 kDa, 70 kDa, 150 kDa).
Such selective permeability of medium molecules has not been confirmed by reversible membrane perforation using SLO.
 LLOによれば、分子量1kDa以上15kDa以下の物質は通しやすく、分子量30kDa以上200kDa以下の物質は通しにくい程度の直径の孔を、形成可能であると考えられる。したがって、分子量に相関し、孔を通過できる物質が篩分けされているものと考えられる。
 細胞膜に開いた孔を通じて細胞内へ物質を導入可能であるということは、同様に当該孔を通じて細胞内の成分が細胞外へと流出する可能性がある。例えば、細胞質に含まれる酵素の分子量は20kDa以下程度のものが多いとされている。分子量1kDa以上15kDa以下の物質の導入率が、分子量30kDa以上200kDa以下の物質の導入率よりも高いことにより、より細胞へのダメージを生じさせ難く、良好な細胞状態で物質を高効率に細胞内へと導入できる。
According to LLO, it is considered that a pore having a diameter that can easily pass a substance having a molecular weight of 1 kDa to 15 kDa and that is difficult to pass a substance having a molecular weight of 30 kDa to 200 kDa can be formed. Therefore, it is considered that the substance that correlates with the molecular weight and can pass through the pores is sieved.
The fact that a substance can be introduced into a cell through a hole opened in the cell membrane can similarly cause components in the cell to flow out of the cell through the hole. For example, the molecular weight of enzymes contained in the cytoplasm is often about 20 kDa or less. The introduction rate of substances with a molecular weight of 1 kDa or more and 15 kDa or less is higher than the introduction ratio of substances with a molecular weight of 30 kDa or more and 200 kDa or less, so that it is difficult to cause damage to cells. Can be introduced.
 本実施形態の導入剤は、コレステロール依存性細胞溶解毒素を含有するものであればよい。本実施形態の導入剤は、実質的にコレステロール依存性細胞溶解毒素のみからなるものであってもよく、該毒素以外の任意成分を含有していてもよい。なお、ここでいう「実質的にコレステロール依存性細胞溶解毒素のみからなる」とは、本実施形態の導入剤が、コレステロール依存性細胞溶解毒素のみからなる、又は、前記毒素以外の任意成分を検出限界以下の極微量しか含まないことを意味する。
 導入剤100質量%中に含まれるコレステロール依存性細胞溶解毒素の含有量は、例えば、1質量%以上100質量%以下であってもよく、10質量%以上98質量%以下であってもよく、50質量%以上90質量%以下であってもよく、60質量%以上80質量%以下であってもよい。
The introduction agent of this embodiment should just contain a cholesterol dependent cytolytic toxin. The introduction agent of this embodiment may consist essentially of a cholesterol-dependent cytolytic toxin, or may contain an optional component other than the toxin. As used herein, “substantially composed only of a cholesterol-dependent cytolytic toxin” means that the introduction agent of the present embodiment comprises only a cholesterol-dependent cytolytic toxin, or detects any component other than the toxin. It means that only trace amount below the limit is included.
The content of cholesterol-dependent cytolytic toxin contained in 100% by mass of the introduction agent may be, for example, from 1% by mass to 100% by mass, or from 10% by mass to 98% by mass, 50 mass% or more and 90 mass% or less may be sufficient, and 60 mass% or more and 80 mass% or less may be sufficient.
前記孔を通過できる物質のサイズについては、細胞に作用させるコレステロール依存性細胞溶解毒素の濃度に依存して、条件が変化する。そのため導入したい物質の分子量に応じて、細胞に作用させるコレステロール依存性細胞溶解毒素の濃度を調節すればよい。 The size of the substance that can pass through the pores varies depending on the concentration of cholesterol-dependent cytolytic toxin that acts on the cells. Therefore, the concentration of cholesterol-dependent cytolytic toxin that acts on cells may be adjusted according to the molecular weight of the substance to be introduced.
 導入剤の形態は特に限定されず、固体(粉体、粒状体等)、液体等の種々の形態であってよい。
前記粉体としては、例えば、コレステロール依存性細胞溶解毒素の乾燥物が挙げられる。前記粉体の水分含量は、一例として、0質量%以上20質量%以下であってよく、5質量%以上10質量%以下であってよい。
前記粒状体としては、前記粉体の成形体が挙げられる。
前記液体としては、コレステロール依存性細胞溶解毒素が媒体に分散又は溶解した、コレステロール依存性細胞溶解毒素の分散体又は溶液が挙げられる。前記媒体としては、水性溶媒が挙げられ、具体的には、水、バッファー、血清非添加培地等の細胞培養に用いられる各種培地が挙げられる。
The form of the introduction agent is not particularly limited, and may be various forms such as a solid (powder, granule, etc.) and a liquid.
Examples of the powder include a dried product of cholesterol-dependent cytolytic toxin. As an example, the moisture content of the powder may be 0% by mass or more and 20% by mass or less, and may be 5% by mass or more and 10% by mass or less.
Examples of the granular material include a compact of the powder.
Examples of the liquid include a dispersion or solution of cholesterol-dependent cytolytic toxin in which cholesterol-dependent cytolytic toxin is dispersed or dissolved in a medium. Examples of the medium include aqueous solvents, and specific examples include various media used for cell culture such as water, buffer, and serum-free medium.
 本実施形態の導入剤は、培養細胞に対して使用されることが好ましく、培養細胞を培養する培地に添加されて使用されてもよい。本実施形態の導入剤は、培養細胞を培養可能な培地として提供され、使用されてもよい。
なお、本明細書において、「培養」とは、生体(個体)外で細胞を飼育又は生育させることを指す。飼育又は生育の期間は、例えば1分以上7日以下であってもよく、5分以上16時間以下であってもよく、10分以上1時間以下であってもよい。
また、「培地」とは、細胞を培養可能なもの全般を指す概念である。導入剤が培地である場合、導入剤からコレステロール依存性細胞溶解毒素該毒素を除いた残りの成分は、非常に短期間でも細胞を培養できるものであればよく、一般的に培地とは称されないバッファーや水等であってもよい。培地に含まれ得る成分としては、通常の細胞培養用の培地に含有される成分が挙げられる。前記成分として具体的には、例えば、グルコース、塩化ナトリウム、ビタミン・ミネラル類、アミノ酸類等の栄養成分、成長因子、細胞増殖因子、分化誘導因子、抗菌剤、抗真菌剤等を挙げることができる。
The introduction agent of this embodiment is preferably used for cultured cells, and may be added to a medium for culturing cultured cells. The introduction agent of this embodiment may be provided and used as a medium in which cultured cells can be cultured.
In the present specification, “culture” refers to breeding or growing cells outside a living body (individual). The period of breeding or growth may be, for example, from 1 minute to 7 days, from 5 minutes to 16 hours, or from 10 minutes to 1 hour.
In addition, “medium” is a concept that generally refers to a cell culture medium. When the introduction agent is a medium, the remaining components obtained by removing the cholesterol-dependent cytolytic toxin from the introduction agent are not limited to the medium, as long as the cells can be cultured even for a very short period of time. It may be a buffer or water. Examples of components that can be contained in the medium include components contained in ordinary cell culture media. Specific examples of the component include nutritional components such as glucose, sodium chloride, vitamins and minerals, amino acids, growth factors, cell growth factors, differentiation-inducing factors, antibacterial agents, and antifungal agents. .
 導入剤が、培養細胞を培養可能な培地として提供される場合、導入剤に含まれるコレステロール依存性細胞溶解毒素の含有量が、導入剤1mLあたり、0.01μg/mL以上1μg/mL以下であることが好ましく、0.025μg/mL以上0.6μg/mL以下であることがより好ましく、0.03μg/mL以上0.5μg/mL以下であることがさらに好ましく、0.05μg/mL以上0.3μg/mL以下であることが特に好ましい。コレステロール依存性細胞溶解毒素を上記濃度範囲で含有する導入剤は、細胞に与えるダメージがより少なく、且つ細胞への物質導入効果をより均等なものとすることができる。 When the introduction agent is provided as a medium capable of culturing cultured cells, the content of cholesterol-dependent cytolytic toxin contained in the introduction agent is 0.01 μg / mL or more and 1 μg / mL or less per mL of the introduction agent. It is preferably 0.025 μg / mL or more and 0.6 μg / mL or less, more preferably 0.03 μg / mL or more and 0.5 μg / mL or less, and 0.05 μg / mL or more and 0.0. It is particularly preferably 3 μg / mL or less. The introduction agent containing the cholesterol-dependent cytolytic toxin in the above-mentioned concentration range can cause less damage to the cells and make the substance introduction effect into the cells more uniform.
 LLOでは、おそらく細胞膜に形成される孔の直径の影響により、中分子(10kDa以下程度)の物質の導入効率が高いものであるが、濃度依存的により大きな分子を導入可能である。
 上述の、分子量1kDa以上15kDa以下の物質の導入率が、分子量30kDa以上200kDa以下の物質の導入率よりも高いという傾向を得たい場合には、上記の濃度範囲のうち、導入剤に含まれるコレステロール依存性細胞溶解毒素の含有量を0.05μg/mL以上0.3μg/mL以下の範囲とすることができる。
In LLO, the introduction efficiency of a substance of medium molecule (about 10 kDa or less) is high due to the influence of the diameter of pores formed in the cell membrane, but larger molecules can be introduced depending on the concentration.
In the case where it is desired to obtain a tendency that the introduction rate of the substance having a molecular weight of 1 kDa or more and 15 kDa or less is higher than the introduction rate of the substance having a molecular weight of 30 kDa or more and 200 kDa or less, cholesterol contained in the introduction agent in the above concentration range. The content of the dependent cytolytic toxin can be in the range of 0.05 μg / mL to 0.3 μg / mL.
 導入剤が、培養細胞を培養可能な培地として提供される場合、導入剤のpHは、pH6以上10以下であってもよく、6.5以上8以下であってもよく、7.0以上7.5以下であってもよい。pHは30℃以上40℃以下の温度範囲における測定値とする。
 上記範囲内にある導入剤では、細胞をより良好に培養できる。更には、pHが0以上6未満の範囲に至適pHを有するコレステロール依存性細胞溶解毒素の膜穿孔活性が、より穏やかに発揮される点からも好ましい。
When the introduction agent is provided as a medium capable of culturing cultured cells, the pH of the introduction agent may be pH 6 or more, 10 or less, 6.5 or more, 8 or less, or 7.0 or more, 7 .5 or less. The pH is a measured value in a temperature range of 30 ° C. or higher and 40 ° C. or lower.
With the introduction agent within the above range, the cells can be cultured better. Furthermore, it is preferable from the viewpoint that the membrane perforation activity of cholesterol-dependent cytolytic toxin having an optimum pH in the range of 0 to less than 6 is exhibited more gently.
 従来、SLOを用いた可逆的膜穿孔法では、細胞膜の穿孔により細胞が傷つき、手法によっては細胞死が生じやすくなる場合があった。
 LLOは、pHが0以上6未満の範囲に至適pHを有するとされ、物質導入に使用されることは試みられてこなかった。
 しかし、本発明者らは、驚くべきことに、LLOを用いることで、細胞へのダメージを生じさせ難く、物質を高効率に細胞内へと導入できることを見出した。
 本実施形態の導入剤によれば、pHが0以上6未満の範囲に至適pHを有するコレステロール依存性細胞溶解毒素を含有するので、細胞へのダメージを生じさせ難く、物質を高効率に細胞内へと導入できる。
Conventionally, in the reversible membrane perforation method using SLO, cells are damaged by perforation of the cell membrane, and depending on the technique, cell death tends to occur.
LLO is considered to have an optimum pH in the range of 0 to less than 6, and has not been tried to be used for substance introduction.
However, the present inventors have surprisingly found that by using LLO, it is difficult to cause damage to cells, and substances can be introduced into cells with high efficiency.
According to the introduction agent of the present embodiment, since it contains a cholesterol-dependent cytolytic toxin having an optimum pH in the range of 0 or more and less than 6, it is difficult to cause damage to the cell, and the substance is highly efficient in the cell. Can be introduced inside.
≪キット≫
 本発明の一実施形態に係るキットは、上述の導入剤を備え、細胞の物質導入に用いられるものである。
以下、実施の形態に基づき、本実施形態のキットを説明する。
≪Kit≫
The kit which concerns on one Embodiment of this invention is equipped with the above-mentioned introduction agent, and is used for the substance introduction | transduction of a cell.
Hereinafter, the kit of this embodiment will be described based on the embodiment.
 本実施形態のキットは、導入剤の他に、培地、緩衝剤等の試薬類や、カルシウム塩、ATP、ATP再生系等の細胞膜のリシールを促進させる試薬等を、更に備えるものであってよい。 In addition to the introduction agent, the kit of this embodiment may further include reagents such as a medium and a buffer, and reagents that promote reseal of the cell membrane such as calcium salt, ATP, and ATP regeneration system. .
 本実施形態のキットは、後述の本実施形態の物質導入方法に好適に用いることができる。本実施形態のキットは、本実施形態の物質導入方法を説明する指示書を備えることができる。
このように、後述の本実施形態の物質導入方法に用いら得る試薬類を、キット化することにより、より簡便かつ短時間に物質導入方法を行うことができる。
The kit of this embodiment can be suitably used for the substance introduction method of this embodiment described later. The kit of this embodiment can be provided with instructions describing the substance introduction method of this embodiment.
In this way, by introducing reagents that can be used in the substance introduction method of the present embodiment, which will be described later, into a kit, the substance introduction method can be performed more easily and in a short time.
≪物質導入方法≫
 本発明の一実施形態に係る物質導入方法は、上述の導入剤を細胞に接触させて細胞膜を穿孔し、物質を前記細胞に導入する工程1を含む方法である。
≪ Substance introduction method ≫
A substance introduction method according to an embodiment of the present invention is a method including the step 1 of bringing a substance into contact with a cell by bringing the aforementioned introduction agent into contact with the cell to perforate a cell membrane.
 当該導入剤は、前記コレステロール依存性細胞溶解毒素を含有するものである。即ち、本実施形態の物質導入方法は、前記コレステロール依存性細胞溶解毒素を細胞に接触させて、該細胞の細胞膜を穿孔し、物質を前記細胞に導入する工程1aを含む方法であってもよい。 The introduction agent contains the cholesterol-dependent cytolytic toxin. That is, the substance introduction method of this embodiment may be a method including the step 1a of bringing the cholesterol-dependent cytolytic toxin into contact with a cell, perforating the cell membrane of the cell, and introducing the substance into the cell. .
 物質導入方法に用いられてもよい当該導入剤は、コレステロール依存性細胞溶解毒素を含有する液であってもよい。又は、コレステロール依存性細胞溶解毒素を含有する培地であってもよい。又は、コレステロール依存性細胞溶解毒素を含有する液体培地であってもよい。
以下、導入剤がコレステロール依存性細胞溶解毒素を含有する液体培地である場合を例に、本実施形態の物質導入方法を説明する。細胞を当該培地(導入剤)で培養することで、導入剤を細胞に接触させることとなる。
 以下、図1を参照し、実施の形態に基づき、本実施形態の物質導入方法を説明する。
The introduction agent that may be used in the substance introduction method may be a liquid containing cholesterol-dependent cytolytic toxin. Alternatively, it may be a medium containing cholesterol-dependent cytolytic toxin. Alternatively, it may be a liquid medium containing cholesterol-dependent cytolytic toxin.
Hereinafter, the substance introduction method of the present embodiment will be described by taking as an example the case where the introduction agent is a liquid medium containing a cholesterol-dependent cytolytic toxin. By culturing the cells in the medium (introducing agent), the introducing agent is brought into contact with the cells.
Hereinafter, the substance introduction method of the present embodiment will be described based on the embodiment with reference to FIG.
 本実施形態の物質導入方法は、
 前記導入剤を細胞に接触させて細胞膜を穿孔する穿孔工程と、
 前記穿孔工程において細胞膜に形成された孔を介して、前記細胞に物質を導入する導入工程と、
 前記導入工程の後、カルシウムイオンを含む液を、前記孔が形成された前記細胞に接触させ、前記孔を再封入(リシール)する再封入工程と、を含む。
The substance introduction method of this embodiment is
A perforating step of perforating a cell membrane by contacting the introduction agent with cells;
An introducing step of introducing a substance into the cells through the holes formed in the cell membrane in the perforating step;
After the introduction step, a re-encapsulation step of bringing a solution containing calcium ions into contact with the cells in which the pores are formed and re-encapsulating (resealing) the pores.
(穿孔工程)
 穿孔工程は、導入剤を細胞に接触させて細胞膜を穿孔する工程である。
 図1の(a)~(c)は穿孔工程を説明する模式図である。
 図1の(a)に示すように、ウェルWには、コレステロール依存性細胞溶解毒素1(以下、「毒素1」ということがある。)を含有する培地M1(導入剤)、及び細胞Cが収容されている。コレステロール依存性細胞溶解毒素としては、上記導入剤で例示したものが挙げられる。
(Punching process)
The perforation step is a step of perforating the cell membrane by bringing the introduction agent into contact with the cells.
(A) to (c) of FIG. 1 are schematic diagrams for explaining a perforation process.
As shown in FIG. 1A, the well W contains a medium M1 (introducing agent) containing cholesterol-dependent cytolytic toxin 1 (hereinafter sometimes referred to as “toxin 1”) and cells C. Contained. Examples of the cholesterol-dependent cytolytic toxin include those exemplified for the introduction agent.
 図1の(b)に示すように、毒素1を含む培地M1(導入剤)で細胞Cを培養すると、毒素1が細胞Cの細胞膜中のコレステロールと結合することで、細胞Cの細胞膜に結合する。 As shown in FIG. 1 (b), when cell C is cultured in medium M1 (introducing agent) containing toxin 1, toxin 1 binds to cholesterol in the cell membrane of cell C, thereby binding to the cell membrane of cell C. To do.
 毒素1を含有する培地M1は、例えば、細胞培養に用いられる公知の培地に、毒素1を添加することで得ることができる。
 培地M1から毒素1を除いた培地成分としては、特に制限されず、細胞培養に用いられる培地を使用すればよく、従来公知の培地を使用してもよい。前記公知の培地として具体的には、例えば、DMEM(Dulbecco's Modified Eagle Medium)、MEM(Minimum Essential Media)、GMEM(Glasgow's MEM)、D-PBS(Dulbecco's Phosphate-Buffered Saline)培地等が挙げられる。
The medium M1 containing the toxin 1 can be obtained, for example, by adding the toxin 1 to a known medium used for cell culture.
The medium component obtained by removing toxin 1 from medium M1 is not particularly limited, and a medium used for cell culture may be used, and a conventionally known medium may be used. Specific examples of the known medium include, for example, DMEM (Dulbecco's Modified Eagle Medium), MEM (Minimum Essential Media), GMEM (Glasgow's MEM), and D-PBS (Dulbecco's Phosphate-Suffefer-Suffe medium Etc.
 細胞に接触させる培地M1(導入剤)に含まれる毒素1の濃度は、0.01μg/mL以上1μg/mL以下であることが好ましく、0.025μg/mL以上0.6μg/mL以下であることがより好ましく、0.05μg/mL以上0.3μg/mL以下であることがさらに好ましく、0.08μg/mL以上0.1μg/mL以下であることが特に好ましい。毒素1を上記濃度範囲で含有する培地M1は、細胞に与えるダメージがより少なく、且つ細胞への物質導入効果をより均等なものとすることができる。 The concentration of toxin 1 contained in medium M1 (introducing agent) to be brought into contact with cells is preferably 0.01 μg / mL or more and 1 μg / mL or less, and 0.025 μg / mL or more and 0.6 μg / mL or less. Is more preferably 0.05 μg / mL or more and 0.3 μg / mL or less, and particularly preferably 0.08 μg / mL or more and 0.1 μg / mL or less. The medium M1 containing the toxin 1 in the above-described concentration range has less damage to the cells and can make the substance introduction effect into the cells more uniform.
 培地M1に含まれる毒素1の量と細胞Cとの量比は、細胞の細胞種に応じて適宜定めることができる。例えば、細胞の細胞膜中のコレステロール含量が多いほど、膜穿孔で必要な毒素量が少なくなると考えられる。細胞膜中のコレステロール含量が高い場合は、培地M1に含まれる毒素の量(濃度)が少なくなる方向に調整すればよく、細胞膜中のコレステロール含量が低い場合は、培地M1に含まれる毒素の量(濃度)が高くなる方向に調整すればよい。 The amount ratio of the toxin 1 contained in the medium M1 and the cell C can be appropriately determined according to the cell type of the cell. For example, it is considered that the higher the cholesterol content in the cell membrane of the cell, the less the amount of toxin required for membrane perforation. When the cholesterol content in the cell membrane is high, the amount (concentration) of the toxin contained in the medium M1 may be adjusted to decrease, and when the cholesterol content in the cell membrane is low, the amount of the toxin contained in the medium M1 ( The density may be adjusted in the increasing direction.
 毒素1を含む培地M1で培養されるとき、細胞Cは0℃以上10℃以下の温度で培養されることが好ましく、2℃以上5℃以下の温度で培養されることが好ましい。即ち、培地M1の温度は、0℃以上10℃以下が好ましく、2℃以上5℃以下が好ましい。例えば、ウェルWが形成された培養容器を氷上(on ice)に置くことで、培地M1の温度を管理してもよい。当該温度域では、毒素1の膜穿孔活性が抑制されている。そのため、毒素1を含む培地M1と細胞Cとを接触させると、毒素1は細胞Cの細胞膜に結合するものの、穿孔の作用がより発揮され難く、細胞膜の穿孔の程度をより制御しやすくできる。 When cultured in medium M1 containing toxin 1, cells C are preferably cultured at a temperature of 0 ° C. or higher and 10 ° C. or lower, and preferably cultured at a temperature of 2 ° C. or higher and 5 ° C. or lower. That is, the temperature of the medium M1 is preferably 0 ° C. or higher and 10 ° C. or lower, and more preferably 2 ° C. or higher and 5 ° C. or lower. For example, the temperature of the culture medium M1 may be controlled by placing the culture container in which the well W is formed on ice. In the temperature range, the membrane perforation activity of toxin 1 is suppressed. Therefore, when the culture medium M1 containing the toxin 1 is brought into contact with the cell C, the toxin 1 binds to the cell membrane of the cell C, but the action of perforation is hardly exerted, and the degree of perforation of the cell membrane can be controlled more easily.
 毒素1を含む培地M1(導入剤)で細胞Cを培養する培養時間は、毒素の種類や細胞種に応じて適宜定めればよい。培養時間の一例として1分以上30分以下程度が挙げられる。 The culture time for culturing the cells C in the medium M1 (introducing agent) containing the toxin 1 may be appropriately determined according to the type of toxin and the cell type. An example of the culture time is about 1 to 30 minutes.
 物質導入される細胞は特に限定されず、例えば、動物細胞、植物細胞、昆虫細胞等の細胞や、大腸菌、枯草菌、酵母等の微生物が挙げられる。前記細胞は、細胞塊、スフェロイド、組織、胚様体、器官等の細胞集合体を構成するものであってもよい。 The cell into which the substance is introduced is not particularly limited, and examples thereof include cells such as animal cells, plant cells, and insect cells, and microorganisms such as Escherichia coli, Bacillus subtilis, and yeast. The cells may constitute cell aggregates such as cell clusters, spheroids, tissues, embryoid bodies, organs and the like.
 培地M1(導入剤)で細胞を培養した後、培地M1を、毒素1を含まない培地M2に交換し、培地M2で細胞を培養して、細胞Cの細胞膜を穿孔する。
 毒素1を含む培地M1から、毒素1を含まない培地M2に交換することで、細胞Cに結合した以外の毒素1は、ウェルW内の反応系から取り除かれる。
After culturing the cells in the medium M1 (introducing agent), the medium M1 is replaced with the medium M2 not containing the toxin 1, the cells are cultured in the medium M2, and the cell membrane of the cell C is perforated.
By exchanging the medium M1 containing the toxin 1 for the medium M2 not containing the toxin 1, the toxins 1 other than those bound to the cells C are removed from the reaction system in the well W.
 培地M2で培養されるとき、細胞Cは30℃以上40℃以下で培養されることが好ましく、33℃以上38℃以下で培養されることがより好ましく、35℃以上37℃以下で培養されることがさらに好ましい。即ち、培地M2の温度は、30℃以上40℃以下が好ましく、33℃以上38℃以下がより好ましく、35℃以上37℃以下がさらに好ましい。当該温度域で培養することで、毒素1の膜穿孔活性がより発揮され、細胞Cの細胞膜が穿孔され、細胞膜に孔が形成された細胞Cpとなる。培地M2には細胞Cに結合した毒素1以外の毒素1が除かれているため、孔からさらに毒素1が細胞内に入り細胞質中のオルガネラが穿孔されることを防止できる。 When cultured in the medium M2, the cells C are preferably cultured at 30 ° C. or higher and 40 ° C. or lower, more preferably cultured at 33 ° C. or higher and 38 ° C. or lower, and cultured at 35 ° C. or higher and 37 ° C. or lower. More preferably. That is, the temperature of the medium M2 is preferably 30 ° C. or higher and 40 ° C. or lower, more preferably 33 ° C. or higher and 38 ° C. or lower, and further preferably 35 ° C. or higher and 37 ° C. or lower. By culturing in the temperature range, the membrane perforation activity of toxin 1 is more exerted, the cell membrane of cell C is perforated, and a cell Cp having a pore formed in the cell membrane is obtained. Since the toxin 1 other than the toxin 1 bound to the cell C is removed from the medium M2, it is possible to prevent the toxin 1 from entering the cell further from the hole and perforating the organelle in the cytoplasm.
 培地M2で細胞Cを培養する培養時間は、毒素の種類や細胞種に応じて適宜定めればよい。培養時間の一例として1分以上30分以下程度が挙げられる。 The culture time for culturing the cells C in the medium M2 may be appropriately determined according to the type of toxin and the cell type. An example of the culture time is about 1 to 30 minutes.
培地M2としては、上記培地M1で例示した培地を用いてもよいが、実施例で使用したTB(Transport Buffer)培地を、特に好ましい培地として例示できる。TB培地では、細胞質のイオンの組成を考慮して調製されており、細胞膜の穿孔による影響を小さくできる。 As the medium M2, the medium exemplified in the medium M1 may be used, but the TB (Transport Buffer) medium used in the examples can be exemplified as a particularly preferable medium. The TB medium is prepared in consideration of the composition of cytoplasmic ions, and the influence of perforation of the cell membrane can be reduced.
前記穿孔は、毒素1をpH6以上10以下の条件下で細胞Cに作用させて行うことが好ましく、6.5以上8以下の条件下で作用させて行うことがより好ましく、7.0以上7.5以下の条件下で作用させて行うことがさらに好ましい。即ち、培地M2のpHは、6以上10以下が好ましく、6.5以上8以下がより好ましく、7.0以上7.5以下がさらに好ましい。pHは30℃以上40℃以下の温度範囲における測定値とする。
上記範囲内では、細胞をより良好に培養でき、毒素1の膜穿孔活性が、より穏やかに発揮される点からも好ましい。
The perforation is preferably performed by allowing the toxin 1 to act on the cell C under the condition of pH 6 to 10, more preferably 6.5 to 8 and more preferably 7.0 to 7 More preferably, it is carried out under the condition of 5 or less. That is, the pH of the medium M2 is preferably 6 or more and 10 or less, more preferably 6.5 or more and 8 or less, and even more preferably 7.0 or more and 7.5 or less. The pH is a measured value in a temperature range of 30 ° C. or higher and 40 ° C. or lower.
Within the above range, the cells can be cultured more favorably, and the membrane perforation activity of toxin 1 is also exhibited more gently.
前記穿孔は、毒素1を30℃以上40℃以下及びpH6以上10以下の条件下で細胞Cに作用させて行うことが好ましく、33℃以上38℃以下及びpH6.5以上8以下の条件下で作用させて行うことがより好ましく、35℃以上37℃以下及びpH7.0以上7.5以下の条件下で作用させて行うことがさらに好ましい。即ち、培地M2は、30℃以上40℃以下及びpH6以上10以下が好ましく、33℃以上38℃以下及びpH6.5以上8以下がより好ましく、35℃以上37℃以下及びpH7.0以上7.5以下がさらに好ましい。 The perforation is preferably performed by allowing toxin 1 to act on cell C under conditions of 30 ° C. or higher and 40 ° C. or lower and pH 6 or higher and 10 or lower, and under conditions of 33 ° C. or higher and 38 ° C. or lower and pH 6.5 or higher and 8 or lower. More preferably, it is carried out under the conditions of 35 ° C. to 37 ° C. and pH 7.0 to 7.5. That is, the medium M2 is preferably 30 ° C. or higher and 40 ° C. or lower and pH 6 or higher and 10 or lower, more preferably 33 ° C. or higher and 38 ° C. or lower, and pH 6.5 or higher and 8 or lower, more preferably 35 ° C. or higher and 37 ° C. or lower, and pH 7.0 or higher. 5 or less is more preferable.
(導入工程)
 導入工程は、前記穿孔工程において細胞膜に形成された孔を介して、細胞に物質を導入する工程である。
 図1の(d)は導入工程を説明する模式図である。図1の(d)に示すように、ウェルWには、細胞Cpに導入される物質3を含有する培地M3、及び前記穿孔工程で細胞膜に孔が形成された細胞Cpが収容されている。
 図1の(d)に示すように、細胞Cpを培地M3中で培養することで、物質3が細胞Cpに形成された孔を通り、細胞Cpの細胞膜の内側に導入される。
(Introduction process)
The introducing step is a step of introducing a substance into the cell through the hole formed in the cell membrane in the perforating step.
FIG. 1D is a schematic diagram for explaining the introduction process. As shown in FIG. 1 (d), the well W contains a medium M3 containing the substance 3 to be introduced into the cells Cp, and cells Cp in which pores have been formed in the cell membrane in the perforation step.
As shown in FIG. 1 (d), by culturing the cell Cp in the medium M3, the substance 3 passes through the hole formed in the cell Cp and is introduced into the cell membrane of the cell Cp.
物質3を含有する培地M3は、例えば、前記穿孔工程の培地M2に、物質3を添加することで得ることができる。培地M3に含まれる物質3の量は、物質3の種類に応じて適宜設定可能である。 The medium M3 containing the substance 3 can be obtained, for example, by adding the substance 3 to the medium M2 in the drilling step. The amount of the substance 3 contained in the medium M3 can be appropriately set according to the type of the substance 3.
本実施形態の物質導入方法において、細胞に導入される物質としては、当該方法によって細胞に導入可能なものであれば特に制限されない。該物質の分子量としては、例えば分子量0.1kDa以上20kDa以下であってもよく、1kDa以上15kDa以下であってもよく、5kDa以上10kDa以下であってもよい。上記範囲の物質の導入を行う場合、細胞質に含まれる成分の流出が生じにくいので、細胞へのダメージをより生じさせ難く、本実施形態の物質導入方法の利点がより発揮されやすく、より良好な細胞状態で物質を高効率に細胞内へと導入できる。 In the substance introduction method of the present embodiment, the substance introduced into the cell is not particularly limited as long as it can be introduced into the cell by the method. The molecular weight of the substance may be, for example, a molecular weight of 0.1 kDa to 20 kDa, 1 kDa to 15 kDa, or 5 kDa to 10 kDa. When introducing a substance in the above range, the outflow of components contained in the cytoplasm is less likely to occur, so that it is more difficult to cause damage to cells, and the advantages of the substance introduction method of the present embodiment are more easily exhibited and better. Substances can be introduced into cells with high efficiency in the cellular state.
本実施形態の物質導入方法において、細胞に導入される物質としては、細胞膜不透過性の性質を有するものであってもよい。
なお、本明細書において、「細胞膜不透過性を有する物質」とは、細胞膜の脂質二重膜に溶け込めず、脂質二重膜を透過できない性質を有する物質を意味する。本実施形態の物質導入方法によれば、細胞膜不透過性の物質であっても、前記孔を通じて、細胞内に高効率に導入可能である。
In the substance introduction method of this embodiment, the substance introduced into the cell may have a property of impermeable to the cell membrane.
In the present specification, the “substance having cell membrane impermeability” means a substance that does not dissolve in the lipid bilayer of the cell membrane and cannot permeate the lipid bilayer. According to the substance introduction method of the present embodiment, even a cell membrane impermeable substance can be introduced into cells through the pores with high efficiency.
なお、本実施形態では、細胞に導入される物質は培地M3に含有されていたが、細胞膜に形成された孔を介して物質を導入可能であれば、物質導入の手法は上記手法に限定されるものではない。物質導入の手法としては、例えば、上記細胞Cpに物質を接触させる方法が挙げられ、細胞Cpに直接に物質を吹き付ける方法、細胞Cpに直接に物質を滴下する方法等が挙げられる。 In this embodiment, the substance to be introduced into the cells is contained in the medium M3. However, the substance introduction technique is limited to the above technique as long as the substance can be introduced through the pores formed in the cell membrane. It is not something. Examples of the method of introducing a substance include a method of bringing a substance into contact with the cell Cp, a method of spraying a substance directly on the cell Cp, a method of dropping a substance directly on the cell Cp, and the like.
本実施形態の物質導入方法において、細胞に導入される物質としては、化合物であってよく、有機化合物であってよい。当該物質は核酸を含んでいてもよい。前記核酸としては、例えば、アンチセンス核酸、miRNA、siRNA、shRNA、リボザイム、アプタマー等が挙げられる。これらの化合物は、核酸医薬の有効成分となり得る。これらの核酸を含む化合物は、通常は細胞膜不透過性であるが、本実施形態の物質導入方法によれば、これらを効率よく細胞に導入可能である。 In the substance introduction method of the present embodiment, the substance introduced into the cell may be a compound or an organic compound. The substance may contain a nucleic acid. Examples of the nucleic acid include antisense nucleic acid, miRNA, siRNA, shRNA, ribozyme, aptamer and the like. These compounds can be active ingredients of nucleic acid drugs. Compounds containing these nucleic acids are normally impermeable to cell membranes, but according to the substance introduction method of this embodiment, they can be efficiently introduced into cells.
(再封入工程)
 再封入工程は、前記導入工程の後、カルシウムイオンを含む液を、前記孔が形成された前記細胞に接触させ、前記孔を再封入する工程である。
 図1の(e)は、再封入工程を説明する模式図である。図1の(e)に示すように、培地M4はカルシウムイオン(Ca2+)を含有する。
(Re-encapsulation process)
The re-encapsulation step is a step of bringing the solution containing calcium ions into contact with the cells in which the pores are formed and re-encapsulating the pores after the introduction step.
FIG. 1E is a schematic diagram for explaining the re-encapsulation process. As shown in FIG. 1 (e), the medium M4 contains calcium ions (Ca 2+ ).
なお、本明細書において「再封入(リシール)」とは、前記穿孔工程で細胞膜に形成された孔の開口が全部または部分的に閉じられることを意味する。再封入は、エンドサイトーシス及びエキソサイトーシスのうち少なくともいずれかによって、細胞膜から毒素1が取り除かれることにより生じるとされ、カルシウムイオンの存在により促進される。Ca2+を含有する培地M4で培養された細胞Cpは、細胞膜がリシールされ、細胞Cとなる。前記導入工程で細胞内に導入された物質3は、再封入によって効率的に細胞C内に保持される。 In the present specification, “re-encapsulation (reseal)” means that the opening of the hole formed in the cell membrane in the perforation step is completely or partially closed. Re-encapsulation is caused by removal of toxin 1 from the cell membrane by at least one of endocytosis and exocytosis, and is promoted by the presence of calcium ions. The cell Cp cultured in the medium M4 containing Ca 2+ has the cell membrane resealed to become a cell C. The substance 3 introduced into the cell in the introduction step is efficiently held in the cell C by re-encapsulation.
細胞に接触させる前記カルシウムイオンの濃度は、一例として、0.1mmol/L以上10mmol/L以下であってよく、0.5mmol/L以上5mmol/L以下であってよい。即ち、培地M4が含有するカルシウムイオンの濃度は、0.1mmol/L以上10mmol/L以下であってよく、0.5mmol/L以上5mmol/L以下であってよい。 As an example, the concentration of the calcium ions brought into contact with the cells may be 0.1 mmol / L or more and 10 mmol / L or less, and may be 0.5 mmol / L or more and 5 mmol / L or less. That is, the concentration of calcium ions contained in the medium M4 may be 0.1 mmol / L or more and 10 mmol / L or less, and may be 0.5 mmol / L or more and 5 mmol / L or less.
カルシウムイオンを含む液は、例えば、前記導入工程の培地M3に、カルシウムの塩を添加することで得ることができる。添加するカルシウムの塩としては、CaClが挙げられる。 The liquid containing calcium ions can be obtained, for example, by adding a calcium salt to the medium M3 in the introduction step. Examples of the calcium salt to be added include CaCl 2 .
再封入工程において、外来の細胞質を含む液を前記孔が形成された細胞に接触させずに、前記孔を再封入することが好ましい。細胞質には、エンドサイトーシス及びエキソサイトーシスのうち少なくともいずれかを促進させる因子が含まれている。従来行われていた再封入では、外来の細胞質を含む液を前記孔が形成された細胞に接触させて、再封入が行われていた。これは、従来法では、穿孔により細胞質成分が細胞外に放出されてしまうため、放出された分の細胞質を補充することが有効であったと考えられる。一方、本実施形態の物質導入方法によれば、細胞へのダメージが生じ難いため、細胞膜の再封入時に外部より細胞質を加えずとも、良好に再封入がなされるものと考えられる。 In the re-encapsulation step, it is preferable to re-encapsulate the pores without bringing a solution containing foreign cytoplasm into contact with the cells in which the pores are formed. The cytoplasm contains a factor that promotes at least one of endocytosis and exocytosis. In the conventional re-encapsulation, re-encapsulation was performed by bringing a solution containing foreign cytoplasm into contact with the cells in which the pores were formed. In the conventional method, since the cytoplasm component is released to the outside by perforation, it is considered that it was effective to replenish the released cytoplasm. On the other hand, according to the substance introduction method of the present embodiment, since it is difficult for damage to cells, re-encapsulation is considered to be performed well without adding cytoplasm from the outside when re-encapsulating the cell membrane.
本明細書において「外来の細胞質」とは、導入剤で処理されて穿孔された物質導入対象の細胞以外の細胞の細胞質を意味する。例えば、細胞膜に孔が形成された細胞Cpの細胞質は、外来の細胞質に該当しない。図1に示される例では、外来の細胞質とは、ウェルWに収容された細胞C,Cp以外の細胞から得られた細胞質である。なお、外来の細胞質の種類は、前記物質導入対象の細胞とは違う種類の細胞の細胞質でもよいし、同じ種類の細胞の細胞質でもよく、組織から調製した細胞質でもよい。 In the present specification, “foreign cytoplasm” means the cytoplasm of cells other than the substance introduction target cell that has been treated with an introduction agent and perforated. For example, the cytoplasm of the cell Cp in which pores are formed in the cell membrane does not correspond to the foreign cytoplasm. In the example shown in FIG. 1, the foreign cytoplasm is a cytoplasm obtained from cells other than the cells C and Cp accommodated in the well W. The type of foreign cytoplasm may be a cytoplasm of a different type of cell from the cell into which the substance is introduced, a cytoplasm of the same type of cell, or a cytoplasm prepared from a tissue.
なお、再封入工程において、外来の細胞質を含む液を前記孔が形成された細胞に接触させてもよく、その場合には、例えば外来の細胞質を、上記培地M3及び上記培地M4のうち少なくともいずれかに添加し、細胞を培養してもよい。 In the re-encapsulation step, a liquid containing a foreign cytoplasm may be brought into contact with the cells in which the pores are formed. In that case, for example, the foreign cytoplasm is at least one of the medium M3 and the medium M4. The cells may be cultured by adding them.
本実施形態の物質導入方法では、ATP再生系を含む培地で細胞を培養してもよく、導入工程及び再封入工程のうち少なくともいずれかにおいて、ATP再生系を含む培地で細胞を培養してもよい。例えば、ATP再生系を、上記培地M3及び上記培地M4のうち少なくともいずれかに添加し、細胞を培養してもよい。ATP再生系としては、例えば、ATP、クレアチンキナーゼ、及びクレアチンリン酸の組み合わせ等が挙げられる。 In the substance introduction method of the present embodiment, cells may be cultured in a medium containing an ATP regeneration system, or cells may be cultured in a medium containing an ATP regeneration system in at least one of the introduction step and the re-encapsulation step. Good. For example, the cells may be cultured by adding an ATP regeneration system to at least one of the medium M3 and the medium M4. Examples of the ATP regeneration system include a combination of ATP, creatine kinase, and creatine phosphate.
なお、本実施形態の物質導入方法では、穿孔工程と導入工程とを独立の工程として実施したが、穿孔と物質導入とはほぼ同時に生じてもよい。その場合、本実施形態の物質導入方法では、物質3は穿孔工程の後に、M3培地に添加することを例示したが、物質3は、穿孔工程の培地M2に添加されていてもよい。
また、本実施形態の物質導入方法では再封入工程を実施したが、本実施形態の物質導入方法において、再封入工程は必須の工程ではない。
 なお、「工程1」とは、上述の「穿孔工程」及び上述の「導入工程」を示す。「工程1a」とは、前記導入剤の具体例としてコレステロール依存性細胞溶解毒素を用いた場合における、上述の「穿孔工程」及び上述の「導入工程」を示す。「工程2」とは、再封入工程を示す。
In the substance introduction method of the present embodiment, the drilling process and the introduction process are performed as independent processes, but the drilling and the substance introduction may occur almost simultaneously. In this case, in the substance introduction method of the present embodiment, it is exemplified that the substance 3 is added to the M3 medium after the perforation process. However, the substance 3 may be added to the medium M2 of the perforation process.
Moreover, although the re-encapsulation process was implemented in the substance introduction method of this embodiment, the re-encapsulation process is not an essential process in the substance introduction method of this embodiment.
Step 1” indicates the above-mentioned “drilling step” and the above-mentioned “introduction step”. “Step 1a” indicates the above-mentioned “perforation step” and the above-mentioned “introduction step” in the case where cholesterol-dependent cytolytic toxin is used as a specific example of the introduction agent. “Step 2” indicates a re-encapsulation step.
以上のとおり、本実施形態の物質導入方法によれば、上述の導入剤を用いることにより、細胞へのダメージを生じさせ難く、高効率に物質を細胞内へと導入できる。また、細胞膜の再封入時に外部より細胞質を加えずとも、良好に再封入がなされ、細胞内に物質が保持される。 As described above, according to the substance introduction method of the present embodiment, by using the above-described introduction agent, it is difficult to cause damage to cells, and a substance can be introduced into cells with high efficiency. In addition, when the cell membrane is re-encapsulated, re-encapsulation is satisfactorily performed without adding cytoplasm from the outside, and the substance is retained in the cell.
≪スクリーニング方法≫
本発明の一実施形態に係るスクリーニング方法は、上述の物質導入方法を用いる方法であり、前記細胞に導入する前記物質が被験物質であり、上述の導入剤を細胞に接触させて細胞膜を穿孔し、被験物質を前記細胞に導入する工程Aを含む方法である。
以下、実施の形態に基づき、本実施形態のスクリーニング方法を説明する。
≪Screening method≫
The screening method according to an embodiment of the present invention is a method using the above-described substance introduction method, wherein the substance to be introduced into the cell is a test substance, and the introduction agent is contacted with the cell to perforate a cell membrane. A method comprising the step A of introducing a test substance into the cell.
Hereinafter, based on the embodiments, the screening method of the present embodiment will be described.
 本実施形態のスクリーニング方法は、
 上述の導入剤を細胞に接触させて細胞膜を穿孔する穿孔工程と、
前記穿孔工程において細胞膜に形成された孔を介して、前記細胞に被験物質を前記細胞に導入する導入工程と、
被験物質が導入された細胞と、被験物質が導入されていない細胞とを比較し、前記被験物質を評価する評価工程と、を含む。
The screening method of this embodiment is:
A perforation step of perforating a cell membrane by contacting the introduction agent with a cell;
An introducing step of introducing a test substance into the cells through the holes formed in the cell membrane in the perforating step;
An evaluation step of comparing the cell into which the test substance is introduced and the cell into which the test substance is not introduced, and evaluating the test substance.
被験物質としては、例えば、遺伝子ライブラリーの発現産物、合成低分子化合物ライブラリー、ペプチドライブラリー、核酸ライブラリー、抗体、細菌放出物質、細胞(微生物、植物細胞、動物細胞)の抽出液及び培養上清、精製または部分精製ポリペプチド、海洋生物、植物または動物由来の抽出物、土壌、ランダムファージペプチドディスプレイライブラリー等が挙げられる。
また、上述の物質導入方法において例示した、細胞に導入される物質を好適なものとして例示できる。
Examples of test substances include expression products of gene libraries, synthetic low molecular weight compound libraries, peptide libraries, nucleic acid libraries, antibodies, bacterial release substances, cells (microorganisms, plant cells, animal cells) extracts and cultures. Examples include supernatants, purified or partially purified polypeptides, marine organisms, plant or animal extracts, soils, random phage peptide display libraries, and the like.
Moreover, the substance introduce | transduced into the cell illustrated in the above-mentioned substance introduction | transduction method can be illustrated as a suitable thing.
穿孔工程及び導入工程は、上述の物質導入方法において、説明したとおりである。また、被験物質の導入方法としては、上述の物質導入方法において例示した方法を例示できる。
また、穿孔工程と導入工程とを独立の工程としてもよく、穿孔と物質導入とはほぼ同時に生じてもよい。
 また、導入工程の後であって、評価工程の前に、上述の再封入工程を実施してもよい。
 なお、「工程A」とは、細胞に導入する物質が被験物質である場合における上述の「穿孔工程」及び上述の「導入工程」を示す。「工程B」とは、後述の評価工程を示す。
The perforating step and the introducing step are as described in the substance introducing method. Moreover, as a method for introducing a test substance, the method exemplified in the above-described substance introduction method can be exemplified.
Further, the perforation process and the introduction process may be independent processes, and the perforation and the substance introduction may occur almost simultaneously.
Moreover, you may implement the above-mentioned re-encapsulation process after an introduction process and before an evaluation process.
“Step A” indicates the above-mentioned “perforation step” and the above-mentioned “introduction step” when the substance to be introduced into the cell is a test substance. “Process B” refers to an evaluation process described later.
(評価工程)
細胞に導入された被験物質は、細胞内で機能を発揮し得る。
評価工程は、被験物質が導入された細胞と、被験物質が導入されていない細胞とを比較し、前記被験物質を評価する工程である。
比較項目は、スクリーニングの目的に応じて適宜設定すればよい。例えば、疾患Aの治療剤又は予防剤の有効成分をスクリーニングするのであれば、疾患Aに関わる表現型の程度を比較項目とすればよい。より具体的には、例えば、被験物質が導入された細胞での疾患Aに関わる表現型の程度が、被験物質が導入されていない細胞での疾患Aに関わる表現型の程度よりも低い場合、被験物質が疾患Aの治療剤又は予防剤の有効成分となり得ると評価できる。
前記細胞の比較は、細胞抽出物や切片、細胞から得られた核酸の増幅産物等の細胞調整物に対して行ってもよい。
(Evaluation process)
The test substance introduced into the cell can exert its function inside the cell.
The evaluation step is a step of evaluating the test substance by comparing a cell into which the test substance is introduced and a cell into which the test substance is not introduced.
What is necessary is just to set a comparison item suitably according to the objective of screening. For example, if the active ingredient of a therapeutic or preventive agent for disease A is screened, the degree of phenotype associated with disease A may be used as a comparison item. More specifically, for example, when the degree of phenotype associated with disease A in cells into which the test substance is introduced is lower than the degree of phenotype associated with disease A in cells into which the test substance has not been introduced, It can be evaluated that the test substance can be an active ingredient of a therapeutic or preventive agent for disease A.
The cell comparison may be performed on a cell preparation such as a cell extract, a slice, or an amplification product of a nucleic acid obtained from the cell.
本実施形態のスクリーニング方法によれば、本実施形態の物質導入方法を用いるので、細胞へのダメージを生じさせ難く、被験物質を高効率に細胞内へと導入でき、細胞本来の機能が反映された高精度な被験物質のスクリーニングが可能となる。 According to the screening method of the present embodiment, since the substance introduction method of the present embodiment is used, it is difficult to cause damage to cells, the test substance can be introduced into cells with high efficiency, and the original function of the cell is reflected. High-accuracy screening of test substances becomes possible.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
(試薬類)
 実施例で用いた試薬類を以下に示す。
・リステリオリシンO(LLO):(CEDARLANE製、型番:CLPRO320)
・ストレプトリシンO(SLO):(バイオアカデミア製、型番:01-531)
・FITC-dextran 150:(TdB製、型番:FD150)
・Dextran, Fluorescein, 40,000 MW, Anionic, Lysine Fixable:(Invitrogen製、型番:D1845)
・Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable (Fluoro-Emerald) : (Invitrogen製、型番:D1820)
・Dextran, Fluorescein, 70,000 MW, Anionic, Lysine Fixable : (Invitrogen製、型番:D1822)
(Reagents)
The reagents used in the examples are shown below.
Listeriolysin O (LLO): (CEDARLANE, model number: CLPRO320)
・ Streptricin O (SLO): (manufactured by Bio Academia, model number: 01-531)
・ FITC-dextran 150: (TdB, model number: FD150)
Dextran, Fluorescein, 40,000 MW, Anionic, Lysine Fixable: (Invitrogen, model number: D1845)
Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable (Fluoro-Emerald): (Invitrogen, model number: D1820)
Dextran, Fluorescein, 70,000 MW, Anionic, Lysine Fixable: (Invitrogen, model number: D1822)
[実施例1]LLOを用いた細胞内への分子導入
 リステリオリシンO(LLO)が細胞に可逆的に穴を開け細胞内へ分子導入可能かどうかを確かめるため、様々な分子量の蛍光標識デキストランの細胞内への導入を検証した。
[Example 1] Introduction of molecules into cells using LLO In order to confirm whether Listeriolysin O (LLO) can reversibly open holes in cells and introduce molecules into cells, fluorescently labeled dextran having various molecular weights is used. Was introduced into the cells.
(1)穿孔工程
 まずHeLa細胞をPBSで洗浄後、LLOをDMEM(-FCS)で希釈し、それぞれLLOを1100倍希釈(0.45μg/mL)、2200倍希釈(0.23μg/mL)、3300倍希釈(0.15μg/mL)、4400倍希釈(0.11μg/mL)、5500倍希釈(0.091μg/mL)の各濃度で含むDMEM(-FCS)中で、細胞を氷上で5分培養し、細胞上にLLOを付着させた。氷上で冷したPBSで、上記細胞を3回洗浄したのち、あらかじめ温めておいたTB(transport buffer: 25mM Hepes, 1.15mM KOAC,250μM MgCl,2mM EGTA,pH7.2) を添加し、37℃で10分間インキュベーションし、細胞膜に穿孔を形成させた。
(1) Perforation step First, after washing HeLa cells with PBS, LLO was diluted with DMEM (-FCS), and LLO was diluted 1100 times (0.45 μg / mL), 2200 times diluted (0.23 μg / mL), Cells were cultured on ice in DMEM (−FCS) containing 3300-fold dilution (0.15 μg / mL), 4400-fold dilution (0.11 μg / mL), and 5500-fold dilution (0.091 μg / mL). After culturing, LLO was allowed to adhere on the cells. After washing the above cells three times with PBS cooled on ice, TB (transport buffer: 25 mM Hepes, 1.15 mM KOAC, 250 μM MgCl 2 , 2 mM EGTA, pH 7.2) previously added was added, and 37 Incubation was performed at 0 ° C. for 10 minutes to form perforations in the cell membrane.
(2)導入工程
次いで、TBで上記細胞を一回洗浄したのち、ATP再生系(1mM ATP,50μg/mL creatine kinase,2.62mg/mL creatine phosphate)、GTP(1mM)、Glucose(1mg/mL)、及び10kDa、40kDa若しくは70kDaのフルオレセイン標識デキストラン(Fluorescein-dextran、濃度100μg/mL)、又は、150kDaのFITC標識デキストラン(FITC-dextran、濃度100μg/mL)を上記終濃度となるよう添加し、37℃で30分間インキュベーションし、細胞内に導入させた。
(2) Introduction step Next, the cells were washed once with TB, and then ATP regeneration system (1 mM ATP, 50 μg / mL creatine kinase, 2.62 mg / mL creatine phosphate), GTP (1 mM), Glucose (1 mg / mL) And 10 kDa, 40 kDa or 70 kDa fluorescein-labeled dextran (Fluorescein-dextran, concentration 100 μg / mL) or 150 kDa FITC-labeled dextran (FITC-dextran, concentration 100 μg / mL), It was incubated at 37 ° C. for 30 minutes and introduced into the cells.
(3)再封入工程
次いで、さらに1mM CaClを添加して37℃で5分間インキュベーションすることで、細胞膜の再封入(リシール)を誘導した。
(3) Re-encapsulation step Next, 1 mM CaCl 2 was further added and incubated at 37 ° C. for 5 minutes to induce re-encapsulation (reseal) of the cell membrane.
(4)蛍光の定量
上記細胞をPBSで洗浄した後、DMEMに交換し、37℃5%CO環境下で1時間培養した。次に、細胞をトリプシンで剥がし、Flowcytometryにより細胞のFITC蛍光を定量した。
 結果を図2~5に示す。グラフ中の%は、インタクトの細胞に対して検出された蛍光強度の領域を含まないようゲートを設定し、Flowcytometryで検出された細胞のうちゲート内にプロットされた細胞の割合(%)を示している。
(4) Quantification of fluorescence The cells were washed with PBS, exchanged with DMEM, and cultured for 1 hour at 37 ° C. in a 5% CO 2 environment. Next, the cells were detached with trypsin, and the FITC fluorescence of the cells was quantified by Flowcytometry.
The results are shown in FIGS. % In the graph indicates the percentage of cells plotted in the gate out of the cells detected by Flowcytometry, with the gate set so as not to include the region of fluorescence intensity detected for intact cells. ing.
 図2~5で示すとおり、1/5500(0.091μg/mL)のLLOを含む培地で細胞膜に穴を開けた場合、10kDaのデキストランは96%以下の細胞に保持されているのに対し、40kDaでは60%以下、70kDaでは5%以下、150kDaでは7%以下と、大きな分子は細胞内に導入されない傾向であった。また、導入される分子の大きさはLLO濃度に依存し、例えば一番濃い濃度で作用させた1/1100(0.45μg/mL)のLLOでは、10kDaのデキストランは97%以下、40kDaでは90%以下、70kDaでは53%以下、150kDaでは42%以下の細胞にデキストランが導入された。
本実施例の使用濃度の条件では約10kDaまでのデキストランはLLOによって形成される孔を自由に通過可能であり、それ以上の分子量のデキストランの場合は、LLOの濃度に依存して通過しやすさが変化することがわかった。
As shown in FIGS. 2 to 5, when the cell membrane was perforated with a medium containing 1/5500 (0.091 μg / mL) LLO, 10 kDa dextran was retained in 96% or less of cells, At 40 kDa, 60% or less, at 70 kDa, 5% or less, and at 150 kDa, 7% or less, large molecules tended not to be introduced into cells. In addition, the size of the molecule to be introduced depends on the LLO concentration. For example, in the case of 1/1100 (0.45 μg / mL) LLO operated at the highest concentration, dextran at 10 kDa is 97% or less, and 90 at 40 kDa. Dextran was introduced into cells of less than or equal to 70%, 53% or less at 70 kDa, and 42% or less at 150 kDa.
Under the conditions of the concentration used in this example, dextran up to about 10 kDa can freely pass through the pores formed by LLO, and in the case of dextran having a higher molecular weight, it can easily pass depending on the concentration of LLO. Was found to change.
[実施例2]LLOを用いた細胞内への分子導入と、SLOを用いた細胞内への分子導入との比較
 LLOによるリシール細胞とSLOによるリシール細胞との細胞形態の比較を行った(図6)。
[Example 2] Comparison of introduction of molecules into cells using LLO and introduction of cells into cells using SLO Cell morphology was compared between reseal cells using LLO and reseal cells using SLO (Fig. 6).
(1)穿孔工程
 LLO(0.15μg/mL)又はSLO(0.125μg/mL)を含むDMEM(-FCS)中で、HeLa細胞を氷上で5分間培養し、LLO又はSLOを作用させた。上記細胞をPBSで洗浄後、温めておいたプロピジウムアイオダイド(PI)を含むTBで、37℃10分インキュベーションした。PIは細胞膜不透過性の核酸染色剤であり、細胞膜に穴が空いた細胞のみが染色される。
(1) Drilling step HeLa cells were cultured for 5 minutes on ice in DMEM (-FCS) containing LLO (0.15 μg / mL) or SLO (0.125 μg / mL) to act on LLO or SLO. The cells were washed with PBS, and then incubated at 37 ° C. for 10 minutes with TB containing warm propidium iodide (PI). PI is a cell membrane-impermeable nucleic acid stain, and only cells with holes in the cell membrane are stained.
(2)導入工程
そのあとL5178Y細胞から調整した細胞質(1.5mg/mL)存在下(cyrosol+)又は非存在下(cyrosol-)で上記ATP再生系、GTP、グルコース及び10kDaのFluorescein-dextranを加え37℃で30分間インキュベーションをし、細胞内に導入させた。
(2) Introduction step After that, the above ATP regeneration system, GTP, glucose and 10 kDa Fluorescein-dextran are added in the presence (cyrosol +) or absence (cyrosol−) of cytoplasm (1.5 mg / mL) prepared from L5178Y cells. Incubation was carried out at 37 ° C. for 30 minutes and introduced into the cells.
(3)再封入工程
1mM CaClを加えて37℃で5分間インキュベーションし、細胞膜を再度閉じた。
(3) Re-encapsulation step 1 mM CaCl 2 was added and incubated at 37 ° C. for 5 minutes, and the cell membrane was closed again.
(4)細胞の観察
DMEMに交換し、37℃5%CO環境下で30分間培養した。培養後、細胞を、共焦点レーザー顕微鏡を用いて観察した。結果を図6に示す。
(4) Observation of cells The cells were replaced with DMEM and cultured in a 37 ° C., 5% CO 2 environment for 30 minutes. After culture, the cells were observed using a confocal laser microscope. The results are shown in FIG.
 図6で示すとおり、LLOで穴を開けたリシール細胞は、細胞質の添加あり、なしにかかわらず、細胞の形が綺麗でインタクトのままであった。それに対して、SLOで穴を開けたリシール細胞では(特に細胞質なしのときに)、細胞膜からボコボコとした膜の飛び出し(ブレブ)が観察された。SLOによるリシール細胞で見られるブレブは時間が経つとなくなるものではあるが、LLOの方が細胞膜のインテグリティーを破壊せずに細胞内に分子導入できることが明らかとなった。 As shown in FIG. 6, resealed cells that had been punctured with LLO remained clean and intact, with or without the addition of cytoplasm. On the other hand, in resealed cells that had been punctured with SLO (particularly when there was no cytoplasm), a protruding membrane (bleb) from the cell membrane was observed. Although the bleb seen in resealed cells by SLO disappears over time, it has become clear that LLO can introduce molecules into cells without destroying the integrity of the cell membrane.
[実施例3]LLOによる分子導入後の細胞の機能解析1
 次に、膜非透過性分子を、LLOを用いて外来の細胞質の添加なしで細胞内に導入し、その分子の細胞内における機能を検定した。導入に用いたのはcAMPの膜非透過性アナログである。cAMPはPKAを活性化するため、cAMPアナログ導入後のPKAによる基質タンパク質のリン酸化について検証を行った。
[Example 3] Functional analysis of cells after introduction of molecules by LLO 1
Next, a membrane-impermeable molecule was introduced into the cell using LLO without the addition of exogenous cytoplasm and the function of the molecule in the cell was assayed. It was a membrane impermeable analog of cAMP used for introduction. Since cAMP activates PKA, the phosphorylation of the substrate protein by PKA after introduction of cAMP analog was verified.
(1)インタクトHeLa細胞におけるPKAの基質タンパク質の検出(コントロール)
 まず、コントロールとして、インタクトHeLa細胞におけるPKAの基質タンパク質の検出を行った(図7)。インタクトHeLa細胞に膜透過性のPKA阻害剤(H89)、又はセリン/スレオニンフォスファターゼ阻害剤でありPKA基質のリン酸化レベルを上昇させるオカダ酸(OA)を加え、0分間、30分間、60分間、90分間又は120分間培養した。培養後の細胞からライセートを作製し、抗phospho PKA substrate抗体を用いたWestern blottingによりPKAによってリン酸化されるタンパク質のバンドを検出した。結果を図7に示す。
(1) Detection of PKA substrate protein in intact HeLa cells (control)
First, as a control, PKA substrate protein was detected in intact HeLa cells (FIG. 7). Membrane-permeable PKA inhibitor (H89) or okadaic acid (OA), which is a serine / threonine phosphatase inhibitor and increases the phosphorylation level of PKA substrate, is added to intact HeLa cells, 0 minutes, 30 minutes, 60 minutes, Incubated for 90 or 120 minutes. A lysate was prepared from the cultured cells, and a protein band phosphorylated by PKA was detected by Western blotting using an anti-phospho PKA substrate antibody. The results are shown in FIG.
図7に示すとおり、H89を30~120分間作用させた時に消失し、オカダ酸を作用させた時にはあるバンドを2本、150kDaと50kDaとに見出した。これらのバンドはPKAの活性化又は非活性化に鋭敏に反応する基質タンパク質であると考えられる。このうち、150kDaのほうのバンドについて、LLOによるリシール細胞にcAMP膜非透過性アナログを添加した時の、基質タンパク質のリン酸化の指標とすることにした。 As shown in FIG. 7, when H89 was allowed to act for 30 to 120 minutes, it disappeared, and when okadaic acid was allowed to act, two bands were found at 150 kDa and 50 kDa. These bands are thought to be substrate proteins that react sensitively to the activation or deactivation of PKA. Among these, the band of 150 kDa was used as an index of phosphorylation of substrate protein when cAMP membrane impermeable analog was added to resealed cells by LLO.
(2)LLOを用いたcAMPアナログの細胞内導入
 LLOを用いたcAMPアナログの細胞内導入を以下の方法で行った。
(2) Intracellular introduction of cAMP analog using LLO Intracellular introduction of cAMP analog using LLO was performed by the following method.
(2-1)穿孔工程
 まず、HeLa細胞をLLO(0.15μg/mL)存在下又は非存在下で、氷上で5分間作用させた。細胞をPBSで洗浄後、PBSで37℃10分間インキュベーションした。
(2-1) Perforation step First, HeLa cells were allowed to act on ice for 5 minutes in the presence or absence of LLO (0.15 μg / mL). The cells were washed with PBS and then incubated with PBS at 37 ° C. for 10 minutes.
(2-2)導入工程
その後、ATP再生系、GTP、グルコースとともに1mM 8-OH-cAMP(膜不透過性活性化剤)、1mM Rp-8-OH-cAMP(膜不透過性阻害剤)存在下又は非存在下で細胞を37℃で30分間インキュベーションした。
(2-2) Introduction step After that, 1 mM 8-OH-cAMP (membrane impermeable activator), 1 mM Rp-8-OH-cAMP (membrane impermeable inhibitor) is present together with the ATP regeneration system, GTP, and glucose. Cells were incubated at 37 ° C. for 30 minutes in the absence or absence.
(2-3)再封入工程
その後、CaClによるリシール操作を行った。
(2-3) Re-encapsulation process After that, a reseal operation with CaCl 2 was performed.
(2-4)PKAの基質タンパク質の検出
さらに37℃5%CO環境下で1時間培養した。その後、細胞を可溶化しライセートを作製し、抗phospho PKA substrate抗体を用いたWestern blottingによりPKAによってリン酸化されるタンパク質のバンドを検出した。結果を図8に示す。
(2-4) Detection of PKA substrate protein The cells were further cultured at 37 ° C. in a 5% CO 2 environment for 1 hour. Thereafter, the cells were solubilized to prepare a lysate, and a protein band phosphorylated by PKA was detected by Western blotting using an anti-phospho PKA substrate antibody. The results are shown in FIG.
 図8に示すとおり、上記150kDaのバンドは、インタクトのコントロール実験と同様、cAMP活性型アナログ導入時に若干強く、cAMP非活性型アナログ導入時には顕著に弱く検出された。
このことは、LLO処理により導入された膜非透過性cAMPアナログが、細胞内でも確かに機能することを意味している。
As shown in FIG. 8, the 150 kDa band was detected slightly stronger when cAMP active analog was introduced and significantly weaker when cAMP inactive analog was introduced, as in the intact control experiment.
This means that the membrane-impermeable cAMP analog introduced by the LLO treatment certainly functions in the cell.
[実施例4]LLOによる分子導入後の細胞の機能解析2
 次に、再度、膜非透過性分子を、LLOを用いて外来の細胞質の添加なしで細胞内に導入し、その分子の細胞内における機能を検定した。導入に用いたのはcAMPの膜非透過性アナログである。cAMPはPKAを活性化するため、cAMPアナログ導入後のPKAによる基質タンパク質のリン酸化について検証を行った。
[Example 4] Functional analysis of cells after molecule introduction by LLO 2
Next, again, a membrane-impermeable molecule was introduced into the cell using LLO without the addition of exogenous cytoplasm, and the intracellular function of the molecule was assayed. It was a membrane impermeable analog of cAMP used for introduction. Since cAMP activates PKA, the phosphorylation of the substrate protein by PKA after introduction of cAMP analog was verified.
(1)インタクトHeLa細胞におけるPKAの基質タンパク質の検出(コントロール)
 まず、コントロールとして、インタクトHeLa細胞におけるPKAの基質タンパク質の検出を行った(図9A及び図9B)。インタクトHeLa細胞に、膜透過性の10μM、100μM、1000μM若しくは2000μMのPKA活性化剤(db-cAMP)、又は、0.3μM、3μM、30μM若しくは60μMのPKA阻害剤(H89)を加え、1時間培養した。また、コントロール1として薬剤無添加、コントロール2としてDMSO添加のインタクトHeLa細胞も同様に1時間培養した。培養後の細胞からライセートを作製し、抗phospho PKA substrate抗体を用いたWestern blottingによりPKAによってリン酸化されるタンパク質のバンドを検出した。結果を図9Aに示す。図9Aにおいて、「band-a」~「band-i」は、db-cAMPに対して濃度依存的に変化する複数のバンドを示す。また、GAPDHは、ローディングコントロールである。
(1) Detection of PKA substrate protein in intact HeLa cells (control)
First, as a control, PKA substrate protein was detected in intact HeLa cells (FIGS. 9A and 9B). To intact HeLa cells, membrane permeable 10 μM, 100 μM, 1000 μM or 2000 μM PKA activator (db-cAMP) or 0.3 μM, 3 μM, 30 μM or 60 μM PKA inhibitor (H89) is added for 1 hour. Cultured. Intact HeLa cells with no drug added as control 1 and DMSO added as control 2 were also cultured for 1 hour in the same manner. A lysate was prepared from the cultured cells, and a protein band phosphorylated by PKA was detected by Western blotting using an anti-phospho PKA substrate antibody. The results are shown in FIG. 9A. In FIG. 9A, “band-a” to “band-i” indicate a plurality of bands that change in a concentration-dependent manner with respect to db-cAMP. GAPDH is a loading control.
図9Aに示すとおり、db-cAMPに対して濃度依存的に変化するバンドを9本見出した。これらのバンドはPKAの活性化に鋭敏に反応する基質タンパク質であると考えられる。このうち、「band-e」について、LLOによるリシール細胞にcAMP膜非透過性アナログを添加した時の、基質タンパク質のリン酸化の指標とすることにした。 As shown in FIG. 9A, nine bands were found that varied in a concentration-dependent manner with respect to db-cAMP. These bands are thought to be substrate proteins that react sensitively to PKA activation. Among these, “band-e” was used as an index of phosphorylation of the substrate protein when cAMP membrane impermeable analog was added to resealed cells by LLO.
 また、図9Bは、GAPDHの輝度に対するband-eの輝度を定量したグラフである。
 図9Bからも、GAPDHの輝度に対するband-eの輝度がdb-cAMPに対して濃度依存的に上昇することが確かめられた。
FIG. 9B is a graph obtained by quantifying the band-e luminance with respect to the GAPDH luminance.
Also from FIG. 9B, it was confirmed that the band-e luminance with respect to the GAPDH luminance increased in a concentration-dependent manner with respect to db-cAMP.
(2)LLOを用いたcAMPアナログの細胞内導入1
 LLOを用いたcAMPアナログの細胞内導入を以下の方法で行った。
(2) Intracellular introduction of cAMP analog using LLO 1
Intracellular introduction of cAMP analog using LLO was carried out by the following method.
(2-1)穿孔工程
 まず、HeLa細胞をLLO(0.15μg/mL)存在下で、氷上で5分間作用させた。細胞をTBで洗浄後、TBで37℃10分間インキュベーションした。
(2-1) Perforation Step First, HeLa cells were allowed to act on ice for 5 minutes in the presence of LLO (0.15 μg / mL). The cells were washed with TB and then incubated with TB for 10 minutes at 37 ° C.
(2-2)導入工程
その後、ATP再生系、GTP、グルコースとともに1mM 8-OH-cAMP(膜不透過性活性化剤)又は1mM db-cAMP(膜透過性活性化剤)存在下で細胞を37℃で30分間インキュベーションした。
(2-2) Introduction step Thereafter, the cells are treated in the presence of 1 mM 8-OH-cAMP (membrane-impermeable activator) or 1 mM db-cAMP (membrane-permeable activator) together with the ATP regeneration system, GTP, and glucose. Incubated for 30 minutes at 37 ° C.
(2-3)再封入工程
その後、CaClによるリシール操作を行った。
(2-3) Re-encapsulation process After that, a reseal operation with CaCl 2 was performed.
(2-4)評価工程(PKAの基質タンパク質の検出)
さらに37℃5%CO環境下で1時間培養した。その後、細胞を可溶化しライセートを作製し、抗phospho PKA substrate抗体を用いたWestern blottingによりPKAによってリン酸化されるタンパク質のバンドを検出した。結果を図10Aに示す。β-Tubulinは、ローディングコントロールである。
(2-4) Evaluation process (detection of PKA substrate protein)
Further, the cells were cultured for 1 hour in an environment of 37 ° C. and 5% CO 2 . Thereafter, the cells were solubilized to prepare a lysate, and a protein band phosphorylated by PKA was detected by Western blotting using an anti-phospho PKA substrate antibody. The results are shown in FIG. 10A. β-Tubulin is a loading control.
 図10Aに示すとおり、上記band-eは、インタクトのコントロール実験と同様、膜不透過性活性化剤であるcAMP活性型アナログ導入時に顕著に強く検出された。
 一方、上記band-eは、インタクトのコントロール実験と比較して、膜透過性活性化剤であるdb-cAMP導入時に若干弱く検出された。
As shown in FIG. 10A, the band-e was remarkably detected when the cAMP active analog, which is a membrane-impermeable activator, was introduced, as in the intact control experiment.
On the other hand, the band-e was detected slightly weaker when db-cAMP, which is a membrane permeability activator, was introduced, compared to the intact control experiment.
 また、図10Bは、図10AのWestern blottingの検出結果から、β-Tubulinの輝度に対するband-eの輝度を定量したグラフである。
 図10Bからも、β-Tubulinの輝度に対するband-eの輝度が、膜透過性活性化剤であるdb-cAMP導入時よりも、膜非透過性cAMPアナログが導入時に上昇することが確かめられた。
FIG. 10B is a graph obtained by quantifying the band-e luminance with respect to the β-tubulin luminance from the detection result of Western blotting in FIG. 10A.
FIG. 10B also confirmed that the band-e luminance relative to the β-tubulin luminance was higher when the membrane-impermeable cAMP analog was introduced than when the membrane-permeable activator db-cAMP was introduced. .
 以上のことから、LLO処理により、膜透過性活性化剤であるdb-cAMPよりも、膜非透過性cAMPアナログがより多く細胞内に導入され、機能したことが示唆された。 From the above, it was suggested that more membrane impermeable cAMP analog was introduced into the cell and functioned by LLO treatment than db-cAMP, which is a membrane permeability activator.
(3)LLOを用いたcAMPアナログの細胞内導入2
 LLOを用いたcAMPアナログの細胞内導入を以下の方法で行った。
(3) Intracellular introduction of cAMP analog using LLO 2
Intracellular introduction of cAMP analog using LLO was carried out by the following method.
(3-1)穿孔工程
 まず、HeLa細胞をLLO(0.15μg/mL)存在又は非存在(コントロール)下で、氷上で5分間作用させた。細胞をTBで洗浄後、TBで37℃10分間インキュベーションした。
(3-1) Perforation Step First, HeLa cells were allowed to act on ice for 5 minutes in the presence or absence (control) of LLO (0.15 μg / mL). The cells were washed with TB and then incubated with TB for 10 minutes at 37 ° C.
(3-2)導入工程
その後、ATP再生系、GTP、グルコースとともに1mM 8-OH-cAMP(膜不透過性活性化剤)存在又は非存在下で細胞を37℃で30分間インキュベーションした。
(3-2) Introduction Step After that, the cells were incubated at 37 ° C. for 30 minutes in the presence or absence of 1 mM 8-OH-cAMP (membrane impermeable activator) together with ATP regeneration system, GTP and glucose.
(3-3)再封入工程
その後、CaClによるリシール操作を行った。
(3-3) Re-encapsulation process After that, a reseal operation with CaCl 2 was performed.
(3-4)評価工程(PKAの基質タンパク質の検出)
さらに37℃5%CO環境下で1時間培養した。その後、細胞を可溶化しライセートを作製し、抗phospho PKA substrate抗体を用いたWestern blottingによりPKAによってリン酸化されるタンパク質のバンドを検出した。結果を図11Aに示す。β-Tubulinは、ローディングコントロールである。
(3-4) Evaluation process (detection of PKA substrate protein)
Further, the cells were cultured for 1 hour in an environment of 37 ° C. and 5% CO 2 . Thereafter, the cells were solubilized to prepare a lysate, and a protein band phosphorylated by PKA was detected by Western blotting using an anti-phospho PKA substrate antibody. The results are shown in FIG. 11A. β-Tubulin is a loading control.
 図11Aに示すとおり、本実施形態の物質導入方法を用いたHeLa細胞において、上記band-eは、インタクトのコントロール実験と同様、顕著に強く検出された。
 一方、LLO処理を行わなかった場合では、上記band-eは、インタクトのコントロール実験と比較して、若干弱く検出された。
As shown in FIG. 11A, in the HeLa cells using the substance introduction method of the present embodiment, the band-e was remarkably detected as in the intact control experiment.
On the other hand, when the LLO treatment was not performed, the band-e was detected slightly weaker than the intact control experiment.
 また、図11Bは、図11AのWestern blottingの検出結果から、β-Tubulinの輝度に対するband-eの輝度を定量したグラフである。
 図11Bからも、β-Tubulinの輝度に対するband-eの輝度が、本実施形態の物質導入方法を用いた場合に上昇することが確かめられた。
FIG. 11B is a graph obtained by quantifying the band-e luminance with respect to the β-tubulin luminance from the detection result of Western blotting in FIG. 11A.
Also from FIG. 11B, it was confirmed that the band-e luminance with respect to the β-tubulin luminance increases when the substance introduction method of this embodiment is used.
以上のことから、LLO処理により、膜透過性活性化剤であるdb-cAMPが細胞内に導入され、機能したことが示唆された。 From the above, it was suggested that db-cAMP, a membrane permeability activator, was introduced into cells by LLO treatment and functioned.
[実施例5]LLOによる分子導入後の細胞の機能解析3
 次に、異なる膜非透過性分子を、LLOを用いて外来の細胞質の添加なしで細胞内に導入し、その分子の細胞内における機能を検定した。導入に用いたのはAkt阻害剤である。Aktは、PH(Plekstrin Homology)ドメインをN末に有するセリン/スレオニンキナーゼである。また、Aktは細胞死(アポトーシス)を制御する重要な細胞内シグナル伝達因子である。Aktは、Thr308とSer473とがリン酸化されることで、活性化する。そのため、Akt阻害剤導入後のAktのリン酸化について検証を行った。
[Example 5] Functional analysis of cells after introduction of molecules by LLO 3
Next, different membrane impermeable molecules were introduced into the cells using LLO without the addition of exogenous cytoplasm and the function of the molecules in the cells was assayed. An Akt inhibitor was used for introduction. Akt is a serine / threonine kinase having a PH (Plekstrin Homology) domain at the N-terminus. Akt is an important intracellular signaling factor that controls cell death (apoptosis). Akt is activated by phosphorylation of Thr308 and Ser473. Therefore, the phosphorylation of Akt after introduction of the Akt inhibitor was verified.
(1)LLOを用いたAkt阻害剤の細胞内導入
 LLOを用いたAkt阻害剤の細胞内導入を以下の方法で行った。なお、各工程の概要図を図12Aに示す。図12Aにおいて、上の矢印が各工程における操作の概要を示している。また、下の四角は、サンプルごとに加えた試薬の種類及びタイミングを示している。
(1) Intracellular introduction of an Akt inhibitor using LLO Intracellular introduction of an Akt inhibitor using LLO was performed by the following method. In addition, the schematic diagram of each process is shown to FIG. 12A. In FIG. 12A, the upper arrow shows the outline of the operation in each step. The lower square indicates the type and timing of the reagent added for each sample.
(1-1)穿孔工程
 まず、HeLa細胞をLLO(0.15μg/mL)存在下で、氷上で5分間作用させた。細胞をTBで洗浄後、TBで37℃10分間インキュベーションした。
(1-1) Drilling step First, HeLa cells were allowed to act on ice for 5 minutes in the presence of LLO (0.15 μg / mL). The cells were washed with TB and then incubated with TB for 10 minutes at 37 ° C.
(1-2)導入工程
その後、ATP再生系、GTP、グルコースとともに、Akt阻害剤存在又は非存在下で細胞を37℃で30分間インキュベーションした。なお、Akt阻害剤として、1mMの配列番号1(AVDTHPDRLWAWEKF)に示すアミノ酸配列からなるペプチド(Akt-in)、50μMの配列番号2(YGRKKRRQRRRAVDTHPDRLWAWEKF)に示すアミノ酸配列からなるTAT標識された前記ペプチド(TAT-Akt-in)、又は、31.2μMのトリシリビンを添加した。
(1-2) Introduction Step After that, the cells were incubated with ATP regeneration system, GTP and glucose in the presence or absence of an Akt inhibitor at 37 ° C. for 30 minutes. As an Akt inhibitor, a peptide (Akt-in) composed of an amino acid sequence represented by 1 mM of SEQ ID NO: 1 (AVDTHPDRLWAWEKF), a TAT-labeled peptide (TAT) composed of an amino acid sequence represented by SEQ ID NO: 2 (YGRKKRRQRRRAVTHPDRLWAWEKF) of 50 μM. -Akt-in) or 31.2 μM triciribine.
(1-3)再封入工程
その後、CaClによるリシール操作を行った。
(1-3) Re-encapsulation step Thereafter, a reseal operation with CaCl 2 was performed.
(1-4)評価工程(PKAの基質タンパク質の検出)
さらに37℃5%CO環境下で2時間培養した。なお、図12Aに示すとおり、TAT-Akt-in及びトリシリビンは、リシール後においても培地に添加して培養した。その後、EGTを添加し、5分間培養した。その後、細胞を可溶化しライセートを作製し、抗リン酸化Akt(P-Akt)抗体及び抗総Akt(Total-Akt)抗体を用いたWestern blottingによりリン酸化Akt及び総Aktを検出した。結果を図12Bに示す。
(1-4) Evaluation process (detection of PKA substrate protein)
Further, the cells were cultured for 2 hours in an environment of 37 ° C. and 5% CO 2 . As shown in FIG. 12A, TAT-Akt-in and trisiribine were added to the medium and cultured after resealing. Thereafter, EGT was added and incubated for 5 minutes. Thereafter, cells were solubilized to prepare lysates, and phosphorylated Akt and total Akt were detected by Western blotting using anti-phosphorylated Akt (P-Akt) antibody and anti-total Akt (Total-Akt) antibody. The result is shown in FIG. 12B.
 図12Bに示すとおり、Akt阻害剤非存在下で培養した細胞では、EGT刺激により、リン酸化Aktが顕著に強く検出された。
 一方、Akt阻害剤存在下で培養した細胞では、Akt阻害剤非存在下で培養した細胞と比較して、リン酸化Aktが顕著に弱く検出された。
As shown in FIG. 12B, phosphorylated Akt was significantly and strongly detected by EGT stimulation in cells cultured in the absence of an Akt inhibitor.
On the other hand, in cells cultured in the presence of an Akt inhibitor, phosphorylated Akt was detected significantly weaker than cells cultured in the absence of an Akt inhibitor.
 また、図12Cは、図12BのWestern blottingの検出結果から、総Akt(Total-Akt)の輝度に対するリン酸化Akt(P-Akt)の輝度を定量したグラフである。
 図12Cからも、Akt阻害剤非存在下で培養した細胞では、EGT刺激により、総Akt(Total-Akt)の輝度に対するリン酸化Akt(P-Akt)の輝度が顕著に上昇することが確かめられた。また、Akt阻害剤存在下で培養した細胞では、Akt阻害剤非存在下で培養した細胞と比較して、リ総Akt(Total-Akt)の輝度に対するリン酸化Akt(P-Akt)の輝度が顕著に低下することが確かめられた。
 また、膜非透過性のAkt-in存在下で培養した細胞と、膜透過性のTAT-Akt-in存在下で培養した細胞とでは、総Akt(Total-Akt)の輝度に対するリン酸化Akt(P-Akt)の輝度に大きな差は見られなかった。さらに、膜透過性のトリシリビン存在下で培養した細胞では、総Akt(Total-Akt)の輝度に対するリン酸化Akt(P-Akt)の輝度が、特に顕著に低下した。
FIG. 12C is a graph in which the luminance of phosphorylated Akt (P-Akt) with respect to the luminance of total Akt (Total-Akt) is quantified based on the detection result of Western blotting in FIG. 12B.
FIG. 12C also confirms that in the cells cultured in the absence of the Akt inhibitor, the brightness of phosphorylated Akt (P-Akt) relative to the brightness of total Akt (Total-Akt) is significantly increased by EGT stimulation. It was. In addition, in the cells cultured in the presence of the Akt inhibitor, the brightness of phosphorylated Akt (P-Akt) relative to the brightness of total Akt (Total-Akt) is higher than in the cells cultured in the absence of the Akt inhibitor. It was confirmed that it decreased significantly.
In addition, phosphorylated Akt (total-Akt) with respect to the luminance of the cells cultured in the presence of membrane-impermeable Akt-in and cells cultured in the presence of membrane-permeable TAT-Akt-in (Total-Akt) There was no significant difference in the brightness of (P-Akt). Furthermore, in cells cultured in the presence of membrane-permeable triciribine, the brightness of phosphorylated Akt (P-Akt) relative to the brightness of total Akt (Total-Akt) was particularly significantly reduced.
このことから、LLO処理により、膜非透過性のAkt阻害剤(Akt-in)が、膜透過性のAkt阻害剤(TAT-Akt-in)と同程度に細胞内に導入され、機能したことが示唆された。 From this, the membrane-impermeable Akt inhibitor (Akt-in) was introduced into the cell to the same extent as the membrane-permeable Akt inhibitor (TAT-Akt-in) by LLO treatment and functioned. Was suggested.
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 Each configuration in each embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other changes of the configuration can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.
 本実施形態の導入剤、キット及び導入方法によれば、細胞へのダメージが生じ難く、高効率に物質を細胞内へと導入できる。
 本実施形態のスクリーニング方法によれば、細胞へのダメージを生じさせ難く、被験物質を高効率に細胞内へと導入できるので、細胞本来の機能が反映された高精度な被験物質のスクリーニングが可能となる。
According to the introduction agent, kit, and introduction method of the present embodiment, damage to cells is difficult to occur, and a substance can be introduced into cells with high efficiency.
According to the screening method of the present embodiment, it is difficult to cause damage to cells, and the test substance can be introduced into the cell with high efficiency, so that it is possible to screen the test substance with high accuracy reflecting the original function of the cell. It becomes.
 1…毒素、3…物質、C…細胞、Cp…細胞、M1…培地、M2…培地、M3…培地、M4…培地、W…ウェル 1 ... Toxin, 3 ... Substance, C ... Cell, Cp ... Cell, M1 ... Medium, M2 ... Medium, M3 ... Medium, M4 ... Medium, W ... Well

Claims (14)

  1.  30℃以上40℃以下における膜穿孔活性の至適pHが、0以上6未満の範囲であるコレステロール依存性細胞溶解毒素を含有し、細胞への物質導入に用いられる導入剤。 An introduction agent used for introducing a substance into cells, containing a cholesterol-dependent cytolytic toxin having an optimum pH for membrane perforation activity at 30 ° C. or higher and 40 ° C. or lower in a range of 0 to less than 6.
  2.  前記コレステロール依存性細胞溶解毒素が、リステリオリシンOである請求項1に記載の導入剤。 The introduction agent according to claim 1, wherein the cholesterol-dependent cytolytic toxin is Listeriolysin O.
  3.  分子量1kDa以上15kDa以下の前記物質の導入率が、分子量30kDa以上200kDa以下の前記物質の導入率よりも高い請求項1又は2に記載の導入剤。 The introduction agent according to claim 1 or 2, wherein an introduction rate of the substance having a molecular weight of 1 kDa to 15 kDa is higher than an introduction rate of the substance having a molecular weight of 30 kDa to 200 kDa.
  4.  導入剤のpHが6以上10以下である請求項1~3のいずれか一項に記載の導入剤。 The introduction agent according to any one of claims 1 to 3, wherein the pH of the introduction agent is 6 or more and 10 or less.
  5.  前記コレステロール依存性細胞溶解毒素の含有量が、0.01μg/mL以上1μg/mL以下である請求項1~4のいずれか一項に記載の導入剤。 The introduction agent according to any one of claims 1 to 4, wherein a content of the cholesterol-dependent cytolytic toxin is 0.01 µg / mL or more and 1 µg / mL or less.
  6.  請求項1~5のいずれか一項に記載の導入剤を備え、細胞への物質導入に使用されるキット。 A kit comprising the introduction agent according to any one of claims 1 to 5 and used for introducing a substance into a cell.
  7. 請求項1~5のいずれか一項に記載の導入剤を細胞に接触させて細胞膜を穿孔し、物質を前記細胞に導入する工程1を含む物質導入方法。 A substance introduction method comprising the step 1 of bringing the introduction agent according to any one of claims 1 to 5 into contact with a cell to perforate a cell membrane and introducing the substance into the cell.
  8.  更に、前記工程1の後、カルシウムイオンを含む液を、前記孔が形成された細胞に接触させ、前記孔を再封入する工程2を含む請求項7に記載の物質導入方法。 Furthermore, the said substance introduction | transduction method of Claim 7 including the process 2 which makes the cell which the said pore formed contact after the said process 1, and re-encloses the said hole.
  9.  前記工程2において、外来の細胞質を含む液を前記孔が形成された細胞に接触させずに、前記孔を再封入する請求項8に記載の物質導入方法。 9. The substance introduction method according to claim 8, wherein in the step 2, the pores are re-encapsulated without contacting a liquid containing foreign cytoplasm with the cells in which the pores are formed.
  10.  前記工程1において、前記穿孔は、前記コレステロール依存性細胞溶解毒素を、pH6以上10以下の条件下で前記細胞に作用させて行う請求項7~9のいずれか一項に記載の物質導入方法。 The substance introduction method according to any one of claims 7 to 9, wherein in the step 1, the perforation is performed by allowing the cholesterol-dependent cytolytic toxin to act on the cells under a condition of pH 6 or more and 10 or less.
  11.  導入する前記物質の分子量が、0.1kDa以上20kDa以下である請求項7~10のいずれか一項に記載の物質導入方法。 11. The substance introduction method according to claim 7, wherein the substance to be introduced has a molecular weight of 0.1 kDa to 20 kDa.
  12.  導入する前記物質が核酸を含む請求項7~11のいずれか一項に記載の物質導入方法。 The substance introduction method according to any one of claims 7 to 11, wherein the substance to be introduced contains a nucleic acid.
  13.  請求項7~12のいずれか一項に記載の物質導入方法を用い、
     前記細胞に導入する前記物質が被験物質であり、
     前記導入剤を細胞に接触させて細胞膜を穿孔し、被験物質を前記細胞に導入する工程Aを含む物質のスクリーニング方法。
    Using the substance introduction method according to any one of claims 7 to 12,
    The substance to be introduced into the cell is a test substance;
    A screening method for a substance comprising the step A of bringing the introduction agent into contact with a cell, perforating a cell membrane, and introducing a test substance into the cell.
  14.  更に、工程Aの後に、前記被験物質が導入された細胞又はその調整物と、被験物質が導入されていない細胞又はその調整物とを比較し、前記被験物質を評価する工程Bを含む請求項13に記載の物質のスクリーニング方法。 The method further comprises a step B of comparing the cell into which the test substance is introduced or a preparation thereof with a cell into which the test substance is not introduced or a preparation thereof after the step A and evaluating the test substance. 14. The method for screening a substance according to 13.
PCT/JP2017/025749 2016-07-19 2017-07-14 Introduction agent, kit, substance introduction method, and screening method WO2018016440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018528525A JP7093557B2 (en) 2016-07-19 2017-07-14 Introducing agents, kits, substance introduction methods, and screening methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141219 2016-07-19
JP2016141219 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016440A1 true WO2018016440A1 (en) 2018-01-25

Family

ID=60992529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025749 WO2018016440A1 (en) 2016-07-19 2017-07-14 Introduction agent, kit, substance introduction method, and screening method

Country Status (2)

Country Link
JP (1) JP7093557B2 (en)
WO (1) WO2018016440A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500102A (en) * 1993-04-28 1997-01-07 ウォーセスター ファウンデーション フォー エクスペリメンタル バイオロジー Cell-directed dissolution pore forming agent
JP2001515455A (en) * 1995-06-07 2001-09-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Transport of macromolecules into cells
US20080254046A1 (en) * 2005-04-08 2008-10-16 Christoph Von Eichel-Streiber Method for the Delivery of Exogenous Antigens into the Mhc Class I Presentation Pathway of Cells
JP2013213688A (en) * 2012-03-30 2013-10-17 Kanagawa Academy Of Science And Technology Method for detecting hyperlipemia or diabetes, and screening method of therapeutic agent for disease

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500102A (en) * 1993-04-28 1997-01-07 ウォーセスター ファウンデーション フォー エクスペリメンタル バイオロジー Cell-directed dissolution pore forming agent
JP2001515455A (en) * 1995-06-07 2001-09-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Transport of macromolecules into cells
US20080254046A1 (en) * 2005-04-08 2008-10-16 Christoph Von Eichel-Streiber Method for the Delivery of Exogenous Antigens into the Mhc Class I Presentation Pathway of Cells
JP2013213688A (en) * 2012-03-30 2013-10-17 Kanagawa Academy Of Science And Technology Method for detecting hyperlipemia or diabetes, and screening method of therapeutic agent for disease

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DARJI, AYUB ET AL.: "TAP-dependent major histocompatibility complex class I presentation of soluble proteins using listeriolysin", EUR. J. IMMUNOL., vol. 27, 1997, pages 1353 - 1359, XP008052731, DOI: doi:10.1002/eji.1830270609 *
GLOMSKI, IAN J. ET AL.: "The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells", J. CELL. BIOL., vol. 156, no. 6, 2002, pages 1029 - 1038, XP002474667, DOI: doi:10.1083/jcb.200201081 *
KIM, NA HYUNG ET AL.: "Design and Characterization of Novel Recombinant Listeriolysin 0-Protamine Fusion Proteins for Enhanced Gene Delivery", MOLECULAR PHARMACEUTICS, vol. 12, 18 December 2014 (2014-12-18), pages 342 - 350 *
MATHEW, E. ET AL.: "Cytosolic delivery of antisense oligonucleotides by listeriolysin 0-containing liposomes", GENE THERAPY, vol. 10, 2003, pages 1105 - 1115, XP055002893, DOI: doi:10.1038/sj.gt.3301966 *
TWETEN, RODNEY K.: "Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins", INFECTION AND IMMUNITY, vol. 73, no. 10, 2005, pages 6199 - 6209, XP002614082, DOI: doi:10.1128/IAI.73.10.6199-6209.2005 *

Also Published As

Publication number Publication date
JP7093557B2 (en) 2022-06-30
JPWO2018016440A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
Liang et al. Metal-organic framework coatings as cytoprotective exoskeletons for living cells
Jansen et al. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations
Saeloh et al. The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity
Vadia et al. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes
Florey et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes
Kavoosi et al. Antioxidant and antibacterial properties of gelatin films incorporated with carvacrol
Freire et al. Action of silver nanoparticles towards biological systems: cytotoxicity evaluation using hen's egg test and inhibition of Streptococcus mutans biofilm formation
Hagen et al. The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi
Von Bargen et al. Virulence‐associated protein A from Rhodococcus equi is an intercompartmental pH‐neutralising virulence factor
Yefimova et al. A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates
Simonin et al. Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death
Munafo et al. DNase I inhibits a late phase of reactive oxygen species production in neutrophils
Velásquez et al. Induction of eryptosis by low concentrations of E. coli alpha-hemolysin
CN107206015A (en) The transmission of saturating cytoplasma membrane
Larsen et al. Python erythrocytes are resistant to α-hemolysin from Escherichia coli
DE102005040347A1 (en) Methods and means of enrichment, removal and detection of Listeria
Lee et al. Differential induction of autophagy in caspase-3/7 down-regulating and Bcl-2 overexpressing recombinant CHO cells subjected to sodium butyrate treatment
CN108464998A (en) A kind of Peppermint essential oil emulsion with high stability
Almeida et al. Binding of host factors influences internalization and intracellular trafficking of Streptococcus uberis in bovine mammary epithelial cells
DE69830602T2 (en) PARTICLE
JP2006507010A (en) Universal microorganism detection method and reaction medium enabling use of the method
Barbosa et al. Insights into the mode of action of the two-peptide lantibiotic lichenicidin
Chanturiya et al. The role of membrane lateral tension in calcium-induced membrane fusion
WO2018016440A1 (en) Introduction agent, kit, substance introduction method, and screening method
Buzgariu et al. Chapter Twenty‐Six Methods to Investigate Autophagy During Starvation and Regeneration in Hydra

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830959

Country of ref document: EP

Kind code of ref document: A1