WO2018015987A1 - Fish tank system that adjusts temperature of culture water using natural energy as heat source - Google Patents

Fish tank system that adjusts temperature of culture water using natural energy as heat source Download PDF

Info

Publication number
WO2018015987A1
WO2018015987A1 PCT/JP2016/071095 JP2016071095W WO2018015987A1 WO 2018015987 A1 WO2018015987 A1 WO 2018015987A1 JP 2016071095 W JP2016071095 W JP 2016071095W WO 2018015987 A1 WO2018015987 A1 WO 2018015987A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature
building
heat
tank system
Prior art date
Application number
PCT/JP2016/071095
Other languages
French (fr)
Japanese (ja)
Inventor
憲司 久木野
Original Assignee
憲司 久木野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 憲司 久木野 filed Critical 憲司 久木野
Priority to PCT/JP2016/071095 priority Critical patent/WO2018015987A1/en
Publication of WO2018015987A1 publication Critical patent/WO2018015987A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/06Arrangements for heating or lighting in, or attached to, receptacles for live fish

Abstract

[Problem] To provide a fish tank system that makes it possible to maintain and manage the temperature of culture water, without depending on conventional heat source equipment, by using natural geothermal heat and sunlight as the heat source. [Solution] In this fish tank system 10, a culture water tank 18 is placed in a building 14 having a function to inhibit heat transfer with the outside air. A heat insulation water path 20 for inhibiting heat transfer between a ground surface region inside the wall of the building and a ground surface region outside the wall is buried, from the ground surface to a depth of several tens of centimeters to several meters, under the building 14. Constant-temperature ground water is pumped up and allowed to flow through the heat insulation water path 20 to prevent the temperature of the ground region outside the building wall, which follows the ambient temperature, from being transmitted to the inside of the building. Water is circulated between a sunlight sterilization/heating device 12 and the culture water tank 18 to supply water sterilized and heated by sunlight to the culture water tank 18 and adjust the temperature of water in the culture water tank 18 to a temperature suitable for culturing fish.

Description

自然エネルギーを熱源として飼育水温を調整する活魚水槽システムLive fish tank system that adjusts breeding water temperature using natural energy as a heat source
本発明は、魚介類の飼育、特に通年養殖に適した飼育水温を自然エネルギーの利用により調整する活魚水槽システムに関する。 The present invention relates to a live fish tank system that adjusts a breeding water temperature suitable for rearing fishery products, particularly for year-round aquaculture, by utilizing natural energy.
魚介類の飼育や養殖に適した水温は、種によっても異なるが、概ね15℃から25℃付近を適温とするものが多い。養殖業において魚介類の生育速度を上げて生産性を向上させるためには、すなわち餌料効率(摂取飼料当たりの体重増加量)を上げるためには、飼育水温を調整することが重要である(非特許文献1参照)。魚介類の養殖方法は、自然界の温度に依存する「海面養殖」と飼育水温を調整できる「陸上養殖」に大きく分けられる。日本の養殖生産量約90万トンのほとんど(約99.3%)は海面養殖であり、陸上養殖はその内の6000トン(約0.7%)に過ぎない。魚介類の生産性の向上には飼育水温の調整が可能な陸上養殖が有利であるが、陸上養殖は施設費(イニシャルコスト)と飼育水温の維持に要する光熱費(ランニングコスト)が大きいことからこれまで敬遠されてきた。一方、海面養殖は、海中に張った網(生け簀)で魚を養殖するため、初期投資が少なく、コスト面で陸上養殖に勝ると考えられていることから、これまでは多くの国で海面養殖が普及拡大してきた。 Although the water temperature suitable for the breeding and aquaculture of seafood varies depending on the species, there are many water temperatures that are generally around 15 ° C to 25 ° C. In order to increase productivity by increasing the growth rate of seafood in the aquaculture industry, that is, to increase feed efficiency (weight gain per ingested feed), it is important to adjust the breeding water temperature (non- Patent Document 1). The methods for cultivating seafood are broadly divided into “sea surface culture” that depends on the temperature of the natural world and “land culture” that can adjust the temperature of the breeding water. Most of Japan's aquaculture production of about 900,000 tons (about 99.3%) is sea surface culture, and land culture is only 6000 tons (about 0.7%). Land farming, which can adjust the breeding water temperature, is advantageous for improving the productivity of seafood, but land farming has a large facility cost (initial cost) and a large amount of light and heat expenses (running cost) required to maintain the breeding water temperature. It has been avoided. On the other hand, sea surface aquaculture is considered to be superior to land-based aquaculture in terms of cost because fish is cultivated with nets (sacrifice) stretched in the sea, so it is considered to be superior to land culture in terms of cost. Has been spreading.
しかし、海面養殖は季節・天候・災害に著しい影響を受け、養殖魚の生育管理が困難であることに加え、近年では海面養殖場における残餌と排泄物による海洋汚染が社会問題化しており、コストの低減化による陸上養殖への移行が求められている(非特許文献2参照)。陸上養殖には、取水した海水を水槽内に掛け流す方法(掛け流し方式)と、海水を循環ろ過する方法(閉鎖循環式)とがあり、施設費(イニシャルコスト)の面では掛け流し式が有利であるが、適温を維持するための光熱費(ランニングコスト)は高額となる。一方、閉鎖循環式は光熱費(ランニングコスト)は比較的抑えられるものの施設費(イニシャルコスト)はより高額となるため、初期投資の財源が潤沢でない限り閉鎖循環式の養殖は敬遠されがちである。一部で実施されている陸上養殖として、トラフグやヒラメの養殖が簡易の掛け流し式陸上養殖施設において実施されているが、養殖水温を通年で維持するために大型の熱源設備(クーラーやヒーター)が備え付けられており(特許文献1参照)、熱源設備費用と光熱費の低減が陸上養殖の普及のための最大の課題となっている。 However, sea surface aquaculture is significantly affected by the season, weather, and disasters, and it is difficult to manage the growth of farmed fish.In recent years, sea pollution due to residual food and excrement at sea surface farms has become a social problem. There is a demand for a shift to terrestrial aquaculture by reducing the amount of water (see Non-Patent Document 2). There are two types of onshore aquaculture: the method of flowing the collected seawater into the tank (flowing method) and the method of circulating and filtering the seawater (closed circulation method). In terms of facility costs (initial cost), the flowing method is Although advantageous, the utility cost (running cost) for maintaining an appropriate temperature becomes high. On the other hand, in the closed circulation type, the utility cost (running cost) is relatively low, but the facility cost (initial cost) is higher. Therefore, unless the initial investment is abundant, closed circulation type aquaculture tends to be avoided. . As part of the on-shore aquaculture, trough puffer fish and flounder are being cultivated in a simple overflow-type aquaculture facility. Large-scale heat source equipment (coolers and heaters) is used to maintain the aquaculture water temperature throughout the year. (Refer to Patent Document 1), and the reduction of heat source equipment costs and utility costs is the biggest issue for the spread of land farming.
特開2009-43号公報JP 2009-43 A
従来の熱源設備は設置費用が高額であるばかりでなく、その稼働には非常に多くの電力が必要となり、また定期的な保守点検も欠かせないため、魚介類の陸上養殖にかかるイニシャルコストとランニングコストを引き上げる原因となっている。言い換えると、従来の熱源設備に依存しない低廉な飼育水温維持システムを構築することができれば、魚介類の飼育や養殖にかかるトータルコストの大幅削減を図ることができ、ひいては活魚の価格競争力を向上させて収益性の高い陸上養殖事業を実現することが可能となる。 Conventional heat source equipment is not only expensive to install, but requires a lot of power to operate it, and regular maintenance inspections are also indispensable. This increases the running cost. In other words, if an inexpensive breeding water temperature maintenance system that does not depend on conventional heat source equipment can be constructed, the total cost of raising and cultivating seafood can be greatly reduced, and as a result, the price competitiveness of live fish can be improved. This makes it possible to realize a highly profitable aquaculture business.
本発明は、自然界に存在するエネルギーを熱源として利用することにより、従来の熱源設備に依存せずに低コストで飼育水温を調整する活魚水槽システムを実現することを課題としている。 This invention makes it a subject to implement | achieve the live fish tank system which adjusts breeding water temperature at low cost by using the energy which exists in nature as a heat source, without depending on the conventional heat source equipment.
前述した課題を解決するため、本発明は以下のように構成される活魚水槽システムを提供する。 In order to solve the above-described problems, the present invention provides a live fish tank system configured as follows.
本発明の活魚水槽システムは、飼育水域の側方および上方を覆う断熱性を有する建屋と、
前記建屋の下方にある建屋壁内地表部とその周囲に繋がる建屋壁外地表部との熱伝導を遮断する位置に設けられる水路を備えることを特徴とする。
The live fish tank system of the present invention is a building having heat insulation covering the side and upper side of the breeding water area,
It has a water channel provided in the position which interrupts heat conduction with the building wall inner surface part below the building, and the building wall outer surface part connected to the circumference.
水路に供給する液体が熱媒体として作用し、建屋周囲の環境温度に従属する地表部の熱が建屋内に伝導することが妨げられ、建屋内の地表温度は水路を流れる液体の温度に誘導される。水路に供給する液体として飼育水域の近傍から採取される地下水、特に地表面下10m以下の地下恒温層(常に、地温はその土地の年平均気温とほぼ等しい値となる)から採取される地下恒温水を用いることにより、建屋下部の地表から地下恒温層までの地盤全体が地下恒温層温度に誘導され、外気からの熱伝導を遮断した断熱建屋内の室温は気温と地表温に影響されることなく通年一定の地下恒温層温度に維持される。 The liquid supplied to the water channel acts as a heat medium, preventing the heat of the surface part depending on the ambient temperature around the building from being conducted to the building, and the surface temperature inside the building is induced by the temperature of the liquid flowing through the water channel. The Groundwater collected from the vicinity of the breeding water area as the liquid to be supplied to the waterway, especially from the subsurface thermostatic layer below 10m below the surface of the ground (always the ground temperature is almost equal to the annual average temperature of the land) By using water, the entire ground from the ground surface at the bottom of the building to the subsurface isothermal layer is induced to the subsurface isothermal temperature, and the room temperature in the insulated building that blocks heat conduction from the outside air is affected by the temperature and surface temperature. It is maintained at a constant subsurface temperature throughout the year.
また本発明の活魚水槽システムは、前記飼育水域に供給する飼育水に太陽光殺菌加熱装置を用いて殺菌および加熱を施すように構成することもできる。このとき、飼育水槽と太陽光加熱殺菌装置の間を循環する飼育水は調整槽を設置して循環量を調整してもよい。 Moreover, the live fish tank system of this invention can also be comprised so that it may sterilize and heat to the breeding water supplied to the said breeding water area using a sunlight sterilization heating apparatus. At this time, the breeding water circulating between the breeding water tank and the solar heat sterilizer may be adjusted by installing an adjustment tank.
また本発明の活魚水槽システムは、太陽光殺菌加熱装置を備え、前記太陽光殺菌加熱装置が、透光性と断熱性を備える第1層、断熱性と遮水性を備える第3層、前記第1層と前記第3層との間に形成される第2層を備え、前記第2層において飼育水に殺菌および加熱を施すように構成することもできる。 Moreover, the live fish tank system of this invention is equipped with a solar sterilization heating apparatus, and the said solar sterilization heating apparatus is the 1st layer provided with translucency and heat insulation, the 3rd layer provided with heat insulation and water shielding, the said 1st. A second layer formed between the first layer and the third layer may be provided, and the rearing water may be sterilized and heated in the second layer.
また本発明の活魚水槽システムは、建屋の屋上を太陽光殺菌加熱装置の設置場所として利用することにより、太陽光殺菌加熱装置内の水が熱媒体として作用し、直射日光による屋上から屋内への熱伝導を抑制することができる。また太陽光殺菌加熱装置の設置にかかる敷地が不要になる。 Moreover, the live fish tank system of the present invention uses the rooftop of the building as the installation location of the solar sterilization heating device, so that the water in the solar sterilization heating device acts as a heat medium, and from the roof to the indoor by direct sunlight Heat conduction can be suppressed. Moreover, the site concerning installation of a solar sterilization heating apparatus becomes unnecessary.
また本発明の活魚水槽システムは、前記飼育水域が、飼育水槽と、前記飼育水槽を囲繞する熱交換壁と、前記熱交換壁を囲繞する外壁とを備え、前記熱交換壁と前記外壁との間に形成される水路に地下恒温水を供給することを特徴とする活魚養殖システムとして構成することもできる。これにより、飼育水槽内の飼育水と地下恒温水との直接的な熱交換を促すことができるようになるため、飼育水の水温をすばやく恒温層温度に誘導することが可能となる。 In the live fish tank system of the present invention, the breeding water area includes a breeding tank, a heat exchange wall surrounding the breeding tank, and an outer wall surrounding the heat exchange wall, and the heat exchange wall and the outer wall It can also be configured as a live fish farming system characterized by supplying underground constant temperature water to a water channel formed therebetween. Thereby, since it becomes possible to promote direct heat exchange between the breeding water in the breeding aquarium and the underground constant temperature water, it becomes possible to quickly induce the temperature of the breeding water to the constant temperature layer temperature.
本発明の水槽システムは、水温管理および水質管理に自然エネルギーを活用し、必要最小限のポンプによって飼育水を循環させることにより、活魚の飼育水温の調整および飼育水の紫外線殺菌ができるように構成されている。そのため、従来この種の水槽において多用されていたクーラーやヒーター、オゾン殺菌装置等の外部装置が不要となり、これらの外部装置の稼働に要する電気代や保守管理費も不要になる。従って、本活魚水槽システムを畜養に導入することにより、魚介類の飼育や養殖にかかるトータルコストの大幅削減を図ることができ、ひいては活魚の価格競争力を向上させて収益性の高い陸上養殖事業を実現することが可能となる。 The aquarium system of the present invention is configured to utilize natural energy for water temperature management and water quality management, and adjust the breeding water temperature of live fish and UV sterilization of the breeding water by circulating the breeding water with the minimum necessary pump Has been. This eliminates the need for external devices such as coolers, heaters, and ozone sterilizers that have been frequently used in this type of water tank, and eliminates the need for electricity and maintenance costs required to operate these external devices. Therefore, by introducing this live fish tank system to animal husbandry, it is possible to significantly reduce the total cost of raising and aquaculture of fish and shellfish, and as a result, improve the price competitiveness of live fish and increase the profitability of land farming business. Can be realized.
活魚水槽システムの構成を示す図Diagram showing the configuration of the live fish tank system 太陽光殺菌加熱装置の構成を示す図The figure which shows the structure of the solar sterilization heating device 太陽光殺菌加熱装置の構成を示す図The figure which shows the structure of the solar sterilization heating device 熱交換式水槽を備えた活魚水槽システムの他の構成を示す図The figure which shows the other structure of the live fish tank system provided with the heat exchange type tank 熱交換式水槽の構成を示す図The figure which shows the composition of the heat exchange type water tank
本発明の実施の形態について図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.
〔活魚水槽システムの構成〕
図1は水槽システムの構成を示す概念図である。水槽システム10は、太陽光殺菌加熱装置12、建屋14、飼育水量調整槽16、飼育水槽18、断熱水路20、ポンプ22、24を備える。
[Configuration of live fish tank system]
FIG. 1 is a conceptual diagram showing the configuration of the aquarium system. The aquarium system 10 includes a solar sterilization heating device 12, a building 14, a rearing water amount adjusting tank 16, a rearing water tank 18, an insulated water channel 20, and pumps 22 and 24.
太陽光殺菌加熱装置12は、図2に示すように、箱枠12aと透光パネル12bを接合させた中空の密閉容器となっている。箱枠12aには繊維強化プラスチック(FRP)のような軽量かつ耐久性の高い素材を用いる。FRPとしては、ガラス繊維強化プラスチック(GFRP)が比較的安価で入手も容易であるが、他にも炭素繊維強化プラスチック(CFRP)や、高強度樹脂繊維であるケプラー、ポリエチレン等を用いて強化したプラスチック(AFRP、KFRP、DFRP)等の素材で構成してもよい。またFRP以外の樹脂素材や金属素材、木材などを用いることも可能である。 As shown in FIG. 2, the solar sterilization heating device 12 is a hollow sealed container in which a box frame 12a and a translucent panel 12b are joined. A lightweight and highly durable material such as fiber reinforced plastic (FRP) is used for the box frame 12a. As FRP, glass fiber reinforced plastic (GFRP) is relatively inexpensive and easily available, but reinforced with carbon fiber reinforced plastic (CFRP), high strength resin fiber Kepler, polyethylene, etc. You may comprise with raw materials, such as plastic (AFRP, KFRP, DFRP). It is also possible to use resin materials other than FRP, metal materials, wood, and the like.
透光パネル12bには、ガラスを用いるか、あるいはガラスの他に塩化ビニル等の透光性を有する樹脂等を用いてもよいし、断熱性能を高めた複層ガラスなどを用いてもよい。透光パネル12bは箱枠12aの上部内側に接合されて中空構造を形成し、完全密閉される。 The translucent panel 12b may be made of glass, or may be made of a translucent resin such as vinyl chloride in addition to glass, or may be multi-layer glass with improved heat insulation performance. The translucent panel 12b is joined to the upper inner side of the box frame 12a to form a hollow structure and is completely sealed.
完全密封された箱に下部に置かれる断熱パネル12cは、硬質ウレタンフォーム等の断熱効果のある断熱材をパネル状に成型したものである。 The heat insulating panel 12c placed in the lower part of a completely sealed box is formed by molding a heat insulating material having a heat insulating effect such as hard urethane foam into a panel shape.
太陽光殺菌加熱装置12は、図2および図3に示すように、透光パネル12b、透光パネル12bと箱枠12aで形成された殺菌加熱空間30と断熱パネル12cで構成される。太陽光殺菌加熱装置12には、適当な位置に海水の通路となる流入管32と流出管34が設けられており、流入管32から流入する海水は殺菌加熱空間30を滞留しながら移動し、最終的に流出管34から流出する。殺菌加熱空間30には透光パネル12bを通して太陽光が注ぎ込むため、殺菌加熱空間30に流入する海水は流出するまでの間に太陽光に晒され、この間に殺菌と加熱が施される。 As shown in FIG. 2 and FIG. 3, the solar sterilization heating device 12 includes a translucent panel 12 b, a sterilization heating space 30 formed by the translucent panel 12 b and the box frame 12 a and a heat insulating panel 12 c. The solar sterilization heating device 12 is provided with an inflow pipe 32 and an outflow pipe 34 serving as seawater passages at appropriate positions, and the seawater flowing from the inflow pipe 32 moves while staying in the sterilization heating space 30. Finally, it flows out from the outflow pipe 34. Since sunlight is poured into the sterilization heating space 30 through the translucent panel 12b, the seawater flowing into the sterilization heating space 30 is exposed to sunlight until it flows out, and sterilization and heating are performed during this time.
建屋14は床面がコンクリート製であり、壁と天井とが断熱ボードで覆われた断熱性を有する建屋である。太陽光殺菌加熱装置12は建屋14の屋上面に設置される。太陽光殺菌加熱装置12は単体として設置してもよいし、適度な大きさに分割したものを配管等で連結する分割式としてもよい。また、建屋14の天井部分を太陽光殺菌加熱装置12の断熱パネル12cと共用してもよい。 The building 14 is a building having a heat insulating property in which a floor surface is made of concrete and a wall and a ceiling are covered with a heat insulating board. The solar sterilization heating device 12 is installed on the top surface of the building 14. The solar sterilization heating device 12 may be installed as a single unit, or may be a split type in which what is divided into appropriate sizes is connected by piping or the like. Moreover, you may share the ceiling part of the building 14 with the heat insulation panel 12c of the solar sterilization heating apparatus 12. FIG.
飼育水量調整槽16は、太陽光殺菌加熱装置12と飼育水槽18との間での飼育水の循環量を調整するための水槽である。ポンプ2は、太陽光殺菌加熱装置12で殺菌および加熱された飼育水を飼育水量調整槽16に送り、さらに飼育水槽18へ送り、また、飼育水量調整槽16に返す、という飼育水の循環を行う。 The breeding water amount adjustment tank 16 is a water tank for adjusting the circulation amount of the breeding water between the solar light sterilization heating device 12 and the breeding water tank 18. The pump 2 circulates the breeding water such that the breeding water sterilized and heated by the solar sterilization heating device 12 is sent to the breeding water volume adjustment tank 16, further sent to the breeding water tank 18, and returned to the breeding water quantity adjustment tank 16. Do.
断熱水路20は、建屋14の側壁に沿って建屋の下方に設けられ、建屋の内側領域(建屋壁内地表部)と外側領域(建屋壁外地表部)とを区画する水路であり、地表から数10cm~数mの深さにまで埋設されている。断熱水路20にはポンプ24によって地下恒温水が揚水放流される。断熱水路20を流れる地下恒温水は、建屋周囲の環境温度に従属する地表部温度が建屋内に伝導することを防ぐことができる。これにより建屋内は通年一定である地下水温と建屋直下5m以深の土中温度(その土地の年平均気温とほぼ等しい値となる)付近に保持される。断熱水路20を流れる地下恒温水は建屋14の外側の土壌との間で熱交換を行うため水温の上昇あるいは低下を来すが、順次排水され新たな地下恒温水が加水されることで建屋内への熱伝達を持続的に遮ることができる。 The heat insulating water channel 20 is a water channel that is provided below the building along the side wall of the building 14 and divides the inner region (the inner surface of the building wall) and the outer region (the outer surface of the building wall) of the building. It is buried to a depth of several tens of centimeters to several meters. A constant temperature underground water is pumped and discharged into the adiabatic water channel 20 by a pump 24. The underground constant temperature water flowing through the heat insulating water channel 20 can prevent the surface temperature dependent on the environmental temperature around the building from being conducted into the building. As a result, the interior of the building is maintained near the groundwater temperature, which is constant throughout the year, and the soil temperature below the building 5 m or deeper (which is almost equal to the annual average temperature of the land). The underground constant temperature water flowing through the insulated water channel 20 exchanges heat with the soil outside the building 14, so that the water temperature rises or falls, but is drained sequentially and new underground constant temperature water is added to the building. The heat transfer to can be continuously blocked.
〔水槽システムの他の構成〕
図4は水槽システムの他の構成を示す概念図である。水槽システム50は、前述した水槽システム10と基本的な構成は同一であるが、水槽の構成および断熱水路の有無において水槽システム10とは異なるため、その差異点について以下に説明を加える。
[Other configurations of aquarium system]
FIG. 4 is a conceptual diagram showing another configuration of the water tank system. The aquarium system 50 has the same basic configuration as the aquarium system 10 described above. However, the aquarium system 50 differs from the aquarium system 10 in the configuration of the aquarium and the presence / absence of an insulated water channel.
最初に水槽の構成について説明する。図5に示すように、熱交換式水槽52は円環形をなす外壁60および飼育水域との隔壁となる熱交換壁62、さらに円関係水路を形成する底板を備える。外壁60と熱交換壁62の間の領域は一定幅の円環形の水路(熱媒体水域)52bを形成する。飼育水槽の中心には水流を調整するための円柱64を設けてもよい。熱交換壁62と円柱64の間の領域は飼育水域52aを形成する。 First, the configuration of the water tank will be described. As shown in FIG. 5, the heat exchange type water tank 52 includes an outer wall 60 having an annular shape, a heat exchange wall 62 serving as a partition wall with the breeding water area, and a bottom plate that forms a circular water channel. A region between the outer wall 60 and the heat exchange wall 62 forms an annular water channel (heat medium water region) 52b having a constant width. A cylinder 64 for adjusting the water flow may be provided at the center of the breeding aquarium. A region between the heat exchange wall 62 and the cylinder 64 forms a breeding water area 52a.
熱媒体水域52bには地下恒温水を供給する。ポンプ66によって地下恒温層から地下恒温水を汲み上げ、給水管68を通じて熱媒体水域52bに地下恒温水を送水する。熱媒体水域52bに供給された地下恒温水は隔壁62を挟んで内接する飼育水域52aの海水の温度を地下恒温層温度に誘導する冷媒として用いられる。外壁60には排水管70を連結し、熱交換後の地下恒温水を熱媒体水域52bから排水する。 The constant temperature water is supplied to the heat medium water area 52b. The pump 66 pumps up the underground constant temperature water from the underground constant temperature layer, and supplies the underground constant temperature water to the heat medium water area 52 b through the water supply pipe 68. The underground constant temperature water supplied to the heat medium water area 52b is used as a refrigerant for inducing the temperature of the seawater in the breeding water area 52a inscribed with the partition wall 62 therebetween to the underground constant temperature layer temperature. A drain pipe 70 is connected to the outer wall 60, and the underground constant temperature water after heat exchange is drained from the heat medium water area 52b.
飼育水域52aには熱媒体水域52bの水流とは逆方向の水流を形成することで、地下高温水との飼育水の熱交換効率を顕著に高めることができる。 By forming a water flow in the direction opposite to the flow of the heat medium water region 52b in the breeding water region 52a, the heat exchange efficiency of the breeding water with the underground high-temperature water can be significantly increased.
活魚水槽システムは、水温管理および水質管理に自然エネルギーを活用し、必要最小限のポンプによって飼育水を循環させることにより、活魚の飼育水温の調整および飼育水の紫外線殺菌を行うことができるように構成されている。そのため、従来の活魚水槽に必須の構成であったクーラーやヒーター、オゾン殺菌装置等の外部装置が不要となり、これらの外部装置の運転に要する多大な電気も不要になる。従って、水槽システムを活魚の陸上飼育に導入することにより、イニシャルコストのみならずランニングコストも大幅に削減することが可能になり、さらには活魚を安価に提供することができるようになる。 The live fish aquarium system uses natural energy for water temperature management and water quality management and circulates the breeding water with the minimum necessary pump so that the breeding water temperature of live fish can be adjusted and the breeding water can be sterilized with UV light. It is configured. Therefore, external devices such as a cooler, a heater, and an ozone sterilizer that are indispensable for conventional live fish tanks are unnecessary, and a great amount of electricity required to operate these external devices is also unnecessary. Therefore, by introducing the aquarium system to live fish breeding on land, not only the initial cost but also the running cost can be greatly reduced, and the live fish can be provided at a low cost.
〔地下恒温水について〕
地下恒温層の地下恒温水の温度は、それぞれの地域の年平均気温より1乃至2℃程度高いことが知られている(関谷一義,岩城文太,富永泰子,種岡裕.2005.新潟市海岸部の地下恒温水温鉛直分布の特徴.新潟県保健環境科学研究所年報第20巻:101-104.)。例えば福岡の場合であれば、年平均気温は17.1℃であり(2001年の気象庁資料を参照)、地下恒温層の水温は18.3℃である(有田明人,松本源生,石橋融子,馬場義輝.2013.福岡県の地下恒温水温について.福岡県保健環境研究所年報第40号:133-134.)。従って、熱交換式水槽は、恒温層の地下恒温水を冷媒として用いることにより、例えば日本の九州地方であれば、飼育水域内の海水を18℃程度に温度管理することが可能になり、活魚の飼育に適した水温環境を創出することができる。
[About constant temperature underground water]
It is known that the temperature of the underground thermostatic water is about 1 to 2 ° C higher than the annual average temperature in each region (Kazuyoshi Sekiya, Bunta Iwaki, Yasuko Tominaga, Hiroshi Taneoka. 2005. Niigata City Coast Characteristics of the vertical constant temperature water temperature of Niigata Prefectural Institute of Health and Environmental Sciences, Volume 20: 101-104.) For example, in the case of Fukuoka, the annual average temperature is 17.1 ° C (see the 2001 Japan Meteorological Agency data), and the water temperature of the underground thermosphere is 18.3 ° C (Arihito Arita, Gensei Matsumoto, Ishibashi) Yoko, Yoshiki Baba, 2013. About the constant temperature of underground water in Fukuoka Prefecture, Fukuoka Prefectural Institute of Health and Environment, Annual Report No. 40: 133-134.). Therefore, the heat-exchangeable water tank can control the temperature of the seawater in the breeding water area to about 18 ° C. in the Kyushu region of Japan, for example, in the Kyushu region of Japan by using the constant temperature underground water as a refrigerant. A water temperature environment suitable for breeding can be created.
〔太陽光による殺菌および加熱について〕
太陽光殺菌加熱装置の加熱性能および殺菌性能について説明する。活魚水槽システムにおける海水の加熱および殺菌は太陽光エネルギーを用いることを基本としている。加熱性能については以下のデータに基づいて考察した。ただし、活魚水槽システムの規模として、延べ床面積1000平米、活魚水槽350立米を基準として試算した。
・長崎県内年平均全天日射量:約14MJ/平米・day=3,345kcal/平米・day
・海水熱容量:964kcal/立米・℃(水は1000kcal/立米・℃))
・熱エネルギー変換効率:50パーセント
・太陽光殺菌加熱装置の有効寸法:20m×50m=1000平米
・飼育水域容量:350立米
以上のデータに基づいて算出した太陽光殺菌加熱装置の発熱量は1日に1,672,500kcalである。これは飼育水槽の海水(350立米)を1日に約5℃上昇させるのに十分な発熱量である。
[About sterilization and heating by sunlight]
The heating performance and sterilization performance of the solar sterilization heating apparatus will be described. The heating and sterilization of seawater in the live fish tank system is based on the use of solar energy. The heating performance was considered based on the following data. However, the size of the live fish tank system was estimated based on a total floor area of 1000 square meters and a live fish tank of 350 cubic meters.
・ Annual average solar radiation in Nagasaki Prefecture: approx. 14 MJ / sqm ・ day = 3,345 kcal / sqm ・ day
・ Seawater heat capacity: 964 kcal / rice-rice / ° C (water is 1000 kcal / rice-rice · ° C)
・ Thermal energy conversion efficiency: 50% ・ Effective dimensions of the solar sterilization heating device: 20 m × 50 m = 1000 square meters ・ Raising water area capacity: The calorific value of the solar sterilization heating device calculated based on data of 350 m2 or more is 1 day 1,672,500 kcal. This is a calorific value sufficient to raise the seawater (350 m2) in the breeding aquarium by about 5 ° C. per day.
次に、殺菌性能について説明する。水槽システム10における海水の殺菌は紫外線殺菌と加熱殺菌を併用する。紫外線はその波長によって、UV-A(400nm~315nm)、UV-B(315nm~280nm)、UV-C(280nm~100nm)の3種類に分類されるのが一般的である。紫外線は可視光(約380nm:紫色~780nm:赤色)より波長が短い領域の光であり、直接的に視認することはできないが、市販されている紫外線ランプには青白く見える可視光が混ざっているため、点灯時に視覚的に確認することができる。波長が200nm~300nm付近の紫外線は殺菌効果を有しており、殺菌効果が最大となるのは254nm付近である。太陽光には波長が約300nm付近の紫外線が含まれており、この波長域の放射照度が大きいため、太陽光は優れた殺菌効果を有している。 Next, sterilization performance will be described. The sterilization of seawater in the aquarium system 10 uses both ultraviolet sterilization and heat sterilization. Ultraviolet rays are generally classified into three types according to their wavelengths: UV-A (400 nm to 315 nm), UV-B (315 nm to 280 nm), and UV-C (280 nm to 100 nm). Ultraviolet light has a wavelength shorter than that of visible light (about 380 nm: purple to 780 nm: red) and cannot be directly visually recognized, but commercially available ultraviolet lamps are mixed with visible light that appears pale. Therefore, it can be visually confirmed at the time of lighting. Ultraviolet rays having a wavelength in the vicinity of 200 nm to 300 nm have a bactericidal effect, and the bactericidal effect is maximized at around 254 nm. Sunlight contains ultraviolet rays having a wavelength of about 300 nm, and since the irradiance in this wavelength region is large, sunlight has an excellent bactericidal effect.
紫外線のうち殺菌効果を有するものを一般に殺菌線と呼ぶが、殺菌を目的として人工的に効率良く紫外線を発生する「低圧水銀UVランプ」の波長が254nmであること、波長が254nmの紫外線が最も強い殺菌効果を有することなどから、狭義には波長が254nmの紫外線を殺菌線という。殺菌線の殺菌力は、殺菌線量、即ち殺菌線照度(W/平米)×照射時間(秒)によって表される。 The ultraviolet ray having a bactericidal effect is generally called a bactericidal line. The wavelength of a “low pressure mercury UV lamp” that artificially generates ultraviolet rays efficiently for the purpose of sterilization is 254 nm, and the ultraviolet ray having a wavelength of 254 nm is the most. In the narrow sense, ultraviolet light having a wavelength of 254 nm is called a sterilization line because it has a strong sterilization effect. The sterilizing power of the sterilizing line is expressed by the sterilizing dose, that is, the sterilizing line illuminance (W / square meter) × the irradiation time (second).
殺菌線による殺菌はウィルスや細菌のDNA情報を傷害することによって発生する。その効果は水中でも空気中でも基本的には同じであるが、水中および空気中に存在する殺菌線を遮蔽する物質の有無、すなわち殺菌線透過率に大きく影響される。一般的な住宅窓用の一枚ガラスの場合、殺菌線の透過率は半分以下に減少する。ガラスの殺菌線透過率はその材質などによっても大きく異なるため、太陽光殺菌加熱装置には波長が200~300nmの紫外線が透過しやすい「透明ガラス」や「紫外放射透過ガラス」などを用いて殺菌線の高い透過率を確保する。また紫外線殺菌に必要な紫外線の量は菌の種類に応じて明らかにされている。そのため紫外線量をもとに照射秒数を割り出し、合理的に紫外線殺菌を行う。九州地方の紫外線(UV-B)の照射量は1日に7~30kJ/平米=7,000~30,000kJ/1000平米であり、これは飼育水350立米を殺菌するのに十分な照射量である。 Sterilization with a germicidal line occurs by damaging the DNA information of viruses and bacteria. The effect is basically the same in water and air, but is greatly influenced by the presence or absence of a substance that shields the sterilization line existing in water and air, that is, the sterilization line transmittance. In the case of single glass for general residential windows, the transmittance of germicidal lines is reduced to less than half. The sterilization line transmittance of glass varies greatly depending on the material, etc., so the solar sterilization heating device is sterilized using “transparent glass” or “ultraviolet radiation transmitting glass” that easily transmits ultraviolet light with a wavelength of 200 to 300 nm. Ensures high transmission of lines. The amount of ultraviolet rays necessary for ultraviolet sterilization is clarified according to the type of bacteria. For this reason, the number of irradiation seconds is determined based on the amount of ultraviolet rays, and rational ultraviolet sterilization is performed. The irradiation amount of ultraviolet rays (UV-B) in the Kyushu region is 7-30 kJ / square meter = 7,000-30,000 kJ / 1000 square meters per day, which is sufficient to sterilize 350 raised rice in breeding water. It is.
続いて加熱殺菌について説明する。一般の細菌は高温には弱く、55~75℃、10~30分間の加熱で殺菌することができる。細菌の芽胞は熱に強く、芽胞を殺菌するには110~120℃の高温加熱が必要となるが、カビ・酵母の胞子は細菌の芽胞よりは耐熱性が弱い。食品を殺菌する場合。殺菌温度が高過ぎると品質(色・味・食感など)を低下させるため、加熱温度は低く、時間は短いほうが望ましいとされ、食品の状態や微生物の種類に応じた殺菌温度と殺菌時間が検討される。食品を60~70℃の温度で殺菌することを低温殺菌といい、高温では風味や色彩、成分の変化が生じやすいものを対象とし、例えば牛乳では62~65℃で30分間の加熱殺菌が行われている。 Next, heat sterilization will be described. Common bacteria are weak at high temperatures and can be sterilized by heating at 55 to 75 ° C. for 10 to 30 minutes. Bacterial spores are resistant to heat, and high-temperature heating at 110 to 120 ° C. is required to sterilize spores, but mold and yeast spores are less heat resistant than bacterial spores. When sterilizing food. If the sterilization temperature is too high, the quality (color, taste, texture, etc.) will decrease, so it is desirable that the heating temperature is low and the time is short, and the sterilization temperature and sterilization time according to the state of the food and the type of microorganisms Be considered. Sterilization of food at a temperature of 60-70 ° C is called pasteurization, and targets foods that tend to change in flavor, color, and ingredients at high temperatures. For example, milk is heat-sterilized at 62-65 ° C for 30 minutes. It has been broken.
海水中にはグラム陰性菌が多く、ビブリオ属、シュードモナス属、エロモナス属、アルテロモナス属、フラボバクテリウム属、サイトファーガ属、フレキシバクター属などが優占的である。腸炎ビブリオは、世界各地の沿岸海水中や海泥中に広く生息する海水性の細菌で、日本で発生する食中毒の最も重要な原因菌の一つで、厚生労働省の統計によると細菌性食中毒の中で発生数、患者数とも毎年上位にあがっている。日本では海水温度が20℃以上になる夏期に海水中で大量に増殖し、魚介類に付着する。アジアなどの近海魚に付着するこの菌の生菌数は、1万/100g未満であることが多く、貝類ではこの値を越えることもある。腸炎ビブリオによる食中毒は魚介類の生食によって感染するため、代表的な原因食品として魚介類の刺身やすし類が挙げられる。また、調理器具を介して他の食品への二次感染によることも少なくない。 There are many Gram-negative bacteria in seawater, and Vibrio, Pseudomonas, Aeromonas, Alteromonas, Flavobacterium, Cytophaga, and Flexibacter are dominant. Vibrio parahaemolyticus is a marine bacterium widely distributed in coastal seawater and mud around the world and is one of the most important causative agents of food poisoning occurring in Japan. Among them, the number of outbreaks and the number of patients are higher each year. In Japan, it grows in large quantities in seawater during the summer when the seawater temperature is 20 ° C or higher, and adheres to seafood. The number of viable bacteria attached to near-sea fish such as Asia is often less than 10,000 / 100 g, and this value may be exceeded in shellfish. Since food poisoning caused by Vibrio parahaemolyticus is transmitted by the raw food of seafood, typical sashimi and seafood are examples of causative foods. Moreover, it is often due to secondary infection to other foods through cooking utensils.
活魚水槽システムは、最終的には特に生食用となる活魚の畜養を主要な目的としているため、腸炎ビブリオによる食中毒を発生させないような飼育環境を形成しなければならない。そのためには、太陽光殺菌加熱装置12において海水に55~75℃、30分間の加熱を施す環境を形成する必要がある。従って、太陽光殺菌加熱装置12の殺菌加熱空間30に流入する海水は、流出するまでの間に30分以上滞留し、その間に55~75℃の水温になるまで加熱する必要がある。これらの条件を満たすためには、殺菌加熱空間は可能な限り薄くなるように構成し、より広い面積で受光できるようにする。 The live fish aquarium system has a primary purpose of raising live fish, which is ultimately used for raw food. Therefore, it is necessary to create a breeding environment that does not cause food poisoning due to Vibrio parahaemolyticus. For this purpose, it is necessary to form an environment in which the seawater sterilization heating device 12 heats seawater at 55 to 75 ° C. for 30 minutes. Therefore, the seawater flowing into the sterilization heating space 30 of the solar sterilization heating device 12 stays for 30 minutes or more before it flows out, and it is necessary to heat it until the water temperature reaches 55 to 75 ° C. during that time. In order to satisfy these conditions, the sterilization heating space is configured to be as thin as possible so that light can be received in a wider area.
10  活魚水槽システム
12  太陽光殺菌加熱装置
12a 箱枠
12b 透光パネル
12c 断熱パネル
14  建屋
16  飼育水量調整槽
18  飼育水槽
20  断熱水路
22  ポンプ
24  ポンプ
30  殺菌加熱空間
50  水槽システム
52  熱交換式水槽
52a 飼育水域
52b 熱媒体水域
66  ポンプ
DESCRIPTION OF SYMBOLS 10 Live fish tank system 12 Solar sterilization heating apparatus 12a Box frame 12b Translucent panel 12c Heat insulation panel 14 Building 16 Breeding water amount adjustment tank 18 Breeding tank 20 Thermal insulation water channel 22 Pump 24 Pump 30 Sterilization heating space 50 Tank system 52 Heat exchange type water tank 52a Breeding water area 52b Heat medium water area 66 Pump

Claims (6)

  1. 飼育水域の側方および上方を覆う断熱性を有する建屋と、
    前記建屋の下方にある地表部とその周囲に繋がる地表部との熱伝導を遮断する位置に設けられる水路を備える、
    活魚水槽システム。
    A building with heat insulation covering the side and upper part of the breeding water area;
    Comprising a water channel provided at a position to block heat conduction between the surface portion below the building and the surface portion connected to the periphery thereof,
    Live fish tank system.
  2. 前記水路に地下恒温水を供給することを特徴とする、
    請求項1に記載の活魚水槽システム。
    Supplying underground constant temperature water to the waterway,
    The live fish tank system according to claim 1.
  3. 前記飼育水域に供給する飼育水に太陽光を用いて殺菌および加熱を施す太陽光殺菌加熱装置を備えることを特徴とする、
    請求項1または2に記載の活魚水槽システム。
    It is characterized by comprising a solar sterilization heating device that sterilizes and heats the breeding water supplied to the breeding water area using sunlight.
    The live fish tank system according to claim 1 or 2.
  4. 前記太陽光殺菌加熱装置が、透光性と断熱性を備える第1層、断熱性を備える第3層、前記第1層と前記第3層との間に形成される密封防水間隙を備えた第2層を備え、前記第2層において飼育水に殺菌および加熱を施すことを特徴とする、
    請求項3に記載の活魚水槽システム。
    The solar sterilization heating device includes a first layer having translucency and heat insulation, a third layer having heat insulation, and a sealed waterproof gap formed between the first layer and the third layer. Comprising a second layer, characterized in that the breeding water is sterilized and heated in the second layer,
    The live fish tank system according to claim 3.
  5. 前記太陽光殺菌加熱装置が、前記建屋の屋上に敷設されることを特徴とする、
    請求項3または4に記載の活魚水槽システム。
    The solar sterilization heating device is laid on the roof of the building,
    The live fish tank system according to claim 3 or 4.
  6. 前記飼育水域が、飼育水槽と前記飼育水槽を囲繞する熱交換壁と前記熱交換壁を囲繞する外壁を備え、
    前記熱交換壁と前記外壁との間に形成される水路に地下恒温水を供給することを特徴とする、
    請求項1乃至5の何れかに記載の活魚水槽システム。
    The breeding water area includes a breeding water tank, a heat exchange wall surrounding the breeding water tank, and an outer wall surrounding the heat exchange wall,
    Supplying underground constant temperature water to a water channel formed between the heat exchange wall and the outer wall,
    The live fish tank system according to any one of claims 1 to 5.
PCT/JP2016/071095 2016-07-18 2016-07-18 Fish tank system that adjusts temperature of culture water using natural energy as heat source WO2018015987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071095 WO2018015987A1 (en) 2016-07-18 2016-07-18 Fish tank system that adjusts temperature of culture water using natural energy as heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071095 WO2018015987A1 (en) 2016-07-18 2016-07-18 Fish tank system that adjusts temperature of culture water using natural energy as heat source

Publications (1)

Publication Number Publication Date
WO2018015987A1 true WO2018015987A1 (en) 2018-01-25

Family

ID=60992313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071095 WO2018015987A1 (en) 2016-07-18 2016-07-18 Fish tank system that adjusts temperature of culture water using natural energy as heat source

Country Status (1)

Country Link
WO (1) WO2018015987A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526843A (en) * 2018-12-10 2019-03-29 怀化职业技术学院 Aquatic animal cultivating system and its pond overflow device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54177400U (en) * 1978-06-02 1979-12-14
JPS57105116A (en) * 1980-12-23 1982-06-30 Hiroo Okado Warming method utilizing underground water in facility horticulture house
JPS57187558A (en) * 1981-05-14 1982-11-18 Tokyu Fudousan Kk Solar heat collector unit
JPH08291542A (en) * 1995-04-21 1996-11-05 Yamaha Kako Kensetsu Kk Water catchment well
JP2004212027A (en) * 2003-01-06 2004-07-29 Koji Ota Water heating device by sheet
JP2010266138A (en) * 2009-05-15 2010-11-25 Koji Terui Solar heat cooker-cum-solar water heater
JP2012231795A (en) * 2012-07-30 2012-11-29 Toshiro Ito Greenhouse for plant cultivation
JP2016047032A (en) * 2014-08-28 2016-04-07 憲司 久木野 Heat exchange type water tank

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54177400U (en) * 1978-06-02 1979-12-14
JPS57105116A (en) * 1980-12-23 1982-06-30 Hiroo Okado Warming method utilizing underground water in facility horticulture house
JPS57187558A (en) * 1981-05-14 1982-11-18 Tokyu Fudousan Kk Solar heat collector unit
JPH08291542A (en) * 1995-04-21 1996-11-05 Yamaha Kako Kensetsu Kk Water catchment well
JP2004212027A (en) * 2003-01-06 2004-07-29 Koji Ota Water heating device by sheet
JP2010266138A (en) * 2009-05-15 2010-11-25 Koji Terui Solar heat cooker-cum-solar water heater
JP2012231795A (en) * 2012-07-30 2012-11-29 Toshiro Ito Greenhouse for plant cultivation
JP2016047032A (en) * 2014-08-28 2016-04-07 憲司 久木野 Heat exchange type water tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526843A (en) * 2018-12-10 2019-03-29 怀化职业技术学院 Aquatic animal cultivating system and its pond overflow device

Similar Documents

Publication Publication Date Title
JP6150413B2 (en) Urban bio-flac farming and plant cultivation system using aquaphonic
CN102668964B (en) Plant factory
CN104115788B (en) The cultural method of a kind of snake
KR101507057B1 (en) Aquaculture Systems using BioFloc technology and aquaphonic.
CN105104158A (en) Intelligent hydroponic vegetable cultivating cabinet
CN104221982A (en) Fish, vegetable and edible fungus symbiotic system in greenhouse
JP2012165727A (en) Environment-conscious farming system
CN205018017U (en) Intelligence water planting vegetable planting cabinet
CN103081864B (en) Method for turtle egg intensive cultivation in lighting greenhouse
TWI504345B (en) Multi-layer ecological recirculating aquaculture system
CN207626310U (en) Black bone Yang Guimohuayangzhishe
Alvarez-Lajonchere et al. Design of a pilot-scale tropical marine finfish hatchery for a research center at Mazatlán, Mexico
Pattillo An overview of aquaponic systems: Aquaculture components
JP4084352B2 (en) Multi-stage utilization system for deep ocean water
WO2018015987A1 (en) Fish tank system that adjusts temperature of culture water using natural energy as heat source
Nicolae et al. Low-tech aquaponic system based on an ornamental aquarium.
CN204579555U (en) A kind of temperature control flow control for coral propagation and water purification installation
CN204707674U (en) Ventilating fermentation bed pig house
CN110235638A (en) Artificial light enclosed type plant factor
CN201690888U (en) Semi-underground breeding system
CN104221971A (en) Breeding method of sturgeon
JP5430365B2 (en) Fermentation heat utilization system
RU2580583C1 (en) Agro-biocomplex
CN201150216Y (en) Marine product living body cultivation exhibiting device
CN204014706U (en) A kind of automation Novel pig house

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP