WO2018012419A1 - Motor control device, motor drive system, and motor control method - Google Patents

Motor control device, motor drive system, and motor control method Download PDF

Info

Publication number
WO2018012419A1
WO2018012419A1 PCT/JP2017/024916 JP2017024916W WO2018012419A1 WO 2018012419 A1 WO2018012419 A1 WO 2018012419A1 JP 2017024916 W JP2017024916 W JP 2017024916W WO 2018012419 A1 WO2018012419 A1 WO 2018012419A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcomputer
synchronization signal
signal
motor
synchronization
Prior art date
Application number
PCT/JP2017/024916
Other languages
French (fr)
Japanese (ja)
Inventor
利光 坂井
雅也 滝
修司 倉光
功一 中村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017126972A external-priority patent/JP7024226B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017003491.4T priority Critical patent/DE112017003491B4/en
Publication of WO2018012419A1 publication Critical patent/WO2018012419A1/en
Priority to US16/243,519 priority patent/US10654518B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/14Time supervision arrangements, e.g. real time clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/06Clock generators producing several clock signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping

Definitions

  • the present disclosure relates to a motor control device that controls driving of a motor by a plurality of microcomputers, a motor drive system including the motor control device, and a motor control method.
  • the motor control device disclosed in Patent Document 1 transmits and receives a synchronization signal between a plurality of microcomputers, and the microcomputer that receives the synchronization signal corrects the calculation control timing based on the synchronization signal. In this way, the torque pulsation of the motor is suppressed by synchronizing the operation control timings of the plurality of microcomputers with each other.
  • the prior art does not assume the initial synchronization when starting up a plurality of microcomputers. For example, there is a case where the start timing of each microcomputer due to power ON is shifted due to a difference in power supply voltage supplied to each microcomputer, wiring resistance, voltage detection characteristics, or the like. Then, only the microcomputer that has been activated first operates asynchronously during the period from when the microcomputer that has been activated first starts the timer to when the microcomputer that is activated later starts the timer. Therefore, there is a problem that a plurality of microcomputers cannot be synchronized from the first time. In this specification, “asynchronous control” is included, including control in which a motor is driven by only a part of a plurality of microcomputers.
  • Patent Document 1 does not assume a case where an abnormality occurs in a synchronization signal transmitted / received between a plurality of microcomputers.
  • the microcomputer on the synchronization signal receiving side corrects the timing based on the abnormal synchronization signal. Therefore, depending on the degree of abnormality of the synchronization signal, the control by the synchronization signal receiving side microcomputer may fail.
  • a more inconvenient situation may occur than a torque pulsation caused by a clock shift. For example, in an electric power steering device for a vehicle, if the assist function is stopped by stopping the motor drive, the driver is anxious. Therefore, it is required to determine an abnormality of the synchronization signal and to take an appropriate measure in the case of the abnormality.
  • An object of the present disclosure is to provide a motor control device that can be synchronized from the first time after activation of a plurality of microcomputers.
  • a motor control device that transmits and receives a synchronization signal for correcting a clock shift between a plurality of microcomputers that operate with independent clocks.
  • a motor control device capable of determining an abnormality of the synchronization signal is provided.
  • it is providing the motor drive system provided with the motor control apparatus, and the motor control method by the motor control apparatus.
  • the motor control device includes a plurality of motor drive circuits, a plurality of microcomputers, and a plurality of clock generation circuits.
  • the plurality of motor drive circuits drive, for example, one or more motors having a plurality of winding sets.
  • the plurality of microcomputers include a drive signal generation unit and a drive timing generation unit.
  • the drive signal generation unit generates a motor drive signal that commands each of the plurality of motor drive circuits.
  • the drive timing generation unit generates a drive timing that is a pulse timing of the motor drive signal.
  • the plurality of clock generation circuits independently generate clocks used as a reference for operation by the plurality of microcomputers.
  • the clock generation circuit, the microcomputer, and the motor drive circuit are provided corresponding to each other, and the unit of the group of components is defined as “system”.
  • the motor control device drives the motor by controlling the energization to the corresponding winding set by the constituent elements of each system.
  • a synchronization signal transmitting side microcomputer The at least one microcomputer that receives the synchronization signal transmitted from the microcomputer is referred to as a synchronization signal receiving side microcomputer.
  • the microcomputer itself is referred to as “own microcomputer”.
  • the motor control device further includes the following configuration.
  • the synchronization signal transmission side microcomputer has a synchronization signal generation part which generates a synchronization signal and transmits it to the synchronization signal reception side microcomputer.
  • the synchronization signal receiving side microcomputer has a timing correction unit capable of performing timing correction for correcting the driving timing of the microcomputer so as to be synchronized with the received synchronization signal.
  • the synchronization signal receiving side microcomputer has a ready signal transmission part.
  • the ready signal transmission unit transmits a ready signal indicating that the synchronization preparation of the microcomputer is completed to the synchronization signal transmission side microcomputer.
  • the synchronization signal transmission side microcomputer includes a ready signal receiving unit that receives a ready signal.
  • the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer have a handshake determination unit that determines that the handshake is successful when a handshake including at least transmission / reception of a ready signal is normally performed. When it is determined that the handshake is successful, the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer drive the motor synchronously from the first time after activation. Thereby, the motor control device according to the present disclosure can be synchronized from the first time after activation of a plurality of microcomputers.
  • the timing correction unit of the synchronization signal receiving side microcomputer includes a reception signal determination unit that performs reception signal determination that is normal or abnormal determination of the received synchronization signal.
  • the synchronization signal receiving microcomputer permits timing correction when the synchronization signal is determined to be normal in the reception signal determination, and prohibits timing correction when the synchronization signal is determined to be abnormal in the reception signal determination.
  • the motor is driven asynchronously with the signal transmission side microcomputer.
  • the synchronization signal abnormality can be determined by the reception signal determination unit of the synchronization signal receiving side microcomputer.
  • the synchronization signal reception side microcomputer prohibits timing correction and drives the motor asynchronously with the synchronization signal transmission side microcomputer. Accordingly, it is possible to prevent the control of the synchronization signal receiving microcomputer from failing due to the abnormality of the synchronization signal. In this case, even if torque pulsation occurs, at least driving of the motor can be continued. Therefore, the present invention is particularly effective in a motor drive system in which there is a great need for continuing an assist function by driving a motor, such as an electric power steering device.
  • the motor control device of the second aspect further has the following three drive modes on the premise of the above basic configuration.
  • (2) Without using the synchronization signal, the synchronization signal transmission side microcomputer and the synchronization signal reception side Asynchronous drive mode in which the microcomputer drives the motor asynchronously
  • Partial system drive mode in which the motor is driven by only one of the synchronization signal transmission side microcomputer or the synchronization signal reception side microcomputer
  • This motor control device includes a synchronization signal transmission side microcomputer and When the synchronization signal receiving side microcomputer is activated, the system may be shifted in the order of partial system drive mode, asynchronous drive mode, and synchronous drive mode.
  • a motor control method by the motor control device having the above basic configuration is provided.
  • the ready signal transmission step of this motor control method the synchronization signal receiving side microcomputer transmits a ready signal indicating that the synchronization preparation of its own microcomputer is completed to the synchronization signal transmitting side microcomputer.
  • the ready signal receiving step the synchronization signal transmitting side microcomputer receives the ready signal.
  • the handshake success determination step when at least a handshake including transmission / reception of a ready signal is normally performed, the handshake determination unit of the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer determines that the handshake is successful. .
  • the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer drive the motor synchronously from the first time after activation.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus in which the ECU of each embodiment is applied as an electromechanical integrated motor drive system.
  • FIG. 2 is a configuration diagram of an electric power steering device in which the ECU of each embodiment is applied as an electro-mechanical separate type motor drive system,
  • FIG. 3 is a sectional view in the axial direction of a two-system electromechanical integrated motor, 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic diagram showing the configuration of a multi-homologous axis motor,
  • FIG. 6 is an overall configuration diagram of an ECU (motor control device) according to each embodiment.
  • FIG. 7 is a detailed configuration diagram of an ECU (motor control device) according to a basic form of the first embodiment.
  • FIG. 8 is a diagram showing the relationship between the motor drive signal and the analog signal sampling timing.
  • FIG. 9 is a time chart showing the clock deviation of the two systems of microcomputers.
  • FIG. 10 is a time chart for explaining timing correction (prior art) using a synchronization signal.
  • FIG. 11 is a time chart for explaining the problems of the prior art when the synchronization signal is abnormal,
  • FIG. 12 is a flowchart of timing determination processing according to the basic form of the first embodiment.
  • FIG. 13 is a diagram illustrating a setting example of a synchronization permission section according to the basic form of the first embodiment.
  • FIG. 14 is a time chart when the synchronization signal is abnormal according to the basic form of the first embodiment.
  • FIG. 15 is a flowchart of the motor drive start process at the time of starting the microcomputer.
  • FIG. 16 is a flowchart of the timing determination standby process when the microcomputer is activated.
  • FIG. 17 is a flowchart of timing correction return processing after the synchronization signal abnormality determination,
  • FIG. 18 is a flowchart of the synchronization signal abnormality confirmation process,
  • FIG. 19 is a configuration diagram of an ECU (motor control device) according to the first embodiment.
  • FIG. 20 is a time chart of the handshake operation example 1.
  • FIG. 21 is a time chart of a modified example of the handshake operation example 1.
  • FIG. 22 is a time chart of handshake operation example 2.
  • FIG. 20 is a time chart of the handshake operation example 1.
  • FIG. 21 is a time chart of a modified example of the handshake operation example 1.
  • FIG. 22 is a time
  • FIG. 23 is a time chart of Modification A of Handshake Operation Example 2;
  • FIG. 24 is a time chart of Modification B of Handshake Operation Example 2;
  • FIG. 25 is a time chart of the handshake operation example 3.
  • FIG. 26 is a flowchart of the first microcomputer startup process in the first to third operation examples.
  • FIG. 27 is a flowchart of the second microcomputer startup process in the first to third operation examples.
  • FIG. 28 is a flowchart of the second microcomputer activation post-processing of the modification B of the operation example 2
  • FIG. 29 is a flowchart of the handshake success / failure storage process.
  • FIG. 30 is a flowchart of the second microcomputer synchronization processing during asynchronous control.
  • FIG. 31 is a time chart of the handshake operation example 4.
  • FIG. 31 is a time chart of the handshake operation example 4.
  • FIG. 32 is a flowchart of the second microcomputer start-up process in the operation example 4
  • FIG. 33 is a time chart of a handshake operation example 5A at the time of restart
  • FIG. 34 is a time chart of the handshake operation example 5B at the time of restart
  • FIG. 35 is a time chart of the handshake operation example 6 at the time of restart
  • FIG. 36 is a configuration diagram of an ECU (motor control device) according to the second embodiment.
  • FIG. 37 is a time chart of an example of handshake operation with three microcomputers.
  • FIG. 38 is a configuration diagram of a basic form corresponding part of an ECU (motor control device) according to a third embodiment.
  • FIG. 39 is a diagram illustrating bidirectional synchronization signal transmission / reception timing according to the third embodiment.
  • FIG. 40 is a time chart of the handshake operation example 7.
  • FIG. 41 is a flowchart of the first microcomputer start-up process in Operation Example 7
  • FIG. 42 is a flowchart of processing after starting the second microcomputer of the operation example 7
  • FIG. 43 is a time chart of the fourth embodiment using a synchronization signal of a specific pulse pattern
  • FIG. 44 is a time chart of the fifth embodiment using a synchronization signal of a specific pulse pattern.
  • an ECU as a “motor control device” is applied to an electric power steering device of a vehicle and controls energization of a motor that outputs a steering assist torque.
  • the ECU and the motor constitute a “motor drive system”.
  • substantially the same components are denoted by the same reference numerals and description thereof is omitted.
  • the following first to fifth embodiments are collectively referred to as “this embodiment”.
  • FIGS. 1 and 2 show an overall configuration of a steering system 99 including an electric power steering device 90.
  • FIG. FIG. 1 shows an “mechanical and integrated” configuration in which the ECU 10 is integrally formed on one side of the motor 80 in the axial direction, and FIG. The structure of “mechanical separate type” is illustrated.
  • the electric power steering device 90 in FIGS. 1 and 2 is a column assist type, but can be similarly applied to a rack assist type electric power steering device.
  • the steering system 99 includes a handle 91, a steering shaft 92, a pinion gear 96, a rack shaft 97, wheels 98, an electric power steering device 90, and the like.
  • a steering shaft 92 is connected to the handle 91.
  • a pinion gear 96 provided at the tip of the steering shaft 92 is engaged with the rack shaft 97.
  • a pair of wheels 98 are provided at both ends of the rack shaft 97 via tie rods or the like.
  • the electric power steering device 90 includes a steering torque sensor 93, an ECU 10, a motor 80, a reduction gear 94, and the like.
  • the steering torque sensor 93 is provided in the middle of the steering shaft 92 and detects the steering torque of the driver.
  • the duplicated steering torque sensor 93 includes a first torque sensor 931 and a second torque sensor 932, and detects the first steering torque trq1 and the second steering torque trq2 doubly.
  • the detected value of one steering torque trq may be used in common for the two systems.
  • redundantly detected steering torques trq1 and trq2 they are described as one steering torque trq.
  • the ECU 10 controls the driving of the motor 80 based on the steering torques trq1 and trq2 so that the motor 80 generates a desired assist torque.
  • the assist torque output from the motor 80 is transmitted to the steering shaft 92 via the reduction gear 94.
  • the ECU 10 acquires the electrical angles ⁇ 1 and ⁇ 2 of the motor 80 detected by the rotation angle sensor and the steering torques trq1 and trq2 detected by the steering torque sensor 93.
  • the ECU 10 controls the driving of the motor 80 based on such information and information such as the motor current detected inside the ECU 10.
  • FIG. 3 A configuration of an electromechanical integrated motor 800 in which the ECU 10 is integrally formed on one side in the axial direction of the motor 80 will be described with reference to FIGS. 3 and 4.
  • the ECU 10 is disposed coaxially with the axis Ax of the shaft 87 on the side opposite to the output side of the motor 80.
  • the ECU 10 may be configured integrally with the motor 80 on the output side of the motor 80.
  • the motor 80 is a three-phase brushless motor, and includes a stator 840, a rotor 860, and a housing 830 that accommodates them.
  • the stator 840 has a stator core 845 fixed to the housing 830 and two sets of three-phase winding sets 801 and 802 assembled to the stator core 845.
  • Lead wires 851, 853, and 855 extend from the respective phase windings constituting the first winding set 801.
  • Lead wires 852, 854, 856 extend from the respective phase windings constituting the second winding set 802.
  • the rotor 860 has a shaft 87 supported by a rear bearing 835 and a front bearing 836, and a rotor core 865 in which the shaft 87 is fitted.
  • the rotor 860 is provided inside the stator 840 and is rotatable relative to the stator 840.
  • a permanent magnet 88 is provided at one end of the shaft 87.
  • the housing 830 has a bottomed cylindrical case 834 including a rear frame end 837 and a front frame end 838 provided at one end of the case 834.
  • the case 834 and the front frame end 838 are fastened to each other by bolts or the like.
  • Lead wires 851, 852 and the like of each winding set 801, 802 extend through the lead wire insertion hole 839 of the rear frame end 837 to the ECU 10 side and are connected to the substrate 230.
  • the ECU 10 includes a cover 21, a heat sink 22 fixed to the cover 21, a substrate 230 fixed to the heat sink 22, and various electronic components mounted on the substrate 230.
  • the cover 21 protects electronic components from external impacts and prevents intrusion of dust or water into the ECU 10.
  • the cover 21 includes an external connection connector 214 and a cover 213 for an external power supply cable and signal cable.
  • the power supply terminals 215 and 216 of the external connection connector portion 214 are connected to the substrate 230 via a path (not shown).
  • the board 230 is, for example, a printed board, is provided at a position facing the rear frame end 837, and is fixed to the heat sink 22.
  • the board 230 is provided with electronic components for two systems independently for each system, and has a completely redundant configuration.
  • the number of the substrates 230 is one, but in other embodiments, two or more substrates may be provided.
  • the surface facing the rear frame end 837 is referred to as a motor surface 237
  • the opposite surface, that is, the surface facing the heat sink 22 is referred to as a cover surface 238.
  • a plurality of switching elements 241 and 242, rotation angle sensors 251 and 252, custom ICs 261 and 262 are mounted on the motor surface 237.
  • the plurality of switching elements 241 and 242 are six for each system, and constitute the three-phase upper and lower arms of the motor drive circuit.
  • the rotation angle sensors 251 and 252 are arranged so as to face the permanent magnet 88 provided at the tip of the shaft 87.
  • the custom ICs 261 and 262 and the microcomputers 401 and 402 have a control circuit for the ECU 10.
  • the custom ICs 261 and 262 are provided with, for example, clock monitoring units 661 and 662 shown in FIG.
  • microcomputers 401 and 402 On the cover surface 238, microcomputers 401 and 402, capacitors 281 and 282, inductors 271 and 272, and the like are mounted.
  • the first microcomputer 401 and the second microcomputer 402 are arranged on the cover surface 238 that is the same side surface of the same substrate 230 at a predetermined interval.
  • Capacitors 281 and 282 smooth the electric power input from the power source and prevent noise from flowing out due to the switching operation of switching elements 241 and 242.
  • the inductors 271 and 272 constitute a filter circuit together with the capacitors 281 and 282.
  • the motor 80 to be controlled by the ECU 10 is a three-phase brushless motor in which two sets of three-phase winding sets 801 and 802 are provided coaxially.
  • the winding sets 801 and 802 have the same electrical characteristics.
  • the winding sets 801 and 802 are arranged on a common stator with an electrical angle shifted by 30 degrees.
  • the winding sets 801 and 802 are controlled so that, for example, a phase current having the same amplitude and a phase shift of 30 deg.
  • a combination of the first winding set 801 and the first microcomputer 401 and the motor drive circuit 701 related to the energization control of the first winding set 801 is defined as a first system GR1.
  • a combination of the second winding set 802 and the second microcomputer 402, the second motor drive circuit 702, and the like related to energization control of the second winding set 802 is defined as a second system GR2.
  • the first system GR1 and the second system GR2 are all composed of two independent element groups, and have a so-called “complete two-system” redundant configuration.
  • first is added to the beginning of components or signals of the first system GR1
  • second is added to the beginning of components or signals of the second system GR2, as necessary.
  • Items that are common to each system are collectively described without adding “first and second”.
  • “1” is added to the end of the code of the first system component or signal
  • “2” is added to the end of the code of the second system component or signal.
  • own system a system including the component
  • other system is referred to as “other system”.
  • the microcomputer of the own system is referred to as “own microcomputer”
  • other microcomputer is referred to as “other microcomputer”.
  • the first connector portion 351 of the ECU 10 includes a first power connector 131, a first vehicle communication connector 311, and a first torque connector 331.
  • the second connector portion 352 includes a second power connector 132, a second vehicle communication connector 312, and a second torque connector 332.
  • Each of the connector portions 351 and 352 may be formed as a single connector, or may be divided into a plurality of connectors.
  • the first power connector 131 is connected to the first power source 111.
  • the power of the first power supply 111 is supplied to the first winding set 801 via the power connector 131, the power relay 141, the first motor drive circuit 701, and the motor relay 731.
  • the power of the first power supply 111 is also supplied to the first microcomputer 401 and the sensors of the first system GR1.
  • the second power connector 132 is connected to the second power source 112.
  • the power of the second power source 112 is supplied to the second winding set 802 via the power connector 132, the power relay 142, the second motor drive circuit 702, and the motor relay 732.
  • the power of the second power source 112 is also supplied to the second microcomputer 402 and the sensors of the second system GR2.
  • the two power supply connectors 131 and 132 may be connected to a common power supply.
  • the first vehicle communication connector 311 is connected between the first CAN 301 and the first vehicle communication circuit 321, and the second vehicle communication connector 312 is connected to the second CAN 302 and the second CAN communication network 312. Connected to the vehicle communication circuit 322.
  • the two vehicle communication connectors 311 and 312 may be connected to the common CAN 30.
  • a network of any standard such as CAN-FD (CAN with Flexible Data rate) or FlexRay may be used.
  • the vehicle communication circuits 321 and 322 communicate information bidirectionally with the microcomputers 401 and 402 of the own system and other systems.
  • the first torque connector 331 is connected between the first torque sensor 931 and the first torque sensor input circuit 341.
  • the first torque sensor input circuit 341 notifies the first microcomputer 401 of the steering torque trq1 detected by the first torque connector 331.
  • the second torque connector 332 is connected between the second torque sensor 932 and the second torque sensor input circuit 342.
  • the second torque sensor input circuit 342 notifies the second microcomputer 402 of the steering torque trq2 detected by the second torque connector 332.
  • Each processing in the microcomputers 401 and 402 may be software processing by a CPU executing a program stored in advance in a substantial memory device such as a ROM, or hardware processing by a dedicated electronic circuit. Also good.
  • the microcomputers 401 and 402 operate with the reference clock generated by the clock generation circuits 651 and 652.
  • the clock monitoring units 661 and 662 monitor the reference clocks generated by the clock generation circuits 651 and 652, respectively. The generation and monitoring of the reference clock will be described later in detail.
  • the first microcomputer 401 generates a motor drive signal Dr1 for operating the operation of the switching element 241 of the first motor drive circuit 701 and instructs the first motor drive circuit 701.
  • the first microcomputer 401 generates a first power relay drive signal Vpr1 and a first motor relay drive signal Vmr1.
  • the second microcomputer 402 generates a motor drive signal Dr2 for operating the operation of the switching element 242 of the second motor drive circuit 702, and instructs the second motor drive circuit 702.
  • the second microcomputer 402 generates a second power relay drive signal Vpr2 and a second motor relay drive signal Vmr2.
  • the power supply relay drive signals Vpr1 and Vpr2 generated by the microcomputers 401 and 402 are instructed to the power supply relays 141 and 142 of the own system, and are also notified to other microcomputers.
  • the microcomputers 401 and 402 can transmit / receive information to / from each other through communication between microcomputers.
  • the microcomputers 401 and 402 can transmit and receive a current detection value, a current command value, and the like to each other through communication between the microcomputers, and drive the motor 80 in cooperation with the first system GR1 and the second system GR2.
  • a communication frame for communication between microcomputers includes a current detection value and the like.
  • a current command value, a current limit value, an update counter, a status signal, a CRC signal that is an error detection value signal, or a checksum signal may be included. Note that this embodiment can be applied regardless of the communication contents of the communication between microcomputers, and may transmit / receive other information as necessary, or a part or all of the data may not be included. .
  • each microcomputer receives power relay drive signals Vpr1 and Vpr2 from other microcomputers, but does not receive signals from other microcomputers through communication between microcomputers, the other microcomputers are normal and communication between microcomputers is normal. Is determined to be abnormal.
  • each microcomputer does not receive the power supply relay drive signals Vpr1 and Vpr2 from the other microcomputers and does not receive the signal from the other microcomputers through the communication between the microcomputers, it is determined that the other microcomputers are abnormal.
  • the first motor drive circuit 701 is a three-phase inverter having a plurality of switching elements 241 and converts electric power supplied to the first winding set 801. On / off operation of the switching element 241 of the first motor drive circuit 701 is controlled based on the motor drive signal Dr1 output from the first microcomputer 401.
  • the second motor drive circuit 702 is a three-phase inverter having a plurality of switching elements 242, and converts electric power supplied to the second winding set 802. The on / off operation of the switching element 242 of the second motor drive circuit 702 is controlled based on the motor drive signal Dr2 output from the second microcomputer 402.
  • the first power supply relay 141 is provided between the first power supply connector 131 and the first motor drive circuit 701, and is controlled by a first power supply relay drive signal Vpr1 from the first microcomputer 401.
  • a first power supply relay drive signal Vpr1 from the first microcomputer 401.
  • the second power supply relay 142 is provided between the second power supply connector 132 and the second motor drive circuit 702, and is controlled by a second power supply relay drive signal Vpr2 from the second microcomputer 402.
  • the second power supply relay 142 When the second power supply relay 142 is on, energization between the second power supply 112 and the second motor drive circuit 702 is allowed. When the second power supply relay 142 is off, the second power supply 112 and the second motor drive circuit are allowed. The power supply to and from 702 is cut off.
  • the power supply relays 141 and 142 of this embodiment are semiconductor relays such as MOSFETs.
  • MOSFETs semiconductor relays
  • the power relays 141 and 142 may be mechanical relays.
  • the first motor relay 731 is provided in each phase power path between the first motor drive circuit 701 and the first winding set 801, and is controlled by a first motor relay drive signal Vmr 1 from the first microcomputer 401.
  • a first motor relay drive signal Vmr 1 from the first microcomputer 401.
  • the second motor relay 732 is provided in each phase power path between the second motor drive circuit 702 and the second winding set 802, and is controlled by the second motor relay drive signal Vmr2 from the second microcomputer 402.
  • the first current sensor 741 detects the current Im1 energized in each phase of the first winding set 801 and outputs it to the first microcomputer 401.
  • the second current sensor 742 detects the current Im ⁇ b> 2 energized in each phase of the second winding set 802 and outputs it to the second microcomputer 402.
  • the first rotation angle sensor 251 detects the electrical angle ⁇ ⁇ b> 1 of the motor 80 and outputs it to the first microcomputer 401.
  • the second rotation angle sensor 252 detects the electrical angle ⁇ ⁇ b> 2 of the motor 80 and outputs it to the second microcomputer 402.
  • FIG. 7 shows a configuration related to synchronization during operation among the configurations of the ECU 101 of the first embodiment shown in FIG. In the basic form ECU shown in FIG. As shown in FIG.
  • the ECU 100 includes a first system control unit 601 that controls energization of the first winding set 801 and a second system control unit 602 that controls energization of the second winding set 802.
  • the control units 601 and 602 of each system include clock generation circuits 651 and 652, clock monitoring units 661 and 662, microcomputers 401 and 402, and motor drive circuits 701 and 702.
  • a unit of a group of components including a clock generation circuit, a microcomputer, and a motor drive circuit corresponding to each other is referred to as a “system”.
  • the first clock generation circuit 651 and the second clock generation circuit 652 independently generate reference clocks that the first microcomputer 401 and the second microcomputer 402 operate as references.
  • the first clock monitoring unit 661 monitors the reference clock generated by the first clock generation circuit 651 and output to the first microcomputer 401.
  • the second clock monitoring unit 662 monitors the reference clock generated by the second clock generation circuit 652 and output to the second microcomputer 402. Further, when the clock monitoring units 661 and 662 detect the abnormality of the reference clock, the clock monitoring units 661 and 662 output a reset (“RESET” in the drawing) signal to the microcomputers 401 and 402.
  • RESET reset
  • the microcomputers 401 and 402 receive vehicle information input via the CANs 301 and 302, and information such as steering torque trq1 and trq2, phase currents Im1 and Im2, and electrical angles ⁇ 1 and ⁇ 2 input from each sensor. .
  • the microcomputers 401 and 402 generate motor drive signals Dr1 and Dr2 by control calculation based on these various pieces of input information, and output them to the motor drive circuits 701 and 702.
  • the timing of the control operation is determined based on the clock generated by the clock generation circuits 651 and 652.
  • the motor drive circuits 701 and 702 energize the winding sets 801 and 802 based on the motor drive signals Dr1 and Dr2 commanded from the microcomputers 401 and 402, respectively.
  • the motor drive circuits 701 and 702 are power conversion circuits in which a plurality of switching elements such as MOSFETs are bridge-connected.
  • the motor drive signals Dr1 and Dr2 are switching signals that turn on / off each switching element.
  • the motor drive circuits 701 and 702 are three-phase inverters.
  • Each microcomputer 401, 402 is independently provided with a ROM that stores fixed values such as control programs and parameters, and a RAM that temporarily stores and holds the results of arithmetic processing.
  • the ROM and RAM of the partner microcomputer can be referred to. Can not.
  • the two microcomputers 401 and 402 are connected by a synchronization signal line 471.
  • the number of the synchronization signal lines 471 is one, but a plurality of synchronization signal lines may be provided in the third embodiment to be described later and other embodiments including three or more microcomputers. . That is, the ECU based on the basic form of the first embodiment generally includes at least one synchronization signal line.
  • This synchronization signal line is not limited to a dedicated line for transmitting a synchronization signal, which will be described later. May be shared with other signal lines. Further, as disclosed in paragraph [0044] of Japanese Patent Application Laid-Open No. 2011-148498, for example, the port signal level is changed from the first microcomputer 401 to the second microcomputer 402 in place of communication using the synchronization signal line. By doing so, a synchronization signal can be notified.
  • the first microcomputer 401 and the second microcomputer 402 have drive timing generation units 441 and 442, drive signal generation units 451 and 452, and analog signal sampling units 461 and 462 as a common configuration.
  • the drive timing generation units 441 and 442 generate a drive timing that is a pulse timing of the motor drive signals Dr1 and Dr2 using, for example, a PWM carrier common to each phase, and instruct the drive signal generation units 451 and 452.
  • the drive signal generators 451 and 452 generate, for example, motor drive signals Dr1 and Dr2 that are PWM signals by comparing the DUTY of the voltage command signal and the PWM carrier, and command the motor drive circuits 701 and 702.
  • the analog signal sampling units 461 and 462 sample analog signals. As analog signals, the detection values of the motor currents Im1 and Im2 of each system are mainly assumed. In the three-phase motor, motor currents Im1 and Im2 are U-phase, V-phase, and W-phase currents of the winding sets 801 and 802, respectively.
  • FIG. 7 shows arrows assuming that motor currents Im1 and Im2 detected by shunt resistors and the like provided in the motor drive circuits 701 and 702 are acquired.
  • the analog signal sampling units 461 and 462 may acquire analog signals of the electrical angles ⁇ 1 and ⁇ 2 and the steering torques trq1 and trq2.
  • FIG. 8 shows a configuration for generating a motor drive signal Dr using a PWM carrier having a period Tp in common for each phase.
  • the assumed DUTY is, for example, a value in the range of 10% to 90%, 0% and 100%.
  • DUTY 0% is represented as the peak side of the PWM carrier
  • DUTY 100% is represented as the valley side of the PWM carrier.
  • the period Tp of the PWM carrier corresponds to the pulse period of the motor drive signal Dr.
  • the pulse of the motor drive signal Dr rises during the period SWu from the time u9 to the time u1, and falls during the period SWd from the time d1 to the time d9. Further, no rise or fall of the pulse occurs during the DUTY 0% and 100% periods. Therefore, in the “non-switching period NSW” hatched by the broken line, the switching of the motor drive signal Dr does not occur for the switching elements of all phases. Note that the non-switching period NSW in the PWM control corresponds to a minute period straddling the timing of the valleys and peaks of carriers.
  • the analog signal sampling units 461 and 462 sample in synchronization with the drive timing generation units 441 and 442 at a timing at which switching to 0% or 100% DUTY does not occur in the non-switching period NSW. This makes the sampling signal less susceptible to switching noise and improves sampling accuracy. More specifically, sampling is preferably performed after a lapse of time during which the surge voltage generated by switching decays.
  • the first microcomputer 401 has a synchronization signal generation unit 411 and the second microcomputer 402 has a timing correction unit 422.
  • the first microcomputer 401 functions as a “synchronization signal transmission side microcomputer” that transmits a synchronization signal
  • the second microcomputer 402 functions as a “synchronization signal reception side microcomputer” that receives the synchronization signal.
  • the microcomputer itself is referred to as “own microcomputer”.
  • the synchronization signal generation unit 411 of the first microcomputer 401 generates a synchronization signal that is synchronized with the drive timing generated by the drive timing generation unit 441 of its own microcomputer and that synchronizes the drive timings of the two microcomputers 401 and 402. Then, the synchronization signal generation unit 411 transmits a synchronization signal to the second microcomputer 402 via the synchronization signal line 471.
  • the timing correction unit 422 of the second microcomputer 402 receives the synchronization signal transmitted from the first microcomputer 401 and can correct the drive timing generated by the drive timing generation unit 442 of the own microcomputer so as to be synchronized with the received synchronization signal. It is. This correction is called “timing correction”. As indicated by a broken line in the second microcomputer 402 in FIG. 7, in timing correction, a timing correction instruction is output from the timing correction unit 422 to the drive timing generation unit 442, and the drive timing generation unit 442 changes the drive timing accordingly. to correct.
  • Patent Document 1 Japanese Patent No. 5412095
  • a timing determination unit 432 as a “reception signal determination unit” is further included in the timing correction unit 422.
  • FIG. 9 shows how the timings of the motor drive signals Dr1 and Dr2 of the two microcomputers 401 and 402 are gradually shifted due to manufacturing variations of the clock generation circuits 651 and 652.
  • the pulse period of the first motor drive signal Dr1 is indicated as TpA
  • the pulse period of the second motor drive signal Dr2 is indicated as TpB.
  • the PWM carrier valley and peak timings of the first microcomputer 401 are set to ta1, ta2,... In order from the reference time ta0.
  • the valley and peak timing of the PWM carrier of the second microcomputer 402 are tb1, tb2,... In order from the reference time tb0.
  • the reference times ta0 and tb0 match.
  • the second motor drive signal Dr2 is gradually delayed with respect to the first motor drive signal Dr1.
  • the timing shift ⁇ t1 that occurs in the first cycle is relatively small, if this accumulates, the timing shift expands to the size of ⁇ t7 in the fourth cycle.
  • torque pulsation occurs as described in Patent Document 1, for example.
  • the falling timing of the first motor drive signal Dr1 after ta11 overlaps with the analog signal sampling timing of the second microcomputer 402.
  • the rising timing of the second motor drive signal Dr2 after tb11 overlaps with the analog signal sampling timing of the first microcomputer 401.
  • the sampling accuracy is lowered due to the influence of switching noise.
  • the synchronization signal is generated as a pulse signal having a cycle Ts corresponding to four cycles of the pulse cycle TpA of the first motor drive signal Dr1.
  • This pulse repeats rising and falling every four times of PWM carrier valley and peak timing. That is, it rises at ta0 and ta8, and falls at ta4 and ta12.
  • the timing of the second microcomputer 402 is corrected so as to synchronize with the timing of ta0 and ta8 when the pulse rises.
  • the timing is corrected so that the timing tb8 of the second microcomputer 402 coincides with the timing ta8 at which the synchronization signal pulse rises after the timing deviation ⁇ t7 is accumulated as in FIG. Since the timing shift is reset to 0 at tb8, the timing shift ⁇ t9 that occurs in the subsequent one cycle is suppressed to the same extent as the initial timing shift ⁇ t1. That is, good motor driving can be continued by correcting and synchronizing the drive timing before the timing deviation reaches a level that affects torque pulsation and sampling accuracy.
  • a specific synchronization method is not limited to the example in FIG. 10 and may be set as appropriate.
  • each microcomputer can operate a motor while synchronizing control timing in an ECU that operates with a clock generated by an independent clock generation circuit. It can be carried out. Thereby, torque pulsation can be suppressed. Further, it is possible to avoid the analog signal sampling timing from overlapping with the switching timing of the motor drive signals Dr1 and Dr2.
  • a normal synchronization signal is not always transmitted. That is, an abnormality occurs in the transmitted synchronization signal itself due to a failure of the first clock generation circuit 651 for operating the first microcomputer 401 or the synchronization signal generation unit 411 of the first microcomputer 401 or the synchronization signal line 471. There is a possibility. Then, next, a problem when an abnormal synchronization signal is received by the second microcomputer 402 will be described.
  • FIG. 11 shows a malfunction that is assumed when an abnormality occurs in the first clock generation circuit 651 that operates the first microcomputer 401.
  • the clock generation circuit 651 is normal from the reference time ta0 to ta8, but after ta8, the clock frequency increases and an abnormality occurs in which the pulse period TpA of the first motor drive signal Dr1 is shortened.
  • the frequency of the synchronization signal generated using the clock generated by the clock generation circuit 651 increases, and the cycle Ts becomes shorter. In this case, if the control calculation becomes unable to follow the increased clock frequency, the control of the first microcomputer 401 fails, and the motor drive must be stopped.
  • the second microcomputer 402 is normal, and the pulse period TpB of the second motor drive signal Dr2 is kept constant.
  • the drive timing of the second microcomputer 402 is corrected to the rising timings ta0, ta8, ta16, and ta24 of the synchronization signal pulse.
  • timing correction is performed in the middle of the ON period of the second motor drive signal Dr2, and it is forcibly turned off.
  • an unintended pulse is generated, and the switching control of the second motor drive circuit 702 may become unstable.
  • the sampling interval of the analog signal becomes uneven, which may affect the sampling accuracy.
  • the influence of the failure generated in the first system control unit 601 affects the operation of the microcomputer 402 of the other system is referred to as “failure propagation”.
  • the second microcomputer 402 performs timing correction based on the abnormal synchronization signal transmitted from the first microcomputer 401, so that the motor drive that should have been able to be executed normally if only the second system is used. There is a serious situation where the situation becomes impossible.
  • the reason why the motor control device has a redundant configuration of two systems is that even if an abnormality occurs in one of the systems, the motor drive can be continued by the operation of the other normal system. Nevertheless, when fault propagation occurs, its purpose is not fulfilled at all. In particular, in the electric power steering apparatus 90, it is more important to continue driving the motor and avoid stopping the assist function even if torque pulsation occurs and analog signal sampling accuracy is reduced. Therefore, there is a fatal problem in the prior art of Patent Document 1 in which there is a possibility of failure propagation.
  • the ECU 100 performs “reception signal determination” which is a determination of normality or abnormality of the received synchronization signal on the timing correction unit 422 of the second microcomputer 402.
  • a timing determination unit 432 is included as the “reception signal determination unit”.
  • the second microcomputer 402 permits timing correction when the timing determination unit 432 determines that the received synchronization signal is normal.
  • the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401.
  • the synchronization signal reception side microcomputer first determines whether or not the synchronization signal from the synchronization signal transmission side microcomputer that causes failure propagation is normal.
  • the synchronization signal is determined to be normal, good motor drive is realized by correcting the drive timing of the synchronization signal reception side microcomputer so as to be synchronized with the drive timing of the synchronization signal transmission side microcomputer.
  • priority is given to prevention of failure propagation and timing correction is not performed. That is, it is most important to maintain the minimum assist function by cutting the edge with the synchronization signal transmission side microcomputer and continuing the motor drive asynchronously.
  • timing determination unit 432 performs “timing determination” as “reception signal determination”
  • reception signal determination it is determined whether or not the pulse edge of the received synchronization signal, that is, the rising or falling timing is included in the “synchronization permission section”.
  • the “synchronization permission section” may be rephrased as “correction permission section”.
  • the “timing of pulse edge reception of the synchronization signal” is simply referred to as “synchronization signal reception timing”.
  • the synchronization signal generation unit 411 of the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 in the synchronization signal transmission step S01 of FIG.
  • the timing correction unit 422 receives the synchronization signal.
  • the timing determination unit 432 determines whether the synchronization signal is normal or abnormal by determining whether the reception timing of the synchronization signal is within the synchronization permission section.
  • the second microcomputer 402 permits the timing correction of the second microcomputer 402 in the timing correction permission step S04. Then, the first microcomputer 401 and the second microcomputer 402 drive the motor 80 in synchronization. This is called “synchronous drive mode”. If NO in S03, it is determined that the received synchronization signal is abnormal. The second microcomputer 402 prohibits the timing correction of the second microcomputer 402 in the timing correction prohibiting step S05, and drives the motor 80 asynchronously with the first microcomputer 401.
  • the timing of the synchronization signal does not overlap with the switch timing of the motor drive signal Dr.
  • the timing at which the timing correction unit 422 receives the synchronization signal coincides with the valley or peak timing of the PWM carrier of the second microcomputer 402.
  • the maximum range of clock deviation when the clock generation circuits 651 and 652 are normal is estimated.
  • the clocks generated by the clock generation circuits 651 and 652 vary by a maximum of ⁇ x%, and the period for performing timing correction by the synchronization signal is Ts [s].
  • the counted time in the microcomputers 401 and 402 is at least “(100 ⁇ x) / 100” times to “(100 + x) / max” with respect to the original clock generated by the clock generation circuits 651 and 652. It varies in the range of 100 times. From this, the maximum deviation width ⁇ Tmax [s] generated between the microcomputers 401 and 402 during one synchronization period is expressed by Expression (1).
  • the synchronization permission section In order not to prohibit the correction by mistake during normal driving, it is necessary to define the synchronization permission section with a width of ⁇ Tmax or more.
  • the PWM carrier period Tp is, for example, 0.5 [ms] and the DUTY range is 10% to 90%.
  • the non-switching period from the falling time d9 of the motor drive signal Dr to the next rising time u9 is 0.1 Tp, that is, 0.05 [ms].
  • a period of 0.02 [ms] which is the maximum deviation width ⁇ Tmax, is set as a synchronization permission section around 0.01 [ms] before and after the valley timing of the PWM carrier, the synchronization permission section is reliably set to 0.05 [ms]. ]
  • the non-switching period is, for example, 0.5 [ms] and the DUTY range is 10% to 90%.
  • the synchronization permission interval is set to 2% or more of the synchronization signal period Ts. Therefore, it is possible to prevent the correction from being prohibited. Therefore, it is possible to continue the synchronous driving while synchronizing the driving timing between the microcomputers 401 and 402. If the clock variation exceeds ⁇ 1% due to the failure of the second clock generation circuit 652, it can be detected by the second clock monitoring unit 662. Therefore, it is assumed that the position of the synchronization permission section of the second microcomputer 402 is set correctly.
  • the motor drive signal Dr can always ensure the pulse width at the maximum DUTY, and there is no problem. Operation can be secured.
  • the reception timing of the synchronization signal may overlap the switching timing of the DUTY.
  • the DUTY switching timing is only synchronized. For example, when DUTY is kept at 100%, there is no timing to turn off in the first place. Absent.
  • the start timing of 100% DUTY output is only changed.
  • the end timing of 100% DUTY output is only changed, and the next DUTY output period is not affected.
  • an abnormal DUTY output is not performed, and the influence on the motor drive is slight.
  • the 0% DUTY output is the same as the 100% DUTY output except that the ON and OFF are switched.
  • FIG. 14 shows a timing chart of timing determination when the synchronization signal is abnormal, using the synchronization permission section in the above example.
  • FIG. 14 shows the result of timing determination at the rising timings ta8, ta16, and ta24 of the synchronization signal when an abnormality occurs in the first clock generation circuit 651, as in FIG.
  • the case where the timing of the synchronization signal is within the synchronization permission section is described as “OK”, and the case where it is outside the synchronization permission section is described as “NG”.
  • the timing correction unit 422 does not perform timing correction because the reception timing of the synchronization signal is outside the synchronization permission section.
  • the second microcomputer 402 drives the motor 80 asynchronously with the first microcomputer 401. Thereby, the second microcomputer 402 can prevent failure propagation from the first microcomputer 401. In particular, at ta16, a situation in which the motor drive signal Dr2 is forcibly turned off during the ON period by timing correction based on an abnormal synchronization signal is avoided.
  • the timing correction unit 422 performs timing correction. In this case, even if the period Ts of the synchronization signal is abnormal, the rising timing itself at ta24 is close to the normal timing. Therefore, even if the timing correction unit 422 performs timing correction based on the received synchronization signal, there is substantially no influence on the motor drive signal Dr2.
  • the timing determination unit 422 of the second microcomputer 402 determines whether the synchronization signal transmitted from the first microcomputer 401 is normal or abnormal. . When it is determined that the received synchronization signal is normal, the second microcomputer 402 permits timing correction and drives the motor 80 in synchronization with the first microcomputer 401. Thereby, torque pulsation of the motor 80 can be suppressed. Further, it is possible to avoid the sampling timing of the analog signal sampling units 461 and 462 from overlapping with the switching timing of the motor drive signals Dr1 and Dr2. When a rectangular wave of DUTY 50% is used as the synchronization signal, the rise timing and fall timing enter the non-switching period NSW, so that the influence on the analog signal due to secondary switching of the synchronization signal is reduced. It is possible.
  • the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401. Thereby, it is possible to prevent the control of the second microcomputer 402 from failing due to the failure propagation from the first microcomputer 401.
  • the electric power steering apparatus 90 can maintain at least the normal motor drive by the second microcomputer 402 and maintain the assist function.
  • the switching of the motor drive signals Dr1 and Dr2 may affect not only the sampling of the analog signal but also the synchronization signal. Assume that the switching of the motor drive signals Dr1 and Dr2 affects the synchronization signal and an erroneous pulse edge occurs in the synchronization signal. In this case, with a normal configuration in which no synchronization permission section is provided, there is a problem that the synchronization signal receiving side microcomputer recognizes the rising edge of the pulse at a timing different from the original, and erroneous timing correction is performed.
  • the switching of the motor drive signals Dr1 and Dr2 is always performed outside the synchronization permission section. Therefore, even if the synchronization signal is affected and an erroneous pulse edge occurs, the timing can be expected to be outside the synchronization permission interval.
  • FIG. 15 shows a flowchart of the motor drive start process when the microcomputer is activated.
  • the second microcomputer 402 on the receiving side is activated.
  • the initial value of the number of receptions at startup is zero.
  • the timing correction unit 422 receives the synchronization signal in S11, and increments the number of receptions in S12.
  • S13 it is determined whether or not the number of receptions has reached a predetermined initial number Ni ( ⁇ 2). If YES in S13, the second microcomputer 402 starts driving the motor in S14. If NO in S13, the process returns to before S11.
  • the synchronization signal receiving side microcomputer waits for the start of motor driving until the synchronization signal is received Ni times from the synchronization signal transmission side microcomputer.
  • the motor driving is synchronized with the synchronization signal transmission side microcomputer. To start. Thereby, after waiting for the preparation of the synchronization between the plurality of microcomputers to be completed, the synchronous drive can be appropriately started.
  • FIG. 16 shows a flowchart of the timing determination standby process when the microcomputer is activated.
  • S20 to S22 are the same as S10 to S12 of FIG.
  • Nw standby number
  • the timing determination unit 432 starts timing determination in S24. If NO in S23, the process returns to before S21.
  • the synchronization signal receiving side microcomputer permits the timing correction unconditionally until the number of times of receiving the synchronization signal is Nw times. Then, timing determination is started from the synchronization signal received after the (Nw + 1) th time. As a result, it is possible to appropriately avoid a situation where timing correction is excessively prohibited immediately after startup.
  • FIG. 17 shows a flowchart of the timing correction return processing after the synchronization signal abnormality determination.
  • the timing correction unit 422 determines that the synchronization signal is abnormal because the reception timing of the synchronization signal is outside the synchronization permission section.
  • the synchronization signal is abnormal because the synchronization signal reception timing does not enter the synchronization permission section even though there is no substantial abnormality in the synchronization signal transmission microcomputer due to temporary disturbance of the synchronization signal pulse, etc. There is a possibility that it is erroneously determined that. In such a case, the timing correction may be excessively prohibited. Therefore, it is conceivable to perform the abnormality confirmation process shown in FIG.
  • FIG. 18 shows a flowchart of the synchronization signal abnormality confirmation process.
  • the timing determination unit 432 sets the initial value of the continuous abnormality count, which is “the number of times that the synchronization signal abnormality is continuously determined”, to 0.
  • the timing correction unit 422 receives the synchronization signal.
  • the timing determination unit 432 determines whether the reception timing of the synchronization signal is outside the synchronization permission section. If the synchronization signal is normal and the result in S42 is NO, the process ends. In this case, timing correction is performed in S04 of FIG. If YES in S42, the number of consecutive abnormalities is incremented in S43. In S44, it is determined whether or not the number of consecutive abnormalities has reached a predetermined fixed number Nfix. If YES in S44, the process proceeds to S45. If NO in S44, the process returns to before S41.
  • the timing correction unit 422 prohibits the timing correction in S46. In other words, the timing correction may be permitted until the abnormality is confirmed, and the second microcomputer 402 may continue the synchronous driving with the first microcomputer 401. Thereby, erroneous determination in timing determination can be prevented.
  • FIG. 19 shows the configuration of the ECU 101 of the first embodiment.
  • “1” is added to the end of the component of the first system and “2” is added to the end of the component of the second system. .
  • “first” or “second” is added to the beginning of the component or signal, and common matters are collectively described.
  • the control in which the plurality of microcomputers 401 and 402 operate in synchronization is referred to as “synchronous control”.
  • Asynchronous control Asynchronous control.
  • the drive modes of the motor 80 by the operations of the microcomputers 401 and 402 include the following three drive modes. (1) “Synchronous drive mode” in which the first microcomputer 401 and the second microcomputer 402 drive the motor in synchronization. (2) “Asynchronous drive mode” in which the first microcomputer 401 and the second microcomputer 402 drive the motor asynchronously without using a synchronization signal. (3) “One-system drive mode” in which the motor is driven by only one of the microcomputers 401 and 402
  • the synchronous drive mode is applied when the microcomputers 401 and 402 perform synchronous control.
  • an asynchronous drive mode or a single-system drive mode is applied.
  • each of the microcomputers 401 and 402 starts a timer independently, except when continuing the previous operation.
  • the microcomputers 401 and 402 generate motor drive signals Dr1 and Dr2 at respective timings.
  • the single-system drive mode for example, the second microcomputer 402 that is the own microcomputer does not cause the first microcomputer 401 that is the other microcomputer to generate the motor drive signal Dr1, and drives the motor 80 only by the motor drive signal Dr2 that the own microcomputer generates. To do.
  • the synchronization control state can be continued during the operation of the microcomputers 401 and 402.
  • the first synchronization after the activation of the microcomputers 401 and 402 is not considered. For example, there is a case where the start timing of each microcomputer due to power ON is shifted due to a difference in power supply voltage supplied to each microcomputer, wiring resistance, voltage detection characteristics, or the like. Then, only the microcomputer that has been activated first operates asynchronously during the period from when the microcomputer that has been activated first starts the timer to when the microcomputer that is activated later starts the timer. Therefore, the two microcomputers 401 and 402 cannot be synchronized from the first time.
  • each microcomputer performs control in units of multiple cycles of the synchronization signal. Then, when one microcomputer synchronizes with a synchronization signal after several cycles different from the control unit after one microcomputer starts the timer, there is an offset in the control timing between the microcomputers. There is a problem that cannot be made.
  • the ECU 101 enables synchronous control from the first time after the microcomputers 401 and 402 are activated.
  • the microcomputers 401 and 402 perform “initial handshake” by transmitting and receiving signals to each other after activation.
  • an “initial handshake determination unit” that determines whether the initial handshake is successful is provided. Since the handshake referred to in the present embodiment is not the one that is performed for the first time after activation, “first time” will be omitted and referred to as “handshake” and “handshake determination unit”.
  • the first microcomputer 401 is a “synchronization signal transmission side microcomputer”
  • the second microcomputer 402 is a “synchronization signal reception side microcomputer”.
  • the first microcomputer 401 further includes a handshake determination unit 611 and a ready signal reception unit 621 in addition to the basic configuration.
  • the second microcomputer 402 further includes a handshake determination unit 612 and a ready signal transmission unit 622 in addition to the basic configuration.
  • a thick solid line arrow in FIG. 19 indicates a synchronization signal, and a thick one-dot chain line arrow indicates a ready signal.
  • the ready signal transmitter 622 transmits a ready signal indicating that the synchronization preparation of the second microcomputer 402 is completed to the ready signal receiver 621 of the first microcomputer 401 via the ready signal line 475.
  • the ready signal line 475 may be shared with the synchronization signal line 471 or may be provided separately from the synchronization signal line 471.
  • the ready signal may be notified by changing the level of the port signal instead of the communication using the ready signal line.
  • the ready signal receiving unit 621 receives a ready signal. Specifically, the ready signal receiving unit 621 detects that a ready signal has been received.
  • “receiving” means “detecting reception”, including the reception of the synchronization signal by the timing correction unit 422.
  • the handshake determination unit 611 of the first microcomputer 401 determines whether the handshake has succeeded or failed based on the synchronization signal transmitted by the synchronization signal generation unit 411 and the ready signal received by the ready signal reception unit 621. .
  • the handshake determination unit 612 of the second microcomputer 402 determines whether the handshake has succeeded or failed based on the synchronization signal received by the timing correction unit 422 and the ready signal transmitted by the ready signal transmission unit 622. Details of signal transmission / reception and success / failure determination in the handshake will be described later.
  • the microcomputers 401 and 402 have current calculation units 631 and 632 that output commands to the drive signal generation units 451 and 452. Note that the current calculation units 631 and 632 are actually included in the basic form. However, since the relation with the specific operation of the basic form is weak, the illustration is omitted in FIG.
  • the ready signal is generated as one of the communication clock signals, and the communication clock signal includes a data signal for communication between microcomputers other than the ready signal.
  • the ready signal transmission unit 622 transmits a communication clock signal including the data signal input from the current calculation unit 632.
  • the ready signal receiver 621 outputs a data signal included in the received communication clock signal to the current calculator 632. Therefore, from the viewpoint including transmission and reception of data signals, the ready signal transmission unit 622 and the ready signal reception unit 621 may be simply referred to as “communication unit”, and the ready signal line 475 may be simply referred to as “signal line”.
  • a name focusing on a ready signal transmission / reception function in handshake is used.
  • FIG. 19 shows the timing determination unit 432 in the timing correction unit 422 of the second microcomputer 402 and the analog signal sampling units 461 and 462 of the microcomputers 401 and 402 shown in FIG. Omitted. These may be omitted in the handshake operation of the first embodiment. That is, as for the synchronization between the microcomputers after the first time, it is only necessary that the timing correction unit 422 can perform the timing correction based on at least the synchronization signal transmitted from the first microcomputer 401 to the second microcomputer 402. In addition, in the configuration in which the timing determination unit 432 is provided, as described in the basic form, timing correction is prohibited when the synchronization signal is abnormal, and control of the second microcomputer 402 is prevented from failing. it can.
  • the “PWM timer” of each of the microcomputers 401 and 402 is a PWM carrier reference timer generated by the clock generation circuits 651 and 652, and the drive signals Dr1 and Dr2 are generated based on the timers. , 82 is controlled.
  • the start of PWM timer generation is hereinafter referred to as “timer start”. Further, the start timing when the power of each microcomputer 401, 402 is turned on is shown on the PWM timer chart for convenience.
  • “Synchronization signal 1 ⁇ 2” means a synchronization signal transmitted from the synchronization signal generation unit 411 of the first microcomputer 401 to the timing correction unit 422 of the second microcomputer 402.
  • the synchronization signal is at a low level at startup.
  • the synchronization signal once rises from the low level to the high level before the timer of the first microcomputer 401 starts, and then returns to the low level again.
  • the rising edge of the first synchronization signal is not recognized as the synchronization timing with the second microcomputer 402, but has the meaning of notifying the synchronization when the timer is started.
  • the operation of setting the synchronization signal to the high level before the timer starts is referred to as “outputting or transmitting the synchronization notice signal”.
  • the operation of returning the high level synchronization signal to the low level before the timer starts is referred to as “end the synchronization notice signal”.
  • the first microcomputer 401 switches between the low level and the high level of the synchronization signal, and transmits to the second microcomputer 402 via the synchronization signal line 471 so that it also functions as a synchronization notice signal.
  • the first microcomputer 401 switches between the low level and the high level of the synchronization signal, and transmits to the second microcomputer 402 via the synchronization signal line 471 so that it also functions as a synchronization notice signal.
  • the synchronization signal is toggled so as to periodically repeat the high level and the low level with the four periods of the PWM timer as the synchronization period Ts.
  • the rising timing and falling timing of the synchronization signal coincide with the valley timing of the PWM timer.
  • the rising timing of the synchronization signal is the synchronization timing with the second microcomputer 402. In the configuration in which the timing determination is performed by the second microcomputer 402, whether the synchronization signal is normal or abnormal is determined based on the rising timing of the synchronization signal.
  • Ready signal 2 ⁇ 1 means a ready signal transmitted from the ready signal transmission unit 622 of the second microcomputer 402 to the ready signal reception unit 621 of the first microcomputer 401.
  • the ready signal is set to a high level as a default at start-up. Thereafter, a pulse signal that continuously repeats the high level and the low level four times is output as a ready signal for notifying that the synchronization preparation of the second microcomputer 402 has been completed. Note that the width and number of pulses may be set as appropriate.
  • the communication clock signal used as the ready signal is continuously output periodically after the timer of the second microcomputer 402 is started.
  • the synchronization notice signal and the ready signal correspond to “signals to be transmitted / received” in the handshake.
  • Period indicates a location cited in the following description.
  • the symbols ⁇ 0> to ⁇ 6> are attached independently for each figure, and are not related to the period of the same symbol in other figures. In the description of the specification, ⁇ > is not attached, and for example, a period corresponding to ⁇ 1> in the figure is described as “period 1”.
  • the explanation of the operation at the temporary point in each period is an explanation of the operation executed at the start of the period, in principle, ignoring the control time lag.
  • the first microcomputer 401 measures the elapsed time from the start of period 2.
  • the second microcomputer 402 transmits a ready signal to the first microcomputer 401 in period 3 as a response to the synchronization notice signal received in period 2.
  • the first microcomputer 401 receives this ready signal before the first handshake time Ths1 has elapsed.
  • the first microcomputer 401 ends the synchronization notice signal in period 4 when the first handshake time Ths1 has elapsed after receiving the ready signal in period 3.
  • the handshake determination unit 611 of the first microcomputer 401 determines that the handshake is successful, Instructs the drive timing generation unit 441 to perform initial synchronization.
  • the handshake determination unit 612 of the second microcomputer 402 determines that the handshake is successful, and the drive timing generation unit 442 Command the first synchronization.
  • the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal.
  • the second microcomputer 402 starts a timer at the rising timing of the synchronization signal received from the first microcomputer 401.
  • the first power supply 111 and the second power supply 112 are turned ON simultaneously from the OFF state, and the supply voltage to the microcomputers 401 and 402 increases.
  • the second power supply 112 completes rising after time UT2, and the second microcomputer 402 is activated.
  • the first power source 111 completes rising after the time UT1 shortly after the start of the second handshake time Ths2, and the first microcomputer 401 is activated.
  • the first microcomputer 401 transmits a synchronization notice signal to the second microcomputer 402 at the start of the period 2. Thereafter, as in the operation example 1 of FIG. 20, it is determined that the handshake is successful through the periods 2, 3, and 4.
  • the first microcomputer 401 starts the timer simultaneously with outputting the synchronization signal
  • the second microcomputer 402 starts the timer at the rising timing of the synchronization signal received from the first microcomputer 401.
  • the microcomputers 401 and 402 drive the motor 80 synchronously from the first time after activation, that is, in the synchronous drive mode.
  • the start timing of the first microcomputer 401 is slightly delayed
  • the first microcomputer 401 transmits the synchronization notice signal within the second handshake time Ths2
  • the handshake is successful as in the first operation example.
  • the second microcomputer 402 transmits a ready signal within the first handshake time Ths1, which is the same as the operation example 1.
  • the second microcomputer 402 In period 1 of FIG. 22, only the second microcomputer 402 is in a state after startup.
  • the second microcomputer 402 counts the elapsed time from the start of period 1. Thereafter, time elapses without the second microcomputer 402 receiving the synchronization notice signal to be transmitted from the first microcomputer 401.
  • the handshake determination unit 612 of the second microcomputer 402 determines that the handshake has failed due to a timeout. Then, the handshake determination unit 612 notifies the drive timing generation unit 442 that the second microcomputer 402 generates the drive signal Dr2 alone.
  • the second microcomputer 402, which is the synchronization signal receiving microcomputer starts a timer independently. Accordingly, the ECU 101 drives the motor 80 in the second system single-system drive mode without causing the first microcomputer 401 to generate the motor drive signal Dr1.
  • the rise time UT1 of the first power supply 111 is longer than the sum of the rise time UT2 of the second power supply 112 and the second handshake time Ths2. Therefore, the second handshake time Ths2 elapses before the first microcomputer 401 is activated, and in the period 2, the second microcomputer 402 starts a timer alone. Therefore, the motor 80 is driven in the single-system drive mode of the second system.
  • the rising of the first power supply 111 is completed in the middle of the period 2, and the first microcomputer 401 is activated.
  • “invalid” means that the microcomputer on the receiving side (here, the first microcomputer 401) does not recognize the signal as a ready signal.
  • the microcomputer that receives the ready signal determines whether the ready signal is valid or invalid based on the ID.
  • An invalid ready signal transmitted during execution of the one-system drive mode of the second microcomputer 402 is not recognized as a signal indicating that the synchronization preparation has been completed with respect to the synchronization notice signal of the first microcomputer 401. Therefore, even if an invalid ready signal is transmitted, it is not determined that the handshake is successful.
  • first microcomputer 401 starts a timer without synchronizing with second microcomputer 402. As a result, in period 5, the motor 80 is driven in the asynchronous drive mode by the two systems of microcomputers 401 and 402.
  • the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 at the start of the period 6, and the second microcomputer 402 receives it.
  • the timing correction of the second microcomputer 402 is performed at the rising timing of the synchronization signal, and thereafter the microcomputers 401 and 402 are driven synchronously.
  • the motor 80 is driven in the mode. As described above, when the deviation of the activation timing of the microcomputers 401 and 402 is large, the drive mode of the motor 80 by the ECU 101 shifts in the order of the one-system drive mode, the asynchronous drive mode, and the synchronous drive mode.
  • the motor control device that may shift in the order of the one-system drive mode, the asynchronous drive mode, and the synchronous drive mode can be regarded as corresponding to the ECU of the present embodiment.
  • Modification B of Operation Example 2 In the modification example B of the operation example 2 shown in FIG. 24, the operation up to the period 1 and the period 2 is the same as the modification example A of FIG. However, in the modified example B, when the first microcomputer 401 is activated while the second microcomputer 402 is operating in the one-system drive mode, the first microcomputer 401 performs processing such as transmission of a synchronization notice signal, timer start processing, and synchronization processing. Not performed. That is, the first microcomputer 401 does not generate the motor drive signal Dr1 while the microcomputer itself is activated, so that the motor drive by the first system is not performed. As a result, as in FIG. 22, the first microcomputer 401 continues the one-system drive mode while maintaining the period 2. Thus, the transition to the synchronous drive mode is not essential, and the one-system drive mode may be continuously used.
  • the handshake determination unit 611 of the twelfth microcomputer 401 determines that the handshake has failed due to a timeout. Then, the handshake determination unit 611 notifies the drive timing generation unit 441 that the first microcomputer 401 generates the drive signal Dr1 alone.
  • the first microcomputer 401 ends the synchronization notice signal in period 3 when the first handshake time Ths1 has elapsed.
  • the first microcomputer 401 which is the synchronization signal transmission side microcomputer, outputs the synchronization signal and simultaneously starts the timer. As a result, the ECU 101 drives the motor 80 in the first system single-system drive mode without causing the second microcomputer 402 to generate the motor drive signal Dr2.
  • the first microcomputer 401 When the first microcomputer 401 receives the ready signal, YES is determined in S53, and the process proceeds to S54. Thereby, it is determined that the handshake is successful. If the elapsed time reaches the first handshake time Ths1 and the handshake fails due to timeout, NO is determined in S52, and the process proceeds to S54. In S54, the first microcomputer 401 returns the synchronization signal to the low level, and ends the synchronization notice signal. In S ⁇ b> 56, the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402.
  • YES is determined in the previous S52, that is, if it is determined that the handshake is successful, YES is determined in the handshake determination step S57, and the process proceeds to the synchronous drive step S58.
  • the first microcomputer 401 and the second microcomputer 402 start the timer at the same time, and drive the motor 80 synchronously from the first time.
  • NO is determined in the previous S52, that is, if the handshake fails due to timeout, NO is determined in S57, and the process proceeds to S59.
  • the first microcomputer 401 starts the timer alone and drives the motor 80 asynchronously.
  • the second microcomputer 402 is activated in S60 and starts measuring elapsed time in S61.
  • S62 it is determined whether the elapsed time is less than the second handshake time Ths2. If YES is determined in S62, it is determined in S63 whether a synchronization notice signal has been received from the first microcomputer 401. If the second microcomputer 402 has not received the synchronization notice signal and it is determined NO in S63, the process returns to S62.
  • the second microcomputer 402 When the second microcomputer 402 receives the synchronization advance notice signal, YES is determined in S63, and the process proceeds to the ready signal transmission step S64.
  • the second microcomputer 402 transmits a ready signal.
  • the step of responding to S64 on the first microcomputer 401 side is the ready signal receiving step S53 of FIG. Thereby, it is determined that the handshake is successful.
  • the second microcomputer 402 receives the synchronization signal from the first microcomputer 401, and starts a timer simultaneously with the first microcomputer 401 by an interrupt. Thereby, the first microcomputer 401 and the second microcomputer 402 drive the motor 80 in synchronization from the first time.
  • the second microcomputer 402 starts the timer alone and drives the motor 80 in the one-system drive mode.
  • the second microcomputer 402 transmits an invalid ready signal in response to the synchronization notice signal from the first microcomputer 401 in S68.
  • the first microcomputer 401 alone and asynchronously starts the timer with the second microcomputer 402 due to a timeout associated with the passage of the first handshake time Ths1. This shifts from the one-system drive mode to the two-system asynchronous drive mode.
  • the “second microcomputer synchronization process” shown in FIG. 30 is executed, and when the synchronization condition is satisfied, the process shifts to the synchronous drive mode.
  • the modified example B of the operation example 2 as shown in FIG. 28, if YES is determined in S50, the process is ended as it is. Therefore, the “one-system drive mode by the second microcomputer” in S67 is continued.
  • handshaking is performed in S71.
  • the handshake determination units 611 and 612 turn on the success flag in S73.
  • synchronous control is performed.
  • the handshake determination units 611 and 612 turn off the success flag in S74.
  • asynchronous control is performed.
  • the handshake determination units 611 and 612 store ON / OFF information of a success flag.
  • the second microcomputer synchronization process in FIG. 30 corresponds to S80 in FIGS.
  • the success flag is OFF and asynchronous control is being performed, YES is determined in S81, and the process proceeds to S82 to attempt synchronization. If the success flag is ON and synchronous control is being performed, NO is determined in S81 and the process ends. Thereafter, the second microcomputer 402 waits for the synchronization signal to be transmitted from the first microcomputer 401 every synchronization cycle Ts, and receives the synchronization signal in S82. If the first microcomputer 401 is not activated and only the second microcomputer 402 is operating in the one-system drive mode, the synchronization signal is not transmitted. Therefore, when the waiting time reaches the upper limit value, the process ends. You may do it.
  • timing correction unit 422 of the second microcomputer 402 includes the timing determination unit 432 as in the basic mode, it is determined in S83 whether the reception timing of the synchronization signal is within the synchronization permission section. If YES is determined in S83, timing correction is performed in S84. If NO is determined in S83, the process returns to S82, and the second microcomputer 402 waits for the next synchronization signal to be transmitted. In the configuration in which the timing correction unit 422 does not include the timing determination unit 432, the timing correction may always be performed when S83 is skipped and the second microcomputer 402 receives the synchronization signal.
  • the handshake determination unit 612 of the second microcomputer 402 determines that the handshake has failed as soon as it detects that an abnormal signal has been received in period 2. Then, the handshake determination unit 612 notifies the drive timing generation unit 442 that the second microcomputer 402 generates the drive signal Dr2 alone. In period 3, the second microcomputer 402 starts a timer alone. Therefore, the motor 80 is driven in the single-system drive mode of the second system.
  • the second microcomputer 402 After the second microcomputer 402 starts the timer in the period 3, the second microcomputer 402 transmits an invalid ready signal to the first microcomputer 401.
  • the handshake determination unit 611 of the first microcomputer 401 determines that the handshake has failed and notifies the drive timing generation unit 441 that the first microcomputer 401 generates the drive signal Dr1 alone.
  • the first microcomputer 401 ends the synchronization notice signal.
  • the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal. As a result, in period 5, the motor 80 is driven in the asynchronous drive mode by the two systems of microcomputers 401 and 402.
  • the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 at the start of the period 6, and the second microcomputer 402 receives it.
  • the timing correction of the second microcomputer 402 is performed at the rising timing of the synchronization signal, and thereafter the microcomputers 401 and 402 are driven synchronously.
  • the motor 80 is driven in the mode. As described above, even when the second microcomputer 402 receives an abnormal signal instead of the synchronous notice signal, the driving mode of the motor 80 by the ECU 101 shifts in the order of the one-system driving mode, the asynchronous driving mode, and the synchronous driving mode.
  • the second microcomputer 402 After the second microcomputer 402 is activated in S60, the second microcomputer 402 receives any signal from the first microcomputer 401, and when YES is determined in S62X, the signal received by the second microcomputer 402 is an abnormal signal in S63X. It is determined whether or not there is. When the signal received by the second microcomputer 402 is a normal synchronization notice signal and it is determined NO in S63X, S64 and S66 are executed as in FIG. If the signal received by the second microcomputer 402 is an abnormal signal and it is determined YES in S63X, the second microcomputer 402 starts the timer alone in S67 and drives the motor 80 in the one-system drive mode. Thereafter, S68, S69, and S80 are performed as in FIG.
  • the ECU 101 performs a handshake that sends and receives the synchronization notice signal and the ready signal to each other, and according to the determination result of whether or not the handshake is successful. Take corrective action.
  • the motor 80 can be driven in synchronization from the first time.
  • the motor 80 is started to be driven asynchronously, and then the timing is corrected at the next and subsequent synchronization signal transmission timings, and the control shifts to synchronous control.
  • the ECU 101 of this embodiment can synchronize from the first time when the handshake is successful after the microcomputers 401 and 402 are activated.
  • the two microcomputers 401 and 402 start the timer at the same time, so that the control can be synchronized even when each microcomputer performs control in units of a plurality of periods of the synchronization signal.
  • the first microcomputer 401 is restarted by a reset or the like while the operation of the second microcomputer 402 is continued.
  • the ready signal transmission start timing of the second microcomputer 402 is offset by a predetermined time ⁇ R with respect to the valley timing of the PWM timer.
  • the first microcomputer 401 is in a state before restarting, and the second microcomputer 402 is operating alone.
  • period 1 the first microcomputer 401 is restarted.
  • the first microcomputer 401 receives a ready signal from the second microcomputer 402, and grasps the timing of the valley of the PWM timer of the second microcomputer 402 based on the reception start timing. Then, the first microcomputer 401 calculates the timing at which the synchronization signal should be transmitted in accordance with the valley timing of the second microcomputer 402, and waits until that timing. In period 3, the first microcomputer 401 transmits a synchronization signal at the calculated timing.
  • the second microcomputer 402 restarts the timer at the rising timing of the synchronization signal received from the first microcomputer 401 and shifts to the synchronous drive mode. Thereby, synchronous control can be performed after the first microcomputer 401 is restarted while ensuring the continuity of operation of the second microcomputer 402.
  • the first microcomputer 401 is restarted by a reset or the like while the operation of the second microcomputer 402 is continued.
  • the ready signal transmission start timing of the second microcomputer 402 coincides with the valley timing of the PWM timer.
  • Period 0 and period 1 are the same as in operation example 5A.
  • the first microcomputer 401 receives a ready signal from the second microcomputer 402 and transmits a synchronization signal at the same time.
  • the second microcomputer 402 restarts the timer at the rising timing of the synchronization signal received from the first microcomputer 401 and shifts to the synchronous drive mode. Thereby, synchronous control can be performed after the first microcomputer 401 is restarted while ensuring the continuity of operation of the second microcomputer 402.
  • the second microcomputer 402 is restarted by a reset or the like while the operation of the first microcomputer 401 is continued.
  • the second microcomputer 402 is in a state before restarting, and the first microcomputer 401 is operating alone.
  • the second microcomputer 402 is restarted.
  • the second microcomputer 402 restarts the timer at the rising timing of the synchronization signal received from the first microcomputer 401 and shifts to the synchronous drive mode. Thereby, synchronous control can be performed after the second microcomputer 402 is restarted.
  • the restarted microcomputer ensures operation continuity according to the synchronization signal or ready signal of the microcomputer that is continuing to operate.
  • synchronous control can be performed from the start of the timer.
  • each microcomputer performs control in units of multiple cycles of the synchronization signal, it is possible to synchronize control in units of multiple cycles by recognizing the reference timing of the control cycle and restarting the microcomputer to start the timer. it can.
  • the ECU 102 includes one first microcomputer 401 that is a synchronization signal transmission side microcomputer, and two second and third microcomputers 402 and 403 that are synchronization signal reception side microcomputers. I have. For each microcomputer, only the configuration related to transmission / reception of a synchronization signal and a ready signal is shown.
  • the timing correction unit 423, the ready signal transmission unit 623, and the handshake determination unit 613 of the third microcomputer 403 are all the same as the timing correction unit 422, the ready signal transmission unit 622, and the handshake determination unit 612 of the second microcomputer 402. It is the same composition.
  • FIG. 37 shows an operation example in which handshaking after startup is successful among three microcomputers according to the operation example 1 of the first embodiment shown in FIG.
  • the notes related to the illustration are the same as in FIG. Further, the description regarding the handshake time is omitted.
  • the microcomputers 401, 402, and 403 are in a state after startup.
  • the first microcomputer 401 transmits a synchronization notice signal to the second microcomputer 402 and the third microcomputer 403.
  • the second microcomputer 402 and the third microcomputer 403 receive the synchronization notice signal in period 2. In the period 3, the second microcomputer 402 and the third microcomputer 403 transmit a ready signal to the first microcomputer 401 as a response. When the first microcomputer 401 receives the ready signal in period 3, the first microcomputer 401 ends the synchronization notice signal in period 4.
  • the handshake determination units 611, 612, and 613 of the microcomputers 401, 402, and 403 determine that the handshake is successful, and instruct each drive timing generation unit to perform initial synchronization.
  • the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal.
  • the second microcomputer 402 and the third microcomputer 403 start a timer at the rising timing of the synchronization signal received from the first microcomputer 401.
  • the microcomputers 401, 402, and 403 drive the motor 80 synchronously from the first time after activation, that is, in the synchronous drive mode.
  • a handshake is performed with a master / slave type ECU configuration in which one synchronization signal transmission side microcomputer is regarded as a master and a plurality of synchronization signal reception side microcomputers are regarded as slaves.
  • a configuration may be adopted in which a synchronization signal is transmitted from the first microcomputer to the second microcomputer, and a synchronization signal is transmitted from the second microcomputer to the third microcomputer.
  • the second microcomputer functions as a synchronization signal reception side microcomputer in relation to the first microcomputer, and functions as a synchronization signal transmission side microcomputer in relation to the third microcomputer. That is, handshaking is performed by a chain ECU configuration.
  • handshaking between a plurality of microcomputers can be performed by a master / slave type, a chain type, or a combination thereof.
  • the drive mode in which the motor is driven only by the own microcomputer without causing the other microcomputer to generate a motor drive signal is “ In other words, “partial system drive mode” is referred to as “one system drive mode”.
  • FIG. 38 A third embodiment will be described with reference to FIGS. 38 to 42.
  • FIG. 38 differs from the first embodiment in the configuration related to the communication of the synchronization signal and the ready signal.
  • the first microcomputer 401 and the second microcomputer 402 have synchronization signal generation units 411 and 412 and timing correction units 421 and 422, respectively.
  • the first microcomputer 401 and the second microcomputer 402 function as a “synchronization signal transmission side microcomputer” and a “synchronization signal reception side microcomputer”, and transmit and receive synchronization signals to and from each other.
  • the configuration of the synchronization signal line in this embodiment includes a first synchronization signal line 471 for transmission from the first microcomputer 401 to the second microcomputer 402 and a transmission from the second microcomputer 402 to the first microcomputer 401 as shown by the solid line.
  • a reliable second synchronization signal line 472 may be provided separately.
  • a synchronization signal line 48 capable of bidirectional communication may be used. Note that at least one of the bidirectional synchronization signal line 48 or the one-way synchronization signal lines 471 and 472 may be shared with other communication signal lines used for communication between microcomputers.
  • the transmission timing of the synchronization signal from the first microcomputer 401 to the second microcomputer 402 and the transmission timing of the synchronization signal in the opposite direction. are set at different timings.
  • the microcomputers 401 and 402 alternately transmit a synchronization signal.
  • the synchronization signal transmission side microcomputer changes the level of the port signal to the synchronization signal reception side microcomputer. May be notified in both directions.
  • the synchronization signal may be transmitted from the microcomputer activated first to the microcomputer activated later.
  • a synchronization signal may be transmitted mainly from the first microcomputer 401 to the second microcomputer 402, and transmission in the reverse direction may be performed only in some cases.
  • the first microcomputer 401 may be activated in synchronization with the synchronization signal from the second microcomputer 402 at the time of activation, and thereafter the second microcomputer 402 may be operated in synchronization with the synchronization signal from the first microcomputer 401. .
  • the operation start timing of the own microcomputer may be determined based on the synchronization signal from the microcomputer from the second microcomputer 402 and the operation may be started. In this case, it is possible to resume motor driving in a state of being synchronized from the beginning when the microcomputer recovers from the abnormality.
  • each of the first microcomputer 401 and the second microcomputer 402 includes ready signal transmission / reception units 621 and 622, and can transmit / receive ready signals to / from each other.
  • the ready signal transmission line 475 may be composed of two unidirectional communication lines as in the case of the synchronization signal line, or may be composed of bidirectional communication lines.
  • the first microcomputer 401 and the second microcomputer 402 have exactly the same function and have complete redundancy. Therefore, since it can respond to all the failure patterns for one system, the reliability can be further improved.
  • the number of parts of the ECU can be reduced and the configuration can be simplified.
  • FIG. 40 shows an operation example 7 in which the microcomputers 401 and 402 handshake each other by transmitting and receiving ready signals according to the third embodiment.
  • the first microcomputer 401 is a synchronization signal transmission side microcomputer
  • the second microcomputer 402 is a synchronization signal reception side microcomputer.
  • the microcomputers 401 and 402 may alternate between the transmission side and the reception side of the synchronization signal.
  • the operation example 7 may be executed in an ECU having a configuration in which only the ready signal can be transmitted and received in both directions and the synchronization signal is transmitted and received in one direction, without being limited to the configuration in FIG.
  • These ready signals include two types of signals: a ready signal for notifying completion of activation of the microcomputer and a ready signal for indicating successful handshake (“HS-OK” in the figure).
  • FIG. 40 detailed divisions of detailed periods are omitted, and the distinction is made only with a large framework.
  • the first microcomputer 401 is activated before the second microcomputer 402.
  • the first microcomputer 401 transmits ready signals R1-1 and R1-2 of “startup completion” at times r11 and r12 at a predetermined cycle after startup, but is not received because the second microcomputer 402 is not started.
  • “NG” in the figure means that a ready signal is not received.
  • the second microcomputer 402 transmits a ready signal R2-1 of “activation complete” at time r21, and the first microcomputer 401 receives it.
  • the first microcomputer 401 transmits the ready signal R1-3 of “handshake successful”, and the second microcomputer 402 receives it.
  • the second microcomputer 402 transmits a ready signal R2-2 of “handshake successful”. The first microcomputer 401 receives the ready signal R2-2, but since the success of the handshake has already been determined, the ready signal R2-2 is ignored.
  • the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal.
  • the second microcomputer 402 starts a timer at the rising timing of the synchronization signal received from the first microcomputer 401.
  • the microcomputers 401 and 402 drive the motor 80 synchronously from the first time after activation.
  • FIGS. 41 and 42 The processes after the activation of the first microcomputer 401 and the second microcomputer 402 in the operation example 7 are shown in the flowcharts of FIGS. 41 and 42, respectively.
  • FIG. 41 and FIG. 42 the same step number is attached
  • the letter “R” is written at the end of the step number.
  • the first microcomputer 401 transmits a ready signal of “activation complete” to the second microcomputer 402 and starts counting elapsed time in S51R.
  • the first microcomputer 401 When the elapsed time is less than the first handshake time Ths1 and YES is determined in S52, it is determined in S53R whether the first microcomputer 401 has received a “start-up complete” ready signal from the second microcomputer 402. If the first microcomputer 401 has received the ready signal for “start-up completion” and it is determined YES in S53R, the first microcomputer 401 sends a ready signal for “handshake successful” to the second microcomputer 402 in S54R. Send to S56.
  • the first microcomputer 401 If the first microcomputer 401 has not received the “start-up complete” ready signal and it is determined NO in S53R, the first microcomputer 401 sends a “handshake successful” ready signal from the second microcomputer 402 in S55R. It is determined whether it has been received. If YES is determined in S55R, the process proceeds to S56. If the “handshake successful” ready signal has not been received and the determination in S55R is NO, the process returns to the previous step. If the elapsed time reaches the first handshake time Ths1 and NO is determined in S52 (that is, time-out), the process also proceeds to S56. The first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 in S56. S57 to S59 below are the same as those in FIG. That is, when a ready signal for “handshake success” is transmitted and received, synchronous control is performed in S58, and in the case of timeout, asynchronous control is performed in S59.
  • the second microcomputer 402 transmits a ready signal for “start-up completion” to the first microcomputer 402 and starts counting elapsed time in S61R.
  • the elapsed time is less than the second handshake time Ths2 and it is determined YES in S62
  • the second microcomputer 402 If the second microcomputer 402 has not received the “start-up complete” ready signal and it is determined NO in S63R, the second microcomputer 402 sends a “handshake successful” ready signal from the first microcomputer 401 in S65R. It is determined whether it has been received. If YES is determined in S65R, the process proceeds to S66. If the ready signal of “handshake successful” has not been received and the determination in S65R is NO, the process returns to before S62. If the elapsed time reaches the second handshake time Ths2 and it is determined NO (that is, time-out) in S62, the second microcomputer 402 starts the timer independently and performs asynchronous control in S67. In addition, after S67, similarly to FIG.
  • the synchronization processing steps S50, S68, S69, and S80 after starting the first microcomputer may be performed.
  • a handshake can be suitably executed.
  • the fourth and fifth embodiments will be described with reference to FIGS. 43 and 44.
  • the ECU 10 of the fourth and fifth embodiments basically uses the configuration of the basic form of the first embodiment shown in FIG.
  • the reception signal determination does not determine the timing at which the synchronization signal is received, but determines whether the synchronization signal is normal or abnormal using a synchronization signal having a specific pulse pattern. Therefore, “timing determination unit 432” in the timing correction unit 422 in the second microcomputer 402 is replaced with “reception signal determination unit 432”.
  • the processing when the synchronization signal is determined to be normal by the received signal determination unit 432 of the fourth and fifth embodiments or when it is determined to be abnormal is the same as the basic form of the first embodiment.
  • the specific pulse pattern refers to a pattern in which the number of pulses per period, time width, or interval is defined in advance. 43 and 44, the cause of the synchronization signal abnormality is not clearly shown as in FIGS. 11 and 14, and only the difference between the normal pulse pattern and the abnormal pulse pattern is shown.
  • the synchronization signal is normal when the clock input having a predetermined time width is input k times that is the specified number of times.
  • the synchronization signal receiving side microcomputer corrects the timing at the kth clock input timing, that is, synchronizes the drive timing between the microcomputers.
  • the timing is not corrected and the motor is driven asynchronously.
  • the reception of the serial communication is used as a trigger to receive by the CRC method or the like. Calculate the reliability of the data. As a result of the check, if correct communication is performed, synchronization between microcomputers is permitted.
  • FIG. 44 shows pulses of the communication clock and the reception signal line in the fifth embodiment.
  • the R unit performs timing correction based on the reception completion timing.
  • a specific method of timing correction may be set as appropriate, for example, correction is performed for the time required for CRC calculation and synchronization is performed.
  • part X determines that the timing is not normal because the CRCs do not match, and timing correction is not performed.
  • the reception signal determination unit 432 determines whether the synchronization signal is normal or abnormal even if a specific pulse pattern is used, as well as the method based on the reception timing of the synchronization signal as in the basic form of the first embodiment. be able to. Note that the processes of FIGS. 15 to 18 can be similarly applied to the configurations of the fourth and fifth embodiments in which the received signal determination is performed based on the specific pulse pattern. Further, the fourth and fifth embodiments may be applied to the configuration of the third embodiment that transmits and receives a synchronization signal and a ready signal in both directions.
  • the motor 80 to be controlled in the above embodiment is a multi-winding motor in which two winding sets 801 and 802 are arranged on a common stator with an electrical angle of 30 deg.
  • the motor to be controlled in other embodiments may be one in which two or more winding sets are arranged in the same phase.
  • the configuration is not limited to a configuration in which two or more winding sets are arranged on a common stator of one motor. It may be applied to the motor of Further, the number of phases of the multiphase brushless motor is not limited to three phases and may be four or more.
  • the motor to be driven is not limited to an AC brushless motor, and may be a brushed DC motor. In that case, an H-bridge circuit may be used as the “motor drive circuit”.
  • a high level synchronization signal is transmitted to the second microcomputer 402 as a synchronization notice signal.
  • the second microcomputer 402 may be notified by some means that the first microcomputer 401 is activated, and the second microcomputer 402 may transmit a ready signal based on the notice. .
  • the second microcomputer 402 transmits a ready signal at a unique timing without using the synchronization notice signal from the first microcomputer 401. May be.
  • the initial handshake units 611 and 612 can determine that the handshake is successful only by the successful transmission / reception of the ready signal from the second microcomputer 402 to the first microcomputer 401.
  • the motor control device may not include an analog signal sampling unit synchronized with the motor drive timing generation unit. In that case, the motor control device may perform a control calculation based on digital data acquired from the outside. Or you may implement feedforward control, without using feedback information. Further, in the configuration including the analog signal sampling unit, the sampling timing may overlap the switch timing of the motor drive signal.
  • the motor drive signal generation method is not limited to the PWM control method shown in FIG. 8 or the like, and for example, a pulse pattern for selecting an optimum pattern from a plurality of pulse patterns stored in advance according to the modulation rate and the rotation speed A method or the like may be adopted. Further, the PWM control type carrier is not limited to a triangular wave, and a sawtooth wave may be used.
  • the motor control device of the present disclosure is not limited to a motor for an electric power steering device, and may be applied to a motor for any other purpose. As mentioned above, this indication is not limited to such embodiment, In the range which does not deviate from the meaning, it can implement with a various form.

Abstract

After microcomputers (401, 402) are started, a ready signal transmission unit (622) of a second microcomputer (402) that is a "synchronization signal reception side microcomputer" transmits a ready signal indicating the completion of synchronization preparation of the microcomputer to a first microcomputer (401) that is a "synchronization signal transmission side microcomputer". A ready signal reception unit (621) of the first microcomputer (401) receives the ready signal. Handshake determination units (611, 612) of the microcomputers (401, 402), upon normal implementation of a handshake including at least a transmission and reception of the ready signal, determine that the handshake has been successful. If it is determined that the handshake is successful, the microcomputers (401, 402) drive a motor (80) in synchronism from the initial time after starting.

Description

モータ制御装置、モータ駆動システム、及び、モータ制御方法Motor control device, motor drive system, and motor control method 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年7月11日に出願された特許出願番号2016-136611号、2017年3月16日に出願された特許出願番号2017-51260号、及び、2017年6月29日に出願された特許出願番号2017-126972号に基づくものであり、ここにその記載内容を援用する。 This application is a patent application number 2016-136611 filed on July 11, 2016, a patent application number 2017-51260 filed on March 16, 2017, and filed on June 29, 2017. Which is based on Japanese Patent Application No. 2017-126972, which is incorporated herein by reference.
 本開示は、複数のマイコンによりモータの駆動を制御するモータ制御装置、それを備えるモータ駆動システム、及び、モータ制御方法に関する。 The present disclosure relates to a motor control device that controls driving of a motor by a plurality of microcomputers, a motor drive system including the motor control device, and a motor control method.
 従来、冗長的に設けられた複数のマイコンでモータの駆動を制御するモータ制御装置において、各マイコンが、それぞれ独立したクロック生成回路で生成されたクロックにより動作する装置が知られている。一つのクロック生成回路で全てのマイコンを動作させる場合には、クロック生成回路の故障時にモータ駆動が停止するのに対し、各マイコンに対応して独立したクロック生成回路を設けることにより、信頼性が向上する。 2. Description of the Related Art Conventionally, in a motor control apparatus that controls driving of a motor by a plurality of redundantly provided microcomputers, an apparatus in which each microcomputer operates with a clock generated by an independent clock generation circuit is known. When all microcomputers are operated with a single clock generation circuit, the motor drive stops when the clock generation circuit fails. By providing an independent clock generation circuit for each microcomputer, reliability is improved. improves.
 ただし、現実には、クロック生成回路の製造ばらつき等により、各マイコンの演算制御タイミングにずれが生じるという問題がある。
 そこで、例えば特許文献1に開示された電動機制御装置は、複数のマイコン間で同期信号を送受信し、同期信号を受信したマイコンが、同期信号に基づいて演算制御タイミングを補正する。こうして複数のマイコンの演算制御タイミングを互いに同期させることで、モータのトルク脈動の抑制を図っている。
However, in reality, there is a problem that the operation control timing of each microcomputer is shifted due to manufacturing variation of the clock generation circuit.
Therefore, for example, the motor control device disclosed in Patent Document 1 transmits and receives a synchronization signal between a plurality of microcomputers, and the microcomputer that receives the synchronization signal corrects the calculation control timing based on the synchronization signal. In this way, the torque pulsation of the motor is suppressed by synchronizing the operation control timings of the plurality of microcomputers with each other.
特許第5412095号公報Japanese Patent No. 5412095
 しかし、従来技術では、複数のマイコンの起動時における初回の同期について想定していない。例えば、各マイコンに供給される電源電圧差や配線抵抗、電圧検出特性等の差により、各マイコンの電源ONによる起動タイミングがずれる場合がある。すると、先に起動したマイコンがタイマスタートしてから、遅れて起動するマイコンがタイマスタートするまでの期間、先に起動したマイコンのみが非同期で動作することとなる。したがって、複数のマイコンを初回から同期させることができないという問題があった。
 なお、本明細書では、複数のマイコンのうち一部のマイコンのみでモータ駆動する制御を含めて、「非同期制御」という。
However, the prior art does not assume the initial synchronization when starting up a plurality of microcomputers. For example, there is a case where the start timing of each microcomputer due to power ON is shifted due to a difference in power supply voltage supplied to each microcomputer, wiring resistance, voltage detection characteristics, or the like. Then, only the microcomputer that has been activated first operates asynchronously during the period from when the microcomputer that has been activated first starts the timer to when the microcomputer that is activated later starts the timer. Therefore, there is a problem that a plurality of microcomputers cannot be synchronized from the first time.
In this specification, “asynchronous control” is included, including control in which a motor is driven by only a part of a plurality of microcomputers.
 また、特許文献1の技術では、複数のマイコン間で送受信される同期信号に異常が発生した場合を想定していない。しかし、送信される同期信号に異常が発生すると、同期信号受信側のマイコンが異常な同期信号に基づいてタイミングを補正することになる。そのため、同期信号の異常の程度によっては、同期信号受信側マイコンによる制御が破綻するおそれがある。その結果、クロックのずれによりトルク脈動が生じることよりも不都合な事態に陥る可能性がある。例えば、車両の電動パワーステアリング装置において、モータ駆動の停止によりアシスト機能が停止すると、運転者に不安を与えることとなる。したがって、同期信号の異常を判定し、異常の場合に適切な処置を実施することが求められる。 Further, the technique of Patent Document 1 does not assume a case where an abnormality occurs in a synchronization signal transmitted / received between a plurality of microcomputers. However, if an abnormality occurs in the transmitted synchronization signal, the microcomputer on the synchronization signal receiving side corrects the timing based on the abnormal synchronization signal. Therefore, depending on the degree of abnormality of the synchronization signal, the control by the synchronization signal receiving side microcomputer may fail. As a result, there is a possibility that a more inconvenient situation may occur than a torque pulsation caused by a clock shift. For example, in an electric power steering device for a vehicle, if the assist function is stopped by stopping the motor drive, the driver is anxious. Therefore, it is required to determine an abnormality of the synchronization signal and to take an appropriate measure in the case of the abnormality.
 本開示の目的は、複数のマイコンの起動後、初回から同期可能とするモータ制御装置を提供することにある。
 また、好ましくは、それぞれ独立したクロックで動作する複数のマイコン間で、クロックのずれを補正するための同期信号を送受信するモータ制御装置において、同期信号の異常を判定可能なモータ制御装置を提供することにある。
 さらに、そのモータ制御装置を備えるモータ駆動システム、及び、そのモータ制御装置によるモータ制御方法を提供することにある。
An object of the present disclosure is to provide a motor control device that can be synchronized from the first time after activation of a plurality of microcomputers.
Preferably, in a motor control device that transmits and receives a synchronization signal for correcting a clock shift between a plurality of microcomputers that operate with independent clocks, a motor control device capable of determining an abnormality of the synchronization signal is provided. There is.
Furthermore, it is providing the motor drive system provided with the motor control apparatus, and the motor control method by the motor control apparatus.
 本開示のモータ制御装置は、複数のモータ駆動回路と、複数のマイコンと、複数のクロック生成回路と、を備える。
 複数のモータ駆動回路は、例えば複数の巻線組を有する一つ以上のモータを駆動する。
 複数のマイコンは、駆動信号生成部、及び、駆動タイミング生成部を有する。駆動信号生成部は、複数のモータ駆動回路にそれぞれ指令するモータ駆動信号を生成する。駆動タイミング生成部は、モータ駆動信号のパルスタイミングである駆動タイミングを生成する。
 複数のクロック生成回路は、複数のマイコンが動作の基準とするクロックをそれぞれ独立して生成する。
 クロック生成回路、マイコン及びモータ駆動回路は、互いに対応して設けられており、それら一群の構成要素の単位を「系統」と定義する。各系統の構成要素が対応する巻線組への通電を制御することにより、モータ制御装置はモータを駆動する。
The motor control device according to the present disclosure includes a plurality of motor drive circuits, a plurality of microcomputers, and a plurality of clock generation circuits.
The plurality of motor drive circuits drive, for example, one or more motors having a plurality of winding sets.
The plurality of microcomputers include a drive signal generation unit and a drive timing generation unit. The drive signal generation unit generates a motor drive signal that commands each of the plurality of motor drive circuits. The drive timing generation unit generates a drive timing that is a pulse timing of the motor drive signal.
The plurality of clock generation circuits independently generate clocks used as a reference for operation by the plurality of microcomputers.
The clock generation circuit, the microcomputer, and the motor drive circuit are provided corresponding to each other, and the unit of the group of components is defined as “system”. The motor control device drives the motor by controlling the energization to the corresponding winding set by the constituent elements of each system.
 複数のマイコンのうち、「自マイコンの駆動タイミングに同期し、且つ、複数のマイコンの駆動タイミングを同期させる同期信号を送信する少なくとも一つのマイコン」を同期信号送信側マイコンとし、「同期信号送信側マイコンから送信された同期信号を受信する少なくとも一つのマイコン」を同期信号受信側マイコンとする。また、各マイコンにとって、そのマイコン自身のことを「自マイコン」という。 Among the plurality of microcomputers, “at least one microcomputer that transmits a synchronization signal that synchronizes with the driving timing of the microcomputer and synchronizes the driving timings of the plurality of microcomputers” is referred to as a synchronization signal transmitting side microcomputer. The at least one microcomputer that receives the synchronization signal transmitted from the microcomputer is referred to as a synchronization signal receiving side microcomputer. For each microcomputer, the microcomputer itself is referred to as “own microcomputer”.
 第一の態様のモータ制御装置は、上記の基本構成に加え、さらに以下の構成を備える。
 同期信号送信側マイコンは、同期信号を生成し、同期信号受信側マイコンに送信する同期信号生成部を有する。
 同期信号受信側マイコンは、受信した同期信号に同期するように自マイコンの駆動タイミングを補正するタイミング補正を実施可能なタイミング補正部を有する。
In addition to the basic configuration described above, the motor control device according to the first aspect further includes the following configuration.
The synchronization signal transmission side microcomputer has a synchronization signal generation part which generates a synchronization signal and transmits it to the synchronization signal reception side microcomputer.
The synchronization signal receiving side microcomputer has a timing correction unit capable of performing timing correction for correcting the driving timing of the microcomputer so as to be synchronized with the received synchronization signal.
 さらに、同期信号受信側マイコンは、レディ信号送信部を有する。レディ信号送信部は、自マイコンの同期準備が完了したことを示すレディ信号を同期信号送信側マイコンに送信する。且つ、同期信号送信側マイコンは、レディ信号を受信するレディ信号受信部を有する。
 また、同期信号送信側マイコン及び同期信号受信側マイコンは、少なくともレディ信号の送受信を含むハンドシェイクが正常に実施されたとき、ハンドシェイクが成功したと判定するハンドシェイク判定部を有する。
 ハンドシェイクが成功したと判定されたとき、同期信号送信側マイコン及び同期信号受信側マイコンは、起動後の初回から同期してモータを駆動する。
 これにより、本開示のモータ制御装置は、複数のマイコンの起動後、初回から同期可能とすることができる。
Furthermore, the synchronization signal receiving side microcomputer has a ready signal transmission part. The ready signal transmission unit transmits a ready signal indicating that the synchronization preparation of the microcomputer is completed to the synchronization signal transmission side microcomputer. In addition, the synchronization signal transmission side microcomputer includes a ready signal receiving unit that receives a ready signal.
In addition, the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer have a handshake determination unit that determines that the handshake is successful when a handshake including at least transmission / reception of a ready signal is normally performed.
When it is determined that the handshake is successful, the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer drive the motor synchronously from the first time after activation.
Thereby, the motor control device according to the present disclosure can be synchronized from the first time after activation of a plurality of microcomputers.
 好ましくは、同期信号受信側マイコンのタイミング補正部は、受信した同期信号の正常又は異常の判定である受信信号判定を行う受信信号判定部を含む。
 そして、同期信号受信側マイコンは、受信信号判定において同期信号が正常と判定されたとき、タイミング補正を許可し、受信信号判定において同期信号が異常と判定されたとき、タイミング補正を禁止し、同期信号送信側マイコンとは非同期でモータを駆動する。
Preferably, the timing correction unit of the synchronization signal receiving side microcomputer includes a reception signal determination unit that performs reception signal determination that is normal or abnormal determination of the received synchronization signal.
The synchronization signal receiving microcomputer permits timing correction when the synchronization signal is determined to be normal in the reception signal determination, and prohibits timing correction when the synchronization signal is determined to be abnormal in the reception signal determination. The motor is driven asynchronously with the signal transmission side microcomputer.
 この構成では、同期信号受信側マイコンの受信信号判定部により同期信号の異常を判定可能である。また、受信信号判定において同期信号が異常と判定されたとき、同期信号受信側マイコンは、タイミング補正を禁止し、同期信号送信側マイコンとは非同期でモータを駆動する。したがって、同期信号の異常が原因となって、同期信号受信側マイコンの制御が破綻することを防止することができる。
 この場合、たとえトルク脈動が生じたとしても、少なくともモータの駆動を継続することができる。したがって、電動パワーステアリング装置のように、モータ駆動によるアシスト機能を継続するニーズが大きいモータ駆動システムにおいて、特に有効である。
In this configuration, the synchronization signal abnormality can be determined by the reception signal determination unit of the synchronization signal receiving side microcomputer. When the synchronization signal is determined to be abnormal in the reception signal determination, the synchronization signal reception side microcomputer prohibits timing correction and drives the motor asynchronously with the synchronization signal transmission side microcomputer. Accordingly, it is possible to prevent the control of the synchronization signal receiving microcomputer from failing due to the abnormality of the synchronization signal.
In this case, even if torque pulsation occurs, at least driving of the motor can be continued. Therefore, the present invention is particularly effective in a motor drive system in which there is a great need for continuing an assist function by driving a motor, such as an electric power steering device.
 第二の態様のモータ制御装置は、上記の基本構成を前提として、さらに以下の三つの駆動モードを有する。
 (1)同期信号送信側マイコン、及び同期信号を受信した同期信号受信側マイコンが同期してモータを駆動する同期駆動モード
 (2)同期信号を用いず、同期信号送信側マイコン及び同期信号受信側マイコンが非同期でモータを駆動する非同期駆動モード
 (3)同期信号送信側マイコン又は同期信号受信側マイコンの一方のみでモータを駆動する一部系統駆動モード
 このモータ制御装置は、同期信号送信側マイコン及び同期信号受信側マイコンの起動時において、一部系統駆動モード、非同期駆動モード、同期駆動モードの順に移行する場合がある。
The motor control device of the second aspect further has the following three drive modes on the premise of the above basic configuration.
(1) Synchronous drive mode in which the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer that has received the synchronization signal drive the motor synchronously (2) Without using the synchronization signal, the synchronization signal transmission side microcomputer and the synchronization signal reception side Asynchronous drive mode in which the microcomputer drives the motor asynchronously (3) Partial system drive mode in which the motor is driven by only one of the synchronization signal transmission side microcomputer or the synchronization signal reception side microcomputer This motor control device includes a synchronization signal transmission side microcomputer and When the synchronization signal receiving side microcomputer is activated, the system may be shifted in the order of partial system drive mode, asynchronous drive mode, and synchronous drive mode.
 また、上記基本構成のモータ制御装置によるモータ制御方法が提供される。
 このモータ制御方法のレディ信号送信ステップでは、同期信号受信側マイコンが、自マイコンの同期準備が完了したことを示すレディ信号を同期信号送信側マイコンに送信する。
 レディ信号受信ステップでは、同期信号送信側マイコンがレディ信号を受信する。
 ハンドシェイク成功判定ステップでは、少なくともレディ信号の送受信を含むハンドシェイクが正常に実施されたとき、同期信号送信側マイコン及び同期信号受信側マイコンのハンドシェイク判定部により、ハンドシェイクが成功したと判定する。
 同期駆動ステップでは、ハンドシェイクが成功したと判定されたとき、同期信号送信側マイコン及び同期信号受信側マイコンが起動後の初回から同期してモータを駆動する。
Further, a motor control method by the motor control device having the above basic configuration is provided.
In the ready signal transmission step of this motor control method, the synchronization signal receiving side microcomputer transmits a ready signal indicating that the synchronization preparation of its own microcomputer is completed to the synchronization signal transmitting side microcomputer.
In the ready signal receiving step, the synchronization signal transmitting side microcomputer receives the ready signal.
In the handshake success determination step, when at least a handshake including transmission / reception of a ready signal is normally performed, the handshake determination unit of the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer determines that the handshake is successful. .
In the synchronous drive step, when it is determined that the handshake is successful, the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer drive the motor synchronously from the first time after activation.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、各実施形態のECUが機電一体式のモータ駆動システムとして適用される電動パワーステアリング装置の構成図であり、 図2は、各実施形態のECUが機電別体式のモータ駆動システムとして適用される電動パワーステアリング装置の構成図であり、 図3は、二系統機電一体式モータの軸方向断面図であり、 図4は、図3のIV-IV線断面図であり、 図5は、多相同軸モータの構成を示す模式図であり、 図6は、各実施形態によるECU(モータ制御装置)の全体構成図であり、 図7は、第1実施形態の基礎形態によるECU(モータ制御装置)の詳細構成図であり、 図8は、モータ駆動信号とアナログ信号サンプリングタイミングとの関係を示す図であり、 図9は、二系統のマイコンのクロックずれを示すタイムチャートであり、 図10は、同期信号によるタイミング補正(従来技術)を説明するタイムチャートであり、 図11は、同期信号異常時における従来技術の問題点を説明するタイムチャートであり、 図12は、第1実施形態の基礎形態によるタイミング判定処理のフローチャートであり、 図13は、第1実施形態の基礎形態による同期許可区間の設定例を説明する図であり、 図14は、第1実施形態の基礎形態による同期信号異常時タイムチャートであり、 図15は、マイコン起動時のモータ駆動開始処理のフローチャートであり、 図16は、マイコン起動時のタイミング判定待機処理のフローチャートであり、 図17は、同期信号異常判定後のタイミング補正復帰処理のフローチャートであり、 図18は、同期信号の異常確定処理のフローチャートであり、 図19は、第1実施形態によるECU(モータ制御装置)の構成図であり、 図20は、ハンドシェイク動作例1のタイムチャートであり、 図21は、ハンドシェイク動作例1の変形例のタイムチャートであり、 図22は、ハンドシェイク動作例2のタイムチャートであり、 図23は、ハンドシェイク動作例2の変形例Aのタイムチャートであり、 図24は、ハンドシェイク動作例2の変形例Bのタイムチャートであり、 図25は、ハンドシェイク動作例3のタイムチャートであり、 図26は、動作例1~3の第1マイコン起動後処理のフローチャートであり、 図27は、動作例1~3の第2マイコン起動後処理のフローチャートであり、 図28は、動作例2の変形例Bの第2マイコン起動後処理のフローチャートであり、 図29は、ハンドシェイク成否記憶処理のフローチャートであり、 図30は、非同期制御中の第2マイコン同期処理のフローチャートであり、 図31は、ハンドシェイク動作例4のタイムチャートであり、 図32は、動作例4の第2マイコン起動後処理のフローチャートであり、 図33は、再起動時のハンドシェイク動作例5Aのタイムチャートであり、 図34は、再起動時のハンドシェイク動作例5Bのタイムチャートであり、 図35は、再起動時のハンドシェイク動作例6のタイムチャートであり、 図36は、第2実施形態によるECU(モータ制御装置)の構成図であり、 図37は、3マイコンでのハンドシェイク動作例のタイムチャートであり、 図38は、第3実施形態によるECU(モータ制御装置)の基礎形態対応部分の構成図であり、 図39は、第3実施形態による双方向の同期信号送受信タイミングを示す図であり、 図40は、ハンドシェイク動作例7のタイムチャートであり、 図41は、動作例7の第1マイコン起動後処理のフローチャートであり、 図42は、動作例7の第2マイコン起動後処理のフローチャートであり、 図43は、特定パルスパターンの同期信号を用いる第4実施形態のタイムチャートであり、 図44は、特定パルスパターンの同期信号を用いる第5実施形態のタイムチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a configuration diagram of an electric power steering apparatus in which the ECU of each embodiment is applied as an electromechanical integrated motor drive system. FIG. 2 is a configuration diagram of an electric power steering device in which the ECU of each embodiment is applied as an electro-mechanical separate type motor drive system, FIG. 3 is a sectional view in the axial direction of a two-system electromechanical integrated motor, 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 5 is a schematic diagram showing the configuration of a multi-homologous axis motor, FIG. 6 is an overall configuration diagram of an ECU (motor control device) according to each embodiment. FIG. 7 is a detailed configuration diagram of an ECU (motor control device) according to a basic form of the first embodiment. FIG. 8 is a diagram showing the relationship between the motor drive signal and the analog signal sampling timing. FIG. 9 is a time chart showing the clock deviation of the two systems of microcomputers. FIG. 10 is a time chart for explaining timing correction (prior art) using a synchronization signal. FIG. 11 is a time chart for explaining the problems of the prior art when the synchronization signal is abnormal, FIG. 12 is a flowchart of timing determination processing according to the basic form of the first embodiment. FIG. 13 is a diagram illustrating a setting example of a synchronization permission section according to the basic form of the first embodiment. FIG. 14 is a time chart when the synchronization signal is abnormal according to the basic form of the first embodiment. FIG. 15 is a flowchart of the motor drive start process at the time of starting the microcomputer. FIG. 16 is a flowchart of the timing determination standby process when the microcomputer is activated. FIG. 17 is a flowchart of timing correction return processing after the synchronization signal abnormality determination, FIG. 18 is a flowchart of the synchronization signal abnormality confirmation process, FIG. 19 is a configuration diagram of an ECU (motor control device) according to the first embodiment. FIG. 20 is a time chart of the handshake operation example 1. FIG. 21 is a time chart of a modified example of the handshake operation example 1. FIG. 22 is a time chart of handshake operation example 2. FIG. 23 is a time chart of Modification A of Handshake Operation Example 2; FIG. 24 is a time chart of Modification B of Handshake Operation Example 2; FIG. 25 is a time chart of the handshake operation example 3. FIG. 26 is a flowchart of the first microcomputer startup process in the first to third operation examples. FIG. 27 is a flowchart of the second microcomputer startup process in the first to third operation examples. FIG. 28 is a flowchart of the second microcomputer activation post-processing of the modification B of the operation example 2, FIG. 29 is a flowchart of the handshake success / failure storage process. FIG. 30 is a flowchart of the second microcomputer synchronization processing during asynchronous control. FIG. 31 is a time chart of the handshake operation example 4. FIG. 32 is a flowchart of the second microcomputer start-up process in the operation example 4, FIG. 33 is a time chart of a handshake operation example 5A at the time of restart, FIG. 34 is a time chart of the handshake operation example 5B at the time of restart, FIG. 35 is a time chart of the handshake operation example 6 at the time of restart, FIG. 36 is a configuration diagram of an ECU (motor control device) according to the second embodiment. FIG. 37 is a time chart of an example of handshake operation with three microcomputers. FIG. 38 is a configuration diagram of a basic form corresponding part of an ECU (motor control device) according to a third embodiment. FIG. 39 is a diagram illustrating bidirectional synchronization signal transmission / reception timing according to the third embodiment. FIG. 40 is a time chart of the handshake operation example 7. FIG. 41 is a flowchart of the first microcomputer start-up process in Operation Example 7, FIG. 42 is a flowchart of processing after starting the second microcomputer of the operation example 7, FIG. 43 is a time chart of the fourth embodiment using a synchronization signal of a specific pulse pattern, FIG. 44 is a time chart of the fifth embodiment using a synchronization signal of a specific pulse pattern.
 以下、モータ制御装置の複数の実施形態を図面に基づいて説明する。各実施形態において、「モータ制御装置」としてのECUは、車両の電動パワーステアリング装置に適用され、操舵アシストトルクを出力するモータの通電を制御する。また、ECU及びモータにより「モータ駆動システム」が構成される。
 複数の実施形態で実質的に同一の構成には同一の符号を付して説明を省略する。また、以下の第1~第5実施形態を包括して「本実施形態」という。
Hereinafter, a plurality of embodiments of a motor control device will be described based on the drawings. In each embodiment, an ECU as a “motor control device” is applied to an electric power steering device of a vehicle and controls energization of a motor that outputs a steering assist torque. The ECU and the motor constitute a “motor drive system”.
In the plurality of embodiments, substantially the same components are denoted by the same reference numerals and description thereof is omitted. The following first to fifth embodiments are collectively referred to as “this embodiment”.
 最初に、各実施形態に共通する事項として、適用される電動パワーステアリング装置の構成、モータ駆動システムの構成等について、図1~図6を参照して説明する。
 図1、図2に、電動パワーステアリング装置90を含むステアリングシステム99の全体構成を示す。図1には、ECU10がモータ80の軸方向の一方側に一体に構成されている「機電一体式」の構成が図示され、図2には、ECU10とモータ80とがハーネスで接続された「機電別体式」の構成が図示される。なお、図1、図2における電動パワーステアリング装置90はコラムアシスト式であるが、ラックアシスト式の電動パワーステアリング装置にも同様に適用可能である。
First, as a matter common to each embodiment, the configuration of an applied electric power steering device, the configuration of a motor drive system, and the like will be described with reference to FIGS.
1 and 2 show an overall configuration of a steering system 99 including an electric power steering device 90. FIG. FIG. 1 shows an “mechanical and integrated” configuration in which the ECU 10 is integrally formed on one side of the motor 80 in the axial direction, and FIG. The structure of “mechanical separate type” is illustrated. The electric power steering device 90 in FIGS. 1 and 2 is a column assist type, but can be similarly applied to a rack assist type electric power steering device.
 ステアリングシステム99は、ハンドル91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、及び、電動パワーステアリング装置90等を含む。
 ハンドル91にはステアリングシャフト92が接続されている。ステアリングシャフト92の先端に設けられたピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が設けられる。運転者がハンドル91を回転させると、ハンドル91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ピニオンギア96によりラック軸97の直線運動に変換され、ラック軸97の変位量に応じた角度に一対の車輪98が操舵される。
The steering system 99 includes a handle 91, a steering shaft 92, a pinion gear 96, a rack shaft 97, wheels 98, an electric power steering device 90, and the like.
A steering shaft 92 is connected to the handle 91. A pinion gear 96 provided at the tip of the steering shaft 92 is engaged with the rack shaft 97. A pair of wheels 98 are provided at both ends of the rack shaft 97 via tie rods or the like. When the driver rotates the handle 91, the steering shaft 92 connected to the handle 91 rotates. The rotational motion of the steering shaft 92 is converted into a linear motion of the rack shaft 97 by the pinion gear 96, and the pair of wheels 98 are steered at an angle corresponding to the amount of displacement of the rack shaft 97.
 電動パワーステアリング装置90は、操舵トルクセンサ93、ECU10、モータ80、及び、減速ギア94等を含む。
 操舵トルクセンサ93は、ステアリングシャフト92の途中に設けられ、運転者の操舵トルクを検出する。図1、図2に示す形態では、二重化された操舵トルクセンサ93は、第1トルクセンサ931及び第2トルクセンサ932を含み、第1操舵トルクtrq1及び第2操舵トルクtrq2を二重に検出する。
 操舵トルクセンサが冗長的に設けられない場合、一つの操舵トルクtrqの検出値が二系統共通に用いられてもよい。以下、冗長的に検出された操舵トルクtrq1、trq2を用いることに特段の意味が無い箇所では、一つの操舵トルクtrqとして記載する。
The electric power steering device 90 includes a steering torque sensor 93, an ECU 10, a motor 80, a reduction gear 94, and the like.
The steering torque sensor 93 is provided in the middle of the steering shaft 92 and detects the steering torque of the driver. In the form shown in FIGS. 1 and 2, the duplicated steering torque sensor 93 includes a first torque sensor 931 and a second torque sensor 932, and detects the first steering torque trq1 and the second steering torque trq2 doubly. .
When the steering torque sensor is not redundantly provided, the detected value of one steering torque trq may be used in common for the two systems. Hereinafter, where there is no particular meaning in using redundantly detected steering torques trq1 and trq2, they are described as one steering torque trq.
 ECU10は、操舵トルクtrq1、trq2に基づいて、モータ80が所望のアシストトルクを発生するようにモータ80の駆動を制御する。モータ80が出力したアシストトルクは、減速ギア94を介してステアリングシャフト92に伝達される。
 ECU10は、回転角センサが検出したモータ80の電気角θ1、θ2及び操舵トルクセンサ93が検出した操舵トルクtrq1、trq2を取得する。ECU10は、これらの情報やECU10内部で検出したモータ電流等の情報に基づき、モータ80の駆動を制御する。
The ECU 10 controls the driving of the motor 80 based on the steering torques trq1 and trq2 so that the motor 80 generates a desired assist torque. The assist torque output from the motor 80 is transmitted to the steering shaft 92 via the reduction gear 94.
The ECU 10 acquires the electrical angles θ1 and θ2 of the motor 80 detected by the rotation angle sensor and the steering torques trq1 and trq2 detected by the steering torque sensor 93. The ECU 10 controls the driving of the motor 80 based on such information and information such as the motor current detected inside the ECU 10.
 モータ80の軸方向の一方側にECU10が一体に構成された機電一体式モータ800の構成について、図3、図4を参照して説明する。図3に示す形態では、ECU10は、モータ80の出力側とは反対側において、シャフト87の軸Axに対して同軸に配置されている。なお、他の実施形態では、ECU10は、モータ80の出力側において、モータ80と一体に構成されてもよい。
 モータ80は、三相ブラシレスモータであって、ステータ840、ロータ860、及びそれらを収容するハウジング830を備えている。
A configuration of an electromechanical integrated motor 800 in which the ECU 10 is integrally formed on one side in the axial direction of the motor 80 will be described with reference to FIGS. 3 and 4. In the form shown in FIG. 3, the ECU 10 is disposed coaxially with the axis Ax of the shaft 87 on the side opposite to the output side of the motor 80. In other embodiments, the ECU 10 may be configured integrally with the motor 80 on the output side of the motor 80.
The motor 80 is a three-phase brushless motor, and includes a stator 840, a rotor 860, and a housing 830 that accommodates them.
 ステータ840は、ハウジング830に固定されているステータコア845と、ステータコア845に組み付けられている二組の三相巻線組801、802とを有している。
 第1巻線組801を構成する各相巻線からは、リード線851、853、855が延び出している。第2巻線組802を構成する各相巻線からは、リード線852、854、856が延び出している。
 ロータ860は、リア軸受835及びフロント軸受836により支持されているシャフト87と、シャフト87が嵌入されたロータコア865とを有している。ロータ860は、ステータ840の内側に設けられており、ステータ840に対して相対回転可能である。シャフト87の一端には永久磁石88が設けられている。
The stator 840 has a stator core 845 fixed to the housing 830 and two sets of three- phase winding sets 801 and 802 assembled to the stator core 845.
Lead wires 851, 853, and 855 extend from the respective phase windings constituting the first winding set 801. Lead wires 852, 854, 856 extend from the respective phase windings constituting the second winding set 802.
The rotor 860 has a shaft 87 supported by a rear bearing 835 and a front bearing 836, and a rotor core 865 in which the shaft 87 is fitted. The rotor 860 is provided inside the stator 840 and is rotatable relative to the stator 840. A permanent magnet 88 is provided at one end of the shaft 87.
 ハウジング830は、リアフレームエンド837を含む有底筒状のケース834と、ケース834の一端に設けられているフロントフレームエンド838とを有している。ケース834及びフロントフレームエンド838は、ボルト等により互いに締結されている。各巻線組801、802のリード線851、852等は、リアフレームエンド837のリード線挿通孔839を挿通してECU10側に延び、基板230に接続されている。 The housing 830 has a bottomed cylindrical case 834 including a rear frame end 837 and a front frame end 838 provided at one end of the case 834. The case 834 and the front frame end 838 are fastened to each other by bolts or the like. Lead wires 851, 852 and the like of each winding set 801, 802 extend through the lead wire insertion hole 839 of the rear frame end 837 to the ECU 10 side and are connected to the substrate 230.
 ECU10は、カバー21と、カバー21に固定されているヒートシンク22と、ヒートシンク22に固定されている基板230と、基板230に実装されている各種の電子部品とを備えている。カバー21は、外部の衝撃から電子部品を保護したり、ECU10内への埃や水等の浸入を防止したりする。
 カバー21は、外部からの給電ケーブルや信号ケーブルが外部接続用コネクタ部214と、カバー部213とを有している。外部接続用コネクタ部214の給電用端子215、216は、図示しない経路を経由して基板230に接続されている。
The ECU 10 includes a cover 21, a heat sink 22 fixed to the cover 21, a substrate 230 fixed to the heat sink 22, and various electronic components mounted on the substrate 230. The cover 21 protects electronic components from external impacts and prevents intrusion of dust or water into the ECU 10.
The cover 21 includes an external connection connector 214 and a cover 213 for an external power supply cable and signal cable. The power supply terminals 215 and 216 of the external connection connector portion 214 are connected to the substrate 230 via a path (not shown).
 基板230は、例えばプリント基板であり、リアフレームエンド837と対向する位置に設けられ、ヒートシンク22に固定されている。基板230には、二系統分の各電子部品が系統毎に独立して設けられており、完全冗長構成をなしている。本実施形態では基板230は一枚であるが、他の実施形態では、二枚以上の基板を備えるようにしてもよい。
 基板230の二つの主面のうち、リアフレームエンド837に対向している面をモータ面237とし、その反対側の面、すなわちヒートシンク22に対向している面をカバー面238とする。
The board 230 is, for example, a printed board, is provided at a position facing the rear frame end 837, and is fixed to the heat sink 22. The board 230 is provided with electronic components for two systems independently for each system, and has a completely redundant configuration. In the present embodiment, the number of the substrates 230 is one, but in other embodiments, two or more substrates may be provided.
Of the two main surfaces of the substrate 230, the surface facing the rear frame end 837 is referred to as a motor surface 237, and the opposite surface, that is, the surface facing the heat sink 22 is referred to as a cover surface 238.
 モータ面237には、複数のスイッチング素子241、242、回転角センサ251、252、カスタムIC261、262等が実装されている。
 本実施形態では複数のスイッチング素子241、242は各系統について6個であり、モータ駆動回路の三相上下アームを構成する。回転角センサ251、252は、シャフト87の先端に設けられた永久磁石88と対向するように配置される。カスタムIC261、262及びマイコン401、402は、ECU10の制御回路を有する。カスタムIC261、262には、例えば図7に示すクロック監視部661、662等が設けられる。
A plurality of switching elements 241 and 242, rotation angle sensors 251 and 252, custom ICs 261 and 262 are mounted on the motor surface 237.
In this embodiment, the plurality of switching elements 241 and 242 are six for each system, and constitute the three-phase upper and lower arms of the motor drive circuit. The rotation angle sensors 251 and 252 are arranged so as to face the permanent magnet 88 provided at the tip of the shaft 87. The custom ICs 261 and 262 and the microcomputers 401 and 402 have a control circuit for the ECU 10. The custom ICs 261 and 262 are provided with, for example, clock monitoring units 661 and 662 shown in FIG.
 カバー面238には、マイコン401、402、コンデンサ281、282、及び、インダクタ271、272等が実装されている。特に、第1マイコン401及び第2マイコン402は、同一の基板230の同一側の面であるカバー面238に、所定間隔を空けて配置されている。
 コンデンサ281、282は、電源から入力された電力を平滑化し、また、スイッチング素子241、242のスイッチング動作等に起因するノイズの流出を防止する。インダクタ271、272は、コンデンサ281、282と共にフィルタ回路を構成する。
On the cover surface 238, microcomputers 401 and 402, capacitors 281 and 282, inductors 271 and 272, and the like are mounted. In particular, the first microcomputer 401 and the second microcomputer 402 are arranged on the cover surface 238 that is the same side surface of the same substrate 230 at a predetermined interval.
Capacitors 281 and 282 smooth the electric power input from the power source and prevent noise from flowing out due to the switching operation of switching elements 241 and 242. The inductors 271 and 272 constitute a filter circuit together with the capacitors 281 and 282.
 図5、図6に示すように、ECU10の制御対象であるモータ80は、二組の三相巻線組801、802が同軸に設けられた三相ブラシレスモータである。
 巻線組801、802は、電気的特性が同等であり、例えば特許第5672278号公報の図3に参照されるように、共通のステータに互いに電気角30degずらして配置されている。これに応じて、巻線組801、802には、例えば、振幅が等しく位相が30degずれた相電流が通電されるように制御される。
As shown in FIGS. 5 and 6, the motor 80 to be controlled by the ECU 10 is a three-phase brushless motor in which two sets of three- phase winding sets 801 and 802 are provided coaxially.
The winding sets 801 and 802 have the same electrical characteristics. For example, as shown in FIG. 3 of Japanese Patent No. 5672278, the winding sets 801 and 802 are arranged on a common stator with an electrical angle shifted by 30 degrees. In response to this, the winding sets 801 and 802 are controlled so that, for example, a phase current having the same amplitude and a phase shift of 30 deg.
 図6において、第1巻線組801と、第1巻線組801の通電制御に係る第1マイコン401及びモータ駆動回路701等との組み合わせを第1系統GR1とする。第2巻線組802と、第2巻線組802の通電制御に係る第2マイコン402及び第2モータ駆動回路702等との組み合わせを第2系統GR2とする。第1系統GR1と第2系統GR2とは、全て独立した2組の要素群から構成されており、いわゆる「完全二系統」の冗長構成をなしている。 In FIG. 6, a combination of the first winding set 801 and the first microcomputer 401 and the motor drive circuit 701 related to the energization control of the first winding set 801 is defined as a first system GR1. A combination of the second winding set 802 and the second microcomputer 402, the second motor drive circuit 702, and the like related to energization control of the second winding set 802 is defined as a second system GR2. The first system GR1 and the second system GR2 are all composed of two independent element groups, and have a so-called “complete two-system” redundant configuration.
 明細書中、必要に応じて、第1系統GR1の構成要素又は信号には語頭に「第1」を付し、第2系統GR2の構成要素又は信号には語頭に「第2」を付して区別する。各系統に共通の事項については、「第1、第2」を付さず、まとめて記載する。また、第1系統の構成要素又は信号の符号の末尾に「1」を付し、第2系統の構成要素又は信号の符号の末尾に「2」を付して記す。
 以下、ある構成要素にとって、その構成要素が含まれる系統を「自系統」といい、他方の系統を「他系統」という。同様に、二系統のマイコン401、402について、自系統のマイコンを「自マイコン」といい、他系統のマイコンを「他マイコン」という。
In the specification, “first” is added to the beginning of components or signals of the first system GR1, and “second” is added to the beginning of components or signals of the second system GR2, as necessary. To distinguish. Items that are common to each system are collectively described without adding “first and second”. Also, “1” is added to the end of the code of the first system component or signal, and “2” is added to the end of the code of the second system component or signal.
Hereinafter, for a certain component, a system including the component is referred to as “own system”, and the other system is referred to as “other system”. Similarly, regarding the two systems of microcomputers 401 and 402, the microcomputer of the own system is referred to as “own microcomputer”, and the microcomputer of the other system is referred to as “other microcomputer”.
 ECU10の第1コネクタ部351には、第1電源コネクタ131、第1車両通信コネクタ311、及び、第1トルクコネクタ331が含まれる。第2コネクタ部352には、第2電源コネクタ132、第2車両通信コネクタ312、及び、第2トルクコネクタ332が含まれる。コネクタ部351、352は、それぞれ単一のコネクタとして形成されていてもよいし、複数のコネクタに分割されていてもよい。 The first connector portion 351 of the ECU 10 includes a first power connector 131, a first vehicle communication connector 311, and a first torque connector 331. The second connector portion 352 includes a second power connector 132, a second vehicle communication connector 312, and a second torque connector 332. Each of the connector portions 351 and 352 may be formed as a single connector, or may be divided into a plurality of connectors.
 第1電源コネクタ131は、第1電源111に接続される。第1電源111の電力は、電源コネクタ131、電源リレー141、第1モータ駆動回路701、及び、モータリレー731を経由して、第1巻線組801に供給される。また、第1電源111の電力は、第1マイコン401及び第1系統GR1のセンサ類にも供給される。
 第2電源コネクタ132は、第2電源112に接続される。第2電源112の電力は、電源コネクタ132、電源リレー142、第2モータ駆動回路702、及び、モータリレー732を経由して、第2巻線組802に供給される。また、第2電源112の電力は、第2マイコン402及び第2系統GR2のセンサ類にも供給される。
 電源が冗長的に設けられない場合、二系統の電源コネクタ131、132は共通の電源に接続されてもよい。
The first power connector 131 is connected to the first power source 111. The power of the first power supply 111 is supplied to the first winding set 801 via the power connector 131, the power relay 141, the first motor drive circuit 701, and the motor relay 731. The power of the first power supply 111 is also supplied to the first microcomputer 401 and the sensors of the first system GR1.
The second power connector 132 is connected to the second power source 112. The power of the second power source 112 is supplied to the second winding set 802 via the power connector 132, the power relay 142, the second motor drive circuit 702, and the motor relay 732. The power of the second power source 112 is also supplied to the second microcomputer 402 and the sensors of the second system GR2.
When the power supply is not redundantly provided, the two power supply connectors 131 and 132 may be connected to a common power supply.
 車両通信ネットワークとしてCANが冗長的に設けられる場合、第1車両通信コネクタ311は、第1CAN301と第1車両通信回路321との間に接続され、第2車両通信コネクタ312は、第2CAN302と第2車両通信回路322との間に接続される。
 CANが冗長的に設けられない場合、二系統の車両通信コネクタ311、312は、共通のCAN30に接続されてもよい。また、CAN以外の車両通信ネットワークとして、CAN-FD(CAN with Flexible Data rate)やFlexRay等、どのような規格のネットワークが用いられてもよい。
 車両通信回路321、322は、自系統及び他系統の各マイコン401、402との間で双方向に情報を通信する。
When the CAN is redundantly provided as the vehicle communication network, the first vehicle communication connector 311 is connected between the first CAN 301 and the first vehicle communication circuit 321, and the second vehicle communication connector 312 is connected to the second CAN 302 and the second CAN communication network 312. Connected to the vehicle communication circuit 322.
When the CAN is not provided redundantly, the two vehicle communication connectors 311 and 312 may be connected to the common CAN 30. Further, as a vehicle communication network other than CAN, a network of any standard such as CAN-FD (CAN with Flexible Data rate) or FlexRay may be used.
The vehicle communication circuits 321 and 322 communicate information bidirectionally with the microcomputers 401 and 402 of the own system and other systems.
 第1トルクコネクタ331は、第1トルクセンサ931と第1トルクセンサ入力回路341との間に接続される。第1トルクセンサ入力回路341は、第1トルクコネクタ331が検出した操舵トルクtrq1を第1マイコン401に通知する。
 第2トルクコネクタ332は、第2トルクセンサ932と第2トルクセンサ入力回路342との間に接続される。第2トルクセンサ入力回路342は、第2トルクコネクタ332が検出した操舵トルクtrq2を第2マイコン402に通知する。
The first torque connector 331 is connected between the first torque sensor 931 and the first torque sensor input circuit 341. The first torque sensor input circuit 341 notifies the first microcomputer 401 of the steering torque trq1 detected by the first torque connector 331.
The second torque connector 332 is connected between the second torque sensor 932 and the second torque sensor input circuit 342. The second torque sensor input circuit 342 notifies the second microcomputer 402 of the steering torque trq2 detected by the second torque connector 332.
 マイコン401、402における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
 マイコン401、402は、クロック生成回路651、652が生成した基準クロックにより動作する。クロック監視部661、662は、クロック生成回路651、652により生成された基準クロックをそれぞれ監視する。基準クロックの生成、監視について、詳しくは後述する。
Each processing in the microcomputers 401 and 402 may be software processing by a CPU executing a program stored in advance in a substantial memory device such as a ROM, or hardware processing by a dedicated electronic circuit. Also good.
The microcomputers 401 and 402 operate with the reference clock generated by the clock generation circuits 651 and 652. The clock monitoring units 661 and 662 monitor the reference clocks generated by the clock generation circuits 651 and 652, respectively. The generation and monitoring of the reference clock will be described later in detail.
 第1マイコン401は、第1モータ駆動回路701のスイッチング素子241の動作を操作するモータ駆動信号Dr1を生成し、第1モータ駆動回路701に指令する。また、第1マイコン401は、第1電源リレー駆動信号Vpr1、及び、第1モータリレー駆動信号Vmr1を生成する。
 第2マイコン402は、第2モータ駆動回路702のスイッチング素子242の動作を操作するモータ駆動信号Dr2を生成し、第2モータ駆動回路702に指令する。また、第2マイコン402は、第2電源リレー駆動信号Vpr2、及び、第2モータリレー駆動信号Vmr2を生成する。
 マイコン401、402が生成した電源リレー駆動信号Vpr1、Vpr2は、自系統の電源リレー141、142に指令される他、他マイコンにも通知される。
The first microcomputer 401 generates a motor drive signal Dr1 for operating the operation of the switching element 241 of the first motor drive circuit 701 and instructs the first motor drive circuit 701. In addition, the first microcomputer 401 generates a first power relay drive signal Vpr1 and a first motor relay drive signal Vmr1.
The second microcomputer 402 generates a motor drive signal Dr2 for operating the operation of the switching element 242 of the second motor drive circuit 702, and instructs the second motor drive circuit 702. The second microcomputer 402 generates a second power relay drive signal Vpr2 and a second motor relay drive signal Vmr2.
The power supply relay drive signals Vpr1 and Vpr2 generated by the microcomputers 401 and 402 are instructed to the power supply relays 141 and 142 of the own system, and are also notified to other microcomputers.
 マイコン401、402は、マイコン間通信により、相互に情報を送受信可能である。マイコン401、402は、マイコン間通信にて、電流検出値や電流指令値等を相互に送受信し、第1系統GR1及び第2系統GR2を協働させてモータ80を駆動することが可能である。マイコン間通信の通信フレームには、電流検出値等が含まれる。その他、電流指令値、電流制限値、アップデートカウンタ、ステータス信号、及び、誤り検出値信号であるCRC信号、またはチェックサム信号等が含まれる場合もある。なお、本実施形態はマイコン間通信の通信内容に依らず適用可能であり、必要に応じてその他の情報を送受信してもよく、あるいは前記データの一部ないし全部が含まれていなくてもよい。 The microcomputers 401 and 402 can transmit / receive information to / from each other through communication between microcomputers. The microcomputers 401 and 402 can transmit and receive a current detection value, a current command value, and the like to each other through communication between the microcomputers, and drive the motor 80 in cooperation with the first system GR1 and the second system GR2. . A communication frame for communication between microcomputers includes a current detection value and the like. In addition, a current command value, a current limit value, an update counter, a status signal, a CRC signal that is an error detection value signal, or a checksum signal may be included. Note that this embodiment can be applied regardless of the communication contents of the communication between microcomputers, and may transmit / receive other information as necessary, or a part or all of the data may not be included. .
 各マイコンが他マイコンからの電源リレー駆動信号Vpr1、Vpr2を受信しているにもかかわらず、マイコン間通信で他マイコンからの信号を受信しない場合には、他マイコンは正常であり、マイコン間通信の異常であると判断される。
 一方、各マイコンが他マイコンからの電源リレー駆動信号Vpr1、Vpr2を受信せず、且つ、マイコン間通信で他マイコンからの信号を受信しない場合には、他マイコンが異常であると判断される。
If each microcomputer receives power relay drive signals Vpr1 and Vpr2 from other microcomputers, but does not receive signals from other microcomputers through communication between microcomputers, the other microcomputers are normal and communication between microcomputers is normal. Is determined to be abnormal.
On the other hand, when each microcomputer does not receive the power supply relay drive signals Vpr1 and Vpr2 from the other microcomputers and does not receive the signal from the other microcomputers through the communication between the microcomputers, it is determined that the other microcomputers are abnormal.
 第1モータ駆動回路701は、複数のスイッチング素子241を有する三相インバータであって、第1巻線組801へ供給される電力を変換する。第1モータ駆動回路701のスイッチング素子241は、第1マイコン401から出力されるモータ駆動信号Dr1に基づいてオンオフ作動が制御される。
 第2モータ駆動回路702は、複数のスイッチング素子242を有する三相インバータであって、第2巻線組802へ供給される電力を変換する。第2モータ駆動回路702のスイッチング素子242は、第2マイコン402から出力されるモータ駆動信号Dr2に基づいてオンオフ作動が制御される。
The first motor drive circuit 701 is a three-phase inverter having a plurality of switching elements 241 and converts electric power supplied to the first winding set 801. On / off operation of the switching element 241 of the first motor drive circuit 701 is controlled based on the motor drive signal Dr1 output from the first microcomputer 401.
The second motor drive circuit 702 is a three-phase inverter having a plurality of switching elements 242, and converts electric power supplied to the second winding set 802. The on / off operation of the switching element 242 of the second motor drive circuit 702 is controlled based on the motor drive signal Dr2 output from the second microcomputer 402.
 第1電源リレー141は、第1電源コネクタ131と第1モータ駆動回路701との間に設けられ、第1マイコン401からの第1電源リレー駆動信号Vpr1により制御される。第1電源リレー141がオンのとき、第1電源111と第1モータ駆動回路701との間の通電が許容され、第1電源リレー141がオフのとき、第1電源111と第1モータ駆動回路701との間の通電が遮断される。
 第2電源リレー142は、第2電源コネクタ132と第2モータ駆動回路702との間に設けられ、第2マイコン402からの第2電源リレー駆動信号Vpr2により制御される。第2電源リレー142がオンのとき、第2電源112と第2モータ駆動回路702との間の通電が許容され、第2電源リレー142がオフのとき、第2電源112と第2モータ駆動回路702との間の通電が遮断される。
The first power supply relay 141 is provided between the first power supply connector 131 and the first motor drive circuit 701, and is controlled by a first power supply relay drive signal Vpr1 from the first microcomputer 401. When the first power supply relay 141 is on, energization between the first power supply 111 and the first motor drive circuit 701 is allowed. When the first power supply relay 141 is off, the first power supply 111 and the first motor drive circuit are allowed. The power supply to and from 701 is cut off.
The second power supply relay 142 is provided between the second power supply connector 132 and the second motor drive circuit 702, and is controlled by a second power supply relay drive signal Vpr2 from the second microcomputer 402. When the second power supply relay 142 is on, energization between the second power supply 112 and the second motor drive circuit 702 is allowed. When the second power supply relay 142 is off, the second power supply 112 and the second motor drive circuit are allowed. The power supply to and from 702 is cut off.
 本実施形態の電源リレー141、142は、MOSFET等の半導体リレーである。電源リレー141、142がMOSFETのように寄生ダイオードを有する場合、電源リレー141、142に対し寄生ダイオードの向きが逆向きになるように直列接続される図示しない逆接保護リレーを設けることが望ましい。また、電源リレー141、142は、メカリレーであってもよい。 The power supply relays 141 and 142 of this embodiment are semiconductor relays such as MOSFETs. When the power supply relays 141 and 142 have parasitic diodes such as MOSFETs, it is desirable to provide a reverse connection protection relay (not shown) that is connected in series so that the direction of the parasitic diodes is opposite to the power supply relays 141 and 142. Further, the power relays 141 and 142 may be mechanical relays.
 第1モータリレー731は、第1モータ駆動回路701と第1巻線組801との間の各相電力経路に設けられ、第1マイコン401からの第1モータリレー駆動信号Vmr1により制御される。第1モータリレー731がオンのとき、第1モータ駆動回路701と第1巻線組801との間の通電が許容され、第1モータリレー731がオフのとき、第1モータ駆動回路701と第1巻線組801との間の通電が遮断される。
 第2モータリレー732は、第2モータ駆動回路702と第2巻線組802との間の各相電力経路に設けられ、第2マイコン402からの第2モータリレー駆動信号Vmr2により制御される。第2モータリレー732がオンのとき、第2モータ駆動回路702と第2巻線組802との間の通電が許容され、第2モータリレー732がオフのとき、第2モータ駆動回路702と第2巻線組802との間の通電が遮断される。
The first motor relay 731 is provided in each phase power path between the first motor drive circuit 701 and the first winding set 801, and is controlled by a first motor relay drive signal Vmr 1 from the first microcomputer 401. When the first motor relay 731 is on, energization between the first motor drive circuit 701 and the first winding set 801 is allowed, and when the first motor relay 731 is off, the first motor drive circuit 701 and the first winding set 801 are turned on. Energization with the one winding set 801 is interrupted.
The second motor relay 732 is provided in each phase power path between the second motor drive circuit 702 and the second winding set 802, and is controlled by the second motor relay drive signal Vmr2 from the second microcomputer 402. When the second motor relay 732 is on, energization between the second motor drive circuit 702 and the second winding set 802 is allowed, and when the second motor relay 732 is off, the second motor drive circuit 702 and the second winding set 802 are The energization between the two-winding set 802 is interrupted.
 第1電流センサ741は、第1巻線組801の各相に通電される電流Im1を検出し、第1マイコン401に出力する。第2電流センサ742は、第2巻線組802の各相に通電される電流Im2を検出し、第2マイコン402に出力する。
 回転角センサ251、252が冗長的に設けられる場合、第1回転角センサ251は、モータ80の電気角θ1を検出し、第1マイコン401に出力する。第2回転角センサ252は、モータ80の電気角θ2を検出し、第2マイコン402に出力する。
 回転角センサが冗長的に設けられない場合、例えば第1回転角センサ251が検出した第1系統の電気角θ1に基づき、第2系統の電気角θ2を「θ2=θ1+30deg」の式により算出してもよい。
The first current sensor 741 detects the current Im1 energized in each phase of the first winding set 801 and outputs it to the first microcomputer 401. The second current sensor 742 detects the current Im <b> 2 energized in each phase of the second winding set 802 and outputs it to the second microcomputer 402.
When the rotation angle sensors 251 and 252 are redundantly provided, the first rotation angle sensor 251 detects the electrical angle θ <b> 1 of the motor 80 and outputs it to the first microcomputer 401. The second rotation angle sensor 252 detects the electrical angle θ <b> 2 of the motor 80 and outputs it to the second microcomputer 402.
When the rotation angle sensor is not provided redundantly, for example, based on the electric angle θ1 of the first system detected by the first rotation angle sensor 251, the electric angle θ2 of the second system is calculated by the equation “θ2 = θ1 + 30 deg”. May be.
 [ECUの構成]
 以下、各実施形態のECUの構成及び作用効果について実施形態毎に説明する。図6に示す二系統冗長に関する各構成については、適宜記載を省略する。各実施形態のECUの符号は、「10」に続く3桁目に実施形態の番号を付す。
 (第1実施形態の基礎形態)
 第1実施形態の説明に先立って、まず、第1実施形態の基幹部分をなす基礎形態の構成及び作用効果について、図7~図18を参照して説明する。
 図7には、図19に示す第1実施形態のECU101の構成のうち特に動作中の同期に関する構成を示す。図1に示す基礎形態のECUに符号を「100」とする。
 図7に示すように、ECU100は、第1巻線組801の通電を制御する第1系統制御部601、及び、第2巻線組802の通電を制御する第2系統制御部602を含む。各系統の制御部601、602は、クロック生成回路651、652、クロック監視部661、662、マイコン401、402及びモータ駆動回路701、702を含む。言い換えれば、互いに対応するクロック生成回路、マイコン及びモータ駆動回路を含む一群の構成要素の単位を「系統」という。
[Configuration of ECU]
Hereinafter, the configuration and operational effects of the ECU of each embodiment will be described for each embodiment. Description of each configuration related to the two-system redundancy shown in FIG. 6 is omitted as appropriate. As for the sign of the ECU of each embodiment, the number of the embodiment is attached to the third digit following “10”.
(Basic form of the first embodiment)
Prior to the description of the first embodiment, first, the configuration and operational effects of the basic form constituting the basic part of the first embodiment will be described with reference to FIGS.
FIG. 7 shows a configuration related to synchronization during operation among the configurations of the ECU 101 of the first embodiment shown in FIG. In the basic form ECU shown in FIG.
As shown in FIG. 7, the ECU 100 includes a first system control unit 601 that controls energization of the first winding set 801 and a second system control unit 602 that controls energization of the second winding set 802. The control units 601 and 602 of each system include clock generation circuits 651 and 652, clock monitoring units 661 and 662, microcomputers 401 and 402, and motor drive circuits 701 and 702. In other words, a unit of a group of components including a clock generation circuit, a microcomputer, and a motor drive circuit corresponding to each other is referred to as a “system”.
 第1クロック生成回路651及び第2クロック生成回路652は、第1マイコン401及び第2マイコン402が動作の基準とする基準クロックをそれぞれ独立して生成する。
 第1クロック監視部661は、第1クロック生成回路651により生成され第1マイコン401に出力された基準クロックを監視する。第2クロック監視部662は、第2クロック生成回路652により生成され第2マイコン402に出力された基準クロックを監視する。また、クロック監視部661、662は、基準クロックの異常を検出すると、マイコン401、402にリセット(図中「RESET」)信号を出力する。
The first clock generation circuit 651 and the second clock generation circuit 652 independently generate reference clocks that the first microcomputer 401 and the second microcomputer 402 operate as references.
The first clock monitoring unit 661 monitors the reference clock generated by the first clock generation circuit 651 and output to the first microcomputer 401. The second clock monitoring unit 662 monitors the reference clock generated by the second clock generation circuit 652 and output to the second microcomputer 402. Further, when the clock monitoring units 661 and 662 detect the abnormality of the reference clock, the clock monitoring units 661 and 662 output a reset (“RESET” in the drawing) signal to the microcomputers 401 and 402.
 マイコン401、402は、CAN301、302を経由して入力される車両情報や、各センサから入力される操舵トルクtrq1、trq2、相電流Im1、Im2、電気角θ1、θ2等の情報が入力される。マイコン401、402は、これらの各種入力情報に基づく制御演算によりモータ駆動信号Dr1、Dr2を生成し、モータ駆動回路701、702に出力する。ここで、制御演算のタイミングは、クロック生成回路651、652が生成したクロックに基づいて決定される。 The microcomputers 401 and 402 receive vehicle information input via the CANs 301 and 302, and information such as steering torque trq1 and trq2, phase currents Im1 and Im2, and electrical angles θ1 and θ2 input from each sensor. . The microcomputers 401 and 402 generate motor drive signals Dr1 and Dr2 by control calculation based on these various pieces of input information, and output them to the motor drive circuits 701 and 702. Here, the timing of the control operation is determined based on the clock generated by the clock generation circuits 651 and 652.
 モータ駆動回路701、702は、マイコン401、402から指令されたモータ駆動信号Dr1、Dr2に基づいて、巻線組801、802に通電する。典型的には、モータ駆動回路701、702は、MOSFET等の複数のスイッチング素子がブリッジ接続された電力変換回路である。また、モータ駆動信号Dr1、Dr2は、各スイッチング素子をON/OFFさせるスイッチング信号である。例えば三相ブラシレスモータを駆動する本実施形態では、モータ駆動回路701、702は三相インバータである。 The motor drive circuits 701 and 702 energize the winding sets 801 and 802 based on the motor drive signals Dr1 and Dr2 commanded from the microcomputers 401 and 402, respectively. Typically, the motor drive circuits 701 and 702 are power conversion circuits in which a plurality of switching elements such as MOSFETs are bridge-connected. The motor drive signals Dr1 and Dr2 are switching signals that turn on / off each switching element. For example, in this embodiment for driving a three-phase brushless motor, the motor drive circuits 701 and 702 are three-phase inverters.
 各マイコン401、402は、制御プログラムやパラメータ等の固定値を格納するROM、演算処理結果を一時的に記憶保持するRAM等を独立に備えており、相手マイコンのROM、RAMを参照することができない。
 このことを前提として、二つのマイコン401、402は、同期信号線471で接続されている。図7に示す例では、同期信号線471は一つであるが、後述する第3実施形態や、三つ以上のマイコンを備える他の実施形態では、複数の同期信号線が設けられる場合もある。つまり、第1実施形態の基礎形態に基づくECUは、総じて、少なくとも一つの同期信号線を備える。
Each microcomputer 401, 402 is independently provided with a ROM that stores fixed values such as control programs and parameters, and a RAM that temporarily stores and holds the results of arithmetic processing. The ROM and RAM of the partner microcomputer can be referred to. Can not.
On the premise of this, the two microcomputers 401 and 402 are connected by a synchronization signal line 471. In the example illustrated in FIG. 7, the number of the synchronization signal lines 471 is one, but a plurality of synchronization signal lines may be provided in the third embodiment to be described later and other embodiments including three or more microcomputers. . That is, the ECU based on the basic form of the first embodiment generally includes at least one synchronization signal line.
 この同期信号線は、後述する同期信号送信のための専用線に限らず、例えばマイコン間通信に使用するクロック線や電流等の情報を通信するシリアル通信線のように、同期信号以外の通信用の信号線と共用されてもよい。
 また、例えば特開2011-148498号公報の段落[0044]に開示されているように、同期信号線による通信に代えて、第1マイコン401から第2マイコン402に対してポート信号のレベル変化を行うことで、同期信号を通知することができる。
This synchronization signal line is not limited to a dedicated line for transmitting a synchronization signal, which will be described later. May be shared with other signal lines.
Further, as disclosed in paragraph [0044] of Japanese Patent Application Laid-Open No. 2011-148498, for example, the port signal level is changed from the first microcomputer 401 to the second microcomputer 402 in place of communication using the synchronization signal line. By doing so, a synchronization signal can be notified.
 第1マイコン401及び第2マイコン402は、共通の構成として、駆動タイミング生成部441、442、駆動信号生成部451、452、及び、アナログ信号サンプリング部461、462を有する。
 駆動タイミング生成部441、442は、例えば各相共通のPWMキャリアを用いて、モータ駆動信号Dr1、Dr2のパルスタイミングである駆動タイミングを生成し、駆動信号生成部451、452に指示する。駆動信号生成部451、452は、例えば電圧指令信号のDUTYとPWMキャリアとを比較することで、PWM信号であるモータ駆動信号Dr1、Dr2を生成し、モータ駆動回路701、702に指令する。
The first microcomputer 401 and the second microcomputer 402 have drive timing generation units 441 and 442, drive signal generation units 451 and 452, and analog signal sampling units 461 and 462 as a common configuration.
The drive timing generation units 441 and 442 generate a drive timing that is a pulse timing of the motor drive signals Dr1 and Dr2 using, for example, a PWM carrier common to each phase, and instruct the drive signal generation units 451 and 452. The drive signal generators 451 and 452 generate, for example, motor drive signals Dr1 and Dr2 that are PWM signals by comparing the DUTY of the voltage command signal and the PWM carrier, and command the motor drive circuits 701 and 702.
 アナログ信号サンプリング部461、462は、アナログ信号をサンプリングする。
 アナログ信号としては、主に各系統のモータ電流Im1、Im2の検出値を想定する。三相モータでは、モータ電流Im1、Im2は、各巻線組801、802のU相、V相、W相の電流である。図7には、モータ駆動回路701、702に設けられたシャント抵抗等で検出されたモータ電流Im1、Im2が取得される場合を想定して矢印を記載している。その他、モータ80側に設けた電流センサからモータ電流Im1、Im2が取得される場合を想定すると、ECU100の外からアナログ信号サンプリング部461、462への矢印を記載してもよい。また、破線で示すように、アナログ信号サンプリング部461、462は、電気角θ1、θ2や操舵トルクtrq1、trq2のアナログ信号を取得してもよい。
The analog signal sampling units 461 and 462 sample analog signals.
As analog signals, the detection values of the motor currents Im1 and Im2 of each system are mainly assumed. In the three-phase motor, motor currents Im1 and Im2 are U-phase, V-phase, and W-phase currents of the winding sets 801 and 802, respectively. FIG. 7 shows arrows assuming that motor currents Im1 and Im2 detected by shunt resistors and the like provided in the motor drive circuits 701 and 702 are acquired. In addition, assuming that the motor currents Im1 and Im2 are acquired from a current sensor provided on the motor 80 side, an arrow from outside the ECU 100 to the analog signal sampling units 461 and 462 may be described. As indicated by broken lines, the analog signal sampling units 461 and 462 may acquire analog signals of the electrical angles θ1 and θ2 and the steering torques trq1 and trq2.
 アナログ信号サンプリング部461、462は、駆動タイミング生成部441、442と同期し、モータ駆動信号Dr1、Dr2のスイッチングタイミングと異なるタイミングでアナログ信号をサンプリングする。
 図8に、周期TpのPWMキャリアを各相に共通に用いてモータ駆動信号Drを生成する構成を示す。ここで、想定するDUTYは、例えば10%~90%の範囲の値、0%及び100%とする。本明細書では、DUTY0%をPWMキャリアの山側とし、DUTY100%をPWMキャリアの谷側として表す。PWMキャリアの周期Tpは、モータ駆動信号Drのパルス周期に相当する。
The analog signal sampling units 461 and 462 sample the analog signals at timings different from the switching timings of the motor drive signals Dr1 and Dr2, in synchronization with the drive timing generation units 441 and 442.
FIG. 8 shows a configuration for generating a motor drive signal Dr using a PWM carrier having a period Tp in common for each phase. Here, the assumed DUTY is, for example, a value in the range of 10% to 90%, 0% and 100%. In this specification, DUTY 0% is represented as the peak side of the PWM carrier, and DUTY 100% is represented as the valley side of the PWM carrier. The period Tp of the PWM carrier corresponds to the pulse period of the motor drive signal Dr.
 DUTY90%のとき、モータ駆動信号Drのパルスは、時刻u9に立ち上がり、時刻d9に立ち下がり、ON時間は0.9Tpと表される。
 DUTY10%のとき、モータ駆動信号Drのパルスは、時刻u1に立ち上がり、時刻d1に立ち下がり、ON時間は0.1Tpと表される。
When DUTY is 90%, the pulse of the motor drive signal Dr rises at time u9, falls at time d9, and the ON time is expressed as 0.9 Tp.
When DUTY is 10%, the pulse of the motor drive signal Dr rises at time u1, falls at time d1, and the ON time is expressed as 0.1 Tp.
 10%~90%のDUTY範囲において、モータ駆動信号Drのパルスは、時刻u9から時刻u1までの期間SWu中に立ち上がり、時刻d1から時刻d9までの期間SWd中に立ち下がる。また、DUTY0%及び100%の期間中にはパルスの立ち上がりや立ち下がりが発生しない。したがって、破線でハッチングした「非スイッチング期間NSW」には、全ての相のスイッチング素子について、モータ駆動信号Drのスイッチングが生じない。なお、PWM制御での非スイッチング期間NSWは、キャリアの谷及び山のタイミングを跨ぐ微小期間に相当する。 In the DUTY range of 10% to 90%, the pulse of the motor drive signal Dr rises during the period SWu from the time u9 to the time u1, and falls during the period SWd from the time d1 to the time d9. Further, no rise or fall of the pulse occurs during the DUTY 0% and 100% periods. Therefore, in the “non-switching period NSW” hatched by the broken line, the switching of the motor drive signal Dr does not occur for the switching elements of all phases. Note that the non-switching period NSW in the PWM control corresponds to a minute period straddling the timing of the valleys and peaks of carriers.
 なお、DUTY0%以外のDUTYから0%に切り替わる時、またはDUTY100%以外のDUTYから100%に切り替わる時には、パルスの立ち上がり又は立ち下がりが発生する。しかし、DUTYの切り替えタイミングをキャリアの谷タイミングに設定しておくことで、非スイッチング期間NSWのうち、山タイミングでのスイッチングを避けることが可能である。その逆に、DUTYの切り替えタイミングを山タイミングに固定しておけば、非スイッチング期間NSWのうち、谷タイミングでのスイッチングを避けることが可能である。さらに、PWMキャリアの谷、山タイミングの例えばN回に1回DUTYを切り替える設定とすれば、DUTYの切り替えを行わない(N-1)回の谷、山タイミングではスイッチングは発生しない。 In addition, when switching from DUTY other than DUTY 0% to 0%, or when switching from DUTY other than DUTY 100% to 100%, a rise or fall of a pulse occurs. However, by setting the DUTY switching timing to the carrier valley timing, it is possible to avoid switching at the peak timing in the non-switching period NSW. Conversely, if the DUTY switching timing is fixed at the peak timing, switching at the valley timing in the non-switching period NSW can be avoided. Further, if the setting is such that the duty cycle of the PWM carrier is switched once, for example, every N times, switching does not occur at the (N-1) times when the duty cycle is not switched.
 そこで、アナログ信号サンプリング部461、462は、駆動タイミング生成部441、442と同期して、非スイッチング期間NSWのうち、0%又は100%DUTYへの切り替えが発生しないタイミングでサンプリングする。これにより、サンプリング信号がスイッチングノイズの影響を受けにくくなり、サンプリング精度が向上する。
 より詳しくは、スイッチングにより発生するサージ電圧が減衰する時間の経過後にサンプリングを行うことが好ましい。
Therefore, the analog signal sampling units 461 and 462 sample in synchronization with the drive timing generation units 441 and 442 at a timing at which switching to 0% or 100% DUTY does not occur in the non-switching period NSW. This makes the sampling signal less susceptible to switching noise and improves sampling accuracy.
More specifically, sampling is preferably performed after a lapse of time during which the surge voltage generated by switching decays.
 さらに、第1実施形態の基礎形態において、第1マイコン401は同期信号生成部411を有し、第2マイコン402はタイミング補正部422を有する。第1マイコン401は、同期信号を送信する「同期信号送信側マイコン」として機能し、第2マイコン402は、同期信号を受信する「同期信号受信側マイコン」として機能する。また、各マイコン401、402にとって、そのマイコン自身のことを「自マイコン」という。 Furthermore, in the basic form of the first embodiment, the first microcomputer 401 has a synchronization signal generation unit 411 and the second microcomputer 402 has a timing correction unit 422. The first microcomputer 401 functions as a “synchronization signal transmission side microcomputer” that transmits a synchronization signal, and the second microcomputer 402 functions as a “synchronization signal reception side microcomputer” that receives the synchronization signal. For each of the microcomputers 401 and 402, the microcomputer itself is referred to as “own microcomputer”.
 第1マイコン401の同期信号生成部411は、自マイコンの駆動タイミング生成部441が生成した駆動タイミングに同期し、且つ、二つのマイコン401、402の駆動タイミングを同期させる同期信号を生成する。そして、同期信号生成部411は、同期信号線471を介して同期信号を第2マイコン402に送信する。
 第2マイコン402のタイミング補正部422は、第1マイコン401から送信された同期信号を受信し、受信した同期信号に同期するように自マイコンの駆動タイミング生成部442が生成する駆動タイミングを補正可能である。この補正を「タイミング補正」という。図7において第2マイコン402内に破線で示すように、タイミング補正では、タイミング補正部422から駆動タイミング生成部442へタイミング補正指示が出力され、それに応じて、駆動タイミング生成部442が駆動タイミングを補正する。
The synchronization signal generation unit 411 of the first microcomputer 401 generates a synchronization signal that is synchronized with the drive timing generated by the drive timing generation unit 441 of its own microcomputer and that synchronizes the drive timings of the two microcomputers 401 and 402. Then, the synchronization signal generation unit 411 transmits a synchronization signal to the second microcomputer 402 via the synchronization signal line 471.
The timing correction unit 422 of the second microcomputer 402 receives the synchronization signal transmitted from the first microcomputer 401 and can correct the drive timing generated by the drive timing generation unit 442 of the own microcomputer so as to be synchronized with the received synchronization signal. It is. This correction is called “timing correction”. As indicated by a broken line in the second microcomputer 402 in FIG. 7, in timing correction, a timing correction instruction is output from the timing correction unit 422 to the drive timing generation unit 442, and the drive timing generation unit 442 changes the drive timing accordingly. to correct.
 ところで、「第1マイコン401から送信された同期信号に基づいて、第2マイコン402が駆動タイミングを補正する」構成は、特許文献1(特許第5412095号公報)に開示されている。この従来技術に対し、第1実施形態の基礎形態では、「受信信号判定部」としてのタイミング判定部432がさらにタイミング補正部422に含まれる。
 次にタイミング判定部432の説明に移る前に、特許文献1の従来技術が解決した点、及び、この従来技術では未解決の問題点について、図9~図11を参照して説明する。
Incidentally, a configuration in which “the second microcomputer 402 corrects the drive timing based on the synchronization signal transmitted from the first microcomputer 401” is disclosed in Patent Document 1 (Japanese Patent No. 5412095). In contrast to this conventional technique, in the basic form of the first embodiment, a timing determination unit 432 as a “reception signal determination unit” is further included in the timing correction unit 422.
Next, before moving on to the description of the timing determination unit 432, the problems solved by the conventional technique of Patent Document 1 and the problems that have not been solved by this conventional technique will be described with reference to FIGS.
 図9に、クロック生成回路651、652の製造ばらつき等により、二つのマイコン401、402のモータ駆動信号Dr1、Dr2のタイミングが徐々にずれていく様子を示す。
 図9以下のタイムチャートでは、第1モータ駆動信号Dr1のパルス周期をTpA、第2モータ駆動信号Dr2のパルス周期をTpBと示す。また、第1マイコン401のPWMキャリアの谷、山タイミングを基準時ta0から順にta1、ta2・・・とする。同様に、第2マイコン402のPWMキャリアの谷、山タイミングを基準時tb0から順にtb1、tb2・・・とする。ここで、基準時ta0及びtb0は一致している。
FIG. 9 shows how the timings of the motor drive signals Dr1 and Dr2 of the two microcomputers 401 and 402 are gradually shifted due to manufacturing variations of the clock generation circuits 651 and 652.
In the time charts of FIG. 9 and subsequent figures, the pulse period of the first motor drive signal Dr1 is indicated as TpA, and the pulse period of the second motor drive signal Dr2 is indicated as TpB. Also, the PWM carrier valley and peak timings of the first microcomputer 401 are set to ta1, ta2,... In order from the reference time ta0. Similarly, the valley and peak timing of the PWM carrier of the second microcomputer 402 are tb1, tb2,... In order from the reference time tb0. Here, the reference times ta0 and tb0 match.
 基準時ta0、tb0後、パルス周期がTpA<TpBの関係にあるため、第2モータ駆動信号Dr2は、第1モータ駆動信号Dr1に対して徐々に遅れていく。1周期目に生じるタイミングずれΔt1は比較的小さいが、これが蓄積すると、4周期目にはΔt7の大きさにまでタイミングずれが拡大する。タイミングずれが大きくなると、一つには特許文献1に記載されているように、トルク脈動が発生する。 After the reference times ta0 and tb0, since the pulse period is in a relationship of TpA <TpB, the second motor drive signal Dr2 is gradually delayed with respect to the first motor drive signal Dr1. Although the timing shift Δt1 that occurs in the first cycle is relatively small, if this accumulates, the timing shift expands to the size of Δt7 in the fourth cycle. When the timing deviation becomes large, torque pulsation occurs as described in Patent Document 1, for example.
 また、図9において、ta11後の第1モータ駆動信号Dr1の立ち下がりタイミングは、第2マイコン402のアナログ信号サンプリングタイミングに重なっている。tb11後の第2モータ駆動信号Dr2の立ち上がりタイミングは、第1マイコン401のアナログ信号サンプリングタイミングに重なっている。このように、モータ駆動信号Dr1、Dr2のパルスエッジに重なったサンプリングタイミングでは、スイッチングノイズの影響を受け、サンプリング精度が低下する。 In FIG. 9, the falling timing of the first motor drive signal Dr1 after ta11 overlaps with the analog signal sampling timing of the second microcomputer 402. The rising timing of the second motor drive signal Dr2 after tb11 overlaps with the analog signal sampling timing of the first microcomputer 401. Thus, at the sampling timing overlapping the pulse edges of the motor drive signals Dr1 and Dr2, the sampling accuracy is lowered due to the influence of switching noise.
 次に、特許文献1の従来技術では二つのマイコン401、402を同期信号線471で結線し、同期信号を用いて演算タイミングのずれを補正する。この方法を図10に示す。
 図10に示すように、同期信号は、第1モータ駆動信号Dr1のパルス周期TpAの4周期に相当する周期Tsのパルス信号として生成される。このパルスは、PWMキャリアの谷、山タイミングの4回毎に、立ち上がり及び立ち下がりを繰り返す。つまり、ta0、ta8で立ち上がり、ta4、ta12で立ち下がる。そして、図10の例では、パルスが立ち上がるta0、ta8のタイミングに同期させるように、第2マイコン402のタイミングを補正する。
Next, in the prior art of Patent Document 1, two microcomputers 401 and 402 are connected by a synchronization signal line 471, and a shift in calculation timing is corrected using the synchronization signal. This method is shown in FIG.
As shown in FIG. 10, the synchronization signal is generated as a pulse signal having a cycle Ts corresponding to four cycles of the pulse cycle TpA of the first motor drive signal Dr1. This pulse repeats rising and falling every four times of PWM carrier valley and peak timing. That is, it rises at ta0 and ta8, and falls at ta4 and ta12. In the example of FIG. 10, the timing of the second microcomputer 402 is corrected so as to synchronize with the timing of ta0 and ta8 when the pulse rises.
 つまり、図9と同様にタイミングずれΔt7が蓄積された後、同期信号のパルスが立ち上がるタイミングta8に、第2マイコン402のタイミングtb8を一致させるようにタイミングが補正される。
 tb8でタイミングずれが0にリセットされるため、その後の1周期で生じるタイミングずれΔt9は、初期のタイミングずれΔt1と同程度に抑えられる。つまり、タイミングずれがトルク脈動やサンプリング精度に影響を及ぼすレベルになる前に、駆動タイミングを補正して同期させることにより、良好なモータ駆動を継続することができる。なお、具体的な同期方法は、図10の例に限らず、適宜設定してよい。
That is, the timing is corrected so that the timing tb8 of the second microcomputer 402 coincides with the timing ta8 at which the synchronization signal pulse rises after the timing deviation Δt7 is accumulated as in FIG.
Since the timing shift is reset to 0 at tb8, the timing shift Δt9 that occurs in the subsequent one cycle is suppressed to the same extent as the initial timing shift Δt1. That is, good motor driving can be continued by correcting and synchronizing the drive timing before the timing deviation reaches a level that affects torque pulsation and sampling accuracy. A specific synchronization method is not limited to the example in FIG. 10 and may be set as appropriate.
 このように、複数のマイコン間で同期信号を用いてタイミング補正を行うことにより、各マイコンがそれぞれ独立したクロック生成回路で生成されたクロックにより動作するECUにおいて、制御タイミングを同期させながらモータ駆動を行うことができる。これにより、トルク脈動を抑制することができる。また、アナログ信号サンプリングタイミングがモータ駆動信号Dr1、Dr2のスイッチングタイミングと重なることを回避することができる。 In this way, by performing timing correction using a synchronization signal among a plurality of microcomputers, each microcomputer can operate a motor while synchronizing control timing in an ECU that operates with a clock generated by an independent clock generation circuit. It can be carried out. Thereby, torque pulsation can be suppressed. Further, it is possible to avoid the analog signal sampling timing from overlapping with the switching timing of the motor drive signals Dr1 and Dr2.
 しかし、常に正常な同期信号が送信されるとは限らない。すなわち、第1マイコン401を動作させる第1クロック生成回路651、又は、第1マイコン401の同期信号生成部411、又は、同期信号線471の故障等により、送信される同期信号自体に異常が生じる可能性も考えられる。そこで次に、異常な同期信号が第2マイコン402に受信された場合の問題点について説明する。 However, a normal synchronization signal is not always transmitted. That is, an abnormality occurs in the transmitted synchronization signal itself due to a failure of the first clock generation circuit 651 for operating the first microcomputer 401 or the synchronization signal generation unit 411 of the first microcomputer 401 or the synchronization signal line 471. There is a possibility. Then, next, a problem when an abnormal synchronization signal is received by the second microcomputer 402 will be described.
 第1マイコン401を動作させる第1クロック生成回路651に異常が発生した場合に想定される不具合を図11に示す。
 図11に示すように、クロック生成回路651は、基準時ta0からta8まで正常であるが、ta8以後、クロック周波数が増加し、第1モータ駆動信号Dr1のパルス周期TpAが短くなる異常が発生する。これに伴い、クロック生成回路651が生成したクロックを用いて生成される同期信号の周波数が増加し、周期Tsが短くなる。
 この場合、増加したクロック周波数に対し制御演算が追従不能となると、第1マイコン401の制御が破綻し、モータ駆動を停止せざるを得ない自体に陥る。
FIG. 11 shows a malfunction that is assumed when an abnormality occurs in the first clock generation circuit 651 that operates the first microcomputer 401.
As shown in FIG. 11, the clock generation circuit 651 is normal from the reference time ta0 to ta8, but after ta8, the clock frequency increases and an abnormality occurs in which the pulse period TpA of the first motor drive signal Dr1 is shortened. . Along with this, the frequency of the synchronization signal generated using the clock generated by the clock generation circuit 651 increases, and the cycle Ts becomes shorter.
In this case, if the control calculation becomes unable to follow the increased clock frequency, the control of the first microcomputer 401 fails, and the motor drive must be stopped.
 一方、第2マイコン402は正常であり、第2モータ駆動信号Dr2のパルス周期TpBは一定に維持されている。ここで、同期信号のパルスの立ち上がりタイミングta0、ta8、ta16、ta24に第2マイコン402の駆動タイミングを補正する場合を想定する。すると、破線で囲んだta16及びta24では、第2モータ駆動信号Dr2のON期間の途中にタイミング補正が実施され、強制的にOFFされる。
 その結果、意図しないパルスが生成され、第2モータ駆動回路702のスイッチング制御が不安定となるおそれがある。また、アナログ信号のサンプリング間隔が不均等となり、サンプリング精度にも影響を及ぼすおそれがある。
On the other hand, the second microcomputer 402 is normal, and the pulse period TpB of the second motor drive signal Dr2 is kept constant. Here, it is assumed that the drive timing of the second microcomputer 402 is corrected to the rising timings ta0, ta8, ta16, and ta24 of the synchronization signal pulse. Then, at ta16 and ta24 surrounded by a broken line, timing correction is performed in the middle of the ON period of the second motor drive signal Dr2, and it is forcibly turned off.
As a result, an unintended pulse is generated, and the switching control of the second motor drive circuit 702 may become unstable. In addition, the sampling interval of the analog signal becomes uneven, which may affect the sampling accuracy.
 このように、第1系統制御部601で発生した障害の影響が、他系統のマイコン402の動作に影響を及ぼすことを「故障伝搬」という。図11の例では、第1マイコン401から送信された異常な同期信号に基づいて第2マイコン402がタイミング補正を実施したことにより、第2系統のみであれば正常に実行できたはずのモータ駆動が不能な状態に陥るという深刻な事態が発生している。 In this way, the influence of the failure generated in the first system control unit 601 affects the operation of the microcomputer 402 of the other system is referred to as “failure propagation”. In the example of FIG. 11, the second microcomputer 402 performs timing correction based on the abnormal synchronization signal transmitted from the first microcomputer 401, so that the motor drive that should have been able to be executed normally if only the second system is used. There is a serious situation where the situation becomes impossible.
 そもそもモータ制御装置を二系統の冗長構成としているのは、いずれか一方の系統に異常が生じても、他方の正常な系統の動作によりモータ駆動を継続可能とすることが目的である。それにもかかわらず、故障伝搬が発生すると、その目的が全く果たされなくなる。
 特に電動パワーステアリング装置90では、たとえトルク脈動が生じ、アナログ信号のサンプリング精度が低下したとしても、モータ駆動を継続し、アシスト機能の停止を回避することの方がより重要である。よって、故障伝搬の可能性がある特許文献1の従来技術には、致命的な問題が存在する。
In the first place, the reason why the motor control device has a redundant configuration of two systems is that even if an abnormality occurs in one of the systems, the motor drive can be continued by the operation of the other normal system. Nevertheless, when fault propagation occurs, its purpose is not fulfilled at all.
In particular, in the electric power steering apparatus 90, it is more important to continue driving the motor and avoid stopping the assist function even if torque pulsation occurs and analog signal sampling accuracy is reduced. Therefore, there is a fatal problem in the prior art of Patent Document 1 in which there is a possibility of failure propagation.
 そこで、この問題を解決するため、第1実施形態の基礎形態によるECU100は、第2マイコン402のタイミング補正部422に、受信した同期信号の正常又は異常の判定である「受信信号判定」を行う「受信信号判定部」として、タイミング判定部432を含む。
 そして、第2マイコン402は、タイミング判定部432により、受信した同期信号が正常と判定されたとき、タイミング補正を許可する。一方、第2マイコン402は、受信した同期信号が異常と判定されたとき、タイミング補正を禁止し、第1マイコン401とは非同期でモータを駆動する。
Therefore, in order to solve this problem, the ECU 100 according to the basic form of the first embodiment performs “reception signal determination” which is a determination of normality or abnormality of the received synchronization signal on the timing correction unit 422 of the second microcomputer 402. A timing determination unit 432 is included as the “reception signal determination unit”.
The second microcomputer 402 permits timing correction when the timing determination unit 432 determines that the received synchronization signal is normal. On the other hand, when it is determined that the received synchronization signal is abnormal, the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401.
 要するに、同期信号受信側マイコンは、故障伝搬の原因となる同期信号送信側マイコンからの同期信号が正常であるか否かを、まず判定する。そして、同期信号が正常と判定された場合、同期信号受信側マイコンの駆動タイミングを同期信号送信側マイコンの駆動タイミングと同期するように補正することにより、良好なモータ駆動を実現する。
 しかし、同期信号が異常と判定された場合には、故障伝搬の防止を優先して、タイミング補正を行わない。すなわち、同期信号送信側マイコンとの縁を切り、非同期でモータ駆動を継続することにより、最低限のアシスト機能を維持することが最も重要であると考える。
In short, the synchronization signal reception side microcomputer first determines whether or not the synchronization signal from the synchronization signal transmission side microcomputer that causes failure propagation is normal. When the synchronization signal is determined to be normal, good motor drive is realized by correcting the drive timing of the synchronization signal reception side microcomputer so as to be synchronized with the drive timing of the synchronization signal transmission side microcomputer.
However, when it is determined that the synchronization signal is abnormal, priority is given to prevention of failure propagation and timing correction is not performed. That is, it is most important to maintain the minimum assist function by cutting the edge with the synchronization signal transmission side microcomputer and continuing the motor drive asynchronously.
 続いて、タイミング判定部432が「受信信号判定」として「タイミング判定」を行う構成について、図12~図14を参照して説明する。
 第1実施形態の基礎形態の判定方法では、受信した同期信号のパルスエッジ、すなわち立ち上がり又は立ち下がりのタイミングが「同期許可区間」に含まれるか否かを判定する。「同期許可区間」は「補正許可区間」と言い換えてもよい。以下、「同期信号のパルスエッジ受信のタイミング」を単に「同期信号の受信タイミング」という。
Next, a configuration in which the timing determination unit 432 performs “timing determination” as “reception signal determination” will be described with reference to FIGS.
In the determination method of the basic form of the first embodiment, it is determined whether or not the pulse edge of the received synchronization signal, that is, the rising or falling timing is included in the “synchronization permission section”. The “synchronization permission section” may be rephrased as “correction permission section”. Hereinafter, the “timing of pulse edge reception of the synchronization signal” is simply referred to as “synchronization signal reception timing”.
 モータ制御方法におけるこのタイミング判定処理を図12のフローチャートに示す。以下のフローチャートで記号「S」はステップを意味する。また、図12のS01を除き、図12、図15~図18のフローチャートの実行主体は、同期信号受信側マイコンのタイミング補正部及びタイミング判定部、又は、同期信号受信側マイコン全体とする。
 図12の同期信号送信ステップS01で、第1マイコン401の同期信号生成部411は、第2マイコン402に同期信号を送信する。
 同期信号受信ステップS02で、タイミング補正部422は同期信号を受信する。
 受信信号判定ステップS03で、タイミング判定部432は、同期信号の受信タイミングが同期許可区間内であるか否か判断することで、同期信号の正常又は異常を判定する。
This timing determination process in the motor control method is shown in the flowchart of FIG. In the following flowchart, the symbol “S” means a step. Except for S01 of FIG. 12, the execution subject of the flowcharts of FIG. 12 and FIGS.
The synchronization signal generation unit 411 of the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 in the synchronization signal transmission step S01 of FIG.
In the synchronization signal reception step S02, the timing correction unit 422 receives the synchronization signal.
In the reception signal determination step S03, the timing determination unit 432 determines whether the synchronization signal is normal or abnormal by determining whether the reception timing of the synchronization signal is within the synchronization permission section.
 S03でYESの場合、第2マイコン402は、タイミング補正許可ステップS04で第2マイコン402のタイミング補正を許可する。すると、第1マイコン401及び第2マイコン402は、同期してモータ80を駆動する。これを「同期駆動モード」という。
 S03でNOの場合、受信した同期信号が異常であると判定される。第2マイコン402は、タイミング補正禁止ステップS05で第2マイコン402のタイミング補正を禁止し、第1マイコン401とは非同期でモータ80を駆動する。
If YES in S03, the second microcomputer 402 permits the timing correction of the second microcomputer 402 in the timing correction permission step S04. Then, the first microcomputer 401 and the second microcomputer 402 drive the motor 80 in synchronization. This is called “synchronous drive mode”.
If NO in S03, it is determined that the received synchronization signal is abnormal. The second microcomputer 402 prohibits the timing correction of the second microcomputer 402 in the timing correction prohibiting step S05, and drives the motor 80 asynchronously with the first microcomputer 401.
 次に同期許可区間の設定例について説明する。例えば図10のように、PWMキャリアの谷又は山タイミングに合わせて同期信号のパルスを生成する場合を想定する。この場合、図8に参照される通り、同期信号のタイミングは、モータ駆動信号Drのスイッチタイミングとは重ならない。
 モータ駆動信号Dr1、Dr2のタイミングずれが理想的に0の場合、タイミング補正部422が同期信号を受信するタイミングは、第2マイコン402のPWMキャリアの谷又は山タイミングに一致する。この理想状態に対し、クロック生成回路651、652の正常時における、クロックずれの最大範囲を推定する。
Next, a setting example of the synchronization permission section will be described. For example, as shown in FIG. 10, a case is assumed where a pulse of the synchronization signal is generated in accordance with the valley or peak timing of the PWM carrier. In this case, as shown in FIG. 8, the timing of the synchronization signal does not overlap with the switch timing of the motor drive signal Dr.
When the timing difference between the motor drive signals Dr1 and Dr2 is ideally 0, the timing at which the timing correction unit 422 receives the synchronization signal coincides with the valley or peak timing of the PWM carrier of the second microcomputer 402. With respect to this ideal state, the maximum range of clock deviation when the clock generation circuits 651 and 652 are normal is estimated.
 例えばクロック生成回路651、652で生成されるクロックが最大±x%ばらつくとし、また、同期信号によりタイミング補正を実施する周期をTs[s]とする。
 このとき、マイコン401、402内部でのカウントされる時間は、クロック生成回路651、652が生成した原クロックに対し、最小で「(100-x)/100」倍から最大で「(100+x)/100」倍の範囲でばらつく。
 このことから、同期周期1周期の間に、マイコン401、402間で生じる最大ずれ幅ΔTmax[s]は、式(1)で表される。
  ΔTmax=Ts×{(100+x)-(100-x)}/100
       =Ts×2x/100 ・・・(1)
For example, it is assumed that the clocks generated by the clock generation circuits 651 and 652 vary by a maximum of ± x%, and the period for performing timing correction by the synchronization signal is Ts [s].
At this time, the counted time in the microcomputers 401 and 402 is at least “(100−x) / 100” times to “(100 + x) / max” with respect to the original clock generated by the clock generation circuits 651 and 652. It varies in the range of 100 times.
From this, the maximum deviation width ΔTmax [s] generated between the microcomputers 401 and 402 during one synchronization period is expressed by Expression (1).
ΔTmax = Ts × {(100 + x) − (100−x)} / 100
= Ts × 2x / 100 (1)
 正常駆動中に誤って補正禁止としないためには、同期許可区間をΔTmax以上の幅で定める必要がある。その上で、システム上許容される時間以内に同期許可区間を設定することで、適切なタイミング判定処理を実施することができる。
 例えば同期周期Tsを1msとし、クロック生成回路651、652で生成されるクロックのばらつき幅を最大±1%とする。このとき、1度同期してから次に同期するまでの間に生じる最大ずれ幅ΔTmax[s]は、式(1)により、0.02[ms]となる。
  ΔTmax=1[ms]×(2×1/100)=0.02[ms]
In order not to prohibit the correction by mistake during normal driving, it is necessary to define the synchronization permission section with a width of ΔTmax or more. In addition, an appropriate timing determination process can be performed by setting the synchronization permission section within the time allowed by the system.
For example, the synchronization period Ts is set to 1 ms, and the variation width of the clock generated by the clock generation circuits 651 and 652 is set to ± 1% at the maximum. At this time, the maximum deviation width ΔTmax [s] generated from one synchronization to the next synchronization is 0.02 [ms] according to the equation (1).
ΔTmax = 1 [ms] × (2 × 1/100) = 0.02 [ms]
 図13に示すように、PWMキャリア周期Tpが例えば0.5[ms]であり、DUTY範囲が10%~90%であるとする。ここで、DUTY90%で駆動した場合、モータ駆動信号Drの立ち下がり時刻d9から次の立ち上がり時刻u9までの間の非スイッチング期間は、0.1Tp、すなわち0.05[ms]である。
 一方、PWMキャリアの谷タイミングの前後0.01[ms]に最大ずれ幅ΔTmaxである0.02[ms]の期間を同期許可区間として設定すると、同期許可区間は、確実に0.05[ms]の非スイッチング期間内に含まれる。
As shown in FIG. 13, it is assumed that the PWM carrier period Tp is, for example, 0.5 [ms] and the DUTY range is 10% to 90%. Here, when driven at DUTY 90%, the non-switching period from the falling time d9 of the motor drive signal Dr to the next rising time u9 is 0.1 Tp, that is, 0.05 [ms].
On the other hand, when a period of 0.02 [ms], which is the maximum deviation width ΔTmax, is set as a synchronization permission section around 0.01 [ms] before and after the valley timing of the PWM carrier, the synchronization permission section is reliably set to 0.05 [ms]. ] Within the non-switching period.
 このことから、クロック生成回路651、652で生成されるクロックのばらつきが最大±1%以内であれば、同期許可区間を同期信号周期Tsの2%以上に設定することにより、正常駆動中に誤って補正禁止とすることを防止することができる。したがって、マイコン401、402間での駆動タイミングを同期させつつ、同期駆動を継続可能となる。
 なお、仮に第2クロック生成回路652の故障によりクロックのばらつきが±1%を超えた場合、第2クロック監視部662により検出可能である。したがって、第2マイコン402の同期許可区間の位置は、正しく設定されていることを前提とする。
For this reason, if the variation in the clock generated by the clock generation circuits 651 and 652 is within ± 1% at the maximum, the synchronization permission interval is set to 2% or more of the synchronization signal period Ts. Therefore, it is possible to prevent the correction from being prohibited. Therefore, it is possible to continue the synchronous driving while synchronizing the driving timing between the microcomputers 401 and 402.
If the clock variation exceeds ± 1% due to the failure of the second clock generation circuit 652, it can be detected by the second clock monitoring unit 662. Therefore, it is assumed that the position of the synchronization permission section of the second microcomputer 402 is set correctly.
 また、最大DUTYにおけるモータ駆動信号Drの非スイッチング期間内に同期許可区間を設定すれば、タイミング補正によりパルスのON期間途中に強制的にOFFすることが避けられる。そのため、仮に異常な同期信号が本来の同期タイミングとは異なるタイミングで同期許可区間内に入ったとしても、モータ駆動信号Drは、必ず最大DUTYでのパルス幅を確保することができ、問題の無い動作を担保することができる。 Also, if the synchronization permission section is set within the non-switching period of the motor drive signal Dr at the maximum DUTY, it is possible to avoid the forced OFF during the pulse ON period due to the timing correction. Therefore, even if an abnormal synchronization signal enters the synchronization permission section at a timing different from the original synchronization timing, the motor drive signal Dr can always ensure the pulse width at the maximum DUTY, and there is no problem. Operation can be secured.
 なお、DUTYとして、例えば10%~90%の範囲に加えて0%及び100%の出力を含む過変調制御では、同期信号の受信タイミングがDUTYの切り替えタイミングに重なる場合がある。しかし、その場合はDUTYの切り替えタイミングが同期するだけであり、例えばDUTY100%を継続する場合にはそもそもOFFするタイミングが存在しないことから、同期タイミングがどのタイミングで生じても実質的な影響は生じない。 Note that, for example, in overmodulation control including 0% and 100% output in addition to the range of 10% to 90% as the DUTY, the reception timing of the synchronization signal may overlap the switching timing of the DUTY. However, in this case, the DUTY switching timing is only synchronized. For example, when DUTY is kept at 100%, there is no timing to turn off in the first place. Absent.
 また、DUTYの切り替えタイミングにおいても、例えば100%以外のDUTYから100%に切り替わる場合は、切り替え前のDUTYについて正常なパルス幅を出し切った後、100%DUTY出力の開始タイミングが前後するだけである。一方で、100%DUTYから100%以外のDUTYへ切り替わる場合は、100%DUTY出力の終了タイミングが前後するだけであり、次のDUTY出力期間に影響を与えない。いずれの場合も、異常なDUTY出力が行われるわけではなく、モータ駆動に与える影響は軽微である。0%DUTY出力に関しても、100%DUTY出力に対しONとOFFとが入れ替わるだけであり、同様である。 Also, at the switching timing of DUTY, for example, when switching from DUTY other than 100% to 100%, after the normal pulse width is fully obtained for DUTY before switching, the start timing of 100% DUTY output is only changed. . On the other hand, in the case of switching from 100% DUTY to a DUTY other than 100%, the end timing of 100% DUTY output is only changed, and the next DUTY output period is not affected. In any case, an abnormal DUTY output is not performed, and the influence on the motor drive is slight. The 0% DUTY output is the same as the 100% DUTY output except that the ON and OFF are switched.
 上記例の同期許可区間を用いた、同期信号異常時のタイミング判定のタイムチャートを図14に示す。図14では、図11と同様に、第1クロック生成回路651に異常が発生した場合において、同期信号のパルスの立ち上がりタイミングta8、ta16、ta24におけるタイミング判定の結果を示す。同期信号のタイミングが同期許可区間内にある場合を「OK」、同期許可区間外にある場合を「NG」と記す。 FIG. 14 shows a timing chart of timing determination when the synchronization signal is abnormal, using the synchronization permission section in the above example. FIG. 14 shows the result of timing determination at the rising timings ta8, ta16, and ta24 of the synchronization signal when an abnormality occurs in the first clock generation circuit 651, as in FIG. The case where the timing of the synchronization signal is within the synchronization permission section is described as “OK”, and the case where it is outside the synchronization permission section is described as “NG”.
 ta8、ta16では、同期信号の受信タイミングが同期許可区間外にあるため、タイミング補正部422はタイミング補正を実施しない。このとき、第2マイコン402は、第1マイコン401とは非同期でモータ80を駆動する。
 これにより、第2マイコン402は、第1マイコン401からの故障伝搬を防止することができる。特にta16では、異常な同期信号に基づくタイミング補正によってモータ駆動信号Dr2がON期間の途中で強制的にOFFされる事態を回避する。
In ta8 and ta16, the timing correction unit 422 does not perform timing correction because the reception timing of the synchronization signal is outside the synchronization permission section. At this time, the second microcomputer 402 drives the motor 80 asynchronously with the first microcomputer 401.
Thereby, the second microcomputer 402 can prevent failure propagation from the first microcomputer 401. In particular, at ta16, a situation in which the motor drive signal Dr2 is forcibly turned off during the ON period by timing correction based on an abnormal synchronization signal is avoided.
 一方、ta24では、同期信号の受信タイミングが同期許可区間内にあるため、タイミング補正部422はタイミング補正を実施する。この場合、たとえ同期信号の周期Tsが異常であったとしても、ta24における立ち上がりタイミング自体は正常なタイミングに近い。したがって、受信した同期信号に基づいてタイミング補正部422がタイミング補正を実施しても、実質的にモータ駆動信号Dr2への影響は無い。 On the other hand, at ta24, since the reception timing of the synchronization signal is within the synchronization permission section, the timing correction unit 422 performs timing correction. In this case, even if the period Ts of the synchronization signal is abnormal, the rising timing itself at ta24 is close to the normal timing. Therefore, even if the timing correction unit 422 performs timing correction based on the received synchronization signal, there is substantially no influence on the motor drive signal Dr2.
 以上のように、第1実施形態の基礎形態の基本的な技術的思想によると、第2マイコン402のタイミング判定部422は、第1マイコン401から送信された同期信号の正常又は異常を判定する。
 受信した同期信号が正常と判定されたとき、第2マイコン402は、タイミング補正を許可し、第1マイコン401と同期してモータ80を駆動する。これにより、モータ80のトルク脈動を抑制することができる。また、アナログ信号サンプリング部461、462のサンプリングタイミングがモータ駆動信号Dr1、Dr2のスイッチングタイミングと重なることを回避することができる。なお、同期信号としてDUTY50%の矩形波を用いる場合には、その立ち上がりタイミング及び立ち下がりタイミングが非スイッチング期間NSWに入ることから、副次的に同期信号の切り替えによるアナログ信号への影響も低減することが可能である。
As described above, according to the basic technical idea of the basic form of the first embodiment, the timing determination unit 422 of the second microcomputer 402 determines whether the synchronization signal transmitted from the first microcomputer 401 is normal or abnormal. .
When it is determined that the received synchronization signal is normal, the second microcomputer 402 permits timing correction and drives the motor 80 in synchronization with the first microcomputer 401. Thereby, torque pulsation of the motor 80 can be suppressed. Further, it is possible to avoid the sampling timing of the analog signal sampling units 461 and 462 from overlapping with the switching timing of the motor drive signals Dr1 and Dr2. When a rectangular wave of DUTY 50% is used as the synchronization signal, the rise timing and fall timing enter the non-switching period NSW, so that the influence on the analog signal due to secondary switching of the synchronization signal is reduced. It is possible.
 一方、受信した同期信号が異常と判定されたとき、第2マイコン402は、タイミング補正を禁止し、第1マイコン401とは非同期でモータを駆動する。これにより、第1マイコン401からの故障伝搬により、第2マイコン402の制御が破綻することを防止することができる。
 特に電動パワーステアリング装置90では、少なくとも正常な第2マイコン402によるモータ駆動を継続し、アシスト機能を維持することができる。
On the other hand, when it is determined that the received synchronization signal is abnormal, the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401. Thereby, it is possible to prevent the control of the second microcomputer 402 from failing due to the failure propagation from the first microcomputer 401.
In particular, the electric power steering apparatus 90 can maintain at least the normal motor drive by the second microcomputer 402 and maintain the assist function.
 なお、モータ駆動信号Dr1、Dr2のスイッチングは、アナログ信号のサンプリングだけでなく同期信号へ影響する可能性もある。仮にモータ駆動信号Dr1、Dr2のスイッチングが同期信号に影響し、同期信号に誤ったパルスエッジが生じた場合を想定する。この場合、同期許可区間を設けない通常の構成であれば、同期信号受信側マイコンが本来とは異なるタイミングでパルスの立ち上がりを認識してしまい、誤ったタイミング補正が行われるという問題が生じる。 Note that the switching of the motor drive signals Dr1 and Dr2 may affect not only the sampling of the analog signal but also the synchronization signal. Assume that the switching of the motor drive signals Dr1 and Dr2 affects the synchronization signal and an erroneous pulse edge occurs in the synchronization signal. In this case, with a normal configuration in which no synchronization permission section is provided, there is a problem that the synchronization signal receiving side microcomputer recognizes the rising edge of the pulse at a timing different from the original, and erroneous timing correction is performed.
 しかし、同期許可区間を非スイッチング期間NSW内に設定する第1実施形態の基礎形態の構成によれば、この問題についても有意な効果を得ることが期待できる。つまり、第1実施形態の基礎形態の構成によればモータ駆動信号Dr1、Dr2のスイッチングは必ず同期許可区間外で行われる。したがって、たとえ同期信号に影響が生じ、誤ったパルスエッジが生じたとしても、そのタイミングは同期許可区間外になることが期待できる。その結果、たとえ同期信号受信側マイコンがモータ駆動信号Dr1、Dr2のスイッチングの影響によって生じた同期信号のパルスエッジを認識したとしても、同期許可区間外であるため、異常な同期タイミングであると判別することができる。よって、同期信号受信側マイコンが誤ったタイミングでタイミング補正することを回避できる。 However, according to the configuration of the basic form of the first embodiment in which the synchronization permission section is set within the non-switching period NSW, it can be expected that a significant effect is obtained even for this problem. That is, according to the configuration of the basic form of the first embodiment, the switching of the motor drive signals Dr1 and Dr2 is always performed outside the synchronization permission section. Therefore, even if the synchronization signal is affected and an erroneous pulse edge occurs, the timing can be expected to be outside the synchronization permission interval. As a result, even if the synchronization signal receiving side microcomputer recognizes the pulse edge of the synchronization signal caused by the influence of the switching of the motor drive signals Dr1 and Dr2, it is outside the synchronization permission section, so it is determined that the synchronization timing is abnormal. can do. Therefore, it is possible to avoid timing correction at the wrong timing by the synchronization signal receiving side microcomputer.
 次に、第1実施形態の基礎形態の各種応用処理について、図15~図18を参照して説明する。
 (起動時処理)
 各マイコンが個別に起動してモータ駆動を開始した場合において、駆動タイミングにずれが生じたとき、正常に駆動している状態であっても、同期信号の受信タイミングが同期許可区間に入らないため、タイミング補正が許可されない可能性がある。そこで、同期信号受信側マイコンの起動時に、図15、図16に示す起動時処理を実施することが考えられる。
Next, various application processes of the basic form of the first embodiment will be described with reference to FIGS.
(Processing at startup)
When each microcomputer starts up and starts motor drive, if there is a deviation in the drive timing, the synchronization signal reception timing does not enter the synchronization permission section even if it is operating normally. Timing correction may not be permitted. Therefore, it is conceivable that the startup processing shown in FIGS. 15 and 16 is performed when the synchronization signal receiving side microcomputer is started up.
 図15に、マイコン起動時のモータ駆動開始処理のフローチャートを示す。
 S10では、受信側の第2マイコン402を起動する。起動時の受信回数の初期値は0である。タイミング補正部422は、S11で同期信号を受信し、S12で受信回数をインクリメントする。
 S13では、受信回数が所定の初期回数Ni(≧2)に達したか否か判断する。
 S13でYESの場合、第2マイコン402は、S14でモータの駆動を開始する。S13でNOの場合、S11の前に戻る。
FIG. 15 shows a flowchart of the motor drive start process when the microcomputer is activated.
In S10, the second microcomputer 402 on the receiving side is activated. The initial value of the number of receptions at startup is zero. The timing correction unit 422 receives the synchronization signal in S11, and increments the number of receptions in S12.
In S13, it is determined whether or not the number of receptions has reached a predetermined initial number Ni (≧ 2).
If YES in S13, the second microcomputer 402 starts driving the motor in S14. If NO in S13, the process returns to before S11.
 要するに、同期信号受信側マイコンは、同期信号送信側マイコンから同期信号をNi回受信するまでモータの駆動開始を待ち、同期信号をNi回受信したとき、同期信号送信側マイコンと同期してモータ駆動を開始する。これにより、複数のマイコン間での同期の準備が整うのを待ってから、同期駆動を適切に開始することができる。 In short, the synchronization signal receiving side microcomputer waits for the start of motor driving until the synchronization signal is received Ni times from the synchronization signal transmission side microcomputer. When the synchronization signal is received Ni times, the motor driving is synchronized with the synchronization signal transmission side microcomputer. To start. Thereby, after waiting for the preparation of the synchronization between the plurality of microcomputers to be completed, the synchronous drive can be appropriately started.
 図16に、マイコン起動時のタイミング判定待機処理のフローチャートを示す。
 S20~S22は、図15のS10~S12と同様である。
 S23では、受信回数が所定の待機回数Nw(≧1)を超えたか否か判断する。
 S23でYESの場合、タイミング判定部432は、S24でタイミング判定を開始する。S23でNOの場合、S21の前に戻る。
FIG. 16 shows a flowchart of the timing determination standby process when the microcomputer is activated.
S20 to S22 are the same as S10 to S12 of FIG.
In S23, it is determined whether or not the number of receptions exceeds a predetermined standby number Nw (≧ 1).
In the case where S23 is YES, the timing determination unit 432 starts timing determination in S24. If NO in S23, the process returns to before S21.
 要するに、同期信号受信側マイコンの起動後、同期信号の受信回数がNw回までの間、同期信号受信側マイコンは、無条件でタイミング補正を許可する。そして、(Nw+1)回目以後に受信した同期信号からタイミング判定を開始する。これにより、起動直後に過剰にタイミング補正が禁止される事態を適切に回避することができる。 In short, after the activation of the synchronization signal receiving side microcomputer, the synchronization signal receiving side microcomputer permits the timing correction unconditionally until the number of times of receiving the synchronization signal is Nw times. Then, timing determination is started from the synchronization signal received after the (Nw + 1) th time. As a result, it is possible to appropriately avoid a situation where timing correction is excessively prohibited immediately after startup.
 (復帰処理)
 一旦同期信号に異常が生じ、非同期駆動に移行した後、同期信号送信側マイコンをリセット又は再初期化することにより正常動作するようになった場合でも、そのままでは、同期駆動を再開することができない。そこで、図17に示す復帰処理を実施することが考えられる。
(Return processing)
Once an abnormality occurs in the sync signal and the system shifts to asynchronous drive, even if the sync signal transmission side microcomputer is reset or reinitialized, the synchronous drive cannot be resumed. . Therefore, it is conceivable to perform the return process shown in FIG.
 図17に、同期信号異常判定後のタイミング補正復帰処理のフローチャートを示す。
 S31で、タイミング補正部422は、同期信号の受信タイミングが同期許可区間外であったため、同期信号が異常と判定する。
 S32では、異常判定後の同期信号受信回数が所定の復帰回数Nre(≧2)に達したか、又は、同期信号の非受信期間が所定の復帰時間Treに達したか否か判断する。
 S32でYESの場合、タイミング補正部422は、S33で、タイミング補正の禁止を解除する。そして、次回の同期信号の受信以後、受信タイミングが同期許可区間内であり、同期信号が正常と判定された場合にはタイミング補正を許可する。
FIG. 17 shows a flowchart of the timing correction return processing after the synchronization signal abnormality determination.
In S31, the timing correction unit 422 determines that the synchronization signal is abnormal because the reception timing of the synchronization signal is outside the synchronization permission section.
In S32, it is determined whether the synchronization signal reception count after the abnormality determination has reached a predetermined return count Nre (≧ 2) or whether the synchronization signal non-reception period has reached a predetermined return time Tre.
If YES in S32, the timing correction unit 422 cancels the prohibition of timing correction in S33. Then, after receiving the next synchronization signal, if the reception timing is within the synchronization permission section and the synchronization signal is determined to be normal, timing correction is permitted.
 (異常確定処理)
 例えば一時的な同期信号のパルスの乱れ等により、同期信号送信側マイコンに実質的な異常が生じていないにもかかわらず、同期信号の受信タイミングが同期許可区間に入らないため、同期信号が異常であると誤判定する可能性も考えられる。このような場合、タイミング補正を過剰に禁止するおそれがある。そこで、図18に示す異常確定処理を実施することが考えられる。
(Abnormality confirmation processing)
For example, the synchronization signal is abnormal because the synchronization signal reception timing does not enter the synchronization permission section even though there is no substantial abnormality in the synchronization signal transmission microcomputer due to temporary disturbance of the synchronization signal pulse, etc. There is a possibility that it is erroneously determined that. In such a case, the timing correction may be excessively prohibited. Therefore, it is conceivable to perform the abnormality confirmation process shown in FIG.
 図18に、同期信号の異常確定処理のフローチャートを示す。
 S40で、タイミング判定部432は、「同期信号の異常を連続して判定した回数」である連続異常回数の初期値を0に設定する。
 S41で、タイミング補正部422は、同期信号を受信する。
 S42で、タイミング判定部432は、同期信号の受信タイミングが同期許可区間外であるか否か判断する。同期信号が正常であり、S42でNOの場合、処理を終了する。なお、この場合、図12のS04により、タイミング補正が実施される。
 S42でYESの場合、S43で連続異常回数をインクリメントする。
 S44では、連続異常回数が所定の確定回数Nfixに達した否か判断する。S44でYESの場合、S45に移行する。S44でNOの場合、S41の前に戻る。
FIG. 18 shows a flowchart of the synchronization signal abnormality confirmation process.
In S <b> 40, the timing determination unit 432 sets the initial value of the continuous abnormality count, which is “the number of times that the synchronization signal abnormality is continuously determined”, to 0.
In S41, the timing correction unit 422 receives the synchronization signal.
In S42, the timing determination unit 432 determines whether the reception timing of the synchronization signal is outside the synchronization permission section. If the synchronization signal is normal and the result in S42 is NO, the process ends. In this case, timing correction is performed in S04 of FIG.
If YES in S42, the number of consecutive abnormalities is incremented in S43.
In S44, it is determined whether or not the number of consecutive abnormalities has reached a predetermined fixed number Nfix. If YES in S44, the process proceeds to S45. If NO in S44, the process returns to before S41.
 S45でタイミング判定部432が同期信号の異常を確定すると、S46で、タイミング補正部422はタイミング補正を禁止する。言い換えれば、異常確定まではタイミング補正を許可し、第2マイコン402は第1マイコン401との同期駆動を継続するようにしてもよい。これにより、タイミング判定における誤判定を防止することができる。 When the timing determination unit 432 determines the abnormality of the synchronization signal in S45, the timing correction unit 422 prohibits the timing correction in S46. In other words, the timing correction may be permitted until the abnormality is confirmed, and the second microcomputer 402 may continue the synchronous driving with the first microcomputer 401. Thereby, erroneous determination in timing determination can be prevented.
 (第1実施形態)
 以上のような基礎形態の構成を踏まえ、第1実施形態について、図19~図35を参照して説明する。
 図19に第1実施形態のECU101の構成を示す。基礎形態の図7と同様に、図19では、第1系統の構成要素の符号の末尾に「1」を付し、第2系統の構成要素の符号の末尾に「2」を付して記す。以下の説明で各系統の構成要素を区別する場合、構成要素又は信号の語頭に「第1」又は「第2」を付し、共通の事項については、まとめて記載する。
(First embodiment)
Based on the configuration of the basic form as described above, the first embodiment will be described with reference to FIGS.
FIG. 19 shows the configuration of the ECU 101 of the first embodiment. Like FIG. 7 of the basic form, in FIG. 19, “1” is added to the end of the component of the first system and “2” is added to the end of the component of the second system. . In the following description, when distinguishing the components of each system, “first” or “second” is added to the beginning of the component or signal, and common matters are collectively described.
 本明細書では、マイコンの制御について、複数のマイコン401、402が同期して動作する制御を「同期制御」といい、複数のマイコン401、402が同期せず、それぞれ単独で動作する制御を「非同期制御」という。また、各マイコン401、402の動作によるモータ80の駆動モードには、以下の三つの駆動モードがある。
 (1)第1マイコン401及び第2マイコン402が同期してモータを駆動する「同期駆動モード」
 (2)同期信号を用いず、第1マイコン401及び第2マイコン402が非同期でモータを駆動する「非同期駆動モード」
 (3)マイコン401、402の一方のみでモータを駆動する「一系統駆動モード」
In this specification, regarding the control of the microcomputer, the control in which the plurality of microcomputers 401 and 402 operate in synchronization is referred to as “synchronous control”. Asynchronous control. Further, the drive modes of the motor 80 by the operations of the microcomputers 401 and 402 include the following three drive modes.
(1) “Synchronous drive mode” in which the first microcomputer 401 and the second microcomputer 402 drive the motor in synchronization.
(2) “Asynchronous drive mode” in which the first microcomputer 401 and the second microcomputer 402 drive the motor asynchronously without using a synchronization signal.
(3) “One-system drive mode” in which the motor is driven by only one of the microcomputers 401 and 402
 マイコン401、402が同期制御するときには同期駆動モードが適用される。また、マイコン401、402が非同期制御するとき、非同期駆動モード又は一系統駆動モードが適用される。非同期制御の開始時、以前からの動作を継続する場合を除き、各マイコン401、402は単独でタイマスタートする。
 非同期駆動モードでは、各マイコン401、402がそれぞれのタイミングでモータ駆動信号Dr1、Dr2を生成する。一系統駆動モードでは、例えば自マイコンである第2マイコン402は、他マイコンである第1マイコン401にモータ駆動信号Dr1を生成させず、自マイコンが生成するモータ駆動信号Dr2のみでモータ80を駆動する。
The synchronous drive mode is applied when the microcomputers 401 and 402 perform synchronous control. In addition, when the microcomputers 401 and 402 perform asynchronous control, an asynchronous drive mode or a single-system drive mode is applied. At the start of asynchronous control, each of the microcomputers 401 and 402 starts a timer independently, except when continuing the previous operation.
In the asynchronous drive mode, the microcomputers 401 and 402 generate motor drive signals Dr1 and Dr2 at respective timings. In the single-system drive mode, for example, the second microcomputer 402 that is the own microcomputer does not cause the first microcomputer 401 that is the other microcomputer to generate the motor drive signal Dr1, and drives the motor 80 only by the motor drive signal Dr2 that the own microcomputer generates. To do.
 基礎形態では、マイコン401、402の動作中に同期制御状態を継続することができる。しかし、マイコン401、402の起動後の初回の同期について考慮されていない。
 例えば、各マイコンに供給される電源電圧差や配線抵抗、電圧検出特性等の差により、各マイコンの電源ONによる起動タイミングがずれる場合がある。すると、先に起動したマイコンがタイマスタートしてから、遅れて起動するマイコンがタイマスタートするまでの期間、先に起動したマイコンのみが非同期で動作することとなる。したがって、二つのマイコン401、402を初回から同期させることができない。
In the basic mode, the synchronization control state can be continued during the operation of the microcomputers 401 and 402. However, the first synchronization after the activation of the microcomputers 401 and 402 is not considered.
For example, there is a case where the start timing of each microcomputer due to power ON is shifted due to a difference in power supply voltage supplied to each microcomputer, wiring resistance, voltage detection characteristics, or the like. Then, only the microcomputer that has been activated first operates asynchronously during the period from when the microcomputer that has been activated first starts the timer to when the microcomputer that is activated later starts the timer. Therefore, the two microcomputers 401 and 402 cannot be synchronized from the first time.
 また、各マイコンが同期信号の複数周期を単位とする制御を行う場合がある。すると、一方のマイコンがタイマスタートしてから制御単位と異なる数周期後の同期信号で他方のマイコンが同期した場合、マイコン間の制御タイミングにオフセットが生じているため、複数周期単位の制御を同期させることができないという問題がある。 Also, there are cases where each microcomputer performs control in units of multiple cycles of the synchronization signal. Then, when one microcomputer synchronizes with a synchronization signal after several cycles different from the control unit after one microcomputer starts the timer, there is an offset in the control timing between the microcomputers. There is a problem that cannot be made.
 そこで、第1実施形態のECU101は、マイコン401、402の起動後の初回から同期制御を可能とするものである。そのためにマイコン401、402は、起動後に互いに信号を送受信することにより「初回ハンドシェイク」を実施する。また、初回ハンドシェイクが成功したか否かを判定する「初回ハンドシェイク判定部」を備える。なお、本実施形態で言及するハンドシェイクは、起動後の初回に実施されるもの以外にはないため、以下、「初回」を省略し、「ハンドシェイク」及び「ハンドシェイク判定部」と記す。 Therefore, the ECU 101 according to the first embodiment enables synchronous control from the first time after the microcomputers 401 and 402 are activated. For this purpose, the microcomputers 401 and 402 perform “initial handshake” by transmitting and receiving signals to each other after activation. In addition, an “initial handshake determination unit” that determines whether the initial handshake is successful is provided. Since the handshake referred to in the present embodiment is not the one that is performed for the first time after activation, “first time” will be omitted and referred to as “handshake” and “handshake determination unit”.
 図1に示す基礎形態のECU100に対し、第1実施形態のECU101が備える第1マイコン401及び第2マイコン402の構成の相違点について主に説明する。基礎形態の通り、第1マイコン401は「同期信号送信側マイコン」であり、第2マイコン402は「同期信号受信側マイコン」である。
 第1マイコン401は、基礎形態の構成に加え、さらにハンドシェイク判定部611及びレディ信号受信部621を有する。第2マイコン402は、基礎形態の構成に加え、さらにハンドシェイク判定部612及びレディ信号送信部622を有する。
 図19中の太い実線矢印は同期信号を示し、太い一点鎖線矢印はレディ信号を示す。
Differences in configuration between the first microcomputer 401 and the second microcomputer 402 included in the ECU 101 of the first embodiment will be mainly described with respect to the ECU 100 of the basic form shown in FIG. As in the basic form, the first microcomputer 401 is a “synchronization signal transmission side microcomputer”, and the second microcomputer 402 is a “synchronization signal reception side microcomputer”.
The first microcomputer 401 further includes a handshake determination unit 611 and a ready signal reception unit 621 in addition to the basic configuration. The second microcomputer 402 further includes a handshake determination unit 612 and a ready signal transmission unit 622 in addition to the basic configuration.
A thick solid line arrow in FIG. 19 indicates a synchronization signal, and a thick one-dot chain line arrow indicates a ready signal.
 レディ信号送信部622は、第2マイコン402の同期準備が完了したことを示すレディ信号を、レディ信号線475を介して第1マイコン401のレディ信号受信部621に送信する。ここで、レディ信号線475は、同期信号線471と共用されてもよく、同期信号線471とは別に設けられてもよい。レディ信号についても同期信号と同様に、レディ信号線による通信に代えて、ポート信号のレベル変化を行うことで、レディ信号を通知するようにしてもよい。
 レディ信号受信部621は、レディ信号を受信する。詳しく言えば、レディ信号受信部621は、レディ信号を受信したことを検出する。以下、タイミング補正部422による同期信号の受信を含め、「受信する」とは「受信したことを検出する」の意味である。
The ready signal transmitter 622 transmits a ready signal indicating that the synchronization preparation of the second microcomputer 402 is completed to the ready signal receiver 621 of the first microcomputer 401 via the ready signal line 475. Here, the ready signal line 475 may be shared with the synchronization signal line 471 or may be provided separately from the synchronization signal line 471. Similarly to the synchronization signal, the ready signal may be notified by changing the level of the port signal instead of the communication using the ready signal line.
The ready signal receiving unit 621 receives a ready signal. Specifically, the ready signal receiving unit 621 detects that a ready signal has been received. Hereinafter, “receiving” means “detecting reception”, including the reception of the synchronization signal by the timing correction unit 422.
 第1マイコン401のハンドシェイク判定部611は、同期信号生成部411が送信した同期信号、及び、レディ信号受信部621が受信したレディ信号に基づき、ハンドシェイクが成功したか失敗したかを判定する。
 第2マイコン402のハンドシェイク判定部612は、タイミング補正部422が受信した同期信号、及び、レディ信号送信部622が送信したレディ信号に基づき、ハンドシェイクが成功したか失敗したかを判定する。
 ハンドシェイクにおける信号の送受信や成否判定の詳細については後述する。
The handshake determination unit 611 of the first microcomputer 401 determines whether the handshake has succeeded or failed based on the synchronization signal transmitted by the synchronization signal generation unit 411 and the ready signal received by the ready signal reception unit 621. .
The handshake determination unit 612 of the second microcomputer 402 determines whether the handshake has succeeded or failed based on the synchronization signal received by the timing correction unit 422 and the ready signal transmitted by the ready signal transmission unit 622.
Details of signal transmission / reception and success / failure determination in the handshake will be described later.
 また、各マイコン401、402は、駆動信号生成部451、452に指令を出力する電流演算部631、632を有する。なお、電流演算部631、632は、実際には基礎形態にも含まれる。しかし、基礎形態の特有の動作との関連が薄いため、図7において図示を省略したものである。 The microcomputers 401 and 402 have current calculation units 631 and 632 that output commands to the drive signal generation units 451 and 452. Note that the current calculation units 631 and 632 are actually included in the basic form. However, since the relation with the specific operation of the basic form is weak, the illustration is omitted in FIG.
 図19に示す例では、レディ信号は通信クロック信号の1つとして生成され、通信クロック信号には、レディ信号以外のマイコン間通信用のデータ信号が含まれることを想定する。この場合、レディ信号送信部622は、電流演算部632から入力されたデータ信号を含めて通信クロック信号を送信する。レディ信号受信部621は、受信した通信クロック信号に含まれているデータ信号を電流演算部632に出力する。
 したがって、データ信号の送受信を含めた視点では、レディ信号送信部622及びレディ信号受信部621を単に「通信部」と称し、レディ信号線475を単に「信号線」と称してもよい。しかし、本実施形態では、特にハンドシェイクにおけるレディ信号の送受信機能に注目した名称を用いることとする。
In the example shown in FIG. 19, it is assumed that the ready signal is generated as one of the communication clock signals, and the communication clock signal includes a data signal for communication between microcomputers other than the ready signal. In this case, the ready signal transmission unit 622 transmits a communication clock signal including the data signal input from the current calculation unit 632. The ready signal receiver 621 outputs a data signal included in the received communication clock signal to the current calculator 632.
Therefore, from the viewpoint including transmission and reception of data signals, the ready signal transmission unit 622 and the ready signal reception unit 621 may be simply referred to as “communication unit”, and the ready signal line 475 may be simply referred to as “signal line”. However, in the present embodiment, a name focusing on a ready signal transmission / reception function in handshake is used.
 また、図19には、基礎形態の図7に示される第2マイコン402のタイミング補正部422内のタイミング判定部432、及び、各マイコン401、402のアナログ信号サンプリング部461、462について、図示を省略する。第1実施形態のハンドシェイク動作においてこれらは無くてもよい。
 つまり、初回以後のマイコン間の同期については、少なくとも第1マイコン401から第2マイコン402に送信される同期信号に基づき、タイミング補正部422がタイミング補正を実施することができればよい。なお、それに加え、タイミング判定部432が設けられる構成では、基礎形態で説明した通り、同期信号が異常の場合にタイミング補正を禁止し、第2マイコン402の制御が破綻することを防止することができる。
FIG. 19 shows the timing determination unit 432 in the timing correction unit 422 of the second microcomputer 402 and the analog signal sampling units 461 and 462 of the microcomputers 401 and 402 shown in FIG. Omitted. These may be omitted in the handshake operation of the first embodiment.
That is, as for the synchronization between the microcomputers after the first time, it is only necessary that the timing correction unit 422 can perform the timing correction based on at least the synchronization signal transmitted from the first microcomputer 401 to the second microcomputer 402. In addition, in the configuration in which the timing determination unit 432 is provided, as described in the basic form, timing correction is prohibited when the synchronization signal is abnormal, and control of the second microcomputer 402 is prevented from failing. it can.
 次に、第1実施形態によるハンドシェイクの各動作例について図20~図35のタイムチャート及びフローチャートを参照して説明する。
 まず、各タイムチャートの左側に記載した用語について注記する。
 各マイコン401、402の「PWMタイマ」は、クロック生成回路651、652が生成するPWMキャリア基準タイマであり、このタイマに基づいて駆動信号Dr1、Dr2が生成され、各系統のモータ巻線組81、82への通電が制御される。PWMタイマの生成が開始することを、以下「タイマスタート」という。
 また、各マイコン401、402の電源がONした起動タイミングを、便宜上、PWMタイマのチャート上に記す。
Next, each operation example of the handshake according to the first embodiment will be described with reference to the time charts and flowcharts of FIGS.
First, note the terms listed on the left side of each time chart.
The “PWM timer” of each of the microcomputers 401 and 402 is a PWM carrier reference timer generated by the clock generation circuits 651 and 652, and the drive signals Dr1 and Dr2 are generated based on the timers. , 82 is controlled. The start of PWM timer generation is hereinafter referred to as “timer start”.
Further, the start timing when the power of each microcomputer 401, 402 is turned on is shown on the PWM timer chart for convenience.
 「同期信号1→2」は、第1マイコン401の同期信号生成部411から第2マイコン402のタイミング補正部422へ送信される同期信号を意味する。この例では、同期信号は起動時にローレベルである。
 また、図20の動作例1等では、第1マイコン401のタイマスタート前に、同期信号は一度ローレベルからハイレベルに立ち上がった後、再びローレベルに戻る。この場合、最初の同期信号の立ち上がりは、第2マイコン402との同期タイミングとして認識されるわけではなく、タイマスタート時における同期を予告する意味を持つ。そこで、タイマスタート前に同期信号をハイレベルとする動作を「同期予告信号を出力、又は送信する」という。また、タイマスタート前にハイレベルの同期信号をローレベルに戻す動作を「同期予告信号を終了する」という。
Synchronization signal 1 → 2” means a synchronization signal transmitted from the synchronization signal generation unit 411 of the first microcomputer 401 to the timing correction unit 422 of the second microcomputer 402. In this example, the synchronization signal is at a low level at startup.
In the operation example 1 in FIG. 20 and the like, the synchronization signal once rises from the low level to the high level before the timer of the first microcomputer 401 starts, and then returns to the low level again. In this case, the rising edge of the first synchronization signal is not recognized as the synchronization timing with the second microcomputer 402, but has the meaning of notifying the synchronization when the timer is started. Therefore, the operation of setting the synchronization signal to the high level before the timer starts is referred to as “outputting or transmitting the synchronization notice signal”. The operation of returning the high level synchronization signal to the low level before the timer starts is referred to as “end the synchronization notice signal”.
 本実施形態では、第1マイコン401が同期信号のローレベルとハイレベルとを切り替え、同期信号線471を介して第2マイコン402に送信することで同期予告信号としての機能を兼ねている。これにより、ハンドシェイクにおける同期予告専用の信号生成部や信号線を設ける必要がなくなる。 In the present embodiment, the first microcomputer 401 switches between the low level and the high level of the synchronization signal, and transmits to the second microcomputer 402 via the synchronization signal line 471 so that it also functions as a synchronization notice signal. As a result, there is no need to provide a signal generation unit or signal line dedicated for synchronization notice in handshaking.
 第1マイコン401のタイマスタート後、同期信号は、PWMタイマの4周期を同期周期Tsとして、ハイレベルとローレベルとを周期的に繰り返すようにトグル出力される。本実施形態では、同期信号の立ち上がりタイミング及び立ち下がりタイミングは、PWMタイマの谷タイミングに一致する。
 基礎形態と同様に、同期信号の立ち上がりタイミングは、第2マイコン402との同期タイミングとなる。また、第2マイコン402にてタイミング判定が行われる構成では、同期信号の立ち上がりタイミングによって同期信号の正常又は異常が判定される。
After the timer of the first microcomputer 401 is started, the synchronization signal is toggled so as to periodically repeat the high level and the low level with the four periods of the PWM timer as the synchronization period Ts. In the present embodiment, the rising timing and falling timing of the synchronization signal coincide with the valley timing of the PWM timer.
Similar to the basic mode, the rising timing of the synchronization signal is the synchronization timing with the second microcomputer 402. In the configuration in which the timing determination is performed by the second microcomputer 402, whether the synchronization signal is normal or abnormal is determined based on the rising timing of the synchronization signal.
 「レディ信号2→1」は、第2マイコン402のレディ信号送信部622から第1マイコン401のレディ信号受信部621へ送信されるレディ信号を意味する。この例では、起動時のデフォルトとして、レディ信号はハイレベルに設定される。その後、ハイレベルとローレベルとを4回連続して繰り返すパルス信号が、第2マイコン402の同期準備が完了したことを通知するレディ信号として出力される。なお、パルスの幅や回数は、適宜設定してよい。本実施形態では、レディ信号として用いられる通信クロック信号は、第2マイコン402のタイマスタート後も継続して周期的に出力される。
 このように、本実施形態では、同期予告信号及びレディ信号がハンドシェイクにおいて「送受信されるべき信号」に該当する。
Ready signal 2 → 1” means a ready signal transmitted from the ready signal transmission unit 622 of the second microcomputer 402 to the ready signal reception unit 621 of the first microcomputer 401. In this example, the ready signal is set to a high level as a default at start-up. Thereafter, a pulse signal that continuously repeats the high level and the low level four times is output as a ready signal for notifying that the synchronization preparation of the second microcomputer 402 has been completed. Note that the width and number of pulses may be set as appropriate. In the present embodiment, the communication clock signal used as the ready signal is continuously output periodically after the timer of the second microcomputer 402 is started.
Thus, in the present embodiment, the synchronization notice signal and the ready signal correspond to “signals to be transmitted / received” in the handshake.
 「期間」は、以下の説明において引用する箇所を示す。なお、<0>~<6>の記号は図毎に独立して付され、他図の同記号の期間とは互いに関係しない。また、明細書の説明では< >を付さず、例えば図の<1>に対応する期間を「期間1」のように記載する。
 各期間における一時点の動作についての説明は、制御のタイムラグを無視し、原則として、その期間の開始時に実行される動作についての説明である。
“Period” indicates a location cited in the following description. The symbols <0> to <6> are attached independently for each figure, and are not related to the period of the same symbol in other figures. In the description of the specification, <> is not attached, and for example, a period corresponding to <1> in the figure is described as “period 1”.
The explanation of the operation at the temporary point in each period is an explanation of the operation executed at the start of the period, in principle, ignoring the control time lag.
 [動作例1]
 具体的な動作例として、最初に図20を参照し、マイコン401、402が同時に起動後、ハンドシェイクが成功する動作例1について説明する。
 期間1では、マイコン401、402が起動後の状態である。第2マイコン402は、期間1の開始時からの経過時間を第2ハンドシェイク時間Ths2として計時する。
 期間2では、第1マイコン401は、同期予告信号を第2マイコン402に送信する。第2マイコン402は、この同期予告信号を第2ハンドシェイク時間Ths2の経過前に受信する。
[Operation Example 1]
As a specific operation example, an operation example 1 in which handshaking is successful after the microcomputers 401 and 402 are simultaneously started will be described with reference to FIG.
In period 1, the microcomputers 401 and 402 are in a state after being activated. The second microcomputer 402 counts the elapsed time from the start of period 1 as the second handshake time Ths2.
In period 2, the first microcomputer 401 transmits a synchronization notice signal to the second microcomputer 402. The second microcomputer 402 receives this synchronization notice signal before the second handshake time Ths2.
 また、第1マイコン401は、期間2の開始時からの経過時間を計時する。
 第2マイコン402は、期間2で受信した同期予告信号に対する応答として、期間3で、レディ信号を第1マイコン401に送信する。第1マイコン401は、このレディ信号を第1ハンドシェイク時間Ths1の経過前に受信する。
 第1マイコン401は、期間3でレディ信号を受信した後、第1ハンドシェイク時間Ths1が経過した時、期間4で、同期予告信号を終了する。
In addition, the first microcomputer 401 measures the elapsed time from the start of period 2.
The second microcomputer 402 transmits a ready signal to the first microcomputer 401 in period 3 as a response to the synchronization notice signal received in period 2. The first microcomputer 401 receives this ready signal before the first handshake time Ths1 has elapsed.
The first microcomputer 401 ends the synchronization notice signal in period 4 when the first handshake time Ths1 has elapsed after receiving the ready signal in period 3.
 期間2、3、4の動作を通じ、同期予告信号の送信及びレディ信号の受信が正常に実施されたことから、第1マイコン401のハンドシェイク判定部611は、ハンドシェイクが成功したと判定し、駆動タイミング生成部441に対し初回同期を指令する。
 同様に、同期予告信号の受信及びレディ信号の送信が正常に実施されたことから、第2マイコン402のハンドシェイク判定部612は、ハンドシェイクが成功したと判定し、駆動タイミング生成部442に対し初回同期を指令する。
 期間5では、第1マイコン401は同期信号を出力すると同時にタイマスタートする。第2マイコン402は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマスタートする。これにより、マイコン401、402は、起動後の初回から同期して、すなわち同期駆動モードでモータ80を駆動する。
Since the transmission of the synchronization notice signal and the reception of the ready signal are normally performed through the operations in the periods 2, 3, and 4, the handshake determination unit 611 of the first microcomputer 401 determines that the handshake is successful, Instructs the drive timing generation unit 441 to perform initial synchronization.
Similarly, since the reception of the synchronization notice signal and the transmission of the ready signal are normally performed, the handshake determination unit 612 of the second microcomputer 402 determines that the handshake is successful, and the drive timing generation unit 442 Command the first synchronization.
In period 5, the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal. The second microcomputer 402 starts a timer at the rising timing of the synchronization signal received from the first microcomputer 401. Thereby, the microcomputers 401 and 402 drive the motor 80 synchronously from the first time after activation, that is, in the synchronous drive mode.
 [動作例1の変形例]
 動作例1では、第1マイコン401及び第2マイコン402が同時、且つ、瞬時に起動すると仮定している。しかし実際には、各マイコン401、402に対応する電源111、112がOFF状態からONしたとき、マイコン401、402への供給電圧は0から次第に上昇し、その後、供給電圧がある値に達したとき、マイコン401、402が起動する。電源経路の配線抵抗等によりこの上昇勾配がばらつくと、仮に電源111、112が同時にONした場合でも。マイコン401、402の起動タイミングがばらつく。
 図21を参照し、動作例1の変形例として、第1電源111の立ち上がり時間UT1と第2電源112の立ち上がり時間UT2との時間差によるマイコン401、402の起動タイミングのずれが比較的小さい場合の動作例を説明する。
[Modification of Operation Example 1]
In the operation example 1, it is assumed that the first microcomputer 401 and the second microcomputer 402 are activated simultaneously and instantaneously. However, in reality, when the power supplies 111 and 112 corresponding to the microcomputers 401 and 402 are turned on from the OFF state, the supply voltage to the microcomputers 401 and 402 gradually increases from 0, and then the supply voltage reaches a certain value. At this time, the microcomputers 401 and 402 are activated. Even if the power supplies 111 and 112 are turned on at the same time if this rising gradient varies due to the wiring resistance of the power supply path or the like. The activation timings of the microcomputers 401 and 402 vary.
Referring to FIG. 21, as a modification of the first operation example, when the start timing deviation of the microcomputers 401 and 402 due to the time difference between the rise time UT1 of the first power supply 111 and the rise time UT2 of the second power supply 112 is relatively small An operation example will be described.
 期間1の開始時、第1電源111及び第2電源112はOFF状態から同時にONし、マイコン401、402への供給電圧が上昇する。第2電源112は時間UT2後に立ち上がりが完了し、第2マイコン402が起動する。続いて、第2ハンドシェイク時間Ths2の計時開始から間もなく第1電源111は時間UT1後に立ち上がりが完了し、第1マイコン401が起動する。
 その後、期間2の開始時に第1マイコン401は、同期予告信号を第2マイコン402に送信する。以後、図20の動作例1と同様に、期間2、3、4を通じてハンドシェイクが成功したと判定される。
At the start of period 1, the first power supply 111 and the second power supply 112 are turned ON simultaneously from the OFF state, and the supply voltage to the microcomputers 401 and 402 increases. The second power supply 112 completes rising after time UT2, and the second microcomputer 402 is activated. Subsequently, the first power source 111 completes rising after the time UT1 shortly after the start of the second handshake time Ths2, and the first microcomputer 401 is activated.
Thereafter, the first microcomputer 401 transmits a synchronization notice signal to the second microcomputer 402 at the start of the period 2. Thereafter, as in the operation example 1 of FIG. 20, it is determined that the handshake is successful through the periods 2, 3, and 4.
 そして期間5では、第1マイコン401は同期信号を出力すると同時にタイマスタートし、第2マイコン402は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマスタートする。これにより、マイコン401、402は、起動後の初回から同期して、すなわち同期駆動モードでモータ80を駆動する。
 このように、第1マイコン401の起動タイミングが少し遅れたとしても、第2ハンドシェイク時間Ths2以内に第1マイコン401が同期予告信号を送信する場合は、動作例1と同様にハンドシェイクは成功する。逆に、第2マイコン402の起動タイミングが少し遅れたとしても、第1ハンドシェイク時間Ths1以内に第2マイコン402がレディ信号を送信する場合は、動作例1と同様となる。
In period 5, the first microcomputer 401 starts the timer simultaneously with outputting the synchronization signal, and the second microcomputer 402 starts the timer at the rising timing of the synchronization signal received from the first microcomputer 401. Thereby, the microcomputers 401 and 402 drive the motor 80 synchronously from the first time after activation, that is, in the synchronous drive mode.
As described above, even if the start timing of the first microcomputer 401 is slightly delayed, if the first microcomputer 401 transmits the synchronization notice signal within the second handshake time Ths2, the handshake is successful as in the first operation example. To do. On the other hand, even if the activation timing of the second microcomputer 402 is slightly delayed, the second microcomputer 402 transmits a ready signal within the first handshake time Ths1, which is the same as the operation example 1.
 [動作例2]
 次に、一方のマイコンが起動後、所定時間以内に他方のマイコンが起動しない「タイムアウト」によりハンドシェイクが失敗する動作例について説明する。なお、他方のマイコンが起動した後、送信されるべき信号が所定時間以内に送信されない場合も、起動しない場合と同様に考えられる。
 まず図22を参照し、第2マイコン402起動後のタイムアウトにより、ハンドシェイクが失敗する動作例2について説明する。動作例2では、第2マイコン402の起動後、所定時間を経過しても第1マイコン401が起動しないか、或いは、第1マイコン401が起動してもレディ信号を送信しない。
[Operation example 2]
Next, an operation example in which the handshake fails due to a “timeout” in which the other microcomputer does not start within a predetermined time after one of the microcomputers is started will be described. It should be noted that the case where the signal to be transmitted is not transmitted within a predetermined time after the other microcomputer is activated is considered to be similar to the case where it is not activated.
First, referring to FIG. 22, an operation example 2 in which handshake fails due to a timeout after the second microcomputer 402 is activated will be described. In the operation example 2, the first microcomputer 401 does not start even if a predetermined time has elapsed after the second microcomputer 402 is started, or the ready signal is not transmitted even if the first microcomputer 401 is started.
 図22の期間1では、第2マイコン402のみが起動後の状態である。第2マイコン402は、期間1の開始時からの経過時間を計時する。その後、第2マイコン402が第1マイコン401から送信されるべき同期予告信号を受信しないまま時間が経過する。
 期間1の開始時からの経過時間が第2ハンドシェイク時間Ths2に達した時、第2マイコン402のハンドシェイク判定部612は、タイムアウトによりハンドシェイクが失敗したと判定する。そして、ハンドシェイク判定部612は、第2マイコン402が単独で駆動信号Dr2を生成するように駆動タイミング生成部442に通知する。
 期間2では、同期信号受信側マイコンである第2マイコン402は、単独でタイマスタートする。これにより、ECU101は、第1マイコン401にモータ駆動信号Dr1を生成させることなく、第2系統の一系統駆動モードでモータ80を駆動する。
In period 1 of FIG. 22, only the second microcomputer 402 is in a state after startup. The second microcomputer 402 counts the elapsed time from the start of period 1. Thereafter, time elapses without the second microcomputer 402 receiving the synchronization notice signal to be transmitted from the first microcomputer 401.
When the elapsed time from the start of period 1 reaches the second handshake time Ths2, the handshake determination unit 612 of the second microcomputer 402 determines that the handshake has failed due to a timeout. Then, the handshake determination unit 612 notifies the drive timing generation unit 442 that the second microcomputer 402 generates the drive signal Dr2 alone.
In period 2, the second microcomputer 402, which is the synchronization signal receiving microcomputer, starts a timer independently. Accordingly, the ECU 101 drives the motor 80 in the second system single-system drive mode without causing the first microcomputer 401 to generate the motor drive signal Dr1.
 [動作例2の変形例A]
 次に図23を参照し、電源の立ち上がり時間を考慮した動作例2の変形例Aについて説明する。この例では、図21に示す動作例1の変形例に対し第1電源111の立ち上がり時間UT1と第2電源112の立ち上がり時間UT2との時間差が大きく、マイコン401、402の起動タイミングのずれが大きい。
 期間1の開始時、第1電源111及び第2電源112はOFF状態から同時にONし、マイコン401、402への供給電圧が上昇する。第2電源112は時間UT2後に立ち上がりが完了し、第2マイコン402が起動する。ここで、第1電源111の立ち上がり時間UT1は、第2電源112の立ち上がり時間UT2と第2ハンドシェイク時間Ths2との合計よりも長い。そのため、第1マイコン401が起動する前に第2ハンドシェイク時間Ths2が経過し、期間2で、第2マイコン402は単独でタイマスタートする。したがって、第2系統の一系統駆動モードでモータ80が駆動される。
[Modification A of Operation Example 2]
Next, with reference to FIG. 23, the modification A of the operation example 2 considering the rise time of the power supply will be described. In this example, the time difference between the rise time UT1 of the first power supply 111 and the rise time UT2 of the second power supply 112 is large compared to the modification of the operation example 1 shown in FIG. .
At the start of period 1, the first power supply 111 and the second power supply 112 are turned ON simultaneously from the OFF state, and the supply voltage to the microcomputers 401 and 402 increases. The second power supply 112 completes rising after time UT2, and the second microcomputer 402 is activated. Here, the rise time UT1 of the first power supply 111 is longer than the sum of the rise time UT2 of the second power supply 112 and the second handshake time Ths2. Therefore, the second handshake time Ths2 elapses before the first microcomputer 401 is activated, and in the period 2, the second microcomputer 402 starts a timer alone. Therefore, the motor 80 is driven in the single-system drive mode of the second system.
 その後、期間2の途中で第1電源111の立ち上がりが完了し、第1マイコン401が起動する。続いて期間3では、第1ハンドシェイク時間Ths1の経過中に、タイマスタート後の第2マイコン402が第1マイコン401に無効のレディ信号を送信する。
 ここで、「無効」とは、受信側のマイコン(ここでは、第1マイコン401)がその信号をレディ信号として認識しないことをいう。例えばレディ信号を受信する側のマイコンは、レディ信号の有効又は無効をIDにより判別する。第2マイコン402の一系統駆動モード実行中に送信される無効のレディ信号は、第1マイコン401の同期予告信号に対し同期準備が完了したことを示す信号として認識されない。したがって、無効のレディ信号が送信されてもハンドシェイクが成功したとは判定されない。
 期間3の終了後、期間4を経て、期間5の開始時に、第1マイコン401は、第2マイコン402とは同期せずにタイマスタートする。これにより期間5では、二系統のマイコン401、402による非同期駆動モードでモータ80が駆動される。
Thereafter, the rising of the first power supply 111 is completed in the middle of the period 2, and the first microcomputer 401 is activated. Subsequently, in period 3, the second microcomputer 402 after the timer starts transmits an invalid ready signal to the first microcomputer 401 during the elapse of the first handshake time Ths 1.
Here, “invalid” means that the microcomputer on the receiving side (here, the first microcomputer 401) does not recognize the signal as a ready signal. For example, the microcomputer that receives the ready signal determines whether the ready signal is valid or invalid based on the ID. An invalid ready signal transmitted during execution of the one-system drive mode of the second microcomputer 402 is not recognized as a signal indicating that the synchronization preparation has been completed with respect to the synchronization notice signal of the first microcomputer 401. Therefore, even if an invalid ready signal is transmitted, it is not determined that the handshake is successful.
After the end of period 3, through period 4 and at the start of period 5, first microcomputer 401 starts a timer without synchronizing with second microcomputer 402. As a result, in period 5, the motor 80 is driven in the asynchronous drive mode by the two systems of microcomputers 401 and 402.
 期間5の開始時から同期周期Ts後、期間6の開始時に第1マイコン401は第2マイコン402に同期信号を送信し、第2マイコン402はこれを受信する。この時、タイミング判定で正常と判定された場合、又は、タイミング判定が実施されない場合には、同期信号の立ち上がりタイミングで第2マイコン402のタイミング補正が実施され、以後、マイコン401、402は同期駆動モードでモータ80を駆動する。
 このように、マイコン401、402の起動タイミングのずれが大きい場合、ECU101によるモータ80の駆動モードは、一系統駆動モード、非同期駆動モード、同期駆動モードの順に移行する。言い換えれば、マイコン401、402の起動時において、一系統駆動モード、非同期駆動モード、同期駆動モードの順に移行する場合があるモータ制御装置は、本実施形態のECUに相当するとみなすことができる。
After the synchronization period Ts from the start of the period 5, the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 at the start of the period 6, and the second microcomputer 402 receives it. At this time, when it is determined that the timing determination is normal or when the timing determination is not performed, the timing correction of the second microcomputer 402 is performed at the rising timing of the synchronization signal, and thereafter the microcomputers 401 and 402 are driven synchronously. The motor 80 is driven in the mode.
As described above, when the deviation of the activation timing of the microcomputers 401 and 402 is large, the drive mode of the motor 80 by the ECU 101 shifts in the order of the one-system drive mode, the asynchronous drive mode, and the synchronous drive mode. In other words, when the microcomputers 401 and 402 are activated, the motor control device that may shift in the order of the one-system drive mode, the asynchronous drive mode, and the synchronous drive mode can be regarded as corresponding to the ECU of the present embodiment.
 [動作例2の変形例B]
 図24に示す動作例2の変形例Bは、期間1、期間2までの動作は、図23の変形例Aと同じである。ただし、変形例Bでは、第2マイコン402が一系統駆動モードで動作中に第1マイコン401が起動した場合、第1マイコン401は同期予告信号の送信、タイマスタート処理、同期処理等の処理を行わない。つまり、第1マイコン401は、マイコン自体は起動しているがモータ駆動信号Dr1を生成しないため、第1系統によるモータ駆動は行われない。その結果、図22と同様に、期間2のまま第1マイコン401が一系統駆動モードを継続する。このように、同期駆動モードへの移行が必須ではなく、一系統駆動モードが継続して用いられてもよい。
[Modification B of Operation Example 2]
In the modification example B of the operation example 2 shown in FIG. 24, the operation up to the period 1 and the period 2 is the same as the modification example A of FIG. However, in the modified example B, when the first microcomputer 401 is activated while the second microcomputer 402 is operating in the one-system drive mode, the first microcomputer 401 performs processing such as transmission of a synchronization notice signal, timer start processing, and synchronization processing. Not performed. That is, the first microcomputer 401 does not generate the motor drive signal Dr1 while the microcomputer itself is activated, so that the motor drive by the first system is not performed. As a result, as in FIG. 22, the first microcomputer 401 continues the one-system drive mode while maintaining the period 2. Thus, the transition to the synchronous drive mode is not essential, and the one-system drive mode may be continuously used.
 [動作例3]
 次に図25を参照し、動作例2とは逆に、第1マイコン401起動後のタイムアウトにより、ハンドシェイクが失敗する動作例3について説明する。動作例3では、第1マイコン401の起動後、所定時間を経過しても第2マイコン402が起動しないか、或いは、第2マイコン402が起動してもレディ信号を送信しない。
 期間1では、第1マイコン401のみが起動後の状態である。
 期間2では、第1マイコン401は同期予告信号を送信するとともに、期間2の開始時からの経過時間を計時する。その後、第1マイコン401が第2マイコン402から送信されるべきレディ信号を受信しないまま時間が経過する。
[Operation Example 3]
Next, with reference to FIG. 25, an operation example 3 in which the handshake fails due to a timeout after the activation of the first microcomputer 401 will be described, contrary to the operation example 2. In the third operation example, after the first microcomputer 401 is activated, the second microcomputer 402 is not activated even if a predetermined time has elapsed, or the ready signal is not transmitted even when the second microcomputer 402 is activated.
In period 1, only the first microcomputer 401 is in a state after activation.
In period 2, the first microcomputer 401 transmits a synchronization notice signal and measures the elapsed time from the start of period 2. Thereafter, time elapses without the first microcomputer 401 receiving a ready signal to be transmitted from the second microcomputer 402.
 期間2の開始時からの経過時間が第1ハンドシェイク時間Ths1に達した時、第12マイコン401のハンドシェイク判定部611は、タイムアウトによりハンドシェイクが失敗したと判定する。そして、ハンドシェイク判定部611は、第1マイコン401が単独で駆動信号Dr1を生成するように駆動タイミング生成部441に通知する。
 第1マイコン401は、第1ハンドシェイク時間Ths1が経過した時、期間3で、同期予告信号を終了する。
 動作例3の期間4では、同期信号送信側マイコンである第1マイコン401は、同期信号を出力すると同時に単独でタイマスタートする。これにより、ECU101は、第2マイコン402にモータ駆動信号Dr2を生成させることなく、第1系統の一系統駆動モードでモータ80を駆動する。
When the elapsed time from the start of period 2 reaches the first handshake time Ths1, the handshake determination unit 611 of the twelfth microcomputer 401 determines that the handshake has failed due to a timeout. Then, the handshake determination unit 611 notifies the drive timing generation unit 441 that the first microcomputer 401 generates the drive signal Dr1 alone.
The first microcomputer 401 ends the synchronization notice signal in period 3 when the first handshake time Ths1 has elapsed.
In the period 4 of the operation example 3, the first microcomputer 401, which is the synchronization signal transmission side microcomputer, outputs the synchronization signal and simultaneously starts the timer. As a result, the ECU 101 drives the motor 80 in the first system single-system drive mode without causing the second microcomputer 402 to generate the motor drive signal Dr2.
 [動作例1~3のフローチャート]
 タイムアウトによるハンドシェイクの失敗を想定した動作例1~3及びその変形例に関連する第1マイコン401及び第2マイコン402の起動後処理、ハンドシェイク成否記憶処理、及び、第2マイコン402の同期処理について、各フローチャートを参照する。
 図26に示す第1マイコン起動後処理において、第1マイコン401は、S50で起動後、S51で同期信号をハイレベルとし同期予告信号を送信するとともに、経過時間の計時を開始する。
 S52では、経過時間が第1ハンドシェイク時間Ths1未満であるか判断される。
 S52でYESと判断された場合、レディ信号受信ステップS53では、第2マイコン402からレディ信号を受信したか判断される。第1マイコン401がレディ信号を未受信であり、S53でNOと判断された場合、S52の前に戻る。
[Flowcharts of Operation Examples 1 to 3]
Post-startup processing of the first microcomputer 401 and the second microcomputer 402, handshake success / failure storage processing, and synchronization processing of the second microcomputer 402 related to the operation examples 1 to 3 and the modifications thereof assuming a handshake failure due to timeout Each flowchart is referred to.
In the first microcomputer start-up process shown in FIG. 26, the first microcomputer 401 starts up in S50, sets the synchronization signal to a high level in S51, transmits a synchronization notice signal, and starts measuring elapsed time.
In S52, it is determined whether the elapsed time is less than the first handshake time Ths1.
If YES is determined in S <b> 52, it is determined in a ready signal receiving step S <b> 53 whether a ready signal is received from the second microcomputer 402. If the first microcomputer 401 has not received a ready signal and it is determined NO in S53, the process returns to S52.
 第1マイコン401がレディ信号を受信した場合、S53でYESと判断され、S54に移行する。これにより、ハンドシェイクが成功したと判定される。
 また、経過時間が第1ハンドシェイク時間Ths1に達しタイムアウトでハンドシェイクが失敗した場合、S52でNOと判断され、S54に移行する。
 S54で、第1マイコン401は、同期信号をローレベルに戻し、同期予告信号を終了する。
 S56で、第1マイコン401は、第2マイコン402に同期信号を送信する。
When the first microcomputer 401 receives the ready signal, YES is determined in S53, and the process proceeds to S54. Thereby, it is determined that the handshake is successful.
If the elapsed time reaches the first handshake time Ths1 and the handshake fails due to timeout, NO is determined in S52, and the process proceeds to S54.
In S54, the first microcomputer 401 returns the synchronization signal to the low level, and ends the synchronization notice signal.
In S <b> 56, the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402.
 先のS52でYESと判断された場合、すなわち、ハンドシェイクが成功したと判定された場合、ハンドシェイク判定ステップS57でYESと判断され、同期駆動ステップS58に移行する。S58では、第1マイコン401及び第2マイコン402は同時にタイマスタートし、初回から同期してモータ80を駆動する。
 一方、先のS52でNOと判断された場合、すなわち、タイムアウトでハンドシェイクが失敗した場合、S57でNOと判断され、S59に移行する。S59では、第1マイコン401が単独でタイマスタートし、非同期でモータ80を駆動する。
If YES is determined in the previous S52, that is, if it is determined that the handshake is successful, YES is determined in the handshake determination step S57, and the process proceeds to the synchronous drive step S58. In S58, the first microcomputer 401 and the second microcomputer 402 start the timer at the same time, and drive the motor 80 synchronously from the first time.
On the other hand, if NO is determined in the previous S52, that is, if the handshake fails due to timeout, NO is determined in S57, and the process proceeds to S59. In S59, the first microcomputer 401 starts the timer alone and drives the motor 80 asynchronously.
 図27、図28に示す第2マイコン起動後処理において、第2マイコン402は、S60で起動するとともに、S61で経過時間の計時を開始する。
 S62では、経過時間が第2ハンドシェイク時間Ths2未満であるか判断される。
 S62でYESと判断された場合、S63では、第1マイコン401から同期予告信号を受信したか判断される。第2マイコン402が同期予告信号を未受信であり、S63でNOと判断された場合、S62の前に戻る。
In the post-activation process of the second microcomputer shown in FIGS. 27 and 28, the second microcomputer 402 is activated in S60 and starts measuring elapsed time in S61.
In S62, it is determined whether the elapsed time is less than the second handshake time Ths2.
If YES is determined in S62, it is determined in S63 whether a synchronization notice signal has been received from the first microcomputer 401. If the second microcomputer 402 has not received the synchronization notice signal and it is determined NO in S63, the process returns to S62.
 第2マイコン402が同期予告信号を受信した場合、S63でYESと判断され、レディ信号送信ステップS64に移行する。S64で、第2マイコン402は、レディ信号を送信する。第1マイコン401側でこのS64に応答するステップが図26のレディ信号受信ステップS53となる。これにより、ハンドシェイクが成功したと判定される。
 その後、S66で、第2マイコン402は第1マイコン401から同期信号を受信し、割り込みにより第1マイコン401と同時にタイマスタートする。これにより、第1マイコン401及び第2マイコン402は、初回から同期してモータ80を駆動する。
When the second microcomputer 402 receives the synchronization advance notice signal, YES is determined in S63, and the process proceeds to the ready signal transmission step S64. In S64, the second microcomputer 402 transmits a ready signal. The step of responding to S64 on the first microcomputer 401 side is the ready signal receiving step S53 of FIG. Thereby, it is determined that the handshake is successful.
Thereafter, in S66, the second microcomputer 402 receives the synchronization signal from the first microcomputer 401, and starts a timer simultaneously with the first microcomputer 401 by an interrupt. Thereby, the first microcomputer 401 and the second microcomputer 402 drive the motor 80 in synchronization from the first time.
 一方、経過時間が第2ハンドシェイク時間Ths2に達し、タイムアウトでハンドシェイクが失敗した場合、S62でNOと判断され、S67に移行する。S67では、第2マイコン402が単独でタイマスタートし、一系統駆動モードでモータ80を駆動する。
 続くS50では、第2マイコン402のタイマスタート後に第1マイコン401が起動したか判断される。図22に示す動作例2では第1マイコン401が起動しておらず、S50でNOと判断される。図23、24に示す動作例2の変形例では、第2マイコン402のタイマスタート後に第1マイコン401が起動し、S50でYESと判断される。
On the other hand, if the elapsed time reaches the second handshake time Ths2 and the handshake fails due to timeout, NO is determined in S62, and the process proceeds to S67. In S67, the second microcomputer 402 starts the timer alone and drives the motor 80 in the one-system drive mode.
In subsequent S50, it is determined whether or not the first microcomputer 401 has been started after the timer of the second microcomputer 402 is started. In the operation example 2 shown in FIG. 22, the first microcomputer 401 is not activated, and it is determined NO in S50. In the modification of the second operation example shown in FIGS. 23 and 24, the first microcomputer 401 is activated after the timer of the second microcomputer 402 is started, and YES is determined in S50.
 動作例2の変形例Aでは、図27に示すように、S50でYESと判断された場合、S68で、第1マイコン401からの同期予告信号に対し第2マイコン402が無効のレディ信号を送信する。S69では、第1ハンドシェイク時間Ths1の経過に伴うタイムアウトにより、第1マイコン401が単独で第2マイコン402とは非同期でタイマスタートする。これにより、一系統駆動モードから二系統の非同期駆動モードに移行する。
 その後、S80では、図30に示す「第2マイコン同期処理」が実行され、同期条件が成立した場合には同期駆動モードに移行する。
 動作例2の変形例Bでは、図28に示すように、S50でYESと判断された場合、そのまま処理を終了する。したがって、S67の「第2マイコンによる一系統駆動モード」が継続される。
In the modified example A of the operation example 2, as shown in FIG. 27, if YES is determined in S50, the second microcomputer 402 transmits an invalid ready signal in response to the synchronization notice signal from the first microcomputer 401 in S68. To do. In S69, the first microcomputer 401 alone and asynchronously starts the timer with the second microcomputer 402 due to a timeout associated with the passage of the first handshake time Ths1. This shifts from the one-system drive mode to the two-system asynchronous drive mode.
Thereafter, in S80, the “second microcomputer synchronization process” shown in FIG. 30 is executed, and when the synchronization condition is satisfied, the process shifts to the synchronous drive mode.
In the modified example B of the operation example 2, as shown in FIG. 28, if YES is determined in S50, the process is ended as it is. Therefore, the “one-system drive mode by the second microcomputer” in S67 is continued.
 次に、図29に示すハンドシェイク成否記憶処理において、S71ではハンドシェイクが実施される。
 ハンドシェイクが成功し、S72でYESと判断されたとき、ハンドシェイク判定部611、612は、S73で成功フラグをONする。このとき、同期制御が実施される。
 ハンドシェイクが失敗し、S72でNOと判断されたとき、ハンドシェイク判定部611、612は、S74で成功フラグをOFFする。このとき、非同期制御が実施される。
 ハンドシェイク判定部611、612は、成功フラグのON/OFF情報を記憶する。
Next, in the handshake success / failure storage process shown in FIG. 29, handshaking is performed in S71.
When the handshake is successful and YES is determined in S72, the handshake determination units 611 and 612 turn on the success flag in S73. At this time, synchronous control is performed.
When the handshake fails and NO is determined in S72, the handshake determination units 611 and 612 turn off the success flag in S74. At this time, asynchronous control is performed.
The handshake determination units 611 and 612 store ON / OFF information of a success flag.
 図30の第2マイコン同期処理は、図27及び図32中のS80に相当する。図30において、成功フラグがOFFであり非同期制御中の場合、S81でYESと判断され、S82に移行して同期を試みる。成功フラグがONであり同期制御中の場合、S81でNOと判断され、処理を終了する。
 その後、第2マイコン402は、同期周期Ts毎に第1マイコン401から同期信号が送信されるのを待ち、S82で同期信号を受信する。なお、第1マイコン401が起動しておらず第2マイコン402のみが一系統駆動モードで動作している場合には同期信号が送信されないため、待ち時間が上限値に達したら、処理を終了するようにしてもよい。
The second microcomputer synchronization process in FIG. 30 corresponds to S80 in FIGS. In FIG. 30, if the success flag is OFF and asynchronous control is being performed, YES is determined in S81, and the process proceeds to S82 to attempt synchronization. If the success flag is ON and synchronous control is being performed, NO is determined in S81 and the process ends.
Thereafter, the second microcomputer 402 waits for the synchronization signal to be transmitted from the first microcomputer 401 every synchronization cycle Ts, and receives the synchronization signal in S82. If the first microcomputer 401 is not activated and only the second microcomputer 402 is operating in the one-system drive mode, the synchronization signal is not transmitted. Therefore, when the waiting time reaches the upper limit value, the process ends. You may do it.
 基礎形態のように、第2マイコン402のタイミング補正部422がタイミング判定部432を含む構成では、S83で、同期信号の受信タイミングが同期許可区間内であるか判定される。S83でYESと判断された場合、S84でタイミング補正が実施される。S83でNOと判断された場合、S82に戻り、第2マイコン402は、次の同期信号が送信されるのを待つ。
 なお、タイミング補正部422がタイミング判定部432を含まない構成では、S83をスキップし、第2マイコン402が同期信号を受信したとき、常にタイミング補正が実施されてもよい。
In the configuration in which the timing correction unit 422 of the second microcomputer 402 includes the timing determination unit 432 as in the basic mode, it is determined in S83 whether the reception timing of the synchronization signal is within the synchronization permission section. If YES is determined in S83, timing correction is performed in S84. If NO is determined in S83, the process returns to S82, and the second microcomputer 402 waits for the next synchronization signal to be transmitted.
In the configuration in which the timing correction unit 422 does not include the timing determination unit 432, the timing correction may always be performed when S83 is skipped and the second microcomputer 402 receives the synchronization signal.
 [動作例4]
 次に図31を参照し、異常信号が送受信されたことによりハンドシェイクが失敗する動作例4について説明する。ここでは、動作例2、3のようなタイムアウトに関する説明は省略する。
 動作例1と同様にマイコン401、402は同時に起動し、期間1では、マイコン401、402が起動後の状態である。
 期間2では、本来送信されるべき同期予告信号ではなく、高周波ノイズの異常信号が第1マイコン401から第2マイコン402に送信される。
[Operation Example 4]
Next, with reference to FIG. 31, the operation example 4 in which the handshake fails due to the transmission / reception of the abnormal signal will be described. Here, the description regarding the timeout as in the operation examples 2 and 3 is omitted.
Similarly to the operation example 1, the microcomputers 401 and 402 are activated at the same time, and in the period 1, the microcomputers 401 and 402 are in a state after activation.
In the period 2, an abnormal signal of high frequency noise is transmitted from the first microcomputer 401 to the second microcomputer 402 instead of the synchronization notice signal that should be transmitted originally.
 第2マイコン402のハンドシェイク判定部612は、期間2で異常信号が受信されたことを検出するとすぐに、ハンドシェイクが失敗したと判定する。そして、ハンドシェイク判定部612は、第2マイコン402が単独で駆動信号Dr2を生成するように駆動タイミング生成部442に通知する。
 期間3では、第2マイコン402が単独でタイマスタートする。したがって、第2系統の一系統駆動モードでモータ80が駆動される。
The handshake determination unit 612 of the second microcomputer 402 determines that the handshake has failed as soon as it detects that an abnormal signal has been received in period 2. Then, the handshake determination unit 612 notifies the drive timing generation unit 442 that the second microcomputer 402 generates the drive signal Dr2 alone.
In period 3, the second microcomputer 402 starts a timer alone. Therefore, the motor 80 is driven in the single-system drive mode of the second system.
 期間3で第2マイコン402がタイマスタートした後、第2マイコン402は第1マイコン401に無効のレディ信号を送信する。
 第1マイコン401のハンドシェイク判定部611は、ハンドシェイクが失敗したと判定し、第1マイコン401が単独で駆動信号Dr1を生成するように駆動タイミング生成部441に通知する。期間4では、第1マイコン401は、同期予告信号を終了する。
 期間5では、第1マイコン401は同期信号を出力すると同時にタイマスタートする。これにより期間5では、二系統のマイコン401、402による非同期駆動モードでモータ80が駆動される。
After the second microcomputer 402 starts the timer in the period 3, the second microcomputer 402 transmits an invalid ready signal to the first microcomputer 401.
The handshake determination unit 611 of the first microcomputer 401 determines that the handshake has failed and notifies the drive timing generation unit 441 that the first microcomputer 401 generates the drive signal Dr1 alone. In period 4, the first microcomputer 401 ends the synchronization notice signal.
In period 5, the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal. As a result, in period 5, the motor 80 is driven in the asynchronous drive mode by the two systems of microcomputers 401 and 402.
 期間5の開始時から同期周期Ts後、期間6の開始時に第1マイコン401は第2マイコン402に同期信号を送信し、第2マイコン402はこれを受信する。この時、タイミング判定で正常と判定された場合、又は、タイミング判定が実施されない場合には、同期信号の立ち上がりタイミングで第2マイコン402のタイミング補正が実施され、以後、マイコン401、402は同期駆動モードでモータ80を駆動する。
 このように、第2マイコン402が同期予告信号でなく異常信号を受信した場合にも、ECU101によるモータ80の駆動モードは、一系統駆動モード、非同期駆動モード、同期駆動モードの順に移行する。
After the synchronization period Ts from the start of the period 5, the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 at the start of the period 6, and the second microcomputer 402 receives it. At this time, when it is determined that the timing determination is normal or when the timing determination is not performed, the timing correction of the second microcomputer 402 is performed at the rising timing of the synchronization signal, and thereafter the microcomputers 401 and 402 are driven synchronously. The motor 80 is driven in the mode.
As described above, even when the second microcomputer 402 receives an abnormal signal instead of the synchronous notice signal, the driving mode of the motor 80 by the ECU 101 shifts in the order of the one-system driving mode, the asynchronous driving mode, and the synchronous driving mode.
 [動作例4のフローチャート]
 異常信号の送受信によるハンドシェイクの失敗を想定した動作例4における第2マイコン起動後処理について、図32のフローチャートを参照する。図32において、図27と共通のステップには同一のステップ番号を付し、適宜、説明を省略する。また、動作例4に特有のステップには、ステップ番号の末尾に文字「X」を記す。
 図32では、第2マイコン402の起動後、第1マイコン401から送信される信号のタイムアウトを想定しない。すなわち、第2ハンドシェイク時間Ths2に第2マイコン402が何らかの信号を受信することを前提とする。
[Flowchart of Operation Example 4]
With reference to the flowchart of FIG. 32, the second microcomputer activation process in the operation example 4 assuming the handshake failure due to the transmission / reception of the abnormal signal will be described. In FIG. 32, steps that are the same as those in FIG. 27 are given the same step numbers, and descriptions thereof will be omitted as appropriate. In addition, in steps unique to the operation example 4, the letter “X” is written at the end of the step number.
In FIG. 32, a timeout of a signal transmitted from the first microcomputer 401 after the activation of the second microcomputer 402 is not assumed. That is, it is assumed that the second microcomputer 402 receives some signal during the second handshake time Ths2.
 S60で第2マイコン402が起動後、第2マイコン402が第1マイコン401から何らかの信号を受信し、S62XでYESと判断されたとき、S63Xでは、第2マイコン402が受信した信号が異常信号であるか否か判断される。
 第2マイコン402が受信した信号が正常な同期予告信号であり、S63XでNOと判断された場合、図27と同様にS64、S66が実行される。
 第2マイコン402が受信した信号が異常信号であり、S63XでYESと判断された場合、S67で第2マイコン402が単独でタイマスタートし、一系統駆動モードでモータ80を駆動する。以下、図27と同様にS68、S69、S80が実施される。
After the second microcomputer 402 is activated in S60, the second microcomputer 402 receives any signal from the first microcomputer 401, and when YES is determined in S62X, the signal received by the second microcomputer 402 is an abnormal signal in S63X. It is determined whether or not there is.
When the signal received by the second microcomputer 402 is a normal synchronization notice signal and it is determined NO in S63X, S64 and S66 are executed as in FIG.
If the signal received by the second microcomputer 402 is an abnormal signal and it is determined YES in S63X, the second microcomputer 402 starts the timer alone in S67 and drives the motor 80 in the one-system drive mode. Thereafter, S68, S69, and S80 are performed as in FIG.
 (効果)
 以上のように、本実施形態のECU101は、マイコン401、402の起動後、同期予告信号とレディ信号とを互いに送受信するハンドシェイクを実施し、ハンドシェイクが成功したか否かの判定結果に応じた処置を行う。ハンドシェイクが成功したと判定された場合、初回から同期してモータ80を駆動することが可能となる。一方、ハンドシェイクが失敗したと判定された場合、非同期でモータ80の駆動を開始した後、次回以降の同期信号の送信タイミングでタイミング補正を行い、同期制御に移行する。
(effect)
As described above, after the microcomputers 401 and 402 are activated, the ECU 101 according to the present embodiment performs a handshake that sends and receives the synchronization notice signal and the ready signal to each other, and according to the determination result of whether or not the handshake is successful. Take corrective action. When it is determined that the handshake is successful, the motor 80 can be driven in synchronization from the first time. On the other hand, when it is determined that the handshake has failed, the motor 80 is started to be driven asynchronously, and then the timing is corrected at the next and subsequent synchronization signal transmission timings, and the control shifts to synchronous control.
 このように、本実施形態のECU101は、マイコン401、402の起動後にハンドシェイクが成功した場合、初回から同期可能とすることができる。また、ハンドシェイクが成功した場合、二つのマイコン401、402が同時にタイマスタートするため、各マイコンが同期信号の複数周期を単位とする制御を行う場合でも、制御を同期させることができる。 As described above, the ECU 101 of this embodiment can synchronize from the first time when the handshake is successful after the microcomputers 401 and 402 are activated. In addition, when the handshake is successful, the two microcomputers 401 and 402 start the timer at the same time, so that the control can be synchronized even when each microcomputer performs control in units of a plurality of periods of the synchronization signal.
 [動作例5、6]
 上記の動作例1~4は、第1マイコン401及び第2マイコン402がいずれも停止状態から電源ONされ、起動した時の初回ハンドシェイクについてのものである。ただし、本実施形態による初回ハンドシェイクの思想は、動作中のマイコンがリセット等により再起動した場合にも応用することができる。
 次に、図33~図35を参照し、一方のマイコンによる一系統駆動モードでの動作継続中に他方のマイコンがリセット等により一時停止した後、再起動したときのハンドシェイク動作例5、6について説明する。動作例5については、5A、5Bの二通りのパターンを説明する。
[Operation examples 5 and 6]
The above operation examples 1 to 4 relate to the first handshake when the first microcomputer 401 and the second microcomputer 402 are both turned on and activated from the stopped state. However, the idea of the first handshake according to the present embodiment can also be applied when the operating microcomputer is restarted by resetting or the like.
Next, referring to FIGS. 33 to 35, handshake operation examples 5 and 6 when the other microcomputer is temporarily stopped due to reset or the like and then restarted while the operation of the one microcomputer in the one-system drive mode is continued. Will be described. Regarding the operation example 5, two patterns of 5A and 5B will be described.
 図33に示す動作例5Aでは、第2マイコン402の動作継続中に第1マイコン401がリセット等により再起動する。また、第2マイコン402のレディ信号の送信開始タイミングは、PWMタイマの谷のタイミングに対し所定の時間τRオフセットしている。
 期間0では、第1マイコン401の再起動前の状態であり、第2マイコン402が単独で動作している。期間1では、第1マイコン401が再起動する。
In the operation example 5A shown in FIG. 33, the first microcomputer 401 is restarted by a reset or the like while the operation of the second microcomputer 402 is continued. The ready signal transmission start timing of the second microcomputer 402 is offset by a predetermined time τR with respect to the valley timing of the PWM timer.
In period 0, the first microcomputer 401 is in a state before restarting, and the second microcomputer 402 is operating alone. In period 1, the first microcomputer 401 is restarted.
 期間2では、第1マイコン401は第2マイコン402からレディ信号を受信し、受信開始タイミングに基づいて、第2マイコン402のPWMタイマの谷のタイミングを把握する。そして、第1マイコン401は、第2マイコン402の谷のタイミングに合わせて同期信号を送信すべきタイミングを算出し、そのタイミングまで待つ。
 期間3では、第1マイコン401は、算出したタイミングで同期信号を送信する。第2マイコン402は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマを再スタートし同期駆動モードに移行する。これにより、第2マイコン402の動作連続性を確保しつつ、第1マイコン401の再起動後に同期制御させることができる。
In period 2, the first microcomputer 401 receives a ready signal from the second microcomputer 402, and grasps the timing of the valley of the PWM timer of the second microcomputer 402 based on the reception start timing. Then, the first microcomputer 401 calculates the timing at which the synchronization signal should be transmitted in accordance with the valley timing of the second microcomputer 402, and waits until that timing.
In period 3, the first microcomputer 401 transmits a synchronization signal at the calculated timing. The second microcomputer 402 restarts the timer at the rising timing of the synchronization signal received from the first microcomputer 401 and shifts to the synchronous drive mode. Thereby, synchronous control can be performed after the first microcomputer 401 is restarted while ensuring the continuity of operation of the second microcomputer 402.
 図34に示す動作例5Bでは、動作例5Aと同様に、第2マイコン402の動作継続中に第1マイコン401がリセット等により再起動する。また、第2マイコン402のレディ信号の送信開始タイミングは、PWMタイマの谷のタイミングと一致している。言い換えれば、動作例5Bは、動作例5Aにおいて「τR=0」の場合に相当する。
 期間0、期間1は、動作例5Aと同様である。
 期間2では、第1マイコン401は第2マイコン402からレディ信号を受信すると同時に同期信号を送信する。第2マイコン402は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマを再スタートし同期駆動モードに移行する。これにより、第2マイコン402の動作連続性を確保しつつ、第1マイコン401の再起動後に同期制御させることができる。
In the operation example 5B shown in FIG. 34, as in the operation example 5A, the first microcomputer 401 is restarted by a reset or the like while the operation of the second microcomputer 402 is continued. The ready signal transmission start timing of the second microcomputer 402 coincides with the valley timing of the PWM timer. In other words, the operation example 5B corresponds to the case of “τR = 0” in the operation example 5A.
Period 0 and period 1 are the same as in operation example 5A.
In period 2, the first microcomputer 401 receives a ready signal from the second microcomputer 402 and transmits a synchronization signal at the same time. The second microcomputer 402 restarts the timer at the rising timing of the synchronization signal received from the first microcomputer 401 and shifts to the synchronous drive mode. Thereby, synchronous control can be performed after the first microcomputer 401 is restarted while ensuring the continuity of operation of the second microcomputer 402.
 図35に示す動作例6では、第1マイコン401の動作継続中に第2マイコン402がリセット等により再起動する。
 期間0では、第2マイコン402の再起動前の状態であり、第1マイコン401が単独で動作している。期間1では、第2マイコン402が再起動する。
 期間2では、第2マイコン402は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマを再スタートし同期駆動モードに移行する。これにより、第2マイコン402の再起動後に同期制御させることができる。
In the operation example 6 shown in FIG. 35, the second microcomputer 402 is restarted by a reset or the like while the operation of the first microcomputer 401 is continued.
In the period 0, the second microcomputer 402 is in a state before restarting, and the first microcomputer 401 is operating alone. In period 1, the second microcomputer 402 is restarted.
In period 2, the second microcomputer 402 restarts the timer at the rising timing of the synchronization signal received from the first microcomputer 401 and shifts to the synchronous drive mode. Thereby, synchronous control can be performed after the second microcomputer 402 is restarted.
 以上のように、一方のマイコンの動作継続中に他方のマイコンが再起動した場合にも、再起動したマイコンが動作継続中のマイコンの同期信号又はレディ信号に合わせて、動作連続性を確保しつつ、タイマスタート時から同期制御することができる。
 さらに、各マイコンが同期信号の複数周期を単位とする制御を行う場合、制御周期の基準タイミングを認識して、再起動したマイコンがタイマスタートすることで、複数周期単位の制御を同期させることができる。
As described above, even if the other microcomputer restarts while one microcomputer continues to operate, the restarted microcomputer ensures operation continuity according to the synchronization signal or ready signal of the microcomputer that is continuing to operate. However, synchronous control can be performed from the start of the timer.
Furthermore, when each microcomputer performs control in units of multiple cycles of the synchronization signal, it is possible to synchronize control in units of multiple cycles by recognizing the reference timing of the control cycle and restarting the microcomputer to start the timer. it can.
 (第2実施形態)
 第2実施形態について、図36、図37を参照して説明する。
 図36に示すように、第2実施形態のECU102は、同期信号送信側マイコンである1つの第1マイコン401と、同期信号受信側マイコンである2つの第2マイコン402及び第3マイコン403とを備えている。各マイコンについて、同期信号及びレディ信号の送受信に関わる構成のみを図示する。第3マイコン403のタイミング補正部423、レディ信号送信部623、及びハンドシェイク判定部613は、いずれも、第2マイコン402のタイミング補正部422、レディ信号送信部622、及びハンドシェイク判定部612と同様の構成である。
(Second Embodiment)
A second embodiment will be described with reference to FIGS.
As shown in FIG. 36, the ECU 102 according to the second embodiment includes one first microcomputer 401 that is a synchronization signal transmission side microcomputer, and two second and third microcomputers 402 and 403 that are synchronization signal reception side microcomputers. I have. For each microcomputer, only the configuration related to transmission / reception of a synchronization signal and a ready signal is shown. The timing correction unit 423, the ready signal transmission unit 623, and the handshake determination unit 613 of the third microcomputer 403 are all the same as the timing correction unit 422, the ready signal transmission unit 622, and the handshake determination unit 612 of the second microcomputer 402. It is the same composition.
 図37には、図20に示す第1実施形態の動作例1に準じ、三つのマイコン間で起動後のハンドシェイクが成功する動作例を示す。図示に関する注記は、図20等と同様である。また、ハンドシェイク時間に関する説明は省略する。
 期間1では、マイコン401、402、403が起動後の状態である。
 期間2では、第1マイコン401は、同期予告信号を第2マイコン402及び第3マイコン403に送信する。
FIG. 37 shows an operation example in which handshaking after startup is successful among three microcomputers according to the operation example 1 of the first embodiment shown in FIG. The notes related to the illustration are the same as in FIG. Further, the description regarding the handshake time is omitted.
In period 1, the microcomputers 401, 402, and 403 are in a state after startup.
In period 2, the first microcomputer 401 transmits a synchronization notice signal to the second microcomputer 402 and the third microcomputer 403.
 第2マイコン402及び第3マイコン403は、期間2で同期予告信号を受信する。
 期間3では、第2マイコン402及び第3マイコン403は、その応答として、レディ信号を第1マイコン401に送信する。
 第1マイコン401は、期間3でレディ信号を受信すると、期間4で、同期予告信号を終了する。
The second microcomputer 402 and the third microcomputer 403 receive the synchronization notice signal in period 2.
In the period 3, the second microcomputer 402 and the third microcomputer 403 transmit a ready signal to the first microcomputer 401 as a response.
When the first microcomputer 401 receives the ready signal in period 3, the first microcomputer 401 ends the synchronization notice signal in period 4.
 期間2、3、4の動作を通じ、各マイコン401、402、403のハンドシェイク判定部611、612、613は、ハンドシェイクが成功したと判定し、各駆動タイミング生成部に対し初回同期を指令する。
 期間5では、第1マイコン401は同期信号を出力すると同時にタイマスタートする。また、第2マイコン402及び第3マイコン403は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマスタートする。これにより、マイコン401、402、403は、起動後の初回から同期して、すなわち同期駆動モードでモータ80を駆動する。
Through the operations in the periods 2, 3, and 4, the handshake determination units 611, 612, and 613 of the microcomputers 401, 402, and 403 determine that the handshake is successful, and instruct each drive timing generation unit to perform initial synchronization. .
In period 5, the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal. In addition, the second microcomputer 402 and the third microcomputer 403 start a timer at the rising timing of the synchronization signal received from the first microcomputer 401. Thereby, the microcomputers 401, 402, and 403 drive the motor 80 synchronously from the first time after activation, that is, in the synchronous drive mode.
 上記の第2実施形態は、一つの同期信号送信側マイコンをマスタ、複数の同期信号受信側マイコンをスレーブとみなしたマスタ/スレーブ型のECU構成で、ハンドシェイクを実施するものである。
 また、三つのマイコンを備えるECUの別の構成として、例えば第1マイコンから第2マイコンに同期信号を送信し、且つ、第2マイコンから第3マイコンに同期信号を送信する構成としてもよい。この構成において第2マイコンは、第1マイコンとの関係では同期信号受信側マイコンとして機能し、第3マイコンとの関係では同期信号送信側マイコンとして機能する。すなわち、連鎖型のECU構成によりハンドシェイクが実施される。
In the second embodiment, a handshake is performed with a master / slave type ECU configuration in which one synchronization signal transmission side microcomputer is regarded as a master and a plurality of synchronization signal reception side microcomputers are regarded as slaves.
Further, as another configuration of the ECU including three microcomputers, for example, a configuration may be adopted in which a synchronization signal is transmitted from the first microcomputer to the second microcomputer, and a synchronization signal is transmitted from the second microcomputer to the third microcomputer. In this configuration, the second microcomputer functions as a synchronization signal reception side microcomputer in relation to the first microcomputer, and functions as a synchronization signal transmission side microcomputer in relation to the third microcomputer. That is, handshaking is performed by a chain ECU configuration.
 さらに、四つ以上のマイコンを備えるECUにおいても、マスタ/スレーブ型、連鎖型、又はその組み合わせの構成により、複数のマイコン間でのハンドシェイクを実施可能である。なお、三系統以上の装置において、ハンドシェイクが失敗したと判定されたとき、他マイコンにモータ駆動信号を生成させず、自マイコンのみでモータを駆動する駆動モードは、二系統の装置での「一系統駆動モード」に対し、「一部系統駆動モード」と言い換えられる。 Furthermore, even in an ECU including four or more microcomputers, handshaking between a plurality of microcomputers can be performed by a master / slave type, a chain type, or a combination thereof. When it is determined that handshaking has failed in three or more systems, the drive mode in which the motor is driven only by the own microcomputer without causing the other microcomputer to generate a motor drive signal is “ In other words, “partial system drive mode” is referred to as “one system drive mode”.
 (第3実施形態)
 第3実施形態について、図38~図42を参照して説明する。第3実施形態は、第1実施形態に対し、同期信号及びレディ信号の通信に関する構成が異なる。
 図38に示すように、第3実施形態のECU103は、第1マイコン401及び第2マイコン402がそれぞれ同期信号生成部411、412、及びタイミング補正部421、422を有する。第1マイコン401及び第2マイコン402は、「同期信号送信側マイコン」且つ「同期信号受信側マイコン」として機能し、同期信号を相互に送受信する。
 この形態における同期信号線の構成は、実線で示すように、第1マイコン401から第2マイコン402への送信用の第1同期信号線471と、第2マイコン402から第1マイコン401への送信用の第2同期信号線472とを個別に備えてもよい。或いは、破線で示すように、双方向に通信可能な同期信号線48を用いてもよい。なお、双方向の同期信号線48、又は、一方向の同期信号線471、472のうち少なくとも一本は、マイコン間通信に用いられる他の通信用の信号線と共用されてもよい。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 38 to 42. FIG. The third embodiment differs from the first embodiment in the configuration related to the communication of the synchronization signal and the ready signal.
As shown in FIG. 38, in the ECU 103 of the third embodiment, the first microcomputer 401 and the second microcomputer 402 have synchronization signal generation units 411 and 412 and timing correction units 421 and 422, respectively. The first microcomputer 401 and the second microcomputer 402 function as a “synchronization signal transmission side microcomputer” and a “synchronization signal reception side microcomputer”, and transmit and receive synchronization signals to and from each other.
The configuration of the synchronization signal line in this embodiment includes a first synchronization signal line 471 for transmission from the first microcomputer 401 to the second microcomputer 402 and a transmission from the second microcomputer 402 to the first microcomputer 401 as shown by the solid line. A reliable second synchronization signal line 472 may be provided separately. Alternatively, as indicated by a broken line, a synchronization signal line 48 capable of bidirectional communication may be used. Note that at least one of the bidirectional synchronization signal line 48 or the one-way synchronization signal lines 471 and 472 may be shared with other communication signal lines used for communication between microcomputers.
 共通の同期信号線48を双方向の信号線として用いる場合、図39に示すように、第1マイコン401から第2マイコン402への同期信号の送信タイミングと、その逆方向の同期信号の送信タイミングとは、互いに異なるタイミングに設定されている。特に図39の例では、マイコン401、402が交互に同期信号を送信する。
 なお、第1実施形態での説明と同様に、同期信号線による双方向通信に代えて、同期信号送信側マイコンから同期信号受信側マイコンに対してポート信号のレベル変化を行うことで、同期信号を双方向に通知するようにしてもよい。
When the common synchronization signal line 48 is used as a bidirectional signal line, as shown in FIG. 39, the transmission timing of the synchronization signal from the first microcomputer 401 to the second microcomputer 402 and the transmission timing of the synchronization signal in the opposite direction. Are set at different timings. In particular, in the example of FIG. 39, the microcomputers 401 and 402 alternately transmit a synchronization signal.
As described in the first embodiment, instead of bidirectional communication using the synchronization signal line, the synchronization signal transmission side microcomputer changes the level of the port signal to the synchronization signal reception side microcomputer. May be notified in both directions.
 この他、例えば、マイコン401、402の起動タイミングが異なる場合に、先に起動したマイコンが後から起動したマイコンに対して同期信号を送信するようにしてもよい。
 また、主として第1マイコン401から第2マイコン402へ同期信号を送信し、何らかの場合にのみ逆方向の送信をするようにしてもよい。例えば、起動時には第2マイコン402からの同期信号に同期して第1マイコン401が起動し、その後は第1マイコン401からの同期信号に同期して第2マイコン402が動作するようにしてもよい。また、例えば第1マイコン401に異常が生じマイコンをリセットした際に、第2マイコン402からのマイコンからの同期信号をもとに自マイコンの動作開始タイミングを決定し動作を開始してもよい。この場合は、マイコン異常から復帰した際に初めから同期した状態でモータ駆動を再開することが可能である。
In addition, for example, when the activation timings of the microcomputers 401 and 402 are different, the synchronization signal may be transmitted from the microcomputer activated first to the microcomputer activated later.
Alternatively, a synchronization signal may be transmitted mainly from the first microcomputer 401 to the second microcomputer 402, and transmission in the reverse direction may be performed only in some cases. For example, the first microcomputer 401 may be activated in synchronization with the synchronization signal from the second microcomputer 402 at the time of activation, and thereafter the second microcomputer 402 may be operated in synchronization with the synchronization signal from the first microcomputer 401. . For example, when an abnormality occurs in the first microcomputer 401 and the microcomputer is reset, the operation start timing of the own microcomputer may be determined based on the synchronization signal from the microcomputer from the second microcomputer 402 and the operation may be started. In this case, it is possible to resume motor driving in a state of being synchronized from the beginning when the microcomputer recovers from the abnormality.
 また、レディ信号の送受信に関し、第1マイコン401及び第2マイコン402はいずれもレディ信号送受信部621、622を有し、レディ信号を相互に送受信可能である。ここで、レディ信号送信線475は、同期信号線と同様に二本の一方向通信線で構成されてもよく、双方向の通信線で構成されてもよい。
 第3実施形態では、第1マイコン401及び第2マイコン402がそっくり同じ機能を備えており、完全な冗長性を有している。したがって、一系統についてのあらゆる故障パターンに対応可能であるため、信頼性をより向上させることができる。
 また、各方向の同期信号の送信タイミングを異ならせ、共通の双方向同期信号線48を用いることにより、ECUの部品点数を減らし、構成を簡易にすることができる。
Further, regarding ready signal transmission / reception, each of the first microcomputer 401 and the second microcomputer 402 includes ready signal transmission / reception units 621 and 622, and can transmit / receive ready signals to / from each other. Here, the ready signal transmission line 475 may be composed of two unidirectional communication lines as in the case of the synchronization signal line, or may be composed of bidirectional communication lines.
In the third embodiment, the first microcomputer 401 and the second microcomputer 402 have exactly the same function and have complete redundancy. Therefore, since it can respond to all the failure patterns for one system, the reliability can be further improved.
In addition, by using different transmission timings of the synchronization signals in each direction and using the common bidirectional synchronization signal line 48, the number of parts of the ECU can be reduced and the configuration can be simplified.
 [動作例7]
 第3実施形態により、マイコン401、402が互いにレディ信号を送受信し合ってハンドシェイクする動作例7を図40に示す。動作例7における同期信号の送受信については、便宜上、第1マイコン401を同期信号送信側マイコンとし、第2マイコン402を同期信号受信側マイコンとする。ただし、マイコン401、402は、同期信号の送信側及び受信側を交代してもよい。或いは、図38の構成に限らず、レディ信号のみが双方向に送受信可能であり同期信号は一方向に送受信される構成のECUにおいて、動作例7が実行されてもよい。
[Operation Example 7]
FIG. 40 shows an operation example 7 in which the microcomputers 401 and 402 handshake each other by transmitting and receiving ready signals according to the third embodiment. Regarding the transmission / reception of the synchronization signal in the operation example 7, for convenience, the first microcomputer 401 is a synchronization signal transmission side microcomputer, and the second microcomputer 402 is a synchronization signal reception side microcomputer. However, the microcomputers 401 and 402 may alternate between the transmission side and the reception side of the synchronization signal. Alternatively, the operation example 7 may be executed in an ECU having a configuration in which only the ready signal can be transmitted and received in both directions and the synchronization signal is transmitted and received in one direction, without being limited to the configuration in FIG.
 図40の矢印「R1-n(n=1,2,3)」は、第1マイコン401の起動後、n回目に第1マイコン401から第2マイコン402に送信するレディ信号を表す。矢印「R2-n(n=1,2)」は、第2マイコン401の起動後、n回目に第2マイコン402から第1マイコン401に送信するレディ信号を表す。これらのレディ信号には、自マイコンの起動完了を通知するレディ信号と、ハンドシェイクの成功(図中「HS-OK」)を意味するレディ信号との2種類が含まれる。
 図40では、細かな期間の細かな区分を省略し、大きな枠組でのみ区別する。期間1の時刻r10に第1マイコン401は第2マイコン402よりも先に起動する。第1マイコン401は、起動後、所定の周期で時刻r11、r12に「起動完了」のレディ信号R1-1、R1-2を送信するが、第2マイコン402が起動前なので受信されない。図中の「NG」は、レディ信号が受信されないことを意味する。
An arrow “R1-n (n = 1, 2, 3)” in FIG. 40 represents a ready signal transmitted from the first microcomputer 401 to the second microcomputer 402 for the nth time after the first microcomputer 401 is activated. An arrow “R2-n (n = 1, 2)” represents a ready signal transmitted from the second microcomputer 402 to the first microcomputer 401 for the nth time after the second microcomputer 401 is activated. These ready signals include two types of signals: a ready signal for notifying completion of activation of the microcomputer and a ready signal for indicating successful handshake (“HS-OK” in the figure).
In FIG. 40, detailed divisions of detailed periods are omitted, and the distinction is made only with a large framework. At time r <b> 10 in period 1, the first microcomputer 401 is activated before the second microcomputer 402. The first microcomputer 401 transmits ready signals R1-1 and R1-2 of “startup completion” at times r11 and r12 at a predetermined cycle after startup, but is not received because the second microcomputer 402 is not started. “NG” in the figure means that a ready signal is not received.
 次に、期間2の時刻r20に第2マイコン402が起動した後、時刻r21に第2マイコン402が「起動完了」のレディ信号R2-1を送信し、第1マイコン401がこれを受信する。レディ信号R2-1受信後の時刻r13に、第1マイコン401は、「ハンドシェイク成功」のレディ信号R1-3を送信し、第2マイコン402がこれを受信する。続いて、レディ信号R1-3受信後の時刻r22に、第2マイコン402は、「ハンドシェイク成功」のレディ信号R2-2を送信する。なお、第1マイコン401はレディ信号R2-2を受信するが、既にハンドシェイクの成功を判定済みであるため、レディ信号R2-2は無視される。 Next, after the second microcomputer 402 is activated at time r20 in period 2, the second microcomputer 402 transmits a ready signal R2-1 of “activation complete” at time r21, and the first microcomputer 401 receives it. At time r13 after receiving the ready signal R2-1, the first microcomputer 401 transmits the ready signal R1-3 of “handshake successful”, and the second microcomputer 402 receives it. Subsequently, at time r22 after receiving the ready signal R1-3, the second microcomputer 402 transmits a ready signal R2-2 of “handshake successful”. The first microcomputer 401 receives the ready signal R2-2, but since the success of the handshake has already been determined, the ready signal R2-2 is ignored.
 こうして、マイコン401、402共にハンドシェイクの成功が判定されると、次の期間3では、第1マイコン401は、同期信号を出力すると同時にタイマスタートする。第2マイコン402は、第1マイコン401から受信した同期信号の立ち上がりタイミングでタイマスタートする。これにより、マイコン401、402は、起動後の初回から同期してモータ80を駆動する。 Thus, when it is determined that both the microcomputers 401 and 402 have succeeded in the handshake, in the next period 3, the first microcomputer 401 starts a timer simultaneously with outputting a synchronization signal. The second microcomputer 402 starts a timer at the rising timing of the synchronization signal received from the first microcomputer 401. Thereby, the microcomputers 401 and 402 drive the motor 80 synchronously from the first time after activation.
 動作例7の第1マイコン401及び第2マイコン402の起動後処理を、それぞれ図41、図42のフローチャートに示す。図41、図42において、図26、図27と共通のステップには同一のステップ番号を付し、適宜、説明を省略する。また、動作例7に特有のステップには、ステップ番号の末尾に文字「R」を記す。
 図41に示す第1マイコン起動後処理において、第1マイコン401は、S51Rで、第2マイコン402に「起動完了」のレディ信号を送信するとともに、経過時間の計時を開始する。
 経過時間が第1ハンドシェイク時間Ths1未満であり、S52でYESと判断されたとき、S53Rでは、第1マイコン401が第2マイコン402から「起動完了」のレディ信号を受信したか判断される。第1マイコン401が「起動完了」のレディ信号を受信しており、S53RでYESと判断された場合、第1マイコン401は、S54Rで、第2マイコン402に「ハンドシェイク成功」のレディ信号を送信し、S56に移行する。
The processes after the activation of the first microcomputer 401 and the second microcomputer 402 in the operation example 7 are shown in the flowcharts of FIGS. 41 and 42, respectively. In FIG. 41 and FIG. 42, the same step number is attached | subjected to the step which is common in FIG. 26 and FIG. 27, and description is abbreviate | omitted suitably. Further, in steps unique to the operation example 7, the letter “R” is written at the end of the step number.
In the first microcomputer activation post-process shown in FIG. 41, the first microcomputer 401 transmits a ready signal of “activation complete” to the second microcomputer 402 and starts counting elapsed time in S51R.
When the elapsed time is less than the first handshake time Ths1 and YES is determined in S52, it is determined in S53R whether the first microcomputer 401 has received a “start-up complete” ready signal from the second microcomputer 402. If the first microcomputer 401 has received the ready signal for “start-up completion” and it is determined YES in S53R, the first microcomputer 401 sends a ready signal for “handshake successful” to the second microcomputer 402 in S54R. Send to S56.
 第1マイコン401が「起動完了」のレディ信号を受信しておらず、S53RでNOと判断された場合、S55Rでは、第1マイコン401が第2マイコン402から「ハンドシェイク成功」のレディ信号を受信したか判断される。S55RでYESと判断された場合、S56に移行する。「ハンドシェイク成功」のレディ信号を未受信であり、S55RでNOと判断された場合、S52の前に戻る。
 経過時間が第1ハンドシェイク時間Ths1に達し、S52でNO(すなわち、タイムアウト)と判断された場合もS56に移行する。
 第1マイコン401は、S56で、第2マイコン402に同期信号を送信する。以下のS57~S59は図26と同様である。つまり、「ハンドシェイク成功」のレディ信号が送受信された場合にはS58で同期制御が行われ、タイムアウトの場合にはS59で非同期制御が行われる。
If the first microcomputer 401 has not received the “start-up complete” ready signal and it is determined NO in S53R, the first microcomputer 401 sends a “handshake successful” ready signal from the second microcomputer 402 in S55R. It is determined whether it has been received. If YES is determined in S55R, the process proceeds to S56. If the “handshake successful” ready signal has not been received and the determination in S55R is NO, the process returns to the previous step.
If the elapsed time reaches the first handshake time Ths1 and NO is determined in S52 (that is, time-out), the process also proceeds to S56.
The first microcomputer 401 transmits a synchronization signal to the second microcomputer 402 in S56. S57 to S59 below are the same as those in FIG. That is, when a ready signal for “handshake success” is transmitted and received, synchronous control is performed in S58, and in the case of timeout, asynchronous control is performed in S59.
 図42に示す第2マイコン起動後処理において、第2マイコン402は、S61Rで、第1マイコン402に「起動完了」のレディ信号を送信するとともに、経過時間の計時を開始する。
 経過時間が第2ハンドシェイク時間Ths2未満であり、S62でYESと判断されたとき、S63Rでは、第2マイコン402が第1マイコン401から「起動完了」のレディ信号を受信したか判断される。第2マイコン402が「起動完了」のレディ信号を受信しており、S63RでYESと判断された場合、第2マイコン402は、S64Rで、第1マイコン401に「ハンドシェイク成功」のレディ信号を送信し、S66に移行する。
In the second microcomputer start-up process shown in FIG. 42, the second microcomputer 402 transmits a ready signal for “start-up completion” to the first microcomputer 402 and starts counting elapsed time in S61R.
When the elapsed time is less than the second handshake time Ths2 and it is determined YES in S62, it is determined in S63R whether the second microcomputer 402 has received a “start-up complete” ready signal from the first microcomputer 401. If the second microcomputer 402 has received the ready signal for “start-up completion” and it is determined YES in S63R, the second microcomputer 402 sends a ready signal for “handshake successful” to the first microcomputer 401 in S64R. Transmit, and the process proceeds to S66.
 第2マイコン402が「起動完了」のレディ信号を受信しておらず、S63RでNOと判断された場合、S65Rでは、第2マイコン402が第1マイコン401から「ハンドシェイク成功」のレディ信号を受信したか判断される。S65RでYESと判断された場合、S66に移行する。「ハンドシェイク成功」のレディ信号を未受信であり、S65RでNOと判断された場合、S62の前に戻る。
 経過時間が第2ハンドシェイク時間Ths2に達し、S62でNO(すなわち、タイムアウト)と判断された場合、S67で、第2マイコン402が単独でタイマスタートし、非同期制御を行う。なお、S67の後、図27と同様に、第1マイコン起動後の同期処理ステップS50、S68、S69、S80が行われてもよい。
 以上のように、動作例7では、マイコン401、402が互いにレディ信号を送受信し合うことにより、好適にハンドシェイクを実行することができる。
If the second microcomputer 402 has not received the “start-up complete” ready signal and it is determined NO in S63R, the second microcomputer 402 sends a “handshake successful” ready signal from the first microcomputer 401 in S65R. It is determined whether it has been received. If YES is determined in S65R, the process proceeds to S66. If the ready signal of “handshake successful” has not been received and the determination in S65R is NO, the process returns to before S62.
If the elapsed time reaches the second handshake time Ths2 and it is determined NO (that is, time-out) in S62, the second microcomputer 402 starts the timer independently and performs asynchronous control in S67. In addition, after S67, similarly to FIG. 27, the synchronization processing steps S50, S68, S69, and S80 after starting the first microcomputer may be performed.
As described above, in the operation example 7, when the microcomputers 401 and 402 mutually transmit and receive ready signals, a handshake can be suitably executed.
 (第4、第5実施形態)
 第4、第5実施形態について、図43、図44を参照して説明する。
 第4、第5実施形態のECU10は、基本的に図7に示す第1実施形態の基礎形態の構成を援用する。ただし第4、第5実施形態では、受信信号判定において、同期信号を受信したタイミングを判定するのでなく、特定のパルスパターンを有する同期信号を用いて、同期信号の正常又は異常を判定する。そこで、第2マイコン402におけるタイミング補正部422内の「タイミング判定部432」を「受信信号判定部432」と読み替える。
 第4、第5実施形態の受信信号判定部432により同期信号が正常と判定されたとき、又は、異常と判定されたときの処理については、第1実施形態の基礎形態と同様である。
(Fourth and fifth embodiments)
The fourth and fifth embodiments will be described with reference to FIGS. 43 and 44.
The ECU 10 of the fourth and fifth embodiments basically uses the configuration of the basic form of the first embodiment shown in FIG. However, in the fourth and fifth embodiments, the reception signal determination does not determine the timing at which the synchronization signal is received, but determines whether the synchronization signal is normal or abnormal using a synchronization signal having a specific pulse pattern. Therefore, “timing determination unit 432” in the timing correction unit 422 in the second microcomputer 402 is replaced with “reception signal determination unit 432”.
The processing when the synchronization signal is determined to be normal by the received signal determination unit 432 of the fourth and fifth embodiments or when it is determined to be abnormal is the same as the basic form of the first embodiment.
 特定のパルスパターンとは、1周期あたりのパルス数、時間幅、又は間隔等が予め規定されたパターンをいう。なお、図43、図44では、図11及び図14のように同期信号の異常原因については明示せず、正常なパルスパターンと正常でないパルスパターンとの違いのみを表す。 The specific pulse pattern refers to a pattern in which the number of pulses per period, time width, or interval is defined in advance. 43 and 44, the cause of the synchronization signal abnormality is not clearly shown as in FIGS. 11 and 14, and only the difference between the normal pulse pattern and the abnormal pulse pattern is shown.
 図43に示す第4実施形態では、R部に示すように、予め決められた時間幅のクロック入力が規定回数であるk回入力されたとき同期信号が正常であると判定する。そして、同期信号受信側マイコンは、k回目のクロック入力タイミングでタイミング補正を実施、すなわち、マイコン間での駆動タイミングの同期を行う。
 一方、X部に示すように、同期信号のパルスの時間幅が異なったり、連続回数が異なったりする場合にはタイミング補正を実施せず、非同期でモータ駆動する。
In the fourth embodiment shown in FIG. 43, as shown in the R section, it is determined that the synchronization signal is normal when the clock input having a predetermined time width is input k times that is the specified number of times. The synchronization signal receiving side microcomputer corrects the timing at the kth clock input timing, that is, synchronizes the drive timing between the microcomputers.
On the other hand, as shown in part X, when the time width of the pulse of the synchronization signal is different or the number of consecutive times is different, the timing is not corrected and the motor is driven asynchronously.
 また、第5実施形態では、同期信号を他の信号と共通化した構成において、例えばシリアル通信用のクロックラインを同期信号用として利用する場合に、シリアル通信の受信をトリガとしてCRC方式等により受信データの信頼性を計算する。チェックの結果、正しい通信が行われている場合には、マイコン間の同期を許可するというものである。 In the fifth embodiment, in the configuration in which the synchronization signal is shared with other signals, for example, when the serial communication clock line is used for the synchronization signal, the reception of the serial communication is used as a trigger to receive by the CRC method or the like. Calculate the reliability of the data. As a result of the check, if correct communication is performed, synchronization between microcomputers is permitted.
 図44に、第5実施形態における通信クロック及び受信信号線のパルスを示す。R部では、CRC正常と判断されたら、受信完了タイミングを基準としてタイミング補正を実施する。このとき、例えばCRC計算にかかった時間分だけ補正して同期信号するというように、タイミング補正の具体的な方法は適宜設定してよい。
 一方、X部では、CRCが不一致であるため正常なタイミングではないと判断し、タイミング補正を実施しない。
FIG. 44 shows pulses of the communication clock and the reception signal line in the fifth embodiment. When it is determined that the CRC is normal, the R unit performs timing correction based on the reception completion timing. At this time, for example, a specific method of timing correction may be set as appropriate, for example, correction is performed for the time required for CRC calculation and synchronization is performed.
On the other hand, part X determines that the timing is not normal because the CRCs do not match, and timing correction is not performed.
 このように、受信信号判定部432は、第1実施形態の基礎形態のように同期信号の受信タイミングによる方法に限らず、特定のパルスパターンを用いても、同期信号の正常又は異常を判定することができる。
 なお、特定パルスパターンにより受信信号判定を実施する第4、第5実施形態の構成においても、上記図15~図18の各処理を同様に適用可能である。また、双方向で同期信号、レディ信号を送受信する第3実施形態の構成に第4、第5実施形態を適用してもよい。
As described above, the reception signal determination unit 432 determines whether the synchronization signal is normal or abnormal even if a specific pulse pattern is used, as well as the method based on the reception timing of the synchronization signal as in the basic form of the first embodiment. be able to.
Note that the processes of FIGS. 15 to 18 can be similarly applied to the configurations of the fourth and fifth embodiments in which the received signal determination is performed based on the specific pulse pattern. Further, the fourth and fifth embodiments may be applied to the configuration of the third embodiment that transmits and receives a synchronization signal and a ready signal in both directions.
 (その他の実施形態)
 (a)上記実施形態の制御対象であるモータ80は、二組の巻線組801、802が共通のステータに互いに電気角30degずらして配置される多重巻線モータである。その他の実施形態で制御対象とされるモータは、二組以上の巻線組が同位相で配置されるものでもよい。また、二組以上の巻線組が一つのモータの共通のステータに配置される構成に限らず、例えば各巻線組が別々に巻回された複数のステータにより協働してトルクを出力する複数のモータに適用されてもよい。
 また、多相ブラシレスモータの相の数は、三相に限らず四相以上でもよい。さらに駆動対象のモータは、交流ブラシレスモータに限らず、ブラシ付き直流モータとしてもよい。その場合、「モータ駆動回路」としてHブリッジ回路を用いてもよい。
(Other embodiments)
(A) The motor 80 to be controlled in the above embodiment is a multi-winding motor in which two winding sets 801 and 802 are arranged on a common stator with an electrical angle of 30 deg. The motor to be controlled in other embodiments may be one in which two or more winding sets are arranged in the same phase. In addition, the configuration is not limited to a configuration in which two or more winding sets are arranged on a common stator of one motor. It may be applied to the motor of
Further, the number of phases of the multiphase brushless motor is not limited to three phases and may be four or more. Furthermore, the motor to be driven is not limited to an AC brushless motor, and may be a brushed DC motor. In that case, an H-bridge circuit may be used as the “motor drive circuit”.
 (b)図20、図25に示すハンドシェイク動作例では、第1マイコン401が起動後、ハイレベルの同期信号を同期予告信号として第2マイコン402に送信している。このような同期予告信号を用いる構成に限らず、第1マイコン401が起動したことが何らかの手段によって第2マイコン402に通知され、それに基づき第2マイコン402がレディ信号を送信するようにしてもよい。 (B) In the example of the handshake operation shown in FIGS. 20 and 25, after the first microcomputer 401 is activated, a high level synchronization signal is transmitted to the second microcomputer 402 as a synchronization notice signal. Not limited to such a configuration using the synchronization notice signal, the second microcomputer 402 may be notified by some means that the first microcomputer 401 is activated, and the second microcomputer 402 may transmit a ready signal based on the notice. .
 また、例えば、第2マイコン402の起動以前に必ず第1マイコン401が起動するシステムでは、第1マイコン401からの同期予告信号を用いず、第2マイコン402が独自のタイミングでのレディ信号を送信してもよい。この場合、初回ハンドシェイク部611、612は、第2マイコン402から第1マイコン401へのレディ信号の送受信が正常に行われたことのみにより、ハンドシェイクが成功したと判定することができる。 Further, for example, in a system in which the first microcomputer 401 is always started before the second microcomputer 402 is started, the second microcomputer 402 transmits a ready signal at a unique timing without using the synchronization notice signal from the first microcomputer 401. May be. In this case, the initial handshake units 611 and 612 can determine that the handshake is successful only by the successful transmission / reception of the ready signal from the second microcomputer 402 to the first microcomputer 401.
 (c)モータ制御装置は、モータ駆動タイミング生成部に同期するアナログ信号サンプリング部を備えなくてもよい。その場合、モータ制御装置は、外部から取得したデジタルデータに基づいて制御演算を行ってもよい。或いは、フィードバック情報を用いず、フィードフォワード制御を実施してもよい。
 また、アナログ信号サンプリング部を備える構成において、サンプリングタイミングがモータ駆動信号のスイッチタイミングに重なるようにしてもよい。
(C) The motor control device may not include an analog signal sampling unit synchronized with the motor drive timing generation unit. In that case, the motor control device may perform a control calculation based on digital data acquired from the outside. Or you may implement feedforward control, without using feedback information.
Further, in the configuration including the analog signal sampling unit, the sampling timing may overlap the switch timing of the motor drive signal.
 (d)モータ駆動信号の生成方式として、図8等に示されるPWM制御方式に限らず、例えば、予め記憶した複数のパルスパターンから変調率や回転数に応じて最適なパターンを選択するパルスパターン方式等を採用してもよい。また、PWM制御方式のキャリアは三角波に限らず、鋸波を用いてもよい。 (D) The motor drive signal generation method is not limited to the PWM control method shown in FIG. 8 or the like, and for example, a pulse pattern for selecting an optimum pattern from a plurality of pulse patterns stored in advance according to the modulation rate and the rotation speed A method or the like may be adopted. Further, the PWM control type carrier is not limited to a triangular wave, and a sawtooth wave may be used.
 (e)本開示のモータ制御装置は、電動パワーステアリング装置用のモータに限らず、他のいかなる用途のモータに適用されてもよい。
 以上、本開示はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
(E) The motor control device of the present disclosure is not limited to a motor for an electric power steering device, and may be applied to a motor for any other purpose.
As mentioned above, this indication is not limited to such embodiment, In the range which does not deviate from the meaning, it can implement with a various form.
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with the embodiment. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (17)

  1.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号(Dr1、Dr2)を生成する駆動信号生成部(451、452)、及び、前記モータ駆動信号のパルスタイミングである駆動タイミングを生成する駆動タイミング生成部(441、442)を有する複数のマイコン(401、402)と、
     前記複数のマイコンが動作の基準とするクロックをそれぞれ独立して生成する複数のクロック生成回路(651、652)と、
     を備え、
     前記複数のマイコンのうち、自マイコンの前記駆動タイミングに同期し、且つ、前記複数のマイコンの前記駆動タイミングを同期させる同期信号を送信する少なくとも一つのマイコンを同期信号送信側マイコン(401)とし、前記同期信号送信側マイコンから送信された前記同期信号を受信する少なくとも一つのマイコンを同期信号受信側マイコン(402)とすると、
     前記同期信号送信側マイコンは、
     前記同期信号を生成し、前記受信側マイコンに送信する同期信号生成部(411)を有し、
     前記同期信号受信側マイコンは、
     受信した前記同期信号に同期するように自マイコンの前記駆動タイミングを補正するタイミング補正を実施可能なタイミング補正部(422)を有し、
     さらに、前記同期信号受信側マイコンは、自マイコンの同期準備が完了したことを示すレディ信号を前記同期信号送信側マイコンに送信するレディ信号送信部(622)を有し、且つ、前記同期信号送信側マイコンは、前記レディ信号を受信するレディ信号受信部(621)を有し、
     前記同期信号送信側マイコン及び前記同期信号受信側マイコンは、少なくとも前記レディ信号の送受信を含むハンドシェイクが正常に実施されたとき、前記ハンドシェイクが成功したと判定するハンドシェイク判定部(611、612)を有し、
     前記ハンドシェイクが成功したと判定されたとき、前記同期信号送信側マイコン及び前記同期信号受信側マイコンは、起動後の初回から同期してモータを駆動するモータ制御装置。
    A plurality of motor drive circuits (701, 702) for driving one or more motors (80);
    Drive signal generation units (451, 452) for generating motor drive signals (Dr1, Dr2) for instructing the plurality of motor drive circuits, respectively, and drive timing generation for generating drive timings that are pulse timings of the motor drive signals A plurality of microcomputers (401, 402) having units (441, 442),
    A plurality of clock generation circuits (651, 652) for independently generating clocks which are used as a reference for operation by the plurality of microcomputers;
    With
    Among the plurality of microcomputers, at least one microcomputer that synchronizes with the drive timing of the microcomputer and transmits the synchronization signal that synchronizes the drive timing of the plurality of microcomputers is a synchronization signal transmission side microcomputer (401), When at least one microcomputer that receives the synchronization signal transmitted from the synchronization signal transmission side microcomputer is a synchronization signal reception side microcomputer (402),
    The synchronization signal transmission side microcomputer is:
    A synchronization signal generator (411) for generating the synchronization signal and transmitting the synchronization signal to the receiving side microcomputer;
    The synchronization signal receiving side microcomputer is:
    A timing correction unit (422) capable of performing timing correction for correcting the drive timing of the microcomputer to synchronize with the received synchronization signal;
    Furthermore, the synchronization signal receiving side microcomputer has a ready signal transmission unit (622) that transmits a ready signal indicating that the synchronization preparation of the microcomputer is completed to the synchronization signal transmitting side microcomputer, and the synchronization signal transmission The side microcomputer has a ready signal receiving unit (621) for receiving the ready signal,
    The synchronization signal transmission-side microcomputer and the synchronization signal reception-side microcomputer each determine a handshake determination unit (611, 612) that determines that the handshake is successful when a handshake including at least transmission / reception of the ready signal is normally performed. )
    When it is determined that the handshake is successful, the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer synchronize from the first time after activation to drive the motor.
  2.  前記同期信号送信側マイコンは、自マイコンの起動後、同期信号の生成を予告する同期予告信号を前記同期信号受信側マイコンに送信し、前記同期信号受信側マイコンは、前記同期予告信号を受信した後、前記レディ信号を前記同期信号送信側マイコンに送信し、
     前記ハンドシェイク判定部は、前記同期予告信号及び前記レディ信号の送受信を含む前記ハンドシェイクが正常に実施されたとき、前記ハンドシェイクが成功したと判定する請求項1に記載のモータ制御装置。
    The synchronization signal transmission side microcomputer transmits a synchronization notification signal for notifying generation of a synchronization signal to the synchronization signal reception side microcomputer after the microcomputer is started, and the synchronization signal reception side microcomputer receives the synchronization notification signal. Then, the ready signal is transmitted to the synchronization signal transmitting side microcomputer,
    The motor control device according to claim 1, wherein the handshake determination unit determines that the handshake is successful when the handshake including transmission and reception of the synchronization notice signal and the ready signal is normally performed.
  3.  前記ハンドシェイク判定部は、他マイコンから送信されるべき前記レディ信号又は前記同期予告信号を受信する以前に所定時間が経過するタイムアウトが生じたとき、又は、異常信号が送受信されたとき、前記ハンドシェイクが失敗したと判定する請求項1または2に記載のモータ制御装置。 The handshake determination unit is configured to output the hand when a timeout occurs for a predetermined time before receiving the ready signal or the synchronization notice signal to be transmitted from another microcomputer or when an abnormal signal is transmitted / received. The motor control device according to claim 1, wherein the motor control device determines that the shake has failed.
  4.  前記タイムアウトによって前記ハンドシェイクが失敗したと判定されたとき、
     自マイコンの前記ハンドシェイク判定部は、他マイコンに前記モータ駆動信号を生成させず、自マイコンのみで前記モータを駆動する一部系統駆動モードによって前記モータ駆動信号を生成するように前記駆動タイミング生成部に通知する請求項3に記載のモータ制御装置。
    When it is determined that the handshake has failed due to the timeout,
    The handshake determination unit of the own microcomputer does not cause the other microcomputer to generate the motor drive signal, but generates the drive timing so that the motor drive signal is generated by a partial system drive mode in which the motor is driven only by the own microcomputer. The motor control device according to claim 3, which notifies the unit.
  5.  異常信号の送受信によって前記ハンドシェイクが失敗したと判定されたとき、
     前記複数のマイコンは、非同期でモータを駆動する請求項3に記載のモータ制御装置。
    When it is determined that the handshake has failed due to transmission / reception of an abnormal signal,
    The motor control device according to claim 3, wherein the plurality of microcomputers drive the motor asynchronously.
  6.  前記複数のマイコンは、前記ハンドシェイクが失敗した情報を記憶し、非同期制御中に前記同期信号送信側マイコンから前記同期信号受信側マイコンに同期信号を送信して同期を試みる請求項5に記載のモータ制御装置。 The plurality of microcomputers store information on the failure of the handshake, and attempt synchronization by transmitting a synchronization signal from the synchronization signal transmission side microcomputer to the synchronization signal reception side microcomputer during asynchronous control. Motor control device.
  7.  前記同期信号受信側マイコンの動作継続中に前記同期信号送信側マイコンが再起動したとき、
     再起動した前記同期信号送信側マイコンは、前記同期信号受信側マイコンからの前記レディ信号の受信後に前記同期信号を送信するタイミング、又は、前記レディ信号の受信と同時に前記同期信号を送信するタイミングで同期し、
     前記同期信号送信側マイコンの動作継続中に前記同期信号受信側マイコンが再起動したとき、
     再起動した前記同期信号受信側マイコンは、前記同期信号送信側マイコンからの前記同期信号を受信したタイミングで同期する請求項1~6のいずれか一項に記載のモータ制御装置。
    When the synchronization signal transmission side microcomputer is restarted during the operation of the synchronization signal reception side microcomputer,
    The restarted synchronization signal transmission side microcomputer transmits the synchronization signal after receiving the ready signal from the synchronization signal reception side microcomputer, or transmits the synchronization signal simultaneously with reception of the ready signal. Synchronize,
    When the synchronization signal reception side microcomputer is restarted while the operation of the synchronization signal transmission side microcomputer is continued,
    The motor control device according to any one of claims 1 to 6, wherein the restarted synchronization signal receiving side microcomputer synchronizes at a timing of receiving the synchronization signal from the synchronization signal transmitting side microcomputer.
  8.  前記同期信号送信側マイコンと前記同期信号受信側マイコンとを接続し、前記同期信号が送受信される少なくとも一つの同期信号線(471、472、48)をさらに備える請求項1~7のいずれか一項に記載のモータ制御装置。 The synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer are connected, and at least one synchronization signal line (471, 472, 48) through which the synchronization signal is transmitted and received is further provided. The motor control device according to item.
  9.  前記レディ信号送信部は、前記同期信号線、又は、前記同期信号線とは別に設けられたレディ信号線(475)を介して前記レディ信号を前記同期信号送信側マイコンに送信する請求項8に記載のモータ制御装置。 The said ready signal transmission part transmits the said ready signal to the said synchronizing signal transmission side microcomputer via the said ready signal line (475) provided separately from the said synchronizing signal line or the said synchronizing signal line. The motor control apparatus described.
  10.  前記同期信号受信側マイコンの前記タイミング補正部は、受信した前記同期信号の正常又は異常の判定である受信信号判定を行う受信信号判定部(432)を含み、
     前記同期信号受信側マイコンは、
     前記受信信号判定において前記同期信号が正常と判定されたとき、前記タイミング補正を許可し、
     前記受信信号判定において前記同期信号が異常と判定されたとき、前記タイミング補正を禁止し、前記同期信号送信側マイコンとは非同期でモータを駆動する請求項1~9のいずれか一項に記載のモータ制御装置。
    The timing correction unit of the synchronization signal receiving side microcomputer includes a reception signal determination unit (432) that performs reception signal determination that is normal or abnormal determination of the received synchronization signal,
    The synchronization signal receiving side microcomputer is:
    When the synchronization signal is determined to be normal in the reception signal determination, the timing correction is permitted,
    The timing correction is prohibited when the synchronization signal is determined to be abnormal in the reception signal determination, and the motor is driven asynchronously with the synchronization signal transmission side microcomputer. Motor control device.
  11.  前記複数のマイコンは、同一の基板(230)の同一側の面(238)に、所定間隔を空けて配置されている請求項1~10のいずれか一項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 10, wherein the plurality of microcomputers are arranged on the same side surface (238) of the same substrate (230) at a predetermined interval.
  12.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号(Dr1、Dr2)を生成する駆動信号生成部(451、452)、及び、前記モータ駆動信号のパルスタイミングである駆動タイミングを生成する駆動タイミング生成部(441、442)を有する複数のマイコン(401、402)と、
     前記複数のマイコンが動作の基準とするクロックをそれぞれ独立して生成する複数のクロック生成回路(651、652)と、
     を備え、
     前記複数のマイコンのうち、自マイコンの前記駆動タイミングに同期し、且つ、前記複数のマイコンの前記駆動タイミングを同期させる同期信号を送信する少なくとも一つのマイコンを同期信号送信側マイコン(401)とし、前記同期信号送信側マイコンから送信された前記同期信号を受信する少なくとも一つのマイコンを同期信号受信側マイコン(402)とすると、
     前記同期信号送信側マイコン、及び前記同期信号を受信した前記同期信号受信側マイコンが同期して前記モータを駆動する同期駆動モード、
     前記同期信号を用いず、前記同期信号送信側マイコン及び前記同期信号受信側マイコンが非同期で前記モータを駆動する非同期駆動モード、並びに、
     前記同期信号送信側マイコン又は前記同期信号受信側マイコンの一方のみで前記モータを駆動する一部系統駆動モード、
     の三つの駆動モードについて、
     前記同期信号送信側マイコン及び前記同期信号受信側マイコンの起動時において、前記一部系統駆動モード、前記非同期駆動モード、前記同期駆動モードの順に移行する場合があるモータ制御装置。
    A plurality of motor drive circuits (701, 702) for driving one or more motors (80);
    Drive signal generation units (451, 452) for generating motor drive signals (Dr1, Dr2) for instructing the plurality of motor drive circuits, respectively, and drive timing generation for generating drive timings that are pulse timings of the motor drive signals A plurality of microcomputers (401, 402) having units (441, 442),
    A plurality of clock generation circuits (651, 652) for independently generating clocks which are used as a reference for operation by the plurality of microcomputers;
    With
    Among the plurality of microcomputers, at least one microcomputer that synchronizes with the drive timing of the microcomputer and transmits the synchronization signal that synchronizes the drive timing of the plurality of microcomputers is a synchronization signal transmission side microcomputer (401), When at least one microcomputer that receives the synchronization signal transmitted from the synchronization signal transmission side microcomputer is a synchronization signal reception side microcomputer (402),
    A synchronous drive mode in which the synchronous signal transmitting side microcomputer and the synchronous signal receiving side microcomputer that has received the synchronous signal synchronously drive the motor;
    Asynchronous drive mode in which the synchronous signal transmitting microcomputer and the synchronous signal receiving microcomputer asynchronously drive the motor without using the synchronous signal, and
    Partial system drive mode in which the motor is driven by only one of the synchronization signal transmission side microcomputer or the synchronization signal reception side microcomputer,
    For the three drive modes,
    A motor control device that may shift in the order of the partial system drive mode, the asynchronous drive mode, and the synchronous drive mode when the synchronous signal transmitting microcomputer and the synchronous signal receiving microcomputer are activated.
  13.  請求項1~12のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置により通電される複数の多相巻線組が同軸に設けられたブラシレスモータとして構成される前記モータと、
     を備えるモータ駆動システム。
    A motor control device according to any one of claims 1 to 12,
    The motor configured as a brushless motor coaxially provided with a plurality of multiphase winding sets energized by the motor control device;
    A motor drive system comprising:
  14.  前記モータの軸方向の一方側に前記モータ制御装置が一体に構成されている請求項13に記載のモータ駆動システム。 The motor drive system according to claim 13, wherein the motor control device is integrally configured on one side in the axial direction of the motor.
  15.  車両の電動パワーステアリング装置に適用され、請求項1~12のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置により駆動され、アシストトルクを出力する前記モータと、
     を備えるモータ駆動システム。
    A motor control device according to any one of claims 1 to 12, which is applied to an electric power steering device for a vehicle,
    The motor driven by the motor control device and outputting an assist torque;
    A motor drive system comprising:
  16.  二つの電源(111、112)と、
     二つの前記電源からそれぞれ電力が供給される二組の多相巻線組が設けられた前記モータと、
     二組の前記多相巻線組への通電をそれぞれ制御する二つの前記マイコン、及び、二つの前記マイコンからそれぞれ前記モータ駆動信号が指令される二つの前記モータ駆動回路を備える前記モータ制御装置と、
     操舵トルクを検出し、二つの前記マイコンに出力する二つの操舵トルクセンサ(931、932)と、
     前記モータの電気角を検出し、二つの前記マイコンに出力する二つの回転角センサ(251、252)と、
     を備える請求項15に記載のモータ駆動システム。
    Two power supplies (111, 112);
    The motor provided with two sets of multi-phase windings each supplied with electric power from the two power sources;
    Two microcomputers for controlling energization to two sets of the multiphase winding sets, and the motor control device including two motor drive circuits to which the motor drive signals are respectively commanded from the two microcomputers; ,
    Two steering torque sensors (931, 932) for detecting steering torque and outputting to the two microcomputers;
    Two rotation angle sensors (251, 252) for detecting the electrical angle of the motor and outputting the two to the microcomputer;
    The motor drive system according to claim 15.
  17.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号(Dr1、Dr2)を生成する駆動信号生成部(451、452)、及び、前記モータ駆動信号のパルスタイミングである駆動タイミングを生成する駆動タイミング生成部(441、442)を有する複数のマイコン(401、402)と、
     前記複数のマイコンが動作の基準とするクロックをそれぞれ独立して生成する複数のクロック生成回路(651、652)と、
     を備えるモータ制御装置によるモータ制御方法であって、
     前記複数のマイコンのうち、自マイコンの前記駆動タイミングに同期し、且つ、前記複数のマイコンの前記駆動タイミングを同期させる同期信号を送信する少なくとも一つのマイコンを同期信号送信側マイコン(401)とし、前記同期信号送信側マイコンから送信された前記同期信号を受信する少なくとも一つのマイコンを同期信号受信側マイコン(402)とすると、
     前記同期信号受信側マイコンが、自マイコンの同期準備が完了したことを示すレディ信号を前記同期信号送信側マイコンに送信するレディ信号送信ステップ(S64)と、
     前記同期信号送信側マイコンが前記レディ信号を受信するレディ信号受信ステップ(S53)と、
     少なくとも前記レディ信号の送受信を含むハンドシェイクが正常に実施されたとき、前記同期信号送信側マイコン及び前記同期信号受信側マイコンのハンドシェイク判定部(611、612)により、前記ハンドシェイクが成功したと判定するハンドシェイク成功判定ステップ(S57)と、
     前記ハンドシェイクが成功したと判定されたとき、前記同期信号送信側マイコン及び前記同期信号受信側マイコンが起動後の初回から同期してモータを駆動する同期駆動ステップ(S58)と、
     を含むモータ制御方法。
    A plurality of motor drive circuits (701, 702) for driving one or more motors (80);
    Drive signal generation units (451, 452) for generating motor drive signals (Dr1, Dr2) for instructing the plurality of motor drive circuits, respectively, and drive timing generation for generating drive timings that are pulse timings of the motor drive signals A plurality of microcomputers (401, 402) having units (441, 442),
    A plurality of clock generation circuits (651, 652) for independently generating clocks which are used as a reference for operation by the plurality of microcomputers;
    A motor control method by a motor control device comprising:
    Among the plurality of microcomputers, at least one microcomputer that synchronizes with the drive timing of the microcomputer and transmits the synchronization signal that synchronizes the drive timing of the plurality of microcomputers is a synchronization signal transmission side microcomputer (401), When at least one microcomputer that receives the synchronization signal transmitted from the synchronization signal transmission side microcomputer is a synchronization signal reception side microcomputer (402),
    A ready signal transmission step (S64) in which the synchronization signal reception side microcomputer transmits a ready signal indicating that the synchronization preparation of the microcomputer is completed to the synchronization signal transmission side microcomputer;
    A ready signal receiving step (S53) in which the synchronization signal transmitting side microcomputer receives the ready signal;
    When the handshake including at least transmission / reception of the ready signal is normally performed, the handshake determination unit (611, 612) of the synchronization signal transmission side microcomputer and the synchronization signal reception side microcomputer is successful. A handshake success judging step (S57) for judging;
    When it is determined that the handshake is successful, the synchronous signal transmitting side microcomputer and the synchronous signal receiving side microcomputer synchronously drive from the first time after startup to drive the motor (S58);
    A motor control method including:
PCT/JP2017/024916 2016-07-11 2017-07-07 Motor control device, motor drive system, and motor control method WO2018012419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017003491.4T DE112017003491B4 (en) 2016-07-11 2017-07-07 Engine control device, engine drive system and engine control method
US16/243,519 US10654518B2 (en) 2016-07-11 2019-01-09 Motor control apparatus, motor drive system, and motor control method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016136611 2016-07-11
JP2016-136611 2016-07-11
JP2017-051260 2017-03-16
JP2017051260 2017-03-16
JP2017-126972 2017-06-29
JP2017126972A JP7024226B2 (en) 2016-07-11 2017-06-29 Motor control device, motor drive system, and motor control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/243,519 Continuation US10654518B2 (en) 2016-07-11 2019-01-09 Motor control apparatus, motor drive system, and motor control method

Publications (1)

Publication Number Publication Date
WO2018012419A1 true WO2018012419A1 (en) 2018-01-18

Family

ID=60953056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024916 WO2018012419A1 (en) 2016-07-11 2017-07-07 Motor control device, motor drive system, and motor control method

Country Status (3)

Country Link
JP (1) JP7239030B2 (en)
DE (1) DE112017003491B4 (en)
WO (1) WO2018012419A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742811A (en) * 2019-02-28 2019-05-10 苏州科技大学 A kind of minitype gas dynamotor based on Phototube Coupling and machine operation method
JP2019161944A (en) * 2018-03-15 2019-09-19 株式会社デンソー Motor control device and motor drive system
CN110890858A (en) * 2018-09-11 2020-03-17 株式会社捷太格特 Motor control device
US10654518B2 (en) 2016-07-11 2020-05-19 Denso Corporation Motor control apparatus, motor drive system, and motor control method
CN114779881A (en) * 2021-12-07 2022-07-22 北京科银京成技术有限公司 Synchronous detection method, device, equipment and storage medium for redundancy computer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022128458A1 (en) 2022-10-27 2024-05-02 Schaeffler Technologies AG & Co. KG Control of an electrical machine with two separate winding systems as well as corresponding control system and operation of an actuator of a steer-by-wire system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204195A (en) * 2000-01-19 2001-07-27 Hitachi Ltd Driving system for ac motor
JP2002052592A (en) * 2000-08-11 2002-02-19 Sumitomo Heavy Ind Ltd Motor controller for injection molding machine
WO2010061918A1 (en) * 2008-11-27 2010-06-03 日立オートモティブシステムズ株式会社 Electric motor control device and operation control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223945B2 (en) 2011-05-10 2013-06-26 日本精工株式会社 Control method and control apparatus for electric power steering apparatus
JP5672278B2 (en) 2012-08-29 2015-02-18 株式会社デンソー Control device for three-phase rotating machine
JP5962833B2 (en) 2015-01-16 2016-08-03 Toto株式会社 Electrostatic chuck
JP2017051260A (en) 2015-09-07 2017-03-16 西堂 達裕 Effective pulse current waveform pattern outputted by beauty device
JP6361679B2 (en) 2016-01-08 2018-07-25 オンキヨー株式会社 Amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204195A (en) * 2000-01-19 2001-07-27 Hitachi Ltd Driving system for ac motor
JP2002052592A (en) * 2000-08-11 2002-02-19 Sumitomo Heavy Ind Ltd Motor controller for injection molding machine
WO2010061918A1 (en) * 2008-11-27 2010-06-03 日立オートモティブシステムズ株式会社 Electric motor control device and operation control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654518B2 (en) 2016-07-11 2020-05-19 Denso Corporation Motor control apparatus, motor drive system, and motor control method
JP2019161944A (en) * 2018-03-15 2019-09-19 株式会社デンソー Motor control device and motor drive system
JP7010081B2 (en) 2018-03-15 2022-01-26 株式会社デンソー Motor control device and motor drive system
DE102019203339B4 (en) 2018-03-15 2022-06-23 Denso Corporation Engine control device and engine drive system
US11518435B2 (en) 2018-03-15 2022-12-06 Denso Corporation Motor control apparatus and motor driving system
CN110890858A (en) * 2018-09-11 2020-03-17 株式会社捷太格特 Motor control device
JP2020043692A (en) * 2018-09-11 2020-03-19 株式会社ジェイテクト Control device for motor
CN109742811A (en) * 2019-02-28 2019-05-10 苏州科技大学 A kind of minitype gas dynamotor based on Phototube Coupling and machine operation method
CN114779881A (en) * 2021-12-07 2022-07-22 北京科银京成技术有限公司 Synchronous detection method, device, equipment and storage medium for redundancy computer
CN114779881B (en) * 2021-12-07 2023-07-04 北京科银京成技术有限公司 Synchronous detection method, device, equipment and storage medium for redundancy computer

Also Published As

Publication number Publication date
DE112017003491T5 (en) 2019-04-25
JP7239030B2 (en) 2023-03-14
JP2022048288A (en) 2022-03-25
DE112017003491B4 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP7024226B2 (en) Motor control device, motor drive system, and motor control method
WO2018012419A1 (en) Motor control device, motor drive system, and motor control method
WO2018012417A1 (en) Motor control device, motor control system, and motor control method
JP6911561B2 (en) Motor control device, motor drive system, and motor control method
JP7024223B2 (en) Motor control device, motor drive system, and motor control method
US11518435B2 (en) Motor control apparatus and motor driving system
US10668945B2 (en) Motor control apparatus, motor drive system, and motor control method
JP7052347B2 (en) Motor control device, motor drive system, and motor control method
JP6798476B2 (en) Motor control device, motor drive system, and motor control method
US10826423B2 (en) Motor driving apparatus and motor driving method
WO2018012420A1 (en) Motor control device, motor drive system and motor control method
US11770089B2 (en) Rotary electric machine control device
EP3388280B1 (en) Vehicle control system comprising synchronized control circuits
JP2020108327A (en) Control arrangement
CN110816645B (en) Vehicle control device
KR20200013659A (en) Diagnostic device
US11479291B2 (en) Control apparatus
EP3617037B1 (en) Vehicle control apparatus
JP7225689B2 (en) motor controller
JP2017195659A (en) Electronic control device and motor control device
JP6747024B2 (en) Electronic control device and motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827547

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17827547

Country of ref document: EP

Kind code of ref document: A1