WO2018015659A1 - Nacelle de turbomoteur comportant un dispositif de refroidissement - Google Patents

Nacelle de turbomoteur comportant un dispositif de refroidissement Download PDF

Info

Publication number
WO2018015659A1
WO2018015659A1 PCT/FR2017/051967 FR2017051967W WO2018015659A1 WO 2018015659 A1 WO2018015659 A1 WO 2018015659A1 FR 2017051967 W FR2017051967 W FR 2017051967W WO 2018015659 A1 WO2018015659 A1 WO 2018015659A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
channel
ferrule
shell
turbine engine
Prior art date
Application number
PCT/FR2017/051967
Other languages
English (en)
Inventor
Vincent Peyron
Patrick Gonidec
Nicolas BOUCHOUT
Original Assignee
Safran Nacelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Nacelles filed Critical Safran Nacelles
Priority to EP17748548.9A priority Critical patent/EP3487764B1/fr
Publication of WO2018015659A1 publication Critical patent/WO2018015659A1/fr
Priority to US16/253,352 priority patent/US11268443B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/06Attaching of nacelles, fairings or cowlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • B64D33/10Radiator arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/105Heating the by-pass flow
    • F02K3/115Heating the by-pass flow by means of indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Turbomotor nacelle comprising a cooling device
  • the invention relates to a turbine engine nacelle comprising a cooling device for a turbine engine.
  • the invention relates to a cooling device for a turbine engine which has the least possible impact on the performance of the turbine engine, particularly in aerodynamic terms.
  • An aircraft is propelled by one or more propulsion units each comprising a turbine engine housed in a tubular nacelle.
  • Each propulsion unit is attached to the aircraft by a mast located generally under or on a wing, or at the fuselage.
  • a nacelle generally has a structure comprising an air inlet upstream of the engine, a median section intended to surround a fan or the compressors of the turbine engine and its casing, a downstream section capable of housing thrust reverser means and intended to surround the combustion chamber of the turbine engine, and is generally terminated by an ejection nozzle whose output is located downstream of the turbine engine.
  • the turbine engine comprises a set of blades driven in rotation by a gas generator through a set of transmission means.
  • a lubricant distribution system is provided to ensure good lubrication of these transmission means and cool them.
  • the lubricant must then also be cooled by means of a heat exchanger.
  • a first known method is to cool the lubricant by circulating through an air / oil exchanger using air taken from the secondary vein, so-called cold flow, of the nacelle.
  • cooling device which comprises an exchanger arranged on a wall delimiting the secondary vein, the fluid is cooled by the flow of air from the secondary vein which circulates along the surface of the exchanger.
  • cooling device which comprises an exchanger in contact with the outer wall of the nacelle, as the devices described in EP 1895124 and FR 2 987 602.
  • the document FR 2 987 602 describes a cooling device which is equipped with a heat exchanger associated with at least one circulation duct forming at least one recirculation loop through the exchanger and comprising at least one zone of cooling. circulation extending at least partially along the outer fairing in contact with at least one wall of said outer fairing, so as to allow heat exchange by conduction with the outside air of the nacelle.
  • the present invention aims in particular to solve these disadvantages and relates for this purpose to a turbine engine nacelle having a substantially tubular structure and delimiting a secondary vein, the nacelle comprising a ferrule which forms a trailing edge at a downstream end of the nacelle and which has a generally tubular shape about a longitudinal axis, the ferrule being delimited by at least one outer face subjected to an external air flow and an inner face subjected to an internal air flow circulating in the secondary vein of the nacelle, the nacelle comprising a cooling device which comprises at least one heat exchange channel which has an inlet and an outlet which are connected to a heat transfer fluid source by an inlet duct and an outlet duct respectively, the nacelle being characterized in that the exchange channel extends into the ferrule.
  • said at least one channel may be delimited by an outer wall, an inner wall and two lateral walls, the outer wall being able to be formed by the outer face of the shell, the inner wall being able to be formed by the inner face of the shell, or said at least one channel may comprise a wall formed by the internal face of the ferrule and another wall connected to the external face of the ferrule by a rib, or
  • said at least one channel may comprise a wall formed by the external face of the ferrule and another wall connected to the internal face of the ferrule by a rib, or
  • Said at least one channel may comprise a wall connected to the inner face of the shell by a first rib and connected to the outer face of the shell by a second rib.
  • the characteristics of the nacelle according to the invention make it possible to effectively cool a fluid without harming the aerodynamic characteristics of the nacelle.
  • the ferrule forming trailing edge is a thermally interesting area because the shell is subjected to the air flow of the secondary vein flowing as soon as the engine is on, even on the ground. Also, the ferrule is subjected to the external air flow of the nacelle as soon as the aircraft moves forward and during the entire flight phase, which makes it possible to compensate for the reduction in efficiency of the heat exchange surfaces when the airplane is changing. at a higher altitude.
  • the ferrule is an area which is generally not treated acoustically which makes it possible to make available again for acoustic treatment the areas where the surface exchangers are usually installed, in particular upstream of the thrust reverser.
  • the exchange channel extends circumferentially around the axis of the ferrule.
  • This characteristic makes it possible to produce the ferrule by a process of the extrusion type.
  • the exchange channel is delimited by a plurality of walls, at least one of said walls being formed by one of the faces of the ferrule.
  • the faces of the channel are in direct contact with the outside air flow or the flow of air of the secondary vein.
  • one of the walls of the channel is formed by the inner face of the shell, and in that another wall of the channel is connected to the opposite outer face of the shell by a rib.
  • This feature protects the channels from any perforations.
  • one of the walls of the channel is formed by the outer face of the shell, and in that another wall of the channel is connected to the opposite inner face of the shell by a rib.
  • the inner face of the shell is pierced with a plurality of holes that open into at least one cavity of the ferrule thus forming an acoustic resonator.
  • This variant provides sound absorption characteristics to the ferrule.
  • the width of the channel is between one and one hundred millimeters.
  • the cooling device comprises:
  • the inlet duct and the outlet duct are extensible and are adapted to allow a relative spacing of the ferrule relative to the heat transfer fluid source.
  • the cooling device comprises a plurality of first exchange channels and a plurality of second exchange channels which are alternately arranged in contact with the outer face and in contact with the inner face of the ferrule. at least one of said walls of the first channels belonging to the external face of the ferrule and at least one of said walls of the second channels belonging to the internal face of the ferrule.
  • the ferrule is capable of being obtained by an extrusion-type manufacturing process.
  • said at least one channel may be attached to the ferrule.
  • FIG. 1 is a longitudinal sectional view which illustrates a nacelle for a turbine engine which comprises a cooling device, according to the invention
  • FIG. 2 is a schematic view illustrating the cooling device according to the invention.
  • FIG. 3 is a detail view of FIG. 1, which illustrates a downstream ferrule which includes heat exchange channels of the cooling device;
  • FIG. 4 is a detail view of FIG. 1 which illustrates the shell of the nacelle comprising the heat exchange channels, according to a first embodiment of the invention
  • FIG. 5 is a detail view of FIG. 1 which illustrates the ferrule of the nacelle comprising the heat exchange channels, according to a second embodiment of the invention
  • FIG. 6 is a detailed view of FIG. 1 which illustrates the shell of the nacelle comprising the heat exchange channels, according to a third embodiment of the invention
  • FIG. 7 is a detail view of FIG. 1 which illustrates the shell of the nacelle comprising the heat exchange channels, according to a fourth embodiment of the invention
  • FIG. 8 is a detailed view of FIG. 1 which illustrates the shell of the nacelle comprising the heat exchange channels, according to a fifth embodiment of the invention
  • FIG. 9 is a detail view of FIG. 1 which illustrates the shell of the nacelle comprising the heat exchange channels, according to a sixth embodiment of the invention.
  • upstream and downstream must be understood in relation to the flow of air flow inside the propulsion unit formed by the nacelle and the turbine engine, that is from left to right according to FIG.
  • nacelle 10 which extends longitudinally along an axis A and which has a generally tubular structure.
  • the nacelle 10 comprises an air inlet 12 arranged upstream of a turbine engine 14, a central section 16 intended to surround a fan or the compressors of the turbine engine 14 and its housing, a downstream section 18 able to house the inversion means of the engine. thrust and intended to surround the combustion chamber of the turbine engine 14, and an exhaust nozzle 19 whose output is located downstream of the turbine engine 14.
  • the nacelle 10 comprises a cooling device 20, the device 20 comprising a ferrule 22 which forms a trailing edge and which is arranged at a downstream end of the nacelle 10.
  • the ferrule 22 has a generally cylindrical shape about the longitudinal axis A, and more specifically a frustoconical shape of decreasing section in a direction from upstream to downstream, as can be seen in FIG.
  • the shell 22 is delimited by an outer face 24 which is subjected to an outside air flow and by an inner face 26 which is subjected to an internal air flow circulating in the secondary vein 28 of the nacelle 10.
  • the cooling device 20 comprises a plurality of heat exchange channels 32, visible in FIG. 4, which extend into the ferrule 22 and which are traversed by a heat transfer fluid to dissipate the calories conveyed by the coolant.
  • the exchange channels 32 each have an input, the inputs of the channels 32 are interconnected by an input collector 34, the input collector 34 being connected on a heat transfer fluid source 30 via an inlet duct 36.
  • the exchange channels 32 each have an output, the outputs of the channels 32 are interconnected by an outlet manifold 38, the outlet manifold 38 is connected to the heat transfer fluid source 30 through an outlet duct 40 .
  • the exchange channels 32 may be made, for example by machining, directly in the shell 22, for example in the inner face 26 and / or the outer face 24.
  • Channels 32 exchange may consist of one or more elements made independently of the ferrule 22 and which can then be fixed on the shell 22. In other words, the exchange channels 32 may be reported on the ferrule 22.
  • the heat transfer fluid is for example a lubricant that stores the calories released by the turbine engine 14 and / or its accessories.
  • source of heat transfer fluid means a tapping point of the heat transfer fluid.
  • the inlet duct 36 and the outlet duct 40 are extensible and are adapted to allow relative spacing of the shell 22 relative to the source 30 of heat transfer fluid.
  • the inlet duct 36 and the outlet duct 40 may be made of flexible pipe with an over-bent length that allows the deployment of the duct.
  • the inlet duct 36 and the outlet duct 40 can be made by means of a telescopic duct.
  • cooling device 20 equips a nacelle 10 which comprises a thrust reverser with a sliding cover, such as the sliding cover shown in FIG.
  • the sliding cowl carries the ferrule 22 which is then movable in translation relative to the heat transfer fluid source 30 which is arranged on a fixed part of the nacelle 10.
  • the heat transfer fluid is circulated from the source 30 to the channels 32, by means of a pumping device (not shown).
  • each exchange channel 32 extends circumferentially around the axis A of the ferrule 22.
  • the width of each channel 32 is between one and one hundred millimeters.
  • the term "width” shall be understood as the width along the longitudinal section of the concerned channel.
  • ferrule 22 and channels 32 are made of a material that is adapted to effectively dissipate calories.
  • the ferrule 22 and the channels 32 are made of aluminum.
  • the shell 22 and the channels 32 may also be made of composite material or titanium.
  • the cooling device 20 comprises fourteen channels 32 which are placed side by side in a longitudinal direction and which extend around the axis A of the ferrule 22.
  • each channel 32 has a generally parallelepipedal section and each channel 32 is delimited by an outer wall 42, an inner wall 44 and two side walls 46 which form partition walls of neighboring channels 32.
  • each channel 32 being formed by the outer face 24 of the collar 22, so that the outer wall 42 of each channel 32 is subjected directly to a flow of air outside the nacelle 10.
  • each channel 32 is formed by the inner face 26 of the ferrule 22, so that the inner wall 44 of each channel 32 is subjected to a flow of air from the secondary vein 28 of the nacelle 10.
  • the heat transfer fluid flowing through the channels 32 is simultaneously cooled by the air flow of the secondary vein 28 and by the external air of the nacelle 10.
  • the cooling device 20 according to the invention is effective during the flight phases of the aircraft and during the ground phases of the aircraft.
  • FIG. 5 shows a second embodiment of the invention, which is similar to the first embodiment, with the difference that the heat transfer fluid circulates in one of two channels 32, each full channel being followed by a channel 32 empty, in a longitudinal direction.
  • At least one channel is delimited by an outer wall 42, an inner wall 44 and two lateral walls 46, the outer wall 42 being formed by the outer face 24. of the shell 22, the inner wall 44 being formed by the inner face 26 of the ferrule 22.
  • each channel 32 has only one wall which belongs to one of the faces of the ferrule 22.
  • each channel 32 has a generally semicircular section which is delimited by a generally flat wall 48 and a semicircular wall 50.
  • the flat wall 48 of each channel 32 is formed by the inner face 26 of the ferrule 22, so that the flat wall 48 of each channel 42 is subjected to the flow of air from the secondary vein 28 of the nacelle 10.
  • each channel 32 is associated with a rib 52 which extends along the associated channel and which connects the exchange channel on an opposite face of the ferrule 22, here on the outer face 24 of the ferrule 22.
  • the ribs 52 make it possible to transfer the calories by conduction from the coolant to the outer face 24 of the shell 22, so that the outer face 24 also effectively participates in the heat exchange.
  • This design makes it possible to limit the volume of fluid embedded in the shell 22 and thus the mass of the shell 22.
  • the cooling device according to this third embodiment also makes it possible to prevent perforation of the outer face 24 from damaging the channels 32 and causing leakage of fluid.
  • At least one channel 32 comprises a wall 48 formed by the inner face 26 of the ferrule 22 and another wall 50 connected to the outer face 24 of the ferrule 22. by a rib 52.
  • FIG. 7 shows a fourth embodiment of the invention, which is similar to the third embodiment, with the difference that the flat wall 48 of each channel 32 is formed by the external face 24 of the ferrule 22, so that the plane wall 48 of each channel 42 is subjected to a flow of air outside the nacelle 10.
  • At least one channel 32 comprises a wall 48 formed by the outer face 24 of the ferrule 22 and another wall 50 connected to the inner face 26 of the ferrule 22. by a rib 52.
  • a fifth embodiment of the invention illustrated in Figure 8, comprises a series of channels 32 of semicircular section and incorporates the characteristics of the two embodiments described above.
  • the flat wall 48 of a first series of channels 32 is formed by the inner face 26 of the ferrule 22, and the flat wall 48 of a second series of channels 32 is formed by the outer face. 26 of ferrule 22.
  • the channels 32 of the first series are arranged in regular alternation with the channels 32 of the second series, as shown in FIG.
  • each channel 32 is connected to the face of the collar 22 opposite the flat face 48 of the channel 32 concerned.
  • This design makes it possible to optimize the temperatures of the outer face 24 and the inner face 26 of the ferrule 22 in order to maximize the thermal power exchanged via the channels 32.
  • the cooling device comprises a series of channels 32 each comprising a wall connected to the internal face 26 of the ferrule 22 by a first rib 521 and connected to the outer face 24 of the shell 22 by a second rib 522.
  • the channels 32 have a circular section.
  • an advantage of the invention relates to the production of ferrule 22.
  • the ferrule 22 can be obtained by an extrusion-type manufacturing process which makes it possible to obtain a profile which is then bent in the form of a ferrule 22.
  • the ferrule 22 can be obtained directly by pultrusion.
  • the inner face 26 of the ferrule 22 is pierced with a plurality of holes.
  • the holes are made so as not to pierce the channels 32.
  • this variant is not adapted to the first embodiment of the invention shown in FIG. 4 since the channels 32 cover a large part of the internal face 26 of the ferrule 22.
  • the holes are arranged so as to open into cavities thus forming acoustic resonators which absorb a part of the noise emitted by the motor.
  • These cavities are for example formed by empty channels 32, in which the fluid does not circulate.
  • the large volume of empty channels 32 provides interesting acoustic absorption characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne une nacelle (10) de turbomoteur (14) présentant une structure sensiblement tubulaire et délimitant une veine secondaire (28), la nacelle (10) comprenant une virole (22) qui forme un bord de fuite à une extrémité aval de la nacelle (10), la virole (22) étant délimitée par au moins une face externe (24) soumise à un flux d'air extérieur et une face interne (26) soumise à un flux d'air intérieur circulant dans la veine secondaire (28) de la nacelle (10), la nacelle (10) comportant un dispositif (20) de refroidissement qui comprend au moins un canal d'échange de chaleur, la nacelle (10) étant caractérisée en ce que le canal d'échange s'étend dans la virole (22).

Description

Nacelle de turbomoteur comportant un dispositif de refroidissement
L'invention concerne une nacelle de turbomoteur comportant un dispositif de refroidissement pour turbomoteur.
Plus particulièrement, l'invention concerne un dispositif de refroidissement pour turbomoteur qui impacte le moins possible les performances du turbomoteur, notamment en termes aérodynamiques.
Un aéronef est propulsé par un ou plusieurs ensembles propulsifs comprenant chacun un turbomoteur logé dans une nacelle tubulaire.
Chaque ensemble propulsif est rattaché à l'avion par un mât situé généralement sous ou sur une aile, ou au niveau du fuselage.
Une nacelle présente généralement une structure comprenant une entrée d'air en amont du moteur, une section médiane destinée à entourer une soufflante ou les compresseurs du turbomoteur et son carter, une section aval pouvant abriter des moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turbomoteur, et est généralement terminée par une tuyère d'éjection dont la sortie est située en aval du turbomoteur.
De manière générale, le turbomoteur comprend un ensemble de pales entraînées en rotation par un générateur de gaz à travers un ensemble de moyens de transmission.
Un système de distribution de lubrifiant est prévu pour assurer une bonne lubrification de ces moyens de transmission et les refroidir.
Par voie de conséquence, le lubrifiant doit ensuite également être refroidi par l'intermédiaire d'un échangeur de chaleur.
Pour ce faire, une première méthode connue consiste à refroidir le lubrifiant par circulation à travers un échangeur air/huile utilisant de l'air prélevé dans la veine secondaire, flux dit froid, de la nacelle.
Le prélèvement et la circulation d'air au travers de cet échangeur, perturbe l'écoulement du flux d'air et entraîne des pertes de charges supplémentaires indésirables.
On connaît également un dispositif de refroidissement qui comporte un échangeur agencé sur une paroi délimitant la veine secondaire, le fluide est refroidi par l'écoulement de l'air de la veine secondaire qui circule le long de la surface de l'échangeur.
Le document US7377100 décrit et représente un tel type de dispositif de refroidissement. Ce type de dispositif utilise un échangeur de grande surface qui est délicat à agencer dans la veine secondaire, surtout si l'on souhaite préserver les surfaces de la nacelle traitées acoustiquement.
Aussi, on connaît un type de dispositif de refroidissement qui comporte un échangeur en contact avec la paroi externe de la nacelle, comme les dispositifs décrits dans les documents EP 1895124 et FR 2 987 602.
Plus particulièrement, le document FR 2 987 602 décrit un dispositif de refroidissement qui est équipé d'un échangeur de chaleur associé à au moins un conduit de circulation formant au moins une boucle de recirculation à travers l'échangeur et comprenant au moins une zone de circulation s'étendant au moins partiellement le long du carénage externe au contact d'au moins une paroi dudit carénage externe, de manière à permettre un échange de chaleur par conduction avec l'air extérieur de la nacelle.
Bien que ce type de dispositif soit efficace en phase de vol de l'aéronef, l'utilisation des surfaces externes de la nacelle n'apporte pas ou peu de capacité de refroidissement lorsque l'aéronef est au sol.
La présente invention vise notamment à résoudre ces inconvénients et se rapporte pour ce faire à une nacelle de turbomoteur présentant une structure sensiblement tubulaire et délimitant une veine secondaire, la nacelle comprenant une virole qui forme un bord de fuite à une extrémité aval de la nacelle et qui présente une forme globalement tubulaire autour d'un axe longitudinal, la virole étant délimitée par au moins une face externe soumise à un flux d'air extérieur et une face interne soumise à un flux d'air intérieur circulant dans la veine secondaire de la nacelle, la nacelle comportant un dispositif de refroidissement qui comprend au moins un canal d'échange de chaleur qui présente une entrée et une sortie qui sont reliées à une source de fluide caloporteur par un conduit d'entrée et un conduit de sortie respectivement, la nacelle étant caractérisée en ce que le canal d'échange s'étend dans la virole.
Selon l'invention :
- ledit au moins un canal peut être délimité par une paroi externe, une paroi interne et deux parois latérales, la paroi externe pouvant être formée par la face externe de la virole, la paroi interne pouvant être formée par la face interne de la virole, ou - ledit au moins un canal peut comprendre une paroi formée par la face interne de la virole et une autre paroi reliée à la face externe de la virole par une nervure, ou
- ledit au moins un canal peut comprendre une paroi formée par la face externe de la virole et une autre paroi reliée à la face interne de la virole par une nervure, ou
- ledit au moins un canal peut comprendre une paroi reliée à la face interne de la virole par une première nervure et reliée à la face externe de la virole par une deuxième nervure.
Les caractéristiques de la nacelle selon l'invention permettent de refroidir efficacement un fluide sans nuire aux caractéristiques aérodynamiques de la nacelle.
De plus, la virole formant bord de fuite est une zone intéressante thermiquement car la virole est soumise au flux d'air de la veine secondaire qui circule dès que le moteur est allumé, même au sol. Aussi, la virole est soumise au flux d'air externe de la nacelle dès que l'avion avance et pendant toute la phase de vol, ce qui permet de compenser la baisse d'efficacité des surfaces d'échange thermique quand l'avion évolue à une altitude plus élevée.
On estime que l'utilisation de la virole comme échangeur thermique permet de réduire de 20% la surface de l'échangeur par rapport à un échangeur installé uniquement dans la veine secondaire.
En outre, la virole est une zone qui est généralement non-traitée accoustiquement ce qui permet de rendre à nouveau disponible pour du traitement acoustique les zones où sont habituellement installés les échangeurs surfaciques, notamment en amont de l'inverseur de poussée.
Selon un exemple de réalisation, le canal d'échange s'étend de façon circonférentielle autour de l'axe de la virole.
Cette caractéristique permet de réaliser la virole par un procédé du type extrusion.
Selon un autre exemple de réalisation, le canal d'échange est délimité par une pluralité de parois, au moins une desdites parois étant formée par une des faces de la virole.
Selon cette caractéristique, les faces du canal sont en contact direct avec le flux d'air extérieur ou le flux d'air de la veine secondaire. Selon un autre exemple de réalisation, une des parois du canal est formée par la face interne de la virole, et en ce qu'une autre paroi du canal est reliée sur la face externe opposée de la virole par une nervure.
Cette caractéristique permet de protéger les canaux d'éventuelles perforations.
Selon un autre exemple de réalisation, une des parois du canal est formée par la face externe de la virole, et en ce qu'une autre paroi du canal est reliée sur la face interne opposée de la virole par une nervure.
Selon une variante de réalisation de l'invention, la face interne de la virole est percée d'une pluralité de trousqui débouchent dans au moins une cavité de la virole formant ainsi un résonateur acoustique.
Cette variante apporte des caractéristiques d'absorption acoustique à la virole.
Selon un autre exemple de réalisation, la largeur du canal est comprise entre un et cent millimètres.
Selon un exemple de réalisation, le dispositif de refroidissement comporte :
- une pluralité de canaux d'échange,
- un collecteur d'entrée qui est interposé entre le conduit d'entrée et l'entrée de chaque canal d'échange pour alimenter chaque canal avec le fluide caloporteur à refroidir, et
- un collecteur de sortie qui est interposé entre le conduit de sortie et la sortie de chaque canal d'échange pour collecter le fluide caloporteur refroidi.
Selon un autre exemple de réalisation, le conduit d'entrée et le conduit de sortie sont extensibles et sont adaptés pour permettre un écartement relatif de la virole par rapport à la source de fluide caloporteur.
Selon un autre exemple de réalisation, le dispositif de refroidissement comporte une pluralité de premiers canaux d'échanges et une pluralité de seconds canaux d'échange qui sont agencés en alternance en contact de la face externe et en contact de la face interne de la virole, au moins une desdites parois des premiers canaux appartenant à la face externe de la virole et au moins une desdites parois des seconds canaux appartenant à la face interne de la virole.
Selon un autre exemple de réalisation, la virole est susceptible d'être obtenue par un procédé de fabrication du type par extrusion. Dans un mode de réalisation, ledit au moins un canal peut être rapporté sur la virole.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la figure 1 est une vue en section longitudinale qui illustre une nacelle pour turbomoteur qui comporte un dispositif de refroidissement, selon l'invention ;
- la figure 2 est une vue schématique qui illustre le dispositif de refroidissement selon l'invention ;
- la figure 3 est une vue de détail de la figure 1 , qui illustre une virole aval qui comporte des canaux d'échange de chaleur du dispositif de refroidissement ;
- la figure 4 est une vue de détail de la figure 1 qui illustre la virole de la nacelle comportant les canaux d'échange de chaleur, selon un premier mode de réalisation de l'invention ;
- la figure 5 est une vue de détail de la figure 1 qui illustre la virole de la nacelle comportant les canaux d'échange de chaleur, selon un deuxième mode de réalisation de l'invention ;
- la figure 6 est une vue de détail de la figure 1 qui illustre la virole de la nacelle comportant les canaux d'échange de chaleur, selon un troisième mode de réalisation de l'invention ;
- la figure 7 est une vue de détail de la figure 1 qui illustre la virole de la nacelle comportant les canaux d'échange de chaleur, selon un quatrième mode de réalisation de l'invention ;
- la figure 8 est une vue de détail de la figure 1 qui illustre la virole de la nacelle comportant les canaux d'échange de chaleur, selon un cinquième mode de réalisation de l'invention ;
- la figure 9 est une vue de détail de la figure 1 qui illustre la virole de la nacelle comportant les canaux d'échange de chaleur, selon un sixième mode de réalisation de l'invention.
Pour clarifier la description et les revendications, on adoptera à titre non limitatif la terminologie longitudinal, vertical et transversal en référence au trièdre L, V, T indiqué aux figures, dont l'axe L est parallèle à l'axe A de la nacelle. Sur l'ensemble de ces figures, des références identiques ou analogues représentent des organes ou ensembles d'organes identiques ou analogues.
A noter que dans la présente demande de brevet, les termes « amont » et «aval » doivent s'entendre par rapport à la circulation du flux d'air à l'intérieur de l'ensemble propulsif formé par la nacelle et le turbomoteur, c'est-à-dire de la gauche vers la droite selon la figure 1 .
On a représenté à la figure 1 une nacelle 10 qui s'étend longitudinalement suivant un axe A et qui présente une structure globalement tubulaire.
La nacelle 10 comprend une entrée d'air 12 agencée en amont d'un turbomoteur 14, une section médiane 16 destinée à entourer une soufflante ou les compresseurs du turbomoteur 14 et son carter, une section aval 18 pouvant abriter des moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turbomoteur 14, et une tuyère 19 d'éjection dont la sortie est située en aval du turbomoteur 14.
La nacelle 10 comporte un dispositif 20 de refroidissement, le dispositif 20 comprenant une virole 22 qui forme un bord de fuite et qui est agencée à une extrémité aval de la nacelle 10.
La virole 22 présente une forme globalement cylindrique autour de l'axe A longitudinal, et plus précisément une forme tronconique de section décroissante suivant une direction d'amont en aval, comme on peut le voir à la figure 4.
Plus particulièrement, la virole 22 est délimitée par une face externe 24 qui est soumise à un flux d'air extérieur et par une face interne 26 qui est soumise à un flux d'air intérieur circulant dans la veine secondaire 28 de la nacelle 10.
Le dispositif 20 de refroidissement comporte une pluralité de canaux 32 d'échange de chaleur, visibles à la figure 4, qui s'étendent dans la virole 22 et qui sont traversés par un fluide caloporteur pour dissiper les calories acheminées par le fluide caloporteur.
A cet effet, comme on peut le voir à la figure 2, les canaux 32 d'échange présentent chacun une entrée, les entrées des canaux 32 sont reliées entre elles par un collecteur d'entrée 34, le collecteur d'entrée 34 étant relié sur une source 30 de fluide caloporteur par un conduit d'entrée 36. De même, les canaux 32 d'échange présentent chacun une sortie, les sorties des canaux 32 sont reliées entre elles par un collecteur de sortie 38, le collecteur de sortie 38 étant relié sur la source 30 de fluide caloporteur par un conduit de sortie 40.
Les canaux 32 d'échange peuvent être réalisés, par exemple par usinage, directement dans la virole 22, par exemple dans la face interne 26 et/ou la face externe 24. Alternativement, comme illustré dans l'exemple de la figure 2, les canaux 32 d'échange peuvent consister en un ou plusieurs éléments réalisés indépendamment de la virole 22 et qui peuvent ensuite être fixés sur la virole 22. Autrement dit, les canaux 32 d'échange peuvent être rapportés sur la virole 22.
Le fluide caloporteur est par exemple un lubrifiant qui emmagasine les calories diffusées par le turbomoteur 14 et/ou ses accessoires.
On entend par « source de fluide caloporteur » un point de puisage du fluide caloporteur.
Le conduit d'entrée 36 et le conduit de sortie 40 sont extensibles et sont adaptés pour permettre un écartement relatif de la virole 22 par rapport à la source 30 de fluide caloporteur.
A cet effet, le conduit d'entrée 36 et le conduit de sortie 40 peuvent être réalisés en tuyau souple avec une sur-longueur coudée qui permet le déploiement du conduit.
Aussi, le conduit d'entrée 36 et le conduit de sortie 40 peuvent être réalisés au moyen d'un conduit télescopique.
Cette caractéristique est nécessaire notamment lorsque le dispositif 20 de refroidissement équipe une nacelle 10 qui comporte un inverseur de poussée à capot coulissant, comme le capot coulissant représenté à la figure 3.
En effet, le capot coulissant porte la virole 22 qui est alors mobile en translation par rapport à la source 30 de fluide caloporteur qui est agencée sur une partie fixe de la nacelle 10.
Le fluide caloporteur est entraîné en circulation depuis la source 30, jusqu'aux canaux 32, au moyen d'un dispositif de pompage (non représenté).
Aussi, chaque canal 32 d'échange s'étend de façon circonférentielle autour de l'axe A de la virole 22. La largeur de chaque canal 32 est comprise entre un et cent millimètres. Le terme « largeur » doit s'entendre comme la largeur suivant la section longitudinale du canal concerné.
Par soucis d'efficacité, la virole 22 et les canaux 32 sont réalisés dans un matériau qui est adapté pour dissipé efficacement les calories.
Selon un exemple de réalisation préféré, la virole 22 et les canaux 32 sont réalisés en aluminium.
Toutefois, à titre non limitatif, la virole 22 et les canaux 32 peuvent également être réalisés en matériau composite ou en titane.
Selon un premier mode de réalisation de l'invention illustré à la figure 4, le dispositif 20 de refroidissement comporte quatorze canaux 32 qui sont accolés entre eux suivant une direction longitudinale et qui s'étendent autour de l'axe A de la virole 22.
Selon ce premier mode de réalisation, chaque canal 32 présente une section globalement parallélépipédique et chaque canal 32 est délimité par une paroi externe 42, une paroi interne 44 et deux parois latérales 46 qui forment des cloisons de séparation des canaux 32 voisins.
La paroi externe 42 de chaque canal 32 étant formée par la face externe 24 de la virole 22, de sorte que la paroi externe 42 de chaque canal 32 est soumise directement à un flux d'air extérieur à la nacelle 10.
A l'inverse, la paroi interne 44 de chaque canal 32 est formée par la face interne 26 de la virole 22, de sorte que la paroi interne 44 de chaque canal 32 est soumise à un flux d'air de la veine secondaire 28 de la nacelle 10.
Selon ce premier mode de réalisation, on observe que le fluide caloporteur qui circule à travers les canaux 32 est refroidi simultanément par le flux d'air de la veine secondaire 28 et par l'air externe de la nacelle 10.
Ainsi, le dispositif 20 de refroidissement selon l'invention est efficace au cours des phases de vol de l'aéronef et au cours des phases au sol de l'aéronef.
On a représenté à la figure 5 un deuxième mode de réalisation de l'invention, qui est similaire au premier mode de réalisation, à la différence que le fluide caloporteur circule dans un canal 32 sur deux, chaque canal plein étant suivi par un canal 32 vide, suivant une direction longitudinale.
Les températures des parois des canaux 32 qui ne sont pas au contact du fluide caloporteur restent relativement élevées grâce au phénomène de conduction, les surfaces des canaux vides continuent donc à participer de façon efficace à l'échange thermique avec les flux d'air de la veine secondaire et les flux d'air externe.
Cette caractéristique permet de limiter le volume de fluide caloporteur et donc la masse de la virole 22.
Ainsi, dans des modes de réalisation tels qu'illustrés aux figures 4 et 5, au moins un canal est délimité par une paroi externe 42, une paroi interne 44 et deux parois latérales 46, la paroi externe 42 étant formée par la face externe 24 de la virole 22, la paroi interne 44 étant formée par la face interne 26 de la virole 22.
Selon un troisième mode de réalisation de l'invention illustré à la figure 6, chaque canal 32 ne comporte qu'une seule paroi qui appartient à une des faces de la virole 22.
Plus particulièrement, chaque canal 32 présente une section globalement semi-circulaire qui est délimitée par une paroi globalement plane 48 et une paroi semi-circulaire 50.
Selon ce troisième mode de réalisation, la paroi plane 48 de chaque canal 32 est formée par la face interne 26 de la virole 22, de sorte que la paroi plane 48 de chaque canal 42 est soumise au flux d'air de la veine secondaire 28 de la nacelle 10.
De plus, chaque canal 32 est associé à une nervure 52 qui s'étend suivant le canal associé et qui relie le canal d'échange sur une face opposée de la virole 22, ici sur la face externe 24 de la virole 22.
Les nervures 52 permettent de transférer les calories par conduction depuis le fluide caloporteur, jusqu'à la face externe 24 de la virole 22, afin que la face externe 24 participe également de façon efficace à l'échange thermique.
Cette conception permet de limiter le volume de fluide embarqué dans la virole 22 et donc la masse de la virole 22.
Le dispositif de refroidissement selon ce troisième mode de réalisation permet également d'éviter qu'une perforation de la face externe 24 endommage les canaux 32 et entraine une fuite de fluide.
De plus, l'air circulant à travers la veine secondaire 28 étant plus chaud que l'air à l'extérieur de la nacelle 10, cette conception permet à la face interne 26 de la virole 22 de présenter une température supérieure à celle de la face externe 24, ce qui permet d'homogénéiser le delta de température entre le flux d'air et la face associée de la virole 22. Ainsi, dans un mode de réalisation tel qu'illustré à la figure 6, au moins un canal 32 comprend une paroi 48 formée par la face interne 26 de la virole 22 et une autre paroi 50 reliée à la face externe 24 de la virole 22 par une nervure 52.
On a représenté à la figure 7 un quatrième mode de réalisation de l'invention, qui est similaire au troisième mode de réalisation, à la différence que la paroi plane 48 de chaque canal 32 est formée par la face externe 24 de la virole 22, de sorte que la paroi plane 48 de chaque canal 42 est soumise à un flux d'air extérieur à la nacelle 10.
Ainsi, dans un mode de réalisation tel qu'illustré à la figure 7, au moins un canal 32 comprend une paroi 48 formée par la face externe 24 de la virole 22 et une autre paroi 50 reliée à la face interne 26 de la virole 22 par une nervure 52.
Un cinquième mode de réalisation de l'invention, illustré à la figure 8, comporte une série de canaux 32 de section semi-circulaire et reprend les caractéristiques des deux modes de réalisation précédemment décrits.
Selon ce cinquième mode de réalisation, la paroi plane 48 d'une première série de canaux 32 est formée par la face interne 26 de la virole 22, et la paroi plane 48 d'une seconde série de canaux 32 est formée par la face externe 26 de la virole 22.
Les canaux 32 de la première série sont agencés en alternance régulière avec les canaux 32 de la seconde série, comme le montre la figure 8.
Aussi, la nervure 52 de chaque canal 32 est reliée sur la face de la virole 22 opposée à la face plane 48 du canal 32 concerné.
Cette conception permet d'optimiser les températures de la face externe 24 et de la face interne 26 de la virole 22 afin de maximiser la puissance thermique échangée via les canaux 32.
Dans un sixième mode de réalisation de l'invention, illustré à la figure 9, le dispositif de refroidissement comporte une série de canaux 32 comprenant chacun une paroi reliée à la face interne 26 de la virole 22 par une première nervure 521 et reliée à la face externe 24 de la virole 22 par une deuxième nervure 522. Dans cet exemple, les canaux 32 ont une section circulaire.
Selon un autre aspect, un avantage de l'invention concerne la réalisation de la virole 22. En effet, la virole 22 peut être obtenue par un procédé de fabrication du type extrusion qui permet d'obtenir un profilé qui est ensuite cintré en forme de virole 22.
Aussi, la virole 22 peut être obtenue directement par pultrusion. Selon une variante de réalisation de l'invention non représentée, la face interne 26 de la virole 22 est percée d'une pluralité de trous.
Les trous sont réalisés de façon à ne pas percer les canaux 32.
Ainsi, cette variante n'est pas adaptée au premier mode de réalisation de l'invention représenté à la figure 4 puisque les canaux 32 couvrent une grande partie de la face interne 26 de la virole 22.
A l'inverse, selon les autres modes de réalisation, les trous sont agencés de façon à déboucher dans des cavités formant ainsi des résonateurs acoustiques qui absorbent une partie du bruit émis par le moteur.
Ces cavités sont par exemple formées par des canaux 32 vides, dans lesquels le fluide ne circule pas.
Le volume important des canaux 32 vides offre des caractéristiques d'absorption acoustique intéressantes.
La présente description de l'invention est donnée à titre d'exemple non limitatif.

Claims

REVENDICATIONS
1 . Nacelle (10) de turbomoteur (14) présentant une structure sensiblement tubulaire et délimitant une veine secondaire (28), la nacelle (10) comprenant une virole (22) qui forme un bord de fuite à une extrémité aval de la nacelle (10) et qui présente une forme globalement tubulaire autour d'un axe(A) longitudinal, la virole (22) étant délimitée par au moins une face externe (24) soumise à un flux d'air extérieur et une face interne (26) soumise à un flux d'air intérieur circulant dans la veine secondaire (28) de la nacelle (10), la nacelle (10) comportant un dispositif (20) de refroidissement qui comprend au moins un canal (32) d'échange de chaleur traversé par un fluide caloporteur pour dissiper des calories acheminées par le fluide caloporteur, l'au moins un canal (32) d'échange présentant une entrée et une sortie qui sont reliées à une source (30) de fluide caloporteur par un conduit d'entrée (36) et un conduit de sortie (40) respectivement, la nacelle (10) étant caractérisée en ce que ledit au moins un canal (32) d'échange s'étend dans la virole (22), et en ce que :
- ledit au moins un canal (32) est délimité par une paroi externe (42), une paroi interne (44) et deux parois latérales (46), la paroi externe (42) étant formée par la face externe (24) de la virole (22), la paroi interne (44) étant formée par la face interne (26) de la virole (22), ou
- ledit au moins un canal (32) comprend une paroi formée par la face interne (26) de la virole (22) et une autre paroi reliée à la face externe (24) de la virole (22) par une nervure (52), ou
- ledit au moins un canal (32) comprend une paroi formée par la face externe (24) de la virole (22) et une autre paroi reliée à la face interne (26) de la virole (22) par une nervure (52), ou
- ledit au moins un canal (32) comprend une paroi reliée à la face interne (26) de la virole (22) par une première nervure (521 ) et reliée à la face externe (24) de la virole (22) par une deuxième nervure (522).
2. Nacelle (10) de turbomoteur (14) selon la revendication 1 , caractérisée en ce que le canal (32) d'échange s'étend de façon circonférentielle autour de l'axe (A) de la virole (22).
3. Nacelle (10) de turbomoteur (14) selon la revendication 1 ou 2, caractérisée en ce que la face interne (26) de la virole (22) est percée d'une pluralité de trous qui débouchent dans au moins une cavité de la virole (26) formant un résonateur acoustique.
4. Nacelle (10) de turbomoteur (14) selon l'une quelconque des revendications précédentes, caractérisée en ce que la largeur du canal (32) est comprise entre un et cent millimètres.
5. Nacelle (10) de turbomoteur (14) selon l'une quelconque des revendications précédentes, caractérisée en ce que le dispositif (20) de refroidissement comporte :
- une pluralité de canaux (32) d'échange,
- un collecteur d'entrée (34) qui est interposé entre le conduit d'entrée (36) et l'entrée de chaque canal (32) d'échange pour alimenter chaque canal (32) avec le fluide caloporteur à refroidir, et
- un collecteur de sortie (38) qui est interposé entre le conduit de sortie (40) et la sortie de chaque canal (32) d'échange pour collecter le fluide caloporteur refroidi.
6. Nacelle (10) de turbomoteur (14) selon la revendication 5, caractérisée en ce que le conduit d'entrée (34) et le conduit de sortie (38) sont extensibles et sont adaptés pour permettre un écartement relatif de la virole (22) par rapport à la source de fluide caloporteur.
7. Nacelle (10) de turbomoteur (14) selon l'une quelconque des revendications précédentes, caractérisée en ce que le dispositif (20) de refroidissement comporte une pluralité de premiers canaux (32) d'échanges et une pluralité de seconds canaux (32) d'échange qui sont agencés en alternance en contact de la face externe (24) et en contact de la face interne (26) de la virole (22), au moins une desdites parois (42, 44, 46, 48) des premiers canaux (32) appartenant à la face externe (24) de la virole (22) et au moins une desdites parois (42, 44, 46, 48) des seconds canaux (32) appartenant à la face interne (26) de la virole (22).
8. Nacelle (10) de turbomoteur (14) selon l'une quelconque des revendications précédentes, caractérisée en ce que la virole (22) est susceptible d'être obtenue par un procédé de fabrication du type extrusion.
9. Nacelle (10) de turbomoteur (14) selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit au moins un canal (32) est rapporté sur la virole (22).
PCT/FR2017/051967 2016-07-20 2017-07-19 Nacelle de turbomoteur comportant un dispositif de refroidissement WO2018015659A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17748548.9A EP3487764B1 (fr) 2016-07-20 2017-07-19 Nacelle de turbomoteur comportant un dispositif de refroidissement
US16/253,352 US11268443B2 (en) 2016-07-20 2019-01-22 Turbine engine nacelle comprising a cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR16/56910 2016-07-20
FR1656910A FR3054204B1 (fr) 2016-07-20 2016-07-20 Nacelle de turbomoteur comportant un dispositif de refroidissement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/253,352 Continuation US11268443B2 (en) 2016-07-20 2019-01-22 Turbine engine nacelle comprising a cooling device

Publications (1)

Publication Number Publication Date
WO2018015659A1 true WO2018015659A1 (fr) 2018-01-25

Family

ID=56990617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051967 WO2018015659A1 (fr) 2016-07-20 2017-07-19 Nacelle de turbomoteur comportant un dispositif de refroidissement

Country Status (4)

Country Link
US (1) US11268443B2 (fr)
EP (1) EP3487764B1 (fr)
FR (1) FR3054204B1 (fr)
WO (1) WO2018015659A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663541A1 (fr) * 2018-12-03 2020-06-10 United Technologies Corporation Système de gestion thermique pour moteur à turbine à gaz
EP3719279A1 (fr) * 2019-04-03 2020-10-07 Safran Nacelles Echangeur de chaleur surfacique pour système de refroidissement de turboréacteur pour aéronef
WO2020201034A1 (fr) * 2019-04-03 2020-10-08 Safran Nacelles Système de refroidissement de turboréacteur pour aéronef

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127989A1 (fr) * 2021-10-13 2023-04-14 Airbus Ensemble propulsif pour aéronef
FR3130893B1 (fr) 2021-12-21 2023-11-17 Safran Système de refroidissement d’un liquide de lubrification d’une turbomachine d’aéronef

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599879A (en) * 1942-05-13 1952-06-10 Power Jets Res & Dev Ltd Exhaust induced cooling system for gas turbines
GB2224080A (en) * 1988-10-22 1990-04-25 Rolls Royce Plc Cooling fluid outlet duct for gas turbine engine
US20060042225A1 (en) * 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Bypass duct fluid cooler
EP1895124A2 (fr) 2006-08-31 2008-03-05 General Electric Company Dispositif de refroidissement de l'huile dans le capot de ventilateur et procédé
FR2987602A1 (fr) 2012-03-02 2013-09-06 Aircelle Sa Nacelle de turbomoteur equipe d'un echangeur de chaleur

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413366B (en) * 2004-04-24 2006-09-13 Rolls Royce Plc Engine.
US7434659B2 (en) * 2005-04-04 2008-10-14 Hexcel Corporation Acoustic septum cap honeycomb
US8387362B2 (en) * 2006-10-19 2013-03-05 Michael Ralph Storage Method and apparatus for operating gas turbine engine heat exchangers
EP2075194B1 (fr) * 2007-12-27 2017-08-16 Techspace Aero Echangeur de chaleur air-huile pour turboréacteur, turboréacteur associé et utilisation dudit échangeur
US8266888B2 (en) * 2010-06-24 2012-09-18 Pratt & Whitney Canada Corp. Cooler in nacelle with radial coolant
US20140209286A1 (en) * 2013-01-30 2014-07-31 General Electric Company Gas turbine engine integrated heat exchanger
US9677474B2 (en) * 2013-11-18 2017-06-13 Unison Industries, Llc Surface cooler support mechanism
US9777963B2 (en) * 2014-06-30 2017-10-03 General Electric Company Method and system for radial tubular heat exchangers
US9835380B2 (en) * 2015-03-13 2017-12-05 General Electric Company Tube in cross-flow conduit heat exchanger
WO2017007530A1 (fr) * 2015-07-09 2017-01-12 Unison Industries, Llc Interface à flexion pour ensembles de joints à billes à soufflet pour contrainte de rotation maîtrisée

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599879A (en) * 1942-05-13 1952-06-10 Power Jets Res & Dev Ltd Exhaust induced cooling system for gas turbines
GB2224080A (en) * 1988-10-22 1990-04-25 Rolls Royce Plc Cooling fluid outlet duct for gas turbine engine
US20060042225A1 (en) * 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Bypass duct fluid cooler
US7377100B2 (en) 2004-08-27 2008-05-27 Pratt & Whitney Canada Corp. Bypass duct fluid cooler
EP1895124A2 (fr) 2006-08-31 2008-03-05 General Electric Company Dispositif de refroidissement de l'huile dans le capot de ventilateur et procédé
FR2987602A1 (fr) 2012-03-02 2013-09-06 Aircelle Sa Nacelle de turbomoteur equipe d'un echangeur de chaleur

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663541A1 (fr) * 2018-12-03 2020-06-10 United Technologies Corporation Système de gestion thermique pour moteur à turbine à gaz
US11519295B2 (en) 2018-12-03 2022-12-06 Raytheon Technologies Corporation Thermal management system for gas turbine engine
US11958623B2 (en) 2018-12-03 2024-04-16 Rtx Corporation Thermal management system for gas turbine engine
EP3719279A1 (fr) * 2019-04-03 2020-10-07 Safran Nacelles Echangeur de chaleur surfacique pour système de refroidissement de turboréacteur pour aéronef
WO2020201034A1 (fr) * 2019-04-03 2020-10-08 Safran Nacelles Système de refroidissement de turboréacteur pour aéronef
FR3094750A1 (fr) * 2019-04-03 2020-10-09 Safran Nacelles Système de refroidissement de turboréacteur pour aéronef
FR3094753A1 (fr) * 2019-04-03 2020-10-09 Safran Nacelles Echangeur de chaleur surfacique pour système de refroidissement de turboréacteur pour aéronef
CN113785114A (zh) * 2019-04-03 2021-12-10 赛峰短舱公司 用于冷却飞行器涡轮喷气发动机的系统
US11512638B2 (en) 2019-04-03 2022-11-29 Safran Nacelles Surface heat-exchanger for a cooling system of an aircraft turbojet engine
US11994069B2 (en) 2019-04-03 2024-05-28 Safran Nacelles System for cooling an aircraft turbojet engine

Also Published As

Publication number Publication date
EP3487764B1 (fr) 2020-04-22
US20190153947A1 (en) 2019-05-23
FR3054204B1 (fr) 2020-01-24
EP3487764A1 (fr) 2019-05-29
FR3054204A1 (fr) 2018-01-26
US11268443B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
EP3487764B1 (fr) Nacelle de turbomoteur comportant un dispositif de refroidissement
EP2819921B1 (fr) Nacelle de turbomoteur équipé d'un échangeur de chaleur
FR3013434A1 (fr) Mecanisme de soutien de refroidisseur de surface
EP2964906B1 (fr) Nacelle équipée d'un circuit de refroidissement d'huile à échangeur intermédiaire
EP3615780B1 (fr) Ensemble propulsif pour aéronef comportant des échangeurs de chaleur air-liquide
EP3859135B1 (fr) Turbomachine pour aéronef equipée d'un système thermo-acoustique
FR3001199A1 (fr) Capot de moteur incorporant un circuit de ventilation d'equipement
FR3094750A1 (fr) Système de refroidissement de turboréacteur pour aéronef
FR2902831A1 (fr) Turboreacteur pour aeronef
EP3719279B1 (fr) Échangeur de chaleur surfacique pour système de refroidissement de turboréacteur pour aéronef
FR3028576A1 (fr) Secteur d'aubage de stator d'une turbomachine comprenant des canaux de circulation de fluide chaud
FR2935475A1 (fr) Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique
FR3072127B1 (fr) Conduit de decharge d'un moyeu de carter intermediaire pour turboreacteur d'aeronef comportant des canaux de refroidissement
FR3028575A1 (fr) Secteur d'aubage de stator d'une turbomachine
FR3039208A1 (fr) Degivrage d’une levre d’entree d’air et refroidissement d’un carter de turbine d’un ensemble propulsif d’aeronef
EP3640467B1 (fr) Turbomachine equipee d'un systeme thermo-acoustique
EP0447320B1 (fr) Circuit de refroidissement interne d'une aube directrice de turbine
EP3719277A1 (fr) Fluide caloporteur pour système de refroidissement de turboréacteur pour aéronef
FR3058459A1 (fr) Dispositif de refroidissement pour une turbine d'une turbomachine
FR3109406A1 (fr) Dispositif de refroidissement d’un carter de turbine
EP3105424B1 (fr) Système d'échangeur de chaleur
FR3044715A1 (fr) Circuit de refroidissement d'un fluide chaud dans une turbomachine comprenant un dispositif de pre-refroidissement du fluide chaud
EP4305289A1 (fr) Échangeur de chaleur surfacique avec sorties additionelles
WO2020030874A1 (fr) Système et procédé de refroidissement d'un fluide d'un circuit de lubrification ou de refrodissement d'un organe moteur d'un aéronef et moteur propulsif d'aéronef équipé d'un tel système de refroidissement
WO2019150051A1 (fr) Dispositif de ventilation pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17748548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017748548

Country of ref document: EP

Effective date: 20190220