WO2018012714A1 - Photovoltaic system on water - Google Patents

Photovoltaic system on water Download PDF

Info

Publication number
WO2018012714A1
WO2018012714A1 PCT/KR2017/004124 KR2017004124W WO2018012714A1 WO 2018012714 A1 WO2018012714 A1 WO 2018012714A1 KR 2017004124 W KR2017004124 W KR 2017004124W WO 2018012714 A1 WO2018012714 A1 WO 2018012714A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
water
photovoltaic
floating structure
house
Prior art date
Application number
PCT/KR2017/004124
Other languages
French (fr)
Korean (ko)
Inventor
안병준
Original Assignee
운지파워텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 운지파워텍(주) filed Critical 운지파워텍(주)
Publication of WO2018012714A1 publication Critical patent/WO2018012714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a water photovoltaic power generation system.
  • renewable energy such as solar, wind, tidal power, etc.
  • solar energy is distributed evenly in the inhabited place of people all over the world, and solar power is most effective because it converts solar light energy directly into electric energy, while solar light energy has a low energy density and requires a large area.
  • photovoltaic power generation facilities have been installed in salt fields, farmland, forests, etc., but in addition to the net function of using renewable energy, they cause other environmental problems such as farmland deforestation and deforestation, and have limited land resources. As they compete, they are not welcomed by local residents and face difficulties due to various complaints. Therefore, research on photovoltaic power generation in desert areas or waters that has limited land resources, does not compete with humans, and has no adverse effects on the environment such as farmland deforestation or deforestation, is being actively applied and partially applied.
  • a solar power plant installed on the surface of a lake, river, or sea is called a water-based photovoltaic system. It is human-friendly because it does not compete with people and land, and when it is installed in a lake or river, it restricts the entrance of solar energy into the water. By suppressing the temperature rise of the water, it reduces the evaporation amount and helps to preserve the fresh water amount, and reduces the fog damage in the surrounding area. In addition, it is effective to improve water quality by promoting water convection due to the temperature difference caused by the shade of the water photovoltaic power generation system, and it protects fish stocks by providing the place for laying the fish with the shade by the water photovoltaic power generation system. It is nurtured.
  • FIG. 1 is a side view showing an example of a conventional water-based photovoltaic system.
  • the water-based photovoltaic system has a floating structure 10 floating on the surface of a lake, a river, or the sea, and the floating structure 10 so as not to move horizontally in accordance with wind or water flow.
  • Mooring device 20 to be fixed to the water surface the mounting frame 30 is installed on the upper portion of the floating structure 10, a plurality of solar cell modules (M) installed on the mounting frame 30 to produce power from the solar energy (M Photovoltaic device 40 including a), and a power conversion transmission device installed on the land to convert the low-voltage DC power generated by the solar cell modules (M) to AC and boost the power transmission to the power distribution system of the power company ( 50).
  • the solar cell modules (M) of the photovoltaic device (40) are divided into a plurality of groups so that the solar cell modules (M) of each group are connected in series according to the input voltage of the inverter.
  • Each group is called a solar cell string array, and the direct current power output from the unit solar strings of the solar cell string array is merged in the connection panel.
  • the power conversion transmission apparatus 50 includes a plurality of inverter units 51 for converting DC power transmitted from the connection panel into AC power, a circuit breaker unit 52 for protecting a load end of the inverter unit 51, and an inverter.
  • Transformer unit 53 for boosting the power converted in the unit 51 to the grid voltage
  • switch unit 54 for opening and closing the circuit
  • meter unit 55 for trading power
  • a protective relay unit 56 for monitoring the operating state of the photovoltaic power generation system and the like.
  • connection panels of the photovoltaic device 40 are divided into a plurality of groups, and each connection group group is connected to the inverter unit 51 of the power conversion transmission apparatus 50.
  • Each connecting panel of the connecting panel group and the inverter unit 51 are connected by a cable 60, and the cable 60 has waterproofness and flexibility to transmit the combined low voltage direct current power of the connecting panel to the inverter unit 51.
  • a thick special cable is used. That is, one connection panel group is connected to one inverter unit 51 by a plurality of cables 60 (the number of connection panels constituting the connection panel group).
  • the DC power generated in each solar cell module M is a unit solar. Flow through the cell strings. DC power flowing through the unit solar cell strings is merged in each access panel for each solar cell string array. The DC power merged in each connection panel is output to each inverter unit 51 of the power conversion transmission apparatus 50 through the cables 60 for each connection panel group.
  • the inverter unit 51 converts the DC power into AC power and boosts the system voltage in the transformer unit 53 to transmit power to the distribution system of the electric power company.
  • the low-voltage DC power generated in the solar cell modules (M) of the photovoltaic device (40) located in the water is merged in each connection panel to the cables 60 Since a number of special cables are used because it flows to the inverter units 51 of the power conversion transmission apparatus 50 installed on the land, and the photovoltaic device is generally located at the center of the deep lake.
  • the length of 60) is long, and a thick cable is used to transmit the low voltage direct current power incorporated in the connection board to the inverter unit 51.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a water photovoltaic system to which a water power conversion device is applied, which greatly reduces installation costs and reduces transmission power loss.
  • the main floating structure floating on the water surface;
  • a photovoltaic device installed on the main floating structure and including solar cell modules;
  • a fixed frame fixed to the ground under water, the upper part of which is located on the surface of the water;
  • a protection house installed on an upper portion of the fixed frame;
  • a power converter installed inside the protection house and converting the DC power generated by the photovoltaic device into alternating current and stepping up to a high pressure;
  • a power transmission device installed on land and transmitting high voltage AC power supplied from the power conversion device to a power distribution system;
  • a high voltage cable electrically connected to a power converter located in the water phase and a power transmission device installed on the land to send power boosted by the power conversion device to the power transmission device;
  • a water-based photovoltaic system including a; heat exchanger for heat-exchanging the inside of the protection house using the water in the fixed frame is located.
  • the main floating body structure floating on the water surface;
  • a photovoltaic device installed on the main floating structure and including solar cell modules;
  • a protection house installed on the auxiliary floating structure;
  • a power converter installed inside the protection house and converting the DC power generated by the photovoltaic device into alternating current and stepping up to a high pressure;
  • a power transmission device installed on land and transmitting high voltage AC power supplied from the power conversion device to a power distribution system;
  • a high voltage cable electrically connected to a power converter located in the water phase and a power transmission device installed on the land to send power boosted by the power conversion device to the power transmission device;
  • a water-based photovoltaic system including a; heat exchanger for heat-exchanging the inside of the protection house
  • the power converter preferably includes an inverter unit and a transformer unit.
  • the power transmission device preferably includes a meter unit for trading power and a protection relay unit for distribution system and protection coordination.
  • the heat exchange apparatus includes a fluid circulation pipe installed to circulate water into the water through the protection house through the inside of the protection house, a pump for pumping water in the water so that the water in the fluid circulation pipe circulates, and the protection house. It is preferable to include a heat exchange fin provided in a portion of the fluid circulation pipe located inside the.
  • a portion of the fluid circulation pipe having the heat exchange fins is preferably bent a plurality of times.
  • the heat exchange fins further include a blowing fan for generating a flow of air.
  • a protective barrier installed at the edge of the auxiliary floating structure to surround the protective house.
  • a plurality of holes are provided in the protective barrier.
  • the length of the low voltage cables for transmitting the DC power generated in the photovoltaic device to the inverter unit of the power converter can be shortened. It is also possible to increase the power to the high voltage in the power converter to transmit the high voltage to the power transmission device installed on the land through the high voltage cable has the effect of reducing the power loss.
  • the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed onshore, the length of the low-voltage cables for transmitting the DC power generated in the photovoltaic device to the inverter unit of the power converter is short.
  • the high-voltage power boosted by the power converter is connected to the power transmission device by a pair of high-voltage cables (three strands in the case of three-phase power)
  • the use of low-voltage cables is greatly reduced, thereby reducing the installation cost of the solar photovoltaic system. There is a saving effect.
  • the present invention has the effect that the low-voltage cables can be wired in the water rather than in the water can be selected freely and the wiring work and maintenance is easy.
  • the present invention is to protect the power converter from moisture and salt by the protection house sealed type, it is possible to automatically control the pump and the pump to safe operation management of the power converter in the optimum temperature and humidity, By circulating the lake water in the protection house, there is no need for additional heating and cooling related facilities, so it is possible to operate economic efficiency and safe operation management regardless of the season.
  • FIG. 1 is a side view showing an example of a water-based photovoltaic system according to the prior art.
  • Figure 2 is a side view showing an embodiment of a water-based photovoltaic system according to the present invention.
  • FIG 3 is a side view showing a first embodiment of a power conversion device constituting an embodiment of a water-based photovoltaic system according to the present invention.
  • FIG. 4 is a side view showing a second embodiment of a power conversion device constituting an embodiment of a water-based photovoltaic system according to the present invention.
  • Figure 5 is a side view showing a heat exchanger constituting an embodiment of a water-based photovoltaic system according to the present invention.
  • Figure 6 is a side view of the heat exchanger fin and the blower of the heat exchanger constituting an embodiment of a water-based photovoltaic system according to the present invention.
  • FIG. 7 is a side view showing a first embodiment of the mooring apparatus of the water-based photovoltaic system according to the present invention.
  • FIG 8 is a side view showing a second embodiment of the mooring apparatus of the water-based photovoltaic system according to the present invention.
  • FIG. 9 is a side view showing the first embodiment of the mooring apparatus of the water-based photovoltaic system according to the present invention.
  • FIG. 2 is a side view showing an embodiment of a water-based photovoltaic system according to the present invention.
  • one embodiment of the water-based photovoltaic power generation system according to the present invention includes a main floatation structure 100, a photovoltaic device 200, an auxiliary floatation structure 300, and a power converter 400. ), The power transmission apparatus 500.
  • the main floating structure 100 is suspended on the surface of the lake, such as a river, a lake, a dam, or the sea.
  • the main floating structure 100 includes a plurality of buoyancy materials 110 and a base frame 120 coupled to the upper portions of the buoyancy materials 110.
  • the buoyancy member 110 may be a material that floats in water, such as an empty space or a styropole.
  • the mooring device 130 is connected to the main floating structure (100). The mooring device 130 not only restricts the main floating structure 100 from moving in the horizontal direction by the flow of wind or water, but also allows the main floating structure 100 to move freely up and down according to the change in the height of the water surface.
  • the mooring device 130 is an anchor 131 is fixed to the bottom of the river or lake, and the rope 132 connected to the anchor 131 and across the main floating structure 100 And a rope length adjusting device 133 connected to an end of the rope 132.
  • the mooring device 130 may be implemented in various ways.
  • the photovoltaic device 200 includes solar cell modules (M).
  • the photovoltaic device 200 is installed on the main floating structure 100.
  • the mounting frame 210 is installed on the base frame 120 of the main floating structure 100, and the solar cell modules M are installed on the mounting frame 210.
  • the low voltage cable 220 supplies the power generated by the photovoltaic device 200 to the power converter 400.
  • the unit solar cell strings which connect the solar cell modules in series, are merged at the junction board.
  • the unit solar cell string is connected to a set number of solar cell modules (M).
  • the connection boards also consist of a set number.
  • the unit solar strings and the connection panels are determined by the inverter input voltage and the power generation capacity of the photovoltaic device.
  • Auxiliary floating structure 300 is suspended in the water surface.
  • Auxiliary floating structure 300 is preferably located adjacent to the main floating structure (100).
  • the auxiliary floating structure 300 is coupled to the plurality of buoyancy bodies 310 and the buoyancy bodies 310 and is a power converter.
  • the base plate 320 is installed 400, and a protective barrier 330 is coupled to the edge of the base plate 320 in a vertical direction.
  • the buoyancy body 310 may be a member in which an inner space is suspended in water, such as an empty container or a styropole.
  • a protective house 340 surrounding the power converter 400 is included.
  • the secondary floating structure 300 may be a barge.
  • the power converter 400 converts the DC current generated in the photovoltaic device 200 into an AC and boosts it.
  • the power converter 400 includes an inverter unit 410, a transformer unit 430, and preferably further includes a switch unit 440.
  • the inverter unit 410 converts the low voltage direct current supplied by the low voltage cables 230 from the photovoltaic device 200 into AC power.
  • the inverter unit 410 is provided in plurality according to the capacity of the photovoltaic device 200.
  • the transformer unit 430 boosts the AC power converted by the inverter unit 410 to a high voltage.
  • the high voltage does not mean a range of high voltage based on the voltage classification standard of each country, but means a voltage higher than the output voltage of the inverter unit.
  • the breaker unit 420 is connected to the output side of the inverter unit 410 or the transformer unit 430 to protect the equipment by blocking the current when the transient current flows into the inverter unit 410 or the transformer unit 430 Allow the circuit to be disconnected for inspection.
  • the switch unit 440 also protects the circuit by opening and closing the circuit when abnormal power flows in the circuit, and opens and closes the circuit so as to supply or cut off power to the onshore power transmission device.
  • the power converter 400 may further include a monitoring unit.
  • the power transmission device 500 is installed on land.
  • the power transmission apparatus 500 boosts the high-voltage AC power supplied from the power converter 400 as it is or again, and transmits the power to the distribution system.
  • the power transmission apparatus 500 includes a meter unit 510 for trading power, a protection relay unit 520 for protection coordination with a distribution system, and the like.
  • the power converter 400 and the power transmitter 500 are preferably connected by a high voltage cable 450. That is, the high voltage power boosted by the transformer unit 430 of the power converter 400 is transmitted to the power transmission apparatus 500 through a set of high voltage cables 450, and the high voltage power transmitted to the power transmission apparatus 500 is Power is transmitted to the distribution system via the meter unit 510.
  • the power converter 400 is preferably located inside the protection house 340.
  • the protection house 340 is installed on the base plate 320 of the auxiliary floating structure 300.
  • a large wave rises and splashes directly on the power converter 400 or splashing water droplets may intrude into the power converter 400.
  • the protection house 340 may be manufactured in various materials, such as a flat roof, a domed roof in addition to the inclined roof.
  • a container or an iron box may be used as a substitute for the protection house 340.
  • a protective barrier 330 may be further provided on an outer surface of the base plate 320 so that a large wave due to the storm does not hit the protective house 340 directly. It is preferable to drill a plurality of small holes in the lower portion of the protective barrier 330 to allow the water to flow out.
  • the protective barrier 330 is preferably installed at a height of 1200MM or more so as to prevent a person from falling during maintenance inspection.
  • FIG. 5 is a conceptual diagram illustrating an embodiment of a heat exchanger of the water power conversion device constituting the water photovoltaic power generation system according to the present invention.
  • a heat exchanger 600 using lake water is installed in a protection house 340 in which the power converter 400 is stored.
  • the power converter 400 When installing the power converter 400 on the surface of the appeal it is necessary to protect the power converter 400 from moisture and salt. Appeals are always rippled and vaporized from the surface of the water during the day, making them wetter than on land and surrounded by fog at night. This damages the insulation of the inverter unit 410 and the transformer unit 430 constituting the power conversion device 400 to shorten the life of the device, and if a severe ground fault occurs, the switch is cut off or the insulation breakdown may cause damage to the device There is concern.
  • the protection house 340 needs to be sealed. Inverter unit 410 and transformer unit 430 constituting the power converter 400 is a loss occurs during operation and the loss is released as heat. In general, since the efficiency of the inverter unit 410 is about 98% and the efficiency of the transformer unit 430 is about 99%, about 3% of the converted power is lost as heat.
  • the temperature inside the protection house 340 rises, and when the temperature reaches a predetermined value, the hot air in the protection house 340 is discharged to the fans 644a and 644b and cooled. Outside air is supplied through the air inlets 641a and 641b provided on the wall. That is, it is possible to continue the operation of the power converter 400 by suppressing the temperature rise in the room by ventilation.
  • the power converter 400 installed in the water is accommodated in the protection house 340 to protect it from moisture, moisture, and salt
  • a heat exchanger to cool the heat generated while the power converter 400 is operating is provided. need.
  • the lake water has infinite heat capacity compared to the generated heat of the power converter 400 and is cold enough to cool the indoor air so that the power converter 400 operates stably.
  • the upper limit of the operation temperature of the inverter unit 410 is 45 degrees Celsius to 50 degrees Celsius and the temperature of the summer appeal water temperature does not exceed 25 degrees, so the temperature difference is more than 20 degrees and the cooling water in the room for the power converter 400 Means are enough.
  • the electric heat pump requires a large amount of power for the compressor to compress the refrigerant gas even though the installation cost is excluded, whereas the heat exchanger using the lake water has no water level difference between the suction side and the discharge side of the lake water. All you need is a pump.
  • the heat exchanger 600 includes a fluid circulation pipe 620 installed to circulate into the water through the protection house 340 through the water inflow, A pump 630 for pumping water in the water to circulate the water in the fluid circulation pipe 620, and a heat exchange fin 610 provided in a portion of the fluid circulation pipe 620 located inside the protection house 340 )
  • the portion of the fluid circulation pipe 620 having the heat exchange fins 610 is bent many times.
  • Blowing fan 640 for generating a flow of air to the heat exchange fins 610 is preferably further provided.
  • the pump 630 is preferably located below the water surface, such as using an underwater pump so that no water raising device is required.
  • the heat exchange device 600 is supplied to the heat inside the protection house 340 because the number of appeal is warmer than the outside air at night time or winter time. Since the power change device 400 located in the water is placed in a harsher environment than the land, it is necessary to protect against moisture not only when driving but also when stopped. When the sun goes down and the temperature goes down, the water vapor condenses on the lake, causing condensation. The power converter 400 is in a wet state close to 100% humidity, and condensation is generated on the components of the power converter 400. Condensation may cause a ground fault and insulation breakdown when the power converter 400 is restarted, and insulation degradation may accumulate even if not immediately caused by an accident, thereby shortening the life of an electric device.
  • the appealing water having a relatively higher temperature than the outside air functions as a heating function inside the protection house 340 to dedicate the interior of the power converter 400. It will become wet and prevent condensation on the electric equipment.
  • Temperature change is also an important factor in determining the life of an electric device. Electric equipment generates heat by loss when driving and cools down to room temperature when it is at rest. Repeated thermal expansion and contraction of the solid insulation material of an electric device causes cracks, and when the cracks are enlarged, the mechanical strength is lost and the insulation distance cannot be maintained, resulting in insulation breakdown such as ground faults and short circuits. Until the breakdown, the heating and cooling cycles and the rate of temperature change are affected by the temperature difference.
  • the power converter 400 of the photovoltaic power generation system is repeatedly exposed to a high temperature state at the time of operation and a low temperature state at the time of stopping, and the lifespan is shorter than that of a general electric device because the temperature difference varies in winter.
  • the appealing water having a relatively higher temperature than the outside air functions as a heating function to warm the room in which the power converter 400 is accommodated and the power converter 400
  • the power converter 400 By reducing the temperature difference at the time of operation and stop), it is possible to reduce the number of maintenance check of the device and to extend the life of the power converter 400.
  • the measured weather information and the operation information of the heat exchanger 600 are transmitted to the land together with the operation information of the power converter 400 and the information obtained from the monitoring equipment of the connection panel, and are configured to receive control commands on the land. desirable.
  • the heat exchanger 600 may be implemented in various forms.
  • the mooring device 130 is connected to the auxiliary floating structure 300 mounted with the power converter 400.
  • the mooring device 130 not only restricts the auxiliary floating structure 300 to move in the horizontal direction by the flow of wind or water, but also allows the auxiliary floating structure 300 to freely move up and down according to the change in the height of the water surface.
  • FIG. 7 is a side view showing a first embodiment of the mooring device of the water photovoltaic system according to the present invention
  • the first embodiment of the mooring device 130 is anchored to the bottom of the river or lake 131 and
  • the rope 132 is connected to the anchor 131 and is connected to the auxiliary floating structure 300, and a rope length adjusting device 133 for adjusting the stretching of the rope 132.
  • a method of adjusting the expansion and contraction of the rope 132 it may be configured in various ways, such as attaching a weight to one end of the rope 132 or installing a hoist.
  • the first embodiment of the mooring device 130 is preferably installed in a deep dam or the sea.
  • FIG 8 is a side view showing a second embodiment of the mooring device of the water photovoltaic power generation system according to the present invention
  • the second embodiment of the mooring device 130 is a plurality of pillars 350 to be fixed to the underwater ground
  • a lifting device connecting the auxiliary floating structure and the plurality of pillars to move the auxiliary floating structure up and down according to the height of the water surface.
  • the lifting device 355 may be a roller mechanism that moves up and down along the guide member.
  • the lifting device can be configured in various ways. Lifting device 355 is preferably configured to be detachable to the auxiliary floating structure 300 or the auxiliary floating structure 300 so that it can be maintained by moving the auxiliary floating structure 300 or the power conversion device 400.
  • the lifting device 355 is preferably provided with a fixing means for fixing the auxiliary floating structure 300 to a predetermined height.
  • a fixing means for fixing the auxiliary floating structure 300 to a predetermined height.
  • the main floatation structure 100 and the auxiliary floatation structure 300 may be connected to each other by a connecting means (not shown).
  • the connecting means can be rope or rod members.
  • Figure 9 is a side view showing a third embodiment of the mooring device of the water photovoltaic system according to the present invention
  • the third embodiment of the mooring device 130 is fixed to the underwater ground, the top is fixed on the water surface
  • the power converter 400 is installed on top of the fixed frame.
  • the fixed frame 360 is preferably located adjacent to the main floating structure (100).
  • the fixed frame includes a plurality of piles 350 to be embedded in the ground, and the support plate 360 is coupled to the upper end of the piles 350 to be located on the water surface.
  • the fixed frame and the main floating structure 100 may be connected by a connecting means (not shown).
  • the DC power generated in each solar cell module M is a unit. Flow through the solar cell strings (201). DC power flowing through the unit solar cell strings 201 is merged in each connection panel 220 for each solar cell string array (A).
  • the DC power merged in each connection panel 220 is connected to each inverter unit 410 of the power converter 400 located in the water so as to be adjacent to the photovoltaic device 200 through the low voltage cables 230 for each connection panel group. It is transmitted.
  • the inverter unit 410 converts the DC power into AC power and boosts the voltage to the high voltage in the transformer unit 430.
  • the high voltage AC power converted by the power converter 400 is transmitted to the power transmission apparatus 500 through the high voltage cable 450, and the high voltage current passed through the power transmission apparatus 500 is transmitted to the power distribution system of the power company.
  • the power converter 400 since the power converter 400 is located in the water adjacent to the photovoltaic device 200, the direct current power generated by the photovoltaic device 200 is transmitted to the inverter unit 410 of the power converter 400.
  • the length of the low voltage cable 230 is shortened to reduce the cost of the cable, and the low voltage cable 230 can be wired to the water phase rather than in the water, thereby making the wiring work easier.
  • the power generated by the photovoltaic device is converted into high-voltage alternating current in the power converter 400 to transmit the power transmission device 500 installed on the land through the high-voltage cable 450 to reduce the power loss.
  • the present invention is housed in a sealed protection house to protect the power converter 400 from splashing water droplets, and the heat generated during the operation of the power converter is cooled by using the appealing water without cooling the ventilation device by the external air, moisture and There is no fear of salt penetration. Since the heat exchanger 600 using the lake water at night time or winter time is converted to a heating function, it prevents condensation damage caused by fog or moisture, and reduces the temperature difference between the operation and the stop of the power converter 400. The life of the component is extended.
  • Table 1 below illustrates the power cable requirements of the conventional water-based photovoltaic system and the water-based photovoltaic system according to the present invention.
  • Table 1 is a value calculated by comparing the present invention with the conventional water-based photovoltaic system for the case of 5MW, which can be referred to as medium-scale equipment and 20MW, a large-scale facility, the voltage of the DC low-voltage power of the conventional water-based photovoltaic system is Since the low voltage range is 750V DC, the voltage of the high-voltage AC power of the power conversion equipment of the present invention is 22900V, the distribution system voltage of the Korean electric power company, and the length of the power cable is 800M and the allowable voltage drop is 3% or less under the same conditions. Compared.
  • the power cable is required in the 5MW power plant, and 90 strands of 240 mm2 and 40 protective wires are required for 80 mm in diameter, whereas in the water-based photovoltaic system according to the present invention, 60 sq.
  • the protective wire tube also needs only one 125mm diameter.
  • the power cable requires 240 mm2 and 360 strands, and the protective cable tubes need 160 diameters of 80 mm, whereas in the water-based photovoltaic power generation system according to the present invention, only three protective wire tubes of 200 mm diameter need one 200 mm diameter. .
  • the power converter since the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed on land, the DC power generated in the photovoltaic device
  • the length of the low voltage cables transmitting to the inverter unit of the power converter can be shortened, and the power loss is increased by increasing the voltage from the power converter to the high voltage through the high voltage cable to the power transmission device installed on the land, thereby reducing the power loss.
  • the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed onshore, the length of the low-voltage cables for transmitting the DC power generated in the photovoltaic device to the inverter unit of the power converter is short.
  • the high-voltage power boosted by the power converter is connected to the power transmission device by a pair of high-voltage cables (three strands in the case of three-phase power)
  • the use of low-voltage cables is greatly reduced, thereby reducing the installation cost of the solar photovoltaic system. There is a saving effect.
  • the low-voltage cables can be wired in the water rather than in the water, the cable can be freely selected and the wiring and maintenance can be easily performed.
  • the protection house is enclosed to protect the power converter from moisture and salt, and automatically controls the pump and pump to allow the safe operation and management of the power converter with optimum temperature and humidity.
  • the protection house By circulating in the house, there is no need for additional heating and heating-related facilities, so it is possible to operate economic efficiency and safe operation management regardless of season.
  • the water-based photovoltaic system to which the water-power converter according to the embodiment of the present invention is applied is not limited to the configuration and operation of the embodiments described above.
  • the above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a photovoltaic system on the water. The present invention comprises: a main floating structure floating on a water surface; a photovoltaic device installed in the main floating structure and including solar cell modules; a fixing frame fixed on the ground underwater, and having an upper portion positioned over the water surface; a protective house installed on the upper portion of the fixing frame; a power converting device installed in the protective house and converting DC power generated by the photovoltaic device into AC power to boost the AC power to high voltage; a power transmitting device installed on land and transmitting the high voltage AC power, which is supplied from the power converting device, to a power distributing system; a high voltage cable electrically connecting the power converting device positioned on the water and the power transmitting device installed on land, so as to send the power boosted in the power converting device to the power transmitting device; and a heat exchanging device performing heat exchanging for the inside of the protective house by using water from the underwater zone in which the fixing frame is positioned. According to the present invention, installation costs can be greatly reduced and transmission power loss can be reduced.

Description

수상태양광발전시스템Floating Solar Power System
본 발명은 수상태양광발전시스템에 관한 것이다.The present invention relates to a water photovoltaic power generation system.
현재 탄화수소계 화석에너지자원의 유한성에 의한 자원고갈 문제와 함께 그것의 사용으로 인해 배출되는 온실가스의 증가로 지구환경에 미치는 나쁜 영향이 점점 커지고 있고 나아가 인류의 생존을 위협할 지경에 이르렀다. 또한 원자력발전 역시 자원의 고갈 문제와 함께 체르노빌원전과 후쿠시마원전의 경우에서 보듯이 만약의 사고 시 지구환경에 미치는 영향과 인류의 생존에 미치는 위협이 크다.At present, the depletion of hydrocarbon-based fossil energy resources and the increase of greenhouse gases emitted by its use have increased the adverse effects on the global environment and threatened the survival of humankind. Nuclear power generation also has a problem of depletion of resources, as well as the Chernobyl and Fukushima nuclear plants.
위와 같은 이유로 전 세계적으로 환경오염이 없고 지속기간이 무한한 태양광, 풍력, 조력발전 등 재생에너지의 이용이 점점 증대되고 있다. 재생에너지 중에서도 태양에너지는 전 지구상의 사람이 거주하는 곳에 고르게 분포하고 있고 태양의 빛에너지를 직접 전기에너지로 바꾸므로 태양광발전이 가장 효과적인 반면, 태양의 빛에너지는 에너지밀도가 낮아 넓은 면적이 필요하다.For this reason, the use of renewable energy such as solar, wind, tidal power, etc., with no environmental pollution and infinite duration is increasing all over the world. Among the renewable energy, solar energy is distributed evenly in the inhabited place of people all over the world, and solar power is most effective because it converts solar light energy directly into electric energy, while solar light energy has a low energy density and requires a large area. Do.
지금까지의 태양광발전설비는 염전, 농지, 임야 등에 설치되고 있으나, 이것들은 재생에너지의 이용이라는 순기능 이외에 농지전용, 산림파괴라는 또 다른 환경문제를 야기하고 있으며, 한정된 토지자원을 가지고 인간생활과 경합하므로 지역주민들에게 환영 받지 못하고 각종 민원 제기 등으로 난관에 봉착해있다. 그래서 한정된 토지자원을 가지고 인간과 경합하지 않으며 농지전용이나 산림파괴 같은 환경에의 악영향이 없는 사막지역이나 수상에서의 태양광발전에 대한 연구가 활발하고 일부 적용되고 있다.Until now, photovoltaic power generation facilities have been installed in salt fields, farmland, forests, etc., but in addition to the net function of using renewable energy, they cause other environmental problems such as farmland deforestation and deforestation, and have limited land resources. As they compete, they are not welcomed by local residents and face difficulties due to various complaints. Therefore, research on photovoltaic power generation in desert areas or waters that has limited land resources, does not compete with humans, and has no adverse effects on the environment such as farmland deforestation or deforestation, is being actively applied and partially applied.
호수나 강 또는 바다의 수면에 설치한 태양광 발전설비를 수상 태양광 발전 시스템이라고 하는데 이것은 사람과 토지를 경합하지 않아 친인간적이며, 호수나 강에 설치 시 태양에너지의 수중에의 입사를 제한함으로서 물의 온도상승을 억제하여 증발량을 줄여 담수량을 보전하는데 도움이 되며 주변지역의 안개피해를 줄이게 된다. 또한, 수상태양광발전시스템의 음영에 의한 온도차로 물의 대류를 촉진하여 녹조를 방지하는 등 수질개선에 효과가 있고 수상태양광발전시스템에 의한 그늘이 어류에게 산란장소를 제공함으로서 어족자원을 보호, 육성하게 된다.A solar power plant installed on the surface of a lake, river, or sea is called a water-based photovoltaic system. It is human-friendly because it does not compete with people and land, and when it is installed in a lake or river, it restricts the entrance of solar energy into the water. By suppressing the temperature rise of the water, it reduces the evaporation amount and helps to preserve the fresh water amount, and reduces the fog damage in the surrounding area. In addition, it is effective to improve water quality by promoting water convection due to the temperature difference caused by the shade of the water photovoltaic power generation system, and it protects fish stocks by providing the place for laying the fish with the shade by the water photovoltaic power generation system. It is nurtured.
도 1은 종래의 수상태양광발전시스템의 일예를 도시한 측면도이다.1 is a side view showing an example of a conventional water-based photovoltaic system.
도 1에 도시한 바와 같이, 수상태양광발전시스템은 호수, 강, 또는 바다 등의 수면에 띄워지는 부유구조체(10)와, 부유구조체(10)가 바람이나 물의 흐름에 따라 수평으로 움직이지 않도록 수면에 고정시키는 계류장치(20)와, 부유구조체(10)의 상부에 설치되는 장착프레임(30)과, 장착프레임(30)에 설치되어 태양에너지로 전력을 생산하는 다수 개의 태양전지모듈(M)들을 포함하는 태양광발전장치(40)와, 육상에 설치되어 태양전지모듈(M)들에서 발전되는 저압직류전력을 교류로 변환시키고 승압시켜 전력회사의 배전계통으로 송전하는 전력변환송전장치(50)를 포함한다.As shown in FIG. 1, the water-based photovoltaic system has a floating structure 10 floating on the surface of a lake, a river, or the sea, and the floating structure 10 so as not to move horizontally in accordance with wind or water flow. Mooring device 20 to be fixed to the water surface, the mounting frame 30 is installed on the upper portion of the floating structure 10, a plurality of solar cell modules (M) installed on the mounting frame 30 to produce power from the solar energy (M Photovoltaic device 40 including a), and a power conversion transmission device installed on the land to convert the low-voltage DC power generated by the solar cell modules (M) to AC and boost the power transmission to the power distribution system of the power company ( 50).
태양광발전장치(40)의 태양전지모듈(M)들은 다수 개의 그룹으로 구획하여 각 그룹의 태양전지모듈(M)들이 인버터의 입력전압에 맞추어 직렬로 연결되고, 이 단위태양전지스트링들은 다수 개의 그룹으로 나누어지며 그 각 그룹을 태양전지스트링어레이라 하며, 태양전지스트링어레이의 단위태양전지스트링들에서 출력되는 직류전력은 접속반에서 병합된다.The solar cell modules (M) of the photovoltaic device (40) are divided into a plurality of groups so that the solar cell modules (M) of each group are connected in series according to the input voltage of the inverter. Each group is called a solar cell string array, and the direct current power output from the unit solar strings of the solar cell string array is merged in the connection panel.
전력변환송전장치(50)는 접속반에서 전송된 직류전력을 교류전력으로 변환시키는 복수 개의 인버터유닛(51)들과, 인버터유닛(51)의 부하단을 보호하는 차단기유닛(52)과, 인버터유닛(51)에서 변환된 전력을 계통전압으로 승압시키는 변압기유닛(53)과, 회로를 개폐하는 개폐기유닛(54)과, 전력을 거래하기 위한 계량기유닛(55), 전력계통과 보호협조를 위한 보호계전유닛(56), 태양광발전시스템의 운전상태를 감시하는 모니터링유닛(57) 등을 포함한다.The power conversion transmission apparatus 50 includes a plurality of inverter units 51 for converting DC power transmitted from the connection panel into AC power, a circuit breaker unit 52 for protecting a load end of the inverter unit 51, and an inverter. Transformer unit 53 for boosting the power converted in the unit 51 to the grid voltage, switch unit 54 for opening and closing the circuit, meter unit 55 for trading power, for power system and protection cooperation A protective relay unit 56, a monitoring unit 57 for monitoring the operating state of the photovoltaic power generation system and the like.
태양광발전장치(40)의 접속반들은 다수 개의 그룹으로 나누어지며 각 접속반그룹은 전력변환송전장치(50)의 인버터유닛(51)에 연결된다. 접속반 그룹의 각 접속반과 인버터유닛(51)은 케이블(60)에 의해 연결되며, 그 케이블(60)은 접속반의 병합된 저압직류전력을 인버터유닛(51)으로 전송하기 위하여 방수성 및 유연성을 가지는 굵은 특수케이블이 사용된다. 즉, 한 개의 접속반 그룹은, 복수 개의 케이블(60)들(접속반 그룹을 구성하는 접속반의 수)에 의해 한 개의 인버터유닛(51)에 연결된다.The connection panels of the photovoltaic device 40 are divided into a plurality of groups, and each connection group group is connected to the inverter unit 51 of the power conversion transmission apparatus 50. Each connecting panel of the connecting panel group and the inverter unit 51 are connected by a cable 60, and the cable 60 has waterproofness and flexibility to transmit the combined low voltage direct current power of the connecting panel to the inverter unit 51. A thick special cable is used. That is, one connection panel group is connected to one inverter unit 51 by a plurality of cables 60 (the number of connection panels constituting the connection panel group).
이와 같은 수상태양광발전시스템은, 태양 빛에 의해 태양광발전장치(40)의 태양전지모듈(M)들에서 각각 전력을 발생시키게 되면 각 태양전지모듈(M)에서 발생되는 직류전력은 단위 태양전지 스트링들을 통해 흐르게 된다. 단위 태양전지 스트링들을 통해 흐르는 직류전력은 태양전지 스트링 어레이 별로 각 접속반에서 병합된다. 각 접속반에서 병합된 직류전력은 접속반 그룹 별로 케이블(60)들을 통해 전력변환송전장치(50)의 각 인버터유닛(51)으로 출력된다. 인버터유닛(51)에서 직류전력을 교류전력으로 변환시키고 변압기유닛(53)에서 계통전압으로 승압시켜 전력회사의 배전계통으로 송전하게 된다.In such a water photovoltaic power generation system, when power is generated in each of the solar cell modules M of the photovoltaic device 40 by sunlight, the DC power generated in each solar cell module M is a unit solar. Flow through the cell strings. DC power flowing through the unit solar cell strings is merged in each access panel for each solar cell string array. The DC power merged in each connection panel is output to each inverter unit 51 of the power conversion transmission apparatus 50 through the cables 60 for each connection panel group. The inverter unit 51 converts the DC power into AC power and boosts the system voltage in the transformer unit 53 to transmit power to the distribution system of the electric power company.
그러나 상기한 바와 같은 종래 수상태양광발전시스템은, 수상에 위치하는 태양광발전장치(40)의 태양전지모듈(M)들에서 발전되는 저압직류전력이 각 접속반에서 병합되어 케이블(60)들을 통해 육상에 설치된 전력변환송전장치(50)의 인버터유닛(51)들로 흐르게 되므로 많은 수의 특수케이블들이 사용되고, 또한 일반적으로 태양광발전장치가 수심이 깊은 호수의 가운데 부분에 위치하게 되어 케이블(60)의 길이가 길게 되며, 접속반에 병합된 저압직류전력을 인버터유닛(51)으로 송전하기 위하여 굵은 케이블이 사용된다.However, in the conventional water-based photovoltaic system as described above, the low-voltage DC power generated in the solar cell modules (M) of the photovoltaic device (40) located in the water is merged in each connection panel to the cables 60 Since a number of special cables are used because it flows to the inverter units 51 of the power conversion transmission apparatus 50 installed on the land, and the photovoltaic device is generally located at the center of the deep lake. The length of 60) is long, and a thick cable is used to transmit the low voltage direct current power incorporated in the connection board to the inverter unit 51.
이로 인하여, 수상태양광발전시스템을 설치 시 케이블(60)의 비용이 크게 상승되는 문제점이 있다. 특히, 발전용량이 큰 수상태양광발전시스템을 설치할 경우 그에 따른 케이블의 비용이 크게 증가하여 수상태양광발전시스템이 친환경적이고 친인간적임에도 불구하고 그것의 설치비용이 육상의 경우보다 커서 설치가 확대되지 못하고 있는 실정이다.For this reason, there is a problem that the cost of the cable 60 is greatly increased when installing the water-based photovoltaic system. In particular, if the installation of a large-scale solar power generation system with large power generation capacity, the cost of the cable is greatly increased. I can't do it.
본 발명은 상술한 문제점을 해결하기 위하여 창안된 것으로서, 설치비용을 대폭 감소시키고 송전 전력 손실을 줄이는 수상전력변환장치가 적용된 수상태양광발전시스템을 제공하는 데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a water photovoltaic system to which a water power conversion device is applied, which greatly reduces installation costs and reduces transmission power loss.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않는다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above.
본 발명의 목적을 달성하기 위하여, 수면에 부유되는 메인부유구조체; 상기 메인부유구조체에 설치되며, 태양전지모듈들을 포함하는 태양광발전장치; 수중 지반에 고정되며, 상부가 수면 위에 위치하는 고정프레임; 상기 고정프레임의 상부에 설치되는 보호하우스; 상기 보호하우스 내부에 설치되며, 상기 태양광발전장치에서 발전된 직류전력을 교류로 변환시키고 고압으로 승압시키는 전력변환장치; 육상에 설치되며, 상기 전력변환장치에서 공급되는 고압 교류전력을 배전계통으로 송전하는 송전장치; 상기 수상에 위치하는 전력변환장치와 육상에 설치되는 송전장치를 전기적으로 연결하여 상기 전력변환장치에서 승압된 전력이 송전장치로 보내지는 고압케이블; 상기 고정프레임이 위치하는 수중의 물을 이용하여 보호하우스의 내부를 열교환시키는 열교환장치;를 포함하는 수상태양광발전시스템이 제공된다.In order to achieve the object of the present invention, the main floating structure floating on the water surface; A photovoltaic device installed on the main floating structure and including solar cell modules; A fixed frame fixed to the ground under water, the upper part of which is located on the surface of the water; A protection house installed on an upper portion of the fixed frame; A power converter installed inside the protection house and converting the DC power generated by the photovoltaic device into alternating current and stepping up to a high pressure; A power transmission device installed on land and transmitting high voltage AC power supplied from the power conversion device to a power distribution system; A high voltage cable electrically connected to a power converter located in the water phase and a power transmission device installed on the land to send power boosted by the power conversion device to the power transmission device; There is provided a water-based photovoltaic system including a; heat exchanger for heat-exchanging the inside of the protection house using the water in the fixed frame is located.
또한, 수면에 부유되는 메인부유구조체; 상기 메인부유구조체에 설치되며, 태양전지모듈들을 포함하는 태양광발전장치; 수중 지반에 고정되는 복수 개의 기둥들; 상기 기둥들에 인접하게 수면에 부유되는 보조부유구조체; 상기 보조부유구조체가 수위에 따라 상하로 움직임 가능하도록 상기 기둥들과 보조부유구조체를 연결하는 승강장치; 상기 보조부유구조체에 설치되는 보호하우스; 상기 보호하우스 내부에 설치되며, 상기 태양광발전장치에서 발전된 직류전력을 교류로 변환시키고 고압으로 승압시키는 전력변환장치; 육상에 설치되며, 상기 전력변환장치에서 공급되는 고압 교류전력을 배전계통으로 송전하는 송전장치; 상기 수상에 위치하는 전력변환장치와 육상에 설치되는 송전장치를 전기적으로 연결하여 상기 전력변환장치에서 승압된 전력이 송전장치로 보내지는 고압케이블; 상기 고정프레임이 위치하는 수중의 물을 이용하여 보호하우스의 내부를 열교환시키는 열교환장치;를 포함하는 수상태양광발전시스템이 제공된다.In addition, the main floating body structure floating on the water surface; A photovoltaic device installed on the main floating structure and including solar cell modules; A plurality of pillars fixed to the underwater ground; An auxiliary floatation structure floating on the water surface adjacent to the pillars; A lifting device for connecting the pillars and the auxiliary floating structure so that the auxiliary floating structure can move up and down according to the water level; A protection house installed on the auxiliary floating structure; A power converter installed inside the protection house and converting the DC power generated by the photovoltaic device into alternating current and stepping up to a high pressure; A power transmission device installed on land and transmitting high voltage AC power supplied from the power conversion device to a power distribution system; A high voltage cable electrically connected to a power converter located in the water phase and a power transmission device installed on the land to send power boosted by the power conversion device to the power transmission device; There is provided a water-based photovoltaic system including a; heat exchanger for heat-exchanging the inside of the protection house using the water in the fixed frame is located.
상기 전력변환장치는 인버터유닛, 변압기유닛을 포함하는 것이 바람직하다.The power converter preferably includes an inverter unit and a transformer unit.
상기 송전장치는 전력을 거래하기 위한 계량기유닛과, 배전계통과 보호협조를 위한 보호계전유닛을 포함하는 것이 바람직하다.The power transmission device preferably includes a meter unit for trading power and a protection relay unit for distribution system and protection coordination.
상기 열교환장치는 수중의 물이 유입되어 상기 보호하우스 내부를 거쳐 수중으로 순환하도록 설치되는 유체순환파이프와, 상기 유체순환파이프로 수중의 물이 순환하도록 수중의 물을 펌핑하는 펌프와, 상기 보호하우스의 내부에 위치하는 유체순환파이프의 일부분에 구비되는 열교환핀들을 포함하는 것이 바람직하다.The heat exchange apparatus includes a fluid circulation pipe installed to circulate water into the water through the protection house through the inside of the protection house, a pump for pumping water in the water so that the water in the fluid circulation pipe circulates, and the protection house. It is preferable to include a heat exchange fin provided in a portion of the fluid circulation pipe located inside the.
상기 열교환핀들이 구비되는 유체순환파이프의 부분은 다수 회 절곡되는 것이 바람직하다.A portion of the fluid circulation pipe having the heat exchange fins is preferably bent a plurality of times.
상기 열교환핀들에 공기의 유동을 발생시키는 송풍팬이 더 구비되는 것이 바람직하다.Preferably, the heat exchange fins further include a blowing fan for generating a flow of air.
상기 보호하우스를 둘러싸도록 고정프레임의 가장자리에 설치되는 보호방벽을 더 포함하는 것이 바람직하다.It is preferable to further include a protective barrier installed on the edge of the fixed frame to surround the protective house.
상기 보호하우스를 둘러싸도록 보조부유구조체의 가장자리에 설치되는 보호방벽을 더 포함하는 것이 바람직하다.It is preferable to further include a protective barrier installed at the edge of the auxiliary floating structure to surround the protective house.
상기 보호방벽에 다수 개의 구멍들이 구비되는 것이 바람직하다.It is preferable that a plurality of holes are provided in the protective barrier.
본 발명은, 전력변환장치가 태양광발전장치에 인접하게 수상에 위치하고 송전장치가 육상에 설치되므로 태양광발전장치에서 발전된 직류전력을 전력변환장치의 인버터유닛으로 송전하는 저압 케이블들의 길이가 짧게 할 수 있고, 또한 전력변환장치에서 고압으로 승압하여 고압케이블을 통해 육상에 설치된 송전장치로 고압으로 송전하기 때문에 전력 손실을 감소시키는 효과가 있다. According to the present invention, since the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed on land, the length of the low voltage cables for transmitting the DC power generated in the photovoltaic device to the inverter unit of the power converter can be shortened. It is also possible to increase the power to the high voltage in the power converter to transmit the high voltage to the power transmission device installed on the land through the high voltage cable has the effect of reducing the power loss.
또한, 본 발명은 전력변환장치가 태양광발전장치에 인접하게 수상에 위치하고 송전장치가 육상에 설치되어 태양광발전장치에서 발전된 직류전력을 전력변환장치의 인버터유닛으로 송전하는 저압 케이블들의 길이가 짧게 되고 아울러 전력변환장치에서 승압된 고압전력을 한조(3상전력의 경우 3가닥)의 고압 케이블에 의해 송전장치에 연결되기 때문에, 저압 케이블들의 사용량을 대폭 줄이게 되어 수상태양광발전시스템의 설치비용을 절감시키는 효과가 있다. In addition, the present invention, the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed onshore, the length of the low-voltage cables for transmitting the DC power generated in the photovoltaic device to the inverter unit of the power converter is short In addition, since the high-voltage power boosted by the power converter is connected to the power transmission device by a pair of high-voltage cables (three strands in the case of three-phase power), the use of low-voltage cables is greatly reduced, thereby reducing the installation cost of the solar photovoltaic system. There is a saving effect.
또한, 본 발명은 저압 케이블들을 물속이 아닌 수상에 배선이 가능하기 때문에 케이블의 선정이 자유롭고 배선작업과 유지보수가 수월하게 되는 효과가 있다.In addition, the present invention has the effect that the low-voltage cables can be wired in the water rather than in the water can be selected freely and the wiring work and maintenance is easy.
또한, 본 발명은 보호하우스를 밀폐형으로 하여 전력변환장치를 습기와 염분으로부터 보호가 가능하고, 자동으로 펌프와 휀을 제어하여 온도와 습도를 최적상태로 전력변환장치의 안전한 운전관리가 가능하며, 호소수를 보호하우스내로 연계하여 순환시킴으로써 별도의 추가적인 냉난방 관련시설이 필요하지 않아 경제적인 효율성 운영과 계절에 관계없이 전력변환장치가 안전한 운전관리가 가능한 효과가 있다.In addition, the present invention is to protect the power converter from moisture and salt by the protection house sealed type, it is possible to automatically control the pump and the pump to safe operation management of the power converter in the optimum temperature and humidity, By circulating the lake water in the protection house, there is no need for additional heating and cooling related facilities, so it is possible to operate economic efficiency and safe operation management regardless of the season.
도 1은 종래기술에 따른 수상태양광발전시스템의 일예를 도시한 측면도이다.1 is a side view showing an example of a water-based photovoltaic system according to the prior art.
도 2는 본 발명에 따른 수상태양광발전시스템의 일실시예를 도시한 측면도이다.Figure 2 is a side view showing an embodiment of a water-based photovoltaic system according to the present invention.
도 3은 본 발명에 따른 수상태양광발전시스템의 일실시예를 구성하는 전력변환장치의 제1 실시예를 도시한 측면도이다.3 is a side view showing a first embodiment of a power conversion device constituting an embodiment of a water-based photovoltaic system according to the present invention.
도 4는 본 발명에 따른 수상태양광발전시스템의 일실시예를 구성하는 전력변환장치의 제2 실시예를 도시한 측면도이다.4 is a side view showing a second embodiment of a power conversion device constituting an embodiment of a water-based photovoltaic system according to the present invention.
도 5는 본 발명에 따른 수상태양광발전시스템의 일실시예를 구성하는 열교환장치를 도시한 측면도이다.Figure 5 is a side view showing a heat exchanger constituting an embodiment of a water-based photovoltaic system according to the present invention.
도 6은 본 발명에 따른 수상태양광발전시스템의 일실시예를 구성하는 열교환장치의 열교환핀과 송풍기를 측면도이다.Figure 6 is a side view of the heat exchanger fin and the blower of the heat exchanger constituting an embodiment of a water-based photovoltaic system according to the present invention.
도 7은 본 발명에 따른 수상태양광발전시스템의 계류장치의 제1 실시예를 도시한 측면도이다.7 is a side view showing a first embodiment of the mooring apparatus of the water-based photovoltaic system according to the present invention.
도 8은 본 발명에 따른 수상태양광발전시스템의 계류장치의 제2 실시예를 도시한 측면도이다.8 is a side view showing a second embodiment of the mooring apparatus of the water-based photovoltaic system according to the present invention.
도 9는 본 발명에 따른 수상태양광발전시스템의 계류장치의 제1 실시예를 도시한 측면도이다.9 is a side view showing the first embodiment of the mooring apparatus of the water-based photovoltaic system according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호로 표시한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Like elements in the figures are denoted by the same reference numerals wherever possible. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 2는 본 발명에 따른 수상태양광발전시스템의 일실시예를 도시한 측면도이다. 도 2에 도시한 바와 같이, 본 발명에 따른 수상태양광발전시스템의 일실시예는, 메인부유구조체(100), 태양광발전장치(200), 보조부유구조체(300), 전력변환장치(400), 송전장치(500)를 포함한다.Figure 2 is a side view showing an embodiment of a water-based photovoltaic system according to the present invention. As shown in FIG. 2, one embodiment of the water-based photovoltaic power generation system according to the present invention includes a main floatation structure 100, a photovoltaic device 200, an auxiliary floatation structure 300, and a power converter 400. ), The power transmission apparatus 500.
메인부유구조체(100)는 강, 호수, 댐, 또는 바다 등 호소의 수면에 부유된다. 메인부유구조체(100)의 일예로, 메인부유구조체(100)는 복수 개의 부력재(110)와, 부력재(110)들의 상부에 결합되는 베이스프레임(120)을 포함한다. 부력재(110)는 내부 공간이 빈 용기나 스치로폴등 물에 뜨는 재질이 될 수 있다. 메인부유구조체(100)에 계류장치(130)가 연결됨이 바람직하다. 계류장치(130)는 메인부유구조체(100)가 바람이나 물의 흐름에 의해 수평 방향으로 움직이는 것을 제한하게 할 뿐만 아니라 수면의 높이 변화에 따라 메인부유구조체(100)가 상하로 자유롭게 움직일 수 있게 한다. 계류장치(130)의 일예로, 계류장치(130)는 강이나 호수의 바닥에 고정되는 앵커(131)와, 앵커(131)에 연결됨과 아울러 메인부유구조체(100)에 걸쳐지는 로프(132)와, 로프(132)의 단부에 연결되는 로프길이조절장치(133)를 포함한다. 계류장치(130)는 다양하게 구현될 수 있다.The main floating structure 100 is suspended on the surface of the lake, such as a river, a lake, a dam, or the sea. As an example of the main floating structure 100, the main floating structure 100 includes a plurality of buoyancy materials 110 and a base frame 120 coupled to the upper portions of the buoyancy materials 110. The buoyancy member 110 may be a material that floats in water, such as an empty space or a styropole. Preferably, the mooring device 130 is connected to the main floating structure (100). The mooring device 130 not only restricts the main floating structure 100 from moving in the horizontal direction by the flow of wind or water, but also allows the main floating structure 100 to move freely up and down according to the change in the height of the water surface. As an example of the mooring device 130, the mooring device 130 is an anchor 131 is fixed to the bottom of the river or lake, and the rope 132 connected to the anchor 131 and across the main floating structure 100 And a rope length adjusting device 133 connected to an end of the rope 132. The mooring device 130 may be implemented in various ways.
태양광발전장치(200)는 태양전지모듈(M)들을 포함한다. 태양광발전장치(200)는 메인부유구조체(100)에 설치된다. 메인부유구조체(100)의 베이스프레임(120)에 장착프레임(210)이 설치되고, 장착프레임(210)의 상부에 태양전지모듈(M)들이 설치된다. 저압케이블(220)은 태양광발전장치(200)에 발생되는 전력을 전력변환장치 (400)에 공급한다. 태양전지모듈들을 직렬로 연결한 단위태양전지스트링들은 접속반에서 병합된다. 단위태양전지스트링은 설정된 개수의 태양전지모듈(M)들이 연결된다. 접속반들 또한 설정된 개수로 구성된다. 단위태양전지스트링들, 접속반들은 인버터 입력전압과 태양광발전장치의 발전용량에 따라 정해진다.The photovoltaic device 200 includes solar cell modules (M). The photovoltaic device 200 is installed on the main floating structure 100. The mounting frame 210 is installed on the base frame 120 of the main floating structure 100, and the solar cell modules M are installed on the mounting frame 210. The low voltage cable 220 supplies the power generated by the photovoltaic device 200 to the power converter 400. The unit solar cell strings, which connect the solar cell modules in series, are merged at the junction board. The unit solar cell string is connected to a set number of solar cell modules (M). The connection boards also consist of a set number. The unit solar strings and the connection panels are determined by the inverter input voltage and the power generation capacity of the photovoltaic device.
보조부유구조체(300)는 수면에 부유된다. 보조부유구조체(300)는 메인부유구조체(100)에 인접하게 위치하는 것이 바람직하다. 보조부유구조체(300)의 일예로, 도 3, 4에 도시한 바와 같이, 보조부유구조체(300)는 복수 개의 부력체(310)들과, 부력체(310)들의 상부에 결합되며 전력변환장치(400)가 설치되는 베이스플레이트(320)와, 베이스플레이트(320)의 가장자리에 수직 방향으로 결합되는 보호방벽(330)을 포함한다. 부력체(310)는 내부 공간이 빈 용기나 스치로폴 등 물에 부유되는 부재가 될 수 있다. 보조부유구조체(300)의 다른 실시예로, 전력변환장치(400)를 감싸는 보호하우스(340)을 포함한다. 보조부유구조체(300)의 다른 실시예로, 보조부유구조체(300)는 바지선이 될 수도 있다. Auxiliary floating structure 300 is suspended in the water surface. Auxiliary floating structure 300 is preferably located adjacent to the main floating structure (100). As an example of the auxiliary floating structure 300, as shown in FIGS. 3 and 4, the auxiliary floating structure 300 is coupled to the plurality of buoyancy bodies 310 and the buoyancy bodies 310 and is a power converter. The base plate 320 is installed 400, and a protective barrier 330 is coupled to the edge of the base plate 320 in a vertical direction. The buoyancy body 310 may be a member in which an inner space is suspended in water, such as an empty container or a styropole. In another embodiment of the auxiliary floating structure 300, a protective house 340 surrounding the power converter 400 is included. In another embodiment of the secondary floating structure 300, the secondary floating structure 300 may be a barge.
전력변환장치(400)는 태양광발전장치(200)에서 발전된 직류전류를 교류로 변환시키고 승압시킨다. 전력변환장치(400)는 인버터유닛(410), 변압기유닛(430)을 구성되며, 개폐기유닛(440)을 더 포함하는 것이 바람직하다. 인버터유닛(410)은 태양광발전장치(200)에서 저압 케이블(230)들에 의해 공급되는 저압직류전류를 교류전력으로 변환시킨다. 인버터유닛(410)은 태양광발전장치(200)의 용량에 따라 복수 개 구비된다. 변압기유닛(430)은 인버터유닛(410)에서 변환된 교류전력을 고압으로 승압시킨다. 여기서 고압이란 각 나라의 전압분류 기준에 의한 고압의 범위를 말하는 것이 아니고 인버터유닛의 출력전압보다 높은 전압을 의미한다. 차단기유닛(420)은 인버터유닛(410)이나 변압기유닛(430)의 출력측에 연결되어 인버터유닛(410)이나 변압기유닛(430)에 과도전류가 유입될 때 그 전류를 차단시켜 기기를 보호하며 보수점검시 회로를 분리할 수 있게 한다. 개폐기유닛(440) 또한 회로에 이상 전력이 흐를 때 회로를 개폐하면서 회로를 보호하며, 육상의 송전장치로 전력을 공급하거나 차단하도록 회로를 개폐한다. 전력변환장치(400)에는 모니터링유닛을 더 구비할 수도 있다.The power converter 400 converts the DC current generated in the photovoltaic device 200 into an AC and boosts it. The power converter 400 includes an inverter unit 410, a transformer unit 430, and preferably further includes a switch unit 440. The inverter unit 410 converts the low voltage direct current supplied by the low voltage cables 230 from the photovoltaic device 200 into AC power. The inverter unit 410 is provided in plurality according to the capacity of the photovoltaic device 200. The transformer unit 430 boosts the AC power converted by the inverter unit 410 to a high voltage. Here, the high voltage does not mean a range of high voltage based on the voltage classification standard of each country, but means a voltage higher than the output voltage of the inverter unit. The breaker unit 420 is connected to the output side of the inverter unit 410 or the transformer unit 430 to protect the equipment by blocking the current when the transient current flows into the inverter unit 410 or the transformer unit 430 Allow the circuit to be disconnected for inspection. The switch unit 440 also protects the circuit by opening and closing the circuit when abnormal power flows in the circuit, and opens and closes the circuit so as to supply or cut off power to the onshore power transmission device. The power converter 400 may further include a monitoring unit.
송전장치(500)는 육상에 설치된다. 송전장치(500)는 전력변환장치(400)에서 공급되는 고압교류전력을 그대로 또는 재차 승압하여 배전계통으로 송전한다. 송전장치(500)는 전력을 거래하기 위한 계량기유닛(510), 배전계통과 보호협조를 위한 보호계전유닛(520) 등을 포함한다. 전력변환장치(400)와 송전장치(500)는 고압 케이블(450)에 의해 연결되는 것이 바람직하다. 즉, 전력변환장치(400)의 변압기유닛(430)에서 승압된 고압전력을 한 조의 고압 케이블(450)을 통해 송전장치(500)로 송전하며, 그 송전장치(500)로 송전된 고압전력은 계량기유닛(510)을 거쳐 배전계통으로 송전한다.The power transmission device 500 is installed on land. The power transmission apparatus 500 boosts the high-voltage AC power supplied from the power converter 400 as it is or again, and transmits the power to the distribution system. The power transmission apparatus 500 includes a meter unit 510 for trading power, a protection relay unit 520 for protection coordination with a distribution system, and the like. The power converter 400 and the power transmitter 500 are preferably connected by a high voltage cable 450. That is, the high voltage power boosted by the transformer unit 430 of the power converter 400 is transmitted to the power transmission apparatus 500 through a set of high voltage cables 450, and the high voltage power transmitted to the power transmission apparatus 500 is Power is transmitted to the distribution system via the meter unit 510.
도 1, 3에 도시한 바와 같이, 전력변환장치(400)는 보호하우스(340)의 내부에 위치하는 것이 바람직하다. 보호하우스(340)는 보조부유구조체(300)의 베이스플레이트(320)에 설치된다. 수상의 수면에는 항상 물결이 일고 태풍 등에 의한 폭풍우가 몰아칠 때는 큰 파도가 일어 물보라가 전력변환장치(400)를 직접 덮치거나 비산 물방울이 전력변환장치(400)의 내부로 침입할 우려가 있다. 전력변환장치(400)를 구성하는 인버터유닛(410)과 변압기유닛(430)에 물이 접촉하면 지락이 일어나 개폐기가 차단되거나 또는 절연파괴를 일으켜 기기가 소손 될 우려가 있다. 보호하우스(340)는 경사지붕 외에 평면지붕, 돔형지붕 등 다양한 재료로 다양하게 제작할 수 있다. 또한 보호하우스(340)의 대용으로 컨테이너나 철재박스가 사용될 수도 있다. 도 4에 도시한 바와 같이, 폭풍우에 의한 큰 파도가 직접 보호하우스(340)를 타격하지 않도록 베이스플레이트(320)의 외각에 보호방벽(330)을 더 구비할 수 있다. 보호방벽(330) 하부에는 넘어 들어온 물이 빠져나가도록 다수개의 작은 구멍을 뚫어 두는 것이 바람직하다. 보호방벽(330)은 보수점검시 사람이 추락하는 것을 방지하는 역할도 하도록 1200MM 이상의 높이로 설치하는 것이 바람직하다.1 and 3, the power converter 400 is preferably located inside the protection house 340. The protection house 340 is installed on the base plate 320 of the auxiliary floating structure 300. When the surface of the water is always waved and storms caused by typhoons and the like, a large wave rises and splashes directly on the power converter 400 or splashing water droplets may intrude into the power converter 400. When water comes into contact with the inverter unit 410 constituting the power converter 400 and the transformer unit 430, a ground fault may occur, and the switch may be cut off or insulation breakdown may cause the device to be burned out. The protection house 340 may be manufactured in various materials, such as a flat roof, a domed roof in addition to the inclined roof. In addition, a container or an iron box may be used as a substitute for the protection house 340. As shown in FIG. 4, a protective barrier 330 may be further provided on an outer surface of the base plate 320 so that a large wave due to the storm does not hit the protective house 340 directly. It is preferable to drill a plurality of small holes in the lower portion of the protective barrier 330 to allow the water to flow out. The protective barrier 330 is preferably installed at a height of 1200MM or more so as to prevent a person from falling during maintenance inspection.
도 5는 본 발명에 따른 수상태양광발전시스템을 구성하는 수상전력변환장치의 열교환장치의 일실시예를 도시한 개념도이다.5 is a conceptual diagram illustrating an embodiment of a heat exchanger of the water power conversion device constituting the water photovoltaic power generation system according to the present invention.
도 5에 도시한 바와 같이, 전력변환장치(400)를 수납한 보호하우스(340) 안에 호소수를 이용한 열교환장치(600)를 설치한다. 호소의 수면에 전력변환장치(400)를 설치할 때 전력변환장치(400)를 습기와 염분으로부터 보호할 필요가 있다. 호소는 항상 물결이 일고 낮에 수면에서 증발된 수증기에 의해 육상의 경우보다 습윤상태에 있게 되고 밤에는 안개에 둘러싸여 있게 된다. 이것은 전력변환장치(400)를 구성하는 인버터유닛(410)과 변압기유닛(430)의 절연을 손상시켜 기기의 수명을 단축시키고 심할 경우 지락이 일어나 개폐기가 차단되거나 또는 절연파괴를 일으켜 기기가 소손 될 우려가 있다. 특히 염분이 함유된 방조제나 해상에 태양광발전설비의 전력변환장치(400)를 설치하게 되면 태풍 등에 의한 폭풍우가 몰아칠 때는 큰 파도와 물보라에 의한 비산 물방울과 이것에 포함된 염분이 전력변환장치의 내부로 침입하게 되면 사고의 우려는 더욱 증대된다. 이러한 습윤환경과 염분으로부터 전력변환장치(400)를 보호하기 위해서는 보호하우스(340)를 밀폐형으로 할 필요가 있다. 전력변환장치(400)를 구성하는 인버터유닛(410)과 변압기유닛(430)은 운전 중에 손실이 발생하고 손실은 열로 방출하게 된다. 일반적으로 인버터유닛(410)의 효율은 약 98%이고 변압기유닛(430)의 효율은 약 99%이므로 변환전력의 3%정도가 손실로서 열로 방출되게 된다. 육상의 경우 전력변환장치(400)가 운전을 시작하면 보호하우스(340) 안의 온도가 상승하게 되고 설정치 이상의 온도가 되면 보호하우스(340)내의 더워진 공기를 팬(644a, 644b)으로 배출하고 차가운 외기가 벽면에 설치된 공기 흡입구(641a, 641b)를 통해 공급된다. 즉 환기에 의해 실내의 온도상승을 억제하여 전력변환장치(400)의 운전을 계속할 수 있게 된다.As shown in FIG. 5, a heat exchanger 600 using lake water is installed in a protection house 340 in which the power converter 400 is stored. When installing the power converter 400 on the surface of the appeal it is necessary to protect the power converter 400 from moisture and salt. Appeals are always rippled and vaporized from the surface of the water during the day, making them wetter than on land and surrounded by fog at night. This damages the insulation of the inverter unit 410 and the transformer unit 430 constituting the power conversion device 400 to shorten the life of the device, and if a severe ground fault occurs, the switch is cut off or the insulation breakdown may cause damage to the device There is concern. In particular, when the power converter 400 of the photovoltaic facility is installed on the seawall containing salt or when the storm is driven by a typhoon or the like, splashing water droplets caused by large waves and splashes and the salt contained therein are power converters. Intrusion into the interior of the accident further increases the risk of an accident. In order to protect the power converter 400 from such a wet environment and salt, the protection house 340 needs to be sealed. Inverter unit 410 and transformer unit 430 constituting the power converter 400 is a loss occurs during operation and the loss is released as heat. In general, since the efficiency of the inverter unit 410 is about 98% and the efficiency of the transformer unit 430 is about 99%, about 3% of the converted power is lost as heat. In the case of the land, when the power converter 400 starts to operate, the temperature inside the protection house 340 rises, and when the temperature reaches a predetermined value, the hot air in the protection house 340 is discharged to the fans 644a and 644b and cooled. Outside air is supplied through the air inlets 641a and 641b provided on the wall. That is, it is possible to continue the operation of the power converter 400 by suppressing the temperature rise in the room by ventilation.
한편, 수상에 설치하는 전력변환장치(400)를 습기와 수분, 염분으로부터 보호하기 위해 보호하우스(340) 안에 수납하게 되면 전력변환장치(400)가 운전하는 동안 발생하는 열을 냉각시킬 열교환장치가 필요하다. 이때, 호소수를 실내로 순환시켜 열교환매체로 이용하면 대단히 유용하다. 호소수는 전력변환장치(400)의 발생열에 비해 무한정한 열용량을 가지고 있고 실내공기를 전력변환장치(400)가 안정적으로 운전되도록 냉각할 만큼 충분이 차갑다. 일반적으로 인버터유닛(410)의 운전 상한 주위온도는 섭씨 45도~50도이고 여름철 호소수의 온도는 25도를 넘지 않으므로 온도차는 20도 이상이 나고 호소수를 전력변환장치(400)를 위한 실내의 냉방수단으로 충분하다. 이것은 전기식 히트펌프(에어컨)를 사용하는 것보다 설치비와 전력비면에서 휠씬 경제적이다. 전기식 히트펌프는 설치비를 제외하더라도 냉매가스를 압축하기 위한 압축기가 큰 동력을 필요로 하는데 비해 호소수를 이용한 열교환장치는 호소수의 흡입 측과 토출 측에 수위차가 없으므로 단순히 물을 순환시켜 주기 위한 작은 동력의 펌프만 설비하면 된다.Meanwhile, when the power converter 400 installed in the water is accommodated in the protection house 340 to protect it from moisture, moisture, and salt, a heat exchanger to cool the heat generated while the power converter 400 is operating is provided. need. At this time, it is very useful to circulate the lake water indoors to use as a heat exchange medium. The lake water has infinite heat capacity compared to the generated heat of the power converter 400 and is cold enough to cool the indoor air so that the power converter 400 operates stably. In general, the upper limit of the operation temperature of the inverter unit 410 is 45 degrees Celsius to 50 degrees Celsius and the temperature of the summer appeal water temperature does not exceed 25 degrees, so the temperature difference is more than 20 degrees and the cooling water in the room for the power converter 400 Means are enough. This is much more economical in terms of installation cost and power than using an electric heat pump (air conditioner). The electric heat pump requires a large amount of power for the compressor to compress the refrigerant gas even though the installation cost is excluded, whereas the heat exchanger using the lake water has no water level difference between the suction side and the discharge side of the lake water. All you need is a pump.
열교환장치의 일예로, 도 5, 6에 도시한 바와 같이, 열교환장치(600)는 수중의 물이 유입되어 보호하우스(340) 내부를 거쳐 수중으로 순환하도록 설치되는 유체순환파이프(620)와, 유체순환파이프(620)로 수중의 물이 순환하도록 수중의 물을 펌핑하는 펌프(630)와, 보호하우스(340)의 내부에 위치하는 유체순환파이프(620)의 일부분에 구비되는 열교환핀(610)들을 포함한다. 열교환핀(610)들이 구비되는 유체순환파이프(620)의 부분은 다수 회 절곡된다. 열교환핀(610)들에 공기의 유동을 발생시키는 송풍팬(640)이 더 구비되는 것이 바람직하다. 펌프(630)는 물올림장치가 필요 없도록 수중펌프를 사용하는 등, 수면 아래에 위치하는 것이 바람직하다.As an example of the heat exchanger, as illustrated in FIGS. 5 and 6, the heat exchanger 600 includes a fluid circulation pipe 620 installed to circulate into the water through the protection house 340 through the water inflow, A pump 630 for pumping water in the water to circulate the water in the fluid circulation pipe 620, and a heat exchange fin 610 provided in a portion of the fluid circulation pipe 620 located inside the protection house 340 ) The portion of the fluid circulation pipe 620 having the heat exchange fins 610 is bent many times. Blowing fan 640 for generating a flow of air to the heat exchange fins 610 is preferably further provided. The pump 630 is preferably located below the water surface, such as using an underwater pump so that no water raising device is required.
한편, 열교환장치(600)는 호소 수는 밤 시간이나 겨울철에는 외기보다 따뜻하게 되므로 보호하우스(340)의 내부에 열을 공급하게 된다. 수상에 위치하는 전력변한장치(400)는 육상의 경우보다 가혹한 환경에 놓여 있으므로 운전 중일 때뿐만 아니라 정지 시에도 습기에 대한 보호가 필요하다. 해가 지고 기온이 내려가면 호소에서 증발한 수증기가 응결하여 수면에 안개가 발생한다. 전력변환장치(400)는 습도 100%에 가까운 습윤 상태에 놓이게 되고 전력변환장치(400)의 구성기기에 결로가 생기게 된다. 결로는 전력변환장치(400)의 재가동시 지락차단과 절연파괴의 우려가 있게 하고 당장 사고로 이어지지 않더라도 절연저하가 누적되어 전기기기의 수명을 단축시키게 된다.On the other hand, the heat exchange device 600 is supplied to the heat inside the protection house 340 because the number of appeal is warmer than the outside air at night time or winter time. Since the power change device 400 located in the water is placed in a harsher environment than the land, it is necessary to protect against moisture not only when driving but also when stopped. When the sun goes down and the temperature goes down, the water vapor condenses on the lake, causing condensation. The power converter 400 is in a wet state close to 100% humidity, and condensation is generated on the components of the power converter 400. Condensation may cause a ground fault and insulation breakdown when the power converter 400 is restarted, and insulation degradation may accumulate even if not immediately caused by an accident, thereby shortening the life of an electric device.
밤 시간이나 겨울철에 호소수를 이용한 열교환장치(600)를 가동하면 외기에 비해 상대적으로 온도가 높은 호소수는 보호하우스(340) 내부에 난방 기능을 하게 되어 전력변환장치(400)가 수납된 실내를 데우게 되고 전기기기에의 결로를 방지하게 된다.When the heat exchanger 600 using the appealing water is operated at night time or in winter, the appealing water having a relatively higher temperature than the outside air functions as a heating function inside the protection house 340 to dedicate the interior of the power converter 400. It will become wet and prevent condensation on the electric equipment.
전기기기의 수명을 결정하는 요소 중에 온도변화도 중요하다. 전기기기는 운전할 때 손실에 의해 발열하게 되고 휴지 시에는 식어 상온으로 돌아온다. 전기기기의 고체절연물질이 온도에 따라 열팽창과 수축을 반복하면 균열이 생기게 되고 균열이 확대되어 기계적 강도를 상실하여 절연거리를 유지하지 못하게 되면 지락, 단락 등과 같은 절연파괴에 이르게 되어 소손된다. 절연파괴에 이르기까지는 가열과 냉각의 반복회수와 온도변화 속도 변화하는 온도 차이에 의해 영향을 받는다. 태양광발전시스템의 전력변환장치(400)는 운전시의 고온상태와 정지시의 저온상태에 반복적으로 노출되고 겨울철에는 변화하는 온도차이가 더 크므로 일반적인 전기기기에 비해 수명이 짧다.Temperature change is also an important factor in determining the life of an electric device. Electric equipment generates heat by loss when driving and cools down to room temperature when it is at rest. Repeated thermal expansion and contraction of the solid insulation material of an electric device causes cracks, and when the cracks are enlarged, the mechanical strength is lost and the insulation distance cannot be maintained, resulting in insulation breakdown such as ground faults and short circuits. Until the breakdown, the heating and cooling cycles and the rate of temperature change are affected by the temperature difference. The power converter 400 of the photovoltaic power generation system is repeatedly exposed to a high temperature state at the time of operation and a low temperature state at the time of stopping, and the lifespan is shorter than that of a general electric device because the temperature difference varies in winter.
밤 시간이나 겨울철에 호소수를 이용한 열교환장치(600)를 가동하면 외기에 비해 상대적으로 온도가 높은 호소수는 난방 기능을 하게 되어 전력변환장치(400)가 수납된 실내를 데우게 되고 전력변환장치(400)의 운전 시와 정지 시의 온도차를 적게 하여 기기의 보수점검의 횟수를 줄이고 전력변환장치(400)의 수명연장을 기대할 수 있게 된다.When the heat exchanger 600 using the appealing water at night time or winter time is operated, the appealing water having a relatively higher temperature than the outside air functions as a heating function to warm the room in which the power converter 400 is accommodated and the power converter 400 By reducing the temperature difference at the time of operation and stop), it is possible to reduce the number of maintenance check of the device and to extend the life of the power converter 400.
전력변환장치(400)가 설비된 보호하우스(340) 내부 공기와 외기의 온도와 습도를 측정하고 비교하여 사전에 설정된 프로그램에 의해 자동으로 펌프(630)와 팬(640)을 제어하여 온도와 습도를 최적상태로 유지하도록 하며 동시에 열교환장치(600)의 구동에 소요되는 동력이 절감되도록 하는 것이 바람직하다. 측정된 기상정보와 열교환장치(600)의 운전정보는 전력변환장치(400)의 운전정보와 접속반의 모니터링설비에서 얻어진 정보와 함께 육상으로 전송하고 육상에서의 제어 지령을 받을 수 있도록 구성함이 더 바람직하다. 열교환장치(600)는 다양한 형태로 구현될 수 있다.Measure and compare the temperature and humidity of the air and outside air inside the protection house 340 equipped with the power converter 400 to automatically control the pump 630 and the fan 640 by a preset program to control the temperature and humidity. It is desirable to maintain the optimal state and at the same time to reduce the power required to drive the heat exchange device (600). The measured weather information and the operation information of the heat exchanger 600 are transmitted to the land together with the operation information of the power converter 400 and the information obtained from the monitoring equipment of the connection panel, and are configured to receive control commands on the land. desirable. The heat exchanger 600 may be implemented in various forms.
전력변환장치(400)를 탑재한 보조부유구조체(300)에 계류장치(130)가 연결된다. 계류장치(130)는 보조부유구조체(300)가 바람이나 물의 흐름에 의해 수평 방향으로 움직이는 것을 제한하게 할 뿐만 아니라 수면의 높이 변화에 따라 보조부유구조체(300)가 상하로 자유롭게 움직일 수 있게 한다.The mooring device 130 is connected to the auxiliary floating structure 300 mounted with the power converter 400. The mooring device 130 not only restricts the auxiliary floating structure 300 to move in the horizontal direction by the flow of wind or water, but also allows the auxiliary floating structure 300 to freely move up and down according to the change in the height of the water surface.
도 7은 본 발명에 따른 수상태양광발전시스템의 계류장치의 제1 실시예를 도시한 측면도로, 계류장치(130)의 제1 실시예는 강이나 호수의 바닥에 고정되는 앵커(131)와, 앵커(131)에 연결됨과 아울러 보조부유구조체(300)에 연결되는 로프(132)와, 로프(132)의 신축을 조절하는 로프길이조절장치(133)를 포함한다. 로프(132)의 신축을 조절하는 방법으로는 로프(132)의 한쪽 단부에 무게추를 달거나 권상기를 설치하는 등 다양하게 구성할 수 있다. 계류장치(130)의 제1 실시예는 수심이 깊은 댐이나 바다 등에 설치하는 것이 바람직하다.Figure 7 is a side view showing a first embodiment of the mooring device of the water photovoltaic system according to the present invention, the first embodiment of the mooring device 130 is anchored to the bottom of the river or lake 131 and The rope 132 is connected to the anchor 131 and is connected to the auxiliary floating structure 300, and a rope length adjusting device 133 for adjusting the stretching of the rope 132. As a method of adjusting the expansion and contraction of the rope 132, it may be configured in various ways, such as attaching a weight to one end of the rope 132 or installing a hoist. The first embodiment of the mooring device 130 is preferably installed in a deep dam or the sea.
도 8은 본 발명에 따른 수상태양광발전시스템의 계류장치의 제2 실시예를 도시한 측면도로, 계류장치(130)의 제2 실시예는 수중 지반에 고정되도록 하는 복수 개의 기둥(350)들과, 수면의 높이에 따라 보조부유구조체가 상하로 움직이도록 보조부유구조체와 복수 개의 기둥들을 연결하는 승강장치를 포함한다. 승강장치(355)는 가이드부재를 따라 오르내리는 롤러기구가 될 수 있다. 승강장치는 다양하게 구성할 수 있다. 승강장치(355)는 보조부유구조체(300)나 전력변환장치(400)를 물가로 이동하여 정비할 수 있도록 보조부유구조체(300)의 탈착이 가능하도록 구성하는 것이 바람직하다. 또한 승강장치(355)는 보조부유구조체(300)를 일정높이에 고정할 수 있는 고정수단을 구비하는 것이 바람직하다. 계류장치(130)의 제2 실시예는 수심이 낮은 저수지나 방조제 등에 설치하는 것이 바람직하다. 메인부유구조체(100)와 보조부유구조체(300)는 연결수단(미도시)에 의해 서로 연결될 수도 있다. 연결수단은 로프나 막대부재가 될 수 있다.Figure 8 is a side view showing a second embodiment of the mooring device of the water photovoltaic power generation system according to the present invention, the second embodiment of the mooring device 130 is a plurality of pillars 350 to be fixed to the underwater ground And a lifting device connecting the auxiliary floating structure and the plurality of pillars to move the auxiliary floating structure up and down according to the height of the water surface. The lifting device 355 may be a roller mechanism that moves up and down along the guide member. The lifting device can be configured in various ways. Lifting device 355 is preferably configured to be detachable to the auxiliary floating structure 300 or the auxiliary floating structure 300 so that it can be maintained by moving the auxiliary floating structure 300 or the power conversion device 400. In addition, the lifting device 355 is preferably provided with a fixing means for fixing the auxiliary floating structure 300 to a predetermined height. In the second embodiment of the mooring device 130, it is preferable to install the reservoir, the embankment, or the like having a low water depth. The main floatation structure 100 and the auxiliary floatation structure 300 may be connected to each other by a connecting means (not shown). The connecting means can be rope or rod members.
도 9는 본 발명에 따른 수상태양광발전시스템의 계류장치의 제3 실시예를 도시한 측면도로, 계류장치(130)의 제3 실시예는 수중 지반에 고정되며, 상부가 수면 위에 위치하는 고정프레임을 포함하며, 그 고정프레임의 상부에 전력변환장치(400)가 설치된다. 고정프레임(360)은 메인부유구조체(100)와 인접하게 위치하는 것이 바람직하다. 고정프레임의 일예로, 고정프레임은 수중 지반에 박혀 고정되는 복수 개의 파일(350)들과, 수면위에 위치하도록 파일(350)들의 상단부에 결합되는 지지판(360)을 포함한다. 고정프레임과 메인부유구조체(100)는 연결수단(미도시)에 의해 연결될 수도 있다.Figure 9 is a side view showing a third embodiment of the mooring device of the water photovoltaic system according to the present invention, the third embodiment of the mooring device 130 is fixed to the underwater ground, the top is fixed on the water surface It includes a frame, the power converter 400 is installed on top of the fixed frame. The fixed frame 360 is preferably located adjacent to the main floating structure (100). As an example of the fixed frame, the fixed frame includes a plurality of piles 350 to be embedded in the ground, and the support plate 360 is coupled to the upper end of the piles 350 to be located on the water surface. The fixed frame and the main floating structure 100 may be connected by a connecting means (not shown).
이하, 본 발명에 따른 수상태양광발전시스템의 작용과 효과를 설명한다.Hereinafter, the operation and effects of the water-based photovoltaic power generation system according to the present invention.
먼저, 태양 빛에 의해 메인부유구조체(100)에 설치된 태양광발전장치(200)의 태양전지모듈(M)들에서 각각 전력을 발생시키게 되면 각 태양전지모듈(M)에서 발생되는 직류전력은 단위태양전지스트링(201)들을 통해 흐르게 된다. 단위태양전지스트링(201)들을 통해 흐르는 직류전력은 태양전지스트링어레이(A) 별로 각 접속반(220)에서 병합된다. 각 접속반(220)에서 병합된 직류전력은 접속반그룹 별로 저압 케이블(230)들을 통해 태양광발전장치(200)와 인접하도록 수상에 위치한 전력변환장치(400)의 각 인버터유닛(410)으로 송전된다. 인버터유닛(410)에서 직류전력을 교류전력으로 변환시키고 변압기유닛(430)에서 고압으로 승압시킨다. 전력변환장치(400)에서 변환된 고압 교류전력은 고압 케이블(450)을 통해 송전장치(500)로 송전되고 송전장치(500)를 거친 고압전류는 전력회사의 배전계통으로 송전된다.First, when power is generated in each of the solar cell modules M of the photovoltaic device 200 installed in the main floating structure 100 by sunlight, the DC power generated in each solar cell module M is a unit. Flow through the solar cell strings (201). DC power flowing through the unit solar cell strings 201 is merged in each connection panel 220 for each solar cell string array (A). The DC power merged in each connection panel 220 is connected to each inverter unit 410 of the power converter 400 located in the water so as to be adjacent to the photovoltaic device 200 through the low voltage cables 230 for each connection panel group. It is transmitted. The inverter unit 410 converts the DC power into AC power and boosts the voltage to the high voltage in the transformer unit 430. The high voltage AC power converted by the power converter 400 is transmitted to the power transmission apparatus 500 through the high voltage cable 450, and the high voltage current passed through the power transmission apparatus 500 is transmitted to the power distribution system of the power company.
본 발명은 전력변환장치(400)가 태양광발전장치(200)에 인접하게 수상에 위치하므로 태양광발전장치(200)에서 발전된 직류전력을 전력변환장치(400)의 인버터유닛(410)으로 송전하는 저압 케이블(230)들의 길이가 짧게 되어 케이블 비용을 감소시키게 되고 저압 케이블(230)들을 물속이 아닌 수상에 배선이 가능하게 되어 배선 작업이 수월하게 된다. 또한 태양광발전장치에서 발전한 전력을 전력변환장치(400)에서 고압 교류로 변환하여 고압 케이블(450)을 통해 육상에 설치된 송전장치(500)로 송전하므로 전력 손실을 감소시키게 된다.In the present invention, since the power converter 400 is located in the water adjacent to the photovoltaic device 200, the direct current power generated by the photovoltaic device 200 is transmitted to the inverter unit 410 of the power converter 400. The length of the low voltage cable 230 is shortened to reduce the cost of the cable, and the low voltage cable 230 can be wired to the water phase rather than in the water, thereby making the wiring work easier. In addition, the power generated by the photovoltaic device is converted into high-voltage alternating current in the power converter 400 to transmit the power transmission device 500 installed on the land through the high-voltage cable 450 to reduce the power loss.
또한, 본 발명은 전력변환장치(400)를 비산 물방울로부터 보호되도록 밀폐형보호하우스 내에 수납하고 전력변환장치 운전중에 발생하는 열을 외부공기에 의한 환기장치로 냉각하지 않고 호소수를 이용하여 냉각함으로써 습기 및 염분이 침투할 우려가 없다. 밤시간이나 겨울철에는 호소수를 이용한 열교환장치(600)가 난방기능으로 변환 사용되므로 안개나 습기에 의한 결로 피해를 막게 되며 전력변환장치(400)의 운전시와 정지시의 온도차를 적게 하여 전력변환장치 구성기기의 수명연장이 연장되게 된다.In addition, the present invention is housed in a sealed protection house to protect the power converter 400 from splashing water droplets, and the heat generated during the operation of the power converter is cooled by using the appealing water without cooling the ventilation device by the external air, moisture and There is no fear of salt penetration. Since the heat exchanger 600 using the lake water at night time or winter time is converted to a heating function, it prevents condensation damage caused by fog or moisture, and reduces the temperature difference between the operation and the stop of the power converter 400. The life of the component is extended.
아래의 표 1은 종래 수상태양광발전시스템과 본 발명에 따른 수상태양광발전시스템의 전력 케이블 소요량 비교를 예시한 것이다.Table 1 below illustrates the power cable requirements of the conventional water-based photovoltaic system and the water-based photovoltaic system according to the present invention.
조건Condition 1. 선로긍장 800M 2. 허용전압강하 3%3. 접속반용량 110 Kw 분할1. Line approval 800M 2. Allowable voltage drop 3% 3. 110 Kw partition capacity
전압강하 계산식: E = A*L*1/ 1000*SA; 단상 2선식 = 35.6 3상 3선식 = 30.8 3상 4선식 = 17.8(단상3선식)E: 전압강하(V) L: 변압기 2차측부터의 거리 또는 인입선 접속점(M)I : 전류(A) S: 전선의 단면적(MM2) Dropout formula: E = A * L * 1/1000 * SA; Single-phase 2-wire = 35.6 3-phase 3-wire = 30.8 3-phase 4-wire = 17.8 (single-phase 3-wire) E: Voltage drop (V) L: Distance from the secondary side of the transformer or lead-in connection point (M) I: Current (A) S : Cross-sectional area of wire (MM2)
발전용량Power generation capacity 5Mwp5Mwp 20Mwp20Mwp
송전전압Transmission voltage 직류 716VDC 716V 삼상교류 22900VThree Phase Exchange 22900V 직류 716VDC 716V 삼상교류 22900VThree Phase Exchange 22900V
소요케이블Cable UW-3PN Cable240sq/1C 90가닥UW-3PN Cable240sq / 1C 90 strands F-CNCV-W Cable60sq/1C 3가닥F-CNCV-W Cable60sq / 1C 3 Strands UW-3PN Cable240sq/1C 360가닥UW-3PN Cable240sq / 1C 360strands F-CNCV-W Cable240sq/1C 3가닥F-CNCV-W Cable240sq / 1C 3 Strands
소요배관재Required piping material ELP PIPE 80C40LINEELP PIPE 80C40LINE ELP PIPE 125C1LINEELP PIPE 125C1LINE ELP PIPE 80C160LINEELP PIPE 80C160LINE ELP PIPE 80C1LINEELP PIPE 80C1LINE
위 표 1은 중규모설비라고 할 수 있는 5MW와 대규모설비인 20MW의 경우에 대하여 종래 수상태양광발전시스템과 본 발명을 비교하여 계산한 값으로, 종래 수상태양광발전시스템의 직류저압전력의 전압은, 저압의 범위가 직류 750V이므로 750V로 본 발명의 전력변환설비의 고압교류전력의 전압은 한국의 전력회사 배전계통전압인 22900V로 하고, 전력케이블 길이는 800M 허용전압강하 3%이하로 동일한 조건으로 비교하였다.Table 1 is a value calculated by comparing the present invention with the conventional water-based photovoltaic system for the case of 5MW, which can be referred to as medium-scale equipment and 20MW, a large-scale facility, the voltage of the DC low-voltage power of the conventional water-based photovoltaic system is Since the low voltage range is 750V DC, the voltage of the high-voltage AC power of the power conversion equipment of the present invention is 22900V, the distribution system voltage of the Korean electric power company, and the length of the power cable is 800M and the allowable voltage drop is 3% or less under the same conditions. Compared.
표 1에서와 같이 종래 수상태양광발전시스템에서는 5MW 발전시설에서 전력케이블은 240㎟ 90가닥이 필요하고 보호전선관도 직경 80mm 40개가 필요한 반면, 본 발명에 따른 수상태양광발전시스템에서는 60sq 3가닥에 보호전선관도 직경 125mm 1개가 필요할 뿐이다. 또한, 20MW 발전시설에서 전력케이블은 240㎟ 360가닥이 필요하고 보호전선관도 직경 80mm 160개가 필요한 반면, 본 발명에 따른 수상태양광발전시스템에서는 400㎟ 3가닥에 보호전선관도 직경 200mm 1개가 필요할 뿐이다.As shown in Table 1, in the conventional water-based photovoltaic system, the power cable is required in the 5MW power plant, and 90 strands of 240 mm2 and 40 protective wires are required for 80 mm in diameter, whereas in the water-based photovoltaic system according to the present invention, 60 sq. The protective wire tube also needs only one 125mm diameter. In addition, in the 20MW power plant, the power cable requires 240 mm2 and 360 strands, and the protective cable tubes need 160 diameters of 80 mm, whereas in the water-based photovoltaic power generation system according to the present invention, only three protective wire tubes of 200 mm diameter need one 200 mm diameter. .
이상에서 설명한 바와 같이 본 발명의 수상전력변환장치가 적용된 수상태양광발전시스템은, 전력변환장치가 태양광발전장치에 인접하게 수상에 위치하고 송전장치가 육상에 설치되므로 태양광발전장치에서 발전된 직류전력을 전력변환장치의 인버터유닛으로 송전하는 저압 케이블들의 길이가 짧게 할 수 있고, 또한 전력변환장치에서 고압으로 승압하여 고압케이블을 통해 육상에 설치된 송전장치로 고압으로 송전하기 때문에 전력 손실을 감소시키는 효과가 있다.As described above, in the water photovoltaic power generation system to which the water power converter of the present invention is applied, since the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed on land, the DC power generated in the photovoltaic device The length of the low voltage cables transmitting to the inverter unit of the power converter can be shortened, and the power loss is increased by increasing the voltage from the power converter to the high voltage through the high voltage cable to the power transmission device installed on the land, thereby reducing the power loss. There is.
또한, 본 발명은 전력변환장치가 태양광발전장치에 인접하게 수상에 위치하고 송전장치가 육상에 설치되어 태양광발전장치에서 발전된 직류전력을 전력변환장치의 인버터유닛으로 송전하는 저압 케이블들의 길이가 짧게 되고 아울러 전력변환장치에서 승압된 고압전력을 한조(3상전력의 경우 3가닥)의 고압 케이블에 의해 송전장치에 연결되기 때문에, 저압 케이블들의 사용량을 대폭 줄이게 되어 수상태양광발전시스템의 설치비용을 절감시키는 효과가 있다.In addition, the present invention, the power converter is located in the water adjacent to the photovoltaic device and the power transmission device is installed onshore, the length of the low-voltage cables for transmitting the DC power generated in the photovoltaic device to the inverter unit of the power converter is short In addition, since the high-voltage power boosted by the power converter is connected to the power transmission device by a pair of high-voltage cables (three strands in the case of three-phase power), the use of low-voltage cables is greatly reduced, thereby reducing the installation cost of the solar photovoltaic system. There is a saving effect.
또한, 저압 케이블들을 물속이 아닌 수상에 배선이 가능하기 때문에 케이블의 선정이 자유롭고 배선작업과 유지보수가 수월하게 되는 효과가 있다.In addition, since the low-voltage cables can be wired in the water rather than in the water, the cable can be freely selected and the wiring and maintenance can be easily performed.
또한, 보호하우스를 밀폐형으로 하여 전력변환장치를 습기와 염분으로부터 보호가 가능하고, 자동으로 펌프와 휀을 제어하여 온도와 습도를 최적상태로 전력변환장치의 안전한 운전관리가 가능하며, 호소수를 보호하우스내로 연계하여 순환시킴으로써 별도의 추가적인 냉난방 관련시설이 필요하지 않아 경제적인 효율성 운영과 계절에 관계없이 전력변환장치가 안전한 운전관리가 가능한 효과가 있다. In addition, the protection house is enclosed to protect the power converter from moisture and salt, and automatically controls the pump and pump to allow the safe operation and management of the power converter with optimum temperature and humidity. By circulating in the house, there is no need for additional heating and heating-related facilities, so it is possible to operate economic efficiency and safe operation management regardless of season.
상기와 같은 본 발명의 일실시예에 따른 수상전력변환장치가 적용된 수상태양광발전시스템은 위에서 설명된 실시예들의 구성과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 다양한 변형이 이루어질 수 있도록 구성될 수도 있다.The water-based photovoltaic system to which the water-power converter according to the embodiment of the present invention is applied is not limited to the configuration and operation of the embodiments described above. The above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.

Claims (10)

  1. 수면에 부유되는 메인부유구조체;A main floating structure floating on the water surface;
    상기 메인부유구조체에 설치되며, 태양전지모듈들을 포함하는 태양광발전장치;A photovoltaic device installed on the main floating structure and including solar cell modules;
    수중 지반에 고정되며, 상부가 수면 위에 위치하는 고정프레임;A fixed frame fixed to the ground under water, the upper part of which is located on the surface of the water;
    상기 고정프레임의 상부에 설치되는 보호하우스;A protection house installed on an upper portion of the fixed frame;
    상기 보호하우스 내부에 설치되며, 상기 태양광발전장치에서 발전된 직류전력을 교류로 변환시키고 고압으로 승압시키는 전력변환장치;A power converter installed inside the protection house and converting the DC power generated by the photovoltaic device into alternating current and stepping up to a high pressure;
    육상에 설치되며, 상기 전력변환장치에서 공급되는 고압 교류전력을 배전계통으로 송전하는 송전장치;A power transmission device installed on land and transmitting high voltage AC power supplied from the power conversion device to a power distribution system;
    상기 수상에 위치하는 전력변환장치와 육상에 설치되는 송전장치를 전기적으로 연결하여 상기 전력변환장치에서 승압된 전력이 송전장치로 보내지는 고압케이블;A high voltage cable electrically connected to a power converter located in the water phase and a power transmission device installed on the land to send power boosted by the power conversion device to the power transmission device;
    상기 고정프레임이 위치하는 수중의 물을 이용하여 보호하우스의 내부를 열교환시키는 열교환장치;를 포함하는 수상태양광발전시스템.And a heat exchanger for heat-exchanging the inside of the protection house using water in the water in which the fixed frame is located.
  2. 수면에 부유되는 메인부유구조체;A main floating structure floating on the water surface;
    상기 메인부유구조체에 설치되며, 태양전지모듈들을 포함하는 태양광발전장치;A photovoltaic device installed on the main floating structure and including solar cell modules;
    수중 지반에 고정되는 복수 개의 기둥들;A plurality of pillars fixed to the underwater ground;
    상기 기둥들에 인접하게 수면에 부유되는 보조부유구조체;An auxiliary floatation structure floating on the water surface adjacent to the pillars;
    상기 보조부유구조체가 수위에 따라 상하로 움직임 가능하도록 상기 기둥들과 보조부유구조체를 연결하는 승강장치;A lifting device for connecting the pillars and the auxiliary floating structure so that the auxiliary floating structure can move up and down according to the water level;
    상기 보조부유구조체에 설치되는 보호하우스;A protection house installed on the auxiliary floating structure;
    상기 보호하우스 내부에 설치되며, 상기 태양광발전장치에서 발전된 직류전력을 교류로 변환시키고 고압으로 승압시키는 전력변환장치;A power converter installed inside the protection house and converting the DC power generated by the photovoltaic device into alternating current and stepping up to a high pressure;
    육상에 설치되며, 상기 전력변환장치에서 공급되는 고압 교류전력을 배전계통으로 송전하는 송전장치;A power transmission device installed on land and transmitting high voltage AC power supplied from the power conversion device to a power distribution system;
    상기 수상에 위치하는 전력변환장치와 육상에 설치되는 송전장치를 전기적으로 연결하여 상기 전력변환장치에서 승압된 전력이 송전장치로 보내지는 고압케이블;A high voltage cable electrically connected to a power converter located in the water phase and a power transmission device installed on the land to send power boosted by the power conversion device to the power transmission device;
    상기 고정프레임이 위치하는 수중의 물을 이용하여 보호하우스의 내부를 열교환시키는 열교환장치;를 포함하는 수상태양광발전시스템.And a heat exchanger for heat-exchanging the inside of the protection house using water in the water in which the fixed frame is located.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 전력변환장치는 인버터유닛, 변압기유닛을 포함하는 수상태양광발전시스템.The water photovoltaic power generation system according to claim 1 or 2, wherein the power converter includes an inverter unit and a transformer unit.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 송전장치는 전력을 거래하기 위한 계량기유닛과, 배전계통과 보호협조를 위한 보호계전유닛을 포함하는 수상태양광발전시스템.The water photovoltaic system according to claim 1 or 2, wherein the power transmission device includes a meter unit for trading power, and a protection relay unit for distribution system and protection coordination.
  5. 제 1 항 또는 제 2 항에 있어서, 상기 열교환장치는 수중의 물이 유입되어 상기 보호하우스 내부를 거쳐 수중으로 순환하도록 설치되는 유체순환파이프와, 상기 유체순환파이프로 수중의 물이 순환하도록 수중의 물을 펌핑하는 펌프와, 상기 보호하우스의 내부에 위치하는 유체순환파이프의 일부분에 구비되는 열교환핀들을 포함하는 수상태양광발전시스템.According to claim 1 or 2, wherein the heat exchange device is a fluid circulation pipe is installed so that the water in the water flows through the inside of the protection house and the water circulation pipe, and the water in the water so that the water in the fluid circulation pipe circulates A water-based photovoltaic power generation system comprising a pump for pumping water and heat exchange fins provided in a portion of a fluid circulation pipe located inside the protection house.
  6. 제 5 항에 있어서, 상기 열교환핀들이 구비되는 유체순환파이프의 부분은 다수 회 절곡되는 것을 특징으로 하는 수상태양광발전시스템.6. The water photovoltaic power generation system according to claim 5, wherein the portion of the fluid circulation pipe provided with the heat exchange fins is bent a plurality of times.
  7. 제 5 항에 있어서, 상기 열교환핀들에 공기의 유동을 발생시키는 송풍팬이 더 구비되는 것을 특징으로 하는 수상태양광발전시스템.6. The water photovoltaic power generation system according to claim 5, further comprising a blower fan that generates a flow of air to the heat exchange fins.
  8. 제 1 항에 있어서, 상기 보호하우스를 둘러싸도록 고정프레임의 가장자리에 설치되는 보호방벽을 더 포함하는 수상태양광발전시스템.The water photovoltaic system of claim 1, further comprising a protective barrier installed at an edge of the fixed frame to surround the protective house.
  9. 제 2 항에 있어서, 상기 보호하우스를 둘러싸도록 보조부유구조체의 가장자리에 설치되는 보호방벽을 더 포함하는 수상태양광발전시스템.3. The water photovoltaic system of claim 2, further comprising a protective barrier installed at an edge of the auxiliary floating structure to surround the protective house.
  10. 제 8 항 또는 제 9 항에 있어서, 상기 보호방벽에 다수 개의 구멍들이 구비되는 것을 특징으로 하는 수상태양광발전시스템.10. The water photovoltaic power generation system according to claim 8 or 9, wherein a plurality of holes are provided in the protective barrier.
PCT/KR2017/004124 2016-07-15 2017-04-18 Photovoltaic system on water WO2018012714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0090195 2016-07-15
KR1020160090195A KR101721372B1 (en) 2016-07-15 2016-07-15 A floating solar power generating system using a floating power converting apparatus

Publications (1)

Publication Number Publication Date
WO2018012714A1 true WO2018012714A1 (en) 2018-01-18

Family

ID=58581263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004124 WO2018012714A1 (en) 2016-07-15 2017-04-18 Photovoltaic system on water

Country Status (2)

Country Link
KR (1) KR101721372B1 (en)
WO (1) WO2018012714A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224993A1 (en) * 2019-05-07 2020-11-12 BayWa r.e. Solar Projects GmbH Floating conversion device
CN113074784A (en) * 2021-04-28 2021-07-06 中国三峡新能源(集团)股份有限公司 Device and method for monitoring electrical performance and environmental field of water surface photovoltaic power generation system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074985B1 (en) 2017-12-07 2020-05-08 Electricite De France FLOATING PHOTOVOLTAIC MODULE
KR102074348B1 (en) * 2018-06-27 2020-03-02 한국전력공사 Complex System of Solar Energy Generation and Ocean Aquaculture
KR102144453B1 (en) * 2018-11-29 2020-08-14 한국해양과학기술원 Air conditioning system for cloud data center using sea water and solar energies
KR102396382B1 (en) * 2019-11-27 2022-05-10 한국수력원자력 주식회사 Floating electric room for floating solar power generation
WO2021162225A1 (en) * 2020-02-14 2021-08-19 주식회사 네모이엔지 Floating solar energy generation device
KR20220053210A (en) 2020-10-22 2022-04-29 주식회사 동신이엔텍 Electric room for marine solar power generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270404A2 (en) * 2009-07-01 2011-01-05 Thomas Pfirrmann Buoyant platform for assembling solar modules on a body of water
KR20110004967A (en) * 2009-07-09 2011-01-17 에스티엑스조선해양 주식회사 Floating offshore solar power plant and its application to marine farms
KR20110078800A (en) * 2009-12-31 2011-07-07 홍익대학교 산학협력단 Floated structure with eco-friendship for equipping solar energy generating module
KR20120026924A (en) * 2010-09-10 2012-03-20 (주)서일테크씨에프 Float type solar energy generating device
KR101503741B1 (en) * 2013-12-27 2015-03-19 주식회사 케이디파워 Floating type photovoltaic power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270404A2 (en) * 2009-07-01 2011-01-05 Thomas Pfirrmann Buoyant platform for assembling solar modules on a body of water
KR20110004967A (en) * 2009-07-09 2011-01-17 에스티엑스조선해양 주식회사 Floating offshore solar power plant and its application to marine farms
KR20110078800A (en) * 2009-12-31 2011-07-07 홍익대학교 산학협력단 Floated structure with eco-friendship for equipping solar energy generating module
KR20120026924A (en) * 2010-09-10 2012-03-20 (주)서일테크씨에프 Float type solar energy generating device
KR101503741B1 (en) * 2013-12-27 2015-03-19 주식회사 케이디파워 Floating type photovoltaic power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224993A1 (en) * 2019-05-07 2020-11-12 BayWa r.e. Solar Projects GmbH Floating conversion device
CN113074784A (en) * 2021-04-28 2021-07-06 中国三峡新能源(集团)股份有限公司 Device and method for monitoring electrical performance and environmental field of water surface photovoltaic power generation system
CN113074784B (en) * 2021-04-28 2024-05-24 中国三峡新能源(集团)股份有限公司 Device and method for monitoring electrical performance and environmental field of water surface photovoltaic power generation system

Also Published As

Publication number Publication date
KR101721372B1 (en) 2017-04-10

Similar Documents

Publication Publication Date Title
WO2018012714A1 (en) Photovoltaic system on water
Sharma et al. Design parameters of 10 KW floating solar power plant
KR101075161B1 (en) Floating Offshore Solar Power Plant and Its Application to Marine Farms
CA2513303C (en) Method for the erection of a wind energy plant, and wind energy plant
US9514874B2 (en) Transformer chamber for a wind turbine
WO2010117165A2 (en) Float-type solar energy generating apparatus
CN105673329A (en) Wind power, photovoltaic power, stored energy and wave energy comprehensive utilization power generation device for ship
CN105576531B (en) The preferable power distribution cabinet of radiating effect
WO2015030358A1 (en) Residential container house applying independent solar power generation system
KR101642386B1 (en) Floating solar power generating system
TW202108446A (en) Floating wind turbine comprising an integrated electrical substation
KR102197262B1 (en) Maritime power station for maritime solar power plant and wind power plant
KR20170067127A (en) Floating solar power generating system
KR101721373B1 (en) Power converting apparatus for a floating solar power generating system
CN104993408A (en) Offshore booster station
CN108183459A (en) A kind of ventilation ventilated control system for cable duct
JPH09319975A (en) Airplane warning light
CN208674700U (en) A kind of box-type substation
CN108336746B (en) Dynamic reactive power compensation device of compact type offshore wind turbine generator
CN207633840U (en) Single-pipe tower
CN107059996B (en) Self-adaptive high-weather-resistance glass fiber reinforced plastic water tank
CN217813760U (en) Power generation system
CN215580990U (en) Power supply system combining horizontal slope-changing photovoltaic roof of old community with additional elevator
CN216587402U (en) Ventilation and cooling system for integrated photovoltaic building roof
CN213174964U (en) Large-scale photovoltaic power plant pre-assembled substation room

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827788

Country of ref document: EP

Kind code of ref document: A1