WO2018016084A1 - Control apparatus and control method for hybrid vehicle - Google Patents

Control apparatus and control method for hybrid vehicle Download PDF

Info

Publication number
WO2018016084A1
WO2018016084A1 PCT/JP2016/076712 JP2016076712W WO2018016084A1 WO 2018016084 A1 WO2018016084 A1 WO 2018016084A1 JP 2016076712 W JP2016076712 W JP 2016076712W WO 2018016084 A1 WO2018016084 A1 WO 2018016084A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
motor generator
internal combustion
combustion engine
torque
Prior art date
Application number
PCT/JP2016/076712
Other languages
French (fr)
Japanese (ja)
Inventor
一由希 目黒
光宏 木村
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2017556998A priority Critical patent/JP6379306B2/en
Publication of WO2018016084A1 publication Critical patent/WO2018016084A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device and a control method for a hybrid vehicle.
  • hybrid vehicles using an internal combustion engine (engine) and an electric motor (motor) as power sources are known.
  • the motor is configured as a motor generator.
  • the motor generator can assist the internal combustion engine by applying torque to the internal combustion engine, and can also generate electric power while the internal combustion engine is traveling.
  • this motor generator is used to perform a preparation position reverse rotation drive that reverses the crankshaft to a preparation position for engine start (cell start), power generation (regeneration), and engine restart.
  • the engine start state is located in the first quadrant.
  • the preparation position reverse drive state is located in the third quadrant, and the power generation state is located in the fourth quadrant. That is, when the engine is started, the motor generator rotates forward (rotation speed is positive) and the engine is driven (motor torque is positive), so the engine start state is located in the first quadrant.
  • reverse rotation drive such as preparation position reverse rotation drive
  • the motor generator is reversed (rotation speed is negative) and driven by the internal combustion engine (motor torque is negative), so the reverse drive state is located in the third quadrant.
  • the motor generator rotates forward and is driven by the internal combustion engine, so the power generation state is in the fourth quadrant.
  • an AC generator (Alternating Current Generator: ACG) is provided that is connected to a crankshaft of an internal combustion engine and generates electric power by receiving the rotation of the internal combustion engine.
  • the AC power generated by the AC generator is converted to DC power according to the battery by a regulated rectifier (REG / RECT), and then supplied to the battery.
  • REG / RECT regulated rectifier
  • Patent Document 1 describes a start control device that controls a starter motor that starts an internal combustion engine.
  • the AC generator is configured as a motor generator that not only functions as a generator but also functions as an electric motor that can apply torque to the internal combustion engine. It is conceivable to assist the engine.
  • the assist state is located in the first quadrant in the four-quadrant characteristic diagram because the motor generator rotates forward and drives the internal combustion engine as in the case of engine start.
  • engine assist is performed by an AC generator configured as a motor generator, as shown in the four-quadrant characteristic diagram of FIG. 6, it is required to perform control to and from the assist state and the power generation state.
  • the present invention can prevent an overcurrent from flowing in an element such as a semiconductor switch constituting a power conversion circuit even when a state transition is performed between states having different motor torque polarities in a hybrid vehicle. It is an object of the present invention to provide a control device and a control method for a hybrid vehicle.
  • a control device for a hybrid vehicle includes: A control device for a hybrid vehicle mechanically connected to an internal combustion engine, having a motor generator capable of generating electric power by receiving rotation of the internal combustion engine and capable of applying torque to the internal combustion engine, When the motor generator, which is the torque applied to the internal combustion engine by the motor generator, transitions from the first state having the first polarity to the second state having the second polarity opposite to the first polarity, the first A torque transition operation for changing the motor torque from a motor torque in a state to a motor torque in the second state at a predetermined time change rate or less is performed.
  • the hybrid vehicle can store the electric power generated by the motor generator and can supply electric power to the motor generator, and converts the direct current power output from the battery into alternating current power and supplies the alternating current power to the motor generator Power conversion circuit to
  • the control device may be configured to perform drive control of the motor generator via the power conversion circuit.
  • the power conversion circuit includes a first semiconductor switch connected between a first electrode of the battery and an input terminal of the motor generator, and a second electrode of the battery and the input terminal of the motor generator.
  • a plurality of legs including a second semiconductor switch connected thereto;
  • the control device the driving state of the motor generator via the power conversion circuit, An all-phase open state in which the first and second semiconductor switches are turned off for each leg; a short state in which the first semiconductor switch is turned off and the second semiconductor switch is turned on for each leg; and
  • the leg can be controlled to any driving state among chopping states in which the first semiconductor switch is turned off and the second semiconductor switch is repeatedly turned on / off.
  • the current flowing to the motor generator is defined by setting the driving state of the motor generator to the all-phase open state. You may make it perform the said torque transfer operation, after becoming below a value.
  • the first electrode of the battery is a positive electrode and the second electrode is a negative electrode;
  • the first semiconductor switch may be a high side switch, and the second semiconductor switch may be a low side switch.
  • the first electrode of the battery is a negative electrode, the second electrode is a positive electrode;
  • the first semiconductor switch may be a low side switch, and the second semiconductor switch may be a high side switch.
  • the first state is an assist state in which the motor generator assists the internal combustion engine
  • the second state is a power generation state in which the motor generator is rotationally driven by the internal combustion engine to generate electric power
  • the time change rate of the motor torque may be reduced as the charging rate of the battery included in the battery information is lower.
  • control device It is configured to reduce the time change rate by decreasing the motor torque by a specified step width at a specified time interval.
  • the first state is an assist state in which the motor generator assists the internal combustion engine
  • the second state is a power generation state in which the motor generator is rotationally driven by the internal combustion engine to generate electric power
  • the time change rate of the motor torque in the first quadrant of the four quadrant characteristic diagram showing the relationship between the rotational speed of the internal combustion engine and the motor torque is greater than the time change rate of the motor torque in the fourth quadrant of the four quadrant characteristic diagram.
  • the motor torque may be changed so as to increase.
  • the motor torque may be changed by a specified step width at a specified time interval.
  • the motor generator may function as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle departs.
  • a hybrid vehicle control method includes: A method for controlling a hybrid vehicle having a motor generator mechanically connected to an internal combustion engine, capable of generating electric power by receiving rotation of the internal combustion engine and capable of applying torque to the internal combustion engine,
  • the motor generator which is the torque applied to the internal combustion engine by the motor generator, transitions from the first state having the first polarity to the second state having the second polarity opposite to the first polarity
  • the first A torque transition operation for changing the motor torque from a motor torque in a state to a motor torque in the second state at a predetermined time change rate or less is performed.
  • the control device when the motor torque transitions from the first state where the motor torque is the first polarity to the second state where the motor polarity is the second polarity opposite to the first polarity, the control device outputs the second torque from the motor torque in the first state.
  • the motor torque is changed at a predetermined time change rate or less toward the motor torque in the state.
  • FIG. 2 is a diagram showing a schematic configuration of a power conversion circuit 5 of a hybrid vehicle 30. It is a figure for demonstrating the torque transfer operation
  • FIG. 4 is a four-quadrant characteristic diagram (a graph showing the relationship between motor torque and rotational speed) when there is no assist. It is a four-quadrant characteristic diagram when there is an assist.
  • the hybrid vehicle 30 is a hybrid type two-wheeled vehicle (hybrid motorcycle) having two power sources of an internal combustion engine and an electric motor.
  • the hybrid vehicle 30 is not limited to a two-wheeled vehicle, but may be another hybrid type vehicle (four-wheeled vehicle or the like).
  • the hybrid vehicle 30 includes a control device 1, an internal combustion engine (engine) 2, a motor generator (MG) 3, an ignition device 4, a power conversion circuit 5, and a battery device 6.
  • the wheel 9 in FIG. 1 represents the rear wheel of the hybrid motorcycle.
  • the control device 1 is configured to control the motor torque of the hybrid vehicle 30. Details of the control device 1 will be described later.
  • the control device 1 may be configured as an ECU (Electronic Control Unit) that controls the entire hybrid vehicle 30.
  • the internal combustion engine 2 outputs a rotational driving force to the wheels 9 via the clutch 8 using the pressure when the fuel gas (air mixture) is combusted.
  • the type of the internal combustion engine 2 is not particularly limited, and may be, for example, a 4-stroke engine or a 2-stroke engine.
  • the internal combustion engine 2 may be provided with an electronic throttle valve (not shown) in the intake path. More specifically, the accelerator position sensor reads the throttle opening set by the accelerator (grip) operation of the driver (rider), and transmits it to the control device 1 as an electrical signal. Thereafter, the control device 1 calculates the throttle opening based on the received set throttle opening, and transmits a command to a throttle opening adjusting means (such as a throttle motor).
  • a throttle opening adjusting means such as a throttle motor
  • the motor generator 3 is mechanically connected to the internal combustion engine 2 as shown in FIG.
  • the motor generator 3 is based on an AC generator (ACG), and is always connected to the crankshaft of the internal combustion engine 2 without a clutch.
  • the motor generator 3 is configured to generate electric power upon receiving the rotation of the internal combustion engine 2 and to apply torque to the internal combustion engine 2. More specifically, the motor generator 3 generates power when it is rotationally driven by the internal combustion engine 2 and outputs three-phase AC power to the power conversion circuit 5. Then, the power conversion circuit 5 converts the three-phase AC power into DC power and charges the battery B (DC power supply) of the battery device 6. On the other hand, when applying torque to the internal combustion engine 2, the motor generator 3 is rotated by the three-phase AC power output from the power conversion circuit 5 to assist the internal combustion engine 2.
  • ACG AC generator
  • the motor generator 3 may function as a starter motor (cell motor) that starts rotating the internal combustion engine 2 when the hybrid vehicle 30 starts.
  • the ignition device 4 receives a control signal from the control device 1 and ignites the air-fuel mixture compressed in the cylinder of the internal combustion engine 2 at an appropriate timing.
  • the type of the ignition device 4 is not particularly limited, and may be a CDI (Capacitive Discharge Ignition) type or a full transistor type.
  • the power conversion circuit 5 converts the DC power output from the battery B of the battery device 6 into three-phase AC power and supplies it to the motor generator 3.
  • the generator 3 is driven.
  • the power conversion circuit 5 converts the three-phase AC power supplied from the motor generator 3 into DC power and outputs it to the battery B of the battery device 6.
  • the power conversion circuit 5 is composed of a three-phase full bridge circuit.
  • Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches.
  • the control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control device 1.
  • the semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
  • a smoothing capacitor C is provided between the power supply terminal 5a and the power supply terminal 5b.
  • the semiconductor switch Q1 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3a of the motor generator 3.
  • the semiconductor switch Q3 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3b of the motor generator 3.
  • the semiconductor switch Q5 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3c of the motor generator 3.
  • the semiconductor switch Q2 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3a of the motor generator 3.
  • the semiconductor switch Q4 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3b of the motor generator 3.
  • Semiconductor switch Q6 is connected between power supply terminal 5b to which the negative electrode of battery B is connected and input terminal 3c of motor generator 3.
  • the input terminal 3a is a U-phase input terminal
  • the input terminal 3b is a V-phase input terminal
  • the input terminal 3c is a W-phase input terminal.
  • the power conversion circuit 5 has a plurality of legs (three in this embodiment) including the first semiconductor switch and the second semiconductor switch.
  • the first semiconductor switch is a semiconductor switch connected between the first electrode of battery B and the input terminal of motor generator 3.
  • the second semiconductor switch is a semiconductor switch connected between the second electrode of battery B and the input terminal of motor generator 3.
  • the first electrode is the positive electrode of the battery B
  • the second electrode is the negative electrode of the battery B.
  • the first semiconductor switch is a high side switch
  • the second semiconductor switch is a low side switch.
  • the battery device 6 includes a chargeable / dischargeable battery B and a battery management unit (BMU) that manages the battery B.
  • the battery B can store electric power generated by the motor generator 3 and can supply electric power to the motor generator 3.
  • the kind of battery B is not specifically limited, For example, it is a lithium ion battery.
  • the battery management unit transmits information regarding the voltage of the battery B and the state of the battery B (hereinafter collectively referred to as “battery information”) to the control device 1.
  • the storage device 7 stores information used by the control device 1 (various maps, operation programs, etc. for controlling the internal combustion engine 2 and the motor generator 3).
  • the storage device 7 is composed of, for example, a nonvolatile semiconductor memory.
  • the control device 1 is configured to be able to control the driving state of the motor generator 3 to any one of the all-phase open state, the short state, and the chopping state via the power conversion circuit 5.
  • the “all-phase open state” is a state in which the high-side switch and the low-side switch are turned off for each of the three legs of the power conversion circuit 5. That is, all the six semiconductor switches Q1 to Q6 included in the power conversion circuit 5 are turned off.
  • Short state is a state in which, for each leg, the high-side switches (ie, semiconductor switches Q1, Q3, Q5) are turned off and the low-side switches (ie, semiconductor switches Q2, Q4, Q6) are turned on.
  • the short state is strictly a low-side short state. The short state is used when the battery B is fully charged or when a relatively strong brake is applied. In a short state, no current flows through battery B, so battery B is not charged.
  • “Chopping state” is a state in which the high-side switch is turned off and the low-side short state is repeatedly turned on / off for each leg.
  • the chopping state is used when the battery B is not fully charged and a relatively weak brake is applied. In the chopping state, the battery B is charged.
  • the high side and the low side may be reversed for at least one of the short state and the chopping state.
  • the short state is a state in which not the low side but the high side is short-circuited. More specifically, for each leg, the low side switch (ie, the semiconductor switches Q2, Q4, Q6) is turned off and the high side switch (ie, the low side switch) In this state, the semiconductor switches Q1, Q3, Q5) are turned on.
  • the chopping state is a state in which the low-side switch is turned off and the high-side switch is repeatedly turned on / off.
  • the first electrode of the battery B is the negative electrode
  • the second electrode is the positive electrode
  • the first semiconductor switch is the low side switch
  • 2 corresponds to the semiconductor switch being a high-side switch.
  • the control device 1 performs torque control of the motor generator 3 via the power conversion circuit 5. More specifically, the control device 1 controls the energization timing (advance angle) and the duty ratio of the control signal (PWM signal) output to the semiconductor switches Q1 to Q6 of the power conversion circuit 5 so that the motor generator 3 Control torque.
  • the control device 1 performs a torque transition operation for gradually changing the motor torque when the motor torque transits from the first state where the motor torque is the first polarity to the second state where the motor polarity is the second polarity opposite to the first polarity.
  • the torque transition operation is an operation of changing the motor torque from the motor torque in the first state toward the motor torque in the second state at a prescribed time change rate or less.
  • the specified time change rate is selected so that the electrical load on the semiconductor switches Q1 to Q6 of the power conversion circuit 5 is not excessive.
  • the current flowing through the semiconductor switch during the state transition increases as the time change rate of the motor torque increases. Therefore, the time change rate of the motor torque is selected so that the current flowing through the semiconductor switch is less than the allowable value.
  • the rate of change of the motor torque with time is small enough not to cause an overcurrent to flow through the semiconductor switch and large enough not to give the driver a feeling of strangeness.
  • the control device 1 gradually changes the motor torque, for example, when transitioning from the assist state to the power generation state.
  • the assist state is a state in which the motor generator 3 assists the internal combustion engine 2, and the motor torque is positive.
  • the power generation state is a state in which the motor generator 3 is rotationally driven by the internal combustion engine 2 to generate power, and the motor torque is negative. Since the polarity of the motor torque is different before and after the state transition, the control device 1 performs a torque transition operation.
  • the control device 1 changes the motor torque stepwise as shown in FIG. That is, the control device 1 changes the motor torque by a specified step width at a specified time interval.
  • the time interval is on the order of milliseconds, for example.
  • the time interval and the step width are preferably selected so that the state transition is not noticed by the driver of the hybrid vehicle and the electrical load on the semiconductor switch of the power conversion circuit 5 is not increased.
  • the control device 1 is not limited to changing the motor torque stepwise, but may change the motor torque along a smooth curve.
  • the control device 1 when the control device 1 makes a transition from the first state where the motor torque is the first polarity to the second state where the motor polarity is the second polarity opposite to the first polarity, The motor torque is changed from the motor torque in the state toward the motor torque in the second state at a predetermined time change rate or less.
  • an overcurrent from flowing to an element such as a semiconductor switch that constitutes the power conversion circuit even if state transition is performed between states having different motor torque polarities.
  • the state transition is not limited to the above example (assist state to power generation state).
  • it may be a transition from the power generation state to the assist state, or may be a transition from the assist state to the preparation position reverse drive state.
  • it may be a transition from the engine start state to the power generation state, or a transition from the assist state to the reverse brake state.
  • the reverse brake state refers to a state in which a negative motor torque is generated in the motor generator 3 (for example, a motor generator based on the AC generator ACG) to brake electromagnetically.
  • the control device 1 performs a torque transition operation when performing a state transition in which the polarity of the motor torque differs before and after the transition.
  • the control device 1 has a four-quadrant characteristic indicating the relationship between the rotational speed of the internal combustion engine 2 and the motor torque, as shown in FIG.
  • the motor torque may be changed so that the time change rate of the motor torque in the first quadrant of the figure is larger than the time change rate of the motor torque in the fourth quadrant of the four-quadrant characteristic diagram.
  • the time change rate of the motor torque is adjusted by changing the time interval as shown in FIG.
  • the time change rate of the motor torque may be adjusted by changing the step width. Further, the time change rate of the motor torque may be adjusted by changing both the time interval and the step width.
  • the driving state of the motor generator 3 is set to the all-phase open state, whereby the current flowing through the motor generator 3 is You may make it perform torque transfer operation, after becoming below a regulation value.
  • the predetermined value is, for example, a reference value determined by the specifications of the motor generator 3.
  • control device 1 may change the time change rate of the motor torque based on the battery information regarding the battery B. For example, when the first state is the assist state and the second state is the power generation state, the control device 1 decreases the time change rate of the motor torque as the battery charging rate included in the battery information is lower. .
  • the lower the charging rate of battery B the easier it is for current to flow to battery B.
  • the rate of time change according to the charging rate overcurrent flows to battery B at the time of state transition. Can be prevented.
  • the time change rate of the motor torque can be reduced by increasing the time interval and / or decreasing the step width as the charging rate of the battery B is lower. Good.
  • the control device 1 determines whether the motor drive state is a short state or a chopping state (step S1). When the motor drive state is the short state or the chopping state (S1; Yes), the control device 1 controls the power conversion circuit 5 to be in the all-phase open state (step S2).
  • control device 1 determines whether or not the current flowing through the motor generator 3 is equal to or less than a predetermined value (step S3). And when the electric current which flows into the motor generator 3 is below a predetermined value (S3; Yes), the control apparatus 1 changes a motor torque gradually (step S4). More specifically, the control device 1 performs a torque transition operation for changing the motor torque from a motor torque in the first state to a motor torque in the second state at a predetermined time change rate or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

In order to prevent an overcurrent from flowing through elements such as a semiconductor switch constituting a power conversion circuit in hybrid vehicles, the present invention provides a control apparatus (1) for a hybrid vehicle (30) having a motor generator (3) that is mechanically connected to an internal combustion engine (2), that can generate electric power by rotation of the internal combustion engine (2), and that can apply torque to the internal combustion engine (2), wherein the control apparatus (1) performs a torque transfer operation that changes motor torque at a prescribed time change rate or lower, from motor torque in a first state toward motor torque in a second state when the motor torque applied to the internal combustion engine (2) by the motor generator (3) changes from the first state which is of a first polarity to the second state which is of a second polarity opposite to the first polarity.

Description

ハイブリッド車両の制御装置および制御方法Control device and control method for hybrid vehicle
 本発明は、ハイブリッド車両の制御装置および制御方法に関する。 The present invention relates to a control device and a control method for a hybrid vehicle.
 従来、内燃機関(エンジン)と電動機(モータ)を動力源とするハイブリッド車両が知られている。このハイブリッド車両では、モータがモータジェネレータとして構成されているものがある。モータジェネレータは、内燃機関にトルクを付与して内燃機関をアシストすることが可能であるとともに、内燃機関による走行中に発電を行うことも可能である。 Conventionally, hybrid vehicles using an internal combustion engine (engine) and an electric motor (motor) as power sources are known. In some of these hybrid vehicles, the motor is configured as a motor generator. The motor generator can assist the internal combustion engine by applying torque to the internal combustion engine, and can also generate electric power while the internal combustion engine is traveling.
 従来、このモータジェネレータを用いて、エンジン始動(セル始動)、発電(回生)および、エンジン再始動の準備位置までクランク軸を逆転させる準備位置逆転駆動が行われる。図5に示すように、モータジェネレータが内燃機関に付与するトルク(以下、「モータトルク」という。)と回転速度との関係を示した四象限特性図において、エンジン始動状態は第1象限に位置し、準備位置逆転駆動状態は第3象限に位置し、発電状態は第4象限に位置する。すなわち、エンジン始動ではモータジェネレータが正転するとともに(回転速度が正)エンジンを駆動するため(モータトルクが正)、エンジン始動状態は第1象限に位置する。準備位置逆転駆動等の逆転駆動ではモータジェネレータが反転するとともに(回転速度が負)内燃機関により駆動されるため(モータトルクが負)、逆転駆動状態は第3象限に位置する。発電ではモータジェネレータが正転するとともに内燃機関により駆動されるため、発電状態は第4象限に位置する。 Conventionally, this motor generator is used to perform a preparation position reverse rotation drive that reverses the crankshaft to a preparation position for engine start (cell start), power generation (regeneration), and engine restart. As shown in FIG. 5, in the four-quadrant characteristic diagram showing the relationship between the torque (hereinafter referred to as “motor torque”) applied to the internal combustion engine by the motor generator and the rotational speed, the engine start state is located in the first quadrant. The preparation position reverse drive state is located in the third quadrant, and the power generation state is located in the fourth quadrant. That is, when the engine is started, the motor generator rotates forward (rotation speed is positive) and the engine is driven (motor torque is positive), so the engine start state is located in the first quadrant. In reverse rotation drive such as preparation position reverse rotation drive, the motor generator is reversed (rotation speed is negative) and driven by the internal combustion engine (motor torque is negative), so the reverse drive state is located in the third quadrant. In power generation, the motor generator rotates forward and is driven by the internal combustion engine, so the power generation state is in the fourth quadrant.
 また、従来、二輪車等の車両では、内燃機関のクランク軸に接続され、当該内燃機関の回転を受けて発電する交流発電機(Alternating Current Generator:ACG)が設けられている。交流発電機で発電された交流電力は、レギュレートレクチファイヤ(REG/RECT)によってバッテリに応じた直流電力に変換された後、バッテリに供給される。 Conventionally, in vehicles such as motorcycles, an AC generator (Alternating Current Generator: ACG) is provided that is connected to a crankshaft of an internal combustion engine and generates electric power by receiving the rotation of the internal combustion engine. The AC power generated by the AC generator is converted to DC power according to the battery by a regulated rectifier (REG / RECT), and then supplied to the battery.
 なお、特許文献1には、内燃機関を始動させるスタータモータを制御する始動制御装置が記載されている。 Note that Patent Document 1 describes a start control device that controls a starter motor that starts an internal combustion engine.
特許第4230116号Japanese Patent No. 4230116
 ところで、ハイブリッド車両において、上記の交流発電機を、発電機として機能するだけでなく、内燃機関にトルクを付与可能な電動機としても機能することが可能なモータジェネレータとして構成し、このモータジェネレータにより内燃機関のアシストを行うことが考えられる。アシスト状態は、エンジン始動の場合と同様にモータジェネレータが正転するとともに内燃機関を駆動するため、四象限特性図において第1象限に位置する。モータジェネレータとして構成された交流発電機によりエンジンアシストを行う場合、図6の四象限特性図に示すように、アシスト状態と発電状態を往き来する制御を行うことが求められる。 By the way, in the hybrid vehicle, the AC generator is configured as a motor generator that not only functions as a generator but also functions as an electric motor that can apply torque to the internal combustion engine. It is conceivable to assist the engine. The assist state is located in the first quadrant in the four-quadrant characteristic diagram because the motor generator rotates forward and drives the internal combustion engine as in the case of engine start. When engine assist is performed by an AC generator configured as a motor generator, as shown in the four-quadrant characteristic diagram of FIG. 6, it is required to perform control to and from the assist state and the power generation state.
 しかしながら、アシスト状態と発電状態とではモータトルクの極性が異なるため、状態遷移の際に、モータジェネレータに流れる電流が瞬時に反転することになり、大きな逆起電力が発生する。その結果、電力変換回路(ブリッジ回路)を構成する半導体スイッチ(MOSFET等)に過電流が流れるおそれがある。 However, since the polarity of the motor torque is different between the assist state and the power generation state, the current flowing through the motor generator is instantaneously reversed during the state transition, and a large back electromotive force is generated. As a result, an overcurrent may flow through a semiconductor switch (such as a MOSFET) that constitutes a power conversion circuit (bridge circuit).
 そこで、本発明は、ハイブリッド車両において、モータトルクの極性が異なる状態間で状態遷移を行っても、電力変換回路を構成する半導体スイッチ等の素子に過電流が流れることを防止することが可能なハイブリッド車両の制御装置および制御方法を提供することを目的とする。 Therefore, the present invention can prevent an overcurrent from flowing in an element such as a semiconductor switch constituting a power conversion circuit even when a state transition is performed between states having different motor torque polarities in a hybrid vehicle. It is an object of the present invention to provide a control device and a control method for a hybrid vehicle.
 本発明に係るハイブリッド車両の制御装置は、
 内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータを有するハイブリッド車両の制御装置であって、
 前記モータジェネレータが前記内燃機関に付与するトルクであるモータトルクが第1極性である第1状態から、前記第1極性と反対の第2極性である第2状態に遷移する際に、前記第1状態におけるモータトルクから前記第2状態におけるモータトルクに向けて前記モータトルクを規定の時間変化率以下で変化させるトルク移行動作を行うことを特徴とする。
A control device for a hybrid vehicle according to the present invention includes:
A control device for a hybrid vehicle mechanically connected to an internal combustion engine, having a motor generator capable of generating electric power by receiving rotation of the internal combustion engine and capable of applying torque to the internal combustion engine,
When the motor generator, which is the torque applied to the internal combustion engine by the motor generator, transitions from the first state having the first polarity to the second state having the second polarity opposite to the first polarity, the first A torque transition operation for changing the motor torque from a motor torque in a state to a motor torque in the second state at a predetermined time change rate or less is performed.
 また、前記制御装置において、
 前記ハイブリッド車両は、前記モータジェネレータにより発電された電力を蓄電可能であるとともに前記モータジェネレータに電力を供給可能なバッテリと、前記バッテリが出力する直流電力を交流電力に変換して前記モータジェネレータに供給する電力変換回路とを有し、
 前記制御装置は、前記電力変換回路を介して前記モータジェネレータの駆動制御を行うように構成されてもよい
 また、前記制御装置において、
 前記電力変換回路は、前記バッテリの第1電極と前記モータジェネレータの入力端子との間に接続された第1半導体スイッチと、前記バッテリの第2電極と前記モータジェネレータの前記入力端子との間に接続された第2半導体スイッチとを含む複数のレグを有し、
 前記制御装置は、前記電力変換回路を介して前記モータジェネレータの駆動状態を、
 前記各レグについて前記第1および第2半導体スイッチをオフにした全相オープン状態、前記各レグについて前記第1半導体スイッチをオフにし且つ前記第2半導体スイッチをオンにしたショート状態、および、前記各レグについて前記第1半導体スイッチをオフにし且つ前記第2半導体スイッチのオン/オフを繰り返すチョッピング状態のうち、いずれかの駆動状態に制御可能であり、
 前記第1状態から前記第2状態へ遷移する前に前記ショート状態または前記チョッピング状態の場合は、前記モータジェネレータの駆動状態を前記全相オープン状態とすることにより、前記モータジェネレータに流れる電流が規定値以下になった後に前記トルク移行動作を行うようにしてもよい。
In the control device,
The hybrid vehicle can store the electric power generated by the motor generator and can supply electric power to the motor generator, and converts the direct current power output from the battery into alternating current power and supplies the alternating current power to the motor generator Power conversion circuit to
The control device may be configured to perform drive control of the motor generator via the power conversion circuit. In the control device,
The power conversion circuit includes a first semiconductor switch connected between a first electrode of the battery and an input terminal of the motor generator, and a second electrode of the battery and the input terminal of the motor generator. A plurality of legs including a second semiconductor switch connected thereto;
The control device, the driving state of the motor generator via the power conversion circuit,
An all-phase open state in which the first and second semiconductor switches are turned off for each leg; a short state in which the first semiconductor switch is turned off and the second semiconductor switch is turned on for each leg; and The leg can be controlled to any driving state among chopping states in which the first semiconductor switch is turned off and the second semiconductor switch is repeatedly turned on / off.
In the case of the short state or the chopping state before the transition from the first state to the second state, the current flowing to the motor generator is defined by setting the driving state of the motor generator to the all-phase open state. You may make it perform the said torque transfer operation, after becoming below a value.
 また、前記制御装置において、
 前記バッテリの前記第1電極は正極であり、前記第2電極は負極であり、
 前記第1半導体スイッチはハイサイドスイッチであり、前記第2半導体スイッチはローサイドスイッチであってもよい。
In the control device,
The first electrode of the battery is a positive electrode and the second electrode is a negative electrode;
The first semiconductor switch may be a high side switch, and the second semiconductor switch may be a low side switch.
 また、前記制御装置において、
 前記バッテリの前記第1電極は負極であり、前記第2電極は正極であり、
 前記第1半導体スイッチはローサイドスイッチであり、前記第2半導体スイッチはハイサイドスイッチであってもよい。
In the control device,
The first electrode of the battery is a negative electrode, the second electrode is a positive electrode;
The first semiconductor switch may be a low side switch, and the second semiconductor switch may be a high side switch.
 また、前記制御装置において、
 前記バッテリに関するバッテリ情報に基づいて前記モータトルクの時間変化率を変えるようにしてもよい。
In the control device,
You may make it change the time change rate of the said motor torque based on the battery information regarding the said battery.
 また、前記制御装置において、
 前記第1状態が、前記内燃機関を前記モータジェネレータがアシストするアシスト状態であり、かつ前記第2状態が、前記内燃機関により前記モータジェネレータが回転駆動されて発電する発電状態である場合に、前記バッテリ情報に含まれる前記バッテリの充電率が低いほど、前記モータトルクの時間変化率を小さくしてもよい。
In the control device,
When the first state is an assist state in which the motor generator assists the internal combustion engine, and the second state is a power generation state in which the motor generator is rotationally driven by the internal combustion engine to generate electric power, The time change rate of the motor torque may be reduced as the charging rate of the battery included in the battery information is lower.
 また、前記制御装置において、
 前記モータトルクを規定の時間間隔で規定のステップ幅ずつ小さくすることで、前記時間変化率を小さくするように構成されており、
 前記バッテリの充電率が低いほど、前記時間間隔を長くする、および/または前記ステップ幅を小さくしてもよい。
In the control device,
It is configured to reduce the time change rate by decreasing the motor torque by a specified step width at a specified time interval.
The lower the battery charge rate, the longer the time interval and / or the step width.
 また、前記制御装置において、
 前記第1状態が、前記内燃機関を前記モータジェネレータがアシストするアシスト状態であり、かつ前記第2状態が、前記内燃機関により前記モータジェネレータが回転駆動されて発電する発電状態である場合は、前記内燃機関の回転速度と前記モータトルクとの関係を示す四象限特性図の第1象限における前記モータトルクの時間変化率が、前記四象限特性図の第4象限における前記モータトルクの時間変化率よりも大きくなるように前記モータトルクを変化させてもよい。
In the control device,
When the first state is an assist state in which the motor generator assists the internal combustion engine, and the second state is a power generation state in which the motor generator is rotationally driven by the internal combustion engine to generate electric power, The time change rate of the motor torque in the first quadrant of the four quadrant characteristic diagram showing the relationship between the rotational speed of the internal combustion engine and the motor torque is greater than the time change rate of the motor torque in the fourth quadrant of the four quadrant characteristic diagram. The motor torque may be changed so as to increase.
 また、前記制御装置において、
 前記モータトルクを、規定の時間間隔で規定のステップ幅ずつ変化させるようにしてもよい。
In the control device,
The motor torque may be changed by a specified step width at a specified time interval.
 また、前記制御装置において、
 前記モータジェネレータは、前記ハイブリッド車両が発車する際に前記内燃機関を回転始動させる始動モータとして機能してもよい。
In the control device,
The motor generator may function as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle departs.
 本発明に係るハイブリッド車両の制御方法は、
 内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータを有するハイブリッド車両の制御方法であって、
 前記モータジェネレータが前記内燃機関に付与するトルクであるモータトルクが第1極性である第1状態から、前記第1極性と反対の第2極性である第2状態に遷移する際に、前記第1状態におけるモータトルクから前記第2状態におけるモータトルクに向けて前記モータトルクを規定の時間変化率以下で変化させるトルク移行動作を行うことを特徴とする。
A hybrid vehicle control method according to the present invention includes:
A method for controlling a hybrid vehicle having a motor generator mechanically connected to an internal combustion engine, capable of generating electric power by receiving rotation of the internal combustion engine and capable of applying torque to the internal combustion engine,
When the motor generator, which is the torque applied to the internal combustion engine by the motor generator, transitions from the first state having the first polarity to the second state having the second polarity opposite to the first polarity, the first A torque transition operation for changing the motor torque from a motor torque in a state to a motor torque in the second state at a predetermined time change rate or less is performed.
 本発明では、制御装置は、モータトルクが第1極性である第1状態から、第1極性と反対の第2極性である第2状態に遷移する際に、第1状態におけるモータトルクから第2状態におけるモータトルクに向けてモータトルクを規定の時間変化率以下で変化させる。これにより、本発明によれば、モータトルクの極性が異なる状態間で状態遷移を行っても、電力変換回路を構成する半導体スイッチ等の素子に過電流が流れることを防止することができる。 In the present invention, when the motor torque transitions from the first state where the motor torque is the first polarity to the second state where the motor polarity is the second polarity opposite to the first polarity, the control device outputs the second torque from the motor torque in the first state. The motor torque is changed at a predetermined time change rate or less toward the motor torque in the state. Thus, according to the present invention, it is possible to prevent an overcurrent from flowing to an element such as a semiconductor switch constituting the power conversion circuit even when state transition is performed between states having different motor torque polarities.
実施形態に係るハイブリッド車両30の概略的な構成を示す図である。It is a figure showing the schematic structure of hybrid vehicle 30 concerning an embodiment. ハイブリッド車両30の電力変換回路5の概略的な構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a power conversion circuit 5 of a hybrid vehicle 30. 実施形態に係るトルク移行動作を説明するための図である。It is a figure for demonstrating the torque transfer operation | movement which concerns on embodiment. 実施形態に係る制御方法を説明するためのフローチャートである。It is a flowchart for demonstrating the control method which concerns on embodiment. アシストが無い場合の四象限特性図(モータトルクと回転速度との関係を示すグラフ)である。FIG. 4 is a four-quadrant characteristic diagram (a graph showing the relationship between motor torque and rotational speed) when there is no assist. アシストがある場合の四象限特性図である。It is a four-quadrant characteristic diagram when there is an assist.
 以下、図面を参照しつつ本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、図1を参照して、実施形態に係るハイブリッド車両30の概略的な構成について説明する。 First, a schematic configuration of a hybrid vehicle 30 according to the embodiment will be described with reference to FIG.
 ハイブリッド車両30は、内燃機関と電動機の2つの動力源を有するハイブリッド型の二輪車(ハイブリッド二輪車)である。なお、ハイブリッド車両30は、二輪車に限らず、ハイブリッド型の他の車両(四輪車等)であってもよい。 The hybrid vehicle 30 is a hybrid type two-wheeled vehicle (hybrid motorcycle) having two power sources of an internal combustion engine and an electric motor. The hybrid vehicle 30 is not limited to a two-wheeled vehicle, but may be another hybrid type vehicle (four-wheeled vehicle or the like).
 ハイブリッド車両30は、図1に示すように、制御装置1と、内燃機関(エンジン)2と、モータジェネレータ(Motor Generator:MG)3と、点火装置4と、電力変換回路5と、バッテリ装置6と、記憶装置7と、クラッチ8と、車輪9とを備えている。図1の車輪9は、ハイブリッド二輪車の後輪を示している。 As shown in FIG. 1, the hybrid vehicle 30 includes a control device 1, an internal combustion engine (engine) 2, a motor generator (MG) 3, an ignition device 4, a power conversion circuit 5, and a battery device 6. A storage device 7, a clutch 8, and wheels 9. The wheel 9 in FIG. 1 represents the rear wheel of the hybrid motorcycle.
 制御装置1は、ハイブリッド車両30のモータトルクを制御するように構成されている。制御装置1の詳細については後述する。なお、制御装置1は、ハイブリッド車両30全体を統御するECU(Electronic Control Unit)として構成されてもよい。 The control device 1 is configured to control the motor torque of the hybrid vehicle 30. Details of the control device 1 will be described later. The control device 1 may be configured as an ECU (Electronic Control Unit) that controls the entire hybrid vehicle 30.
 内燃機関2は、燃料ガス(混合気)が燃焼したときの圧力を利用して、クラッチ8を介して車輪9に回転駆動力を出力する。 The internal combustion engine 2 outputs a rotational driving force to the wheels 9 via the clutch 8 using the pressure when the fuel gas (air mixture) is combusted.
 なお、内燃機関2の種類は特に限定されず、例えば4ストロークエンジンでも、2ストロークエンジンでもよい。また、内燃機関2は、吸気経路に電子式スロットルバルブ(図示せず)が配設されていてもよい。より詳しくは、運転者(ライダー)のアクセル(グリップ)操作により設定されたスロットル開度をアクセルポジションセンサが読み取り、電気信号として制御装置1に送信する。その後、制御装置1は、受信した設定スロットル開度に基づいてスロットル開度を計算し、スロットル開度の調整手段(スロットルモータ等)に指令を送信する。 Note that the type of the internal combustion engine 2 is not particularly limited, and may be, for example, a 4-stroke engine or a 2-stroke engine. The internal combustion engine 2 may be provided with an electronic throttle valve (not shown) in the intake path. More specifically, the accelerator position sensor reads the throttle opening set by the accelerator (grip) operation of the driver (rider), and transmits it to the control device 1 as an electrical signal. Thereafter, the control device 1 calculates the throttle opening based on the received set throttle opening, and transmits a command to a throttle opening adjusting means (such as a throttle motor).
 モータジェネレータ3は、図1に示すように、内燃機関2に機械的に接続されている。本実施形態では、モータジェネレータ3は、交流発電機(ACG)をベースとしたものであり、内燃機関2のクランク軸にクラッチを介さずに常時接続されている。このモータジェネレータ3は、内燃機関2の回転を受けて発電可能であるとともに、内燃機関2にトルクを付与可能に構成されている。より詳しくは、モータジェネレータ3は、内燃機関2により回転駆動されているときは発電を行って、三相交流電力を電力変換回路5に出力する。そして、電力変換回路5は、三相交流電力を直流電力に変換し、バッテリ装置6の有するバッテリB(直流電源)を充電する。一方、内燃機関2にトルクを付与するときは、モータジェネレータ3は、電力変換回路5から出力される三相交流電力により回転して、内燃機関2をアシストする。 The motor generator 3 is mechanically connected to the internal combustion engine 2 as shown in FIG. In this embodiment, the motor generator 3 is based on an AC generator (ACG), and is always connected to the crankshaft of the internal combustion engine 2 without a clutch. The motor generator 3 is configured to generate electric power upon receiving the rotation of the internal combustion engine 2 and to apply torque to the internal combustion engine 2. More specifically, the motor generator 3 generates power when it is rotationally driven by the internal combustion engine 2 and outputs three-phase AC power to the power conversion circuit 5. Then, the power conversion circuit 5 converts the three-phase AC power into DC power and charges the battery B (DC power supply) of the battery device 6. On the other hand, when applying torque to the internal combustion engine 2, the motor generator 3 is rotated by the three-phase AC power output from the power conversion circuit 5 to assist the internal combustion engine 2.
 なお、モータジェネレータ3は、ハイブリッド車両30が発車する際に内燃機関2を回転始動させる始動モータ(セルモータ)として機能してもよい。 The motor generator 3 may function as a starter motor (cell motor) that starts rotating the internal combustion engine 2 when the hybrid vehicle 30 starts.
 点火装置4は、制御装置1から制御信号を受信し、内燃機関2のシリンダー内で圧縮された混合気に適切なタイミングで着火する。なお、点火装置4の種別は特に限定されず、CDI(Capacitive Discharge Ignition)式でもよいし、フルトランジスタ式でもよい。 The ignition device 4 receives a control signal from the control device 1 and ignites the air-fuel mixture compressed in the cylinder of the internal combustion engine 2 at an appropriate timing. The type of the ignition device 4 is not particularly limited, and may be a CDI (Capacitive Discharge Ignition) type or a full transistor type.
 電力変換回路5は、モータジェネレータ3が内燃機関2をアシストする際には、バッテリ装置6のバッテリBから出力される直流電力を三相の交流電力に変換してモータジェネレータ3に供給し、モータジェネレータ3を駆動する。一方、モータジェネレータ3が発電する際には、電力変換回路5は、モータジェネレータ3から供給される三相交流電力を直流電力に変換してバッテリ装置6のバッテリBに出力する。 When the motor generator 3 assists the internal combustion engine 2, the power conversion circuit 5 converts the DC power output from the battery B of the battery device 6 into three-phase AC power and supplies it to the motor generator 3. The generator 3 is driven. On the other hand, when the motor generator 3 generates power, the power conversion circuit 5 converts the three-phase AC power supplied from the motor generator 3 into DC power and outputs it to the battery B of the battery device 6.
 具体的には、図2に示すように、電力変換回路5は三相フルブリッジ回路から構成される。半導体スイッチQ1,Q3,Q5はハイサイドスイッチであり、半導体スイッチQ2,Q4,Q6はローサイドスイッチである。半導体スイッチQ1~Q6の制御端子は、制御装置1に電気的に接続されている。なお、半導体スイッチQ1~Q6は、例えばMOSFETまたはIGBT等である。電源端子5aと電源端子5bとの間には平滑コンデンサCが設けられている。 Specifically, as shown in FIG. 2, the power conversion circuit 5 is composed of a three-phase full bridge circuit. Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches. The control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control device 1. The semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs. A smoothing capacitor C is provided between the power supply terminal 5a and the power supply terminal 5b.
 半導体スイッチQ1は、バッテリBの正極が接続された電源端子5aと、モータジェネレータ3の入力端子3aとの間に接続されている。同様に、半導体スイッチQ3は、バッテリBの正極が接続された電源端子5aと、モータジェネレータ3の入力端子3bとの間に接続されている。半導体スイッチQ5は、バッテリBの正極が接続された電源端子5aと、モータジェネレータ3の入力端子3cとの間に接続されている。 The semiconductor switch Q1 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3a of the motor generator 3. Similarly, the semiconductor switch Q3 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3b of the motor generator 3. The semiconductor switch Q5 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3c of the motor generator 3.
 半導体スイッチQ2は、バッテリBの負極が接続された電源端子5bと、モータジェネレータ3の入力端子3aとの間に接続されている。同様に、半導体スイッチQ4は、バッテリBの負極が接続された電源端子5bと、モータジェネレータ3の入力端子3bとの間に接続されている。半導体スイッチQ6は、バッテリBの負極が接続された電源端子5bと、モータジェネレータ3の入力端子3cとの間に接続されている。なお、入力端子3aはU相の入力端子であり、入力端子3bはV相の入力端子であり、入力端子3cはW相の入力端子である。 The semiconductor switch Q2 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3a of the motor generator 3. Similarly, the semiconductor switch Q4 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3b of the motor generator 3. Semiconductor switch Q6 is connected between power supply terminal 5b to which the negative electrode of battery B is connected and input terminal 3c of motor generator 3. The input terminal 3a is a U-phase input terminal, the input terminal 3b is a V-phase input terminal, and the input terminal 3c is a W-phase input terminal.
 上記のように、電力変換回路5は、第1半導体スイッチおよび第2半導体スイッチを含む複数のレグ(本実施形態では3つ)を有する。第1半導体スイッチは、バッテリBの第1電極とモータジェネレータ3の入力端子との間に接続された半導体スイッチである。第2半導体スイッチは、バッテリBの第2電極とモータジェネレータ3の入力端子との間に接続された半導体スイッチである。本実施形態では、第1電極がバッテリBの正極であり、第2電極がバッテリBの負極である。そして、第1半導体スイッチがハイサイドスイッチであり、第2半導体スイッチがローサイドスイッチである。 As described above, the power conversion circuit 5 has a plurality of legs (three in this embodiment) including the first semiconductor switch and the second semiconductor switch. The first semiconductor switch is a semiconductor switch connected between the first electrode of battery B and the input terminal of motor generator 3. The second semiconductor switch is a semiconductor switch connected between the second electrode of battery B and the input terminal of motor generator 3. In the present embodiment, the first electrode is the positive electrode of the battery B, and the second electrode is the negative electrode of the battery B. The first semiconductor switch is a high side switch, and the second semiconductor switch is a low side switch.
 バッテリ装置6は、充放電可能なバッテリBと、このバッテリBを管理するバッテリ管理ユニット(Battery Management Unit:BMU)とを含む。バッテリBは、モータジェネレータ3により発電された電力を蓄電可能であるとともに、モータジェネレータ3に電力を供給可能である。バッテリBの種類は特に限定されず、例えばリチウムイオン電池である。バッテリ管理ユニットは、バッテリBの電圧やバッテリBの状態に関する情報(以下、「バッテリ情報」と総称する。)を制御装置1に送信する。 The battery device 6 includes a chargeable / dischargeable battery B and a battery management unit (BMU) that manages the battery B. The battery B can store electric power generated by the motor generator 3 and can supply electric power to the motor generator 3. The kind of battery B is not specifically limited, For example, it is a lithium ion battery. The battery management unit transmits information regarding the voltage of the battery B and the state of the battery B (hereinafter collectively referred to as “battery information”) to the control device 1.
 記憶装置7は、制御装置1により用いられる情報(内燃機関2やモータジェネレータ3を制御するための各種マップ、動作プログラム等)を記憶する。この記憶装置7は、例えば不揮発性の半導体メモリから構成される。 The storage device 7 stores information used by the control device 1 (various maps, operation programs, etc. for controlling the internal combustion engine 2 and the motor generator 3). The storage device 7 is composed of, for example, a nonvolatile semiconductor memory.
 次に、制御装置1によるモータジェネレータ3の駆動制御について説明する。制御装置1は、電力変換回路5を介してモータジェネレータ3の駆動状態を、全相オープン状態、ショート状態およびチョッピング状態のうちいずれかの駆動状態に制御可能に構成されている。 Next, drive control of the motor generator 3 by the control device 1 will be described. The control device 1 is configured to be able to control the driving state of the motor generator 3 to any one of the all-phase open state, the short state, and the chopping state via the power conversion circuit 5.
 ここで、「全相オープン状態」は、電力変換回路5の3つの各レグについて、ハイサイドスイッチおよびローサイドスイッチをオフにした状態である。すなわち、電力変換回路5に含まれる6つの半導体スイッチQ1~Q6をすべてオフにした状態である。 Here, the “all-phase open state” is a state in which the high-side switch and the low-side switch are turned off for each of the three legs of the power conversion circuit 5. That is, all the six semiconductor switches Q1 to Q6 included in the power conversion circuit 5 are turned off.
 「ショート状態」は、各レグについて、ハイサイドスイッチ(すなわち、半導体スイッチQ1,Q3,Q5)をオフにし且つローサイドスイッチ(すなわち、半導体スイッチQ2,Q4,Q6)をオンにした状態である。本実施形態では、ショート状態は、厳密に言えばローサイドショート状態である。ショート状態は、バッテリBが満充電の場合や、比較的強いブレーキをかける際に用いられる。ショート状態では、バッテリBに電流が流れないため、バッテリBは充電されない。 “Short state” is a state in which, for each leg, the high-side switches (ie, semiconductor switches Q1, Q3, Q5) are turned off and the low-side switches (ie, semiconductor switches Q2, Q4, Q6) are turned on. In the present embodiment, the short state is strictly a low-side short state. The short state is used when the battery B is fully charged or when a relatively strong brake is applied. In a short state, no current flows through battery B, so battery B is not charged.
 「チョッピング状態」は、各レグについて、ハイサイドスイッチをオフにし且つローサイドショート状態のオン/オフを繰り返す状態である。チョッピング状態は、バッテリBが満充電ではなく、比較的弱いブレーキをかける際に用いられる。チョッピング状態では、バッテリBは充電される。 “Chopping state” is a state in which the high-side switch is turned off and the low-side short state is repeatedly turned on / off for each leg. The chopping state is used when the battery B is not fully charged and a relatively weak brake is applied. In the chopping state, the battery B is charged.
 なお、ショート状態およびチョッピング状態の少なくともいずれか一方について、ハイサイドとローサイドを逆にしてもよい。この場合、ショート状態は、ローサイドではなくハイサイドをショートした状態であり、より詳しくは、各レグについて、ローサイドスイッチ(すなわち、半導体スイッチQ2,Q4,Q6)をオフにし且つハイサイドスイッチ(すなわち、半導体スイッチQ1,Q3,Q5)をオンにした状態である。チョッピング状態は、ローサイドスイッチをオフにし、且つハイサイドスイッチのオン/オフを繰り返す状態である。このようにハイサイドとローサイドを逆にした場合は、前述の電力変換回路5の一般的表現において、バッテリBの第1電極が負極、第2電極が正極、第1半導体スイッチがローサイドスイッチ、第2半導体スイッチがハイサイドスイッチであることに相当する。 Note that the high side and the low side may be reversed for at least one of the short state and the chopping state. In this case, the short state is a state in which not the low side but the high side is short-circuited. More specifically, for each leg, the low side switch (ie, the semiconductor switches Q2, Q4, Q6) is turned off and the high side switch (ie, the low side switch) In this state, the semiconductor switches Q1, Q3, Q5) are turned on. The chopping state is a state in which the low-side switch is turned off and the high-side switch is repeatedly turned on / off. Thus, when the high side and the low side are reversed, in the general expression of the power conversion circuit 5 described above, the first electrode of the battery B is the negative electrode, the second electrode is the positive electrode, the first semiconductor switch is the low side switch, 2 corresponds to the semiconductor switch being a high-side switch.
 次に、制御装置1によるモータトルクの制御について説明する。 Next, the control of the motor torque by the control device 1 will be described.
 制御装置1は、電力変換回路5を介してモータジェネレータ3のトルク制御を行う。より具体的には、制御装置1は、電力変換回路5の半導体スイッチQ1~Q6に出力する制御信号(PWM信号)の通電タイミング(進角)およびデューティ比を制御することにより、モータジェネレータ3のトルクを制御する。 The control device 1 performs torque control of the motor generator 3 via the power conversion circuit 5. More specifically, the control device 1 controls the energization timing (advance angle) and the duty ratio of the control signal (PWM signal) output to the semiconductor switches Q1 to Q6 of the power conversion circuit 5 so that the motor generator 3 Control torque.
 制御装置1は、モータトルクが第1極性である第1状態から第1極性と反対の第2極性である第2状態に遷移する際に、モータトルクを徐々に変化させるトルク移行動作を行う。トルク移行動作は、厳密に言えば、第1状態におけるモータトルクから第2状態におけるモータトルクに向けてモータトルクを規定の時間変化率以下で変化させる動作である。 The control device 1 performs a torque transition operation for gradually changing the motor torque when the motor torque transits from the first state where the motor torque is the first polarity to the second state where the motor polarity is the second polarity opposite to the first polarity. Strictly speaking, the torque transition operation is an operation of changing the motor torque from the motor torque in the first state toward the motor torque in the second state at a prescribed time change rate or less.
 規定の時間変化率は、電力変換回路5の半導体スイッチQ1~Q6への電気的負荷が過大とならないように選択される。状態遷移時に半導体スイッチに流れる電流は、モータトルクの時間変化率が大きいほど大きくなる。よって、半導体スイッチに流れる電流が許容値以下となるようにモータトルクの時間変化率が選択される。ただし、時間変化率が小さすぎると、運転者が違和感を覚えるおそれがある。したがって、モータトルクの時間変化率は、半導体スイッチに過電流が流れない程度に小さく、かつ運転者に違和感を与えない程度に大きいことが好ましい。 The specified time change rate is selected so that the electrical load on the semiconductor switches Q1 to Q6 of the power conversion circuit 5 is not excessive. The current flowing through the semiconductor switch during the state transition increases as the time change rate of the motor torque increases. Therefore, the time change rate of the motor torque is selected so that the current flowing through the semiconductor switch is less than the allowable value. However, if the time change rate is too small, the driver may feel uncomfortable. Therefore, it is preferable that the rate of change of the motor torque with time is small enough not to cause an overcurrent to flow through the semiconductor switch and large enough not to give the driver a feeling of strangeness.
 制御装置1は、例えばアシスト状態から発電状態に遷移する際に、モータトルクを徐々に変化させる。アシスト状態は、モータジェネレータ3が内燃機関2をアシストする状態であり、モータトルクが正である。発電状態は、内燃機関2によりモータジェネレータ3が回転駆動されて発電する状態であり、モータトルクが負である。状態遷移前後でモータトルクの極性が異なるため、制御装置1はトルク移行動作を行う。 The control device 1 gradually changes the motor torque, for example, when transitioning from the assist state to the power generation state. The assist state is a state in which the motor generator 3 assists the internal combustion engine 2, and the motor torque is positive. The power generation state is a state in which the motor generator 3 is rotationally driven by the internal combustion engine 2 to generate power, and the motor torque is negative. Since the polarity of the motor torque is different before and after the state transition, the control device 1 performs a torque transition operation.
 この際、本実施形態では、制御装置1は、図3に示すように、モータトルクを階段状に変化させる。すなわち、制御装置1は、モータトルクを規定の時間間隔で、規定のステップ幅ずつ変化させる。時間間隔は、例えばミリ秒のオーダーである。時間間隔およびステップ幅は、状態遷移をハイブリッド車両の運転者に気付かれず、且つ電力変換回路5の半導体スイッチへの電気的負荷が大きくならないように選択されることが好ましい。なお、制御装置1は、モータトルクを階段状に変化させる場合に限らず、滑らかな曲線に沿って変化させてもよい。 At this time, in the present embodiment, the control device 1 changes the motor torque stepwise as shown in FIG. That is, the control device 1 changes the motor torque by a specified step width at a specified time interval. The time interval is on the order of milliseconds, for example. The time interval and the step width are preferably selected so that the state transition is not noticed by the driver of the hybrid vehicle and the electrical load on the semiconductor switch of the power conversion circuit 5 is not increased. The control device 1 is not limited to changing the motor torque stepwise, but may change the motor torque along a smooth curve.
 上記のように、本実施形態では、制御装置1は、モータトルクが第1極性である第1状態から、第1極性と反対の第2極性である第2状態に遷移する際に、第1状態におけるモータトルクから第2状態におけるモータトルクに向けてモータトルクを規定の時間変化率以下で変化させる。これにより、本実施形態によれば、モータトルクの極性が異なる状態間で状態遷移を行っても、電力変換回路を構成する半導体スイッチ等の素子に過電流が流れることを防止することができる。 As described above, in the present embodiment, when the control device 1 makes a transition from the first state where the motor torque is the first polarity to the second state where the motor polarity is the second polarity opposite to the first polarity, The motor torque is changed from the motor torque in the state toward the motor torque in the second state at a predetermined time change rate or less. Thus, according to the present embodiment, it is possible to prevent an overcurrent from flowing to an element such as a semiconductor switch that constitutes the power conversion circuit even if state transition is performed between states having different motor torque polarities.
 なお、状態遷移は上記の例(アシスト状態から発電状態)に限られない。例えば、発電状態からアシスト状態への遷移であってもよいし、アシスト状態から準備位置逆転駆動状態への遷移であってもよい。また、エンジン始動状態から発電状態への遷移であってもよいし、あるいはアシスト状態から逆転ブレーキ状態への遷移でもよい。ここで、逆転ブレーキ状態は、モータジェネレータ3(例えば交流発電機ACGをベースにしたモータジェネレータ)に負のモータトルクを発生させて電磁的にブレーキをかける状態のことをいう。いずれにせよ、制御装置1は、遷移前後でモータトルクの極性が異なる状態遷移を行う際にトルク移行動作を行う。 The state transition is not limited to the above example (assist state to power generation state). For example, it may be a transition from the power generation state to the assist state, or may be a transition from the assist state to the preparation position reverse drive state. Further, it may be a transition from the engine start state to the power generation state, or a transition from the assist state to the reverse brake state. Here, the reverse brake state refers to a state in which a negative motor torque is generated in the motor generator 3 (for example, a motor generator based on the AC generator ACG) to brake electromagnetically. In any case, the control device 1 performs a torque transition operation when performing a state transition in which the polarity of the motor torque differs before and after the transition.
 また、制御装置1は、第1状態がアシスト状態であり、かつ第2状態が発電状態である場合、図3に示すように、内燃機関2の回転速度とモータトルクの関係を示す四象限特性図の第1象限におけるモータトルクの時間変化率が、当該四象限特性図の第4象限におけるモータトルクの時間変化率よりも大きくなるようにモータトルクを変化させてもよい。これにより、運転者が気付きやすい、第4象限における発電状態への移行が、比較的ゆっくり進む。このため、状態遷移によるハイブリッド車両30の乗り心地への影響を抑制することができる。モータトルクの時間変化率は、図3のように、時間間隔を変えることで調整する。なお、モータトルクの時間変化率はステップ幅を変えることで調整してもよい。また、時間間隔とステップ幅の両方を変えることにより、モータトルクの時間変化率を調整してもよい。 Further, when the first state is the assist state and the second state is the power generation state, the control device 1 has a four-quadrant characteristic indicating the relationship between the rotational speed of the internal combustion engine 2 and the motor torque, as shown in FIG. The motor torque may be changed so that the time change rate of the motor torque in the first quadrant of the figure is larger than the time change rate of the motor torque in the fourth quadrant of the four-quadrant characteristic diagram. Thereby, the transition to the power generation state in the fourth quadrant, which is easily noticed by the driver, proceeds relatively slowly. For this reason, the influence on the riding comfort of the hybrid vehicle 30 by a state transition can be suppressed. The time change rate of the motor torque is adjusted by changing the time interval as shown in FIG. The time change rate of the motor torque may be adjusted by changing the step width. Further, the time change rate of the motor torque may be adjusted by changing both the time interval and the step width.
 また、制御装置1は、第1状態から第2状態へ遷移する前にショート状態またはチョッピング状態の場合は、モータジェネレータ3の駆動状態を全相オープン状態とし、これによりモータジェネレータ3に流れる電流が規定値以下になった後にトルク移行動作を行うようにしてもよい。ここで、既定値とは、例えば、モータジェネレータ3の仕様で定められた基準値である。このようにすることで、電力変換回路5に流れる過電流の発生をより確実に防止することができる。 In addition, when the control device 1 is in the short state or the chopping state before the transition from the first state to the second state, the driving state of the motor generator 3 is set to the all-phase open state, whereby the current flowing through the motor generator 3 is You may make it perform torque transfer operation, after becoming below a regulation value. Here, the predetermined value is, for example, a reference value determined by the specifications of the motor generator 3. By doing in this way, generation | occurrence | production of the overcurrent which flows into the power converter circuit 5 can be prevented more reliably.
 また、制御装置1は、バッテリBに関するバッテリ情報に基づいて、モータトルクの時間変化率を変えるようにしてもよい。例えば、第1状態がアシスト状態であり、かつ第2状態が発電状態である場合に、制御装置1は、バッテリ情報に含まれるバッテリの充電率が低いほど、モータトルクの時間変化率を小さくする。バッテリBの充電率が低いほどバッテリBに電流が流れやすくなることから、このように充電率に応じて時間変化率を制御することにより、状態遷移の際にバッテリBに過電流が流れることを防止できる。なお、モータトルクを階段状に小さくする場合は、バッテリBの充電率が低いほど、時間間隔を長くする、および/またはステップ幅を小さくすることにより、モータトルクの時間変化率を小さくしてもよい。 Further, the control device 1 may change the time change rate of the motor torque based on the battery information regarding the battery B. For example, when the first state is the assist state and the second state is the power generation state, the control device 1 decreases the time change rate of the motor torque as the battery charging rate included in the battery information is lower. . The lower the charging rate of battery B, the easier it is for current to flow to battery B. Thus, by controlling the rate of time change according to the charging rate, overcurrent flows to battery B at the time of state transition. Can be prevented. When the motor torque is decreased stepwise, the time change rate of the motor torque can be reduced by increasing the time interval and / or decreasing the step width as the charging rate of the battery B is lower. Good.
 次に、図4のフローチャートを参照して、本実施形態に係るハイブリッド車両の制御方法について説明する。 Next, a control method of the hybrid vehicle according to the present embodiment will be described with reference to the flowchart of FIG.
 モータトルクの極性が異なる状態遷移を行う際、制御装置1は、モータ駆動状態がショート状態またはチョッピング状態であるかどうか判定する(ステップS1)。そして、モータ駆動状態がショート状態またはチョッピング状態である場合(S1;Yes)、制御装置1は、電力変換回路5を制御して全相オープン状態にする(ステップS2)。 When performing a state transition in which the polarity of the motor torque is different, the control device 1 determines whether the motor drive state is a short state or a chopping state (step S1). When the motor drive state is the short state or the chopping state (S1; Yes), the control device 1 controls the power conversion circuit 5 to be in the all-phase open state (step S2).
 次に、制御装置1は、モータジェネレータ3に流れる電流が既定値以下であるかどうかを判定する(ステップS3)。そして、モータジェネレータ3に流れる電流が既定値以下である場合(S3;Yes)、制御装置1は、モータトルクを徐々に変化させる(ステップS4)。より詳しくは、制御装置1は、第1状態におけるモータトルクから第2状態におけるモータトルクに向けてモータトルクを規定の時間変化率以下で変化させるトルク移行動作を行う。 Next, the control device 1 determines whether or not the current flowing through the motor generator 3 is equal to or less than a predetermined value (step S3). And when the electric current which flows into the motor generator 3 is below a predetermined value (S3; Yes), the control apparatus 1 changes a motor torque gradually (step S4). More specifically, the control device 1 performs a torque transition operation for changing the motor torque from a motor torque in the first state to a motor torque in the second state at a predetermined time change rate or less.
 上記制御方法によれば、モータトルクの極性が異なる状態間で状態遷移を行っても、電力変換回路を構成する半導体スイッチ等の素子に過電流が流れることを防止することができる。また、トルク移行動作の前に全相オープン状態にすることで、電力変換回路5に流れる過電流の発生をより確実に防止することができる。 According to the above control method, it is possible to prevent an overcurrent from flowing to an element such as a semiconductor switch constituting the power conversion circuit even if the state transition is performed between states having different motor torque polarities. In addition, by setting the all-phase open state before the torque transition operation, it is possible to more reliably prevent the occurrence of overcurrent flowing in the power conversion circuit 5.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the individual embodiments described above. . You may combine suitably the component covering different embodiment. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
1 制御装置
2 内燃機関(エンジン)
3 モータジェネレータ
3a,3b,3c 入力端子
4 点火装置
5 電力変換回路
5a,5b 電源端子
6 バッテリ装置
7 記憶装置
8 クラッチ
9 車輪
30 ハイブリッド車両
B バッテリ
C 平滑コンデンサ
Q1~Q6 半導体スイッチ
DESCRIPTION OF SYMBOLS 1 Control apparatus 2 Internal combustion engine (engine)
3 Motor generator 3a, 3b, 3c Input terminal 4 Ignition device 5 Power conversion circuit 5a, 5b Power supply terminal 6 Battery device 7 Storage device 8 Clutch 9 Wheel 30 Hybrid vehicle B Battery C Smoothing capacitor Q1-Q6 Semiconductor switch

Claims (12)

  1.  内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータを有するハイブリッド車両の制御装置であって、
     前記モータジェネレータが前記内燃機関に付与するトルクであるモータトルクが第1極性である第1状態から、前記第1極性と反対の第2極性である第2状態に遷移する際に、前記第1状態におけるモータトルクから前記第2状態におけるモータトルクに向けて前記モータトルクを規定の時間変化率以下で変化させるトルク移行動作を行うことを特徴とする制御装置。
    A control device for a hybrid vehicle mechanically connected to an internal combustion engine, having a motor generator capable of generating electric power by receiving rotation of the internal combustion engine and capable of applying torque to the internal combustion engine,
    When the motor generator, which is the torque applied to the internal combustion engine by the motor generator, transitions from the first state having the first polarity to the second state having the second polarity opposite to the first polarity, the first A control device that performs a torque transition operation for changing the motor torque from a motor torque in a state to a motor torque in the second state at a predetermined time change rate or less.
  2.  前記ハイブリッド車両は、前記モータジェネレータにより発電された電力を蓄電可能であるとともに前記モータジェネレータに電力を供給可能なバッテリと、前記バッテリが出力する直流電力を交流電力に変換して前記モータジェネレータに供給する電力変換回路とを有し、
     前記制御装置は、前記電力変換回路を介して前記モータジェネレータの駆動制御を行うように構成されていることを特徴とする請求項1に記載の制御装置。
    The hybrid vehicle can store the electric power generated by the motor generator and can supply electric power to the motor generator, and converts the direct current power output from the battery into alternating current power and supplies the alternating current power to the motor generator Power conversion circuit to
    The control device according to claim 1, wherein the control device is configured to perform drive control of the motor generator via the power conversion circuit.
  3.  前記電力変換回路は、前記バッテリの第1電極と前記モータジェネレータの入力端子との間に接続された第1半導体スイッチと、前記バッテリの第2電極と前記モータジェネレータの前記入力端子との間に接続された第2半導体スイッチとを含む複数のレグを有し、
     前記制御装置は、前記電力変換回路を介して前記モータジェネレータの駆動状態を、
     前記各レグについて前記第1および第2半導体スイッチをオフにした全相オープン状態、前記各レグについて前記第1半導体スイッチをオフにし且つ前記第2半導体スイッチをオンにしたショート状態、および、前記各レグについて前記第1半導体スイッチをオフにし且つ前記第2半導体スイッチのオン/オフを繰り返すチョッピング状態のうち、いずれかの駆動状態に制御可能であり、
     前記第1状態から前記第2状態へ遷移する前に前記ショート状態または前記チョッピング状態の場合は、前記モータジェネレータの駆動状態を前記全相オープン状態とすることにより、前記モータジェネレータに流れる電流が規定値以下になった後に前記トルク移行動作を行うことを特徴とする請求項2に記載の制御装置。
    The power conversion circuit includes a first semiconductor switch connected between a first electrode of the battery and an input terminal of the motor generator, and a second electrode of the battery and the input terminal of the motor generator. A plurality of legs including a second semiconductor switch connected thereto;
    The control device, the driving state of the motor generator via the power conversion circuit,
    An all-phase open state in which the first and second semiconductor switches are turned off for each leg; a short state in which the first semiconductor switch is turned off and the second semiconductor switch is turned on for each leg; and The leg can be controlled to any driving state among chopping states in which the first semiconductor switch is turned off and the second semiconductor switch is repeatedly turned on / off.
    In the case of the short state or the chopping state before the transition from the first state to the second state, the current flowing to the motor generator is defined by setting the driving state of the motor generator to the all-phase open state. The control device according to claim 2, wherein the torque transfer operation is performed after the value becomes equal to or less than a value.
  4.  前記バッテリの前記第1電極は正極であり、前記第2電極は負極であり、
     前記第1半導体スイッチはハイサイドスイッチであり、前記第2半導体スイッチはローサイドスイッチであることを特徴とする請求項3に記載の制御装置。
    The first electrode of the battery is a positive electrode and the second electrode is a negative electrode;
    The control device according to claim 3, wherein the first semiconductor switch is a high-side switch, and the second semiconductor switch is a low-side switch.
  5.  前記バッテリの前記第1電極は負極であり、前記第2電極は正極であり、
     前記第1半導体スイッチはローサイドスイッチであり、前記第2半導体スイッチはハイサイドスイッチであることを特徴とする請求項3に記載の制御装置。
    The first electrode of the battery is a negative electrode, the second electrode is a positive electrode;
    The control device according to claim 3, wherein the first semiconductor switch is a low-side switch, and the second semiconductor switch is a high-side switch.
  6.  前記バッテリに関するバッテリ情報に基づいて前記モータトルクの時間変化率を変えることを特徴とする請求項2に記載の制御装置。 3. The control device according to claim 2, wherein the time change rate of the motor torque is changed based on battery information related to the battery.
  7.  前記第1状態が、前記内燃機関を前記モータジェネレータがアシストするアシスト状態であり、かつ前記第2状態が、前記内燃機関により前記モータジェネレータが回転駆動されて発電する発電状態である場合に、前記バッテリ情報に含まれる前記バッテリの充電率が低いほど、前記モータトルクの時間変化率を小さくすることを特徴とする請求項6に記載の制御装置。 When the first state is an assist state in which the motor generator assists the internal combustion engine, and the second state is a power generation state in which the motor generator is rotationally driven by the internal combustion engine to generate electric power, The control device according to claim 6, wherein the time rate of change of the motor torque is reduced as the charging rate of the battery included in the battery information is lower.
  8.  前記モータトルクを規定の時間間隔で規定のステップ幅ずつ小さくすることで、前記時間変化率を小さくするように構成されており、
     前記バッテリの充電率が低いほど、前記時間間隔を長くする、および/または前記ステップ幅を小さくすることを特徴とする請求項7に記載の制御装置。
    It is configured to reduce the time change rate by decreasing the motor torque by a specified step width at a specified time interval.
    The control device according to claim 7, wherein the time interval is increased and / or the step width is decreased as the charging rate of the battery is lower.
  9.  前記第1状態が、前記内燃機関を前記モータジェネレータがアシストするアシスト状態であり、かつ前記第2状態が、前記内燃機関により前記モータジェネレータが回転駆動されて発電する発電状態である場合は、前記内燃機関の回転速度と前記モータトルクとの関係を示す四象限特性図の第1象限における前記モータトルクの時間変化率が、前記四象限特性図の第4象限における前記モータトルクの時間変化率よりも大きくなるように前記モータトルクを変化させることを特徴とする請求項1に記載の制御装置。 When the first state is an assist state in which the motor generator assists the internal combustion engine, and the second state is a power generation state in which the motor generator is rotationally driven by the internal combustion engine to generate electric power, The time change rate of the motor torque in the first quadrant of the four quadrant characteristic diagram showing the relationship between the rotational speed of the internal combustion engine and the motor torque is greater than the time change rate of the motor torque in the fourth quadrant of the four quadrant characteristic diagram. The control device according to claim 1, wherein the motor torque is changed so as to increase.
  10.  前記モータトルクを、規定の時間間隔で規定のステップ幅ずつ変化させることを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, wherein the motor torque is changed by a predetermined step width at a predetermined time interval.
  11.  前記モータジェネレータは、前記ハイブリッド車両が発車する際に前記内燃機関を回転始動させる始動モータとして機能することを特徴とする請求項1に記載の制御装置。 2. The control device according to claim 1, wherein the motor generator functions as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle starts.
  12.  内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータを有するハイブリッド車両の制御方法であって、
     前記モータジェネレータが前記内燃機関に付与するトルクであるモータトルクが第1極性である第1状態から、前記第1極性と反対の第2極性である第2状態に遷移する際に、前記第1状態におけるモータトルクから前記第2状態におけるモータトルクに向けて前記モータトルクを規定の時間変化率以下で変化させるトルク移行動作を行うことを特徴とする制御方法。
    A method for controlling a hybrid vehicle having a motor generator mechanically connected to an internal combustion engine, capable of generating electric power by receiving rotation of the internal combustion engine and capable of applying torque to the internal combustion engine,
    When the motor generator, which is the torque applied to the internal combustion engine by the motor generator, transitions from the first state having the first polarity to the second state having the second polarity opposite to the first polarity, the first A control method, comprising: performing a torque transition operation for changing the motor torque from a motor torque in a state to a motor torque in the second state at a predetermined time change rate or less.
PCT/JP2016/076712 2016-07-22 2016-09-09 Control apparatus and control method for hybrid vehicle WO2018016084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556998A JP6379306B2 (en) 2016-07-22 2016-09-09 Control device and control method for hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016144386 2016-07-22
JP2016-144386 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016084A1 true WO2018016084A1 (en) 2018-01-25

Family

ID=60993281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076712 WO2018016084A1 (en) 2016-07-22 2016-09-09 Control apparatus and control method for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP6379306B2 (en)
WO (1) WO2018016084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869091A (en) * 2018-01-30 2020-10-30 法雷奥电机设备公司 Drive torque cutoff management method for rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354607A (en) * 2001-05-22 2002-12-06 Mazda Motor Corp Control device for vehicle
JP2010166715A (en) * 2009-01-16 2010-07-29 Denso Corp Controller and control system for rotating machine
JP2011174468A (en) * 2011-03-25 2011-09-08 Komatsu Ltd Engine, hydraulic pump, and control device for generator motor
JP2013189193A (en) * 2013-04-04 2013-09-26 Honda Motor Co Ltd Hybrid vehicle control device
JP2015076964A (en) * 2013-10-08 2015-04-20 ミネベア株式会社 Motor drive control device and method for controlling motor drive control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354607A (en) * 2001-05-22 2002-12-06 Mazda Motor Corp Control device for vehicle
JP2010166715A (en) * 2009-01-16 2010-07-29 Denso Corp Controller and control system for rotating machine
JP2011174468A (en) * 2011-03-25 2011-09-08 Komatsu Ltd Engine, hydraulic pump, and control device for generator motor
JP2013189193A (en) * 2013-04-04 2013-09-26 Honda Motor Co Ltd Hybrid vehicle control device
JP2015076964A (en) * 2013-10-08 2015-04-20 ミネベア株式会社 Motor drive control device and method for controlling motor drive control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869091A (en) * 2018-01-30 2020-10-30 法雷奥电机设备公司 Drive torque cutoff management method for rotating electric machine
JP2021513020A (en) * 2018-01-30 2021-05-20 ヴァレオ エキプマン エレクトリク モトゥール Methods for controlling motor torque cuts in rotating electromechanical machines
JP7167173B2 (en) 2018-01-30 2022-11-08 ヴァレオ エキプマン エレクトリク モトゥール Method for controlling motor torque cut in rotating electrical machine

Also Published As

Publication number Publication date
JPWO2018016084A1 (en) 2018-07-19
JP6379306B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5941019B2 (en) Vehicle power supply
US9564840B2 (en) Power source device
JP6107679B2 (en) Vehicle control device
JP6408171B2 (en) Control device and control method for hybrid vehicle
JP4096785B2 (en) Vehicle power supply system
JP2004088829A (en) Power supply mounted on internal combustion engine drive vehicle
JP6379306B2 (en) Control device and control method for hybrid vehicle
JP6396604B2 (en) VEHICLE POWER SUPPLY DEVICE, VEHICLE POWER SUPPLY SYSTEM, AND CONTROL METHOD FOR VEHICLE POWER SUPPLY DEVICE
JPWO2018173981A1 (en) Vehicle motor control device
US20080179889A1 (en) Vehicle battery charger and method of operating same
JP5874314B2 (en) Control device for motorcycle
JP6367498B2 (en) Control device and control method for hybrid vehicle
JP2015201960A (en) Start and power generation system for saddle-riding type vehicle
JP4449839B2 (en) Power control device
JP5878504B2 (en) Engine starting generator
JP2009137411A (en) Control method for hybrid vehicle, and hybrid vehicle
TWI810599B (en) Control method of vehicle with switching power source
JP6383970B2 (en) Control device and control method for hybrid vehicle
JP2009001213A (en) Control device for hybrid car
JP5827763B1 (en) Engine system and saddle riding type vehicle
JP2020005343A (en) Engine stop control device
WO2020065784A1 (en) Engine control device
JP2009275546A (en) Engine starting system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017556998

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909559

Country of ref document: EP

Kind code of ref document: A1