WO2018016083A1 - Control apparatus and control method for hybrid vehicle - Google Patents
Control apparatus and control method for hybrid vehicle Download PDFInfo
- Publication number
- WO2018016083A1 WO2018016083A1 PCT/JP2016/076710 JP2016076710W WO2018016083A1 WO 2018016083 A1 WO2018016083 A1 WO 2018016083A1 JP 2016076710 W JP2016076710 W JP 2016076710W WO 2018016083 A1 WO2018016083 A1 WO 2018016083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- throttle opening
- torque
- target
- calculation unit
- virtual
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K6/485—Motor-assist type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to a control device and a control method for a hybrid vehicle.
- hybrid vehicles using an internal combustion engine (engine) and an electric motor (motor) as power sources are known.
- the motor is configured as a motor generator.
- the motor generator can assist the internal combustion engine by applying torque to the internal combustion engine, and can also generate electric power while the internal combustion engine is traveling.
- an AC generator (Alternating Current Generator: ACG) is provided that is connected to a crankshaft of an internal combustion engine and generates electric power by receiving the rotation of the internal combustion engine.
- the AC power generated by the AC generator is converted to DC power according to the battery by a regulated rectifier (REG / RECT), and then supplied to the battery.
- REG / RECT regulated rectifier
- Patent Document 1 describes a control device for a hybrid electric vehicle.
- this control device when the required torque is rapidly increased due to a sudden depression of the accelerator pedal, the increase in the torque of the internal combustion engine is made slower than the rapid increase in the required torque by using the torque of the electric motor.
- the AC generator is configured as a motor generator that not only functions as a generator but also functions as an electric motor that can apply torque to the internal combustion engine. It is conceivable to assist the engine.
- the torque of the internal combustion engine and the motor generator should be set appropriately and high so that the required torque can be obtained not only during acceleration but also in a wide range of driving conditions including during traveling at cruising speed and during deceleration. It is necessary to calculate the accuracy.
- an electronic throttle valve mechanism that adjusts the opening of the throttle valve by electronic control is increasingly used instead of the conventional mechanical throttle mechanism.
- engine torque the torque of the internal combustion engine
- motor torque the torque of the electric motor
- the present invention provides a hybrid vehicle having an electronic throttle valve mechanism that can calculate the torque of the internal combustion engine and the torque of the motor generator appropriately and with high accuracy when the motor generator assists the internal combustion engine.
- An object of the present invention is to provide a control device and a control method.
- the control device includes: An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine
- a control device for controlling the torque of a hybrid vehicle having A target total torque calculation unit for calculating a target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator;
- a virtual throttle opening calculator for calculating a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
- a target engine torque calculation unit for calculating a target engine torque based on the virtual throttle opening and the rotation information;
- a target motor torque calculator for calculating a target motor torque by subtracting the target engine torque from the target total torque; It is characterized by providing.
- the virtual throttle opening calculation unit may determine whether or not the motor generator can assist the internal combustion engine, and may calculate the virtual throttle opening when the assist is possible.
- the virtual throttle opening calculation unit may calculate a throttle opening smaller than the set throttle opening as the virtual throttle opening.
- the hybrid vehicle further includes a battery device having a battery capable of storing electric power generated by the motor generator and capable of supplying electric power to the motor generator,
- the virtual throttle opening calculation unit may determine whether or not the assist is possible based on battery information regarding the battery and status information of the motor generator.
- the virtual throttle opening calculator may determine that the assist is possible when the battery voltage or charging rate is equal to or greater than a threshold value and the motor generator is normal.
- the virtual throttle opening calculation unit may calculate the virtual throttle opening so that the virtual throttle opening becomes larger than the set throttle opening as the voltage of the battery decreases.
- the target total torque calculation unit includes a drive mode and a plurality of total torque maps indicating a relationship between the total torque including the torque of the internal combustion engine and the torque of the motor generator, the rotation information, and the set throttle opening.
- the target total torque may be calculated by selecting a total torque map based on the gear position and searching the selected total torque map using the set throttle opening and the rotation information. Good.
- the virtual throttle opening calculation unit is configured to calculate a drive mode, the set throttle opening, and the virtual throttle opening from a plurality of virtual throttle opening maps indicating the relationship between the virtual throttle opening, the rotation information, and the set throttle opening. By selecting a virtual throttle opening map based on at least one of the rotation information, and searching the selected virtual throttle opening map using the set throttle opening and the rotation information, The virtual throttle opening may be calculated.
- the target engine torque calculation unit is configured to determine an engine torque based on a rate of change of the virtual throttle opening from a plurality of engine torque maps indicating a relationship among the torque of the internal combustion engine, the rotation information, and the virtual throttle opening.
- the target engine torque may be calculated by selecting a map and searching the selected engine torque map using the virtual throttle opening and the rotation information.
- a motor control signal generation unit that generates a control signal for controlling a power conversion circuit that drives the motor generator based on the target motor torque;
- An engine control signal generator for generating a control signal for controlling the ignition timing and the fuel injection amount based on the target engine torque; May be further provided.
- the motor generator may function as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle departs.
- the hybrid vehicle may be a hybrid motorcycle.
- the control method includes: An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine
- a control method for controlling the torque of a hybrid vehicle having The target total torque calculation unit calculates the target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator, A virtual throttle opening calculator calculates a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information; A target engine torque calculation unit calculates a target engine torque based on the virtual throttle opening and the rotation information, The target motor torque calculation unit calculates the target motor torque by subtracting the target engine torque from the target total torque.
- the target total torque is calculated based on the set throttle opening and rotation information set by the driver. Then, the virtual throttle opening of the electronic throttle valve is calculated based on the set throttle opening and the rotation information, and the target engine torque is calculated based on the calculated virtual throttle opening. Since the target engine torque is calculated based on the virtual throttle opening in this way, the target engine torque can be calculated appropriately and with high accuracy. Further, since the target motor torque is calculated by subtracting the target engine torque from the target total torque, the target motor torque can be calculated appropriately and with high accuracy.
- the torque of the internal combustion engine and the torque of the motor generator can be calculated appropriately and with high accuracy.
- FIG. 2 is a diagram showing a schematic configuration of a power conversion circuit 5 of a hybrid vehicle 30. It is a figure which shows schematic structure of the control apparatus 1 which concerns on embodiment. It is an image figure of the comprehensive torque map which concerns on embodiment. It is an image figure of the virtual throttle opening map which concerns on embodiment. It is an image figure of the engine torque map which concerns on embodiment. It is a flowchart for demonstrating the control method which concerns on embodiment.
- the hybrid vehicle 30 is a hybrid type two-wheeled vehicle (hybrid motorcycle) having two power sources of an internal combustion engine and an electric motor.
- the hybrid vehicle 30 has an electronic throttle valve mechanism.
- the hybrid vehicle 30 is not limited to a two-wheeled vehicle, but may be another hybrid type vehicle (four-wheeled vehicle or the like).
- the hybrid vehicle 30 includes a control device 1, an internal combustion engine (engine) 2, a motor generator (MG) 3, an ignition device 4, a power conversion circuit 5, and a battery device 6.
- the wheel 9 in FIG. 1 represents the rear wheel of the hybrid motorcycle.
- the control device 1 is configured to control the torque (engine torque and motor torque) of the hybrid vehicle 30 as will be described in detail later.
- the control device 1 may be configured as an ECU (Electronic Control Unit) that controls the entire hybrid vehicle 30.
- ECU Electronic Control Unit
- the internal combustion engine 2 outputs a rotational driving force to the wheels 9 via the clutch 8 using the pressure when the fuel gas (air mixture) is combusted.
- the internal combustion engine 2 is provided with an electronic throttle valve (not shown) in the intake path. More specifically, an accelerator position sensor reads a throttle opening (hereinafter referred to as a “set throttle opening”) set by an accelerator (grip) operation of a driver (rider) and transmits it to the control device 1 as an electrical signal. . Thereafter, the control device 1 calculates the throttle opening based on the received set throttle opening, and transmits a command to a throttle opening adjusting means (such as a throttle motor).
- a throttle opening adjusting means such as a throttle motor
- the type of the internal combustion engine 2 is not particularly limited, and may be, for example, a 4-stroke engine or a 2-stroke engine.
- the motor generator 3 is mechanically connected to the internal combustion engine 2 as shown in FIG.
- the motor generator 3 is based on an AC generator (ACG), and is always connected to the crankshaft of the internal combustion engine 2 without a clutch.
- the motor generator 3 is configured to generate electric power upon receiving the rotation of the internal combustion engine 2 and to apply torque to the internal combustion engine 2. That is, the motor generator 3 generates electric power when it is rotationally driven by the internal combustion engine 2 and outputs three-phase AC power to the power conversion circuit 5. Then, the power conversion circuit 5 converts the three-phase AC power into DC power and charges the battery B (DC power supply) of the battery device 6.
- the motor generator 3 is rotated by the three-phase AC power output from the power conversion circuit 5 to assist the internal combustion engine 2.
- the motor generator 3 may function as a starter motor (cell motor) that starts rotating the internal combustion engine 2 when the hybrid vehicle 30 starts.
- the ignition device 4 receives a control signal from the control device 1 and ignites the air-fuel mixture compressed in the cylinder of the internal combustion engine 2 at an appropriate timing.
- the type of the ignition device 4 is not particularly limited, and may be a CDI (Capacitive Discharge Ignition) type or a full transistor type.
- the power conversion circuit 5 converts the DC power output from the battery B of the battery device 6 into three-phase AC power and supplies it to the motor generator 3.
- the generator 3 is driven.
- the power conversion circuit 5 converts the three-phase AC power supplied from the motor generator 3 into DC power and outputs it to the battery B of the battery device 6.
- the power conversion circuit 5 is composed of a three-phase full bridge circuit.
- Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches.
- the control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control device 1.
- the semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
- a smoothing capacitor C is provided between the power supply terminal 5a and the power supply terminal 5b.
- the semiconductor switch Q1 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3a of the motor generator 3.
- the semiconductor switch Q3 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3b of the motor generator 3.
- the semiconductor switch Q5 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3c of the motor generator 3.
- the semiconductor switch Q2 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3a of the motor generator 3.
- the semiconductor switch Q4 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3b of the motor generator 3.
- Semiconductor switch Q6 is connected between power supply terminal 5b to which the negative electrode of battery B is connected and input terminal 3c of motor generator 3.
- the input terminal 3a is a U-phase input terminal
- the input terminal 3b is a V-phase input terminal
- the input terminal 3c is a W-phase input terminal.
- the battery device 6 includes a chargeable / dischargeable battery B and a battery management unit (BMU) that manages the battery B.
- the battery B can store electric power generated by the motor generator 3 and can supply electric power to the motor generator 3.
- the kind of battery B is not specifically limited, For example, it is a lithium ion battery.
- the battery management unit transmits information regarding the voltage of the battery B and the state of the battery B (battery information) to the control device 1.
- the storage device 7 stores information (such as an operation program and a three-dimensional map described later) used by the control device 1.
- the storage device 7 is composed of, for example, a nonvolatile semiconductor memory.
- the storage device 7 stores a total torque map, a virtual throttle opening map, and an engine torque map.
- the “total torque map” is a three-dimensional map showing the relationship among the total torque, the rotational speed, and the set throttle opening, as shown in FIG.
- the “virtual throttle opening map” is a three-dimensional map showing the relationship among the virtual throttle opening, the rotational speed, and the set throttle opening.
- the “engine torque map” is a three-dimensional map showing the relationship among the torque (engine torque) of the internal combustion engine 2, the rotational speed, and the virtual throttle opening.
- the rotation speed may be a rotation speed.
- the storage device 7 stores a plurality of maps for each of the three types of three-dimensional maps. That is, the total torque map stores a plurality of maps created using at least one of the drive mode and the gear position as parameters.
- the virtual throttle opening map stores a plurality of maps created using at least one of the drive mode, the set throttle opening, and the rotation information as parameters.
- the engine torque map stores a plurality of maps created using the change rate of the virtual throttle opening as a parameter.
- control apparatus 1 Refer to FIG. 1
- the control device 1 includes a target total torque calculation unit 11, a virtual throttle opening calculation unit 12, a target engine torque calculation unit 13, a target motor torque calculation unit 14, and a motor control signal generation unit. 15 and an engine control signal generator 16.
- a target total torque calculation unit 11 a virtual throttle opening calculation unit 12
- a target engine torque calculation unit 13 a target motor torque calculation unit 14
- a motor control signal generation unit. 15 a motor control signal generator 16.
- the target total torque calculation unit 11 calculates a target value of the total torque.
- the “total torque” is a torque composed of the torque of the internal combustion engine 2 and the torque of the motor generator 3.
- the total torque is a torque obtained by adding the torque of the motor generator 3 to the torque of the internal combustion engine 2.
- Various information is input to the target total torque calculation unit 11 via the terminals 21, 22, 23, and 24.
- Information indicating the gear position is input to the terminal 21.
- the rotation information is input to the terminal 22.
- the “rotation information” is information indicating the rotation speed or the rotation speed (rpm) of the motor generator 3.
- the rotational speed (rotational speed) of the motor generator 3 is equal to the rotational speed (rotational speed) of the internal combustion engine 2.
- the drive mode is a mode set by the driver, and includes, for example, an eco-drive mode that emphasizes fuel consumption and a sports mode that emphasizes acceleration.
- Information indicating the set throttle opening read by the accelerator position sensor is input to the terminal 24.
- the target total torque calculation unit 11 calculates the target total torque based on the set throttle opening and the rotation information of the motor generator 3. More specifically, the target total torque calculation unit 11 first selects one total torque map from a plurality of total torque maps stored in the storage device 7 based on the drive mode and / or gear position. After selecting the total torque map, the target total torque calculation unit 11 calculates the target total torque by searching the selected total torque map using the set throttle opening and the rotation information.
- various information is input to the virtual throttle opening calculation unit 12 via terminals 22 to 26.
- the rotation information, the drive mode, and the set throttle opening are input to the terminals 22, 23 and 24, respectively.
- Battery information related to the battery B of the battery device 6 is input to the terminal 25.
- Status information of the motor generator 3 is input to the terminal 26.
- the status information is information indicating the state of the motor generator 3 such as the presence or absence of a failure.
- the virtual throttle opening calculation unit 12 calculates the virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information. More specifically, the virtual throttle opening calculation unit 12 first, based on at least one of the drive mode, the set throttle opening, and the rotation information from the plurality of virtual throttle opening maps stored in the storage device 7. To select one virtual throttle opening map. After selecting the virtual throttle opening map, the virtual throttle opening calculating unit 12 calculates the virtual throttle opening by searching the selected virtual throttle opening map using the set throttle opening and rotation information. To do.
- the calculated virtual throttle opening is input from the virtual throttle opening calculation unit 12 to the target engine torque calculation unit 13. Further, rotation information is input to the target engine torque calculation unit 13 via the terminal 22.
- the target engine torque calculation unit 13 calculates the target engine torque based on the virtual throttle opening and the rotation information. More specifically, the target engine torque calculation unit 13 first selects an engine torque map from a plurality of engine torque maps stored in the storage device 7 based on the change rate of the virtual throttle opening. After selecting the engine torque map, the target engine torque calculation unit 13 calculates the target engine torque by searching the selected engine torque map using the virtual throttle opening and the rotation information.
- the target total torque and the target engine torque are input to the target motor torque calculation unit 14.
- the target motor torque calculation unit 14 calculates the target motor torque by subtracting the target engine torque from the target total torque.
- the target motor torque calculated by the target motor torque calculation unit 14 is input to the motor control signal generation unit 15.
- the motor control signal generator 15 generates a control signal for controlling the power conversion circuit 5 based on the target motor torque. More specifically, the motor control signal generation unit 15 calculates the energization timing and duty ratio of the control signal (PWM signal) based on the target motor torque, and the semiconductor switches Q 1 to Q of the power conversion circuit 5 through the terminal 28. A PWM signal is output to Q6. Although only one terminal 28 is shown in FIG. 3, in reality, it has six terminals in accordance with the number of semiconductor switches Q1 to Q6.
- the energization timing is the advance (advance angle) or delay (retard angle) of the phase of the PWM signal with respect to the motor electrical angle.
- the energization timing is an advance angle when the motor generator 3 performs an assist operation. Is retarded.
- the target engine torque calculated by the target engine torque calculation unit 13 is input to the engine control signal generation unit 16.
- the engine control signal generator 16 generates a control signal for controlling the ignition timing and the fuel injection amount. More specifically, the engine control signal generation unit 16 generates a control signal for the ignition device 4 that ignites the air-fuel mixture in the internal combustion engine 2 and a control signal for the fuel injection amount control unit based on the target engine torque. To do.
- the control device 1 calculates the target total torque based on the set throttle opening and the rotation information set by the driver. Then, the virtual throttle opening of the electronic throttle valve is calculated based on the set throttle opening and the rotation information, and the target engine torque is calculated based on the calculated virtual throttle opening. Since the target engine torque is calculated based on the virtual throttle opening in this way, the target engine torque can be calculated appropriately and with high accuracy. Further, since the target motor torque is calculated by subtracting the target engine torque from the target total torque, the target motor torque can be calculated appropriately and with high accuracy.
- the motor generator 3 assists the internal combustion engine 2 in the hybrid vehicle 30 having the electronic throttle valve mechanism, the torque of the internal combustion engine 2 and the torque of the motor generator 3 are appropriately increased. It can be calculated with accuracy.
- the total torque based on the set throttle opening and the rotational speed can be appropriately and accurately distributed to the torque of the internal combustion engine 2 and the torque of the motor generator 3, so that only during acceleration. Therefore, the required torque can be obtained under a wide range of driving conditions including when driving at cruising speed and when decelerating. As a result, for example, there is an effect that the fuel efficiency of the internal combustion engine 2 can be improved under a wide range of traveling conditions.
- the virtual throttle opening calculation unit 12 may determine whether the motor generator 3 can assist the internal combustion engine 2 and may calculate the virtual throttle opening when the assist is possible. Regarding the determination of whether or not to assist, the virtual throttle opening calculation unit 12 determines whether or not to assist based on, for example, battery information related to the battery B of the battery device 6 and status information of the motor generator 3. More specifically, the virtual throttle opening calculation unit 12 is assisted by the motor generator 3 when the voltage or the charging rate (State of Charge: SOC) of the battery B is equal to or higher than the threshold value and the motor generator 3 has no abnormality. Determine that it is possible.
- SOC State of Charge
- the target total torque calculator 11 calculates the target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator 3 (step S1). More specifically, as described above, one total torque map is selected from a plurality of total torque maps stored in the storage device 7, and the selected total torque map is searched using the set throttle opening and rotation information. To calculate the target total torque.
- the virtual throttle opening calculation unit 12 determines whether or not the motor generator 3 can assist the internal combustion engine 2 (step S2). More specifically, the virtual throttle opening calculation unit 12 determines whether or not the assist is possible based on the battery information regarding the battery B and the status information of the motor generator 3. For example, the virtual throttle opening calculation unit 12 determines that the assist is possible when the voltage or the charging rate of the battery B is equal to or greater than the threshold value and the motor generator 3 has no abnormality.
- the virtual throttle opening calculator 12 calculates the virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information. Calculate (step S3). More specifically, as described above, one virtual throttle opening map is selected from a plurality of virtual throttle opening maps stored in the storage device 7, and the selected virtual throttle opening map is set as the throttle opening and rotation information. The virtual throttle opening is calculated by searching using.
- the target engine torque calculation unit 13 calculates the target engine torque based on the virtual throttle opening and the rotation information (step S4). More specifically, as described above, an engine torque map is selected from a plurality of engine torque maps stored in the storage device 7, and the selected engine torque map is searched using the virtual throttle opening and rotation information. Calculate the engine torque.
- the target motor torque calculation unit 14 calculates the target motor torque by subtracting the target engine torque from the target total torque (step S5).
- the target total torque is calculated based on the set throttle opening and the rotation information
- the virtual throttle opening is calculated based on the set throttle opening and the rotation information.
- a target engine torque is calculated based on the virtual throttle opening and the rotation information
- the target motor torque is calculated by subtracting the target engine torque from the target total torque.
- the virtual throttle opening calculation unit 12 may calculate a throttle opening smaller than the set throttle opening as the virtual throttle opening. That is, the throttle opening is estimated to be smaller than the value set by the driver. As a result, the target engine torque calculated in step S4 decreases, and the ratio of the target motor torque to the target total torque increases. As a result, the target engine torque is reduced and the fuel efficiency of the internal combustion engine 2 can be improved.
- the virtual throttle opening calculation unit 12 opens the virtual throttle so that the virtual throttle opening becomes larger than the set throttle opening as the voltage of the battery B decreases.
- the degree may be calculated.
- the total torque can be appropriately distributed between the engine torque and the motor torque in accordance with the assist margin by the motor generator 3.
- SYMBOLS 1 Control apparatus 2 Internal combustion engine (engine) DESCRIPTION OF SYMBOLS 3 Motor generator 3a, 3b, 3c Input terminal 4 Ignition device 5 Power conversion circuit 5a, 5b Power supply terminal 6 Battery device 7 Storage device 8 Clutch 9 Wheel 11 Target total torque calculation part 12 Virtual throttle opening calculation part 13 Target engine torque calculation Unit 14 target motor torque calculation unit 15 motor control signal generation unit 16 engine control signal generation unit 21 to 29 terminal 30 hybrid vehicle B battery C smoothing capacitor Q1 to Q6 semiconductor switch
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
[Problem] To appropriately and highly accurately calculate the torque of an internal combustion engine and the torque of a motor generator when the motor generator assists the internal combustion engine. [Solution] A control apparatus 1 according to an embodiment of the present invention is provided with: a target total torque calculation unit 11 that calculates target total torque on the basis of a set throttle opening set by a driver and rotation information of a motor generator 3; a virtual throttle opening calculation unit 12 that calculates a virtual throttle opening of an electronic throttle valve on the basis of the set throttle opening and the rotation information; a target engine torque calculation unit 13 that calculates target engine torque on the basis of the virtual throttle opening and the rotation information; and a target motor torque calculation unit 14 that calculates target motor torque by subtracting the target engine torque from the target total torque.
Description
本発明は、ハイブリッド車両の制御装置および制御方法に関する。
The present invention relates to a control device and a control method for a hybrid vehicle.
従来、内燃機関(エンジン)と電動機(モータ)を動力源とするハイブリッド車両が知られている。このハイブリッド車両では、モータがモータジェネレータとして構成されているものがある。モータジェネレータは、内燃機関にトルクを付与して内燃機関をアシストすることが可能であるとともに、内燃機関による走行中に発電を行うことも可能である。
Conventionally, hybrid vehicles using an internal combustion engine (engine) and an electric motor (motor) as power sources are known. In some of these hybrid vehicles, the motor is configured as a motor generator. The motor generator can assist the internal combustion engine by applying torque to the internal combustion engine, and can also generate electric power while the internal combustion engine is traveling.
また、従来、二輪車等の車両では、内燃機関のクランク軸に接続され、当該内燃機関の回転を受けて発電する交流発電機(Alternating Current Generator:ACG)が設けられている。交流発電機で発電された交流電力は、レギュレートレクチファイヤ(REG/RECT)によってバッテリに応じた直流電力に変換された後、バッテリに供給される。
Conventionally, in vehicles such as motorcycles, an AC generator (Alternating Current Generator: ACG) is provided that is connected to a crankshaft of an internal combustion engine and generates electric power by receiving the rotation of the internal combustion engine. The AC power generated by the AC generator is converted to DC power according to the battery by a regulated rectifier (REG / RECT), and then supplied to the battery.
特許文献1には、ハイブリッド電気自動車の制御装置が記載されている。この制御装置では、アクセルペダルが急激に踏み込まれて要求トルクが急増した場合に、電動機のトルクを利用することにより、内燃機関のトルクの増加を要求トルクの急増よりも緩やかにする。
Patent Document 1 describes a control device for a hybrid electric vehicle. In this control device, when the required torque is rapidly increased due to a sudden depression of the accelerator pedal, the increase in the torque of the internal combustion engine is made slower than the rapid increase in the required torque by using the torque of the electric motor.
ところで、ハイブリッド車両において、上記の交流発電機を、発電機として機能するだけでなく、内燃機関にトルクを付与可能な電動機としても機能することが可能なモータジェネレータとして構成し、このモータジェネレータにより内燃機関のアシストを行うことが考えられる。この場合、加速時だけでなく、巡航速度で走行している間や減速時などを含む広範な走行状況下において所要のトルクが得られるように、内燃機関およびモータジェネレータのトルクをそれぞれ適切かつ高精度に算出する必要がある。
By the way, in the hybrid vehicle, the AC generator is configured as a motor generator that not only functions as a generator but also functions as an electric motor that can apply torque to the internal combustion engine. It is conceivable to assist the engine. In this case, the torque of the internal combustion engine and the motor generator should be set appropriately and high so that the required torque can be obtained not only during acceleration but also in a wide range of driving conditions including during traveling at cruising speed and during deceleration. It is necessary to calculate the accuracy.
また、ハイブリッド二輪車等のハイブリッド車両では、従来の機械的スロットル機構に代えて、電子制御によりスロットルバルブの開度を調整する電子式スロットルバルブ機構を用いることが増えてきている。このような電子式スロットルバルブ機構を有するハイブリッド車両において、所要のトルクを内燃機関のトルク(エンジントルク)と電動機のトルク(モータトルク)に適切かつ高精度に分配することも必要である。
Also, in hybrid vehicles such as hybrid motorcycles, an electronic throttle valve mechanism that adjusts the opening of the throttle valve by electronic control is increasingly used instead of the conventional mechanical throttle mechanism. In a hybrid vehicle having such an electronic throttle valve mechanism, it is also necessary to appropriately and accurately distribute the required torque to the torque of the internal combustion engine (engine torque) and the torque of the electric motor (motor torque).
そこで、本発明は、電子式スロットルバルブ機構を有するハイブリッド車両において、モータジェネレータが内燃機関をアシストする際に、内燃機関のトルクとモータジェネレータのトルクを適切かつ高精度に算出することができるハイブリッド車両の制御装置および制御方法を提供することを目的とする。
Therefore, the present invention provides a hybrid vehicle having an electronic throttle valve mechanism that can calculate the torque of the internal combustion engine and the torque of the motor generator appropriately and with high accuracy when the motor generator assists the internal combustion engine. An object of the present invention is to provide a control device and a control method.
本発明に係る制御装置は、
吸気経路に電子式スロットルバルブが配設された内燃機関と、前記内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータとを有するハイブリッド車両のトルクを制御する制御装置であって、
運転者により設定された設定スロットル開度および前記モータジェネレータの回転情報に基づいて、目標総合トルクを算出する目標総合トルク算出部と、
前記設定スロットル開度および前記回転情報に基づいて、前記電子式スロットルバルブの仮想スロットル開度を算出する仮想スロットル開度算出部と、
前記仮想スロットル開度および前記回転情報に基づいて、目標エンジントルクを算出する目標エンジントルク算出部と、
前記目標総合トルクから前記目標エンジントルクを差し引くことにより、目標モータトルクを算出する目標モータトルク算出部と、
を備えることを特徴とする。 The control device according to the present invention includes:
An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine A control device for controlling the torque of a hybrid vehicle having
A target total torque calculation unit for calculating a target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator;
A virtual throttle opening calculator for calculating a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
A target engine torque calculation unit for calculating a target engine torque based on the virtual throttle opening and the rotation information;
A target motor torque calculator for calculating a target motor torque by subtracting the target engine torque from the target total torque;
It is characterized by providing.
吸気経路に電子式スロットルバルブが配設された内燃機関と、前記内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータとを有するハイブリッド車両のトルクを制御する制御装置であって、
運転者により設定された設定スロットル開度および前記モータジェネレータの回転情報に基づいて、目標総合トルクを算出する目標総合トルク算出部と、
前記設定スロットル開度および前記回転情報に基づいて、前記電子式スロットルバルブの仮想スロットル開度を算出する仮想スロットル開度算出部と、
前記仮想スロットル開度および前記回転情報に基づいて、目標エンジントルクを算出する目標エンジントルク算出部と、
前記目標総合トルクから前記目標エンジントルクを差し引くことにより、目標モータトルクを算出する目標モータトルク算出部と、
を備えることを特徴とする。 The control device according to the present invention includes:
An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine A control device for controlling the torque of a hybrid vehicle having
A target total torque calculation unit for calculating a target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator;
A virtual throttle opening calculator for calculating a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
A target engine torque calculation unit for calculating a target engine torque based on the virtual throttle opening and the rotation information;
A target motor torque calculator for calculating a target motor torque by subtracting the target engine torque from the target total torque;
It is characterized by providing.
また、前記制御装置において、
前記仮想スロットル開度算出部は、前記モータジェネレータによる前記内燃機関のアシストの可否を判定し、前記アシストが可能である場合に、前記仮想スロットル開度を算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit may determine whether or not the motor generator can assist the internal combustion engine, and may calculate the virtual throttle opening when the assist is possible.
前記仮想スロットル開度算出部は、前記モータジェネレータによる前記内燃機関のアシストの可否を判定し、前記アシストが可能である場合に、前記仮想スロットル開度を算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit may determine whether or not the motor generator can assist the internal combustion engine, and may calculate the virtual throttle opening when the assist is possible.
また、前記制御装置において、
前記仮想スロットル開度算出部は、前記設定スロットル開度よりも小さいスロットル開度を前記仮想スロットル開度として算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit may calculate a throttle opening smaller than the set throttle opening as the virtual throttle opening.
前記仮想スロットル開度算出部は、前記設定スロットル開度よりも小さいスロットル開度を前記仮想スロットル開度として算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit may calculate a throttle opening smaller than the set throttle opening as the virtual throttle opening.
また、前記制御装置において、
前記ハイブリッド車両は、前記モータジェネレータにより発電された電力を蓄電可能であるとともに前記モータジェネレータに電力を供給可能なバッテリを有するバッテリ装置をさらに備え、
前記仮想スロットル開度算出部は、前記バッテリに関するバッテリ情報および前記モータジェネレータのステータス情報に基づいて前記アシストの可否を判定するようにしてもよい。 In the control device,
The hybrid vehicle further includes a battery device having a battery capable of storing electric power generated by the motor generator and capable of supplying electric power to the motor generator,
The virtual throttle opening calculation unit may determine whether or not the assist is possible based on battery information regarding the battery and status information of the motor generator.
前記ハイブリッド車両は、前記モータジェネレータにより発電された電力を蓄電可能であるとともに前記モータジェネレータに電力を供給可能なバッテリを有するバッテリ装置をさらに備え、
前記仮想スロットル開度算出部は、前記バッテリに関するバッテリ情報および前記モータジェネレータのステータス情報に基づいて前記アシストの可否を判定するようにしてもよい。 In the control device,
The hybrid vehicle further includes a battery device having a battery capable of storing electric power generated by the motor generator and capable of supplying electric power to the motor generator,
The virtual throttle opening calculation unit may determine whether or not the assist is possible based on battery information regarding the battery and status information of the motor generator.
また、前記制御装置において、
前記仮想スロットル開度算出部は、前記バッテリの電圧または充電率が閾値以上であり、かつ前記モータジェネレータに異常が無い場合に、前記アシストが可能であると判定するようにしてもよい。 In the control device,
The virtual throttle opening calculator may determine that the assist is possible when the battery voltage or charging rate is equal to or greater than a threshold value and the motor generator is normal.
前記仮想スロットル開度算出部は、前記バッテリの電圧または充電率が閾値以上であり、かつ前記モータジェネレータに異常が無い場合に、前記アシストが可能であると判定するようにしてもよい。 In the control device,
The virtual throttle opening calculator may determine that the assist is possible when the battery voltage or charging rate is equal to or greater than a threshold value and the motor generator is normal.
また、前記制御装置において、
前記仮想スロットル開度算出部は、前記バッテリの電圧が低くなるにつれて、前記仮想スロットル開度が前記設定スロットル開度よりも大きくなるように前記仮想スロットル開度を算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit may calculate the virtual throttle opening so that the virtual throttle opening becomes larger than the set throttle opening as the voltage of the battery decreases.
前記仮想スロットル開度算出部は、前記バッテリの電圧が低くなるにつれて、前記仮想スロットル開度が前記設定スロットル開度よりも大きくなるように前記仮想スロットル開度を算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit may calculate the virtual throttle opening so that the virtual throttle opening becomes larger than the set throttle opening as the voltage of the battery decreases.
また、前記制御装置において、
前記目標総合トルク算出部は、前記内燃機関のトルクおよび前記モータジェネレータのトルクからなる総合トルクと、前記回転情報と、前記設定スロットル開度との関係を示す複数の総合トルクマップから、ドライブモードおよび/またはギヤポジションに基づいて総合トルクマップを選択し、前記設定スロットル開度および前記回転情報を用いて前記選択された総合トルクマップを検索することにより、前記目標総合トルクを算出するようにしてもよい。 In the control device,
The target total torque calculation unit includes a drive mode and a plurality of total torque maps indicating a relationship between the total torque including the torque of the internal combustion engine and the torque of the motor generator, the rotation information, and the set throttle opening. The target total torque may be calculated by selecting a total torque map based on the gear position and searching the selected total torque map using the set throttle opening and the rotation information. Good.
前記目標総合トルク算出部は、前記内燃機関のトルクおよび前記モータジェネレータのトルクからなる総合トルクと、前記回転情報と、前記設定スロットル開度との関係を示す複数の総合トルクマップから、ドライブモードおよび/またはギヤポジションに基づいて総合トルクマップを選択し、前記設定スロットル開度および前記回転情報を用いて前記選択された総合トルクマップを検索することにより、前記目標総合トルクを算出するようにしてもよい。 In the control device,
The target total torque calculation unit includes a drive mode and a plurality of total torque maps indicating a relationship between the total torque including the torque of the internal combustion engine and the torque of the motor generator, the rotation information, and the set throttle opening. The target total torque may be calculated by selecting a total torque map based on the gear position and searching the selected total torque map using the set throttle opening and the rotation information. Good.
また、前記制御装置において、
前記仮想スロットル開度算出部は、前記仮想スロットル開度と、前記回転情報と、前記設定スロットル開度との関係を示す複数の仮想スロットル開度マップから、ドライブモード、前記設定スロットル開度および前記回転情報の少なくともいずれか一つ以上に基づいて、仮想スロットル開度マップを選択し、前記設定スロットル開度および前記回転情報を用いて前記選択された仮想スロットル開度マップを検索することにより、前記仮想スロットル開度を算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit is configured to calculate a drive mode, the set throttle opening, and the virtual throttle opening from a plurality of virtual throttle opening maps indicating the relationship between the virtual throttle opening, the rotation information, and the set throttle opening. By selecting a virtual throttle opening map based on at least one of the rotation information, and searching the selected virtual throttle opening map using the set throttle opening and the rotation information, The virtual throttle opening may be calculated.
前記仮想スロットル開度算出部は、前記仮想スロットル開度と、前記回転情報と、前記設定スロットル開度との関係を示す複数の仮想スロットル開度マップから、ドライブモード、前記設定スロットル開度および前記回転情報の少なくともいずれか一つ以上に基づいて、仮想スロットル開度マップを選択し、前記設定スロットル開度および前記回転情報を用いて前記選択された仮想スロットル開度マップを検索することにより、前記仮想スロットル開度を算出するようにしてもよい。 In the control device,
The virtual throttle opening calculation unit is configured to calculate a drive mode, the set throttle opening, and the virtual throttle opening from a plurality of virtual throttle opening maps indicating the relationship between the virtual throttle opening, the rotation information, and the set throttle opening. By selecting a virtual throttle opening map based on at least one of the rotation information, and searching the selected virtual throttle opening map using the set throttle opening and the rotation information, The virtual throttle opening may be calculated.
また、前記制御装置において、
前記目標エンジントルク算出部は、前記内燃機関のトルクと、前記回転情報と、前記仮想スロットル開度との関係を示す複数のエンジントルクマップから、前記仮想スロットル開度の変化率に基づいてエンジントルクマップを選択し、前記仮想スロットル開度および前記回転情報を用いて前記選択されたエンジントルクマップを検索することにより、前記目標エンジントルクを算出するようにしてもよい。 In the control device,
The target engine torque calculation unit is configured to determine an engine torque based on a rate of change of the virtual throttle opening from a plurality of engine torque maps indicating a relationship among the torque of the internal combustion engine, the rotation information, and the virtual throttle opening. The target engine torque may be calculated by selecting a map and searching the selected engine torque map using the virtual throttle opening and the rotation information.
前記目標エンジントルク算出部は、前記内燃機関のトルクと、前記回転情報と、前記仮想スロットル開度との関係を示す複数のエンジントルクマップから、前記仮想スロットル開度の変化率に基づいてエンジントルクマップを選択し、前記仮想スロットル開度および前記回転情報を用いて前記選択されたエンジントルクマップを検索することにより、前記目標エンジントルクを算出するようにしてもよい。 In the control device,
The target engine torque calculation unit is configured to determine an engine torque based on a rate of change of the virtual throttle opening from a plurality of engine torque maps indicating a relationship among the torque of the internal combustion engine, the rotation information, and the virtual throttle opening. The target engine torque may be calculated by selecting a map and searching the selected engine torque map using the virtual throttle opening and the rotation information.
また、前記制御装置において、
前記目標モータトルクに基づいて、前記モータジェネレータを駆動する電力変換回路を制御するための制御信号を生成するモータ制御信号生成部と、
前記目標エンジントルクに基づいて、点火タイミングおよび燃料噴射量を制御するための制御信号を生成するエンジン制御信号生成部と、
をさらに備えてもよい。 In the control device,
A motor control signal generation unit that generates a control signal for controlling a power conversion circuit that drives the motor generator based on the target motor torque;
An engine control signal generator for generating a control signal for controlling the ignition timing and the fuel injection amount based on the target engine torque;
May be further provided.
前記目標モータトルクに基づいて、前記モータジェネレータを駆動する電力変換回路を制御するための制御信号を生成するモータ制御信号生成部と、
前記目標エンジントルクに基づいて、点火タイミングおよび燃料噴射量を制御するための制御信号を生成するエンジン制御信号生成部と、
をさらに備えてもよい。 In the control device,
A motor control signal generation unit that generates a control signal for controlling a power conversion circuit that drives the motor generator based on the target motor torque;
An engine control signal generator for generating a control signal for controlling the ignition timing and the fuel injection amount based on the target engine torque;
May be further provided.
また、前記制御装置において、
前記モータジェネレータは、前記ハイブリッド車両が発車する際に前記内燃機関を回転始動させる始動モータとして機能するようにしてもよい。 In the control device,
The motor generator may function as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle departs.
前記モータジェネレータは、前記ハイブリッド車両が発車する際に前記内燃機関を回転始動させる始動モータとして機能するようにしてもよい。 In the control device,
The motor generator may function as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle departs.
また、前記制御装置において、
前記ハイブリッド車両はハイブリッド二輪車であってもよい。 In the control device,
The hybrid vehicle may be a hybrid motorcycle.
前記ハイブリッド車両はハイブリッド二輪車であってもよい。 In the control device,
The hybrid vehicle may be a hybrid motorcycle.
本発明に係る制御方法は、
吸気経路に電子式スロットルバルブが配設された内燃機関と、前記内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータとを有するハイブリッド車両のトルクを制御する制御方法であって、
目標総合トルク算出部が、運転者により設定された設定スロットル開度および前記モータジェネレータの回転情報に基づいて、目標総合トルクを算出し、
仮想スロットル開度算出部が、前記設定スロットル開度および前記回転情報に基づいて、前記電子式スロットルバルブの仮想スロットル開度を算出し、
目標エンジントルク算出部が、前記仮想スロットル開度および前記回転情報に基づいて、目標エンジントルクを算出し、
目標モータトルク算出部が、前記目標総合トルクから前記目標エンジントルクを差し引くことにより、目標モータトルクを算出することを特徴とする。 The control method according to the present invention includes:
An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine A control method for controlling the torque of a hybrid vehicle having
The target total torque calculation unit calculates the target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator,
A virtual throttle opening calculator calculates a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
A target engine torque calculation unit calculates a target engine torque based on the virtual throttle opening and the rotation information,
The target motor torque calculation unit calculates the target motor torque by subtracting the target engine torque from the target total torque.
吸気経路に電子式スロットルバルブが配設された内燃機関と、前記内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータとを有するハイブリッド車両のトルクを制御する制御方法であって、
目標総合トルク算出部が、運転者により設定された設定スロットル開度および前記モータジェネレータの回転情報に基づいて、目標総合トルクを算出し、
仮想スロットル開度算出部が、前記設定スロットル開度および前記回転情報に基づいて、前記電子式スロットルバルブの仮想スロットル開度を算出し、
目標エンジントルク算出部が、前記仮想スロットル開度および前記回転情報に基づいて、目標エンジントルクを算出し、
目標モータトルク算出部が、前記目標総合トルクから前記目標エンジントルクを差し引くことにより、目標モータトルクを算出することを特徴とする。 The control method according to the present invention includes:
An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine A control method for controlling the torque of a hybrid vehicle having
The target total torque calculation unit calculates the target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator,
A virtual throttle opening calculator calculates a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
A target engine torque calculation unit calculates a target engine torque based on the virtual throttle opening and the rotation information,
The target motor torque calculation unit calculates the target motor torque by subtracting the target engine torque from the target total torque.
本発明では、運転者により設定された設定スロットル開度および回転情報に基づいて目標総合トルクを算出する。そして、設定スロットル開度および回転情報に基づいて電子式スロットルバルブの仮想スロットル開度を算出し、算出された仮想スロットル開度に基づいて目標エンジントルクを算出する。このように仮想スロットル開度に基づいて目標エンジントルクを算出するため、目標エンジントルクを適切かつ高精度に算出することができる。また、目標総合トルクから目標エンジントルクを差し引くことにより目標モータトルクを算出するため、目標モータトルクを適切かつ高精度に算出することができる。
In the present invention, the target total torque is calculated based on the set throttle opening and rotation information set by the driver. Then, the virtual throttle opening of the electronic throttle valve is calculated based on the set throttle opening and the rotation information, and the target engine torque is calculated based on the calculated virtual throttle opening. Since the target engine torque is calculated based on the virtual throttle opening in this way, the target engine torque can be calculated appropriately and with high accuracy. Further, since the target motor torque is calculated by subtracting the target engine torque from the target total torque, the target motor torque can be calculated appropriately and with high accuracy.
よって、本発明によれば、電子式スロットルバルブ機構を有するハイブリッド車両において、モータジェネレータが内燃機関をアシストする際に、内燃機関のトルクとモータジェネレータのトルクを適切かつ高精度に算出することができる。
Therefore, according to the present invention, in a hybrid vehicle having an electronic throttle valve mechanism, when the motor generator assists the internal combustion engine, the torque of the internal combustion engine and the torque of the motor generator can be calculated appropriately and with high accuracy. .
以下、図面を参照しつつ本発明の実施形態に係るについて説明する。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
まず、図1を参照して、実施形態に係るハイブリッド車両30の概略的な構成について説明する。
First, a schematic configuration of a hybrid vehicle 30 according to the embodiment will be described with reference to FIG.
ハイブリッド車両30は、内燃機関と電動機の2つの動力源を有するハイブリッド型の二輪車(ハイブリッド二輪車)である。ハイブリッド車両30は、電子式スロットルバルブ機構を有する。なお、ハイブリッド車両30は、二輪車に限らず、ハイブリッド型の他の車両(四輪車等)であってもよい。
The hybrid vehicle 30 is a hybrid type two-wheeled vehicle (hybrid motorcycle) having two power sources of an internal combustion engine and an electric motor. The hybrid vehicle 30 has an electronic throttle valve mechanism. The hybrid vehicle 30 is not limited to a two-wheeled vehicle, but may be another hybrid type vehicle (four-wheeled vehicle or the like).
ハイブリッド車両30は、図1に示すように、制御装置1と、内燃機関(エンジン)2と、モータジェネレータ(Motor Generator:MG)3と、点火装置4と、電力変換回路5と、バッテリ装置6と、記憶装置7と、クラッチ8と、車輪9とを備えている。図1の車輪9は、ハイブリッド二輪車の後輪を示している。
As shown in FIG. 1, the hybrid vehicle 30 includes a control device 1, an internal combustion engine (engine) 2, a motor generator (MG) 3, an ignition device 4, a power conversion circuit 5, and a battery device 6. A storage device 7, a clutch 8, and wheels 9. The wheel 9 in FIG. 1 represents the rear wheel of the hybrid motorcycle.
制御装置1は、詳細は後述するが、ハイブリッド車両30のトルク(エンジントルクおよびモータトルク)を制御するように構成されている。なお、制御装置1は、ハイブリッド車両30全体を統御するECU(Electronic Control Unit)として構成されてもよい。
The control device 1 is configured to control the torque (engine torque and motor torque) of the hybrid vehicle 30 as will be described in detail later. The control device 1 may be configured as an ECU (Electronic Control Unit) that controls the entire hybrid vehicle 30.
内燃機関2は、燃料ガス(混合気)が燃焼したときの圧力を利用して、クラッチ8を介して車輪9に回転駆動力を出力する。内燃機関2は、吸気経路に電子式スロットルバルブ(図示せず)が配設されている。より詳しくは、運転者(ライダー)のアクセル(グリップ)操作により設定されたスロットル開度(以下、「設定スロットル開度」という。)をアクセルポジションセンサが読み取り、電気信号として制御装置1に送信する。その後、制御装置1は、受信した設定スロットル開度に基づいてスロットル開度を計算し、スロットル開度の調整手段(スロットルモータ等)に指令を送信する。
The internal combustion engine 2 outputs a rotational driving force to the wheels 9 via the clutch 8 using the pressure when the fuel gas (air mixture) is combusted. The internal combustion engine 2 is provided with an electronic throttle valve (not shown) in the intake path. More specifically, an accelerator position sensor reads a throttle opening (hereinafter referred to as a “set throttle opening”) set by an accelerator (grip) operation of a driver (rider) and transmits it to the control device 1 as an electrical signal. . Thereafter, the control device 1 calculates the throttle opening based on the received set throttle opening, and transmits a command to a throttle opening adjusting means (such as a throttle motor).
なお、内燃機関2の種類は特に限定されず、例えば4ストロークエンジンでも、2ストロークエンジンでもよい。
Note that the type of the internal combustion engine 2 is not particularly limited, and may be, for example, a 4-stroke engine or a 2-stroke engine.
モータジェネレータ3は、図1に示すように、内燃機関2に機械的に接続されている。本実施形態では、モータジェネレータ3は、交流発電機(ACG)をベースとしたものであり、内燃機関2のクランク軸にクラッチを介さずに常時接続されている。このモータジェネレータ3は、内燃機関2の回転を受けて発電可能であるとともに、内燃機関2にトルクを付与可能に構成されている。すなわち、モータジェネレータ3は、内燃機関2により回転駆動されているときは発電を行い、三相交流電力を電力変換回路5に出力する。そして、電力変換回路5は、三相交流電力を直流電力に変換し、バッテリ装置6の有するバッテリB(直流電源)を充電する。一方、内燃機関2にトルクを付与するときは、モータジェネレータ3は、電力変換回路5から出力される三相交流電力により回転し、内燃機関2をアシストする。
The motor generator 3 is mechanically connected to the internal combustion engine 2 as shown in FIG. In this embodiment, the motor generator 3 is based on an AC generator (ACG), and is always connected to the crankshaft of the internal combustion engine 2 without a clutch. The motor generator 3 is configured to generate electric power upon receiving the rotation of the internal combustion engine 2 and to apply torque to the internal combustion engine 2. That is, the motor generator 3 generates electric power when it is rotationally driven by the internal combustion engine 2 and outputs three-phase AC power to the power conversion circuit 5. Then, the power conversion circuit 5 converts the three-phase AC power into DC power and charges the battery B (DC power supply) of the battery device 6. On the other hand, when applying torque to the internal combustion engine 2, the motor generator 3 is rotated by the three-phase AC power output from the power conversion circuit 5 to assist the internal combustion engine 2.
なお、モータジェネレータ3は、ハイブリッド車両30が発車する際に内燃機関2を回転始動させる始動モータ(セルモータ)として機能してもよい。
The motor generator 3 may function as a starter motor (cell motor) that starts rotating the internal combustion engine 2 when the hybrid vehicle 30 starts.
点火装置4は、制御装置1から制御信号を受信し、内燃機関2のシリンダー内で圧縮された混合気に適切なタイミングで着火する。なお、点火装置4の種別は特に限定されず、CDI(Capacitive Discharge Ignition)式でもよいし、フルトランジスタ式でもよい。
The ignition device 4 receives a control signal from the control device 1 and ignites the air-fuel mixture compressed in the cylinder of the internal combustion engine 2 at an appropriate timing. The type of the ignition device 4 is not particularly limited, and may be a CDI (Capacitive Discharge Ignition) type or a full transistor type.
電力変換回路5は、モータジェネレータ3が内燃機関2をアシストする際には、バッテリ装置6のバッテリBから出力される直流電力を三相の交流電力に変換してモータジェネレータ3に供給し、モータジェネレータ3を駆動する。一方、モータジェネレータ3が発電する際には、電力変換回路5は、モータジェネレータ3から供給される三相交流電力を直流電力に変換してバッテリ装置6のバッテリBに出力する。
When the motor generator 3 assists the internal combustion engine 2, the power conversion circuit 5 converts the DC power output from the battery B of the battery device 6 into three-phase AC power and supplies it to the motor generator 3. The generator 3 is driven. On the other hand, when the motor generator 3 generates power, the power conversion circuit 5 converts the three-phase AC power supplied from the motor generator 3 into DC power and outputs it to the battery B of the battery device 6.
図2に示すように、電力変換回路5は三相フルブリッジ回路から構成される。半導体スイッチQ1,Q3,Q5はハイサイドスイッチであり、半導体スイッチQ2,Q4,Q6はローサイドスイッチである。半導体スイッチQ1~Q6の制御端子は、制御装置1に電気的に接続されている。なお、半導体スイッチQ1~Q6は、例えばMOSFETまたはIGBT等である。電源端子5aと電源端子5bとの間には平滑コンデンサCが設けられている。
As shown in FIG. 2, the power conversion circuit 5 is composed of a three-phase full bridge circuit. Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches. The control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control device 1. The semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs. A smoothing capacitor C is provided between the power supply terminal 5a and the power supply terminal 5b.
半導体スイッチQ1は、バッテリBの正極が接続された電源端子5aと、モータジェネレータ3の入力端子3aとの間に接続されている。同様に、半導体スイッチQ3は、バッテリBの正極が接続された電源端子5aと、モータジェネレータ3の入力端子3bとの間に接続されている。半導体スイッチQ5は、バッテリBの正極が接続された電源端子5aと、モータジェネレータ3の入力端子3cとの間に接続されている。
The semiconductor switch Q1 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3a of the motor generator 3. Similarly, the semiconductor switch Q3 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3b of the motor generator 3. The semiconductor switch Q5 is connected between the power supply terminal 5a to which the positive electrode of the battery B is connected and the input terminal 3c of the motor generator 3.
半導体スイッチQ2は、バッテリBの負極が接続された電源端子5bと、モータジェネレータ3の入力端子3aとの間に接続されている。同様に、半導体スイッチQ4は、バッテリBの負極が接続された電源端子5bと、モータジェネレータ3の入力端子3bとの間に接続されている。半導体スイッチQ6は、バッテリBの負極が接続された電源端子5bと、モータジェネレータ3の入力端子3cとの間に接続されている。なお、入力端子3aはU相の入力端子であり、入力端子3bはV相の入力端子であり、入力端子3cはW相の入力端子である。
The semiconductor switch Q2 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3a of the motor generator 3. Similarly, the semiconductor switch Q4 is connected between the power supply terminal 5b to which the negative electrode of the battery B is connected and the input terminal 3b of the motor generator 3. Semiconductor switch Q6 is connected between power supply terminal 5b to which the negative electrode of battery B is connected and input terminal 3c of motor generator 3. The input terminal 3a is a U-phase input terminal, the input terminal 3b is a V-phase input terminal, and the input terminal 3c is a W-phase input terminal.
バッテリ装置6は、充放電可能なバッテリBと、このバッテリBを管理するバッテリ管理ユニット(Battery Management Unit:BMU)とを含む。バッテリBは、モータジェネレータ3により発電された電力を蓄電可能であるとともに、モータジェネレータ3に電力を供給可能である。バッテリBの種類は特に限定されず、例えばリチウムイオン電池である。バッテリ管理ユニットは、バッテリBの電圧やバッテリBの状態に関する情報(バッテリ情報)を制御装置1に送信する。
The battery device 6 includes a chargeable / dischargeable battery B and a battery management unit (BMU) that manages the battery B. The battery B can store electric power generated by the motor generator 3 and can supply electric power to the motor generator 3. The kind of battery B is not specifically limited, For example, it is a lithium ion battery. The battery management unit transmits information regarding the voltage of the battery B and the state of the battery B (battery information) to the control device 1.
記憶装置7は、制御装置1により用いられる情報(動作プログラムや後述の三次元マップ等)を記憶する。この記憶装置7は、例えば不揮発性の半導体メモリから構成される。
The storage device 7 stores information (such as an operation program and a three-dimensional map described later) used by the control device 1. The storage device 7 is composed of, for example, a nonvolatile semiconductor memory.
記憶装置7には、総合トルクマップ、仮想スロットル開度マップおよびエンジントルクマップが記憶されている。ここで、「総合トルクマップ」は、図4に示すように、総合トルクと、回転速度と、設定スロットル開度との関係を示す三次元マップである。「仮想スロットル開度マップ」は、図5に示すように、仮想スロットル開度と、回転速度と、設定スロットル開度との関係を示す三次元マップである。「エンジントルクマップ」は、図6に示すように、内燃機関2のトルク(エンジントルク)と、回転速度と、仮想スロットル開度との関係を示す三次元マップである。なお、各三次元マップにおいて回転速度は回転数でもよい。
The storage device 7 stores a total torque map, a virtual throttle opening map, and an engine torque map. Here, the “total torque map” is a three-dimensional map showing the relationship among the total torque, the rotational speed, and the set throttle opening, as shown in FIG. As shown in FIG. 5, the “virtual throttle opening map” is a three-dimensional map showing the relationship among the virtual throttle opening, the rotational speed, and the set throttle opening. As shown in FIG. 6, the “engine torque map” is a three-dimensional map showing the relationship among the torque (engine torque) of the internal combustion engine 2, the rotational speed, and the virtual throttle opening. In each three-dimensional map, the rotation speed may be a rotation speed.
記憶装置7には、上記3種類の三次元マップについて、それぞれ複数のマップが記憶されている。すなわち、総合トルクマップは、ドライブモードおよびギヤポジションのうち少なくともいずれか一つ以上をパラメータとして作成された複数のマップが記憶されている。仮想スロットル開度マップは、ドライブモード、設定スロットル開度および回転情報のうち少なくともいずれか一つ以上をパラメータとして作成された複数のマップが記憶されている。エンジントルクマップは、仮想スロットル開度の変化率をパラメータとして作成された複数のマップが記憶されている。
The storage device 7 stores a plurality of maps for each of the three types of three-dimensional maps. That is, the total torque map stores a plurality of maps created using at least one of the drive mode and the gear position as parameters. The virtual throttle opening map stores a plurality of maps created using at least one of the drive mode, the set throttle opening, and the rotation information as parameters. The engine torque map stores a plurality of maps created using the change rate of the virtual throttle opening as a parameter.
次に、図3を参照して、本実施形態に係る制御装置1について詳しく説明する。
Next, the control apparatus 1 according to the present embodiment will be described in detail with reference to FIG.
制御装置1は、図3に示すように、目標総合トルク算出部11と、仮想スロットル開度算出部12と、目標エンジントルク算出部13と、目標モータトルク算出部14と、モータ制御信号生成部15と、エンジン制御信号生成部16と、を備えている。以下、各構成要素について説明する。
As shown in FIG. 3, the control device 1 includes a target total torque calculation unit 11, a virtual throttle opening calculation unit 12, a target engine torque calculation unit 13, a target motor torque calculation unit 14, and a motor control signal generation unit. 15 and an engine control signal generator 16. Hereinafter, each component will be described.
目標総合トルク算出部11は、総合トルクの目標値を算出する。ここで、「総合トルク」とは、内燃機関2のトルクおよびモータジェネレータ3のトルクからなるトルクである。例えば、総合トルクは、内燃機関2のトルクにモータジェネレータ3のトルクを加えることにより得られるトルクである。
The target total torque calculation unit 11 calculates a target value of the total torque. Here, the “total torque” is a torque composed of the torque of the internal combustion engine 2 and the torque of the motor generator 3. For example, the total torque is a torque obtained by adding the torque of the motor generator 3 to the torque of the internal combustion engine 2.
目標総合トルク算出部11には、端子21,22,23,24を介して各種情報が入力される。端子21には、ギヤポジションを示す情報が入力される。端子22には、回転情報が入力される。本願において、「回転情報」は、モータジェネレータ3の回転速度または回転数(rpm)を示す情報である。なお、本実施形態ではモータジェネレータ3と内燃機関2は常時機械的に接続されているため、モータジェネレータ3の回転速度(回転数)は内燃機関2の回転速度(回転数)に等しい。
Various information is input to the target total torque calculation unit 11 via the terminals 21, 22, 23, and 24. Information indicating the gear position is input to the terminal 21. The rotation information is input to the terminal 22. In the present application, the “rotation information” is information indicating the rotation speed or the rotation speed (rpm) of the motor generator 3. In the present embodiment, since the motor generator 3 and the internal combustion engine 2 are always mechanically connected, the rotational speed (rotational speed) of the motor generator 3 is equal to the rotational speed (rotational speed) of the internal combustion engine 2.
端子23には、ドライブモードを示す情報が入力される。なお、ドライブモードは、運転者により設定されるモードであり、例えば、燃費重視のエコドライブモードや加速重視のスポーツモード等がある。端子24には、アクセルポジションセンサにより読み取られた設定スロットル開度を示す情報が入力される。
Information indicating the drive mode is input to the terminal 23. The drive mode is a mode set by the driver, and includes, for example, an eco-drive mode that emphasizes fuel consumption and a sports mode that emphasizes acceleration. Information indicating the set throttle opening read by the accelerator position sensor is input to the terminal 24.
目標総合トルク算出部11は、設定スロットル開度、およびモータジェネレータ3の回転情報に基づいて、目標総合トルクを算出する。より詳しくは、目標総合トルク算出部11は、まず、記憶装置7に記憶された複数の総合トルクマップから、ドライブモードおよび/またはギヤポジションに基づいて一つの総合トルクマップを選択する。総合トルクマップを選択した後、目標総合トルク算出部11は、設定スロットル開度および回転情報を用いて、選択された総合トルクマップを検索することにより、目標総合トルクを算出する。
The target total torque calculation unit 11 calculates the target total torque based on the set throttle opening and the rotation information of the motor generator 3. More specifically, the target total torque calculation unit 11 first selects one total torque map from a plurality of total torque maps stored in the storage device 7 based on the drive mode and / or gear position. After selecting the total torque map, the target total torque calculation unit 11 calculates the target total torque by searching the selected total torque map using the set throttle opening and the rotation information.
仮想スロットル開度算出部12には、図3に示すように、端子22~26を介して各種情報が入力される。端子22、23および24には前述の通り、回転情報、ドライブモードおよび設定スロットル開度がそれぞれ入力される。端子25には、バッテリ装置6のバッテリBに関するバッテリ情報が入力される。端子26には、モータジェネレータ3のステータス情報が入力される。ステータス情報は、故障の有無等、モータジェネレータ3の状態を示す情報である。
As shown in FIG. 3, various information is input to the virtual throttle opening calculation unit 12 via terminals 22 to 26. As described above, the rotation information, the drive mode, and the set throttle opening are input to the terminals 22, 23 and 24, respectively. Battery information related to the battery B of the battery device 6 is input to the terminal 25. Status information of the motor generator 3 is input to the terminal 26. The status information is information indicating the state of the motor generator 3 such as the presence or absence of a failure.
仮想スロットル開度算出部12は、設定スロットル開度および回転情報に基づいて、電子式スロットルバルブの仮想スロットル開度を算出する。より詳しくは、仮想スロットル開度算出部12は、まず、記憶装置7に記憶された複数の仮想スロットル開度マップから、ドライブモード、設定スロットル開度および回転情報の少なくともいずれか一つ以上に基づいて、一つの仮想スロットル開度マップを選択する。仮想スロットル開度マップを選択した後、仮想スロットル開度算出部12は、設定スロットル開度および回転情報を用いて、選択された仮想スロットル開度マップを検索することにより、仮想スロットル開度を算出する。
The virtual throttle opening calculation unit 12 calculates the virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information. More specifically, the virtual throttle opening calculation unit 12 first, based on at least one of the drive mode, the set throttle opening, and the rotation information from the plurality of virtual throttle opening maps stored in the storage device 7. To select one virtual throttle opening map. After selecting the virtual throttle opening map, the virtual throttle opening calculating unit 12 calculates the virtual throttle opening by searching the selected virtual throttle opening map using the set throttle opening and rotation information. To do.
目標エンジントルク算出部13には、仮想スロットル開度算出部12から、算出された仮想スロットル開度が入力される。また、目標エンジントルク算出部13には、端子22を介して回転情報が入力される。
The calculated virtual throttle opening is input from the virtual throttle opening calculation unit 12 to the target engine torque calculation unit 13. Further, rotation information is input to the target engine torque calculation unit 13 via the terminal 22.
目標エンジントルク算出部13は、仮想スロットル開度および回転情報に基づいて、目標エンジントルクを算出する。より詳しくは、目標エンジントルク算出部13は、まず、記憶装置7に記憶された複数のエンジントルクマップから、仮想スロットル開度の変化率に基づいてエンジントルクマップを選択する。エンジントルクマップを選択した後、目標エンジントルク算出部13は、仮想スロットル開度および回転情報を用いて、選択されたエンジントルクマップを検索することにより、目標エンジントルクを算出する。
The target engine torque calculation unit 13 calculates the target engine torque based on the virtual throttle opening and the rotation information. More specifically, the target engine torque calculation unit 13 first selects an engine torque map from a plurality of engine torque maps stored in the storage device 7 based on the change rate of the virtual throttle opening. After selecting the engine torque map, the target engine torque calculation unit 13 calculates the target engine torque by searching the selected engine torque map using the virtual throttle opening and the rotation information.
目標モータトルク算出部14には、目標総合トルクおよび目標エンジントルクが入力される。目標モータトルク算出部14は、目標総合トルクから目標エンジントルクを差し引くことにより、目標モータトルクを算出する。
The target total torque and the target engine torque are input to the target motor torque calculation unit 14. The target motor torque calculation unit 14 calculates the target motor torque by subtracting the target engine torque from the target total torque.
モータ制御信号生成部15には、目標モータトルク算出部14により算出された目標モータトルクが入力される。モータ制御信号生成部15は、目標モータトルクに基づいて、電力変換回路5を制御するための制御信号を生成する。より具体的には、モータ制御信号生成部15は、目標モータトルクに基づいて制御信号(PWM信号)の通電タイミングおよびデューティ比を算出し、端子28を介して電力変換回路5の半導体スイッチQ1~Q6にPWM信号を出力する。端子28は、図3では一つのみ示しているが実際には、半導体スイッチQ1~Q6の個数に合わせて6個の端子を有する。なお、通電タイミングは、モータ電気角に対するPWM信号の位相の進み(進角)または遅れ(遅角)のことであり、モータジェネレータ3がアシスト動作する際には進角となり、発電動作する際には遅角となる。
The target motor torque calculated by the target motor torque calculation unit 14 is input to the motor control signal generation unit 15. The motor control signal generator 15 generates a control signal for controlling the power conversion circuit 5 based on the target motor torque. More specifically, the motor control signal generation unit 15 calculates the energization timing and duty ratio of the control signal (PWM signal) based on the target motor torque, and the semiconductor switches Q 1 to Q of the power conversion circuit 5 through the terminal 28. A PWM signal is output to Q6. Although only one terminal 28 is shown in FIG. 3, in reality, it has six terminals in accordance with the number of semiconductor switches Q1 to Q6. The energization timing is the advance (advance angle) or delay (retard angle) of the phase of the PWM signal with respect to the motor electrical angle. The energization timing is an advance angle when the motor generator 3 performs an assist operation. Is retarded.
エンジン制御信号生成部16には、目標エンジントルク算出部13により算出された目標エンジントルクが入力される。エンジン制御信号生成部16は、点火タイミングおよび燃料噴射量を制御するための制御信号を生成する。より具体的には、エンジン制御信号生成部16は、目標エンジントルクに基づいて、内燃機関2内の混合気を点火する点火装置4の制御信号、および燃料噴射量の制御手段の制御信号を生成する。
The target engine torque calculated by the target engine torque calculation unit 13 is input to the engine control signal generation unit 16. The engine control signal generator 16 generates a control signal for controlling the ignition timing and the fuel injection amount. More specifically, the engine control signal generation unit 16 generates a control signal for the ignition device 4 that ignites the air-fuel mixture in the internal combustion engine 2 and a control signal for the fuel injection amount control unit based on the target engine torque. To do.
上記のように、本実施形態に係る制御装置1では、運転者により設定された設定スロットル開度および回転情報に基づいて目標総合トルクを算出する。そして、設定スロットル開度および回転情報に基づいて電子式スロットルバルブの仮想スロットル開度を算出し、算出された仮想スロットル開度に基づいて目標エンジントルクを算出する。このように仮想スロットル開度に基づいて目標エンジントルクを算出するため、目標エンジントルクを適切かつ高精度に算出することができる。また、目標総合トルクから目標エンジントルクを差し引くことにより目標モータトルクを算出するため、目標モータトルクを適切かつ高精度に算出することができる。
As described above, the control device 1 according to the present embodiment calculates the target total torque based on the set throttle opening and the rotation information set by the driver. Then, the virtual throttle opening of the electronic throttle valve is calculated based on the set throttle opening and the rotation information, and the target engine torque is calculated based on the calculated virtual throttle opening. Since the target engine torque is calculated based on the virtual throttle opening in this way, the target engine torque can be calculated appropriately and with high accuracy. Further, since the target motor torque is calculated by subtracting the target engine torque from the target total torque, the target motor torque can be calculated appropriately and with high accuracy.
よって、本実施形態によれば、電子式スロットルバルブ機構を有するハイブリッド車両30において、モータジェネレータ3が内燃機関2をアシストする際に、内燃機関2のトルクとモータジェネレータ3のトルクとを適切かつ高精度に算出することができる。
Therefore, according to the present embodiment, when the motor generator 3 assists the internal combustion engine 2 in the hybrid vehicle 30 having the electronic throttle valve mechanism, the torque of the internal combustion engine 2 and the torque of the motor generator 3 are appropriately increased. It can be calculated with accuracy.
本実施形態によれば、設定スロットル開度および回転速度に基づく総合トルクを、内燃機関2のトルクとモータジェネレータ3のトルクに適切かつ高精度に分配することが可能となるため、加速時だけでなく巡航速度で走行している間や減速時などを含む広範な走行状況下において所要のトルクが得られる。その結果、例えば、広範な走行状況下において内燃機関2の燃費を改善できるという効果が得られる。
According to the present embodiment, the total torque based on the set throttle opening and the rotational speed can be appropriately and accurately distributed to the torque of the internal combustion engine 2 and the torque of the motor generator 3, so that only during acceleration. Therefore, the required torque can be obtained under a wide range of driving conditions including when driving at cruising speed and when decelerating. As a result, for example, there is an effect that the fuel efficiency of the internal combustion engine 2 can be improved under a wide range of traveling conditions.
なお、仮想スロットル開度算出部12は、モータジェネレータ3による内燃機関2のアシストの可否を判定し、アシストが可能である場合に、仮想スロットル開度を算出するようにしてもよい。アシスト可否の判定について、仮想スロットル開度算出部12は、例えば、バッテリ装置6のバッテリBに関するバッテリ情報およびモータジェネレータ3のステータス情報に基づいてアシストの可否を判定する。より詳しくは、仮想スロットル開度算出部12は、バッテリBの電圧または充電率(State Of Charge:SOC)が閾値以上であり、かつモータジェネレータ3に異常が無い場合に、モータジェネレータ3によるアシストが可能であると判定する。
The virtual throttle opening calculation unit 12 may determine whether the motor generator 3 can assist the internal combustion engine 2 and may calculate the virtual throttle opening when the assist is possible. Regarding the determination of whether or not to assist, the virtual throttle opening calculation unit 12 determines whether or not to assist based on, for example, battery information related to the battery B of the battery device 6 and status information of the motor generator 3. More specifically, the virtual throttle opening calculation unit 12 is assisted by the motor generator 3 when the voltage or the charging rate (State of Charge: SOC) of the battery B is equal to or higher than the threshold value and the motor generator 3 has no abnormality. Determine that it is possible.
次に、図7のフローチャートを参照して、本実施形態に係るハイブリッド車両30の制御方法について説明する。
Next, a control method of the hybrid vehicle 30 according to the present embodiment will be described with reference to the flowchart of FIG.
まず、目標総合トルク算出部11が、運転者により設定された設定スロットル開度およびモータジェネレータ3の回転情報に基づいて目標総合トルクを算出する(ステップS1)。より詳しくは、前述のように、記憶装置7に記憶された複数の総合トルクマップから一つの総合トルクマップを選択し、選択した総合トルクマップを設定スロットル開度および回転情報を用いて検索することにより目標総合トルクを算出する。
First, the target total torque calculator 11 calculates the target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator 3 (step S1). More specifically, as described above, one total torque map is selected from a plurality of total torque maps stored in the storage device 7, and the selected total torque map is searched using the set throttle opening and rotation information. To calculate the target total torque.
次に、仮想スロットル開度算出部12が、モータジェネレータ3による内燃機関2のアシストの可否を判定する(ステップS2)。より詳しくは、仮想スロットル開度算出部12は、バッテリBに関するバッテリ情報およびモータジェネレータ3のステータス情報に基づいてアシストの可否を判定する。例えば、仮想スロットル開度算出部12は、バッテリBの電圧または充電率が閾値以上であり、かつモータジェネレータ3に異常が無い場合にアシストが可能であると判定する。
Next, the virtual throttle opening calculation unit 12 determines whether or not the motor generator 3 can assist the internal combustion engine 2 (step S2). More specifically, the virtual throttle opening calculation unit 12 determines whether or not the assist is possible based on the battery information regarding the battery B and the status information of the motor generator 3. For example, the virtual throttle opening calculation unit 12 determines that the assist is possible when the voltage or the charging rate of the battery B is equal to or greater than the threshold value and the motor generator 3 has no abnormality.
モータジェネレータ3による内燃機関2のアシストが可能である場合(S2;Yes)、仮想スロットル開度算出部12が、設定スロットル開度および回転情報に基づいて、電子式スロットルバルブの仮想スロットル開度を算出する(ステップS3)。より詳しくは、前述のように、記憶装置7に記憶された複数の仮想スロットル開度マップから一つの仮想スロットル開度マップを選択し、選択した仮想スロットル開度マップを設定スロットル開度および回転情報を用いて検索することにより仮想スロットル開度を算出する。
When the motor generator 3 can assist the internal combustion engine 2 (S2; Yes), the virtual throttle opening calculator 12 calculates the virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information. Calculate (step S3). More specifically, as described above, one virtual throttle opening map is selected from a plurality of virtual throttle opening maps stored in the storage device 7, and the selected virtual throttle opening map is set as the throttle opening and rotation information. The virtual throttle opening is calculated by searching using.
次に、目標エンジントルク算出部13が、仮想スロットル開度および回転情報に基づいて目標エンジントルクを算出する(ステップS4)。より詳しくは、前述のように、記憶装置7に記憶された複数のエンジントルクマップからエンジントルクマップを選択し、選択したエンジントルクマップを仮想スロットル開度および回転情報を用いて検索することにより目標エンジントルクを算出する。
Next, the target engine torque calculation unit 13 calculates the target engine torque based on the virtual throttle opening and the rotation information (step S4). More specifically, as described above, an engine torque map is selected from a plurality of engine torque maps stored in the storage device 7, and the selected engine torque map is searched using the virtual throttle opening and rotation information. Calculate the engine torque.
次に、目標モータトルク算出部14が、目標総合トルクから目標エンジントルクを差し引くことにより目標モータトルクを算出する(ステップS5)。
Next, the target motor torque calculation unit 14 calculates the target motor torque by subtracting the target engine torque from the target total torque (step S5).
上記のように、本実施形態に係る制御方法では、設定スロットル開度および回転情報に基づいて目標総合トルクを算出し、設定スロットル開度および回転情報に基づいて仮想スロットル開度を算出し、算出された仮想スロットル開度および回転情報に基づいて目標エンジントルクを算出し、目標総合トルクから目標エンジントルクを差し引くことにより目標モータトルクを算出する。これにより、電子式スロットルバルブ機構を有するハイブリッド車両30において、モータジェネレータ3が内燃機関2をアシストする際に、内燃機関2のトルクとモータジェネレータ3のトルクを適切かつ高精度に算出することができる。
As described above, in the control method according to the present embodiment, the target total torque is calculated based on the set throttle opening and the rotation information, and the virtual throttle opening is calculated based on the set throttle opening and the rotation information. A target engine torque is calculated based on the virtual throttle opening and the rotation information, and the target motor torque is calculated by subtracting the target engine torque from the target total torque. Thereby, in the hybrid vehicle 30 having the electronic throttle valve mechanism, when the motor generator 3 assists the internal combustion engine 2, the torque of the internal combustion engine 2 and the torque of the motor generator 3 can be calculated appropriately and with high accuracy. .
なお、ステップS3において仮想スロットル開度を算出する際、仮想スロットル開度算出部12は、設定スロットル開度よりも小さいスロットル開度を仮想スロットル開度として算出してもよい。すなわち、スロットル開度を運転者が設定した値よりも小さく見積もる。これにより、ステップS4で算出される目標エンジントルクが減少するため、目標総合トルクに占める目標モータトルクの割合が増える。その結果、目標エンジントルクが減少し、内燃機関2の燃費を改善することができる。
Note that when calculating the virtual throttle opening in step S3, the virtual throttle opening calculation unit 12 may calculate a throttle opening smaller than the set throttle opening as the virtual throttle opening. That is, the throttle opening is estimated to be smaller than the value set by the driver. As a result, the target engine torque calculated in step S4 decreases, and the ratio of the target motor torque to the target total torque increases. As a result, the target engine torque is reduced and the fuel efficiency of the internal combustion engine 2 can be improved.
また、ステップS3において仮想スロットル開度を算出する際、仮想スロットル開度算出部12は、バッテリBの電圧が低くなるにつれて、仮想スロットル開度が設定スロットル開度よりも大きくなるように仮想スロットル開度を算出してもよい。これにより、モータジェネレータ3によるアシストの余裕に応じて、総合トルクをエンジントルクとモータトルクに適切に分配することができる。
Further, when calculating the virtual throttle opening in step S3, the virtual throttle opening calculation unit 12 opens the virtual throttle so that the virtual throttle opening becomes larger than the set throttle opening as the voltage of the battery B decreases. The degree may be calculated. As a result, the total torque can be appropriately distributed between the engine torque and the motor torque in accordance with the assist margin by the motor generator 3.
上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。
Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the individual embodiments described above. . You may combine suitably the component covering different embodiment. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
1 制御装置
2 内燃機関(エンジン)
3 モータジェネレータ
3a,3b,3c 入力端子
4 点火装置
5 電力変換回路
5a,5b 電源端子
6 バッテリ装置
7 記憶装置
8 クラッチ
9 車輪
11 目標総合トルク算出部
12 仮想スロットル開度算出部
13 目標エンジントルク算出部
14 目標モータトルク算出部
15 モータ制御信号生成部
16 エンジン制御信号生成部
21~29 端子
30 ハイブリッド車両
B バッテリ
C 平滑コンデンサ
Q1~Q6 半導体スイッチ DESCRIPTION OFSYMBOLS 1 Control apparatus 2 Internal combustion engine (engine)
DESCRIPTION OFSYMBOLS 3 Motor generator 3a, 3b, 3c Input terminal 4 Ignition device 5 Power conversion circuit 5a, 5b Power supply terminal 6 Battery device 7 Storage device 8 Clutch 9 Wheel 11 Target total torque calculation part 12 Virtual throttle opening calculation part 13 Target engine torque calculation Unit 14 target motor torque calculation unit 15 motor control signal generation unit 16 engine control signal generation unit 21 to 29 terminal 30 hybrid vehicle B battery C smoothing capacitor Q1 to Q6 semiconductor switch
2 内燃機関(エンジン)
3 モータジェネレータ
3a,3b,3c 入力端子
4 点火装置
5 電力変換回路
5a,5b 電源端子
6 バッテリ装置
7 記憶装置
8 クラッチ
9 車輪
11 目標総合トルク算出部
12 仮想スロットル開度算出部
13 目標エンジントルク算出部
14 目標モータトルク算出部
15 モータ制御信号生成部
16 エンジン制御信号生成部
21~29 端子
30 ハイブリッド車両
B バッテリ
C 平滑コンデンサ
Q1~Q6 半導体スイッチ DESCRIPTION OF
DESCRIPTION OF
Claims (13)
- 吸気経路に電子式スロットルバルブが配設された内燃機関と、前記内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータとを有するハイブリッド車両のトルクを制御する制御装置であって、
運転者により設定された設定スロットル開度および前記モータジェネレータの回転情報に基づいて、目標総合トルクを算出する目標総合トルク算出部と、
前記設定スロットル開度および前記回転情報に基づいて、前記電子式スロットルバルブの仮想スロットル開度を算出する仮想スロットル開度算出部と、
前記仮想スロットル開度および前記回転情報に基づいて、目標エンジントルクを算出する目標エンジントルク算出部と、
前記目標総合トルクから前記目標エンジントルクを差し引くことにより、目標モータトルクを算出する目標モータトルク算出部と、
を備えることを特徴とする制御装置。 An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine A control device for controlling the torque of a hybrid vehicle having
A target total torque calculation unit for calculating a target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator;
A virtual throttle opening calculator for calculating a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
A target engine torque calculation unit for calculating a target engine torque based on the virtual throttle opening and the rotation information;
A target motor torque calculator for calculating a target motor torque by subtracting the target engine torque from the target total torque;
A control device comprising: - 前記仮想スロットル開度算出部は、前記モータジェネレータによる前記内燃機関のアシストの可否を判定し、前記アシストが可能である場合に、前記仮想スロットル開度を算出することを特徴とする請求項1に記載の制御装置。 The virtual throttle opening calculation unit determines whether the internal combustion engine can be assisted by the motor generator, and calculates the virtual throttle opening when the assist is possible. The control device described.
- 前記仮想スロットル開度算出部は、前記設定スロットル開度よりも小さいスロットル開度を前記仮想スロットル開度として算出することを特徴とする請求項2に記載の制御装置。 3. The control device according to claim 2, wherein the virtual throttle opening calculation unit calculates a throttle opening smaller than the set throttle opening as the virtual throttle opening.
- 前記ハイブリッド車両は、前記モータジェネレータにより発電された電力を蓄電可能であるとともに前記モータジェネレータに電力を供給可能なバッテリを有するバッテリ装置をさらに備え、
前記仮想スロットル開度算出部は、前記バッテリに関するバッテリ情報および前記モータジェネレータのステータス情報に基づいて前記アシストの可否を判定することを特徴とする請求項2に記載の制御装置。 The hybrid vehicle further includes a battery device having a battery capable of storing electric power generated by the motor generator and capable of supplying electric power to the motor generator,
The control device according to claim 2, wherein the virtual throttle opening calculation unit determines whether the assist is possible based on battery information about the battery and status information of the motor generator. - 前記仮想スロットル開度算出部は、前記バッテリの電圧または充電率が閾値以上であり、かつ前記モータジェネレータに異常が無い場合に、前記アシストが可能であると判定することを特徴とする請求項4に記載の制御装置。 5. The virtual throttle opening calculation unit determines that the assist is possible when the voltage or charging rate of the battery is equal to or greater than a threshold value and the motor generator has no abnormality. The control device described in 1.
- 前記仮想スロットル開度算出部は、前記バッテリの電圧が低くなるにつれて、前記仮想スロットル開度が前記設定スロットル開度よりも大きくなるように前記仮想スロットル開度を算出することを特徴とする請求項4に記載の制御装置。 The virtual throttle opening calculation unit calculates the virtual throttle opening so that the virtual throttle opening becomes larger than the set throttle opening as the voltage of the battery decreases. 4. The control device according to 4.
- 前記目標総合トルク算出部は、前記内燃機関のトルクおよび前記モータジェネレータのトルクからなる総合トルクと、前記回転情報と、前記設定スロットル開度との関係を示す複数の総合トルクマップから、ドライブモードおよび/またはギヤポジションに基づいて総合トルクマップを選択し、前記設定スロットル開度および前記回転情報を用いて前記選択された総合トルクマップを検索することにより、前記目標総合トルクを算出することを特徴とする請求項1に記載の制御装置。 The target total torque calculation unit includes a drive mode and a plurality of total torque maps indicating a relationship between the total torque including the torque of the internal combustion engine and the torque of the motor generator, the rotation information, and the set throttle opening. The target total torque is calculated by selecting a total torque map based on the gear position and searching the selected total torque map using the set throttle opening and the rotation information. The control device according to claim 1.
- 前記仮想スロットル開度算出部は、前記仮想スロットル開度と、前記回転情報と、前記設定スロットル開度との関係を示す複数の仮想スロットル開度マップから、ドライブモード、前記設定スロットル開度および前記回転情報の少なくともいずれか一つ以上に基づいて、仮想スロットル開度マップを選択し、前記設定スロットル開度および前記回転情報を用いて前記選択された仮想スロットル開度マップを検索することにより、前記仮想スロットル開度を算出することを特徴とする請求項1に記載の制御装置。 The virtual throttle opening calculation unit is configured to calculate a drive mode, the set throttle opening, and the virtual throttle opening from a plurality of virtual throttle opening maps indicating the relationship between the virtual throttle opening, the rotation information, and the set throttle opening. By selecting a virtual throttle opening map based on at least one of the rotation information, and searching the selected virtual throttle opening map using the set throttle opening and the rotation information, The control device according to claim 1, wherein a virtual throttle opening is calculated.
- 前記目標エンジントルク算出部は、前記内燃機関のトルクと、前記回転情報と、前記仮想スロットル開度との関係を示す複数のエンジントルクマップから、前記仮想スロットル開度の変化率に基づいてエンジントルクマップを選択し、前記仮想スロットル開度および前記回転情報を用いて前記選択されたエンジントルクマップを検索することにより、前記目標エンジントルクを算出することを特徴とする請求項1に記載の制御装置。 The target engine torque calculation unit is configured to determine an engine torque based on a rate of change of the virtual throttle opening from a plurality of engine torque maps indicating a relationship among the torque of the internal combustion engine, the rotation information, and the virtual throttle opening. The control device according to claim 1, wherein the target engine torque is calculated by selecting a map and searching the selected engine torque map using the virtual throttle opening and the rotation information. .
- 前記目標モータトルクに基づいて、前記モータジェネレータを駆動する電力変換回路を制御するための制御信号を生成するモータ制御信号生成部と、
前記目標エンジントルクに基づいて、点火タイミングおよび燃料噴射量を制御するための制御信号を生成するエンジン制御信号生成部と、
をさらに備えることを特徴とする請求項1に記載の制御装置。 A motor control signal generation unit that generates a control signal for controlling a power conversion circuit that drives the motor generator based on the target motor torque;
An engine control signal generator for generating a control signal for controlling the ignition timing and the fuel injection amount based on the target engine torque;
The control device according to claim 1, further comprising: - 前記モータジェネレータは、前記ハイブリッド車両が発車する際に前記内燃機関を回転始動させる始動モータとして機能することを特徴とする請求項1に記載の制御装置。 2. The control device according to claim 1, wherein the motor generator functions as a starter motor that starts rotating the internal combustion engine when the hybrid vehicle starts.
- 前記ハイブリッド車両はハイブリッド二輪車であることを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, wherein the hybrid vehicle is a hybrid motorcycle.
- 吸気経路に電子式スロットルバルブが配設された内燃機関と、前記内燃機関に機械的に接続され、前記内燃機関の回転を受けて発電可能であるとともに前記内燃機関にトルクを付与可能なモータジェネレータとを有するハイブリッド車両のトルクを制御する制御方法であって、
目標総合トルク算出部が、運転者により設定された設定スロットル開度および前記モータジェネレータの回転情報に基づいて、目標総合トルクを算出し、
仮想スロットル開度算出部が、前記設定スロットル開度および前記回転情報に基づいて、前記電子式スロットルバルブの仮想スロットル開度を算出し、
目標エンジントルク算出部が、前記仮想スロットル開度および前記回転情報に基づいて、目標エンジントルクを算出し、
目標モータトルク算出部が、前記目標総合トルクから前記目標エンジントルクを差し引くことにより、目標モータトルクを算出することを特徴とする制御方法。 An internal combustion engine in which an electronic throttle valve is disposed in an intake path, and a motor generator that is mechanically connected to the internal combustion engine, can generate electric power by receiving rotation of the internal combustion engine, and can apply torque to the internal combustion engine A control method for controlling the torque of a hybrid vehicle having
The target total torque calculation unit calculates the target total torque based on the set throttle opening set by the driver and the rotation information of the motor generator,
A virtual throttle opening calculator calculates a virtual throttle opening of the electronic throttle valve based on the set throttle opening and the rotation information;
A target engine torque calculation unit calculates a target engine torque based on the virtual throttle opening and the rotation information,
A target motor torque calculation unit calculates a target motor torque by subtracting the target engine torque from the target total torque.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017557000A JP6367498B2 (en) | 2016-07-22 | 2016-09-09 | Control device and control method for hybrid vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-144398 | 2016-07-22 | ||
JP2016144398 | 2016-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016083A1 true WO2018016083A1 (en) | 2018-01-25 |
Family
ID=60992962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076710 WO2018016083A1 (en) | 2016-07-22 | 2016-09-09 | Control apparatus and control method for hybrid vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6367498B2 (en) |
WO (1) | WO2018016083A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111791874A (en) * | 2019-04-05 | 2020-10-20 | 丰田自动车株式会社 | Hybrid vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004019672A (en) * | 2002-06-12 | 2004-01-22 | Nissan Motor Co Ltd | Hybrid vehicle |
JP2007278266A (en) * | 2006-05-19 | 2007-10-25 | Fuji Heavy Ind Ltd | Engine control device of vehicle |
JP2008238856A (en) * | 2007-03-26 | 2008-10-09 | Honda Motor Co Ltd | Control device for motor generator |
JP2011063089A (en) * | 2009-09-16 | 2011-03-31 | Mitsubishi Fuso Truck & Bus Corp | Device for control of hybrid electric vehicle |
JP2013071551A (en) * | 2011-09-27 | 2013-04-22 | Aisin Seiki Co Ltd | Control apparatus of hybrid vehicle |
JP2013180583A (en) * | 2012-02-29 | 2013-09-12 | Daimler Ag | Hybrid vehicle control device |
-
2016
- 2016-09-09 JP JP2017557000A patent/JP6367498B2/en active Active
- 2016-09-09 WO PCT/JP2016/076710 patent/WO2018016083A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004019672A (en) * | 2002-06-12 | 2004-01-22 | Nissan Motor Co Ltd | Hybrid vehicle |
JP2007278266A (en) * | 2006-05-19 | 2007-10-25 | Fuji Heavy Ind Ltd | Engine control device of vehicle |
JP2008238856A (en) * | 2007-03-26 | 2008-10-09 | Honda Motor Co Ltd | Control device for motor generator |
JP2011063089A (en) * | 2009-09-16 | 2011-03-31 | Mitsubishi Fuso Truck & Bus Corp | Device for control of hybrid electric vehicle |
JP2013071551A (en) * | 2011-09-27 | 2013-04-22 | Aisin Seiki Co Ltd | Control apparatus of hybrid vehicle |
JP2013180583A (en) * | 2012-02-29 | 2013-09-12 | Daimler Ag | Hybrid vehicle control device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111791874A (en) * | 2019-04-05 | 2020-10-20 | 丰田自动车株式会社 | Hybrid vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018016083A1 (en) | 2018-07-19 |
JP6367498B2 (en) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6127813A (en) | Control system for hybrid vehicle | |
JP6711315B2 (en) | Control device and in-vehicle system | |
JP6408171B2 (en) | Control device and control method for hybrid vehicle | |
US20190184965A1 (en) | Hybrid vehicle | |
JP2009179311A (en) | Power supply device | |
EP3838653B1 (en) | Vehicle controller | |
JP6367498B2 (en) | Control device and control method for hybrid vehicle | |
WO2012066657A1 (en) | Charging/discharging control apparatus and method | |
US20080179889A1 (en) | Vehicle battery charger and method of operating same | |
JP6379306B2 (en) | Control device and control method for hybrid vehicle | |
JP6790979B2 (en) | Vehicle control device | |
JP5432330B2 (en) | Vehicle power generation apparatus and power generation control method thereof | |
JP2007126968A (en) | Engine control device | |
JP7114913B2 (en) | vehicle controller | |
JP5803462B2 (en) | Hybrid vehicle and control method thereof | |
JP6383970B2 (en) | Control device and control method for hybrid vehicle | |
JP6618308B2 (en) | Vehicle control device | |
JPH10248107A (en) | Controller for electric car | |
JP7566426B2 (en) | Vehicle control device | |
US10730508B2 (en) | Hybrid vehicle and control method for hybrid vehicle | |
JP5827763B1 (en) | Engine system and saddle riding type vehicle | |
JP2017105376A (en) | Drive control device of hybrid vehicle | |
JP2017206046A (en) | Charge state estimation device | |
JP6833522B2 (en) | Vehicle control device | |
JP2016196861A (en) | Internal combustion engine control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017557000 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16909558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16909558 Country of ref document: EP Kind code of ref document: A1 |