WO2018014467A1 - 全息波导、增强现实显示系统及显示方法 - Google Patents

全息波导、增强现实显示系统及显示方法 Download PDF

Info

Publication number
WO2018014467A1
WO2018014467A1 PCT/CN2016/105038 CN2016105038W WO2018014467A1 WO 2018014467 A1 WO2018014467 A1 WO 2018014467A1 CN 2016105038 W CN2016105038 W CN 2016105038W WO 2018014467 A1 WO2018014467 A1 WO 2018014467A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
coupled
waveguide
layer
transmission module
Prior art date
Application number
PCT/CN2016/105038
Other languages
English (en)
French (fr)
Inventor
张梦华
郑昱
韩昕彦
Original Assignee
北京灵犀微光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京灵犀微光科技有限公司 filed Critical 北京灵犀微光科技有限公司
Publication of WO2018014467A1 publication Critical patent/WO2018014467A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of holographic display technologies, and in particular, to a holographic waveguide, an augmented reality display system, and a display method.
  • the augmented reality display is mainly implemented in the form of a head-mounted display (HMD), a head-up display (HUD), and the like. Either way, the output display is required to have high transparency, and the superimposed virtual information is clearly visible on a bright background.
  • the helmet display not only requires a miniaturization and weight reduction of the display system, but also requires a large field of view display. Image generation and relay collimation modules require compact assembly, low power consumption, good display module performance, and high resolution. Head-up displays are increasingly used in transportation, such as airplanes, automobiles, and motorcycles. This also requires compact display devices, low cost, high resolution, and large display field of view.
  • the display system includes a waveguide plate 10 and a display module 20.
  • the waveguide plate 10 includes a coupled input grating and a coupled output grating.
  • the display module 20 is composed of a screen 21 and a microlens array 22.
  • the lens array 22 is an array of rows of micro-convex lenses, and the display module 20 is on one side with the human eye 30.
  • the microlens array 22 converts the content on the screen into parallel light and is incident on the coupled input grating. After diffraction, the light is totally reflected in the waveguide, and when it reaches the coupled output grating, the diffraction exits the waveguide and reaches the human eye 30, which is seen by the user. It is an infinite virtual image.
  • the relay optical system of the prior art display system is a microlens array 22 that collimates the light of the image source into parallel light, that is, the light passing through the microlens array 22 is a bundle of parallel light that is vertically incident on the coupled input grating. After diffraction, it propagates in the waveguide and reaches the coupled output grating. The emitted light is in the same direction as the incident light, and the field of view is very small. At the same time, the size of each lens in the microlens array corresponds to each loudness on the image source. For high-resolution displays, the processing requirements of each microlens are much improved, and the aberrations cannot be controlled.
  • the invention provides a holographic waveguide, an augmented reality display system and a display method, so that the augmented reality display system has a large exit and a large field of view while being miniaturized.
  • the present invention provides a holographic waveguide comprising: at least one first waveguide transmission module having an n-layer first coupled input grating at one end and an n-layer first coupled output grating at the other end; at least one second waveguide transmission module The inner end has an m-layer second coupled input grating, and the other end is provided with an m-layer second coupled output grating; the incident beams in different directions are respectively incident on the first coupled input gratings of different layers in the first waveguide transmission module.
  • the diffracted beam generated by the first coupled input grating of any layer is incident on the second coupled input grating in the second waveguide transmission module after being incident on the first coupled output grating of the same layer, on the second coupled input grating a second coupled output grating incident to the same layer after diffraction occurs to be diffracted to output a first extended beam; wherein the first waveguide transmission module and the second waveguide transmission module extend the incident beam in different directions, the first coupled input The grating and the first coupled output grating of the same layer have the same grating constant, the first coupled input grating of the different layers and the The first coupled output grating has different grating constants, the second coupled input grating and the second coupled output grating of the same layer have the same grating constant, the second coupled input grating of the different layers and the second The coupled output gratings have different grating constants.
  • the first coupled input grating of different layers, the first coupled output grating of different layers, the second coupled input grating of different layers, and the second coupled output grating of different layers are parallel to each other .
  • the first coupled input grating and the first coupled output grating of the same layer are disposed in the same plane, and the second coupled input grating and the second coupled output grating of the same layer are disposed in the same plane. In the plane.
  • the direction in which the first waveguide transmission module extends the incident beam is perpendicular to the direction in which the second waveguide transmission module extends the incident beam.
  • the number n of layers of the first coupled input grating and the first coupled output grating is equal to the number m of layers of the second coupled input grating and the second coupled output grating.
  • the number n of layers of the first coupled input grating and the first coupled output grating and the number m of layers of the second coupled input grating and the second coupled output grating are both three.
  • the first coupled input grating, the first coupled output grating, the second coupled input grating, and the second coupled output grating are all electrically controlled Bragg holographic polymer dispersed liquid crystal gratings.
  • the first coupled output grating and the second coupled output grating are respectively increasing in diffraction efficiency along a waveguide transmission direction of the first waveguide transmission module and a waveguide transmission direction of the second waveguide transmission module.
  • Holographic grating is a technique that is used to increase in diffraction efficiency along a waveguide transmission direction of the first waveguide transmission module and a waveguide transmission direction of the second waveguide transmission module.
  • the first quarter wave plate and the second quarter wave plate are further included; the first quarter wave plate is disposed on one side of the n-layer first coupled input grating.
  • the first diffracted light for converting the first coupled input grating is converted from P-polarized light to S-polarized light;
  • the second quarter-wave plate is disposed on one side of the m-layer second coupled input grating,
  • the first diffracted light of the second coupled input grating is converted from P-polarized light to S-polarized light.
  • the first coupled input grating, the first coupled output grating, the second coupled input grating, and the second coupled output grating are all achromatic gratings.
  • the first waveguide transmission module and the second waveguide transmission module are arranged in a stack, and the first waveguide transmission module and the second waveguide transmission module are in one-to-one correspondence.
  • the first waveguide transmission module and the corresponding second waveguide transmission module are used together to expand an incident beam of red, green or blue.
  • the second waveguide transmission module further includes an m-layer third coupled output grating for diffracting the first extended beam to output a second extended beam; the third coupled output grating and the same layer
  • the second coupled output gratings have the same grating constant, and the third coupled output gratings of the different layers have different grating constants.
  • the third coupled output gratings of the different layers are parallel to each other, and the third coupled output grating and the second coupled output grating of the same layer are disposed in the same plane.
  • the present invention also provides a holographic waveguide augmented reality display system, including an image source, a relay optical device, and the holographic waveguide described in the above embodiments; the light emitted by different pixel points of the image source passes through the relay optical The device is then collimated into parallel light in different directions as the incident beam of the holographic waveguide.
  • the image source is an LCOS microdisplay.
  • the light source of the LCOS microdisplay is produced by a semiconductor laser.
  • the invention also provides a holographic waveguide augmented reality display method, comprising: emitting light at different pixel points of an image source; the relay optical device collimating the light into parallel light in different directions; different ends of the first waveguide transmission module
  • the first coupled input grating diffracts the parallel light in different directions; the first coupled output grating of the same layer at the other end of the first waveguide transmission module diffracts the diffracted beam of the first coupled input grating; a second coupled input grating at one end of the second waveguide transmission module diffracts the diffracted beam of the first coupled output grating; and a second coupled output grating of the same layer at the other end of the second waveguide transmission module
  • the diffracted beam of the two coupled input grating is diffracted and outputs an extended beam; wherein the first waveguide transmission module and the second waveguide transmission module extend the parallel light in different directions, the first coupled input grating and the same layer
  • the first coupled output grating has the same grating constant
  • the holographic waveguide can expand the incident beam in one direction through the first waveguide transmission module, and the incident beam can be expanded in the other direction through the second waveguide transmission module.
  • the incident beam can be expanded in two different directions, thereby greatly expanding the output.
  • Different layers of input/output gratings have different grating constants, which can expand the field of view by expanding the incident beam of different angles of view.
  • the large field of view is realized by the multi-layer grating, the volume of the holographic waveguide is substantially constant, and the large field of view can adopt an ultra-short-range relay optical system. Therefore, the holographic waveguide of the present invention can make the holographic waveguide display system lightweight.
  • FIG. 1 is a schematic view showing a holographic display of a microlens array waveguide in the prior art
  • FIG. 2 is a schematic structural view of a holographic waveguide according to an embodiment of the present invention.
  • FIG. 3 is a side elevational view of a first waveguide transmission module in accordance with an embodiment of the present invention.
  • FIG. 4 is a side elevational view of a second waveguide transmission module in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a grating diffraction efficiency distribution curve according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of image output of different viewing angle fields in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of color display using an achromatic grating according to an embodiment of the invention.
  • Figure 8 is a side elevational view of a holographic waveguide for implementing color display in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic view showing a head-up display using a holographic waveguide according to an embodiment of the present invention.
  • FIG. 10 is a flow chart showing a holographic waveguide augmented reality display method according to an embodiment of the present invention.
  • Augmented reality technology is a technology that superimposes the information of a virtual world into the real world.
  • the real world information is acquired, and after the computer data is analyzed and processed, the result is real in the real world, with real-time interaction and adding virtual objects and information in the three-dimensional space.
  • the present invention proposes a holographic waveguide augmented reality display system, which can simultaneously satisfy the present holographic waveguide through unique design. There are multiple needs for augmented reality displays.
  • the holographic waveguide augmented reality display system of the embodiment of the invention may include an image source, a relay optical device, and a holographic waveguide. Light emitted by different pixel points of the image source is collimated into parallel light of different directions through the relay optical device, and the parallel light can be used as an incident light beam of the holographic waveguide.
  • the image source may be a liquid crystal on silicon or a liquid crystal on silicon (LCOS) microdisplay.
  • the LCOS microdisplay can use a variety of different light sources.
  • a high-power LED can be selected as the light source of the LCOS micro-display, and the light of the high-power LED can be filtered through the narrow-band filter, thereby improving the monochromaticity of the high-power LED light source.
  • the light source of the LCOS microdisplay can be produced using a semiconductor laser LD.
  • the beam outputted by LD is of high polarization state, which can improve the utilization of light energy by LCOS, thereby overcoming the problem that the utilization rate of the narrow-band filter is greatly reduced after the LED light source is increased;
  • the divergence angle of the LD output beam is much smaller than that of the LED. Therefore, the use of the LD source can greatly reduce the design difficulty of the relay collimation device.
  • the monochromaticity of the LD source is much higher than that of the LED source, so RGB is used.
  • a three-color LD source can achieve a larger color gamut range.
  • the holographic waveguide may include a first waveguide transmission module 100 and a second waveguide transmission module 200, wherein the number of the first waveguide transmission module 100 and the number of the second waveguide transmission module 200 are at least one. In other embodiments, the number of the first waveguide transmission module 100 and the second waveguide transmission module 200 may be increased as needed, and the specific position may be appropriately set as needed.
  • An inner end (eg, a right end) of the first waveguide transmission module 100 is provided with an n-layer first coupled input grating 101, n being an integer greater than or equal to 1, for example, including a first layer first coupled input grating 101a, a second layer first
  • the input input grating 101b and the third layer first coupled input grating 101c are provided, and the other end (for example, the left end) is provided with an n-layer first coupled output grating 102, for example, including a first layer first coupled output grating 102a and a second layer first coupling.
  • the output grating 102b and the third layer first coupled output grating 102c The waveguide transmission direction of the first waveguide transmission module 100 shown in FIG.
  • the first waveguide transmission module 100 can be disposed in other directions and has There are different waveguide transmission directions.
  • the first waveguide transmission module 100 can be used to extend the incident beam along its waveguide transmission direction, the specific extension direction depending on the grating diffraction direction.
  • the inner end (eg, the upper end) of the second waveguide transmission module 200 is provided with an m-layer second coupled input grating 201, m being an integer greater than or equal to 1, for example, including a first layer second coupled input grating 201a, a second layer second
  • the input input grating 201b and the third layer second coupled input grating 201c, and the other end (for example, the lower end) may be provided with an m-layer second coupled output grating 202, for example, including a first layer second coupled output grating 202a, and a second layer second.
  • the output grating 202b and the third layer second coupled output grating 202c are coupled.
  • the second waveguide transmission module 200 is in the vertical direction and from top to bottom.
  • the second waveguide transmission module 200 can be disposed in other directions and has different waveguide transmissions. direction.
  • the second waveguide transmission module 200 can be used to extend the incident beam along its waveguide transmission direction, the specific extension direction depending on the diffraction direction of the grating.
  • the diffracted light of the first coupled input grating 101 in the first waveguide transmission module 100 can be transmitted through the waveguide to the second coupled input grating 201, and the diffracted light of the second coupled input grating 201 in the second waveguide transmission module 200 can be transmitted through the waveguide to the first Two coupled output gratings 202.
  • the incident light beams 401 of different directions are respectively incident on the first coupled input grating 101 of different layers in the first waveguide transmission module 100, and are diffracted to obtain a diffracted beam 402.
  • the diffracted beam 402 generated by any one of the first coupled input gratings 101 is incident on the diffraction beam 402.
  • the first coupled output grating 102 of the same layer is diffracted to obtain a diffracted beam 403.
  • the diffracted beam 403 is incident on the second coupled input grating 201 in the second waveguide transmission module 200, and after being diffracted on the second coupled input grating 201, A diffracted beam 404 is obtained, and the diffracted beam 404 is incident on the second coupled output grating 202 of the same layer to be diffracted, and the first expanded beam 405 is output.
  • the area of the first coupled output grating 102 is larger than the area of the first coupled input grating 101, whereby the first coupled output grating 102 easily receives more diffracted light of the first coupled input grating 101.
  • the area of the second coupled output grating 202 is larger than the area of the second coupled input grating 201, whereby the second coupled output grating 202 easily receives more diffracted light of the second coupled input grating 201.
  • the area of the second coupled input grating 201 is slightly larger than the area of the first coupled output grating 102, whereby the second coupled input grating 201 easily receives more diffracted light of the first coupled output grating 102.
  • the second coupled input grating 201 and the first coupled output grating 102 are disposed opposite each other, whereby the second coupled input grating 201 can receive more diffracted light of the first coupled output grating 102.
  • FIG. 3 is a side elevational view of a first waveguide transmission module in accordance with an embodiment of the present invention
  • FIG. 4 is a side elevational view of a second waveguide transmission module in accordance with an embodiment of the present invention.
  • different pixels of the image source emit light in different directions, and the light in each direction is collimated by the relay optical device 300 to be the first parallel with different directions.
  • Light 401a, second parallel light 401b, and third parallel light 401c are examples of the image source.
  • the first parallel light 401a, the second parallel light 401b, and the third parallel light 401c in different directions are incident light beams, respectively incident on the first layer first coupled input grating 101a, the second layer first coupled input grating 101b, and the third Diffraction occurs on the layer first coupled input grating 101c to obtain a first diffracted beam 402a, a second diffracted beam 402b, and a third diffracted beam 402c, respectively.
  • the diffracted beam first diffracted beam 402a, the first diffracted beam 402b and the first diffracted beam 402c of the first layer first coupled input grating 101a, the second first coupled input grating 101b, and the third first coupled input grating 101c may be
  • the first coupled output grating 102a, the second first coupled output grating 102b, and the third first coupled output grating 102c, respectively incident on the first layer, are diffracted to obtain a first diffracted beam 403a, a second diffracted beam 403b, and a second Diffracted light beam 403c.
  • the first diffracted beam 403a, the second diffracted beam 403b, and the second diffracted beam 403c are respectively incident on the first layer second coupled input grating 201a, the second layer second coupled input grating 201b, and the third in the second waveguide transmission module 200.
  • the layer is coupled to the input grating grating 201c and then diffracted to obtain a first diffracted beam 404a, a second diffracted beam 404b, and a third diffracted beam 404c, respectively.
  • the first diffracted beam 404a, the second diffracted beam 404b, and the third diffracted beam 404c are incident on the first layer second coupled output grating 202a, the second layer second coupled output grating 202b, and the third layer second coupled output grating 202c, respectively. Diffraction, respectively outputting the first expanded light beam 405a of the first layer, the first expanded light beam 405b of the second layer, and the first expanded light beam 405c of the third layer.
  • the input and output gratings in the first waveguide transmission module and the input and output gratings in the second waveguide transmission module are all three layers. In other embodiments, the input and output in the first waveguide transmission module The number of layers of the grating and the number of layers of the input and output gratings in the second waveguide transmission module may be different, and may be various other layers.
  • the first coupled input grating and the first coupled output grating are located in the same layer, mainly referring to a layer of the first coupled input grating and a layer of the first coupled output grating diffracting the incident beam in the same direction, for example, as shown in FIG. It is shown that the first layer first coupled input grating 101a and the first layer first coupled output grating 102a are located in the same layer, and the second layer first coupled input grating 101b and the second layer first coupled output grating 102b are located on the same layer, third The layer first coupled input grating 101c and the third layer first coupled output grating 102c are located in the same layer.
  • the second coupled input grating and the second coupled output grating are located in the same layer, mainly referring to a layer of the second coupled input grating and a layer of the second coupled output grating diffracting the incident beam in the same direction, for example, as shown in FIG. 4 .
  • the first layer of the second coupled input grating 201a and the first layer of the second coupled output grating 202a are located in the same layer
  • the second layer of the second coupled input grating 201b and the second layer of the second coupled output grating 202b are located on the same layer
  • the three-layer second coupled input grating 201c and the third layer second coupled output grating 202c are located in the same layer.
  • the first waveguide transmission module 100 and the second waveguide transmission module 200 extend the incident beam 401 in different directions.
  • the first coupled input grating 101 and the first coupled output grating 102 of the same layer have the same grating constant, and the different layers are A coupled input grating 101 and a first coupled output grating 102 have different grating constants, and the second coupled input grating 201 and the second coupled output grating 202 of the same layer have the same grating constant, and the second coupled input grating 201 of different layers and
  • the second coupled output grating 202 has a different grating constant.
  • the first waveguide transmission module 100 and the second waveguide transmission module 200 can expand the incident beam in different directions.
  • the first waveguide transmission module 100 can expand the incident beam in a horizontal direction, that is, parallel.
  • the second waveguide transmission module 200 can expand the incident beam in a vertical direction.
  • the third layer first coupled output grating 102c has the same grating constant.
  • the first layer first coupled input grating 101a, the second first coupled input grating 101b, and the third first coupled input grating 101c may have different grating constants.
  • the first layer first coupled output grating 102a, the second layer first coupled output grating 102b, and the third layer first coupled output grating 102c may have different grating constants.
  • the first layer second coupled input grating 201a, the second layer second coupled input grating 201b, and the third layer second coupled input grating 201c may be respectively coupled to the first layer second coupled output grating 202a and the second layer second coupled output grating
  • the 202b and third layer second coupled output gratings 202c have the same grating constant.
  • the first layer second coupled input grating 201a, the second layer second coupled input grating 201b, and the third layer second coupled input grating 201c may have different grating constants
  • the two coupled output gratings 202b and the third layer second coupled output gratings 202c can have different grating constants.
  • the image of the image source can be expanded in a first direction, for example, a horizontal direction by the first waveguide transmission module, and the image of the image source can be expanded in a second direction, for example, a vertical direction by the second waveguide transmission module, so that Greatly expanded.
  • the first coupled input gratings respectively incident on different layers, and then respectively enter the first coupled output gratings of different layers, respectively enter the second coupled input gratings of different layers, and then enter the second coupled output gratings of different layers respectively, which can make different
  • the raster effective angular bandwidth corresponds to different image source field angles.
  • the grating diffraction angle is generally greater than the total reflection angle of the waveguide by 40°.
  • the gratings of different layers correspond to the subfields of different angles.
  • the second coupled output grating they are diffracted out of the waveguide and enter the human eye.
  • different numbers of grating layers can be used to achieve different angles of view. In other words, the more the number of grating layers, the larger the field of view angle. In this way, the field of view angle can be increased by using the multilayer input grating and the output grating, while at the same time, the size of the holographic waveguide is not substantially increased.
  • the holographic waveguide of the present invention enables the augmented reality display system to have advantages such as large size, small size, and wide field of view.
  • the first coupled input grating 101 of different layers, the first coupled output grating 102 of different layers, the second coupled input grating 201 of different layers, and the second coupled output grating 202 of different layers may be parallel to each other. As shown in FIG. 3 and FIG.
  • a layer of the second coupled output grating 202a, the second layer of the second coupled output grating 202b, and the third layer of the second coupled output grating 202c may be parallel to each other, and some of the gratings may be disposed on the same plane.
  • the first coupled input grating 101 and the first coupled output grating 102 of the same layer may be disposed in the same plane, and the second coupled input grating 201 and the second coupled output grating 202 of the same layer may be disposed in the same plane.
  • the first layer first coupled input grating 101a, the second first coupled input grating 101b, and the third first coupled input grating 101c may be coupled to the first layer first coupled output grating 102a, respectively.
  • the second layer first coupled output grating 102b and the third layer first coupled output grating 102c are disposed in the same plane.
  • the first layer second coupled input grating 201a, the second layer second coupled input grating 201b, and the third layer second coupled input grating 201c may be respectively coupled to the first layer second coupled output grating 202a and the second layer second coupled output grating 202b and the third layer second coupled output grating 202c are disposed in the same plane.
  • the first coupled input grating and the first coupled output grating of the same layer can adopt the same preparation process, thereby simplifying the preparation process of the first coupled input grating and the first coupled output grating, thereby reducing the preparation complexity.
  • the second coupled input grating and the second coupled output grating of the same layer can adopt the same preparation process, thereby simplifying the preparation process of the second coupled input grating and the second coupled output grating, and reducing the preparation complexity.
  • the direction in which the first waveguide transmission module 100 expands the incident beam and the direction in which the second waveguide transmission module 200 extends the incident beam can be varied into different angles.
  • the direction in which the first waveguide transmission module 100 expands the incident beam is perpendicular to the direction in which the second waveguide transmission module 200 extends the incident beam.
  • the first waveguide transmission module 100 expands the incident beam in the horizontal direction
  • the second waveguide transmission module 200 expands the incident beam in the vertical direction. In this way, you can maximize the expansion.
  • the number n of layers of the first coupled input grating 101 and the first coupled output grating 102 and the number m of layers of the second coupled input grating 201 and the second coupled output grating 202 may be equal.
  • the first coupled input grating 101, the first coupled output grating 102, the second coupled input grating 201, and the second coupled output grating 202 may each be an electrically controlled Bragg holographic polymer dispersed liquid crystal grating.
  • the main components of the polymer dispersed liquid crystal material (PDLC) may be: a polymer, a liquid crystal, a photoinitiator, a co-initiator, a surfactant, a crosslinking agent, and the like.
  • the holographic polymer-dispersed liquid crystal grating has an electric control characteristic, that is, when the light is incident at a Bragg angle, the light is diffracted in a first-order direction when no voltage is applied; when a voltage is applied, the light continues to propagate along the original angle.
  • the holographic polymer-dispersed liquid crystal grating can be fabricated to efficiently diffract only for P light, and has almost zero diffraction efficiency for S light.
  • a voltage is not applied to a certain layer of gratings in the holographic waveguide to output an image of a sub-field of view corresponding to the corresponding layer grating, and is a full-wave to some layer grating when diffraction is not required to occur.
  • a voltage is applied to cause the gratings of these layers to fail, allowing light to pass directly without diffraction. Therefore, it is convenient to realize different layers of gratings to expand images of different sub-field angles, thereby achieving the effect of expanding the field of view.
  • the first coupled input grating 101 and the second coupled input grating 201 may be coupled input gratings having high diffraction efficiency and a small effective angular bandwidth.
  • the grating thickness is inversely proportional to the effective angular bandwidth, ie, the larger the grating thickness, the smaller the effective angular bandwidth and the higher the diffraction efficiency.
  • each of the gratings in the holographic waveguide may have a thickness of 10 [mu]m and a corresponding effective angular bandwidth of 10[deg.].
  • the waveguide material used in the first waveguide transmission module 100 and the second waveguide transmission module 200 described above may be a plurality of different materials, preferably a Bak7 waveguide material, and correspondingly, a refractive index of 1.5689.
  • the light emitted by the image source is illuminated by the relay optics 300 at various angles on the multilayer first coupled input grating 101 in the first waveguide transmission module 100, the first coupled input grating of each layer in the region (eg, 101a, 101b, and 101c)
  • the spatial frequencies (grating constants) are different, so that the rays of different subfields of light are uniformly diffracted by the grating.
  • each of the gratings in the holographic waveguide has three layers, and the effective angular bandwidth of each layer of the grating can be 10°, and the angle of the strongest diffracted rays in the center of the grating can be determined separately. It is -10°, 0°, 10°, that is, the range of light in each grating collecting waveguide is: -15° ⁇ -5°, -5° ⁇ 5°, 5° ⁇ 15°, and the diffraction efficiency DE distribution can be as As shown in FIG. 5, the angle range before entering the first waveguide transmission module 100 may be: -24 to -7.8, -7.8 to 7.8, and 7.8 to 24.
  • the activation frequency can be 60HZ each, so that when the images of the three sub-fields enter the human eye, the brain thinks that the images of the three sub-fields appear at the same time, that is, 48 can be realized.
  • the display of the total field of view This embodiment takes the example of selecting a field of view of 48° using a 3-layer grating as an example. The invention is illustrated. In other embodiments, different angles of view can be achieved using different numbers of grating layers.
  • the light of the image source passes through the relay optical device 300, the parallel light 401a of the field angle of -15.8°, the parallel light 401b of the 0° field of view angle, and the parallel light 401c of the field of view angle of 5.8° into the first waveguide transmission.
  • the angles of the module 100 may be -10°, 0°, and 10°, respectively, and are incident on the first layer first coupled input grating 101a, the second layer first coupled input grating 101b, and the third layer first coupled input grating 101c, respectively.
  • the first layer of the first coupled input grating 101a, the second layer of the first coupled input grating 101b, and the third layer of the first coupled input grating 101c have different spatial frequencies, so that the light of different subfields passes through the grating.
  • the diffracted rays are in the same direction.
  • the first layer first coupled input grating 101a, the second layer first coupled input grating 101b, and the third layer first coupled input grating 101c receive first parallel light 401a, second parallel light 401b, and third parallel light in different directions, respectively.
  • the field of view of the 401c that is, the field of view of the range of -24° to -7.8°, -7.8° to 7.8°, and 7.8° to 24°.
  • first layer first coupled input grating 101a When the first layer first coupled input grating 101a is activated, its corresponding first layer second coupled output grating 102a is also activated, the second layer first coupled input grating 101b, the third layer first coupled input grating 101c and The second layer of the first coupled output grating 102b and the third layer of the first coupled output grating 102c are both disabled.
  • the waveguide in the first waveguide transmission module 100 propagates the light of the field of view of -24° to -7.8°, leaving the first The diffracted light 403a of the waveguide transmission module 100 reaches the multilayer second coupled input grating 201 of the second waveguide transmission module 200, and the first layer second coupled input grating 201a and the first layer second coupled output grating 202a are activated, the second layer The second coupled input grating 201b, the third layer second coupled input grating 201c and the second layer second coupled output grating 202b, and the third layer second coupled output grating 202c are both disabled.
  • the first layer second coupled input grating 201a receives the vertical field of view light in the diffracted light 403a and diffracts it in the vertical direction to obtain the diffracted light 404a, which propagates through the waveguide and then diffracts after reaching the first layer of the second coupled output grating 202a.
  • the diffracted ray 405a is output, which corresponds to the light of the field of view of -24° to -7.8° in the vertical field of view.
  • the light input of different sub-fields can be realized by sequentially activating the input grating and the output grating of different layers.
  • the switching frequency of whether each of the above gratings fails is related to the number of grating layers, and generally may be 60 NHZ, wherein N is the number of layers of the grating with the largest number of layers, and the flow of image output of different viewing angle fields of view may be as shown in FIG. 6.
  • a field of view image of 48°H*48°V can be outputted at a maximum.
  • the image source can have an aspect ratio of 16:9, that is, the best embodiment can achieve 48°H*27°V.
  • the field of view output that is, the diagonal field of view is 55°, and the prior art has not even been able to output a 40° field of view image, and more layers of gratings can obtain a larger field of view image, thereby showing the present invention.
  • the holographic waveguide does indeed achieve a large field of view.
  • the first coupled output grating 102 and the second coupled output grating 202 may be holographic gratings having diffraction efficiencies that increase in the waveguide transmission direction of the first waveguide transmission module 100 and the waveguide transmission direction of the second waveguide transmission module 200, respectively.
  • the coupled output grating By making the coupled output grating have the characteristic that the diffraction efficiency is gradually enhanced along the waveguide propagation direction, the derived light intensity can be made uniform, thereby obtaining a field of view image with uniform brightness.
  • the holographic waveguide may further include a first quarter wave plate 501 and a second quarter wave plate 502.
  • the first quarter wave plate 501 is disposed on one side of the n-layer first coupled input grating 101 for converting the first diffracted light of the first coupled input grating 101 from P-polarized light to S-polarized light.
  • the second quarter wave plate 502 is disposed on one side of the m-layer second coupled input grating 201 for converting the first diffracted light of the second coupled input grating 201 from P-polarized light to S-polarized light. As shown in FIG.
  • the first quarter wave plate 501 can abut the nth layer first coupled input grating, such as the third layer first coupled input grating 101c.
  • the second quarter-wave plate 502 can abut the m-th layer second coupled input grating, for example, against the third layer second coupled input grating 201c.
  • the coupled output grating can be a high diffraction efficiency grating, if a certain field of view light is transmitted in the waveguide of the waveguide transmission module for a second time, it will be diffracted on the input grating, and most of the energy will leave the waveguide, resulting in the field of view light. Missing.
  • a conditional quarter wave plate behind the input grating (eg, first coupled input grating 101, second coupled input grating 201) Wave plate 502)
  • the incident light can be P light
  • it becomes circularly polarized after passing through the quarter wave plate and is reflected by the waveguide surface and then passes through the quarter wave plate to become S light, due to the grating pair.
  • the S light is not diffracted, so that the second diffraction causes the field of view to be missing, thereby preventing the secondary diffraction of the input light on the coupled input grating.
  • an augmented reality display system capable of monochrome display can be realized by using a light source of a monochrome image source.
  • a monochromatic semiconductor laser LD may be used, and preferably, a 532 nm green semiconductor laser LD may be employed.
  • the first coupled input grating 101, the first coupled output grating 102, the second coupled input grating 201, and the second coupled output grating 202 may all be achromatic gratings.
  • the achromatic grating can be used for simultaneous exposure with R, G, and B lasers during exposure. When three colors of R, G, and B are incident on the same grating at the same angle, the diffracted light angles of the three colors can be the same.
  • an augmented reality display system capable of color display can be realized.
  • FIG. 7 is a schematic diagram of color display using an achromatic grating in accordance with an embodiment of the present invention.
  • the three beams of the red parallel light 501Rb, the green parallel light 501Gb, and the blue parallel light 501Rb having the same incident angle of 0° enter the first waveguide transmission module 100.
  • a plurality of layers are coupled to the input grating 101. Since the first coupled input grating 101 is an achromatic grating, the directions of the three diffracted lights after the three parallel light beams 501Rb, the green parallel light 501Gb, and the blue parallel light 501Rb are diffracted by the first coupled input grating 101 are identical.
  • the angle of the image field of view propagating in the first waveguide transmission module 100 is -7.8 to 7.8.
  • the second layer first coupled input grating 101b is activated, its corresponding second layer first coupled output grating 102b is also activated, the first layer first coupled input grating 101a, the third layer first coupled input grating 101c and The first layer first coupled output grating 102a and the third layer first coupled output grating 102c are both disabled, leaving the first waveguide transmission module 100
  • the red diffracted light, the green diffracted light, and the blue diffracted light reach the multilayer second coupled input grating 201 of the second waveguide transmission module 200, and the second layer second coupled input grating 201b and the second layer second coupled output grating 202b are Activation, the first layer second coupled input grating 201a, the third layer second coupled input grating 201c and the first layer second coupled output grating 202a, and the third layer second coupled output grating 202c are disabled.
  • the second layer second coupled input grating 201b receives red diffracted light, green diffracted light, blue diffracted light and propagates along the waveguide transmission direction of the second waveguide module, and then diffracts after reaching the second layer second coupled output grating 202b.
  • the red diffracted light 505Rb, the green diffracted light 505Gb, and the blue diffracted light 505Bb By outputting the red diffracted light 505Rb, the green diffracted light 505Gb, and the blue diffracted light 505Bb, the color output of the field of view light having an angle of -7.8° to -7.8° can be realized.
  • the gratings of different layers can be activated in sequence to realize the output of different fields of view.
  • the switching frequency when the grating is activated is related to the number of grating layers, generally 60NHZ, N is the number of grating layers, and the image output flow chart can be as shown in Fig. 6. Shown.
  • the holographic waveguide may include three stacked first waveguide transmission modules 100 and three stacked second waveguide transmission modules 200.
  • the first waveguide transmission module 100 and the second waveguide transmission module 200 have a one-to-one correspondence.
  • the first waveguide transmission module 100 and the corresponding second waveguide transmission module 200 are used together to expand an incident beam of red, green or blue. For example, as shown in FIG.
  • the first block first waveguide transmission module 100R and the corresponding first block second waveguide transmission module 200R can be used to expand the red incident beam
  • the second block first waveguide transmission module 100G and the corresponding The second second waveguide transmission module 200G can be used to expand the green incident beam
  • the third first waveguide transmission module 100B and the corresponding third block second waveguide transmission module 200B can be used to expand the blue incident beam.
  • the light source of the image source can be selected from R, G, and B three-color semiconductor lasers.
  • the holographic waveguide includes three stacked first waveguide transmission modules and three stacked second waveguide transmission modules.
  • the grating in the holographic waveguide can be general.
  • the monochromatic grating has a simple preparation process, so the holographic waveguide can overcome the problem that the preparation of the achromatic grating is difficult.
  • the R, G, and B color light beams can respectively enter the first first waveguide transmission module and the first second waveguide transmission module, the second first waveguide transmission module, and the second second waveguide transmission.
  • the diffracted beam outputted by the first coupled input grating of the hth layer of the first waveguide transmission module enters the diffracted beam outputted by the first coupled output grating of the hth layer, and then enters the i th of the first second waveguide transmission module
  • the second coupled input grating of the layer passes through the ith coupled output grating of the second layer to output diffracted light.
  • the diffracted beam input from the first coupled output grating of the hth layer of the second first waveguide transmission module enters the diffracted beam outputted by the first coupled output grating of the hth layer, and then enters the i th of the second second waveguide transmission module
  • the second coupled input grating of the layer passes through the second coupled output grating of the i-th layer to output diffracted light.
  • the diffracted beam of the first coupled output grating of the hth layer of the third first waveguide transmission module enters the diffracted beam of the first coupled output grating of the hth layer, and then enters the third block of the second waveguide transmission module
  • the second coupled input grating of the i-layer The second coupled output grating passing through the ith layer outputs diffracted light.
  • the three-color light has the same diffracted light angle, thereby realizing an augmented reality display system for color display.
  • Figure 8 is a side elevational view of a holographic waveguide for implementing color display in accordance with an embodiment of the present invention.
  • three parallel beams of red parallel light 601Rb, green parallel light 601Gb, and blue parallel light 601Bb with the same angle of incidence are incident on the first waveguide transmission module.
  • Multiple layers of 100R, 100G, 100B are coupled to the input grating.
  • the red parallel light 601Rb is a red light of a -7.8° to 7.8° field of view, which passes through the second layer first coupled input grating 101b and the second first coupled output grating 102b of the first first waveguide transmission module 100R.
  • the second layer of the first second input transmission grating 201b and the second layer second coupling output grating 202b of the first second waveguide transmission module 200R all other gratings in the holographic waveguide are invalid, and the output is -7.8 ° ⁇ 7.8° field of view red light; similarly, the green parallel light 601Gb is a green light of -7.8° to 7.8° field of view, which in turn passes through the second layer first coupled input of the second first waveguide transmission module 100G.
  • the output is -7.8° to 7.8° field of view green light; blue parallel light 601Bb is -7.8° to 7.8° field of view blue light, which passes through the third block in turn.
  • the output is -7.8 ° ⁇ 7.8 ° field of view blue light.
  • Each of the above-mentioned holographic waveguides can use a holographic polymer liquid crystal dispersion grating, and can control whether the grating is invalid by electronic control, thereby controlling the output beam outputting the field of view at different angles, and the switching frequency required for the effectiveness of the light can be 180N. HZ, where N is the number of layers of the grating of each layer of the waveguide transmission module.
  • the second waveguide transmission module 200, 200R, 200G, 200B may further include an m-layer third coupled output grating for diffracting the first extended beam 405 to output a second extended beam.
  • the third coupled output grating and the second coupled output gratings 202a, 202b, 202c of the same layer may have the same grating constant, and the third coupled output gratings of the different layers have different grating constants.
  • the third coupled output grating can be simultaneously or selectively used to output the extended light by using the third coupled output grating and the second coupled output grating in the holographic waveguide. The beam can thus be seen at the position of the third coupled output grating and/or the second coupled output grating.
  • the holographic waveguide of the present embodiment is particularly suitable for use on automobiles and aircraft windshields, thereby providing information assistance to the driver or the co-pilot through different coupled output gratings.
  • the third coupled output gratings of the different layers may be parallel to each other, and the third coupled output grating and the second coupled output grating (202a, 202b, 202c) of the same layer are disposed in the same plane, and the third coupling The output grating can be similar to the second coupled output grating in FIG.
  • FIG. 9 is a schematic illustration of a head-up display using a holographic waveguide in accordance with one embodiment of the present invention.
  • each field of view light emitted by the image source is collimated into parallel light by the relay optical device 300, entering the first coupled input grating 101 of the first waveguide transmission module 100, and the diffraction of the first coupled input grating 101.
  • Light is transmitted within the waveguide of the first waveguide transmission module 100, and after encountering the first coupled output grating 102, the light is sequentially diffracted.
  • the exiting light enters the second coupled input grating 201 in the second waveguide transmission module 200 attached to the window or window 700, and the light is transmitted in the waveguide of the second waveguide transmission module 200 to the second coupled output grating 202, and the third The output grating 203 is coupled.
  • the second coupled output grating 202 and the third coupled output grating 203 may be two separate gratings, one or two of which may be activated separately. In this way, the driver can be provided with relevant information and the same information can be provided to the co-pilot, which can assist the driver or the captain of the driver, and can overcome the inconvenience caused by the different driving positions in different countries.
  • the incident beam can be expanded in one direction by the first waveguide transmission module, and the incident beam can be expanded in the other direction by the second waveguide transmission module, so that the incident beam passes through the first waveguide
  • the expansion can be greatly expanded.
  • Different layers of input/output gratings have different grating constants, which can expand the field of view by expanding the incident beam of different angles of view.
  • the large field of view is realized by the multi-layer grating, the volume of the holographic waveguide is substantially constant, and the large field of view can adopt an ultra-short-range relay optical system. Therefore, the holographic waveguide of the present invention can make the holographic waveguide display system lightweight.
  • the present invention also provides a holographic waveguide augmented reality display method applicable to the holographic waveguide and augmented reality display system of the above embodiments.
  • FIG. 10 is a flow chart showing a holographic waveguide augmented reality display method according to an embodiment of the present invention. As shown in FIG. 10, the holographic waveguide augmented reality display method of the embodiment of the present invention may include the following steps:
  • S110 emitting light at different pixels of the image source
  • the relay optical device collimates the light into parallel light in different directions
  • S130 a different layer of the first waveguide in the first waveguide transmission module, the first coupled input grating diffracts the parallel light in different directions;
  • S140 The first coupled output grating of the same layer at the other end of the first waveguide transmission module diffracts the diffracted beam of the first coupled input grating;
  • the second coupled output grating of the same layer at the other end of the second waveguide transmission module diffracts the diffracted beam of the second coupled input grating, and outputs an extended beam.
  • the first waveguide transmission module and the second waveguide transmission module expand the parallel light in different directions, for example, expand parallel light in a horizontal direction and a vertical direction, respectively.
  • the first coupled input grating and the first coupled output grating of the same layer have the same grating constant.
  • the second coupled input grating and the second coupled output grating of the same layer have the same grating constant.
  • the first coupled input grating and the first coupled output grating of different layers have different grating constants
  • the second coupled input grating and the second coupled output grating of different layers have different grating constants to expand different angle fields of view The light of the image.
  • the relay optical device can be an ultra short-range relay optical system.
  • the same layer first coupled input grating and the first coupled output grating can be used to receive parallel light in the same direction and output diffracted light, the first coupled input grating of different layers, the first coupled output of different layers The grating is used to receive parallel light in different directions and output diffracted beams in different directions.
  • the second coupled input grating and the second coupled output grating of the same layer can be used to receive the diffracted light in the same direction and output the extended beam, the second coupled input grating of different layers, and the second coupling of different layers.
  • the output grating is used to receive diffracted light in different directions and output extended beams in different directions.
  • different layers of the first waveguide input module in the first waveguide transmission module may diffract the parallel light in different directions in the horizontal field of view light
  • in the above step S150, in the second waveguide transmission module A second coupled input grating at one end diffracts light in different directions in the vertical field of view of the diffracted beam of the first coupled output grating.
  • the waveguide transmission module and the grating may refer to the embodiments of the waveguide transmission module and the grating in the holographic waveguide of the above embodiments as needed, and details are not described herein again.
  • the holographic waveguide augmented reality display method of the embodiment of the invention passes the first coupled input grating in the first waveguide transmission module and the second coupled input grating and the second coupled output grating in the first coupled output grating and the second waveguide transmission module Extending the incident parallel light can greatly expand the exit pupil.
  • the first coupled input grating and the first coupled output grating of different layers have different grating constants
  • the second coupled input grating and the second coupled output grating of different layers have different grating constants
  • the input and output gratings of different layers can be used to receive the incident parallel light of the different angle fields of view and output the corresponding extended light beam, thereby increasing the angle of the field of view of the output beam by setting the multilayer grating.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种全息波导、增强现实显示系统及显示方法,全息波导包括:至少一第一波导传输模块(100),内部设有n层第一耦合输入光栅(101)和n层第一耦合输出光栅(102);至少一第二波导传输模块(200),内部设有m层第二耦合输入光栅(201)和m层第二耦合输出光栅(202);不同方向入射光入射到不同层的第一耦合输入光栅(101)后发生衍射,每层第一耦合输入光栅(101)的衍射光入射到同层第一耦合输出光栅(102)发生衍射后入射到第二耦合输入光栅(201)上,第二耦合输入光栅(201)的衍射光入射到同层的第二耦合输出光栅(202)发生衍射输出扩展光束;不同波导传输模块沿不同方向扩展入射光束,同层输入、输出光栅具有相同的光栅常数,不同层的耦合输入、输出光栅具有不同的光栅常数。上述全息波导及增强现实显示系统具有大出瞳、大视场及轻量化的优点。

Description

全息波导、增强现实显示系统及显示方法 技术领域
本发明涉及全息显示技术领域,尤其涉及一种全息波导、增强现实显示系统及显示方法。
背景技术
增强现实显示主要通过头盔显示器(HMD)、平视显示器(HUD)等形式实现。无论是哪种形式,都要求输出显示器具有高的透明度,叠加的虚拟信息在明亮的背景下清晰可视。头盔显示器不仅要求显示系统小型化、轻量化,同时还需要大视场显示。图像产生以及中继准直模块要求装配紧凑、功耗低、显示模块效果佳、分辨率高。平视显示器在飞机、汽车和摩托车等交通领域的应用越来越多,这同样要求显示装置装配紧凑、价格低廉、分辨率高、显示视场大。
然而,在现有技术中,上述要求并没有被很好地实现。现有的设计中,一方面,为了获得大出瞳、大视场、高亮度等目的,一般通过增大图像生成部分的亮度以及体积、中继光学元件的直径来获得高的能量传输,这使得显示装置的体积重量都大幅上升。另一方面,为了获得较好的显示效果,中继系统透镜组镜片需要离轴倾斜,这使装配公差要求上升,光学畸变及像差等变大,系统优化难度增大,这些缺点在头盔显示器中变得尤为不可取。
图1是现有技术中微透镜阵列波导全息显示的示意图。如图1所示,显示系统包括波导板10和显示器模组20组成。波导板10中含有耦合输入光栅和耦合输出光栅。显示器模组20由屏幕21和微型透镜阵列22组成。该透镜阵列22是一排排微型凸透镜组成的阵列,显示器模组20与人眼30在一侧。微型透镜阵列22将屏幕上的内容变为平行光入射到耦合输入光栅上,经过衍射,光线在波导中发生全反射,到达耦合输出光栅时衍射出射导出波导到达人眼30,使用者看到的是一个无限远的虚像。
该现有显示系统的中继光学系统为微透镜阵列22,将图像源的光线准直为平行光,即经过微透镜阵列22的光线为一束平行光,垂直照射在耦合输入光栅上。经过衍射在波导中传播,到达耦合输出光栅出射,出射的光线与入射光方向相同,视场角非常小。同时微透镜阵列中每个透镜的尺寸要与图像源上的每个响度对应,对于高分辨率的显示器,则每个微透镜的加工要求就会提高很多,同时像差也无法控制。
发明内容
本发明提供一种全息波导、增强现实显示系统及显示方法,以使增强现实显示系统在小型化的同时具有大出瞳及大视场。
本发明提供一种全息波导,包括:至少一第一波导传输模块,其内部一端设有n层第一耦合输入光栅,另一端设有n层第一耦合输出光栅;至少一第二波导传输模块,其内部一端设有m层第二耦合输入光栅,另一端设有m层第二耦合输出光栅;不同方向的入射光束分别入射到第一波导传输模块中不同层的第一耦合输入光栅后发生衍射,任一层第一耦合输入光栅产生的衍射光束入射到同层的第一耦合输出光栅发生衍射后入射到第二波导传输模块中的第二耦合输入光栅上,在第二耦合输入光栅上发生衍射后入射到同层的第二耦合输出光栅发生衍射,输出第一扩展光束;其中,所述第一波导传输模块与第二波导传输模块沿不同方向扩展入射光束,所述第一耦合输入光栅和同层的所述第一耦合输出光栅具有相同的光栅常数,不同层的所述第一耦合输入光栅及所述第一耦合输出光栅具有不同的光栅常数,所述第二耦合输入光栅和同层的所述第二耦合输出光栅具有相同的光栅常数,不同层的所述第二耦合输入光栅及所述第二耦合输出光栅具有不同的光栅常数。
一个实施例中,不同层的所述第一耦合输入光栅、不同层的所述第一耦合输出光栅、不同层的所述第二耦合输入光栅及不同层的所述第二耦合输出光栅相互平行。
一个实施例中,所述第一耦合输入光栅和同层的所述第一耦合输出光栅设于同一平面内,所述第二耦合输入光栅和同层的所述第二耦合输出光栅设于同一平面内。
一个实施例中,所述第一波导传输模块扩展入射光束的方向与第二波导传输模块扩展入射光束的方向相互垂直。
一个实施例中,所述第一耦合输入光栅及所述第一耦合输出光栅的层数n与所述第二耦合输入光栅及所述第二耦合输出光栅的层数m相等。
一个实施例中,所述第一耦合输入光栅及所述第一耦合输出光栅的层数n和所述第二耦合输入光栅及所述第二耦合输出光栅的层数m均为三。
一个实施例中,所述第一耦合输入光栅、所述第一耦合输出光栅、所述第二耦合输入光栅及所述第二耦合输出光栅均为电控布拉格全息聚合物分散液晶光栅。
一个实施例中,所述第一耦合输出光栅和所述第二耦合输出光栅为衍射效率分别沿所述第一波导传输模块的波导传输方向和所述第二波导传输模块的波导传输方向递增的全息光栅。
一个实施例中,还包括第一四分之一波片和第二四分之一波片;所述第一四分之一波片设于所述n层第一耦合输入光栅的一侧,用于将所述第一耦合输入光栅的一次衍射光由P偏振光转换为S偏振光;所述第二四分之一波片设于所述m层第二耦合输入光栅的一侧,用于将所述第二耦合输入光栅的一次衍射光由P偏振光转换为S偏振光。
一个实施例中,所述第一耦合输入光栅、所述第一耦合输出光栅、所述第二耦合输入光栅及所述第二耦合输出光栅均为消色差光栅。
一个实施例中,包括三个层叠设置的所述第一波导传输模块和三个层叠设置的所述第二波导传输模块,所述第一波导传输模块和所述第二波导传输模块一一对应,所述第一波导传输模块和对应的所述第二波导传输模块一同用于扩展红色、绿色或蓝色的入射光束。
一个实施例中,所述第二波导传输模块还包括m层第三耦合输出光栅,用于对所述第一扩展光束进行衍射,输出第二扩展光束;所述第三耦合输出光栅和同层的所述第二耦合输出光栅具有相同的光栅常数,不同层的所述第三耦合输出光栅具有不同的光栅常数。
一个实施例中,不同层的所述第三耦合输出光栅相互平行,所述第三耦合输出光栅和同层的所述第二耦合输出光栅设于同一平面内。
本发明还提供一种全息波导增强现实显示系统,包括图像源、中继光学装置及上述各实施例所述的全息波导;所述图像源的不同像素点所发出的光线经过所述中继光学装置后被准直为不同方向的平行光,作为所述全息波导的入射光束。
一个实施例中,所述图像源为LCOS微型显示器。
一个实施例中,所述LCOS微型显示器的光源由半导体激光器产生。
本发明还提供一种全息波导增强现实显示方法,包括:图像源的不同像素点发射光线;中继光学装置将所述光线准直为不同方向的平行光;第一波导传输模块中一端的不同层第一耦合输入光栅对不同方向的所述平行光进行衍射;所述第一波导传输模块中另一端的同层的第一耦合输出光栅对所述第一耦合输入光栅的衍射光束进行衍射;第二波导传输模块中一端的第二耦合输入光栅对所述第一耦合输出光栅的衍射光束进行衍射;所述第二波导传输模块中另一端的同层的第二耦合输出光栅对所述第二耦合输入光栅的衍射光束进行衍射,并输出扩展光束;其中,所述第一波导传输模块与第二波导传输模块沿不同方向扩展所述平行光,所述第一耦合输入光栅和同层的所述第一耦合输出光栅具有相同的光栅常数,不同层的所述第一耦合输入光栅及所述第一耦合输出光栅具有不 同的光栅常数,所述第二耦合输入光栅和同层的所述第二耦合输出光栅具有相同的光栅常数,不同层的所述第二耦合输入光栅及所述第二耦合输出光栅具有不同的光栅常数。
本发明的全息波导、增强现实显示系统及显示方法,全息波导通过第一波导传输模块可以将入射光束沿一个方向上扩展,通过第二波导传输模块可以将入射光束在另一个方向上进行扩展,如此一来,入射光束通过第一波导传输模块和第二波导传输模块后,可以在两个不同方向上得到扩展,以此可以大大扩展出瞳。不同层的输入/输出光栅具有不同的光栅常数,可对应扩展不同角度视场的入射光束,以此可以扩大视场。通过多层光栅实现大视场,全息波导体积基本不变,且大视场可采用超短距的中继光学系统,所以采用本发明的全息波导可以使得全息波导显示系统轻量化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是现有技术中微透镜阵列波导全息显示的示意图;
图2是本发明一实施例的全息波导结构示意图;
图3是本发明一实施例的第一波导传输模块的侧视示意图;
图4是本发明一实施例的第二波导传输模块的侧视示意图;
图5是本发明一实施例中光栅衍射效率分布曲线示意图;
图6是本发明一实施例中不同视角视场的图像输出的流程示意图;
图7是本发明一实施例中利用消色差光栅实现彩色显示的示意图;
图8是本发明一实施例的用于实现彩色显示的全息波导的侧面示意图;
图9是本发明一实施例中利用全息波导进行平视显示的示意图;
图10是本发明一实施例的全息波导增强现实显示方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
增强现实技术是一种将虚拟世界的信息叠加到真是世界上的技术。一般是将真实世界的信息获取,经过电脑数据分析处理后,将结果再现实在真实世界中,具有实时交互性以及在三维空间中增添虚拟物体以及信息。
针对现有增强现实显示系统所存在的无法兼顾大出瞳、大视场及轻量化等需求的问题,本发明提出了一种全息波导增强现实显示系统,通过独特设计的全息波导能够同时满足现有增强现实显示的多种需求。
本发明实施例的全息波导增强现实显示系统,可包括图像源、中继光学装置及全息波导。该图像源的不同像素点所发出的光线经过该中继光学装置后被准直为不同方向的平行光,该平行光可作为该全息波导的入射光束。
一个实施例中,该图像源可为硅基液晶或单晶硅反射式液晶(LCOS,Liquid Crystal On Silicon)微型显示器。该LCOS微型显示器可以采用多种不同光源。例如,可以选用大功率LED作为该LCOS微型显示器的光源,同时,可经过窄带滤光片对大功率LED的光线进行滤波,以此,可改善大功率LED光源的单色性。
较佳实施例中,该LCOS微型显示器的光源可采用半导体激光器LD产生。其与LED相比具有诸多优势:一方面,LD输出的光束是高偏振态的,可以提升LCOS对光能的利用率,从而克服LED光源增加窄带滤光片后利用率大大降低的问题;另一方面,LD输出光束的发散角要远远小于LED,因此,使用LD光源可大大降低中继准直装置的设计难度;再者,LD光源的单色性远高于LED光源,因此采用RGB三色LD光源可以获得更大的色域范围。
图2是本发明一实施例的全息波导结构示意图。如图2所示,全息波导可包括第一波导传输模块100和第二波导传输模块200,其中,第一波导传输模块100的个数和第二波导传输模块200的个数均为至少一个,在其他实施例中,可根据需要增加第一波导传输模块100和第二波导传输模块200的个数,具体位置可根据需要适当设置。
第一波导传输模块100的内部一端(例如右端)设有n层第一耦合输入光栅101,n为大于或等于1的整数,例如包括第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c,另一端(例如左端)设有n层第一耦合输出光栅102,例如包括第一层第一耦合输出光栅102a、第二层第一耦合输出光栅102b及第三层第一耦合输出光栅102c。图2所示的第一波导传输模块100的波导传输方向为沿水平方向且从右到左,在其他实施例中,第一波导传输模块100可沿其他方向设置且具 有不同的波导传输方向。第一波导传输模块100可用于沿其波导传输方向上扩展入射光束,具体扩展方向可视其光栅衍射方向而定。
第二波导传输模块200的内部一端(例如上端)设有m层第二耦合输入光栅201,m为大于或等于1的整数,例如包括第一层第二耦合输入光栅201a、第二层第二耦合输入光栅201b及第三层第二耦合输入光栅201c,另一端(例如下端)可设有m层第二耦合输出光栅202,例如包括第一层第二耦合输出光栅202a、第二层第二耦合输出光栅202b及第三层第二耦合输出光栅202c。图2所示的第二波导传输模块200的波导传输方向为沿竖直方向且从上到下,在其他实施例中,第二波导传输模块200的可沿其他方向设置且具有不同的波导传输方向。第二波导传输模块200可用于沿其波导传输方向上扩展入射光束,具体扩展方向可视其光栅衍射方向而定。
第一波导传输模块100中第一耦合输入光栅101的衍射光可通过波导传输至第二耦合输入光栅201,第二波导传输模块200中第二耦合输入光栅201的衍射光可通过波导传输至第二耦合输出光栅202。
不同方向的入射光束401分别入射到第一波导传输模块100中不同层的第一耦合输入光栅101后发生衍射,得到衍射光束402,任一层第一耦合输入光栅101产生的衍射光束402入射到同层的第一耦合输出光栅102发生衍射后得到衍射光束403,衍射光束403入射到第二波导传输模块200中的第二耦合输入光栅201上,在第二耦合输入光栅201上发生衍射后,得到衍射光束404,衍射光束404入射到同层的第二耦合输出光栅202发生衍射,输出第一扩展光束405。
较佳实施例中,第一耦合输出光栅102的面积大于第一耦合输入光栅101的面积,以此,第一耦合输出光栅102容易接收更多的第一耦合输入光栅101的衍射光。较佳实施例中,第二耦合输出光栅202的面积大于第二耦合输入光栅201的面积,以此,第二耦合输出光栅202容易接收更多的第二耦合输入光栅201的衍射光。较佳实施例中,第二耦合输入光栅201的面积略大于第一耦合输出光栅102的面积,以此,第二耦合输入光栅201容易接收更多的第一耦合输出光栅102的衍射光。较佳实施例中,第二耦合输入光栅201和第一耦合输出光栅102正对设置,以此,第二耦合输入光栅201可以接收更多的第一耦合输出光栅102的衍射光。
图3是本发明一实施例的第一波导传输模块的侧视示意图,图4是本发明一实施例的第二波导传输模块的侧视示意图。结合图2至图4所示,图像源的不同像素点发出不同方向的光线,各方向的光线经中继光学装置300后被准直为方向互不相同的第一平行 光401a、第二平行光401b及第三平行光401c。将不同方向的第一平行光401a、第二平行光401b及第三平行光401c作为入射光束,分别入射到第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c上发生衍射分别得到第一衍射光束402a、第二衍射光束402b、第三衍射光束402c。第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c的衍射光束第一衍射光束402a、第一衍射光束402b及第一衍射光束402c可分别入射到第一层第一耦合输出光栅102a、第二层第一耦合输出光栅102b及第三层第一耦合输出光栅102c发生衍射,得到第一衍射光束403a、第二衍射光束403b、第二衍射光束403c。第一衍射光束403a、第二衍射光束403b、第二衍射光束403c分别入射到第二波导传输模块200中的第一层第二耦合输入光栅201a、第二层第二耦合输入光栅201b及第三层第二耦合输入光栅201c上后发生衍射,分别得到第一衍射光束404a、第二衍射光束404b及第三衍射光束404c。第一衍射光束404a、第二衍射光束404b及第三衍射光束404c分别入射到第一层第二耦合输出光栅202a、第二层第二耦合输出光栅202b及第三层第二耦合输出光栅202c发生衍射,分别输出第一层的第一扩展光束405a、第二层的第一扩展光束405b及第三层的第一扩展光束405c。
本实施例中,以第一波导传输模块中的输入、输出光栅和第二波导传输模块中的输入、输出光栅均为三层,在其他实施例中,第一波导传输模块中的输入、输出光栅的层数和第二波导传输模块中的输入、输出光栅的层数可不同,可为各种其他层数。
其中,第一耦合输入光栅和第一耦合输出光栅位于同一层,主要是指某层第一耦合输入光栅和某层第一耦合输出光栅对同一方向的入射光束进行衍射,例如,如图3所示,第一层第一耦合输入光栅101a和第一层第一耦合输出光栅102a位于同一层,第二层第一耦合输入光栅101b和第二层第一耦合输出光栅102b位于同一层,第三层第一耦合输入光栅101c和第三层第一耦合输出光栅102c位于同一层。类似地,第二耦合输入光栅和第二耦合输出光栅位于同一层,主要是指某层第二耦合输入光栅和某层第二耦合输出光栅对同一方向的入射光束进行衍射,例如,如图4所示,第一层第二耦合输入光栅201a和第一层第二耦合输出光栅202a位于同一层,第二层第二耦合输入光栅201b和第二层第二耦合输出光栅202b位于同一层,第三层第二耦合输入光栅201c和第三层第二耦合输出光栅202c位于同一层。
第一波导传输模块100与第二波导传输模块200沿不同方向扩展入射光束401,第一耦合输入光栅101和同层的第一耦合输出光栅102具有相同的光栅常数,不同层的第 一耦合输入光栅101及第一耦合输出光栅102具有不同的光栅常数,第二耦合输入光栅201和同层的第二耦合输出光栅202具有相同的光栅常数,不同层的第二耦合输入光栅201及第二耦合输出光栅202具有不同的光栅常数。
如图3和图4所示,第一波导传输模块100与第二波导传输模块200可沿不同方向扩展入射光束,具体而言,第一波导传输模块100可沿水平方向扩展入射光束,即平行光401,第二波导传输模块200可沿竖直方向扩展入射光束。第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c分别和第一层第一耦合输出光栅102a、第二层第一耦合输出光栅102b及第三层第一耦合输出光栅102c具有相同的光栅常数。第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c可具有不同的光栅常数。第一层第一耦合输出光栅102a、第二层第一耦合输出光栅102b及第三层第一耦合输出光栅102c可具有不同的光栅常数。第一层第二耦合输入光栅201a、第二层第二耦合输入光栅201b及第三层第二耦合输入光栅201c可分别与第一层第二耦合输出光栅202a、第二层第二耦合输出光栅202b及第三层第二耦合输出光栅202c具有相同的光栅常数。第一层第二耦合输入光栅201a、第二层第二耦合输入光栅201b及第三层第二耦合输入光栅201c可具有不同的光栅常数,第一层第二耦合输出光栅202a、第二层第二耦合输出光栅202b及第三层第二耦合输出光栅202c可具有不同的光栅常数。
通过第一波导传输模块可以将图像源的图像在第一方向例如水平方向上扩展,通过第二波导传输模块可以将图像源的图像在第二方向例如竖直方向上进行扩展,如此一来可以大大扩展出瞳。
通过设置不同层的第一耦合输出光栅、不同层的第一耦合输出光栅、不同层的第二耦合输入光栅及不同层的第二耦合输出光栅具有不同的光栅常数,并将不同方向的平行光分别入射到不同层的第一耦合输入光栅,继而分别进入不同层的第一耦合输出光栅,分别进入不同层的第二耦合输入光栅,再分别进入不同层的第二耦合输出光栅,能够使得不同的光栅有效角带宽对应不同的图像源视场角度。光栅衍射角一般大于波导的全反射角40°。在波导中传播,到达耦合输出光栅时,不断被衍射输出,不同层的光栅对应不同角度的子视场,到达第二耦合输出光栅时,被衍射出波导,进入人眼。对于有效角带宽一定的输入光栅和输出光栅,使用不同数量的光栅层,可实现不同角度的视场。换言之,光栅层数越多,视场角度越大。如此一来,通过使用多层输入光栅和输出光栅可以增大视场角度,与此同时,基本不会增大全息波导的尺寸。对于具有较大视场角度的 全息波导,中继光学装置可以使用超短距镜头系统,从而可以在准直光线的前提下保证增强现实显示系统的小体积。因此,本发明的全息波导能够使得增强现实显示系统同时具有出瞳大、体积小及视场宽等优点。
不同层的第一耦合输入光栅101、不同层的第一耦合输出光栅102、不同层的第二耦合输入光栅201及不同层的第二耦合输出光栅202可相互平行。如图3和图4所示,第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b、第三层第一耦合输入光栅101c、第一层第一耦合输出光栅102a、第二层第一耦合输出光栅102b、第三层第一耦合输出光栅102c、第一层第二耦合输入光栅201a、第二层第二耦合输入光栅201b、第三层第二耦合输入光栅201c、第一层第二耦合输出光栅202a、第二层第二耦合输出光栅202b及第三层第二耦合输出光栅202c可相互平行,其中一些光栅可设于同一平面。
第一耦合输入光栅101和同层的第一耦合输出光栅102可设于同一平面内,第二耦合输入光栅201和同层的第二耦合输出光栅202可设于同一平面内。如图3和图4所示,第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c可分别与第一层第一耦合输出光栅102a、第二层第一耦合输出光栅102b及第三层第一耦合输出光栅102c设于同一平面内。第一层第二耦合输入光栅201a、第二层第二耦合输入光栅201b及第三层第二耦合输入光栅201c可分别与第一层第二耦合输出光栅202a、第二层第二耦合输出光栅202b及第三层第二耦合输出光栅202c设于同一平面内。如此一来,同层的第一耦合输入光栅和第一耦合输出光栅可采用相同的制备工艺,从而可以简化,第一耦合输入光栅和第一耦合输出光栅的制备过程,降低制备复杂度。同层的第二耦合输入光栅和第二耦合输出光栅可采用相同的制备工艺,从而可以简化第二耦合输入光栅和第二耦合输出光栅的制备过程,降低制备复杂度。
通过调整输入光栅和输出光栅的衍射方向,可使第一波导传输模块100扩展入射光束的方向与第二波导传输模块200扩展入射光束的方向可成多种不同夹角。较佳地,第一波导传输模块100扩展入射光束的方向与第二波导传输模块200扩展入射光束的方向相互垂直。具体地,例如,如图2所示,第一波导传输模块100沿水平方向扩展入射光束,第二波导传输模块200沿竖直方向扩展入射光束。如此一来,可以最大程度地扩展出瞳。
一个实施例中,第一耦合输入光栅101及第一耦合输出光栅102的层数n与第二耦合输入光栅201及第二耦合输出光栅202的层数m可相等。另一实施例中,如图3和图 4所示,第一耦合输入光栅101及第一耦合输出光栅102的层数n与第二耦合输入光栅201及第二耦合输出光栅202的层数m可均为三层,即n=m=3。
一个实施例中,第一耦合输入光栅101、第一耦合输出光栅102、第二耦合输入光栅201及第二耦合输出光栅202可均为电控布拉格全息聚合物分散液晶光栅。聚合物分散液晶材料(PDLC)的主要组成可有:聚合物、液晶、光引发剂、协引发剂、表面活化剂、交联剂等。将PDLC放入激光的干涉场中,即可得到全系聚合物分散液晶光栅。全息聚合物分散液晶光栅具有电控特性,即光线以布拉格角入射时,不施加电压时,光线以1级方向进行衍射;当施加电压时,光线沿原始角度继续传播。同时全息聚合物分散液晶光栅可以制作成只对P光高效地衍射,而对于S光具有几乎为零的衍射效率。如此一来,在需要发生衍射时不对全息波导中的某层光栅施加电压,以输出相应层光栅所对应的子视场视角的图像,当不需要发生衍射时为全波到中某些层光栅施加电压,使得这些层的光栅失效,让光线直接透过,不发生衍射。从而可以方便地实现不同层光栅扩展不同子视场角度的图像,从而达到扩大视场的功效。
第一耦合输入光栅101和第二耦合输入光栅201可以是具有高的衍射效率及小的有效角带宽的耦合输入光栅。一般而言,光栅厚度与有效角带宽成反比,即光栅厚度越大,有效角带宽越小,衍射效率越高。例如,全息波导中各光栅的厚度可为10μm,对应的有效角带宽可为10°。上述第一波导传输模块100和第二波导传输模块200所使用的波导材料可为多种不同材料,较佳地使用Bak7的波导材料,相应地,折射率为1.5689。
图像源发出的光线经过中继光学装置300以各个角度照射在第一波导传输模块100中的多层第一耦合输入光栅101上,该区域每层第一耦合输入光栅(例如101a、101b及101c)的空间频率(光栅常数)都不同,使不同子视场的光线经过光栅后衍射的光线方向一致。
一个具体实施例中,如图3和图4所示,全息波导中的各光栅均为三层,每层光栅的有效角带宽可为10°,将光栅的中心最强衍射光线角度分别可定为-10°、0°、10°,即每个光栅收集波导内的光线范围为:-15°~-5°、-5°~5°、5°~15°,衍射效率DE分布可如图5所示,对应进入第一波导传输模块100前的角度范围可为:-24°~-7.8°、-7.8°~7.8°、7.8°~24°。通过一次激活每个子视场所对应的光栅,激活频率可为每个60HZ,以此可保证三个子视场的图像进入人眼时,大脑认为三个子视场的图像是同时出现,即可以实现48°总视场的显示。本实施例以选择使用3层光栅实现48°的视场为例 说明本发明。在其他实施例中,可使用不同数量的光栅层可实现不同角度的视场。优选地,图像源的光线经过中继光学装置300,-15.8°视场角度的平行光401a、0°视场角度的平行光401b及15.8°视场角度的平行光401c进入到第一波导传输模块100的角度可分别为-10°、0°、10°,分别入射到第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c上,该区域的第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c的空间频率都不同,可使不同子视场的光线经过光栅后衍射的光线方向一致。第一层第一耦合输入光栅101a、第二层第一耦合输入光栅101b及第三层第一耦合输入光栅101c分别接收不同方向的第一平行光401a、第二平行光401b及第三平行光401c的视场,即:-24°~-7.8°、-7.8°~7.8°、7.8°~24°三个角度范围的视场。当第一层第一耦合输入光栅101a被激活时,其对应的第一层第二耦合输出光栅102a也被激活,第二层第一耦合输入光栅101b、第三层第一耦合输入光栅101c和第二层第一耦合输出光栅102b、第三层第一耦合输出光栅102c均失效,此时第一波导传输模块100中波导传播的是-24°~-7.8°视场的光线,离开第一波导传输模块100的衍射光403a到达第二波导传输模块200的多层第二耦合输入光栅201,第一层第二耦合输入光栅201a和第一层第二耦合输出光栅202a被激活,第二层第二耦合输入光栅201b、第三层第二耦合输入光栅201c和第二层第二耦合输出光栅202b、第三层第二耦合输出光栅202c均失效。第一层第二耦合输入光栅201a接收衍射光403a中的垂直视场光线并将其沿垂直方向衍射得到衍射光404a,经波导传播,到达第一层第二耦合输出光栅202a后不断发生衍射,输出衍射光线405a,该部分对应输出垂直视场中的-24°~-7.8°视场的光线。同理,依次激活不同层的输入光栅和输出光栅即可实现不同子视场的光线输出。上述各光栅是否失效的切换频率与光栅层数相关,一般可为60NHZ,其中N为层数最多的光栅的层数,不同视角视场的图像输出的流程可如图6所示。本实施例中,最大可以输出48°H*48°V的视场图像,一般而言图像源可是长宽比为16:9,即本实施例最佳可实现48°H*27°V的视场输出,即对角线视场为55°,而现有技术甚至尚不能输出40°视场图像,且,更多层数的光栅可获得更大的视场图像,由此可见本发明的全息波导确实能够实现大视场。
一个实施例中,第一耦合输出光栅102和第二耦合输出光栅202可为衍射效率分别沿第一波导传输模块100的波导传输方向和第二波导传输模块200的波导传输方向递增的全息光栅。通过使耦合输出光栅具有衍射效率沿波导传播方向逐渐增强的特性,可使导出的光线强度是均匀的,从而得到亮度均匀的视场图像。
再如图3和图4所示,全息波导还可包括第一四分之一波片501和第二四分之一波片502。第一四分之一波片501设于n层第一耦合输入光栅101的一侧,用于将第一耦合输入光栅101的一次衍射光由P偏振光转换为S偏振光。第二四分之一波片502设于m层第二耦合输入光栅201的一侧,用于将第二耦合输入光栅201的一次衍射光由P偏振光转换为S偏振光。如图3所示,第一四分之一波片501可紧贴第n层第一耦合输入光栅,例如第三层第一耦合输入光栅101c。如图4所示,第二四分之一波片502可紧贴第m层第二耦合输入光栅,例如紧贴第三层第二耦合输入光栅201c。因为耦合输出光栅可为高衍射效率光栅,如果某一个视场的光线在波导传输模块的波导中传输第二次到达输入光栅上会发生衍射,大部分能量会离开波导,导致该视场光线的缺失。本实施例中,在输入光栅(例如第一耦合输入光栅101、第二耦合输入光栅201)的背后条件四分之一波片(第一四分之一波片501、第二四分之一波片502),由于入射光可为P光,穿过四分之一波片后变为圆偏振,在波导面发生反射再穿过四分之一波片即变为S光,由于光栅对S光不进行衍射,因此可以防止二次衍射导致视场缺失的情况,从而达到防止输入光线在耦合输入光栅上发生二次衍射的功效。
在上述各实施例的系统中,采用单色图像源的光源,可以实现单色显示的增强现实显示系统。例如,可选用单色半导体激光器LD,优选地,可采用532nm绿色半导体激光器LD。
一个实施例中,第一耦合输入光栅101、第一耦合输出光栅102、第二耦合输入光栅201及第二耦合输出光栅202可均为消色差光栅。采用消色差光栅,在曝光时可使用R、G、B三路激光同时曝光,当使用R、G、B三色光以同一个角度入射到同一层光栅上时,三色光的衍射光角度可相同,从而可以实现彩色显示的增强现实显示系统。
图7是本发明一实施例中利用消色差光栅实现彩色显示的示意图。如图7所示,图像源的光线经过中继光学装置后,入射角同为0°的红色平行光501Rb、绿色平行光501Gb、蓝色平行光501Rb三个光束进入第一波导传输模块100的多层第一耦合输入光栅101上。由于第一耦合输入光栅101是消色差光栅,红色平行光501Rb、绿色平行光501Gb、蓝色平行光501Rb三色光束经过第一耦合输入光栅101衍射后的三束衍射光的方向是一致。此时,在第一波导传输模块100中传播的图像视场的角度是-7.8°~7.8°。当第二层第一耦合输入光栅101b被激活时,其对应的第二层第一耦合输出光栅102b也被激活,第一层第一耦合输入光栅101a、第三层第一耦合输入光栅101c和第一层第一耦合输出光栅102a、第三层第一耦合输出光栅102c均失效,离开第一波导传输模块100 的红色衍射光、绿色衍射光、蓝色衍射光到达第二波导传输模块200的多层第二耦合输入光栅201,第二层第二耦合输入光栅201b和第二层第二耦合输出光栅202b被激活,第一层第二耦合输入光栅201a、第三层第二耦合输入光栅201c和第一层第二耦合输出光栅202a、第三层第二耦合输出光栅202c失效。第二层第二耦合输入光栅201b接收红色衍射光、绿色衍射光、蓝色衍射光并将其沿第二波导模块的波导传输方向传播,到达第二层第二耦合输出光栅202b后不断发生衍射,输出红色衍射光505Rb、绿色衍射光505Gb、蓝色衍射光505Bb,即可实现角度为-7.8°~-7.8°视场光线的彩色输出。同理地,依次激活不同层的光栅即可实现不同视场的输出,激活光栅时的切换频率与光栅层数相关,一般可为60NHZ,N为光栅层数,图像输出流程图可如图6所示。
一个实施例中,全息波导中可包括三个层叠设置的第一波导传输模块100和三个层叠设置的第二波导传输模块200,第一波导传输模块100和第二波导传输模块200一一对应,第一波导传输模块100和相应的第二波导传输模块200一同用于扩展红色、绿色或蓝色的入射光束。例如,如后续图8所示,第一块第一波导传输模块100R和对应的第一块第二波导传输模块200R可用于扩展红色的入射光束,第二块第一波导传输模块100G和对应的第二块第二波导传输模块200G可用于扩展绿色的入射光束,第三块第一波导传输模块100B和对应的第三块第二波导传输模块200B可用于扩展蓝色的入射光束。图像源的光源可选用R、G、B三色半导体激光器。本实施例中,全息波导中包含三个层叠设置的第一波导传输模块和三个层叠设置的第二波导传输模块,利用该种全息波导实现彩色显示时,全息波导中的光栅可为一般的单色光栅,制备工艺简单,所以该种全息波导可以克服消色差光栅的制备难度较大的问题。
一个实施例中,R、G、B三色光束可分别进入第一块第一波导传输模块及第一块第二波导传输模块、第二块第一波导传输模块及第二块第二波导传输模块、第三块第一波导传输模块及第三块第二波导传输模块。第一块第一波导传输模块的第h层的第一耦合输入光栅输出的衍射光束进入第h层的第一耦合输出光栅输出的衍射光束,再进入第一块第二波导传输模块的第i层的第二耦合输入光栅,再经过第二层的第i耦合输出光栅输出衍射光。第二块第一波导传输模块的第h层的第一耦合输出光栅输入的衍射光束进入第h层的第一耦合输出光栅输出的衍射光束,再进入第二块第二波导传输模块的第i层的第二耦合输入光栅,再经过第i层的第二耦合输出光栅输出衍射光。第三块第一波导传输模块的第h层的第一耦合输出光栅输如的衍射光束进入第h层的第一耦合输出光栅输出的衍射光束,再进入第三块第二波导传输模块的第i层的第二耦合输入光栅,再经 过第i层的第二耦合输出光栅输出衍射光。三色光的衍射光角度相同,从而实现彩色显示的增强现实显示系统。
图8是本发明一实施例的用于实现彩色显示的全息波导的侧面示意图。如图8所示,图像源的光线经过中继系统后,入射角度同为0°的红色平行光601Rb、绿色平行光601Gb、蓝色平行光601Bb三个平行光束,入射到第一波导传输模块100R、100G、100B中的多层第一耦合输入光栅上。红色平行光601Rb是-7.8°~7.8°视场的红光,其依次经过的第一块第一波导传输模块100R的第二层第一耦合输入光栅101b及第二层第一耦合输出光栅102b和第一块第二波导传输模块200R中第二层第二耦合输入光栅201b及第二层第二耦合输出光栅202b,全息波导中的其他所有光栅都是失效的,此时输出的是-7.8°~7.8°视场红光;同理,绿色平行光601Gb是-7.8°~7.8°视场的绿光,其依次经过第二块第一波导传输模块100G中的第二层第一耦合输入光栅101b及第二层第一耦合输出光栅102b和第二块第二波导传输模块中的第二层第二耦合输入光栅201b及第二层第二耦合输出光栅202b,此时,全息波导中的其他所有光栅都是失效的,此时,输出的是-7.8°~7.8°视场绿光;蓝色平行光601Bb是-7.8°~7.8°视场的蓝光,其依次经过第三块第一波导传输模块中第二层第一耦合输入光栅101b及第二层第一耦合输出光栅102b和第三块第二波导传输模块中第二层第二耦合输入光栅201b及第二层第二耦合输出光栅202b,此时,全息波导中的其他所有光栅都是失效的,此时输出的是-7.8°~7.8°视场蓝光。从而可实现-7.8°~7.8°视场的彩色显示,而其他两个视场的实现只要激活第一波导传输模块和第二波导传输模块中对应的光栅即可。上述全息波导中的各光栅可使用全息聚合物液晶分散光栅,可通过电控使光栅是否失效,从而可以控制以此输出不同角度视场的输出光束,光线有效性所需的切换频率可为180N HZ,其中N为每层波导传输模块的光栅的层数。
上述全息波导可以用于多种颜色显示,例如单色显示、彩色显示等。上述各实施例中的全息波导可以用于各种现实设备,例如头盔显示器等。在其他实施例中,还可以用于其他多种显示设备,例如平视显示器。
一个实施例中,上述第二波导传输模块200、200R、200G、200B还可包括m层第三耦合输出光栅,用于对上述第一扩展光束405进行衍射,输出第二扩展光束。该第三耦合输出光栅和同层的第二耦合输出光栅202a、202b、202c可具有相同的光栅常数,不同层的第三耦合输出光栅具有不同的光栅常数。本实施例中,通过在全息波导中设置第三耦合输出光栅可以同时或选择使用第三耦合输出光栅和第二耦合输出光栅输出扩展光 束,从而可以在第三耦合输出光栅和/或第二耦合输出光栅的位置看到输出图像。本实施例的全息波导尤其适用于汽车、飞机挡风玻璃上,以此通过不同的耦合输出光栅可为驾驶员或副驾驶员提供信息辅助。
一个实施例中,不同层的上述第三耦合输出光栅可相互平行,上述第三耦合输出光栅和同层的第二耦合输出光栅(202a、202b、202c)设于同一平面内,上述第三耦合输出光栅可类似于图4中的第二耦合输出光栅。
图9是本发明一实施例中利用全息波导进行平视显示的示意图。如图9所示,图像源发出的各视场光线经中继光学装置300被准直为平行光,进入第一波导传输模块100中第一耦合输入光栅101,第一耦合输入光栅101的衍射光线在第一波导传输模块100的波导内传输,遇到第一耦合输出光栅102后,光线被逐次衍射出射。出射光线进入贴在车窗或者机窗700上的第二波导传输模块200中的第二耦合输入光栅201,光线在第二波导传输模块200的波导内传输到达第二耦合输出光栅202、第三耦合输出光栅203。第二耦合输出光栅202和第三耦合输出光栅203可以是两块独立的光栅,可以单独激活其中一块或者两块光栅。如此一来,可以给驾驶员提供相关信息的同时也给副驾驶人员提供相同的信息,可以让副驾驶人员辅助司机或者机长,同时可以克服不同国家驾驶位的不同带来的不便。
本发明的全息波导,通过第一波导传输模块可以将入射光束沿一个方向上扩展,通过第二波导传输模块可以将入射光束在另一个方向上进行扩展,如此一来,入射光束通过第一波导传输模块和第二波导传输模块后,可以在两个不同方向上得到扩展,以此可以大大扩展出瞳。不同层的输入/输出光栅具有不同的光栅常数,可对应扩展不同角度视场的入射光束,以此可以扩大视场。通过多层光栅实现大视场,全息波导体积基本不变,且大视场可采用超短距的中继光学系统,所以采用本发明的全息波导可以使得全息波导显示系统轻量化。
基于与上述各实施例的全息波导和增强现实显示系统相同的发明构思,本发明还提供一种全息波导增强现实显示方法,可适用于上述各实施例的全息波导和增强现实显示系统。
图10是本发明一实施例的全息波导增强现实显示方法的流程示意图。如图10所示,本发明实施例的全息波导增强现实显示方法,可包括步骤:
S110:图像源的不同像素点发射光线;
S120:中继光学装置将所述光线准直为不同方向的平行光;
S130:第一波导传输模块中一端的不同层第一耦合输入光栅对不同方向的所述平行光进行衍射;
S140:所述第一波导传输模块中另一端的同层的第一耦合输出光栅对所述第一耦合输入光栅的衍射光束进行衍射;
S150:第二波导传输模块中一端的第二耦合输入光栅对所述第一耦合输出光栅的衍射光束进行衍射;
S160:所述第二波导传输模块中另一端的同层的第二耦合输出光栅对所述第二耦合输入光栅的衍射光束进行衍射,并输出扩展光束。
其中,上述第一波导传输模块与第二波导传输模块沿不同方向扩展所述平行光,例如分别沿水平方向和竖直方向扩展平行光。上述第一耦合输入光栅和同层的上述第一耦合输出光栅具有相同的光栅常数。上述第二耦合输入光栅和同层的上述第二耦合输出光栅具有相同的光栅常数。不同层的上述第一耦合输入光栅及上述第一耦合输出光栅具有不同的光栅常数,不同层的上述第二耦合输入光栅及上述第二耦合输出光栅具有不同的光栅常数,以扩展不同角度视场的图像的光线。
在上述步骤S110和S120中,不同像素点发射的光线可被准直为不同方向的平行光。该中继光学装置可以是超短距的中继光学系统。在上述步骤S130和S140中,同层第一耦合输入光栅及第一耦合输出光栅可用于接收同一方向的平行光并输出衍射光,不同层的第一耦合输入光栅、不同层的第一耦合输出光栅用于接收不同方向的平行光并输出不同方向的衍射光束。在上述步骤S150和S160中,同层的第二耦合输入光栅及第二耦合输出光栅可用于接收同一方向的衍射光并输出扩展光束,不同层的第二耦合输入光栅、不同层的第二耦合输出光栅用于接收不同方向的衍射光并输出不同方向的扩展光束。在上述步骤S130中,第一波导传输模块中一端的不同层第一耦合输入光栅可对水平视场光线中不同方向的所述平行光进行衍射,在上述步骤S150中,第二波导传输模块中一端的第二耦合输入光栅可对所述第一耦合输出光栅的衍射光束中垂直视场中不同方向光线进行衍射。
上述实施例的全息波导增强现实显示方法中,各波导传输模块及光栅根据需要可参照上述各实施例的全息波导中的波导传输模块及光栅的实施方式,在此不再赘述。
本发明实施例的全息波导增强现实显示方法,通过第一波导传输模块中的第一耦合输入光栅及第一耦合输出光栅和第二波导传输模块中的第二耦合输入光栅及第二耦合输出光栅扩展入射的平行光,可以大大扩展出瞳。通过设置同层的第一耦合输入光栅和第 一耦合输出光栅具有相同的光栅常数,不同层的第一耦合输入光栅及第一耦合输出光栅具有不同的光栅常数,不同层的第二耦合输入光栅及第二耦合输出光栅具有不同的光栅常数,可利用不同层的输入、输出光栅接收不同角度视场的入射平行光并输出相应的扩展光束,以此可以通过设置多层光栅增大输出光束的视场的角度。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。各实施例中涉及的步骤顺序用于示意性说明本发明的实施,其中的步骤顺序不作限定,可根据需要作适当调整。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种全息波导,其特征在于,包括:
    至少一第一波导传输模块,其内部一端设有n层第一耦合输入光栅,另一端设有n层第一耦合输出光栅;
    至少一第二波导传输模块,其内部一端设有m层第二耦合输入光栅,另一端设有m层第二耦合输出光栅;
    不同方向的入射光束分别入射到第一波导传输模块中不同层的第一耦合输入光栅后发生衍射,任一层第一耦合输入光栅产生的衍射光束入射到同层的第一耦合输出光栅发生衍射后入射到第二波导传输模块中的第二耦合输入光栅上,在第二耦合输入光栅上发生衍射后入射到同层的第二耦合输出光栅发生衍射,输出第一扩展光束;
    其中,所述第一波导传输模块与第二波导传输模块沿不同方向扩展入射光束,所述第一耦合输入光栅和同层的所述第一耦合输出光栅具有相同的光栅常数,不同层的所述第一耦合输入光栅及所述第一耦合输出光栅具有不同的光栅常数,所述第二耦合输入光栅和同层的所述第二耦合输出光栅具有相同的光栅常数,不同层的所述第二耦合输入光栅及所述第二耦合输出光栅具有不同的光栅常数。
  2. 如权利要求1所述的全息波导,其特征在于,不同层的所述第一耦合输入光栅、不同层的所述第一耦合输出光栅、不同层的所述第二耦合输入光栅及不同层的所述第二耦合输出光栅相互平行。
  3. 如权利要求1所述的全息波导,其特征在于,所述第一耦合输入光栅和同层的所述第一耦合输出光栅设于同一平面内,所述第二耦合输入光栅和同层的所述第二耦合输出光栅设于同一平面内。
  4. 如权利要求1所述的全息波导,其特征在于,所述第一波导传输模块扩展入射光束的方向与第二波导传输模块扩展入射光束的方向相互垂直。
  5. 如权利要求1所述的全息波导,其特征在于,所述第一耦合输入光栅及所述第一耦合输出光栅的层数n与所述第二耦合输入光栅及所述第二耦合输出光栅的层数m相等。
  6. 如权利要求5所述的全息波导,其特征在于,所述第一耦合输入光栅及所述第一耦合输出光栅的层数n和所述第二耦合输入光栅及所述第二耦合输出光栅的层数m均为三。
  7. 如权利要求1所述的全息波导,其特征在于,所述第一耦合输入光栅、所述第一耦合输出光栅、所述第二耦合输入光栅及所述第二耦合输出光栅均为电控布拉格全息聚合物分散液晶光栅。
  8. 如权利要求1所述的全息波导,其特征在于,所述第一耦合输出光栅和所述第二耦合输出光栅为衍射效率分别沿所述第一波导传输模块的波导传输方向和所述第二波导传输模块的波导传输方向递增的全息光栅。
  9. 如权利要求1所述的全息波导,其特征在于,还包括第一四分之一波片和第二四分之一波片;
    所述第一四分之一波片设于所述n层第一耦合输入光栅的一侧,用于将所述第一耦合输入光栅的一次衍射光由P偏振光转换为S偏振光;所述第二四分之一波片设于所述m层第二耦合输入光栅的一侧,用于将所述第二耦合输入光栅的一次衍射光由P偏振光转换为S偏振光。
  10. 如权利要求1至9任一项所述的全息波导,其特征在于,所述第一耦合输入光栅、所述第一耦合输出光栅、所述第二耦合输入光栅及所述第二耦合输出光栅均为消色差光栅。
  11. 如权利要求1至9任一项所述的全息波导,其特征在于,包括三个层叠设置的所述第一波导传输模块和三个层叠设置的所述第二波导传输模块,所述第一波导传输模块和所述第二波导传输模块一一对应,所述第一波导传输模块和对应的所述第二波导传输模块一同用于扩展红色、绿色或蓝色的入射光束。
  12. 如权利要求1至9任一项所述的全息波导,其特征在于,所述第二波导传输模块还包括m层第三耦合输出光栅,用于对所述第一扩展光束进行衍射,输出第二扩展光束;所述第三耦合输出光栅和同层的所述第二耦合输出光栅具有相同的光栅常数,不同层的所述第三耦合输出光栅具有不同的光栅常数。
  13. 如权利要求12所述的全息波导,其特征在于,不同层的所述第三耦合输出光栅相互平行,所述第三耦合输出光栅和同层的所述第二耦合输出光栅设于同一平面内。
  14. 一种全息波导增强现实显示系统,其特征在于,包括图像源、中继光学装置及如权利要求1至13任一项所述的全息波导;
    所述图像源的不同像素点所发出的光线经过所述中继光学装置后被准直为不同方向的平行光,作为所述全息波导的入射光束。
  15. 如权利要求14所示的全息波导增强现实显示系统,其特征在于,所述图像源为LCOS微型显示器。
  16. 如权利要求15所示的全息波导增强现实显示系统,其特征在于,所述LCOS微型显示器的光源由半导体激光器产生。
  17. 一种全息波导增强现实显示方法,其特征在于,包括:
    图像源的不同像素点发射光线;
    中继光学装置将所述光线准直为不同方向的平行光;
    第一波导传输模块中一端的不同层第一耦合输入光栅对不同方向的所述平行光进行衍射;
    所述第一波导传输模块中另一端的同层的第一耦合输出光栅对所述第一耦合输入光栅的衍射光束进行衍射;
    第二波导传输模块中一端的第二耦合输入光栅对所述第一耦合输出光栅的衍射光束进行衍射;
    所述第二波导传输模块中另一端的同层的第二耦合输出光栅对所述第二耦合输入光栅的衍射光束进行衍射,并输出扩展光束;
    其中,所述第一波导传输模块与第二波导传输模块沿不同方向扩展所述平行光,所述第一耦合输入光栅和同层的所述第一耦合输出光栅具有相同的光栅常数,不同层的所述第一耦合输入光栅及所述第一耦合输出光栅具有不同的光栅常数,所述第二耦合输入光栅和同层的所述第二耦合输出光栅具有相同的光栅常数,不同层的所述第二耦合输入光栅及所述第二耦合输出光栅具有不同的光栅常数。
PCT/CN2016/105038 2016-07-18 2016-11-08 全息波导、增强现实显示系统及显示方法 WO2018014467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610564655.0A CN107632406A (zh) 2016-07-18 2016-07-18 全息波导、增强现实显示系统及显示方法
CN201610564655.0 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018014467A1 true WO2018014467A1 (zh) 2018-01-25

Family

ID=60991713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105038 WO2018014467A1 (zh) 2016-07-18 2016-11-08 全息波导、增强现实显示系统及显示方法

Country Status (2)

Country Link
CN (1) CN107632406A (zh)
WO (1) WO2018014467A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828780A (zh) * 2018-08-29 2018-11-16 深圳珑璟光电技术有限公司 一种基于全息光栅的近眼显示光学装置
WO2019202205A1 (en) * 2018-04-19 2019-10-24 Dispelix Oy Diffractive exit pupil expander arrangement for display applications
WO2020081068A1 (en) * 2018-10-15 2020-04-23 Facebook Technologies, Llc Waveguide including volume bragg gratings
WO2020081067A1 (en) * 2018-10-15 2020-04-23 Facebook Technologies, Llc Waveguide for conveying multiple portions of field of view
CN112485906A (zh) * 2020-12-08 2021-03-12 谷东科技有限公司 一种三维动态全彩显示的增强现实近眼装置
WO2021073725A1 (en) * 2019-10-15 2021-04-22 Huawei Technologies Co., Ltd. Rotated subwavelength grating for high efficiency thin waveguide
JP2021516779A (ja) * 2018-03-28 2021-07-08 ディスペリックス オサケ ユキチュア 回折格子
US20220026619A1 (en) * 2019-02-22 2022-01-27 Lg Chem, Ltd. Diffractive light guide plate and display device including same
CN114252997A (zh) * 2021-11-03 2022-03-29 上海大学 一种基于柱面波导的彩色近眼显示装置及方法
EP4020058A1 (en) * 2020-12-23 2022-06-29 TriLite Technologies GmbH Augmented reality display
CN115877560A (zh) * 2023-03-08 2023-03-31 杭州光粒科技有限公司 一种激光扫描成像模组及装置、ar显示设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803022A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示设备及双目大视场近眼显示设备
CN110297331A (zh) * 2018-03-23 2019-10-01 京东方科技集团股份有限公司 显示装置及显示方法
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置
CN110687678B (zh) * 2018-07-06 2022-03-08 成都理想境界科技有限公司 一种基于波导的显示模组及其图像生成模组及应用
US20200096771A1 (en) * 2018-09-24 2020-03-26 Apple Inc. Optical Systems with Interleaved Light Redirectors
JP7100567B2 (ja) * 2018-11-14 2022-07-13 株式会社日立エルジーデータストレージ 導光板および画像表示装置
US20220091417A1 (en) * 2018-11-30 2022-03-24 Koito Manufacturing Co., Ltd. Head-up display
CN109581669B (zh) * 2019-01-23 2021-07-13 歌尔股份有限公司 投影光路及头戴显示设备
CN110058409A (zh) * 2019-02-02 2019-07-26 上海交通大学 一种增强现实显示光学系统
CN110320667A (zh) * 2019-06-25 2019-10-11 歌尔股份有限公司 基于光波导的全息光栅偏色补偿系统及头戴显示设备
CN110954983B (zh) * 2019-12-18 2021-05-11 京东方科技集团股份有限公司 一种彩色光波导结构及显示装置
KR20210107220A (ko) 2020-02-21 2021-09-01 삼성디스플레이 주식회사 증강현실 표시장치
CN113050281A (zh) * 2021-02-28 2021-06-29 南昌三极光电有限公司 一种光学系统及混合现实设备
CN115128737B (zh) * 2021-03-24 2023-04-18 华为技术有限公司 衍射光波导及电子设备
CN114415288A (zh) * 2022-01-11 2022-04-29 北京耐德佳显示技术有限公司 一种波导类光学模组及近眼显示设备
WO2023188656A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 光学系、及び、画像表示装置
CN115616790B (zh) * 2022-12-20 2023-04-07 煤炭科学研究总院有限公司 基于体全息光波导的全息图显示系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132914A1 (en) * 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
US20090190222A1 (en) * 2005-09-07 2009-07-30 Bae Systems Plc Projection Display
US20110242670A1 (en) * 2008-12-12 2011-10-06 Bae Systems Plc Waveguides
US8233204B1 (en) * 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US20120218481A1 (en) * 2009-10-27 2012-08-30 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display
CN103562802A (zh) * 2012-04-25 2014-02-05 罗克韦尔柯林斯公司 全息广角显示器
CN103823267A (zh) * 2012-11-16 2014-05-28 罗克韦尔柯林斯公司 透明波导显示装置
CN105579888A (zh) * 2013-09-27 2016-05-11 卡尔蔡司斯马特光学有限公司 用于可装配于用户头上并产生图像的显示装置的眼镜片、及具备眼镜片的显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355610B2 (en) * 2007-10-18 2013-01-15 Bae Systems Plc Display systems
AU2009237502A1 (en) * 2008-04-14 2009-10-22 Bae Systems Plc Improvements in or relating to waveguides
EP2196729A1 (en) * 2008-12-12 2010-06-16 BAE Systems PLC Improvements in or relating to waveguides
CN102928981B (zh) * 2012-11-14 2016-08-03 中航华东光电有限公司 全息光波导头盔显示器光学系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132914A1 (en) * 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
US20090190222A1 (en) * 2005-09-07 2009-07-30 Bae Systems Plc Projection Display
US20110242670A1 (en) * 2008-12-12 2011-10-06 Bae Systems Plc Waveguides
US8233204B1 (en) * 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US20120218481A1 (en) * 2009-10-27 2012-08-30 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display
CN103562802A (zh) * 2012-04-25 2014-02-05 罗克韦尔柯林斯公司 全息广角显示器
CN103823267A (zh) * 2012-11-16 2014-05-28 罗克韦尔柯林斯公司 透明波导显示装置
CN105579888A (zh) * 2013-09-27 2016-05-11 卡尔蔡司斯马特光学有限公司 用于可装配于用户头上并产生图像的显示装置的眼镜片、及具备眼镜片的显示装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516779A (ja) * 2018-03-28 2021-07-08 ディスペリックス オサケ ユキチュア 回折格子
WO2019202205A1 (en) * 2018-04-19 2019-10-24 Dispelix Oy Diffractive exit pupil expander arrangement for display applications
US20210364788A1 (en) * 2018-04-19 2021-11-25 Dispelix Oy Diffractive exit pupil expander arrangement for display applications
CN108828780A (zh) * 2018-08-29 2018-11-16 深圳珑璟光电技术有限公司 一种基于全息光栅的近眼显示光学装置
WO2020081068A1 (en) * 2018-10-15 2020-04-23 Facebook Technologies, Llc Waveguide including volume bragg gratings
WO2020081067A1 (en) * 2018-10-15 2020-04-23 Facebook Technologies, Llc Waveguide for conveying multiple portions of field of view
CN112867957A (zh) * 2018-10-15 2021-05-28 脸谱科技有限责任公司 用于传送视场的多个部分的波导
US11953711B2 (en) * 2019-02-22 2024-04-09 Lg Chem, Ltd. Diffractive light guide plate and display device including same
US20220026619A1 (en) * 2019-02-22 2022-01-27 Lg Chem, Ltd. Diffractive light guide plate and display device including same
WO2021073725A1 (en) * 2019-10-15 2021-04-22 Huawei Technologies Co., Ltd. Rotated subwavelength grating for high efficiency thin waveguide
CN112485906A (zh) * 2020-12-08 2021-03-12 谷东科技有限公司 一种三维动态全彩显示的增强现实近眼装置
EP4020058A1 (en) * 2020-12-23 2022-06-29 TriLite Technologies GmbH Augmented reality display
US11536976B2 (en) 2020-12-23 2022-12-27 Trilite Technologies Gmbh Augmented reality display
CN114252997A (zh) * 2021-11-03 2022-03-29 上海大学 一种基于柱面波导的彩色近眼显示装置及方法
CN115877560A (zh) * 2023-03-08 2023-03-31 杭州光粒科技有限公司 一种激光扫描成像模组及装置、ar显示设备
CN115877560B (zh) * 2023-03-08 2023-06-16 杭州光粒科技有限公司 一种激光扫描成像模组及装置、ar显示设备

Also Published As

Publication number Publication date
CN107632406A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2018014467A1 (zh) 全息波导、增强现实显示系统及显示方法
US11604314B2 (en) Method and apparatus for providing a polarization selective holographic waveguide device
US11513350B2 (en) Waveguide device with uniform output illumination
US20200341194A1 (en) Holographic Waveguide Illumination Homogenizers
US8885997B2 (en) NED polarization system for wavelength pass-through
US7905603B2 (en) Substrate-guided display having polarization selective input structure
US7576916B2 (en) Light guide optical device
US8817350B1 (en) Optical displays
CN108738358A (zh) 导光光学组件
CN108885310A (zh) 具有二向色性反射器的双通道成像光导
US20230341696A1 (en) Optical structure for augmented reality display
EP2887128B1 (en) NED polarization system for wavelength pass-through
CN212302101U (zh) 近眼显示光学设备
CN115004082A (zh) 用于宽视场显示器的眼镜设备
WO2023169502A1 (zh) 一种大视场角的光学扩瞳装置、显示装置及方法
CN114911058B (zh) 利用衍射光波导实现单片全彩的方法、衍射光波导及设备
US11555962B1 (en) Waveguide illuminator with optical interference mitigation
CN110687678B (zh) 一种基于波导的显示模组及其图像生成模组及应用
CN110908109B (zh) 一种基于波导的显示模组及显示设备
CN115097637B (zh) 一种平视显示器
CN218938549U (zh) 一种单色光增强型衍射波导模组及ar设备
US20240019620A1 (en) Display device and operating method thereof
CN114624807B (zh) 一种波导模组、基于波导的显示模组及近眼显示设备
WO2023287605A1 (en) Waveguide illuminator with optical interference mitigation
CN116931267A (zh) 显示装置和近眼显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909394

Country of ref document: EP

Kind code of ref document: A1