WO2018016431A1 - Water vapor flow control unit and drying device using same - Google Patents

Water vapor flow control unit and drying device using same Download PDF

Info

Publication number
WO2018016431A1
WO2018016431A1 PCT/JP2017/025682 JP2017025682W WO2018016431A1 WO 2018016431 A1 WO2018016431 A1 WO 2018016431A1 JP 2017025682 W JP2017025682 W JP 2017025682W WO 2018016431 A1 WO2018016431 A1 WO 2018016431A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
chamber
control unit
permeable structure
flow control
Prior art date
Application number
PCT/JP2017/025682
Other languages
French (fr)
Japanese (ja)
Inventor
田中 裕之
良男 荒井
康芳 荒井
Original Assignee
国立大学法人東京工業大学
株式会社セルロンジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 株式会社セルロンジャパン filed Critical 国立大学法人東京工業大学
Priority to CN201780044564.7A priority Critical patent/CN109526209B/en
Publication of WO2018016431A1 publication Critical patent/WO2018016431A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/02Dehydrating; Subsequent reconstitution

Definitions

  • the solid moisture permeable structure has high moisture permeability based on the presence of air flow and high thermal insulation, so that the power consumption of the drying device using it can be reduced. In addition, since less equipment is required, the manufacturing cost of the drying apparatus can also be reduced.
  • FIG. 3 is a sectional view showing a second embodiment of the steam flow control unit according to the present invention.
  • polyester plain weave preparation step 401 a polyester plain weave is prepared.
  • the polyester plain weave is dispersed in a solvent such as water and placed in a mold.
  • carbide particles can be dispersed in a solvent as a tempering material.
  • antibacterial ingredients produced from natural or biomass can also be dispersed.
  • the solvent is fulvic acid and / or vinegar.
  • antibacterial nanoparticles (trademark) manufactured by Nanocam Co., Ltd. may be dispersed.
  • the solvent is evaporated to dry the polyester plain weave.
  • the solid moisture permeable structures 1 and 1 'of FIGS. 1 and 3 are made into a unit 4 of a predetermined size.
  • the drying apparatus comprises a main drying chamber 10 comprising a ceiling 11, a wall 12, a floor 13 and an open / close door (not shown), and three-stage trays 14-1 and 14-2 for setting objects to be dried. , 14-3, the heater 15, the blower fans 16-1 and 16-2, the temperature sensor 17 for detecting the temperature T of the main drying chamber 10, and the temperature T of the temperature sensor 17
  • the control unit (microcomputer) 18 controls the heater 15 and the blower fans 16-1 and 16-2.
  • the water vapor pressure of the air flow A which has been dried rises, and the water vapor flow V contained in the air is a solid moisture permeable structure that constitutes the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown) Is discharged from the inside to the outside of the drying device.
  • the ceiling 11, the wall 12, the floor 13, and the open / close door are constituted by the solid moisture permeable structure 1 (1 ′) of FIG. 1 (FIG. 3).
  • the wall 12, the floor 13, and at least a part of the open / close door may be configured by the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
  • the air flow may be natural convection without providing the blower fans 16-1 and 16-2.
  • the air flow generator is the drying object installation chamber 14 itself.
  • the heat pipe transfers heat by vaporization and liquefaction of the medium as compared with a conventional heat exchanger, it can transfer heat even if the heat transfer rate is large and the temperature difference between the heat-producing medium and the heat-absorbing medium is small.
  • the evaporative working fluid in the CONDUCTION TUBE (TM), the evaporative working fluid is enclosed in a double-tube vacuum sealed chamber consisting of an outer chamber and an inner core pipe to evaporate the evaporative working fluid. And liquefaction to exchange heat between the fluid flowing through the core pipe and the fluid outside the chamber. Therefore, ultrasonic waves and far infrared rays are generated when the vaporized medium liquefies inside the tube, so heat can be transmitted to the inside of the object to be dried, and the drying speed can be increased and the uniformity of drying can be realized.
  • the drying device shown in FIG. 6 described above can be applied to a drying device having a rotary kiln (cylindrical) main drying chamber.
  • the rotary kiln-type main drying chamber has a sideways cylindrical shape and is suitable for drying okara and the like.
  • at least a part of the cylindrical wall of the rotary kiln type main drying chamber is constituted by the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
  • FIG. 8 is a schematic view showing a second drying apparatus using the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
  • the drying apparatus is provided in a main drying chamber 20, in the main drying chamber 20, and includes a reduced pressure drying chamber 30 for installing a material to be dried, and a control unit (microcomputer) 40.
  • a control unit microcomputer
  • the main drying room 20 comprises a ceiling 11, a wall 12, a floor 13, and an open / close door (not shown).
  • a temperature sensor 34 and a pressure sensor 35 for detecting the temperature T and the pressure P of the reduced-pressure drying chamber 30 are provided.
  • the control unit 40 controls the pressure reducing fan 32 and the circulating fan 33 based on the temperature T of the temperature sensor 34 and the pressure P of the pressure sensor 35.
  • the ceiling 21, the wall 22, the floor 23 and the opening / closing door (not shown) of the main drying chamber 20 form the solid moisture permeable structure 1 (1 ′) of FIG. 1 (FIG. 3).
  • the airflow A by the pressure reduction fan 32 as an airflow generator exists in the inner surface of the ceiling 21, the wall 22, the floor 23, and an opening-closing door (not shown). Therefore, the ceiling 21, the wall 22, the floor 23, and the open / close door (not shown) together with such an air flow generator constitute the water vapor flow control unit of FIGS. 1 and 3 respectively.
  • the vacuum drying chamber 30 does not have to be thermally insulated.
  • the air in the reduced pressure drying chamber 30 is exhausted into the main drying chamber 20 by the on / off operation of the reduced pressure fan 32 and the circulation fan 33, and the pressure in the reduced pressure drying chamber 30 is reduced. At this time, the temperature of the air sucked into the reduced-pressure drying chamber 30 from the main drying chamber 20 is raised by the heat generated from the reduced-pressure fan 32 and the circulation fan 33. In this way, drying under reduced pressure is performed.
  • a heat exchanger or a heat pipe, particularly a conduction tube (trademark) may be provided in the reduced pressure drying chamber 30 as a heat source.
  • the material to be dried such as vegetables and herbs
  • predetermined temperature T 0 and pressure P 0 are set, and the pressure reducing fan 32 and the circulating fan 33 are activated.
  • the air flow A sucked from the main drying chamber 20 passes through the trays 31-1, 31-2, and 31-3 to dry the material to be dried, and descends along the ceiling 21 and the wall 22. It circulates.
  • the water vapor pressure of the air flow A which has been dried is increased, and the water vapor flow V contained in the air is a solid moisture permeable structure constituting the ceiling 21, the wall 22, the floor 23 and the open / close door (not shown)
  • the inside of the main drying chamber 20 is discharged to the outside.
  • FIG. 9 is a schematic view showing a modified example of the drying device of FIG. 6 and FIG.
  • the main drying chamber 10 (20) of the solid moisture-permeable structure of FIG. 6 (FIG. 8) is accommodated in the non-moisture-permeable chamber.
  • the moisture impermeable chamber 50 may be either heat insulation or non heat insulation, and includes, for example, nanocellulose and / or nanofibers.
  • the moisture impermeable chamber 50 has an air outlet 50-1 and an air inlet 50-2 connected to the primary side and the secondary side of the heat pump 51. On the primary side of the heat pump 51, the air flow A and the steam flow V from the air outlet 50-1 of the moisture impermeable chamber 50 are cooled to condense the evaporation component V ′ and discharge it to the drain unit 52.
  • the dry air flow A from which the evaporation component is discharged is heated on the secondary side of the heat pump 51 and returned to the air inlet 50-2 of the impermeable chamber 50.
  • the temperature of the moisture impermeable chamber 50 can be freely set to, for example, 20.degree.
  • the drying device of FIG. 9 is particularly effective when used for drying herbs, and the herb components can be recovered to the drain unit 52.
  • the drying device using the water vapor flow control unit according to the present invention can be used for drying equipment for trees, plants other than drying equipment for vegetables, herbs and the like, waterproof equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Solid Materials (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Drying Of Gases (AREA)

Abstract

This water vapor flow control unit is provided with: a solid moisture permeable structure that contains a sheet having therein holes each of which has a diameter of 0.4 nm to 2 µm; and an airflow generator 2 that generates an airflow along one surface of the solid moisture permeable structure.

Description

水蒸気流制御ユニット及びこれを用いた乾燥装置Water vapor flow control unit and drying apparatus using the same
 本発明は水蒸気流制御ユニット及びこれを用いた乾燥装置たとえば高含水率バイオマスを低温(35°C~60°C)乾燥させるための乾燥装置に関する。 The present invention relates to a steam flow control unit and a drying apparatus using the same, for example, a drying apparatus for drying high-water-content biomass at a low temperature (35 ° C. to 60 ° C.).
 一般に、食品有機廃棄物、木材等の固有形状の高含有水率バイオマスを対象とする乾燥装置は、箱型である。この種の箱型乾燥装置として、真空方式、減圧方式、ヒートポンプ方式及び熱風方式(参照:非特許文献1)がある。 In general, the drying apparatus for high water content biomass having a specific shape such as food organic waste and wood is a box type. There exist a vacuum system, a pressure reduction system, a heat pump system, and a hot-air system (refer: nonpatent literature 1) as a box type drier of this kind.
 真空方式は真空ポンプを必要とし、また、減圧方式は減圧のための減圧ファン、循環のための循環ファンを必要とし、さらに、ヒートポンプ方式はヒートポンプを必要とし、従って、乾燥装置の製造コスト及び消費電力が高い。 The vacuum system requires a vacuum pump, and the pressure reduction system requires a pressure reduction fan for pressure reduction, a circulation fan for circulation, and the heat pump system requires a heat pump, so the manufacturing cost and consumption of the drying apparatus Power is high.
 これに対し、熱風方式は、ヒータ及び送風ファンを必要とするが製造コストは低い。しかしながら、熱風方式は、熱風が外部から送り込まれ対象物の水分を蒸発させて外部へ排気される空気非循環式なので、乾燥に使われる熱量は投入熱量の25~40%程度であり、残りの熱量は主に排出熱風によって排出される(参照:非特許文献2)。従って、消費電力は高い。尚、熱風方式に空気循環方式を導入できるが、この場合には、低温で操作した場合、湿度の増加によって乾燥速度が大きく低下し、さらに、消費電力が高くなる(参照:非特許文献3)。 On the other hand, the hot air system requires a heater and a blower fan, but the manufacturing cost is low. However, the hot air system is an air non-circulation system in which the hot air is sent from the outside to evaporate the moisture of the object and is exhausted to the outside, so the heat amount used for drying is about 25 to 40% of the input heat amount. The amount of heat is mainly discharged by the discharged hot air (see: Non-Patent Document 2). Therefore, the power consumption is high. In addition, although the air circulation system can be introduced to the hot air system, in this case, when operating at a low temperature, the drying rate greatly decreases due to the increase of humidity, and the power consumption further increases (see: Non-patent document 3). .
 他方、真空ポンプ、減圧ファン、循環ファン、ヒートポンプ、送風ファン等の機器を用いない第1の従来の乾燥装置においては、乾燥室の天井、壁、床等の躯体を内側板材、中間層及び外側板材とし、中間層に多量の潮解性の吸湿剤を含浸又は塗布した吸湿材料(たとえばダンボール紙)を隙間なく挿入してあり、さらに、乾燥室内に遠赤外線を放出する天然鉱石を設けてある(参照:特許文献1)。従って、内側板材から蒸発する水分を短時間に中間層が吸湿して拡散し、中間層が吸湿した水分を外側板材が排出する。従って、吸湿剤による透湿性及び板材による断熱性の両立を図っている。 On the other hand, in the first conventional drying apparatus which does not use equipment such as a vacuum pump, a pressure reducing fan, a circulating fan, a heat pump, and a blower fan, a frame such as a ceiling, a wall and a floor of a drying chamber is an inner plate, an intermediate layer and an outer A hygroscopic material (for example, cardboard) in which a large amount of deliquescent hygroscopic agent is impregnated or coated in the middle layer is inserted without gaps, and natural ore emitting far infrared rays is provided in the drying chamber ( Reference: Patent Document 1). Therefore, the intermediate layer absorbs and diffuses the moisture evaporating from the inner plate in a short time, and the outer plate removes the moisture absorbed by the intermediate layer. Therefore, the moisture permeability by the moisture absorbent and the heat insulating property by the plate material are simultaneously achieved.
 尚、透湿性とは、3つの性質、つまり内側の水蒸気を吸湿する吸湿性、吸湿された水蒸気を外側へ向って拡散する内部拡散性、及び拡散された水蒸気を外側へ脱湿する脱湿性をいう。 Here, the moisture permeability has three properties: hygroscopicity that absorbs moisture inside, internal diffusivity that diffuses absorbed moisture outward, and dehumidification that dehumidifies diffused moisture outward. Say.
 また、真空ポンプ、減圧ファン、循環ファン、ヒートポンプ等の機器を用いない第2の従来の乾燥装置においては、乾燥室の天井、壁、床等の躯体を板材で構成し、さらに、熱を発生する熱源及び熱源からの熱を乾燥室に送り込む送風手段を設けている(参照:特許文献2)。これにより、内側の水蒸気を外側へ放出する透湿性を確保できる。 Also, in the second conventional drying apparatus that does not use equipment such as vacuum pump, decompression fan, circulation fan, heat pump, etc., frame members such as the ceiling, wall and floor of the drying chamber are made of plate material, and heat is further generated. The heat source and the blowing means which sends the heat from a heat source to a drying chamber are provided (refer: patent document 2). Thereby, the moisture permeability which discharges the inner side water vapor outside can be secured.
特開2006-132911号公報JP, 2006-132911, A 特開2011-217628号公報JP 2011-217628 A
 しかしながら、上述の第1の従来の乾燥装置は、透湿性及び断熱性の両立を図ることができるも、潮解性の吸湿剤として用いる塩類等が安全上食品を対象とすることができず、しかも、内側板材及び外側板材の二重壁の間に中間層を挿入する三重構造のために製造コストが高いという課題がある。 However, although the above-mentioned first conventional drying apparatus can achieve both moisture permeability and heat insulation, salts and the like used as a deliquescent hygroscopic agent can not target food for safety reasons. There is a problem that the manufacturing cost is high due to the triple structure in which the intermediate layer is inserted between the double wall of the inner plate and the outer plate.
 また、上述の第2の従来の乾燥装置においては、潮解性の吸湿剤を用いていない。しかしながら、板材を薄くすれば高い透湿性が得られるが高い断熱性は得られず、他方、板材を厚くすれば高い断熱性が得られるが高い透湿性は得られない。つまり、透湿性及び断熱性はトレードオフの関係にあり、両立を図れないという課題がある。 In the second conventional drying device described above, no deliquescent hygroscopic agent is used. However, if the plate material is thinned, high moisture permeability can be obtained but high heat insulation can not be obtained. On the other hand, if the plate material is thickened, high heat insulation can be obtained but high moisture permeability can not be obtained. That is, there is a trade-off relationship between the moisture permeability and the heat insulation, and there is a problem that it is impossible to achieve both.
 さらに、上述の第1、第2の従来の乾燥装置においては、乾燥装置の内外で発生するカビ菌が増殖することを防止する手段がないので、被乾燥物上でカビ菌の繁殖を招くことがあるという課題もある。 Furthermore, in the first and second conventional drying devices described above, there is no means for preventing the growth of mold fungus generated inside and outside the drying device, and therefore causing the growth of mold fungus on the material to be dried. There is also a problem that
 上述の課題を解決するために、本発明に係る水蒸気流制御ユニットは、2μm以下かつ0.4nm以上の直径の孔を有するシートを含有する固形透湿構造と、固形透湿構造の一表面に沿って空気流を発生させるための空気流発生器とを具備するものである。2μmより小さいサイズはすべての胞子より小さく、このような直径の孔を有するシートを含有する固形透湿構造は空気流の存在の基で高い透湿性を有すると共に、高い断熱性を有する。 In order to solve the above-described problems, the steam flow control unit according to the present invention comprises a solid moisture permeable structure containing a sheet having a hole with a diameter of 2 μm or less and a diameter of 0.4 nm or more, and one surface of the solid moisture permeable structure And an air flow generator for generating an air flow therealong. The size smaller than 2 μm is smaller than all the spores, and the solid moisture-permeable structure containing a sheet with holes of such diameter has high moisture permeability and high thermal insulation, in the presence of air flow.
 上述の固形透湿構造には抗菌性成分を含有させることができる。これにより、カビ菌の増殖を防止する。 The above-mentioned solid moisture-permeable structure can contain an antimicrobial component. This prevents the growth of mold fungus.
 また、本発明に係る乾燥装置は、主乾燥室と、主乾燥室内に設けられた熱源と、主乾燥室内に設けられ、被乾燥物を設置するための被乾燥物設置室とを具備し、主乾燥室の天井、壁、床、開閉扉の少なくとも一部は上述の固形透湿構造によって構成されたものである。 Further, the drying device according to the present invention comprises a main drying chamber, a heat source provided in the main drying chamber, and a drying object installation chamber provided in the main drying chamber for installing the object to be dried, The ceiling, the wall, the floor and at least a part of the open / close door of the main drying room are constituted by the solid moisture permeable structure described above.
 さらに、本発明に係る乾燥装置は、主乾燥室と、主乾燥室内に設けられ、被乾燥物を設置するための減圧乾燥室と、主乾燥室と減圧乾燥室との間の近傍に設けられた減圧ファンとを具備し、主乾燥室の天井、壁、床、開閉扉の少なくとも一部は上述の固形透湿構造によって構成されたものである。 Furthermore, the drying device according to the present invention is provided in the main drying chamber, in the main drying chamber, and provided in the vicinity of a space between the main drying chamber and the reduced pressure drying chamber, and a reduced pressure drying chamber for installing the object to be dried. The ceiling of a main drying room, a wall, a floor, and at least one part of an opening-and-closing door are constituted by the above-mentioned solid moisture-permeable structure.
 さらにまた、上述の乾燥装置は、主乾燥室を収容する非透湿室と、非透湿室の空気出口からの空気を冷却して蒸発成分を凝縮する凝縮手段と、蒸発成分を除去した乾燥空気を加熱する加熱手段と、非透湿室の空気入口へ戻すための送風手段とを具備する。特にこれらを実現する手段としてヒートポンプ又は吸着冷凍機が望ましい。また、乾燥装置は、凝縮した蒸発成分を蓄積するドレーンユニットを具備する。この乾燥装置は特に薬草の乾燥に適する。 Furthermore, the above-described drying apparatus includes a non-moisture-permeable chamber that accommodates the main drying chamber, a condensing unit that cools air from the air outlet of the non-moisture-permeable chamber to condense the evaporation component, and drying that removes the evaporation component. A heating means for heating the air and a blowing means for returning the air to the air inlet of the impermeable chamber are provided. In particular, a heat pump or an adsorption refrigerator is desirable as a means for realizing these. The drying device also comprises a drain unit for accumulating the condensed evaporation component. This drying device is particularly suitable for the drying of herbs.
 本発明によれば、固形透湿構造は空気流の存在の基で高い透湿性を有すると共に、高い断熱性を有するので、これを用いた乾燥装置の消費電力を低減できる。また、必要とする機器が少ないので、乾燥装置の製造コストも低くできる。 According to the present invention, the solid moisture permeable structure has high moisture permeability based on the presence of air flow and high thermal insulation, so that the power consumption of the drying device using it can be reduced. In addition, since less equipment is required, the manufacturing cost of the drying apparatus can also be reduced.
本発明に係る水蒸気流制御ユニットの第1の実施の形態を示す断面図である。It is a sectional view showing a 1st embodiment of a steam flow control unit concerning the present invention. 図1の固形透湿構造の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the solid moisture-permeable structure of FIG. 本発明に係る水蒸気流制御ユニットの第2の実施の形態を示す断面図である。It is a sectional view showing a 2nd embodiment of a steam flow control unit concerning the present invention. 図3の固形透湿構造の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the solid moisture-permeable structure of FIG. 図1(図3)の固形透湿構造の変更例を示す斜視図である。It is a perspective view which shows the example of a change of the solid moisture-permeable structure of FIG. 1 (FIG. 3). 図1(図3)の固形透湿構造を用いた第1の乾燥装置を示す概略図である。It is the schematic which shows the 1st drying apparatus using the solid moisture-permeable structure of FIG. 1 (FIG. 3). 図6の乾燥装置の効果を説明する表であり、(A)は市販乾燥装置の乾燥処理データを示し、(B)は図6の乾燥装置の乾燥処理データを示す。It is a table | surface explaining the effect of the drying apparatus of FIG. 6, (A) shows the drying process data of a commercially available drying apparatus, (B) shows the drying process data of the drying apparatus of FIG. 図1(図3)の固形透湿構造を用いた第2の乾燥装置を示す概略図である。It is the schematic which shows the 2nd drying apparatus using the solid moisture-permeable structure of FIG. 1 (FIG. 3). 図6(図8)の乾燥装置の変更例を示す概略図である。It is the schematic which shows the example of a change of the drying apparatus of FIG. 6 (FIG. 8).
 図1は本発明に係る水蒸気流制御ユニットの第1の実施の形態を示す断面図である。 FIG. 1 is a cross-sectional view showing a first embodiment of a steam flow control unit according to the present invention.
 図1において、固形透湿構造1はシート状をなしており、セルロースナノファイバ及び/又はセルロースナノクリスタルであるナノセルロース1aよりなる。空気流発生器2はたとえばファンであり、固形透湿構造1の一表面にエアカーテンのごとき空気流Aを発生させるものである。 In FIG. 1, the solid moisture-permeable structure 1 is in the form of a sheet, and is composed of nanocellulose 1a which is a cellulose nanofiber and / or a cellulose nanocrystal. The air flow generator 2 is a fan, for example, and generates an air flow A such as an air curtain on one surface of the solid moisture permeable structure 1.
 セルロースナノファイバは幅4~100nm、長さ5μm以上の植物繊維であり、セルロースナノクリスタルは幅10~50nm、長さ100~500nmの植物繊維の結晶である。他方、水蒸気流Vの水蒸気粒子の直径(長手方向サイズ)は0.4nm程度である。つまり、ナノセルロース1aはすべての胞子(2μmより大)より小さくかつ水蒸気分子の長手方向サイズ(0.4nm)より大きい隙間を有する。従って、菌糸と胞子よりなるカビ等の有害微生物の移動を防止すると共に、水蒸気流Vはナノセルロース間を通過できる。 Cellulose nanofibers are plant fibers having a width of 4 to 100 nm and a length of 5 μm or more, and cellulose nanocrystals are crystals of plant fibers having a width of 10 to 50 nm and a length of 100 to 500 nm. On the other hand, the diameter (longitudinal size) of the water vapor particles of the water vapor flow V is about 0.4 nm. That is, nanocellulose 1a has a gap smaller than all spores (greater than 2 μm) and larger than the longitudinal size (0.4 nm) of water vapor molecules. Accordingly, the movement of harmful microorganisms such as mold consisting of mycelium and spores can be prevented, and the water vapor flow V can pass between the nanocelluloses.
 図1の水蒸気流制御ユニットにおいては、空気流Aの存在の基で固形透湿構造1が水蒸気流Vの吸湿性、内部拡散性及び脱湿性、つまり透湿性を有し、空気流Aによって固形透湿構造1の透湿性は維持される。詳しくは、水蒸気流Vは固形透湿構造1の空気流A側部分1Aによって吸湿され、さらに固形透湿構造1の内部1Bによって吸湿及び内部拡散され、最後に、固形透湿構造1の空気流Aの反対部分1Cから脱湿され、高い透湿性を呈する。また、固形透湿構造1のナノセルロースは適切な厚さtで高い断熱性を呈する。従って、固形透湿構造1の厚さtを適切な値にすると、図1の水蒸気流制御ユニットは高い透湿性及び高い断熱性を発揮する。たとえば、上記厚さtは、
     t=10~30mm
である。
In the steam flow control unit of FIG. 1, the solid moisture permeable structure 1 has hygroscopicity, internal diffusivity and dehumidification, ie moisture permeability, of the steam flow V on the basis of the presence of the air flow A. The moisture permeability of the moisture permeable structure 1 is maintained. Specifically, the water vapor flow V is absorbed by the air flow A side portion 1A of the solid moisture permeable structure 1, and further absorbed and diffused by the interior 1B of the solid moisture permeable structure 1, and finally, the air flow of the solid moisture permeable structure 1 It is dehumidified from the opposite part 1C of A and exhibits high moisture permeability. In addition, the nanocellulose of the solid moisture-permeable structure 1 exhibits high thermal insulation at an appropriate thickness t. Therefore, when the thickness t of the solid moisture-permeable structure 1 is set to an appropriate value, the water vapor flow control unit of FIG. 1 exhibits high moisture permeability and high heat insulation. For example, the thickness t is
t = 10 to 30 mm
It is.
 図1の固形透湿構造1には、調質材として炭化物粒子を含ませることができる。これにより、調質性が上昇する。図1の固形透湿構造1には、天然物質又はバイオマスを原料として産生された抗菌性成分を含む溶媒に含浸させて乾燥させることができる。また、この場合、溶媒は天然抗菌性物質であるフルボ酸液及び/又は酢液とすることができる。さらに、抗菌性成分としては株式会社ナノカム製の抗菌性ナノ粒子(商標)(抗菌アクリル系ナノポリマ粒子)を用いてもよい。 In the solid moisture-permeable structure 1 of FIG. 1, carbide particles can be included as a tempering material. This improves the temperability. The solid moisture-permeable structure 1 of FIG. 1 can be impregnated with a solvent containing an antibacterial component produced using a natural substance or biomass as a raw material and dried. Also, in this case, the solvent may be fulvic acid solution and / or vinegar which are natural antibacterial substances. Furthermore, as the antibacterial component, antibacterial nanoparticles (trademark) (antibacterial acrylic nanopolymer particles) manufactured by Nanocam Co., Ltd. may be used.
 以下に、図1の固形透湿構造1の製造方法について図2を参照して説明する。 Below, the manufacturing method of the solid moisture-permeable structure 1 of FIG. 1 is demonstrated with reference to FIG.
 始めに、ナノセルロース準備工程201において、ナノセルロースを準備する。たとえば、セルロースナノファイバであれば、植物細胞壁を機械的解繊等によって製造され、他方、セルロースナノクリスタルであれば、酸加水分解によって製造される。 First, in the nanocellulose preparation step 201, nanocellulose is prepared. For example, if it is a cellulose nanofiber, a plant cell wall is manufactured by mechanical disintegration etc., and if it is a cellulose nanocrystal, it will be manufactured by acid hydrolysis.
 次に、分散工程202において、セルロースナノファイバ又はセルロースナノクリスタルを溶媒たとえば水に分散して型に入れる。この場合、調質材として炭化物粒子を溶媒に分散させることもできる。さらに、天然又はバイオマスを原料として産生された抗菌性成分を分散させることもできる。たとえば、溶媒はフルボ酸液及び/又は酢液とする。さらに、抗菌性成分としては、株式会社ナノカム製の抗菌性ナノ粒子(商標)を分散させてもよい。 Next, in the dispersing step 202, the cellulose nanofibers or cellulose nanocrystals are dispersed in a solvent such as water and placed in a mold. In this case, carbide particles can be dispersed in a solvent as a tempering material. Furthermore, antibacterial ingredients produced from natural or biomass can also be dispersed. For example, the solvent is fulvic acid and / or vinegar. Furthermore, as an antibacterial component, antibacterial nanoparticles (trademark) manufactured by Nanocam Co., Ltd. may be dispersed.
 次に、乾燥工程203にて溶媒を蒸発させてセルロースナノファイバ又はセルロースナノクリスタルを乾燥させる。 Next, in a drying step 203, the solvent is evaporated to dry the cellulose nanofibers or cellulose nanocrystals.
 最後に、切断工程204において、セルロースナノファイバ又はセルロースナノクリスタルを型から取出して所望の大きさに切断する。 Finally, in the cutting step 204, the cellulose nanofibers or cellulose nanocrystals are removed from the mold and cut to the desired size.
 尚、切断されたナノセルロース自身が固形性つまり機械的強度を維持するので、固形性を維持するための手段は不要である。 In addition, since the cut | disconnected nanocellulose itself maintains solidity, ie, mechanical strength, the means for maintaining solidity is unnecessary.
 図3は本発明に係る水蒸気流制御ユニットの第2の実施の形態を示す断面図である。 FIG. 3 is a sectional view showing a second embodiment of the steam flow control unit according to the present invention.
 図3においては、固形透湿構造1’はシート状をなしており、ポリエステルシート1’aよりなる。ポリエステルシート1’a自体は固形を維持できるが、さらに固形を維持できるように、ポリエステルシート1’aを図3に示すごとくポリエステル平織で構成する。ポリエステルシート1’aは直径0.1~100μm程度の孔を有する。つまり、ポリエステルシート1’aはすべての胞子(2μmより大)より小さくかつ水蒸気分子の長手方向サイズ(0.4nm)より大きい隙間を有する。従って、菌糸と胞子よりなるカビ等の有害微生物の移動を防止すると共に、直径(長手方向サイズ)0.4nm程度の水蒸気流Vはポリエステルシート1’aを通過できる。この結果、ポリエステルシート1’aは適切な厚さtで空気流Aの存在の基で高い透湿性を有すると共に高い断熱性を有する。この場合も、固形透湿構造1’の厚さtは、
     t=10~30mm
である。
In FIG. 3, the solid moisture permeable structure 1 'is in the form of a sheet, and is made of a polyester sheet 1'a. Although the polyester sheet 1'a itself can maintain solidity, the polyester sheet 1'a is configured by a polyester plain weave as shown in FIG. 3 so as to maintain solidity. The polyester sheet 1'a has holes of about 0.1 to 100 μm in diameter. That is, the polyester sheet 1'a has a gap smaller than all spores (greater than 2 μm) and larger than the longitudinal size (0.4 nm) of water vapor molecules. Therefore, the movement of harmful microorganisms such as mold consisting of mycelium and spores can be prevented, and the water vapor flow V having a diameter (longitudinal size) of about 0.4 nm can pass through the polyester sheet 1'a. As a result, the polyester sheet 1'a has high moisture permeability and high thermal insulation at the proper thickness t due to the presence of the air flow A. Also in this case, the thickness t of the solid moisture permeable structure 1 ′ is
t = 10 to 30 mm
It is.
 以下に、図3の固形透湿構造1の製造方法について図4を参照して説明する。 Below, the manufacturing method of the solid moisture-permeable structure 1 of FIG. 3 is demonstrated with reference to FIG.
 始めに、ポリエステル平織準備工程401において、ポリエステル平織を準備する。 First, in the polyester plain weave preparation step 401, a polyester plain weave is prepared.
 次に、分散工程402において、ポリエステル平織を溶媒たとえば水に分散して型に入れる。この場合、調質材として炭化物粒子を溶媒に分散させることもできる。さらに、天然又はバイオマスを原料として産生された抗菌性成分を分散させることもできる。たとえば、溶媒はフルボ酸液及び/又は酢液とする。さらに、抗菌性成分としては、株式会社ナノカム製の抗菌性ナノ粒子(商標)を分散させてもよい。 Next, in the dispersing step 402, the polyester plain weave is dispersed in a solvent such as water and placed in a mold. In this case, carbide particles can be dispersed in a solvent as a tempering material. Furthermore, antibacterial ingredients produced from natural or biomass can also be dispersed. For example, the solvent is fulvic acid and / or vinegar. Furthermore, as an antibacterial component, antibacterial nanoparticles (trademark) manufactured by Nanocam Co., Ltd. may be dispersed.
 次に、乾燥工程403にて溶媒を蒸発させてポリエステル平織を乾燥させる。 Next, in a drying step 403, the solvent is evaporated to dry the polyester plain weave.
 最後に、切断工程404において、ポリエステル平織を型から取出して所望の大きさに切断する。 Finally, in a cutting step 404, the polyester plain weave is removed from the mold and cut to the desired size.
 尚、切断されたポリエステル平織自身が固形性つまり機械的強度を維持するので、固形性を維持するための手段は不要である。 In addition, since the cut polyester plain weave itself maintains solidity or mechanical strength, a means for maintaining solidity is unnecessary.
 図5の(A)に示すごとく、固形透湿構造1の機械的強度をさらに保持するために、図1、図3の固形透湿構造1、1’は、メッシュ状部材3-1、3-2たとえばメラミン焼き付け塗装した直径2.5mmの鉄丸棒を交叉させることによって固定する。 As shown in FIG. 5A, in order to further maintain the mechanical strength of the solid moisture-permeable structure 1, the solid moisture- permeable structures 1, 1 ′ of FIGS. 1 and 3 are mesh-like members 3-1, 3 -2 Fix by cross over an iron round bar with a diameter of 2.5 mm, for example, baked with melamine.
 また、図5の(B)に示すごとく、組立、解体、撤去を容易にするために、図1、図3の固形透湿構造1、1’は所定サイズのユニット4にする。 Further, as shown in FIG. 5B, in order to facilitate assembly, disassembly, and removal, the solid moisture permeable structures 1 and 1 'of FIGS. 1 and 3 are made into a unit 4 of a predetermined size.
 図6は図1(図3)の固形透湿構造1(1’)を用いた第1の乾燥装置を示す概略図である。 FIG. 6 is a schematic view showing a first drying apparatus using the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
 図6において、乾燥装置は、天井11、壁12、床13及び開閉扉(図示せず)よりなる主乾燥室10、被乾燥物を設置するための3段のトレー14-1、14-2、14-3を含む被乾燥物設置室14、ヒータ15、送風ファン16-1、16-2、主乾燥室10の温度Tを検出する温度センサ17、及び温度センサ17の温度Tに基づいてヒータ15及び送風ファン16-1、16-2を制御する制御ユニット(マイクロコンピュータ)18よりなる。 In FIG. 6, the drying apparatus comprises a main drying chamber 10 comprising a ceiling 11, a wall 12, a floor 13 and an open / close door (not shown), and three-stage trays 14-1 and 14-2 for setting objects to be dried. , 14-3, the heater 15, the blower fans 16-1 and 16-2, the temperature sensor 17 for detecting the temperature T of the main drying chamber 10, and the temperature T of the temperature sensor 17 The control unit (microcomputer) 18 controls the heater 15 and the blower fans 16-1 and 16-2.
 図6において、主乾燥室10の天井11、壁12、床13及び開閉扉(図示せず)は図1(図3)の固形透湿構造1(1’)によって構成されている。また、天井11、壁12、床13及び開閉扉(図示せず)の内側表面には空気流発生器としての送風ファン16-1、16-2による空気流Aが存在する。従って、このような空気流発生器と共に、天井11、壁12、床13及び開閉扉は、それぞれ、図1、図3の水蒸気流制御ユニットを構成する。 In FIG. 6, the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown) of the main drying chamber 10 are constituted by the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3). Further, on the inner surface of the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown), there is an airflow A by the blower fans 16-1 and 16-2 as an airflow generator. Therefore, the ceiling 11, the wall 12, the floor 13, and the open / close door together with such an air flow generator constitute the steam flow control unit of FIGS. 1 and 3, respectively.
 図6の乾燥装置の動作を以下に説明する。 The operation of the dryer of FIG. 6 will now be described.
 始めに、被乾燥物たとえば野菜、薬草等を被乾燥物設置室14のトレー14-1、14-2、14-3に設置する。次に、所定の温度Tたとえば40℃を設定し、ヒータ15及び送風ファン16-1、16-2を起動する。制御ユニット18は温度センサ17の温度Tが所定の温度Tとなるようにヒータ15をオンオフ制御する。この結果、ヒータ15によって加温された空気流Aは、トレー14-1、14-2、14-3内を通過して被乾燥物を乾燥させ、天井11、壁12に沿って下降して循環する。このとき、乾燥を終えた空気流Aの水蒸気圧は上昇し、その空気に含まれる水蒸気流Vは、天井11、壁12、床13及び開閉扉(図示せず)を構成する固形透湿構造によって乾燥装置の内側から外側へ排出される。 First, materials to be dried, such as vegetables and herbs, are placed on the trays 14-1, 14-2, and 14-3 in the material installation chamber 14. Next, a predetermined temperature T 0, for example, 40 ° C., is set, and the heater 15 and the blower fans 16-1 and 16-2 are activated. Control unit 18 for turning on and off the heater 15 so that the temperature T of the temperature sensor 17 reaches a predetermined temperature T 0. As a result, the air flow A heated by the heater 15 passes through the trays 14-1, 14-2, and 14-3 to dry the material to be dried, and descends along the ceiling 11 and the wall 12. It circulates. At this time, the water vapor pressure of the air flow A which has been dried rises, and the water vapor flow V contained in the air is a solid moisture permeable structure that constitutes the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown) Is discharged from the inside to the outside of the drying device.
 天井11、壁12、床13及び開閉扉(図示せず)の固形透湿構造の内部は循環式となり、乾燥に要した熱以外の熱は固形透湿構造の断熱性によって漏出することなく、又は漏出されてもその熱は小さく、非循環式の乾燥装置内で循環される。一方、水蒸気流Vは固形透湿構造によって排出されるので、循環される空気流Aの水蒸気圧は低くなり、被乾燥物を乾燥できる。 The interior of the solid moisture-permeable structure of the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown) is a circulating type, and heat other than the heat required for drying is not leaked by the heat insulation of the solid moisture-permeable structure. Or, if leaked, the heat is small and is circulated in the non-circulating dryer. On the other hand, since the steam flow V is discharged by the solid moisture permeable structure, the steam pressure of the circulated air flow A becomes low, and the material to be dried can be dried.
 市販の乾燥装置(東明テック(株)製、製造名:プチマレンギ、モデル名:TTM-435S)と図6に示す乾燥装置との比較を行った。共通の条件は次の通りである。
  設定乾燥温度:50℃
  乾燥時間:5時間
  被乾燥試料(1個当り):直径30-70mm、幅12mmの輪切り野菜
  乾燥開始時乾燥装置外温度:21.5℃
  乾燥終了時乾燥装置外温度:17.0℃
  乾燥開始時乾燥装置外湿度:38.5%
  乾燥終了時乾燥装置外湿度:40.0%
 また、図6の乾燥装置の条件は次の通りである。
  寸法:横535mm、奥行き415mm、縦355mm
  天井、壁、床面の6面:図3のポリエステルシートよりなる固形透湿構造1’
A comparison was made between a commercially available drying device (manufactured by Tomei Tec Co., Ltd., product name: Puchimarenggi, model name: TTM-435S) and the drying device shown in FIG. Common conditions are as follows.
Set drying temperature: 50 ° C
Drying time: 5 hours Sample to be dried (per piece): 30-70 mm in diameter, 12 mm wide circular slice vegetables Drying outside temperature at start of drying: 21.5 ° C.
At the end of drying Temperature outside the dryer: 17.0 ° C
Humidity outside the dryer at the start of drying: 38.5%
The humidity outside the dryer at the end of drying: 40.0%
Moreover, the conditions of the drying apparatus of FIG. 6 are as follows.
Dimensions: Width 535 mm, depth 415 mm, length 355 mm
Ceiling, wall, six sides of the floor: Solid moisture-permeable structure 1 'consisting of the polyester sheet of Fig. 3
 市販乾燥装置については、図7の(A)に示す結果が得られ、図6の乾燥装置については、図7の(B)に示す結果が得られた。すなわち、水分減少量は、市販乾燥装置については、129.3であり、図6の乾燥装置については、125.4であった。従って、乾燥速度はほとんど変わらなかった。他方、乾燥に要した消費電力量は、市販乾燥装置については、0.89kWhであり、図6の乾燥装置については、0.55kWhであった。従って、大きな消費電力低減効果が認められた。 The results shown in FIG. 7A were obtained for the commercially available drying apparatus, and the results shown in FIG. 7B were obtained for the drying apparatus shown in FIG. That is, the amount of water loss was 129.3 for the commercial drying device and 125.4 for the drying device of FIG. Therefore, the drying rate was hardly changed. On the other hand, the power consumption required for drying was 0.89 kWh for the commercial drying device and 0.55 kWh for the drying device of FIG. Therefore, a large power consumption reduction effect was recognized.
 尚、上述の図6に示す乾燥装置においては、天井11、壁12、床13及び開閉扉を図1(図3)の固形透湿構造1(1’)によって構成しているが、天井11、壁12、床13及び開閉扉の少なくとも一部を図1(図3)の固形透湿構造1(1’)によって構成すればよい。 In the drying apparatus shown in FIG. 6 described above, the ceiling 11, the wall 12, the floor 13, and the open / close door are constituted by the solid moisture permeable structure 1 (1 ′) of FIG. 1 (FIG. 3). The wall 12, the floor 13, and at least a part of the open / close door may be configured by the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
 また、上述の図6に示す乾燥装置においては、送風ファン16-1、16-2を設けずに空気の流れは自然対流としてもよい。この場合、空気流発生器は被乾燥物設置室14自体である。 Further, in the drying apparatus shown in FIG. 6 described above, the air flow may be natural convection without providing the blower fans 16-1 and 16-2. In this case, the air flow generator is the drying object installation chamber 14 itself.
 さらに、上述の図6に示す乾燥装置においては、熱交換器よりなるヒータ15は通常高い電力を必要とする。従って、ヒータ15の代りにヒートパイプたとえばコンダクションチューブ(商標)を用いて外部より100℃以下の低熱を利用してもよい。 Furthermore, in the drying apparatus shown in FIG. 6 described above, the heater 15 composed of a heat exchanger usually requires high power. Therefore, instead of the heater 15, a heat pipe such as a conduction tube (trademark) may be used to utilize low heat of 100 ° C. or less from the outside.
 通常の熱交換器に比べ、ヒートパイプは媒体の気化及び液化によって熱を伝達するので、伝熱速度が大きく与熱媒体と吸熱媒体との温度差が小さくても熱を伝達できる。特に、ヒートパイプの中でも、コンダクションチューブ(商標)においては、外側のチャンバと内側のコアパイプとからなる二重管構造の減圧密閉チャンバ内に蒸発性作動流体を封入し、蒸発性作動流体の気化及び液化により、コアパイプを流れる流体とチャンバ外部の流体との間の熱交換を行う。従って、気化した媒体が管の内部に液化する際に超音波や遠赤外線を発生するので、被乾燥物の内部に熱を伝えることができ、乾燥速度の上昇、乾燥の均一性を実現できる。 Since the heat pipe transfers heat by vaporization and liquefaction of the medium as compared with a conventional heat exchanger, it can transfer heat even if the heat transfer rate is large and the temperature difference between the heat-producing medium and the heat-absorbing medium is small. In particular, in the case of the heat pipe, in the CONDUCTION TUBE (TM), the evaporative working fluid is enclosed in a double-tube vacuum sealed chamber consisting of an outer chamber and an inner core pipe to evaporate the evaporative working fluid. And liquefaction to exchange heat between the fluid flowing through the core pipe and the fluid outside the chamber. Therefore, ultrasonic waves and far infrared rays are generated when the vaporized medium liquefies inside the tube, so heat can be transmitted to the inside of the object to be dried, and the drying speed can be increased and the uniformity of drying can be realized.
 さらに、上述の図6に示す乾燥装置はロータリーキルン(円筒)式主乾燥室を有する乾燥装置にも適用できる。ロータリーキルン式主乾燥室は横向き円筒形をなしており、おから等の乾燥に適する。この場合には、ロータリーキルン式主乾燥室の円筒壁の少なくとも一部を図1(図3)の固形透湿構造1(1’)によって構成する。 Furthermore, the drying device shown in FIG. 6 described above can be applied to a drying device having a rotary kiln (cylindrical) main drying chamber. The rotary kiln-type main drying chamber has a sideways cylindrical shape and is suitable for drying okara and the like. In this case, at least a part of the cylindrical wall of the rotary kiln type main drying chamber is constituted by the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
 図8は図1(図3)の固形透湿構造1(1’)を用いた第2の乾燥装置を示す概略図である。 FIG. 8 is a schematic view showing a second drying apparatus using the solid moisture permeable structure 1 (1 ') of FIG. 1 (FIG. 3).
 図8において、乾燥装置は、主乾燥室20、主乾燥室20内に設けられ、被乾燥物を設置するための減圧乾燥室30、及び制御ユニット(マイクロコンピュータ)40よりなる。 In FIG. 8, the drying apparatus is provided in a main drying chamber 20, in the main drying chamber 20, and includes a reduced pressure drying chamber 30 for installing a material to be dried, and a control unit (microcomputer) 40.
 主乾燥室20は、天井11、壁12、床13及び開閉扉(図示せず)よりなる。 The main drying room 20 comprises a ceiling 11, a wall 12, a floor 13, and an open / close door (not shown).
 減圧乾燥室30には、被乾燥物を設置するための3段のトレー31-1、31-2、31-3、主乾燥室20との境界近傍に設けられた減圧ファン32及び循環ファン33、減
圧乾燥室30の温度T及び圧力Pを検出する温度センサ34及び圧力センサ35が設けられている。
Three-stage trays 31-1, 31-2, and 31-3 for installing the material to be dried in the reduced-pressure drying chamber 30, the reduced-pressure fan 32 and the circulating fan 33 provided in the vicinity of the boundary with the main drying chamber 20. A temperature sensor 34 and a pressure sensor 35 for detecting the temperature T and the pressure P of the reduced-pressure drying chamber 30 are provided.
 制御ユニット40は温度センサ34の温度T及び圧力センサ35の圧力Pに基づいて減圧ファン32及び循環ファン33を制御する。 The control unit 40 controls the pressure reducing fan 32 and the circulating fan 33 based on the temperature T of the temperature sensor 34 and the pressure P of the pressure sensor 35.
 図8において、主乾燥室20の天井21、壁22、床23及び開閉扉(図示せず)は図1(図3)の固形透湿構造1(1’)をなしている。また、天井21、壁22、床23及び開閉扉(図示せず)の内側表面には空気流発生器としての減圧ファン32による空気流Aが存在する。従って、このような空気流発生器と共に、天井21、壁22、床23及び開閉扉(図示せず)は、それぞれ、図1、図3の水蒸気流制御ユニットを構成する。また、主乾燥室20は断熱されているので、減圧乾燥室30は断熱する必要がない。 In FIG. 8, the ceiling 21, the wall 22, the floor 23 and the opening / closing door (not shown) of the main drying chamber 20 form the solid moisture permeable structure 1 (1 ′) of FIG. 1 (FIG. 3). Moreover, the airflow A by the pressure reduction fan 32 as an airflow generator exists in the inner surface of the ceiling 21, the wall 22, the floor 23, and an opening-closing door (not shown). Therefore, the ceiling 21, the wall 22, the floor 23, and the open / close door (not shown) together with such an air flow generator constitute the water vapor flow control unit of FIGS. 1 and 3 respectively. Further, since the main drying chamber 20 is thermally insulated, the vacuum drying chamber 30 does not have to be thermally insulated.
 減圧乾燥室30においては、減圧ファン32及び循環ファン33のオンオフ動作により減圧乾燥室30内の空気は主乾燥室20内に排気され、減圧乾燥室30内の圧力は減圧される。このとき、減圧ファン32及び循環ファン33から発生する熱により主乾燥室20から減圧乾燥室30内に吸入される空気の温度は上昇する。このようにして、減圧下での乾燥が行われる。尚、熱源として、熱交換器又はヒートパイプ特にコンダクションチューブ(商標)を減圧乾燥室30に設けてもよい。 In the reduced pressure drying chamber 30, the air in the reduced pressure drying chamber 30 is exhausted into the main drying chamber 20 by the on / off operation of the reduced pressure fan 32 and the circulation fan 33, and the pressure in the reduced pressure drying chamber 30 is reduced. At this time, the temperature of the air sucked into the reduced-pressure drying chamber 30 from the main drying chamber 20 is raised by the heat generated from the reduced-pressure fan 32 and the circulation fan 33. In this way, drying under reduced pressure is performed. A heat exchanger or a heat pipe, particularly a conduction tube (trademark) may be provided in the reduced pressure drying chamber 30 as a heat source.
 図8の乾燥装置の動作を以下に説明する。 The operation of the dryer of FIG. 8 will now be described.
 始めに、被乾燥物たとえば野菜、薬草等をトレー31-1、31-2、31-3に載せる。次に、所定の温度T及び圧力Pを設定し、減圧ファン32及び循環ファン33を起動する。制御ユニット40は温度センサ34の温度Tが所定の温度Tとなるようにかつ圧力センサ35の圧力Pが所定圧力Pとなるように減圧ファン32及び循環ファン33をオンオフ制御する。この結果、主乾燥室20から吸入された空気流Aは、トレー31-1、31-2、31-3内を通過して被乾燥物を乾燥させ、天井21、壁22に沿って下降して循環する。このとき、乾燥を終えた空気流Aの水蒸気圧は上昇し、その空気に含まれる水蒸気流Vは、天井21、壁22、床23及び開閉扉(図示せず)を構成する固形透湿構造によって主乾燥室20の内側から外側へ排出される。 First, the material to be dried, such as vegetables and herbs, is placed on trays 31-1, 31-2, and 31-3. Next, predetermined temperature T 0 and pressure P 0 are set, and the pressure reducing fan 32 and the circulating fan 33 are activated. Control unit 40 for turning on and off the vacuum fan 32 and the circulating fan 33 so that the pressure P of and the pressure sensor 35 as the temperature T of the temperature sensor 34 becomes a predetermined temperature T 0 is a predetermined pressure P 0. As a result, the air flow A sucked from the main drying chamber 20 passes through the trays 31-1, 31-2, and 31-3 to dry the material to be dried, and descends along the ceiling 21 and the wall 22. It circulates. At this time, the water vapor pressure of the air flow A which has been dried is increased, and the water vapor flow V contained in the air is a solid moisture permeable structure constituting the ceiling 21, the wall 22, the floor 23 and the open / close door (not shown) Thus, the inside of the main drying chamber 20 is discharged to the outside.
 このように、図8に示す乾燥装置においては、従来の減圧乾燥装置において必要としていた減圧乾燥室の断熱が不要となった分、製造コストを低減できる。また、吸気と排気との間の熱変換が不要となった分、消費電力を低くできる。 As described above, in the drying apparatus shown in FIG. 8, since the insulation of the reduced-pressure drying chamber required in the conventional reduced-pressure drying apparatus becomes unnecessary, the manufacturing cost can be reduced. In addition, power consumption can be reduced because heat conversion between intake and exhaust is unnecessary.
 尚、上述の図8に示す乾燥装置においては、減圧ファン32のみで減圧乾燥室30の圧力及び温度を制御できれば、循環ファン33は不要となる。 In the drying apparatus shown in FIG. 8 described above, if the pressure and temperature of the decompression drying chamber 30 can be controlled only by the decompression fan 32, the circulation fan 33 becomes unnecessary.
 図9は図6、図8の乾燥装置の変更例を示す概略図である。 FIG. 9 is a schematic view showing a modified example of the drying device of FIG. 6 and FIG.
 図9においては、図6(図8)の固形透湿構造の主乾燥室10(20)を非透湿室に収容している。非透湿室50は断熱性、非断熱性のいずれでもよく、たとえばナノセルロース及び/又はナノファイバを含む。非透湿室50はヒートポンプ51の1次側、2次側に接続された空気出口50-1、空気入口50-2を有する。ヒートポンプ51の1次側では、非透湿室50の空気出口50-1からの空気流A及び水蒸気流Vを冷却して蒸発成分V’を凝縮してドレーンユニット52に排出する。他方、蒸発成分が排出された乾燥空気流Aはヒートポンプ51の2次側で加熱され、非透湿室50の空気入口50-2に戻される。非透湿室50の温度は自由にたとえば20℃に設定できる。図9の乾燥装置は、特に、薬草の乾燥に用いた場合に有効であり、薬草の成分をドレーンユニット52に回収でき
る。
In FIG. 9, the main drying chamber 10 (20) of the solid moisture-permeable structure of FIG. 6 (FIG. 8) is accommodated in the non-moisture-permeable chamber. The moisture impermeable chamber 50 may be either heat insulation or non heat insulation, and includes, for example, nanocellulose and / or nanofibers. The moisture impermeable chamber 50 has an air outlet 50-1 and an air inlet 50-2 connected to the primary side and the secondary side of the heat pump 51. On the primary side of the heat pump 51, the air flow A and the steam flow V from the air outlet 50-1 of the moisture impermeable chamber 50 are cooled to condense the evaporation component V ′ and discharge it to the drain unit 52. On the other hand, the dry air flow A from which the evaporation component is discharged is heated on the secondary side of the heat pump 51 and returned to the air inlet 50-2 of the impermeable chamber 50. The temperature of the moisture impermeable chamber 50 can be freely set to, for example, 20.degree. The drying device of FIG. 9 is particularly effective when used for drying herbs, and the herb components can be recovered to the drain unit 52.
 尚、本発明は上述の実施の形態の自明の範囲内でのいかなる変更にも適用できる。 The present invention can be applied to any modifications within the obvious scope of the above-described embodiment.
 本発明に係る水蒸気流制御ユニットを用いた乾燥装置は、野菜、薬草等の乾燥装置の外、木材の乾燥装置、防水装置等に利用できる。 The drying device using the water vapor flow control unit according to the present invention can be used for drying equipment for trees, plants other than drying equipment for vegetables, herbs and the like, waterproof equipment, and the like.
1、1’:固形透湿構造
1a:ナノセルロース
1’a:ポリエステルシート
2:空気流発生器
3-1、3-2:メッシュ状部材 
4:ユニット
10:主乾燥室 
11:天井
12:壁
13:床 
14:被乾燥物設置室
14-1、14-2、14-3:トレー 
15:ヒータ
16-1、16-2:送風ファン
17:温度センサ
18:制御ユニット
20:主乾燥室
21:天井
22:壁
23:床 
30:減圧乾燥室
31-1、31-2、31-3:トレー 
32:減圧ファン
33:循環ファン
34:温度センサ
35:圧力センサ
40:制御ユニット
50:非透湿室
50-1:空気出口
50-2:空気入口
51:ヒートポンプ
52:ドレーンユニット
A:空気流
V:水蒸気流

 
1, 1 ': Solid moisture permeable structure 1a: nanocellulose 1'a: polyester sheet 2: air flow generator 3-1, 3-2: mesh-like member
4: Unit 10: Main drying room
11: ceiling 12: wall 13: floor
14: Drying object installation room 14-1, 14-2, 14-3: Tray
15: Heaters 16-1, 16-2: Blower fan 17: Temperature sensor 18: Control unit 20: Main drying room 21: Ceiling 22: Wall 23: Floor
30: reduced pressure drying chamber 31-1, 31-2, 31-3: tray
32: decompression fan 33: circulation fan 34: temperature sensor 35: pressure sensor 40: control unit 50: non moisture permeable chamber 50-1: air outlet 50-2: air inlet 51: heat pump 52: drain unit A: air flow V : Steam flow

Claims (22)

  1.  2μm以下かつ0.4nm以上の直径の孔を有するシートを含有する固形透湿構造と、
     前記固形透湿構造の一表面に沿って空気流を発生させるための空気流発生器と
     を具備する水蒸気流制御ユニット。
    A solid moisture-permeable structure containing a sheet having pores with a diameter of 2 μm or less and 0.4 nm or more;
    An air flow generator for generating an air flow along one surface of the solid moisture permeable structure.
  2.  前記固形透湿構造はナノセルロース及びポリエステルシートの1つを含有する請求項1の水蒸気流制御ユニット。 The steam flow control unit of claim 1, wherein the solid moisture permeable structure comprises one of nanocellulose and a polyester sheet.
  3.  前記ナノセルロースはセルロースナノファイバ及び/又はセルロースナノクリスタルである請求項2に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 2, wherein the nanocellulose is cellulose nanofibers and / or cellulose nanocrystals.
  4.  前記ポリエステルシートはポリエステル平織である請求項2に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 2, wherein the polyester sheet is a polyester plain weave.
  5.  前記固形透湿構造は、さらに、調質材を含有する請求項1に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 1, wherein the solid moisture permeable structure further contains a tempering material.
  6.  前記調質材は炭化物粒子である請求項5に記載の水蒸気流制御ユニット。 The steam flow control unit according to claim 5, wherein the refining material is carbide particles.
  7.  前記固形透湿構造は、さらに、抗菌性成分を含有する請求項1に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 1, wherein the solid moisture permeable structure further contains an antimicrobial component.
  8.  前記抗菌性成分はフルボ酸及び/又は酢液成分である請求項7に記載の水蒸気流制御ユニット。 The steam flow control unit according to claim 7, wherein the antibacterial component is fulvic acid and / or an vinegar component.
  9.  前記抗菌性成分は抗菌性ナノ粒子(商標)である請求項7に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 7, wherein the antibacterial component is antibacterial nanoparticles (trademark).
  10.  前記固形透湿構造をメッシュ状部材で固定した請求項1に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 1, wherein the solid moisture permeable structure is fixed by a mesh-like member.
  11.  前記固形透湿構造を所定サイズでユニット化した請求項1に記載の水蒸気流制御ユニット。 The water vapor flow control unit according to claim 1, wherein the solid moisture permeable structure is unitized into a predetermined size.
  12.  主乾燥室と、
     前記主乾燥室内に設けられた熱源と、
     前記主乾燥室内に設けられ、被乾燥物を設置するための被乾燥物設置室と
     を具備し、
     前記主乾燥室の天井、壁、床、開閉扉の少なくとも一部は請求項1~11のいずれか1つに記載の固形透湿構造によって構成された乾燥装置。
    Main drying room,
    A heat source provided in the main drying chamber;
    A drying material installation chamber provided in the main drying chamber for installing a drying object;
    A drying apparatus constituted by the solid moisture permeable structure according to any one of claims 1 to 11, wherein at least a part of a ceiling, a wall, a floor and an open / close door of the main drying chamber.
  13.  前記空気流発生器は送風ファンを具備する請求項12に記載の乾燥装置。 13. The drying apparatus of claim 12, wherein the airflow generator comprises a blower fan.
  14.  ロータリーキルン式主乾燥室と、
     前記ロータリーキルン式主乾燥室内に設けられた熱源と
     を具備し、
     前記ロータリーキルン式主乾燥室の円筒壁の少なくとも一部は請求項1~11のいずれか1つに記載の固形透湿構造によって構成された乾燥装置。
    With a rotary kiln type main drying room,
    A heat source provided in the rotary kiln type main drying chamber;
    A drying apparatus constituted by the solid moisture permeable structure according to any one of claims 1 to 11, at least a part of the cylindrical wall of the rotary kiln type main drying chamber.
  15.  主乾燥室と、
     前記主乾燥室内に設けられ、被乾燥物を設置するための減圧乾燥室と、
     前記主乾燥室と前記減圧乾燥室との間の近傍に設けられた減圧ファンと 
     を具備し、
     前記主乾燥室の天井、壁、床、開閉扉の少なくとも一部は請求項1~11のいずれか1つに記載の固形透湿構造によって構成された乾燥装置。
    Main drying room,
    A vacuum drying chamber provided in the main drying chamber for installing a material to be dried;
    A vacuum fan provided in the vicinity between the main drying chamber and the vacuum drying chamber
    Equipped with
    A drying apparatus constituted by the solid moisture permeable structure according to any one of claims 1 to 11, wherein at least a part of a ceiling, a wall, a floor and an open / close door of the main drying chamber.
  16.  さらに、前記主乾燥室と前記減圧乾燥室との間の近傍に設けられた循環ファンを具備する請求項15に記載の乾燥装置。 The drying apparatus according to claim 15, further comprising a circulating fan provided in the vicinity between the main drying chamber and the reduced-pressure drying chamber.
  17.  さらに、前記減圧乾燥室に設けられた熱源を具備する請求項15に記載の乾燥装置。 The drying apparatus according to claim 15, further comprising a heat source provided in the reduced-pressure drying chamber.
  18.  前記熱源はヒートパイプである請求項12、14又は17に記載の乾燥装置。 The drying apparatus according to claim 12, wherein the heat source is a heat pipe.
  19.  前記ヒートパイプはコンダクションチューブ(商標)である請求項18に記載の乾燥装置。 19. The drying apparatus of claim 18, wherein the heat pipe is a conduction tube (trademark).
  20.  さらに、
     前記主乾燥室を収容する非透湿室と、
     前記非透湿室の空気出口からの空気を冷却して蒸発成分を凝縮する凝縮手段と、
     前記蒸発成分を除去した乾燥空気を加熱する加熱手段と、
     前記非透湿室の空気入口へ戻すための送風手段と
     を具備する請求項12~19のいずれかに記載の乾燥装置。
    further,
    A non-permeable chamber containing the main drying chamber;
    Condensing means for cooling the air from the air outlet of the non-moisture permeable chamber to condense the evaporation component;
    Heating means for heating the dry air from which the evaporation component has been removed;
    The drying device according to any one of claims 12 to 19, further comprising: blowing means for returning to the air inlet of the non-moisture permeable chamber.
  21.  さらに、凝縮した前記蒸発成分を蓄積するドレーンユニットを具備する請求項20に記載の乾燥装置。 21. The drying apparatus according to claim 20, further comprising a drain unit for accumulating the condensed evaporation component.
  22.  非透湿室はナノセルロース及び/又はナノファイバを含む請求項20に記載の乾燥装置。 21. The drying apparatus of claim 20, wherein the moisture impermeable chamber comprises nanocellulose and / or nanofibers.
PCT/JP2017/025682 2016-07-19 2017-07-14 Water vapor flow control unit and drying device using same WO2018016431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780044564.7A CN109526209B (en) 2016-07-19 2017-07-14 Steam flow control unit and drying device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141402 2016-07-19
JP2016141402A JP6099179B1 (en) 2016-07-19 2016-07-19 Drying equipment

Publications (1)

Publication Number Publication Date
WO2018016431A1 true WO2018016431A1 (en) 2018-01-25

Family

ID=58363171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025682 WO2018016431A1 (en) 2016-07-19 2017-07-14 Water vapor flow control unit and drying device using same

Country Status (3)

Country Link
JP (1) JP6099179B1 (en)
CN (1) CN109526209B (en)
WO (1) WO2018016431A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD967538S1 (en) * 2020-09-01 2022-10-18 L'oreal Blush compact

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948006A (en) * 1995-08-08 1997-02-18 Masayuki Wakizaka Carbide composite material and manufacture thereof
JPH11148774A (en) * 1997-11-14 1999-06-02 Mohan Yakuhin Kenkyusho:Kk Method and device for manufacturing freeze-dried product
JP2003106766A (en) * 2001-10-01 2003-04-09 Hoshizaki Electric Co Ltd Drying device
JP2003227682A (en) * 2002-02-04 2003-08-15 Hideyuki Maeoka Food residue superheated stream dryer
WO2011129402A1 (en) * 2010-04-16 2011-10-20 三菱瓦斯化学株式会社 Method for potato sprout control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3784726T2 (en) * 1987-05-08 1993-10-14 Mitsubishi Electric Corp DEVICE FOR REMOVING MOISTURE.
CN1233522A (en) * 1998-04-08 1999-11-03 田中茂 Apparatus removing gaseous pollutants for gas
DE19839057A1 (en) * 1998-08-28 2000-03-02 Koch Berthold Purge air controller for a drying device for compressed air
CN105525497A (en) * 2016-01-19 2016-04-27 珠海格力电器股份有限公司 Drying cabinet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948006A (en) * 1995-08-08 1997-02-18 Masayuki Wakizaka Carbide composite material and manufacture thereof
JPH11148774A (en) * 1997-11-14 1999-06-02 Mohan Yakuhin Kenkyusho:Kk Method and device for manufacturing freeze-dried product
JP2003106766A (en) * 2001-10-01 2003-04-09 Hoshizaki Electric Co Ltd Drying device
JP2003227682A (en) * 2002-02-04 2003-08-15 Hideyuki Maeoka Food residue superheated stream dryer
WO2011129402A1 (en) * 2010-04-16 2011-10-20 三菱瓦斯化学株式会社 Method for potato sprout control

Also Published As

Publication number Publication date
CN109526209B (en) 2021-09-10
JP2018012048A (en) 2018-01-25
CN109526209A (en) 2019-03-26
JP6099179B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US7819943B2 (en) Method for dehumidifying room air
KR20100103499A (en) Method and system for heating and dehumidifying
JP2011503503A5 (en)
KR100512040B1 (en) Cold and heat device for combined dehumidify
WO2015083733A1 (en) Dehumidifier
CN104075396A (en) Air intelligent humidifying system and method thereof for storage environment of collection of cultural relics
RU2499211C1 (en) Timber condensation drier with absorption utiliser
WO2018016431A1 (en) Water vapor flow control unit and drying device using same
CN106440129A (en) Porous medium radiant panel
CN206787265U (en) Dehumidifying drying integration unit
JP5963101B1 (en) Water vapor flow control structure and drying apparatus using the same
JP2007225216A (en) Far infrared drier system
CN102247707A (en) Embedded dehumidifying and sterilizing device
CN201291114Y (en) Semiconductor dehumidifying device
CN105526655A (en) Heat pump solution ventilation fan
CN115265098A (en) Graphene far infrared drying system and drying method
JP6746069B2 (en) Plant cultivation facility
JP2022056327A (en) Steam stream control panel, and dryer using the same
CN108444276A (en) Air compression throttling drying machine
KR20190067310A (en) Temperature and humidity controlling device for plant cultivation
KR102155956B1 (en) Liquid dehumidifier of energy-saving type
KR20050046707A (en) Refrigerant circulation system and desiccators thereof for products
KR101534533B1 (en) Freezing cycle with drying machine
KR20090121617A (en) Dehumidifying air conditioner
KR102628048B1 (en) Hollow fiber membrane dehumidifier and humidity control device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830950

Country of ref document: EP

Kind code of ref document: A1