WO2018012396A1 - Curable composition and product - Google Patents

Curable composition and product Download PDF

Info

Publication number
WO2018012396A1
WO2018012396A1 PCT/JP2017/024800 JP2017024800W WO2018012396A1 WO 2018012396 A1 WO2018012396 A1 WO 2018012396A1 JP 2017024800 W JP2017024800 W JP 2017024800W WO 2018012396 A1 WO2018012396 A1 WO 2018012396A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
meth
acrylate
curable composition
Prior art date
Application number
PCT/JP2017/024800
Other languages
French (fr)
Japanese (ja)
Inventor
岡村 直実
加納 伸悟
寛生 阿部
敦史 角矢
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to CN201780035193.6A priority Critical patent/CN109312034A/en
Priority to JP2018527559A priority patent/JPWO2018012396A1/en
Publication of WO2018012396A1 publication Critical patent/WO2018012396A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups

Definitions

  • the present invention relates to a curable composition and a product.
  • the present invention relates to a curable composition containing an organic polymer having a group that suppresses polymerization inhibition by oxygen, and a product.
  • a photocurable pressure-sensitive adhesive composition containing a (meth) acrylate oligomer having a polyisoprene as a skeleton and a hydrogenated terpene phenol tackifier is known (for example, see Patent Document 1).
  • the photocurable pressure-sensitive adhesive composition according to Patent Document 1 is applied onto a PET film, covered with a PET film that has been subjected to a double-sided release treatment from above the coated surface, and irradiated with UV light. A cured product having adhesiveness is obtained.
  • the photocurable pressure-sensitive adhesive composition according to Patent Document 1 it is possible to provide a photocurable pressure-sensitive adhesive composition that is excellent in workability at the time of dissolution preparation and coating, and gives a cured product having excellent adhesive strength and transparency. .
  • Non-Patent Document 1 a method of physically shielding oxygen, (b) a method of selecting an initiator system, (c) a method of selecting a monomer, and (d) a method of using thiol / ene photocuring.
  • the method (a) is a method of photocuring in a nitrogen atmosphere, a carbon dioxide atmosphere or the like.
  • the method (b) is a method of increasing the initiator concentration, and this method utilizes the fact that by increasing the concentration of the initiator and increasing the concentration of the starting radical, the number of radicals that do not react with oxygen also increases. ing.
  • peroxy radicals there have been proposed a method of suppressing polymerization inhibition by using together with an amine that easily removes hydrogen, and a method of using a compound containing an amino group in an initiator.
  • a method using a polyfunctional monomer suppresses inhibition of polymerization of oxygen
  • a method using a monomer having a hydroxyl group a method using an N-vinylamide monomer (N-vinylamide monomer) Suppresses the inhibition of polymerization of oxygen)
  • a method utilizing a spacer such as polypropylene glycol diacrylate
  • a method utilizing an additive phosphorus-based secondary oxidation degradation inhibitor
  • the method using a monomer having a hydroxyl group is that a hydrogen atom bonded to the ⁇ -carbon of the hydroxyl group is easily extracted, so that even if a peroxy radical is generated, a hydrogen atom is further provided to easily generate a new carbon radical.
  • the inhibition of curing is suppressed by utilizing the fact that a monomer having a hydroxyl group or a carboxyl group in the monomer is hydrogen-bonded between molecules.
  • (D) is a method in which thiol coexists.
  • a thiol having a small SH bond energy is reacted with a peroxy radical to generate a thiyl radical, thereby inhibiting oxygen polymerization inhibition.
  • the cured product of the curable composition is hard and brittle. Furthermore, the effect of substantially suppressing the inhibition of polymerization by oxygen and substantially eliminating the uncured product cannot be judged by a solid organic polymer (that is, the solid organic polymer has no liquid part in the first place). Therefore, even if the surface curability test is performed, it cannot be judged because the liquid material does not adhere to the surface of a finger or the like.) In the case of a liquid organic polymer, there is a problem that the surface becomes uncured.
  • an object of the present invention includes an organic polymer that can significantly suppress inhibition of polymerization due to oxygen even when used in air to allow an appropriate curing reaction to proceed, and can ensure a degree of freedom in designing the composition. It aims at providing a curable composition and a product.
  • the present invention provides (A) an organic polymer having a group represented by the following general formula (1), (B1) a photoinitiator, (B2) a thermal initiator, and (B3).
  • a curable composition is provided containing at least one initiator selected from the group consisting of redox initiators.
  • R 1 represents —H or —CH 3
  • X represents a linking group
  • the linking group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group [( (Thio) ether linking group, —O—CO— linking group, —O—CO—NH— linking group, —NR 2 — linking group (R 2 is a hydrogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted An aryl group, a heterocyclic structure-containing group, or a group having a plurality of rings.)], Or a direct bond.
  • this curable composition is obtained by reacting a polymer having a predetermined functional group with a functional group having reactivity to the predetermined functional group and a compound having a (meth) acrylate group (A).
  • At least one initiation selected from the group consisting of an organic polymer having a group represented by the above general formula (1), (B1) a photoinitiator, (B2) a thermal initiator, and (B3) a redox initiator It can manufacture with the manufacturing method of the curable composition which mixes an agent and obtains a curable composition.
  • the curable composition can further contain (C) a monofunctional (meth) acrylic monomer.
  • the (C) monofunctional (meth) acrylic monomer contains a (meth) acrylate containing a 3- (meth) acrylooxy 2-hydroxypropyl group and a polar group, -C p H 2p It contains at least one monofunctional (meth) acrylic monomer selected from the group consisting of (meth) acrylates having an OH group (where p is an integer of 2 to 6) and alicyclic (meth) acrylates. Is preferred.
  • the main chain skeleton of the organic polymer having a group represented by the general formula (1) is a polyoxyalkylene polymer, a (meth) acrylic acid ester polymer, Including at least one organic polymer selected from the group consisting of polyester polymers, polycarbonate polymers, graft polymers, hydrocarbon polymers, polysulfide polymers, polyamide polymers, and diallyl phthalate polymers You can also.
  • the main chain skeleton of the organic polymer having a group represented by (A) the general formula (1) can also contain a polyoxyalkylene polymer.
  • the main chain skeleton of the organic polymer having a group represented by (A) the general formula (1) can also contain a (meth) acrylic acid ester polymer.
  • the (meth) acrylic acid ester polymer is a telechelic type organic polymer, a molecular terminal and functional group copolymer type organic polymer, and a terminal functional group type organic polymer.
  • the molecular terminal and functional group copolymer type organic polymer, or the terminal functional group type organic polymer is a polymer obtained by polymerizing a polymerizable monomer in the presence of a metallocene catalyst. There may be.
  • the main chain skeleton of the organic polymer having a group represented by (A) the general formula (1) may include a polyester polymer.
  • the main chain skeleton of the organic polymer having the group represented by (A) the general formula (1) may include a polycarbonate polymer.
  • the present invention provides a cured product of the curable composition described above.
  • the present invention provides a product having a cured product of the curable composition described above as a constituent element.
  • curable composition and product of the present invention even when used in the air, it is possible to significantly suppress polymerization inhibition due to oxygen and to proceed with an appropriate curing reaction and to increase the degree of freedom in designing the composition.
  • a curable composition containing an organic polymer that can be secured, and a product can be provided.
  • the curable composition according to the present invention comprises (A) an organic polymer having a group that suppresses polymerization inhibition by oxygen, (B1) a photoinitiator, (B2) a thermal initiator, and / or (B3) a redox initiation. Containing the agent.
  • the curable composition may also contain (C) a monofunctional (meth) acrylic monomer.
  • the present inventor has studied various polymers to solve such a problem, and can solve the above-mentioned various problems by including an organic polymer having a group having a specific structure in the curable composition. It was found that polymerization inhibition by oxygen can be suppressed.
  • the curable composition according to the present invention contains (A) an organic polymer having a group represented by the following general formula (1) (hereinafter referred to as 3- (meth) acrylooxy 2-hydroxypropyl group). And (B1) a photoinitiator, (B2) a thermal initiator, and (B3) at least one initiator selected from the group consisting of redox initiators.
  • the organic polymer as component (A) is liquid at normal temperature.
  • the curable composition may further contain (C) a monofunctional (meth) acrylic monomer.
  • R 1 represents —H or —CH 3
  • X represents a linking group.
  • the linking group include a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group that is a polar group [(thio) ether linking group, —O—CO— linking group, —O—CO —NH— linking group, —NR 2 — linking group (R 2 represents a hydrogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heterocyclic structure-containing group, or a group having a plurality of rings.
  • the linking group may be a direct bond.
  • the linking group is preferably a polar linking group from the viewpoint of suppressing polymerization inhibition by oxygen, more preferably —NR 2 — linking group, —O—CO—NH— linking group, and —O—CO—NH. More preferred are linking groups.
  • the (thio) ether linking group represents an ether linking group [—O—] and / or a thioether linking group [—S—].
  • “—O—CO— linking group” is “ester linking group”
  • “—O—CO—NH— linking group” is “urethane linking group”
  • “—NR 2 — linking group” is “amine linking group”. Called.
  • the direct bond means that the polymer chain of the organic polymer is directly bonded to the carbon atom of the general formula (1) without a linking group.
  • the following formula is a schematic diagram for explaining a polymerization inhibition suppression mechanism by an organic polymer having a group represented by (A) the general formula (1).
  • “•” indicates a radical.
  • “(1)” indicates a hydrogen abstraction reaction
  • “(2)” indicates a polymerization initiation reaction
  • “(3)” indicates an oxygen capture (consumption) reaction.
  • R 1 is the same as described above, and a polymer chain is bonded after X.
  • the following mechanism is presumed as a mechanism for suppressing polymerization inhibition by oxygen.
  • the polymerization inhibition by oxygen is caused by the fact that the polymerization ability of peroxyl radicals generated by trapping the oxygen radicals generated from the polymerization initiator and the polymerization end radicals generated from the polymerization initiator is low and the polymerization reaction is stopped. Occur.
  • an organic polymer having a group represented by the general formula (1) having a function as a chain transfer agent is present in the system
  • a peroxy radical having a hydrogen abstraction ability is represented by the general formula (1).
  • reaction (3) the effect of reducing the oxygen concentration in the system (reaction (3)) is also conceivable. It is presumed that polymerization inhibition by oxygen is suppressed by these mechanisms. Further, even when the organic polymer having one group represented by the general formula (1) does not participate in the polymerization, the presence of the ⁇ carbon increases the opportunity for the polymerization reaction, so that the polymerization reaction is likely to proceed. .
  • the carbon radicals are likely to be generated in the order of ⁇ -carbon of primary hydroxyl group ⁇ -carbon of secondary hydroxyl group ⁇ -carbon of secondary hydroxyl group to which a polar group is bonded.
  • the polar linking group is present in the general formula (1), the ⁇ -carbon radical of the secondary hydroxyl group is likely to be generated. Therefore, the group represented by the general formula (1) having the polar linking group is polymerized by oxygen. It has a more preferred structure in inhibiting inhibition.
  • the organic polymer having a group represented by the general formula (1) according to the present invention has a hydroxyl group.
  • a compound having a hydroxyl group is hydrogen-bonded between molecules (that is, a hydrogen bond between hydroxyl groups or a hydrogen bond between a carbonyl group and a hydroxyl group). Therefore, the presence of the hydroxyl group increases local double bonds due to the association, so that the polymerization reaction easily proceeds.
  • the polymer of the main chain skeleton of the organic polymer having a group represented by the general formula (1) is not particularly limited as long as it is an organic polymer having a group represented by the general formula (1).
  • An organic polymer whose chain is not polysiloxane, and an organic polymer having various main chain skeletons excluding polysiloxane (that is, silicone) is preferable in that it does not contain or generate a low-molecular cyclic siloxane that causes contact failure. .
  • the weight average molecular weight of the organic polymer is preferably 1,000 or more, more preferably 2,000 or more, more preferably 3,000 or more in terms of polystyrene in GPC from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. Further preferred. From the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the weight average molecular weight is preferably about 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less.
  • the organic polymer is preferably liquid at 50 ° C. That is, from the viewpoint of ensuring ease of handling when blended with other components, it is preferable to exhibit a liquid state at 50 ° C., more preferably a liquid state at 20 ° C., and a liquid state at 0 ° C. preferable.
  • the glass transition temperature (Tg) is preferably 20 ° C. or less, more preferably 0 ° C. or less, and further preferably ⁇ 10 ° C. or less.
  • the organic polymer as the component (A) preferably has an A hardness after curing of less than 90, more preferably less than 85, and less than 80 from the viewpoint of maintaining and improving flexibility. Further preferred. In the description of the present invention, “having flexibility” means that the A hardness is less than 95.
  • This A hardness is a value measured according to the test method of JIS K 7312 (1996), measured 30 seconds after the pressure surface of the type A durometer was brought into close contact with the cured product in a 23 ° C. atmosphere.
  • X in the general formula (1) is preferably not —O—Arl— (wherein Arl is an arylene group).
  • Examples of the polymer of the main chain skeleton of the organic polymer having a group represented by the general formula (1) include polyoxypropylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and other polyoxypropylenes.
  • Alkylene polymers ethylene-propylene copolymers, polyisobutylene, polyisoprene, polybutadiene, hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; adipic acid Polyester polymer obtained by condensation of dibasic acid such as glycol and ring-opening polymerization of lactones; (meth) acrylic obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate Acid ester polymers; in main chain skeleton polymers such as polyoxyalkylene polymers Graft polymers obtained by polymerizing a vinyl monomer; polysulfide polymer; polyamide polymer; polycarbonate-based polymer; diallyl phthalate polymers. These skeletons may be contained alone in the organic polymer having the group represented by the general formula (1), or two or more kinds may be contained in blocks or randomly.
  • hydrocarbon polymers, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers have a relatively low glass transition temperature, and the resulting curable composition has excellent cold resistance.
  • saturated hydrocarbon polymers are preferred.
  • Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their excellent flexibility.
  • the polyoxyalkylene polymer is a polymer having a repeating unit represented by the general formula (2). -R 3 -O- (2)
  • R 3 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and having 2 to 4 carbon atoms.
  • the linear or branched alkylene group is more preferable.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit or may be composed of two or more types of repeating units.
  • Examples of the method for synthesizing a polyoxyalkylene polymer include, but are not limited to, a polymerization method using an alkali catalyst such as KOH, for example, a polymerization method using a double metal cyanide complex catalyst, and the like.
  • the number average molecular weight is 6,000 or more
  • the weight average molecular weight (Mw) / number average molecular weight (Mn) is a high molecular weight of 1.6 or less
  • a polyoxyalkylene system having a narrow molecular weight distribution A polymer can be obtained.
  • the main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component.
  • a urethane bond component examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate and diphenylmethane diisocyanate; components obtained from a reaction between an aliphatic polyisocyanate such as isophorone diisocyanate and a polyoxyalkylene polymer having a hydroxyl group. Can be mentioned.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain other carbon-carbon unsaturated bonds other than aromatic rings.
  • the polymer forming the skeleton is either (1) polymerizing an olefinic compound having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene or isobutylene as a main monomer, or (2) a diene such as butadiene or isoprene. It can be obtained by a method such as homopolymerizing a system compound or copolymerizing a diene compound and an olefin compound and then hydrogenating.
  • the isobutylene polymer and the hydrogenated polybutadiene polymer are preferable because it is easy to introduce a functional group at the terminal, easily control the molecular weight, and can increase the number of terminal functional groups, and the isobutylene polymer is particularly preferable. preferable.
  • the main chain skeleton is a saturated hydrocarbon polymer
  • the main chain skeleton has characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • the saturated hydrocarbon polymer include 1,2-polybutadiene, 1,4-polybutadiene, polyisoprene, and the like.
  • all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers. From the viewpoint of rubber properties, a polymer containing 50% by mass or more of repeating units derived from isobutylene is preferred, a polymer containing 80% by mass or more is more preferred, and a polymer containing 90 to 99% by mass is particularly preferred.
  • Polyester polymers can be obtained by various known methods. Typical methods include polybasic acids and polyhydroxy compounds, ⁇ -caprolactone, ⁇ -methyl- ⁇ -valerolactone, etc. It can be obtained by dehydration, dealcoholization reaction or addition reaction with one or more lactone monomers. For example, aliphatic dicarboxylic acids having 4 to 28 carbon atoms such as succinic acid, succinic anhydride, glutaric acid, adipic acid, and sebacic acid, and synergistic compounds of dicarboxylic acids such as dimethyl esters thereof, hexahydrophthalic anhydride, etc.
  • an alicyclic dicarboxylic acid an aromatic dicarboxylic acid such as phthalic anhydride or its synergistic compound; a polybasic acid such as trimellitic anhydride and its synergistic compound.
  • aromatic dicarboxylic acid such as phthalic anhydride or its synergistic compound
  • polybasic acid such as trimellitic anhydride and its synergistic compound.
  • aliphatic dicarboxylic acids are preferred because the polyester polymer becomes flexible.
  • polyhydroxy compound examples include linear diols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butylene glycol, 1,6-hexanediol; 2-methyl-1,3-propanediol, 1,3- Branched diols such as butylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol; cyclohexane Cyclic diols such as 1,4-dimethanol and spiroglycols; polyhydric alcohols such as glycerin, trimethylolpropane, pentaerythritol, lactone polyols, polycarbonate polyols, polyether polyols, polybutadiene polyols, or epoxies
  • linear diols such
  • branched diols and cyclic diols are preferred, and branched diols are more preferred because the polyester polymer becomes flexible.
  • polyether polyol for example, one or more of polyoxyethylene polyol, polyoxypropylene polyol, polyoxytetramethylene polyol, or ethylene oxide, propylene oxide, tetrahydrofuran, or the like obtained by polymerizing ethylene oxide, propylene oxide, tetrahydrofuran or the like alone And polyether polyols obtained by copolymerization of
  • polyhydroxy compounds can be used as other polyols and synergistic components. These polyols can be used alone or in combination of two or more as required.
  • the polyester polymer is preferably a polyester polymer having no oxygen curable unsaturated group, and more preferably a saturated polyester polymer.
  • a non-aromatic polyester polymer is preferable and a non-aromatic saturated polyester polymer is more preferable because the polyester polymer becomes flexible.
  • the polyester polymer is preferably liquid at 50 ° C., more preferably liquid at 20 ° C., and most preferably liquid at 0 ° C.
  • ((Meth) acrylic acid ester polymer) Various monomers can be used as the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer.
  • alkyl (meth) acrylate esters such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, etc.
  • vinyl monomers can be copolymerized with the (meth) acrylate monomer.
  • vinyl monomers include styrene, maleic anhydride, vinyl acetate and the like.
  • (meth) acrylic acid ester polymer may be used alone or may be copolymerized.
  • the number of reactive functional groups in the (meth) acrylic acid ester polymer can be controlled by using the reactive functional group-containing (meth) acrylic acid ester monomer in combination.
  • a methacrylic acid ester polymer comprising a methacrylic acid ester monomer is particularly preferred because of its good adhesion.
  • an acrylate monomer is particularly preferred.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • the method for producing the (meth) acrylate polymer is not particularly limited, and for example, a radical polymerization method using a radical polymerization reaction can be used.
  • a radical polymerization method a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator, or a functional group having reactivity at a controlled position such as a terminal can be introduced.
  • Examples include controlled radical polymerization.
  • a polymer obtained by a free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a large molecular weight distribution value of 2 or more and a high viscosity.
  • Examples of the controlled radical polymerization method include a free radical polymerization method and a living radical polymerization method using a chain transfer agent having a specific functional group. It is preferable to employ a living radical polymerization method such as an atom transfer radical polymerization method (Atom Transfer Radical Polymerization; ATRP).
  • ATRP Atom Transfer Radical Polymerization
  • a reaction for synthesizing a polymer whose main chain skeleton is a (meth) acrylic acid ester polymer and a part of which is a telechelic polymer hereinafter referred to as “pseudo-telechelic polymer”
  • pseudo-telechelic polymer a reaction for synthesizing a polymer whose main chain skeleton is a (meth) acrylic acid ester polymer and a part of which is a telechelic polymer (hereinafter referred to as “pseudo-telechelic polymer”), it is reactive.
  • a reaction using a thiol compound having a hydroxyl group and a metallocene compound such as 2-mercaptoethanol described in JP-A No. 2000-344823 is used.
  • a reaction using a compound having a thiol group and a secondary hydroxyl group such as thioglycerol (3-mercapto-1,2-propanediol) described in JP-A No. 2000-128911 can also be used.
  • Polycarbonate polymer As a polycarbonate-type polymer, the reaction product of a carbonate and a polyol is mentioned, for example.
  • Specific examples of the carbonate include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate. Dialkyl carbonate is preferred because the curable composition becomes flexible.
  • the polyol examples include the above-mentioned polyhydroxy compound and polyester polyol.
  • the polyester polyol polyester polyol in which the polyhydroxy compound exists in the terminal
  • the polycarbonate a non-aromatic polycarbonate is preferable because the curable composition becomes flexible.
  • the main chain skeleton polymer may contain a crosslinkable silicon group.
  • the crosslinkable silicon group is contained in the main chain skeleton polymer and / or at the terminal. That is, the component (A) can contain both a group represented by the general formula (1) and a crosslinkable silicon group. In this case, it is possible to improve adhesiveness and heat resistance by increasing the number of crosslinking points.
  • the crosslinkable silicon group is further cured by moisture, so that the degree of curing of the cured product can be further increased. .
  • crosslinkable silicon group for example, a group represented by the general formula (3) is preferable.
  • the crosslinkable silicon group is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond.
  • R 4 represents an organic group.
  • R 4 is preferably a hydrocarbon group having 1 to 20 carbon atoms. Among these, R 4 is particularly preferably a methyl group.
  • R 4 may have a substituent.
  • W represents a hydroxyl group or a hydrolyzable group, and when two or more W exist, the plurality of W may be the same or different.
  • a is an integer of 0, 1, 2, or 3.
  • a is preferably 2 or more, more preferably 3.
  • a is 2 from a viewpoint of obtaining the photocurable composition which has sufficient softness
  • Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
  • the hydrolyzable group represented by W is not particularly limited as long as it is other than an F atom, but an alkoxy group is preferable from the viewpoint of mild hydrolyzability and easy handling. From the viewpoint of high reactivity, a methoxy group or an ethoxy group is more preferable.
  • the specific structure of the crosslinkable silicon group is preferably a trimethoxysilyl group or a triethoxysilyl group, and more preferably a trimethoxysilyl group from the viewpoint of high reactivity. From the viewpoint of obtaining a curable composition having sufficient flexibility, a methyldimethoxysilyl group and a methyldiethoxysilyl group are preferred.
  • the organic polymer of component (A) is a polymer having a functional group such as glycidyl group, carboxyl group, amino group, mercapto group, or isocyanate group in the molecule, glycidyl (meth) acrylate, (meth) acrylic acid, glycerin. It is obtained by reacting a functional group having reactivity with a functional group of a polymer such as mono (meth) acrylate and a compound having a (meth) acrylate group.
  • the organic polymer represented by the following general formula (I) is a predetermined polymer having a carboxyl group in glycidyl (meth) acrylate (R 1 is the same as above) (-R 5 COOH, R 5 is substituted or An unsubstituted alkylene group, a substituted or unsubstituted arylene group, a heterocyclic structure-containing linking group, a linking group having a plurality of rings,-(C m H 2m O) n R ⁇ - (m is an integer of 2 to 4, n is an integer of 1-30, the R beta unsubstituted or substituted alkylene group, an unsubstituted or substituted arylene group), or show a direct bond.
  • R 1 is the same as above
  • R 5 COOH R 5 is substituted or An unsubstituted alkylene group, a substituted or unsubstituted arylene group, a heterocyclic structure-containing linking group, a linking group having a
  • R 5 - later is a polymer chain directly Bonding means directly bonding to a polymer chain.
  • the organic polymer represented by the general formula (I) is synthesized.
  • the organic polymer represented by the following general formula (II) is a predetermined polymer having an amino group in glycidyl (meth) acrylate (NHR 6 R 7 —, R 6 is —H, substituted or unsubstituted alkyl).
  • R 7 are the same as R 5 - can be synthesized in the following is a polymer chain) reacting. "R 7"..
  • an organic polymer represented by the following general formula (III) is reacted with a predetermined polymer having an isocyanate group on glycidol (O ⁇ C ⁇ N—R 7 —, R 7 is the same as described above). It can be synthesized by reacting the resulting intermediate reactant with (meth) acrylic acid.
  • an intermediate reaction product is synthesized by mixing a predetermined polymer having glycidol and an isocyanate group and a predetermined catalyst as required at a predetermined ratio and reacting at a predetermined temperature for a predetermined time.
  • the epoxy group of glycidyl methacrylate is ring-opened to form an ester bond with the unsaturated carboxylic acid.
  • This ring opening occurs at both the ⁇ -position and the ⁇ -position, but the ⁇ -adduct opened at the ⁇ -position is the main component, and the ⁇ -adduct opened at the ⁇ -position is the subcomponent.
  • the production ratio of the ⁇ adduct and the ⁇ adduct is 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in terms of molar ratio.
  • a product having a compound that is usually an ⁇ -adduct as a main component and a ⁇ -adduct as a subcomponent is obtained.
  • the product can be isolated by separating it by a known separation method.
  • a mixture containing an ⁇ adduct and a ⁇ adduct is obtained. That is, the product obtained by the synthesis reaction of the compound of the general formula (III) is a product obtained by the above synthesis method in which all or part of the ⁇ adduct is left, and the ⁇ adduct is the main component.
  • main component refers to a component contained in the product in an amount of 60 mol% or more
  • “subcomponent” refers to a component contained in an amount of 40 mol% or less (the same applies hereinafter).
  • the ⁇ adduct is the main component and the ⁇ adduct is the subcomponent, so the organic polymer represented by the general formula (III) is converted into 3- (meta ) Urethane oligomer mainly containing acryloxy-2-hydroxypropyl group.
  • the organic polymer represented by the following general formula (IV) is a predetermined polymer having an isocyanate group in glycerin mono (meth) acrylate (O ⁇ C ⁇ N—R 7 —, R 7 is the same as described above. ) Can be synthesized. For example, a predetermined dihydroxy acrylate compound, a predetermined polymer having an isocyanate group, and a predetermined catalyst as required are mixed at a predetermined ratio, and reacted at a predetermined temperature for a predetermined time, and expressed by the general formula (IV). An organic polymer is synthesized. Here, in the synthesis reaction of the compound of the general formula (IV), only the ⁇ adduct is used. Therefore, the organic polymer represented by the general formula (IV) is substituted with a 3- (meth) acrylooxy 2-hydroxypropyl group. It is called a urethane oligomer.
  • the organic polymer represented by the following general formula (V) can be synthesized by reacting a predetermined (meth) acrylate and a predetermined polymer having a glycidyl group (R 8 is the same as X).
  • R 8 is the same as X.
  • it is represented by the general formula (V) by mixing a (meth) acrylate compound and a predetermined polymer having a glycidyl group and a predetermined catalyst as required at a predetermined ratio and reacting at a predetermined temperature for a predetermined time.
  • An organic polymer is synthesized.
  • an organic polymer obtained by a reaction between a glycerin mono (meth) acrylate and a polymer having an isocyanate group a reaction between a (meth) acrylate and a polymer having a glycidyl group
  • an organic polymer obtained by reacting glycidyl (meth) acrylate with a carboxyl group-containing polymer is preferred, an organic polymer obtained by reacting glycerin mono (meth) acrylate and a polymer having an isocyanate group
  • An organic polymer obtained by a reaction between a meth) acrylate and a polymer having a glycidyl group is more preferable, and an organic polymer obtained by a reaction between a glycerin mono (meth) acrylate and a polymer having an isocyanate group is more preferable from the viewpoint of easy synthesis reaction.
  • the organic polymer preferably has an average of 0.5 or more functional groups, more preferably 0.7 or more functional groups, from the viewpoint of increasing intermolecular crosslinking. More preferably 0.9 or more functional groups, and most preferably 1.0 or more functional groups. Moreover, the organic polymer preferably has 10 or less functional groups on average in one molecule from the viewpoint of increasing flexibility after curing, and more preferably has 5.0 or less functional groups. , More preferably 2.5 or less functional groups, and most preferably 2.0 or less functional groups.
  • Catalysts for the addition reaction between carboxyl groups and epoxy groups include tertiary amines, quaternary ammonium salts, quaternary phosphonium salts, phosphine compounds such as triphenylphosphine, metal salts of carboxylic acids (eg chromium octoate, sodium stearate). Etc.), and alkali metal or alkaline earth metal hydroxides.
  • triphenylphosphine from the viewpoint that the resin is less colored, and from the viewpoint of good reaction yield, a metal salt of carboxylic acid, an alkali metal or alkaline earth metal hydroxide is preferable, and an alkali More preferred are metal or alkaline earth metal hydroxides, and even more preferred are alkali metal hydroxides.
  • the catalyst for the addition reaction is preferably 0.01 equivalents or more and 0.1 equivalents or less, and more preferably 0.02 equivalents or more and 0.08 equivalents or less with respect to 1 equivalent of the epoxy group.
  • a polymerization inhibitor may be added from the viewpoint of suppressing radical polymerization during synthesis.
  • the polymerization inhibitor include alkylphenols such as 2,6-di-t-butylhydroxytoluene.
  • An amine polymerization inhibitor can also be used.
  • the amine-based polymerization inhibitor include N, N′-diphenyl-p-phenylenediamine.
  • Predetermined polymer having an isocyanate group As the predetermined polymer having an isocyanate group used in the general formula (III) and the general formula (IV) (O ⁇ C ⁇ N—R 7 —, R 7 is the same as described above), for example, “general Reactive group-containing polymer having a predetermined main chain skeleton selected from the group consisting of “organic polymer having group represented by formula (1)” (hydroxyl group, carboxy group, and / or active hydrogen-containing amino group-containing organic group) Polymers) and isocyanate functional urethanes formed by reacting excess polyisocyanates can be used.
  • the number of reactive groups is two from the viewpoint of flexibility after curing.
  • flexibility is not particularly required.
  • the hardness after curing can be designed freely. It is more preferred to use a polymer containing one reactive group and a polymer containing two reactive groups in combination.
  • polyisocyanate examples include aliphatic isocyanates such as hexamethylene diisocyanate, tolylene diisocyanate, aromatic isocyanates such as 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and alicyclic isocyanates such as isophorone diisocyanate, or These adduct types, isocyanurate types, burette types, and other multimers can be mentioned.
  • the number of functional groups of polyisocyanate is preferably two from the flexibility after curing.
  • organic polymers may be used alone or in combination of two or more.
  • an organic polymer obtained by blending two or more selected from the group consisting of a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth) acrylate polymer can also be used. .
  • a polyoxyalkylene polymer, a (meth) acrylic acid ester polymer, a non-aromatic polyester polymer, and a non-aromatic polycarbonate polymer are preferable.
  • Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are more preferred, and polyoxyalkylene polymers are more preferred.
  • the component (A) is an organic polymer having a structure in which a functional group such as a glycidyl group, a carboxyl group, an amino group, a mercapto group, or an isocyanate group is introduced into the main chain skeleton polymer in the molecule, glycidyl (meth) acrylate, It can be synthesized by reacting a functional group having reactivity with a functional group of a polymer such as (meth) acrylic acid or glycerin mono (meth) acrylate, and a compound having a (meth) acrylate group.
  • an organic polymer having a structure in which a functional group is introduced into the main chain skeleton polymer an organic polymer of “functional group copolymerization type” (shown in the following formula (a)) in which functional groups are randomly introduced, pieces Organic polymer of "one-end functional group type” (following formula (b)) having a functional group introduced at the terminal, "molecular terminal and functional group copolymerization type” (below Organic polymer of formula (c)), organic polymer of “multifunctionalization type of terminal functional group type” in which one terminal functional group type is linked with a polyfunctional monomer (formula (d) below), and main chain terminal There is an organic polymer of “telechelic type” (following formula (e)) into which a functional group is introduced.
  • the formulas (a) to (e) are conceptual formulas of the structures of the respective polymers.
  • X represents a functional group (for example, a carboxylic acid group, an amino group, Epoxy group, hydroxyl group, etc.), and when there are a plurality of X, they may be the same or different.
  • n is a positive real number
  • m is 0 or a positive real number.
  • the average number of functional groups is n.
  • the organic polymer represented by the formula (a) preferably has an average functional group number of 10 or less, and an average functionality of 5.0 or less from the viewpoint of increasing the flexibility after curing.
  • the number of functional groups is more preferable, the average number of functional groups is 2.5 or less, and the average number of functional groups is 1.1 or less.
  • the organic polymer represented by the formula (a) preferably has an average functional group number of 0.5 or more in one molecule from the viewpoint of increasing intermolecular crosslinking, and has an average functionality of 0.7 or more.
  • the number of groups is more preferable, the number of average functional groups of 0.9 or more is further preferable, and the number of average functional groups of 1.0 or more is most preferable.
  • the average number of functional groups is n + 1.
  • the average number of functional groups is m + n + 1.
  • the organic polymers represented by formula (c), formula (d), and formula (e) all have an average number of functional groups in one molecule of 10 or less from the viewpoint of increasing flexibility after curing.
  • the average functional group number is 5.0 or less, more preferably 2.5 or less, still more preferably 2.0 or less. Most preferred.
  • all of the organic polymers represented by the formula (c), the formula (d), and the formula (e) have an average functional group number of 1.1 or more per molecule from the viewpoint of increasing intermolecular crosslinking.
  • the average functional group number is 1.3 or more, more preferably 1.5 or more, still more preferably 1.8 or more. Most preferred.
  • the organic polymers represented by formula (a), formula (c), formula (d), and formula (e) are all (meth) acryl equivalent (number average per (meth) acryl group).
  • the molecular weight) is preferably 1,000 or more, more preferably 2,000 or more, and still more preferably 3,000 or more from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition.
  • the (meth) acryl equivalent is preferably about 100,000 or less, more preferably 50,000 or less, and 30,000 or less. Is more preferable.
  • the (meth) acryl equivalent of the organic polymer represented by the formula (b) is preferably 500 or more, more preferably 1,000 or more, from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. More preferably, 2,000 or more. Further, from the viewpoint of ensuring an appropriate viscosity of the curable composition and ensuring good workability, the (meth) acryl equivalent is preferably about 100,000 or less, more preferably 50,000 or less, and 30,000 or less. Is more preferable.
  • the polymer of the “functional group copolymerization type” represented by the formula (a) can be synthesized relatively easily by copolymerizing a monomer having a functional group. From the viewpoint of increasing the number of functional groups in one molecule, a “functional group copolymerization type” polymer is effective. In addition, the “functional group copolymerization type” polymer has a short distance between the functional groups and may have a hard and brittle property. Moreover, the polymer of the “single terminal functional group type” represented by the formula (b) is an effective polymer when a functional group is introduced at the molecular terminal and flexibility after curing is required.
  • the polymer of the “molecular end and functional group copolymerization type” represented by the formula (c) includes, for example, a functional group derived from acrylic acid in the main chain.
  • a one-end pseudo-telechelic polymer having a functional group at one end.) Is a polymer having the advantages of a one-end functional group type (formula (b)) and a functional group copolymerization type (formula (a)). It is.
  • the polymer of “molecular end and functional group copolymerization type” can be combined with different functional groups in which the functional group at the molecular end is different from the functional group in the main chain. It can also be pursued.
  • the polymer of the “terminal functional group type multimerization type” represented by the formula (d) is, for example, a polymer having a single terminal functional group type as a polyfunctional monomer.
  • the polymer represented by the formula (d) is, for example, a polymer having a single terminal functional group type as a polyfunctional monomer.
  • a “telechelic type” polymer (formula (e)) is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-44626 and Japanese Translation of PCT International Publication No. 2013-523929. It can be synthesized by a living radical polymerization method in which the specific functional group described is introduced at the end of the main chain.
  • a living radical polymerization method in which the specific functional group described is introduced at the end of the main chain.
  • a telechelic type polymer having a functional group at the terminal can be produced by adding a low-polymerization olefin compound having a functional group during or after the polymerization.
  • a carboxylic acid group, ester group, ether group, hydroxyl group, epoxy group, amino group, amide group, silyl group and the like can be introduced.
  • an organic halide or a sulfonyl halide compound is used as an initiator.
  • an organic halide having a functional group or a sulfonyl halide compound in addition to the compound for initiating polymerization, a polymer having a functional group introduced at the terminal can be easily synthesized. Examples of such a functional group include a hydroxyl group, an epoxy group, and an amino group.
  • a free radical polymerization method using a chain transfer agent having a specific functional group described in JP-A No. 62-232408, or a thiol compound having a specific functional group described in JP-A No. 2000-344823 and A specific functional group can be introduced at one end by a reaction method using a metallocene compound.
  • a part or all of the acrylic monomer and the functional group-containing mercaptan chain transfer agent are continuously supplied to the polymerization system, and the acrylic monomer is added to the acrylic monomer using a predetermined amount of the polymerization initiator.
  • radical polymerization an acrylic polymer having a functional group at one end can be synthesized.
  • the predetermined amount of the polymerization initiator is determined in consideration of the selectivity of the acrylic polymer having a functional group at one end.
  • a “molecular end and functional group copolymerization type” can be synthesized by introducing a specific functional group into one end and then introducing the functional group into the main chain using a monomer having the specific functional group.
  • a polymer having a terminal functional group type multimerization type can be synthesized by linking a polymer having a specific functional group introduced at one end with a polyfunctional monomer.
  • ethyl acrylate (polymerizable monomer) is polymerized using ruthenocene (metallocene catalyst) and ⁇ -mercaptopropionic acid (polymerization initiator) as a metal catalyst described in Example 1 of JP-A-2000-344823.
  • ruthenocene metalocene catalyst
  • ⁇ -mercaptopropionic acid polymerization initiator
  • the molecular end (carboxy group) and functional group (carboxy group) copolymerization types are Synthesized.
  • a terminal functional group (carboxy group) type multimerization can be obtained by further reacting the polyfunctional monomer with the synthesis method described in Example 1 described in JP-A-2000-344823. Rick type) is synthesized. Note that ⁇ -mercaptopropionic acid is replaced with 2-mercaptoethanol described in Example 3 described in JP-A No. 2000-344823, and further, a method of reacting a hydroxyl group-containing monomer as a polymerizable monomer is used. Terminal (hydroxyl) and functional group (hydroxyl) copolymer types are synthesized.
  • terminal functional group (hydroxyl) type multimerization (pseudo telechelic type) is synthesized by a method of reacting a polyfunctional monomer.
  • a free radical polymerization method using a chain transfer agent having a specific functional group described in JP-A No. 62-232408 is used, theoretically the same molecular end and functional group copolymerization type, and A terminal functional group type multimerization can be synthesized, but a polymer using a metallocene catalyst is preferred because the terminal group generation probability is high (becomes a flexible polymer).
  • the structure in which a functional group is introduced into the main chain skeleton polymer by random polymerization makes it difficult to obtain a flexible organic polymer because the distance between the functional groups is shortened. Moreover, since a molecule into which a functional group is not introduced is generated, a component that does not undergo radical polymerization is contained. Therefore, from the viewpoint of obtaining a flexible organic polymer, the structure in which a functional group is introduced into the main chain skeleton polymer includes “one-end functional group type”, “telechelic type”, “molecular end and functional group co-polymerization”.
  • Polymerization type and “multimerization of terminal functional group type (pseudo-telechelic type)" are preferred, “one-end functional group type” and “telechelic type” are more preferred, and “telechelic type” is most preferred.
  • (B1) a photoinitiator, (B2) a thermal initiator, and / or (B3) a redox initiator are used as a polymerization initiator.
  • (B1) As the photoinitiator, a photoradical generator, a photobase generator, a photoacid generator, or the like can be used.
  • the photo radical generator is a compound that generates radicals by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • active energy rays such as ultraviolet rays and electron beams.
  • (B1) photoinitiator when used as a polymerization initiator, since it can be used suitably also with respect to a heat-sensitive member, it can be used for various uses.
  • Photo radical generator examples include benzyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-methyl-1-phenyl-propan-1-one. ⁇ -aminoacetophenone series, bis (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, etc.
  • Acylphosphine oxides such as (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, benzophenones such as methyl benzoylbenzoate, thioxanthones such as isopropylthioxanthone, 1.2-octanedione, 1- [4- ( Oxime esters such as phenylthio)-, 2- (O-benzoyloxime)], bis (Cyclopentadienyl) -bis (2,6-difluoro-3- (pyrrol-1-yl) phenyl) titanium, titanocene, benzoin ether, triazine, borate, carbazole, imidazole, etc. Derivatives obtained by increasing the molecular weight thereof can be mentioned.
  • benzyl ketal, ⁇ -hydroxyacetophenone, ⁇ -aminoacetophenone, acylphosphine oxide, oxime ester, and titanocene photopolymerization initiators are preferred because they have high sensitivity and can be added in small amounts.
  • ⁇ -aminoacetophenone-based, acylphosphine oxide-based, oxime ester-based, and titanocene-based photopolymerization initiators include long-wave ultraviolet rays (i-line (wavelength 365 nm), h-line (wavelength 405 nm), g-line (wavelength 436 nm), etc.
  • Photobase generator Various photobase generators can be used as the photobase generator. Photolatent amine compounds that generate amine compounds by the action of active energy rays are preferred.
  • the photolatent amine compound includes a photolatent primary amine that generates an amine compound having a primary amino group by the action of active energy rays, and an amine compound having a secondary amino group by the action of active energy rays. Any of the photolatent secondary amine that is generated and the photolatent tertiary amine that generates an amine compound having a tertiary amino group by the action of active energy rays can be used. In view of the high catalytic activity of the generated base, a photolatent tertiary amine is more preferable.
  • photolatent primary amines and photolatent secondary amines include orthonitrobenzylurethane compounds described in WO2015 / 088021, dimethoxybenzylurethane compounds, benzoins carbamates, o-acyloximes O-carbamoyl oximes; N-hydroxyimide carbamates; formanilide derivatives; aromatic sulfonamides; cobalt amine complexes and the like.
  • photolatent tertiary amines examples include ⁇ -aminoketone derivatives, ⁇ -ammonium ketone derivatives, benzylamine derivatives, benzylammonium salt derivatives, ⁇ -aminoalkene derivatives, ⁇ -ammonium alkene derivatives described in WO2015-088021.
  • photobase generators photolatent tertiary amines are preferred from the point that the generated bases exhibit high catalytic activity, because the base generation efficiency is high and the storage stability as a photocuring composition is good.
  • Benzyl ammonium salt derivatives, benzyl substituted amine derivatives, ⁇ -amino ketone derivatives, and ⁇ -ammonium ketone derivatives are preferred.
  • a photoinitiator When a photoinitiator is used, one kind may be used alone, or two or more kinds may be used in combination at any ratio.
  • the addition amount of the photoinitiator is not particularly limited, but if the addition amount is small, the curing does not proceed to the deep part and the curing failure may occur. Therefore, “other than (A) component and (A) component is excluded.
  • (Meth) acrylate “(however, other (meth) acrylates excluding component A include other (meth) acrylate monomers, oligomers, macromers, and / or components (C) other than component A).
  • the amount added is 100 parts by weight of “(A) component and other (meth) acrylates excluding component (A)”.
  • it is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and still more preferably 10 parts by weight or less.
  • thermal initiator examples include organic peroxides such as benzoyl peroxide, t-butyl perbenzoate and cumene hydroperoxide, 2,2′-azobisisobutyronitrile, And azo compounds such as 2,2′-azobis- (2-methylbutyronitrile) and 2,2′-azobis (2,4-dimethylvaleronitrile).
  • thermal initiator thermal polymerization initiator
  • one kind may be used alone, or two or more kinds may be used in combination at any ratio.
  • the addition amount is not particularly limited, but from the viewpoint of storage stability, it is preferably 5 parts by weight or less, more preferably 100 parts by weight of (A) component and other (meth) acrylates excluding component (A). 2 parts by weight or less, more preferably 1 part by weight or less. Further, from the viewpoint of curability, it is preferably 0.01 parts by weight or more, more preferably 0.025 parts by weight or more, with respect to 100 parts by weight of other (meth) acrylates excluding the component (A) and the component (A). More preferably 0.05 parts by weight or more.
  • both (B1) photoinitiator and (B2) thermal initiator can be used together to achieve both photocuring and thermosetting.
  • the redox initiator used in the present invention is not limited, but a combination of a persulfate initiator and a reducing agent (sodium metabisulfite, sodium bisulfite, thiourea compound, etc.); an organic peroxide and a tertiary amine (For example, a combination of benzoyl peroxide and dimethylaniline, a combination of cumene hydroperoxide and anilines), a combination of an organic peroxide and a transition metal, or the like.
  • a persulfate initiator and a reducing agent sodium metabisulfite, sodium bisulfite, thiourea compound, etc.
  • an organic peroxide and a tertiary amine for example, a combination of benzoyl peroxide and dimethylaniline, a combination of cumene hydroperoxide and anilines, a combination of an organic peroxide and a transition metal, or the like.
  • Preferred redox initiators include a combination of an organic peroxide and a tertiary amine, a combination of an organic peroxide and a transition metal, and more preferably a combination of cumene hydroperoxide and anilines, cumene.
  • a combination of hydroperoxide and cobalt naphthate, a combination of cumene hydroperoxide and a trivalent or tetravalent vanadium compound, and the like can be given.
  • a redox initiator may be used independently or may use 2 or more types together.
  • the amount of addition is not particularly limited, but from the viewpoint of storage stability, it is preferably based on 100 parts by weight of the (A) component and other (meth) acrylates excluding the (A) component. It is 10 parts by weight or less, more preferably 5 parts by weight or less, and further preferably 2 parts by weight or less. Further, from the viewpoint of curability, it is preferably 0.01 parts by weight or more, more preferably 0.025 parts by weight or more, with respect to 100 parts by weight of other (meth) acrylates excluding the component (A) and the component (A). More preferably 0.05 parts by weight or more. Further, a curing accelerator such as an ⁇ -hydroxycarbonyl compound can be blended.
  • both (B1) photoinitiator and (B3) redox initiator can be used together to achieve both photocuring and redox curing.
  • ⁇ (C) component monofunctional (meth) acrylate>
  • a (meth) acrylate containing a 3- (meth) acryloxyoxy-2-hydroxypropyl group and a polar group the following general formula (4); hereinafter, (meth) in the general formula (4))
  • Metal acrylate represents acrylate and / or methacrylate
  • a monomer having one acrylate group hereinafter referred to as “monofunctional (meth) acrylate monomer” in the present description
  • an organic polymer other than an organic polymer containing a 3- (meth) acryloxy-2-hydroxypropyl group Polymer having one acrylate group (hereinafter referred to as “monofunctional (meth) acrylate polymer” It referred to as.)
  • the monofunctional (meth) acrylate polymer it referred to
  • R 1 represents —H or —CH 3
  • Y represents a polar group.
  • the polar group include a phenoxy derivative group (—O—Ph—R 9 5 [Ph is a skeleton of a phenyl group], hereinafter referred to as “general formula (5)”), and an ester group (—O—CO—R 10 Hereinafter referred to as “general formula (6)”), (thio) ether group (—O—R 11 and / or —S—R 11, hereinafter referred to as “general formula (7)”), amine group (-NHpR 12 2-p [p is 0 or 1. hereinafter referred to as "the general formula (8)”.]) and, urethane groups (-O-CO-NH-R 13. the following "general formula (9) ").
  • each of the plurality of R 9 independently represents a hydrogen atom or a substituent.
  • substituents include a nitro group, a cyano group, a hydroxy group, a halogen atom, an acetyl group, a carbonyl group, a substituted or unsubstituted allyl group, and a substituted or unsubstituted alkyl group (preferably having 1 to 5 carbon atoms).
  • An alkyl group a substituted or unsubstituted alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms), an unsubstituted or substituted aryl group, an unsubstituted or substituted aryloxy group, a heterocyclic structure-containing group, and a plurality of rings. And a combination thereof. Any of a plurality of R 9 may be bonded to each other to form a cyclic structure.
  • a structure in which a plurality of benzene rings are condensed, a benzene ring and a heterocyclic ring, a non-aromatic ring, carbonyl A structure in which a ring or the like bonded to a functional group such as a group is condensed may be formed.
  • substituents a substituted or unsubstituted alkyl group is preferable, and a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms is more preferable.
  • R 10 , R 11 , R 12 , and R 13 are substituted or unsubstituted alkyl groups, substituted or It represents an unsubstituted aryl group, a heterocyclic structure-containing group, a group having a plurality of rings, or a — (C m H 2m O) n R 14 group.
  • R 12 when there are two R 12 , the two R 12 may be bonded to each other to form a cyclic structure or a heterocyclic structure together with the carbon atom to which they are bonded. Good.
  • R 9 , R 10 , R 11 , R 12 , and / or R 13 may be a group having a silyl group.
  • the curable composition can be post-cured by moisture curing (so-called dual curing type).
  • n is an integer of 2 to 4
  • n is an integer of 1 to 30
  • R 14 is —H, or an unsubstituted or substituted alkyl group, unsubstituted Or it is a substituted phenyl group.
  • the substituted or unsubstituted alkyl group is not particularly limited, but for example, an alkyl group having 1 to 30 carbon atoms is preferable.
  • the said alkyl group shall contain the alkyl group (broadly-defined alkyl group) containing the group which has a double bond.
  • the substituted or unsubstituted aryl group is not particularly limited, but for example, an aryl group having 6 to 20 carbon atoms is preferable. Further, the substituted or unsubstituted alkyl group may be linear, branched or cyclic.
  • the substituent in the substituted alkyl group and the substituted aryl group is not particularly limited, and examples thereof include a halogen atom, a hydroxyl group, an alkoxy group, an ester group, a ketone group, an aldehyde group, a carboxyl group, a glycidyl group, an amino group, and an amide. Groups and the like.
  • the heterocyclic structure-containing group is not particularly limited, but for example, a heterocyclic structure-containing group having 3 to 20 carbon atoms is preferable.
  • the alkoxy group is not particularly limited, but an alkoxy group having 1 to 30 carbon atoms is preferable, and an alkoxy group having 1 to 18 carbon atoms is more preferable.
  • the ester group is preferably an ester group having 2 to 30 carbon atoms, and more preferably an ester group having 2 to 18 carbon atoms.
  • the ketone group a ketone group having 2 to 30 carbon atoms is preferable, and a ketone group having 2 to 18 carbon atoms is more preferable.
  • R 9 , R 10 , R 11 , R 12 , and / or R 13 may be a group having a long chain hydrocarbon group having 8 to 20 carbon atoms, a carboximide group, or a crosslinkable silicon group.
  • a long-chain hydrocarbon group having 8 to 20 carbon atoms and / or — (C m H 2m O) n R 14 group is preferable.
  • a group having a crosslinkable silicon group is preferable.
  • R 9 , R 10 , R 11 , R 12 , and / or R 13 are as follows.
  • examples of the group having a hydroxyl group include a 2-hydroxypropyl group, a 4-hydroxybutyl group, a hydroxyhexa (ethylene ether) group, a hydroxyocta (propylene ether) group, and a 2-hydroxy-3-butyloxypropyl group. It is done.
  • examples of the group having an alkoxy group include a methoxytri (ethylene ether) group, an ethoxydi (ethylene ether) group, and a dicyclopentenyloxyethyl group.
  • Examples of the aromatic group include a phenoxyethyl group, a nonylphenoxyethyl group, and a benzyl group.
  • Examples of the long-chain hydrocarbon (meth) acrylate group having 8 to 20 carbon atoms include 2-ethylhexyl group, isooctyl group, lauryl group, and isostearyl group. From the viewpoint of availability, the carbon number is 8-18 long chain hydrocarbon groups are preferred.
  • Examples of the alicyclic group include a cyclohexyl group, a dicyclopentenyl group, and an isobornyl group.
  • Examples of the group having a heterocyclic group include a tetrahydrofurfuryl group.
  • Examples of the (meth) acrylate group having a crosslinkable silicon group include a 3- (trimethoxysilyl) propyl group, and the curable composition containing such a group undergoes a moisture curing reaction to form a dual curing mechanism. .
  • a (meth) acrylate group having a crosslinkable silicon group is particularly effective as R 12 .
  • Examples of the monofunctional (meth) acrylate monomer include the following compounds. First, as the long chain hydrocarbon (meth) acrylate having 8 to 20 carbon atoms, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate, and the like are included. From the viewpoint of availability, long-chain hydrocarbon (meth) acrylates having 8 to 18 carbon atoms are preferable.
  • Examples of the alicyclic (meth) acrylate include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
  • Examples of the (meth) acrylate having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, glycerol mono ( Hydroxyalkyl (meth) acrylates such as (meth) acrylate; polyalkylene glycol mono (meth) acrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and polyethylene glycol-polypropylene glycol copolymers be able to.
  • Examples of the (meth) acrylate having an aromatic ring include benzyl (meth) acrylate, phenol alkylene oxide modified (meth) acrylate, alkylphenol alkylene oxide modified (meth) acrylate, p-cumylphenol alkylene oxide modified (meth) acrylate, and o -Phenylphenol alkylene oxide modified (meth) acrylate and the like.
  • Examples of the alkylene oxide include ethylene oxide and propylene oxide.
  • alkoxy group-containing (meth) acrylates examples include alkoxy polyethylene glycol mono (meth) acrylates such as ethoxydiethylene glycol (meth) acrylate; alkoxypolypropylene glycol mono (meth) acrylates such as methoxytripropylene glycol (meth) acrylate; A polypropylene glycol copolymer etc. can be mentioned.
  • Examples of the (meth) acrylate having a carboxyl group include (meth) acrylic acid, modified polycaprolactone of (meth) acrylic acid, Michael addition type multimer of (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate and anhydrous Examples include adducts of phthalic acid and adducts of 2-hydroxyethyl (meth) acrylate and succinic anhydride.
  • Examples of the (meth) acrylate having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, and the (meth) acrylate having an amino group includes N, N -Dimethylaminoethyl acrylate and the like.
  • Examples of the (meth) acrylate having a crosslinkable silicon group include 3- (trimethoxysilyl) propyl (meth) acrylate, and the (meth) acrylate having an epoxy group includes glycidyl (meth) acrylate and cyclohexene oxide.
  • Examples of the (meth) acrylate having a phosphoric acid group include 2- (meth) acryloyloxyethyl acid phosphate.
  • the (meth) acrylate which has a fluoroalkyl group, the (meth) acrylate which has a tribromophenyl group, etc. are mentioned.
  • a monofunctional (meth) acrylate polymer can be used.
  • an acrylic polymer having an acrylic polymer having one (meth) acryloyloxy group as a skeleton, a urethane (meth) acrylate polymer, a polyester (meth) acrylate polymer, a polyether (meth) acrylate polymer examples thereof include an epoxy polymer and an epoxy (meth) acrylate polymer.
  • the weight average molecular weight of the polymer having one (meth) acrylate group is preferably 1,000 or more and 2,000 or more in terms of polystyrene in GPC from the viewpoint of securing good elongation characteristics of the cured product of the curable composition. More preferred is 3,000 or more. From the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the weight average molecular weight is preferably about 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less.
  • the glass transition temperature (Tg) is preferably 10 ° C. or less, more preferably 0 ° C. or less, and further preferably ⁇ 10 ° C.
  • a liquid state at 50 ° C. more preferably a liquid state at 20 ° C., and a liquid state at 0 ° C. preferable.
  • (meth) acrylate of general formula (4), (meth) acrylate having a hydroxyl group, and alicyclic (meth) acrylate are preferable, (Meth) acrylate of general formula (4), (meth) acrylate having a hydroxyl group, and isobornyl (meth) acrylate are more preferable.
  • (Meth) acrylate of general formula (4) 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and isobornyl (meth) acrylate are more preferable. Most preferred is (meth) acrylate.
  • the flash point of the curable composition is higher. Therefore, the flash point of monofunctional (meth) acrylate is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher.
  • the blending ratio of the monofunctional (meth) acrylate monomer is the same as the (meth) acrylate of the general formula (4), 10 mass parts or more are preferable with respect to 100 mass parts of functional (meth) acrylate monomers, 20 mass parts or more are more preferable, and 30 mass parts or more are the most preferable.
  • the blending ratio of the monofunctional (meth) acrylate monomer is preferably 80 parts by mass or less, and 70 masses. Part or less is more preferable, and 60 parts by weight or less is most preferable.
  • the blending ratio of the monofunctional (meth) acrylate polymer is: 80 parts by mass or less is preferable, 70 parts by mass or less is more preferable, and 60 parts by mass with respect to 100 parts by mass of the organic polymer having the group represented by the general formula (1) and the monofunctional (meth) acrylate polymer. The following are most preferred.
  • the curable composition according to the present invention includes a vinyl-based copolymerizable with a polyfunctional (meth) acrylate monomer, a polyfunctional (meth) acrylate polymer, and an acrylate monomer as necessary or according to a curing method.
  • additives such as regulators, reinforcing agents, colorants, flame retardants, anti-sagging agents, antioxidants, anti-aging agents, UV absorbers, light stabilizers (HALS), solvents, fragrances, pigments, dyes, diluents, etc. May be added.
  • Polyfunctional (meth) acrylate monomers having two or more (meth) acryloyl groups include 1,6-hexadiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) Acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxytetraethoxyphenyl) propane, etc.
  • Trifunctional (meth) acrylate monomer such as bifunctional (meth) acrylate monomer, trimethylolpropane tri (meth) acrylate, tris [(meth) acryloxyethyl] isocyanurate, dimethylolpropane tetra (meth) acrylate, pentaerythritol Tetra ( Data) acrylate, or pentaerythritol ethoxy tetra (meth) acrylate 4 or more functional groups of the (meth) acrylate monomers.
  • the polymer having a plurality of (meth) acrylate groups has two or more (meth) acryloyloxy groups other than (meth) acrylates containing 3- (meth) acrylooxy-2-hydroxypropyl groups and polar groups.
  • a polyfunctional (meth) acrylate polymer can be used.
  • the weight average molecular weight of the polyfunctional (meth) acrylate polymer is preferably 1,000 or more, more preferably 2,000 or more in terms of polystyrene in GPC, from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. More preferably 3,000 or more. From the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the weight average molecular weight is preferably about 100,000 or less, more preferably 80,000 or less, and even more preferably 50,000 or less.
  • the glass transition temperature (Tg) is preferably 10 ° C. or lower, more preferably 0 ° C. or lower, and further preferably ⁇ 10 ° C.
  • a liquid state at 50 ° C. more preferably a liquid state at 20 ° C., and a liquid state at 0 ° C. preferable.
  • Polyfunctional (meth) acrylate polymers include polyether-based urethane (meth) acrylates (eg, “UV-3700B” and “UV-6100B” manufactured by Nippon Gosei Co., Ltd.), polyester-based urethane (meth) acrylates (eg, Japan) “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Synthetic Co., Ltd.
  • vinyl monomer copolymerizable with acrylate monomer examples include acrylic acid, methacrylic acid, acrylamide, acrylonitrile, methacrylonitrile, N-substituted acrylamide, hydroxyethyl acrylate, N-vinyl pyrrolidone, maleic acid, itaconic acid, Examples thereof include N-methylol acrylamide and hydroxyethyl methacrylate.
  • a carbonyl compound having a triplet energy of 225 to 310 kJ / mol is preferable.
  • thioxanthone such as isopropylthioxanthone and derivatives thereof
  • dialkoxyanthracene derivative such as 9,10-dibutoxyanthracene
  • 2- Examples include benzophenone and its derivatives such as methyl benzoylbenzoate, and coumarin derivatives such as 3-acyl coumarin and 3,3'-carbonylbiscoumarin, thioxanthone and its derivatives and coumarin derivatives are preferred, thioxanthone and its derivatives, benzophenone and Its derivatives and coumarin derivatives are more preferred.
  • the mixing ratio of the photosensitizer is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.025 to 2% by mass in the curable composition. These photosensitizers may be used independently and may use 2 or more types together.
  • Photopolymerization accelerator A photopolymerization accelerator can be used in combination with an initiator for the purpose of accelerating the curing reaction by the photopolymerization initiator.
  • Photopolymerization accelerators include tertiary amines such as triethylamine, triethanolamine, 2-dimethylaminoethanol; aryl phosphines such as triphenylphosphine; aryl phosphine oxides such as triphenylphosphine oxide; triphenyl phosphite Phosphines including aryl phosphates such as triphenyl phosphate and the like (aryl groups may have a substituent); thiols typified by ⁇ -thioglycol and the like.
  • Preferred phosphines are trifunctional phosphine derivatives, triarylphosphine is more preferred, and triphenylphosphine is most preferred.
  • the polymerization inhibitor is not particularly limited.
  • radical scavengers such as hindered phenols and hindered amines, phosphorus secondary oxidative degradation inhibitors, diethylhydroxylamine, sulfur, t-butylcatechol, potassium triiodide, Examples thereof include N-nitrosophenylhydroxyamine aluminum salt.
  • a polymerization inhibitor may be used independently and may use 2 or more types together.
  • the content of the polymerization inhibitor is too small, the polymerization inhibitory effect tends to be insufficient, so that the (A) component and the (meth) acrylate other than the (A) component are 100 parts by weight.
  • the amount is preferably 0.001 part by weight or more, more preferably 0.005 part by weight or more, and particularly preferably 0.01 part by weight or more.
  • 2 weight part or less is preferable, More preferably, it is 0.5 weight part or less, Most preferably, it is 0.3 weight part or less.
  • a resin filler resin fine powder
  • an inorganic filler an inorganic filler
  • a functional filler can be used.
  • the filler may be subjected to a surface treatment with a silane coupling agent, a titanium chelating agent, an aluminum coupling agent, a fatty acid, a fatty acid ester, rosin or the like.
  • a particulate filler made of an organic resin or the like can be used.
  • the resin filler organic fine particles such as polyethyl acrylate resin, polyurethane resin, polyethylene resin, polypropylene resin, urea resin, melamine resin, benzoguanamine resin, phenol resin, acrylic resin, and styrene resin can be used.
  • a resin filler contains a black resin filler. Even when a single wavelength LED lamp or the like is used, good deep curability can be obtained, and excellent light shielding properties and deep curability can be achieved.
  • inorganic filler examples include talc, clay, calcium carbonate, magnesium carbonate, anhydrous silicon, hydrated silicon, calcium silicate, titanium dioxide, and carbon black.
  • conductive fillers described in JP2013-14734, JP2017-2267, JP2011-508012, and the like for example, conductive fillers described in JP2013-14734, JP2017-2267, JP2011-508012, and the like; excellent heat insulation and lightness described in JP2016-199668, etc. Hollow particles; core-shell particles having excellent sound insulation and damping properties described in JP-A-2016-199669, etc .; layered silicates having excellent gas barriers described in JP-A-2016-199670, etc .; JP-A-2016-199671, etc.
  • the light reflecting filler described in the above; the electromagnetic shielding material described in JP-A-2016-199750 and the like can be used.
  • the curable composition of the present invention can contain a diluent.
  • a solvent having a flash point (open type) of 50 ° C. or higher is used as a diluent.
  • a diluent By containing a diluent, physical properties such as viscosity can be adjusted.
  • Various diluents can be used as the diluent.
  • Diluents include, for example, saturated hydrocarbon solvents such as normal paraffin and isoparaffin, ⁇ -olefin derivatives such as linearlen dimer (trade name of Idemitsu Kosan Co., Ltd.), aromatic hydrocarbon solvents, alcohol solvents and ester solvents.
  • the solvent include various solvents such as a solvent, a citrate ester solvent such as acetyltriethyl citrate, and a ketone solvent.
  • the flash point of the diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher.
  • a diluent generally having a high flash point tends to have a low dilution effect on the curable composition, it is preferable to use a diluent having a flash point of 250 ° C. or lower.
  • the flash point of a liquid mixture is said flash point.
  • the diluent is preferably a saturated hydrocarbon solvent, more preferably normal paraffin or isoparaffin. Normal paraffin and isoparaffin preferably have 10 to 16 carbon atoms.
  • the blending ratio of the diluent is preferably 0 to 50 parts by weight, more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably, it is blended in the range of 0.1 to 15 parts by mass.
  • the diluent can be used alone or in combination of two or more.
  • the content of the liquid medium is preferably 5% by weight or less, more preferably 3% by weight or less, and more preferably 1% by weight or less based on the entire curable composition. More preferably, a composition containing substantially no liquid medium (that is, a substantially solvent-free composition) is most preferred.
  • substantially does not contain the liquid medium means that the curable composition does not contain any liquid medium or the content thereof is 0.1% by mass or less of the curable composition.
  • a solvent having a flash point of 50 ° C. or lower is used as a volatile solvent.
  • ⁇ Method for producing curable composition> There is no restriction
  • a photocurable composition in which a curing reaction proceeds by photocuring includes (A) a curable composition containing an organic polymer having a group represented by the general formula (1), and the above-described curing initiator. (B1) a photoinitiator. Moreover, the photocurable composition may further contain a curing accelerator as necessary.
  • the photocurable composition can be used in the air because the polymerization inhibition by oxygen can be significantly suppressed and an appropriate curing reaction can proceed.
  • the photo-curable composition of the present invention functions as a pressure-sensitive adhesive or an adhesive in air, since it can be temporarily fixed by adhesion immediately after light irradiation, and then moisture curing proceeds. Function as an adhesive).
  • a pressure-sensitive adhesive composed of a photocurable composition, or an adhesive is applied to the first adherend, and the photocurable composition is made to exhibit tackiness by direct light irradiation.
  • the first adherend is bonded to the second adherend (temporarily fixed), and then the photocurable composition is moisture-cured to cure the first adherend and the second adherend.
  • a product having a first adherend and a second adherend can be manufactured by bonding the adherend.
  • a polyfunctional monomer, polyfunctional oligomer, acrylamide, or the like is usually used in order to suppress polymerization inhibition by oxygen.
  • these materials have hard cured properties, small elongation, and are not suitable for applications requiring flexibility.
  • the photocurable composition according to the present invention has a structure in which a functional group suppresses polymerization inhibition by oxygen, it can be widely used for applications requiring flexibility in addition to conventional applications.
  • a photocurable composition can also be comprised as a coating agent and a gasket which have a softness
  • the photocurable composition can also be configured as a flexible paint, coating agent, ink, gasket, packing, O-ring, sealing agent, potting agent, casting material, sealing agent, and the like.
  • the photocurable composition contains a crosslinkable silicon group
  • the organic polymer having the group represented by (A) the general formula (1) is a compound containing a crosslinkable silicon group
  • a moisture curing method can be used in combination.
  • the photocurable composition preferably contains a photobase generator as a curing initiator.
  • a silicon compound having a Si—F bond can be added as a curing accelerator. Since the component (A) contained in the photocurable composition has a crosslinkable silicon group, after the photocurable composition is photocured, the photocurable composition can be postcured by moisture in the air. .
  • the silicon compound having a Si—F bond various compounds containing a silicon group having a Si—F bond (hereinafter sometimes referred to as a fluorosilyl group) can be used. Either an inorganic compound or an organic compound can be used as the silicon compound having a Si—F bond.
  • a fluorosilyl group an organic compound having a fluorosilyl group is preferable, and an organic polymer having a fluorosilyl group is more preferable because of high safety.
  • the low molecular organosilicon compound which has a fluoro silyl group from the point from which a photocurable composition becomes low viscosity is preferable.
  • silicon compounds having a Si—F bond examples include fluorosilanes described in WO2015-088021, compounds having a fluorosilyl group described in WO2015-088021, and fluorosilyls described in WO2015-088021 And an organic polymer having a group.
  • thermosetting composition in which the curing reaction proceeds by heat includes (A) a curable composition containing an organic polymer having a group represented by the general formula (1), and the above-described curing initiator. (B2) contains a thermal initiator. Moreover, the thermosetting composition may further contain a curing accelerator as necessary. Moreover, the thermosetting composition with favorable workability (low viscosity) is obtained by using together with the (meth) acrylate shown by General formula (4) which can suppress the superposition
  • thermosetting composition can be used for various purposes.
  • the thermosetting composition of the present invention can be suitably used in the presence of air because it can greatly suppress inhibition of polymerization due to oxygen and can promote an appropriate curing reaction.
  • the thermosetting composition of the present invention can be used for LIM molding in which the influence of oxygen in the air cannot be excluded, and can be widely used for applications requiring flexibility in addition to conventional applications.
  • adhesiveness can also be provided to the thermosetting composition of this invention, it is suitable for insert LIM shaping
  • the initiator used in the thermosetting composition for LIM molding examples include a radical initiator having a half-life of 0.5 to 120 seconds, preferably 1 to 60 seconds, at any reaction temperature between 130 and 160 ° C. It is done. In the case of an initiator having a half-life exceeding 120 seconds, the fluctuation range of the monomer conversion rate becomes large and it is difficult to ensure stable operation. In the case of an initiator having a half-life of less than 0.5 seconds, there is a problem that the amount of the initiator used is too large and the product polymer is colored.
  • Examples of the initiator used in the present invention include 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2-methylbutyronitrile), and the like.
  • Preferred are azo compounds and organic peroxides such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butyl peroxyisobutyrate, benzoyl peroxide, lauroyl peroxide.
  • the half-life value of the initiator is the value of technical bulletin issued by Wako Pure Chemical Industries, Ltd. for azo compounds, and the catalog (12th edition) issued by Nippon Oil & Fats Co., Ltd.
  • the polymerization reaction temperature in the LIM molding step is preferably in the range of 100 to 180 ° C, more preferably in the range of 130 to 160 ° C, and still more preferably in the range of 140 to 155 ° C.
  • the redox curable composition in which curing proceeds by a redox reaction includes (A) a curable composition containing an organic polymer having a group represented by the general formula (1), and the above-described curing initiator. (B3) contains a redox initiator. Moreover, the redox curable composition may further contain a hardening accelerator as needed. The redox curable composition can be used for various applications for the same reason as the photocurable composition.
  • a redox curable composition containing an organic polymer having a group represented by the general formula (1) can be used as a two-component mixed adhesive in the air.
  • a second liquid containing component (C) and the like a two-component mixed adhesive can be configured. Since the reaction proceeds by mixing the first liquid and the second liquid, it functions as an adhesive that bonds one adherend and the other adherend together.
  • the component (A) is contained in at least one of the first liquid and the second liquid.
  • the combination of the compound contained in the first liquid and the compound contained in the second liquid is a combination of a persulfate initiator and a reducing agent.
  • a combination of an organic peroxide and a tertiary amine, a combination of an organic peroxide and a transition metal, or the like can be appropriately employed.
  • the first liquid contains an organic peroxide, an acidic phosphate ester (storage stability improver), an ⁇ -hydroxycarbonyl compound (a curing accelerator). Agent), hydrazine compound (aldehyde emission inhibitor), etc.
  • the second liquid is a reducing agent such as trivalent or tetravalent vanadium compound, thiourea compound, saccharin, aluminum compound (storage stability) Improver) and the like, and a stabilizer such as disubstituted hydroquinone can be added to the first liquid and / or the second liquid.
  • reducing agents such as a vanadium compound and a thiourea compound, can be dissolved and used in a volatile solvent.
  • adhesives, coating agents, and gaskets usually use polyfunctional monomers, polyfunctional oligomers, acrylamide, or the like in order to suppress polymerization inhibition by oxygen.
  • these materials have hard cured properties, small elongation, and are not suitable for applications requiring flexibility.
  • the redox curable composition according to the present invention has a structure in which a functional group suppresses the inhibition of polymerization by oxygen, it can be widely used for applications requiring flexibility in addition to conventional applications.
  • the product can be configured as a flexible adhesive, a coating agent or a gasket, or a pressure-sensitive adhesive for applications requiring flexibility. Adhesives, pressure sensitive adhesives, coating agents and gaskets are particularly useful for field construction.
  • redox curable compositions can also be configured as flexible paints, coating agents, inks, gaskets, packings, O-rings, sealing agents, potting agents, casting materials, sealants, etc. Useful for construction.
  • the redox curable composition of the present invention can also be used for two-component curable LIM molding.
  • the curable composition according to the present invention is cured by photocuring, heat curing, and / or redox curing. By this curing, a cured product of the curable composition can be obtained. Therefore, various products, such as an electronic circuit, an electronic component, a building material, and a motor vehicle, can be manufactured using the hardened
  • the curable composition of the present invention can suppress the polymerization inhibition due to oxygen even when used in the air, and can proceed with an appropriate curing reaction, and becomes a flexible cured product. Suitable. That is, the curable composition of the present invention is applied to an adherend and cured in situ, or the curable composition of the present invention is applied in a predetermined shape (for example, a ring shape used for packing or gasket), By curing, a ring-shaped packing or gasket can be manufactured on the spot.
  • “for on-site construction” means that the curable composition is used as it is (in the air) for adhering adherends to each other and for producing a member having a predetermined shape at the site where the product is manufactured. Point to.
  • “for on-site construction” is an application in which a curable composition is directly applied to one adherend, and in that state (or on the spot), one adherend is attached to the other adherend; And / or the use etc. which manufacture the product which has the said shape by making a curable composition into a predetermined shape and hardening.
  • the curable composition of the present invention includes a pressure-sensitive adhesive, an adhesive, an elastic adhesive, a contact adhesive, a coating material, a coating material, a sealing material such as a can lid, an electric and electronic potting agent, a film, and a gasket.
  • Marine deck caulking, casting materials various molding materials, anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cutting parts), anti-vibration / damping / Liquid and sealing materials used in soundproofing and seismic isolation materials, automobile parts, electrical parts, various machine parts, waterproofing agents, sealing materials for double-glazed glass, sealing materials for vehicles, such as architectural and industrial sealing agents, solar cells It can be used for various applications such as electrical / electronic component materials such as backside sealants, and electrical insulation materials such as insulation coating materials for electric wires and cables.
  • the on-site molded body showing rubber elasticity composed of the curable composition of the present invention can be widely used mainly for gaskets and packings.
  • gaskets and packings For example, in the automobile field, it can be used as a body part as a sealing material for maintaining airtightness, an anti-vibration material for glass, an anti-vibration material for vehicle body parts, particularly a wind seal gasket and a door glass gasket.
  • it In the field of home appliances, it can be used for on-site packing, O-rings, and the like.
  • decorations for lighting fixtures waterproof packings, anti-vibration rubbers, insect-proof packings, anti-vibration / sound absorption and air sealing materials for cleaners, drip-proof covers for electric water heaters, waterproof packings, heater unit packings , Electrode packing, waterproof packing for smartphones, solenoid valve, waterproof packing for steam microwave oven and jar rice cooker, water tank packing, water absorption valve, water receiving packing, heat insulation heater packing, steam outlet seal, etc.
  • Examples include oil gaskets, O-rings, drain packings, feed / intake packings, anti-vibration rubbers, oil filler packings, oil meter packings, speaker gaskets and speaker edges for acoustic equipment.
  • the construction field it can be used for gaskets, waterproof materials, vibration-proof materials, sound-proof materials, and the like.
  • DIY field it can be used for shoe sole repair materials, insole repair materials, and the like.
  • anti-vibration rubber it can be used for anti-vibration rubber for automobiles, anti-vibration rubber for railway vehicles, anti-vibration rubber for aircraft, and the like.
  • the curable composition of the present invention is particularly useful as a pressure-sensitive adhesive or an adhesive, and is particularly useful for applications requiring on-site construction.
  • the curable composition of the present invention can be configured as a cured product having good flexibility, it is an elastic adhesive used for bonding materials having different linear expansion coefficients to each other or a member that repeatedly undergoes displacement by heat cycle. It is also useful for applications such as coating agents for bending members that utilize flexibility and flexibility.
  • it can also be suitably used for a liquid sealing material used in on-site molded gaskets, so-called automobile parts, electrical parts, various machine parts, etc., taking advantage of its good surface curability.
  • the curable composition according to the present invention contains (A) an organic polymer having a group represented by the general formula (1), the polymerization inhibition due to oxygen can be greatly suppressed even when used in the air, and appropriate. A cured product having excellent curability can be obtained. Moreover, the curable composition which concerns on this invention can select various coupling groups as X of General formula (1), and it connects with group represented by General formula (1) through a coupling group.
  • the epoxy group of glycidyl methacrylate is ring-opened to form an ester bond with the unsaturated carboxylic acid.
  • This ring opening occurs at both the ⁇ -position and the ⁇ -position, but the ⁇ -adduct opened at the ⁇ -position is the main component, and the ⁇ -adduct opened at the ⁇ -position is the subcomponent.
  • the production ratio of the ⁇ adduct and the ⁇ adduct is 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in terms of molar ratio.
  • Synthesis Example 1 a product having a compound that is usually an ⁇ -adduct as a main component and a ⁇ -adduct as a subcomponent is obtained.
  • the ⁇ -adduct as the main component can be separated and isolated from the product by a known separation method.
  • Synthesis Example 1 a mixture containing an ⁇ adduct and a ⁇ adduct is obtained as the polymer A. That is, the product obtained in Synthesis Example 1 is a product obtained by leaving the whole or part of the ⁇ adduct in the product obtained by the above synthesis method, and is a curable composition containing the ⁇ adduct as a main component. .
  • Synthesis Example 1 is an organic polymer represented by the general formula (I) described in the embodiment
  • Synthesis Example 2 is an organic polymer represented by the general formula (II)
  • Synthesis Examples 3 to 4 are used.
  • Synthesis Example 5 corresponds to the organic polymer represented by the general formula (IV).
  • the number average molecular weight was 22,000, and the liquid 2-hydroxypropyl methacrylate group was liquid at room temperature. Thus, a urethane acrylate (polymer F) having two BA skeletons was obtained. As a result of IR spectrum measurement, it was confirmed that absorption of —NCO derived from an isocyanate group disappeared and absorption of —OH stretching derived from a hydroxyl group remained.
  • the number average molecular weight is a polystyrene equivalent molecular weight measured by gel permeation chromatography using Tosoh's HLC-8120GPC as the liquid feeding system, the column using Tosoh's TSK-GELH type, and the solvent using THF.
  • a urethane acrylate (polymer G) having a PPG skeleton at both ends of 2-hydroxypropyl methacrylate was obtained.
  • IR spectrum measurement it was confirmed that absorption of —NCO derived from an isocyanate group disappeared and absorption of —OH stretching derived from a hydroxyl group remained.
  • Polymer A ′ Synthesis example of poly (acrylic acid n-butyl acrylate) at both terminals of acryloyl group Cuprous bromide as catalyst, pentamethyldiethylenetriamine as ligand, diethyl-2,5-dibromoadipate Using n-butyl acrylate as a monomer and potassium acrylate as an end group introducing agent, and a reaction according to the method of Synthesis Example 2 described in WO2008 / 041768, and the number average in terms of polystyrene.
  • a polymer A ′ which is a poly (acrylic acid-n-butyl) polymer having a molecular weight of 20,000, an average number of acryloyl groups of about 1.9 per molecule, and acryloyl groups at both ends at room temperature. Obtained.
  • Polymer B ′ Synthesis example of poly (poly (n-butyl acrylate) / ethyl acrylate / 2-methoxyethyl acrylate) at both terminals of acryloyl group Cuprous bromide as catalyst and pentamethyldiethylenetriamine as ligand Diethyl-2,5-dibromoadipate as an initiator, n-butyl acrylate / ethyl acrylate / 2-methoxyethyl acrylate in a mole ratio of 25/46/29 as a monomer, and potassium acrylate as a terminal group Used as an introducing agent, the reaction was carried out in accordance with the method of Synthesis Example 4 described in WO2007 / 029733, and the number average molecular weight was 20,000 in terms of polystyrene, and the number of acryloyl groups was about 1.8 per molecule on average.
  • Poly (n-butyl acrylate / ethyl acrylate / 2-methoxy) having acryloyl groups at both ends Chill acrylate) was at room temperature a polymer to obtain a polymer B 'of the liquid.
  • polymer A to polymer H and polymer A ′ to polymer C ′ are the polymers obtained in Synthesis Examples 1 to 8 and Comparative Synthesis Examples 1 to 3, respectively. Is as follows. Monomer B is a monomer obtained in Synthesis Example 9 above. Further, in Table 1, “Acrylic group structure” in the examples represents the structure of the portion bonded to the linking group of the general formula (1), and the “linking group” in the examples represents the “acrylic group” in the general formula (1). In the “group structure”, the first bonded group or X in the general formula (1) is shown.
  • thermosetting composition according to Example 6 and Comparative Example 4 was applied to an adherend (aluminum plate) using a glass rod so that the thickness was 200 ⁇ m.
  • the thermosetting composition in the adherend was left to stand in a dryer at 180 ° C. for 10 minutes.
  • the surface curability was tested by finger touch in an environment of 23 ° C. and 50% RH. The case where the uncured material did not adhere to the finger or the liquid material adhered but was faint was evaluated as “ ⁇ ”, and the case where the liquid material adhered to the finger surface was evaluated as “x”.
  • thermosetting composition according to Example 6 and Comparative Example 4 The hardness test of the cured product of the thermosetting composition according to Example 6 and Comparative Example 4 was performed according to JIS K 7312 (1996). First, each of the thermosetting compositions according to Example 6 and Comparative Example 4 was put in a metal cap having a height of 6 mm, and left in an atmosphere at 180 ° C. for 10 minutes. Then, two cured products of the thermosetting composition obtained for each of the thermosetting compositions according to Example 6 and Comparative Example 4 were stacked, and in close contact with the pressure surface of the type A durometer in a 23 ° C. atmosphere. It was measured 30 seconds after the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are: a curable composition which contains an organic polymer that enables the progression of an adequate curing reaction by considerably suppressing polymerization inhibition by oxygen even if used in air, while being capable of ensuring a degree of freedom of design of the composition; and a product. This curable composition contains (A) an organic polymer that has a group represented by general formula (1), and at least one initiator selected from the group consisting of (B1) a photoinitiator and (B2) a thermal initiator. (In general formula (1), R1 represents -H or -CH3; and X represents a linking group, which is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group (a (thio)ether linking group, an -O-CO- linking group, an -O-CO-NH- linking group, an -NR2- linking group (wherein R2 represents a hydrogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heterocyclic structure-containing group or a group having a plurality of rings)), or a direct bond.)

Description

硬化性組成物、及び製品Curable composition and product
 本発明は、硬化性組成物、及び製品に関する。特に、本発明は、酸素による重合阻害を抑制する基を有する有機重合体を含有する硬化性組成物、及び製品に関する。 The present invention relates to a curable composition and a product. In particular, the present invention relates to a curable composition containing an organic polymer having a group that suppresses polymerization inhibition by oxygen, and a product.
 従来、ポリイソプレンを骨格に有する(メタ)アクリレートオリゴマー、及び水添テルペンフェノール系粘着付与剤を含有する光硬化型粘着剤組成物が知られている(例えば、特許文献1参照。)。特許文献1においては、特許文献1に係る光硬化型粘着剤組成物をPETフィルム上に塗布し、塗布面の上から両面剥離処理されたPETフィルムを被せ、これにUV光を照射して、粘着性を有する硬化物を得ている。特許文献1に係る光硬化型粘着剤組成物によれば、溶解調製時及び塗布時の作業性に優れ、粘着力、透明性に優れた硬化物を与える光硬化型粘着剤組成物を提供できる。 Conventionally, a photocurable pressure-sensitive adhesive composition containing a (meth) acrylate oligomer having a polyisoprene as a skeleton and a hydrogenated terpene phenol tackifier is known (for example, see Patent Document 1). In Patent Document 1, the photocurable pressure-sensitive adhesive composition according to Patent Document 1 is applied onto a PET film, covered with a PET film that has been subjected to a double-sided release treatment from above the coated surface, and irradiated with UV light. A cured product having adhesiveness is obtained. According to the photocurable pressure-sensitive adhesive composition according to Patent Document 1, it is possible to provide a photocurable pressure-sensitive adhesive composition that is excellent in workability at the time of dissolution preparation and coating, and gives a cured product having excellent adhesive strength and transparency. .
 また、光ラジカル硬化においては、酸素による光硬化阻害が課題であり、薄膜の光硬化が特に困難である。すなわち、開始剤の光分解でラジカルが生成し、このラジカルがモノマー及びオリゴマー中の二重結合を攻撃する。酸素が存在しない場合、この反応が繰り返され、最終的にラジカル同士の結合で重合が終了する。しかしながら、酸素が存在すると生成したラジカルが酸素を捕捉し、ペルオキシラジカルが生成される。ペルオキシラジカルは安定であり二重結合とラジカル重合を起こさないので、ペルオキシラジカルの生成段階で反応が終了してしまう。特に、硬化性組成物の塗膜が薄いほど、酸素の硬化阻害の影響が増大する。 Further, in photo radical curing, inhibition of photo curing by oxygen is a problem, and photo curing of a thin film is particularly difficult. That is, radicals are generated by photolysis of the initiator, and these radicals attack the double bonds in the monomer and oligomer. In the absence of oxygen, this reaction is repeated and the polymerization is finally terminated by the bonding of radicals. However, when oxygen is present, the generated radicals capture oxygen and peroxy radicals are generated. Since peroxy radicals are stable and do not cause radical polymerization with a double bond, the reaction ends at the stage of peroxy radical generation. In particular, the thinner the coating film of the curable composition, the greater the influence of oxygen curing inhibition.
 そこで、例えば、以下のような様々な対策が提案されている(例えば、非特許文献1参照。)。すなわち、(a)酸素を物理的に遮蔽する方法、(b)開始剤系を選択する方法、(c)モノマーを選択する方法、(d)チオール/エン光硬化を利用する方法である。(a)の方法は窒素雰囲気下、炭酸ガス雰囲気下等で光硬化させる方法である。(b)の方法は、開始剤濃度を高くする方法であり、この方法では、開始剤の濃度を高くして開始ラジカルの濃度を上げることにより、酸素と反応しないラジカルも増加することを利用している。特に、ペルオキシラジカルが生成した場合に備え、このラジカルが水素引き抜きしやすいアミンを併用することで重合阻害を抑制する方法や、開始剤中にアミノ基を含む化合物を用いる方法が提案されている。 Therefore, for example, the following various countermeasures have been proposed (for example, see Non-Patent Document 1). That is, (a) a method of physically shielding oxygen, (b) a method of selecting an initiator system, (c) a method of selecting a monomer, and (d) a method of using thiol / ene photocuring. The method (a) is a method of photocuring in a nitrogen atmosphere, a carbon dioxide atmosphere or the like. The method (b) is a method of increasing the initiator concentration, and this method utilizes the fact that by increasing the concentration of the initiator and increasing the concentration of the starting radical, the number of radicals that do not react with oxygen also increases. ing. In particular, in preparation for the generation of peroxy radicals, there have been proposed a method of suppressing polymerization inhibition by using together with an amine that easily removes hydrogen, and a method of using a compound containing an amino group in an initiator.
 (c)の方法としては、多官能モノマーを用いる方法(多官能モノマーは酸素の重合阻害を抑制する)、水酸基を有するモノマーを用いる方法、N-ビニルアミドモノマーを用いる方法(N-ビニルアミドモノマーは酸素の重合阻害を抑制する)、ポリプロピレングリコールジアクリレート等のスペーサーを利用する方法、添加剤(リン系第二次酸化劣化防止剤)を活用する方法が提案されている。水酸基を有するモノマーを用いる方法は、水酸基のα炭素に結合している水素原子が引き抜かれやすいことから仮にペルオキシラジカルが生成しても更に水素原子を与えて新たな炭素ラジカルを生成しやすいこと、又はモノマー中で水酸基やカルボキシル基を有するモノマーが分子間で水素結合していることを利用して硬化阻害を抑制している。 As the method of (c), a method using a polyfunctional monomer (a polyfunctional monomer suppresses inhibition of polymerization of oxygen), a method using a monomer having a hydroxyl group, a method using an N-vinylamide monomer (N-vinylamide monomer) Suppresses the inhibition of polymerization of oxygen), a method utilizing a spacer such as polypropylene glycol diacrylate, and a method utilizing an additive (phosphorus-based secondary oxidation degradation inhibitor). The method using a monomer having a hydroxyl group is that a hydrogen atom bonded to the α-carbon of the hydroxyl group is easily extracted, so that even if a peroxy radical is generated, a hydrogen atom is further provided to easily generate a new carbon radical. Alternatively, the inhibition of curing is suppressed by utilizing the fact that a monomer having a hydroxyl group or a carboxyl group in the monomer is hydrogen-bonded between molecules.
 (d)の方法は、チオールを共存させる方法である。この方法は、S-H結合エネルギーが小さいチオールをペルオキシラジカルと反応させ、チイルラジカルを生成させることで酸素の重合阻害を抑制する方法である。 (D) is a method in which thiol coexists. In this method, a thiol having a small SH bond energy is reacted with a peroxy radical to generate a thiyl radical, thereby inhibiting oxygen polymerization inhibition.
 しかし、特許文献1に記載されている光硬化型粘着剤組成物においては、光照射する場合にPETフィルム等で光硬化型粘着剤組成物を外気から遮断することを要するので、光硬化型粘着剤組成物を塗布できる対象が限られるだけでなく、粘着性を有する硬化物を得るために手間がかかる。 However, in the photocurable pressure-sensitive adhesive composition described in Patent Document 1, it is necessary to block the photocurable pressure-sensitive adhesive composition from outside air with a PET film or the like when light is irradiated. Not only is the object to which the agent composition can be applied limited, it takes time and effort to obtain a cured product having tackiness.
 また、非特許文献1に記載されている「(a)酸素を物理的に遮蔽する方法」では、空気中で硬化性組成物を扱うことができず、「(b)開始剤系を選択する方法」では、開始剤の添加量やアミンの添加量に限界があるだけでなく、低分子化合物に新たな活性点が発生して重合が適切に進行しない問題が生じる。また、「(c)モノマーを選択する方法」においては、多官能モノマーを用いる場合、多数の架橋点が多官能モノマーに含まれていることから、硬化性組成物の硬化物が硬く、脆くなる問題がある。そして、水酸基を有するモノマーを用いる場合、酸素による重合阻害をある程度抑制するものの、その効果は不十分である。更に、N-ビニルアミドモノマーを用いる場合、この化合物の極性が高いことから他の配合物質との相溶性が悪く、硬化して得られる硬化物も硬いという問題があり、スペーサーを用いる方法は、重合阻害を抑制する効果が小さいという問題がある。また、リン系第二次酸化劣化防止剤を用いる方法は、この防止剤を添加した後、24時間程度しか効果が持続しないという問題がある。そして、「(d)チオール/エン光硬化を利用する方法」においては、メルカプト基の存在により貯蔵安定性が悪いという問題がある。更に、多官能のビニル化合物と多官能のチオールとを組み合わせて光硬化するので、硬化性組成物の硬化物が硬く、脆くなる問題がある。更に、酸素による重合阻害を大幅に抑制し、未硬化物を実質的になくす場合の効果は、固体の有機重合体では判断できないが(つまり、固体の有機重合体はそもそも液状部分が存在しないことから、表面硬化性試験を実施しても、指等の表面に液状物が付着しないので判断できないのである。)、液状の有機重合体の場合は、表面が未硬化になる問題がある。 In addition, in “(a) Method of physically shielding oxygen” described in Non-Patent Document 1, the curable composition cannot be handled in the air, and “(b) an initiator system is selected. In the “method”, not only the amount of initiator added and the amount of amine added is limited, but there is a problem that a new active site is generated in the low molecular weight compound and the polymerization does not proceed appropriately. In addition, in the “(c) method for selecting a monomer”, when a polyfunctional monomer is used, a cured product of the curable composition is hard and brittle because a large number of crosslinking points are included in the polyfunctional monomer. There's a problem. And when using the monomer which has a hydroxyl group, although the polymerization inhibition by oxygen is suppressed to some extent, the effect is inadequate. Further, when N-vinylamide monomer is used, since the polarity of this compound is high, there is a problem that compatibility with other compounding substances is poor, and a cured product obtained by curing is also hard. There is a problem that the effect of suppressing polymerization inhibition is small. In addition, the method using a phosphorus-based secondary oxidation degradation inhibitor has a problem that the effect lasts only for about 24 hours after the addition of this inhibitor. The “(d) method using thiol / ene photocuring” has a problem that storage stability is poor due to the presence of a mercapto group. Furthermore, since a polyfunctional vinyl compound and a polyfunctional thiol are combined and photocured, the cured product of the curable composition is hard and brittle. Furthermore, the effect of substantially suppressing the inhibition of polymerization by oxygen and substantially eliminating the uncured product cannot be judged by a solid organic polymer (that is, the solid organic polymer has no liquid part in the first place). Therefore, even if the surface curability test is performed, it cannot be judged because the liquid material does not adhere to the surface of a finger or the like.) In the case of a liquid organic polymer, there is a problem that the surface becomes uncured.
特開2014-31500号公報JP 2014-31500 A
 したがって、本発明の目的は、空気中で用いても酸素による重合阻害を大幅に抑制して適切な硬化反応を進行させることができると共に組成物の設計の自由度を確保できる有機重合体を含む硬化性組成物、及び製品を提供することを目的とする。 Accordingly, an object of the present invention includes an organic polymer that can significantly suppress inhibition of polymerization due to oxygen even when used in air to allow an appropriate curing reaction to proceed, and can ensure a degree of freedom in designing the composition. It aims at providing a curable composition and a product.
 本発明は、上記目的を達成するため、(A)下記一般式(1)で表される基を有する有機重合体と、(B1)光開始剤、(B2)熱開始剤、及び(B3)レドックス開始剤からなる群から選択される少なくとも1つの開始剤とを含有する硬化性組成物が提供される。 In order to achieve the above object, the present invention provides (A) an organic polymer having a group represented by the following general formula (1), (B1) a photoinitiator, (B2) a thermal initiator, and (B3). A curable composition is provided containing at least one initiator selected from the group consisting of redox initiators.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Rは-H又は-CHを示し、Xは連結基であり、連結基は置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、極性連結基〔(チオ)エーテル連結基、-O-CO-連結基、-O-CO-NH-連結基、-NR-連結基(Rは水素基、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、複素環構造含有基、又は複数の環を有する基を示す。)〕、又は直接結合である。なお、この硬化性組成物は、所定の官能基を有する重合体に所定の官能基に対して反応性を有する官能基、及び(メタ)アクリレート基を有する化合物を反応させて得られる(A)上記一般式(1)で表される基を有する有機重合体と、(B1)光開始剤、(B2)熱開始剤、及び(B3)レドックス開始剤からなる群から選択される少なくとも1つの開始剤とを混合して硬化性組成物を得る硬化性組成物の製造方法により製造できる。 In the general formula (1), R 1 represents —H or —CH 3 , X represents a linking group, the linking group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group [( (Thio) ether linking group, —O—CO— linking group, —O—CO—NH— linking group, —NR 2 — linking group (R 2 is a hydrogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted An aryl group, a heterocyclic structure-containing group, or a group having a plurality of rings.)], Or a direct bond. In addition, this curable composition is obtained by reacting a polymer having a predetermined functional group with a functional group having reactivity to the predetermined functional group and a compound having a (meth) acrylate group (A). At least one initiation selected from the group consisting of an organic polymer having a group represented by the above general formula (1), (B1) a photoinitiator, (B2) a thermal initiator, and (B3) a redox initiator It can manufacture with the manufacturing method of the curable composition which mixes an agent and obtains a curable composition.
 また、上記硬化性組成物は、(C)単官能(メタ)アクリル系モノマーを更に含有することもできる。 The curable composition can further contain (C) a monofunctional (meth) acrylic monomer.
 また、上記硬化性組成物において、(C)単官能(メタ)アクリル系モノマーが、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基と極性基とを含有する(メタ)アクリレート、-C2pOH基を有する(メタ)アクリレート(ただし、pは2~6の整数)、及び脂環式(メタ)アクリレートからなる群から選択される少なくとも1つの単官能(メタ)アクリル系モノマーを含有することが好ましい。 In the curable composition, the (C) monofunctional (meth) acrylic monomer contains a (meth) acrylate containing a 3- (meth) acrylooxy 2-hydroxypropyl group and a polar group, -C p H 2p It contains at least one monofunctional (meth) acrylic monomer selected from the group consisting of (meth) acrylates having an OH group (where p is an integer of 2 to 6) and alicyclic (meth) acrylates. Is preferred.
 また、上記硬化性組成物において、(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、ポリエステル重合体、ポリカーボネート系重合体、グラフト重合体、炭化水素系重合体、ポリサルファイド系重合体、ポリアミド系重合体、及びジアリルフタレート系重合体からなる群から選択される少なくとも1つの有機重合体を含むこともできる。 In the curable composition, (A) the main chain skeleton of the organic polymer having a group represented by the general formula (1) is a polyoxyalkylene polymer, a (meth) acrylic acid ester polymer, Including at least one organic polymer selected from the group consisting of polyester polymers, polycarbonate polymers, graft polymers, hydrocarbon polymers, polysulfide polymers, polyamide polymers, and diallyl phthalate polymers You can also.
 また、上記硬化性組成物において、(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体を含むこともできる。 In the curable composition, the main chain skeleton of the organic polymer having a group represented by (A) the general formula (1) can also contain a polyoxyalkylene polymer.
 また、上記硬化性組成物において、(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、(メタ)アクリル酸エステル系重合体を含むこともできる。 In the curable composition, the main chain skeleton of the organic polymer having a group represented by (A) the general formula (1) can also contain a (meth) acrylic acid ester polymer.
 また、上記硬化性組成物において、(メタ)アクリル酸エステル系重合体が、テレケリックタイプの有機重合体、分子末端及び官能基共重合タイプの有機重合体、及び末端官能基タイプの有機重合体からなる群から選択される1つの有機重合体であることが好ましい。 In the curable composition, the (meth) acrylic acid ester polymer is a telechelic type organic polymer, a molecular terminal and functional group copolymer type organic polymer, and a terminal functional group type organic polymer. One organic polymer selected from the group consisting of
 また、上記硬化性組成物において、分子末端及び官能基共重合タイプの有機重合体、又は末端官能基タイプの有機重合体が、メタロセン触媒の存在下、重合性モノマーを重合させてなる重合体であってもよい。 In the curable composition, the molecular terminal and functional group copolymer type organic polymer, or the terminal functional group type organic polymer is a polymer obtained by polymerizing a polymerizable monomer in the presence of a metallocene catalyst. There may be.
 また、上記硬化性組成物において、(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリエステル重合体を含むこともできる。 In the curable composition, the main chain skeleton of the organic polymer having a group represented by (A) the general formula (1) may include a polyester polymer.
 また、上記硬化性組成物において、(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリカーボネート系重合体を含むこともできる。 Moreover, in the curable composition, the main chain skeleton of the organic polymer having the group represented by (A) the general formula (1) may include a polycarbonate polymer.
 また、本発明は、上記目的を達成するため、上記に記載の硬化性組成物の硬化物が提供される。 Moreover, in order to achieve the above object, the present invention provides a cured product of the curable composition described above.
 また、本発明は、上記目的を達成するため、上記に記載の硬化性組成物の硬化物を構成要素として有する製品が提供される。 Further, in order to achieve the above object, the present invention provides a product having a cured product of the curable composition described above as a constituent element.
 本発明に係る硬化性組成物、及び製品によれば、空気中で用いても酸素による重合阻害を大幅に抑制して適切な硬化反応を進行させることができると共に組成物の設計の自由度を確保できる有機重合体を含む硬化性組成物、及び製品を提供できる。 According to the curable composition and product of the present invention, even when used in the air, it is possible to significantly suppress polymerization inhibition due to oxygen and to proceed with an appropriate curing reaction and to increase the degree of freedom in designing the composition. A curable composition containing an organic polymer that can be secured, and a product can be provided.
 本発明に係る硬化性組成物は、(A)酸素による重合阻害を抑制する基を有する有機重合体と、(B1)光開始剤、(B2)熱開始剤、及び/又は(B3)レドックス開始剤とを含有する。また、硬化性組成物は、(C)単官能(メタ)アクリル系モノマーを含有することもできる。 The curable composition according to the present invention comprises (A) an organic polymer having a group that suppresses polymerization inhibition by oxygen, (B1) a photoinitiator, (B2) a thermal initiator, and / or (B3) a redox initiation. Containing the agent. The curable composition may also contain (C) a monofunctional (meth) acrylic monomer.
 従来の単官能(メタ)アクリレート重合体を硬化性組成物の構成成分として用いようとしても、硬化性組成物が露出して空気に触れる用途、例えば、コーティング用途、接着用途における被着体への塗布、成形用途等においては酸素による重合阻害の影響が大きく出てしまい、硬化反応が適切に進行しない。また、従来の単官能(メタ)アクリレート重合体を用いて柔軟性を有する硬化物を得たい場合、一般的にはラウリルアクリレート等が用いられるが、ラジカル重合においては酸素による重合阻害が発生し、表面硬化性が不十分となる。 Even if it is going to use the conventional monofunctional (meth) acrylate polymer as a component of a curable composition, the application to the adherend in the application where the curable composition is exposed and exposed to air, for example, a coating application or an adhesive application In coating and molding applications, the influence of polymerization inhibition due to oxygen is significant, and the curing reaction does not proceed properly. In addition, when it is desired to obtain a cured product having flexibility using a conventional monofunctional (meth) acrylate polymer, lauryl acrylate or the like is generally used, but in radical polymerization, polymerization inhibition occurs due to oxygen, The surface curability is insufficient.
 また、従来の硬化性組成物には従来の単官能(メタ)アクリレート重合体と共に多官能モノマー等を更に添加すれば酸素阻害をある程度抑制することはできるが硬化物が硬くなってしまい、屈曲面に塗布する用途や塗布厚を厚くすることが要求される用途に用いることはできない。 Moreover, if a polyfunctional monomer is further added to the conventional curable composition together with the conventional monofunctional (meth) acrylate polymer, oxygen inhibition can be suppressed to some extent, but the cured product becomes hard, and the curved surface is bent. It cannot be used for applications where it is necessary to increase the coating thickness.
 そこで本発明者は、かかる点を解消すべく様々な重合体を検討したところ、特定の構造の基を有する有機重合体を硬化性組成物に含有させることにより上記の各種問題点を解消できると共に、酸素による重合阻害を抑制できることを見出した。 Therefore, the present inventor has studied various polymers to solve such a problem, and can solve the above-mentioned various problems by including an organic polymer having a group having a specific structure in the curable composition. It was found that polymerization inhibition by oxygen can be suppressed.
<(A)成分:有機重合体>
 具体的に、本発明に係る硬化性組成物は、(A)下記一般式(1)で表される基を有する有機重合体(以下、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基を含有する有機重合体と記述する。)と、(B1)光開始剤、(B2)熱開始剤、及び(B3)レドックス開始剤からなる群から選択される少なくとも1つの開始剤とを含有する。(A)成分である有機重合体は、常温で液状である。また、硬化性組成物は、(C)単官能(メタ)アクリル系モノマーを更に含有してもよい。
<(A) component: organic polymer>
Specifically, the curable composition according to the present invention contains (A) an organic polymer having a group represented by the following general formula (1) (hereinafter referred to as 3- (meth) acrylooxy 2-hydroxypropyl group). And (B1) a photoinitiator, (B2) a thermal initiator, and (B3) at least one initiator selected from the group consisting of redox initiators. The organic polymer as component (A) is liquid at normal temperature. Moreover, the curable composition may further contain (C) a monofunctional (meth) acrylic monomer.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、Rは-H又は-CHを示し、Xは連結基である。連結基としては、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、極性を有する基である極性連結基〔(チオ)エーテル連結基、-O-CO-連結基、-O-CO-NH-連結基、-NR-連結基(Rは水素基、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、複素環構造含有基、又は複数の環を有する基を示す。)〕が挙げられ、連結基は直接結合であってもよい。ここで、連結基としては、酸素による重合阻害を抑制する観点から、極性連結基が好ましく、-NR-連結基、-O-CO-NH-連結基がより好ましく、-O-CO-NH-連結基が更に好ましい。 In general formula (1), R 1 represents —H or —CH 3 , and X represents a linking group. Examples of the linking group include a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group that is a polar group [(thio) ether linking group, —O—CO— linking group, —O—CO —NH— linking group, —NR 2 — linking group (R 2 represents a hydrogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heterocyclic structure-containing group, or a group having a plurality of rings. And the linking group may be a direct bond. Here, the linking group is preferably a polar linking group from the viewpoint of suppressing polymerization inhibition by oxygen, more preferably —NR 2 — linking group, —O—CO—NH— linking group, and —O—CO—NH. More preferred are linking groups.
 なお、(チオ)エーテル連結基とは、エーテル連結基[-O-]及び/又はチオエーテル連結基[-S-]を表す。また、「-O-CO-連結基」を「エステル連結基」、「-O-CO-NH-連結基」を「ウレタン連結基」、「-NR-連結基」を「アミン連結基」と称する。更に、一般式(1)のXにおいて、直接結合とは、有機重合体のポリマー鎖が連結基を介することなく一般式(1)の炭素原子に直接に結合することを意味する。 The (thio) ether linking group represents an ether linking group [—O—] and / or a thioether linking group [—S—]. Also, “—O—CO— linking group” is “ester linking group”, “—O—CO—NH— linking group” is “urethane linking group”, and “—NR 2 — linking group” is “amine linking group”. Called. Furthermore, in X of the general formula (1), the direct bond means that the polymer chain of the organic polymer is directly bonded to the carbon atom of the general formula (1) without a linking group.
[酸素による重合阻害を抑制するメカニズム]
 以下の式は、(A)一般式(1)で表される基を有する有機重合体による重合阻害抑制メカニズムを説明する概要図である。なお、図中の「・」は、ラジカルを示す。また、図中の「(1)」は水素引抜反応を示し、「(2)」は重合開始反応を示し、「(3)」は酸素の捕捉(消費)反応を示す。更に、Rは前記に同じであり、X以降にポリマー鎖が結合している。
[Mechanism to suppress inhibition of polymerization by oxygen]
The following formula is a schematic diagram for explaining a polymerization inhibition suppression mechanism by an organic polymer having a group represented by (A) the general formula (1). In the figure, “•” indicates a radical. In the figure, “(1)” indicates a hydrogen abstraction reaction, “(2)” indicates a polymerization initiation reaction, and “(3)” indicates an oxygen capture (consumption) reaction. Further, R 1 is the same as described above, and a polymer chain is bonded after X.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 酸素による重合阻害を抑制するメカニズムとしては、以下のメカニズムが推測される。すなわち、酸素による重合阻害は、重合開始剤から生成する開始ラジカルやモノマーの重合過程で生成する重合末端ラジカルが酸素にトラップされて生成するペルオキシラジカルの重合能力が低く、重合反応が停止することによって起こる。ここで、系に連鎖移動剤としての機能を有する一般式(1)で表される基を有する有機重合体が存在する場合、水素引き抜き能を有するペルオキシラジカルが一般式(1)で表される基から水素を引き抜く((1)の反応)ことで、新たに生成する2級水酸基のα炭素ラジカルが重合を開始する((2)の反応)と考えられる。また、生成した2級水酸基のα炭素ラジカルは酸素を補足することもできるため、系内の酸素濃度を低減させる効果((3)の反応)も考えられる。これらのメカニズムにより、酸素による重合阻害が抑制されると推測される。更に、1つの一般式(1)で表される基を有する有機重合体が重合に関与しない場合であっても、α炭素の存在により重合反応の機会が増加するので、重合反応が進みやすくなる。 The following mechanism is presumed as a mechanism for suppressing polymerization inhibition by oxygen. In other words, the polymerization inhibition by oxygen is caused by the fact that the polymerization ability of peroxyl radicals generated by trapping the oxygen radicals generated from the polymerization initiator and the polymerization end radicals generated from the polymerization initiator is low and the polymerization reaction is stopped. Occur. Here, when an organic polymer having a group represented by the general formula (1) having a function as a chain transfer agent is present in the system, a peroxy radical having a hydrogen abstraction ability is represented by the general formula (1). By extracting hydrogen from the group (reaction (1)), it is considered that the α-carbon radical of the newly generated secondary hydroxyl group starts polymerization (reaction (2)). In addition, since the α-carbon radical of the secondary hydroxyl group produced can supplement oxygen, the effect of reducing the oxygen concentration in the system (reaction (3)) is also conceivable. It is presumed that polymerization inhibition by oxygen is suppressed by these mechanisms. Further, even when the organic polymer having one group represented by the general formula (1) does not participate in the polymerization, the presence of the α carbon increases the opportunity for the polymerization reaction, so that the polymerization reaction is likely to proceed. .
 また、炭素ラジカルは、1級水酸基のα炭素<2級水酸基のα炭素<極性基が結合した2級水酸基のα炭素の順に生成しやすくなる。一般式(1)に極性連結基が存在する場合、2級水酸基のα炭素ラジカルが発生しやすくなっているので、極性連結基を有する一般式(1)で表される基は、酸素による重合阻害の抑制においてより好ましい構造を有している。 Also, the carbon radicals are likely to be generated in the order of α-carbon of primary hydroxyl group <α-carbon of secondary hydroxyl group <α-carbon of secondary hydroxyl group to which a polar group is bonded. When the polar linking group is present in the general formula (1), the α-carbon radical of the secondary hydroxyl group is likely to be generated. Therefore, the group represented by the general formula (1) having the polar linking group is polymerized by oxygen. It has a more preferred structure in inhibiting inhibition.
 また、本発明に係る(A)一般式(1)で表される基を有する有機重合体は水酸基を有する。水酸基を有する化合物は分子間で水素結合(すなわち、水酸基同士での水素結合、若しくはカルボニル基と水酸基との間で水素結合)する。したがって、水酸基の存在により、会合による局所的な二重結合が増大するので、重合反応が進みやすくなる。 The organic polymer having a group represented by the general formula (1) according to the present invention has a hydroxyl group. A compound having a hydroxyl group is hydrogen-bonded between molecules (that is, a hydrogen bond between hydroxyl groups or a hydrogen bond between a carbonyl group and a hydroxyl group). Therefore, the presence of the hydroxyl group increases local double bonds due to the association, so that the polymerization reaction easily proceeds.
[有機重合体の主鎖骨格]
 一般式(1)で表される基を有する有機重合体の主鎖骨格の重合体としては、一般式(1)で表される基を有する有機重合体であれば特に制限はないが、主鎖がポリシロキサンでない有機重合体であり、ポリシロキサン(すなわち、シリコーン)を除く各種の主鎖骨格を有する有機重合体が、接点障害の要因になる低分子環状シロキサンを含有若しくは発生させない点で好ましい。
[Main chain skeleton of organic polymer]
The polymer of the main chain skeleton of the organic polymer having a group represented by the general formula (1) is not particularly limited as long as it is an organic polymer having a group represented by the general formula (1). An organic polymer whose chain is not polysiloxane, and an organic polymer having various main chain skeletons excluding polysiloxane (that is, silicone) is preferable in that it does not contain or generate a low-molecular cyclic siloxane that causes contact failure. .
 有機重合体の重量平均分子量は硬化性組成物の硬化物の良好な伸び特性を確保する観点からGPCにおけるポリスチレン換算において1,000以上が好ましく、2,000以上がより好ましく、3,000以上が更に好ましい。硬化性組成物の適切な粘度を確保し、良好な作業性を確保する観点から重量平均分子量は100,000程度以下が好ましく、50,000以下がより好ましく、30,000以下が更に好ましい。 The weight average molecular weight of the organic polymer is preferably 1,000 or more, more preferably 2,000 or more, more preferably 3,000 or more in terms of polystyrene in GPC from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. Further preferred. From the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the weight average molecular weight is preferably about 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less.
 また、(A)有機重合体は50℃で液状であることが好ましい。すなわち、他の成分と配合する場合における取扱い易さを確保する観点からは、50℃で液状を示すことが好ましく、20℃で液状を示すことがより好ましく、0℃で液状を示すことが更に好ましい。 Further, (A) the organic polymer is preferably liquid at 50 ° C. That is, from the viewpoint of ensuring ease of handling when blended with other components, it is preferable to exhibit a liquid state at 50 ° C., more preferably a liquid state at 20 ° C., and a liquid state at 0 ° C. preferable.
 また、硬化性組成物の硬化物の柔軟性の維持・向上の観点からは、ガラス転移温度(Tg)は20℃以下が好ましく、0℃以下がより好ましく、-10℃以下が更に好ましい。そして、(A)成分の有機重合体は、柔軟性の維持・向上の観点から、硬化後のA硬度が90未満であることが好ましく、85未満であることより好ましく、80未満であることが更に好ましい。本発明の説明において「柔軟性を有する」とは、A硬度が95未満であることをいうものとする。このA硬度は、23℃雰囲気下において、タイプAデュロメータの加圧面を硬化物に密着させてから30秒後に測定した、JIS K 7312(1996)の試験方法に準じて測定した値である。なお、(A)成分において、一般式(1)のXは、-O-Arl-(ただし、Arlはアリーレン基である。)ではないことが好ましい。 Further, from the viewpoint of maintaining and improving the flexibility of the cured product of the curable composition, the glass transition temperature (Tg) is preferably 20 ° C. or less, more preferably 0 ° C. or less, and further preferably −10 ° C. or less. The organic polymer as the component (A) preferably has an A hardness after curing of less than 90, more preferably less than 85, and less than 80 from the viewpoint of maintaining and improving flexibility. Further preferred. In the description of the present invention, “having flexibility” means that the A hardness is less than 95. This A hardness is a value measured according to the test method of JIS K 7312 (1996), measured 30 seconds after the pressure surface of the type A durometer was brought into close contact with the cured product in a 23 ° C. atmosphere. In the component (A), X in the general formula (1) is preferably not —O—Arl— (wherein Arl is an arylene group).
 一般式(1)で表される基を有する有機重合体の主鎖骨格の重合体の例としては、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエン、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、又はラクトン類の開環重合で得られるポリエステル重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;ポリオキシアルキレン系重合体等の主鎖骨格の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体が挙げられる。これらの骨格は、一般式(1)で表される基を有する有機重合体の中に単独で含まれていても、2種類以上がブロック若しくはランダムに含まれていてもよい。 Examples of the polymer of the main chain skeleton of the organic polymer having a group represented by the general formula (1) include polyoxypropylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and other polyoxypropylenes. Alkylene polymers; ethylene-propylene copolymers, polyisobutylene, polyisoprene, polybutadiene, hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; adipic acid Polyester polymer obtained by condensation of dibasic acid such as glycol and ring-opening polymerization of lactones; (meth) acrylic obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate Acid ester polymers; in main chain skeleton polymers such as polyoxyalkylene polymers Graft polymers obtained by polymerizing a vinyl monomer; polysulfide polymer; polyamide polymer; polycarbonate-based polymer; diallyl phthalate polymers. These skeletons may be contained alone in the organic polymer having the group represented by the general formula (1), or two or more kinds may be contained in blocks or randomly.
 これらの中で、炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化性組成物が耐寒性に優れることから好ましく、炭化水素系重合体の中でも飽和炭化水素系重合体が好ましい。また、ポリオキシアルキレン系重合体、及び(メタ)アクリル酸エステル系重合体は、柔軟性に優れることから特に好ましい。 Among these, hydrocarbon polymers, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers have a relatively low glass transition temperature, and the resulting curable composition has excellent cold resistance. Of these hydrocarbon polymers, saturated hydrocarbon polymers are preferred. Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their excellent flexibility.
(ポリオキシアルキレン系重合体)
 ポリオキシアルキレン系重合体は、一般式(2)で示される繰り返し単位を有する重合体である。
 -R-O- ・・・(2)
 一般式(2)中、Rは炭素数が1~14の直鎖状若しくは分岐アルキレン基であり、炭素数が1~14の直鎖状若しくは分岐アルキレン基が好ましく、炭素数が2~4の直鎖状若しくは分岐アルキレン基が更に好ましい。
(Polyoxyalkylene polymer)
The polyoxyalkylene polymer is a polymer having a repeating unit represented by the general formula (2).
-R 3 -O- (2)
In general formula (2), R 3 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and having 2 to 4 carbon atoms. The linear or branched alkylene group is more preferable.
 一般式(2)で示されるポリオキシアルキレン系重合体の繰り返し単位は、硬化後の柔軟性の観点から-CHCHO-、-CHCH(CH)O-、-CHCHCHCHO-が好ましく、-CHCH(CH)O-、-CHCHCHCHO-がより好ましく、-CHCH(CH)O-が最も好ましい。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位から構成されても、2種類以上の繰り返し単位から構成されてもよい。 Repeating units of the polyoxyalkylene polymer represented by the general formula (2), -CH 2 CH 2 O in terms of flexibility after curing -, - CH 2 CH (CH 3) O -, - CH 2 CH 2 CH 2 CH 2 O- are preferable, -CH 2 CH (CH 3) O -, - CH 2 CH 2 CH 2 CH 2 O- , more preferably, -CH 2 CH (CH 3) O- is most preferable. The main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit or may be composed of two or more types of repeating units.
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOH等のアルカリ触媒による重合法、例えば、複金属シアン化物錯体触媒による重合法等が挙げられるが、特に限定されない。複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、重量平均分子量(Mw)/数平均分子量(Mn)が1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。 Examples of the method for synthesizing a polyoxyalkylene polymer include, but are not limited to, a polymerization method using an alkali catalyst such as KOH, for example, a polymerization method using a double metal cyanide complex catalyst, and the like. According to the polymerization method using a double metal cyanide complex catalyst, the number average molecular weight is 6,000 or more, the weight average molecular weight (Mw) / number average molecular weight (Mn) is a high molecular weight of 1.6 or less, and a polyoxyalkylene system having a narrow molecular weight distribution. A polymer can be obtained.
 ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、例えば、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族系ポリイソシアネート;イソホロンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られる成分を挙げることができる。 The main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component. Examples of the urethane bond component include aromatic polyisocyanates such as toluene (tolylene) diisocyanate and diphenylmethane diisocyanate; components obtained from a reaction between an aliphatic polyisocyanate such as isophorone diisocyanate and a polyoxyalkylene polymer having a hydroxyl group. Can be mentioned.
(飽和炭化水素系重合体)
 飽和炭化水素系重合体は、芳香環を除く他の炭素-炭素不飽和結合を実質的に含有しない重合体である。その骨格を形成する重合体は、(1)エチレン、プロピレン、1-ブテン、イソブチレン等の炭素数が2~6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレン等のジエン系化合物を単独重合させるか、あるいはジエン系化合物とオレフィン系化合物とを共重合させた後、水素添加する等の方法により得ることができる。イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。主鎖骨格が飽和炭化水素系重合体である場合、耐熱性、耐候性、耐久性、及び湿気遮断性に優れる特徴を有する。飽和炭化水素系重合体としては、例えば、1,2-ポリブタジエン、1,4-ポリブタジエン、ポリイソプレン等が挙げられる。
(Saturated hydrocarbon polymer)
The saturated hydrocarbon polymer is a polymer that does not substantially contain other carbon-carbon unsaturated bonds other than aromatic rings. The polymer forming the skeleton is either (1) polymerizing an olefinic compound having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene or isobutylene as a main monomer, or (2) a diene such as butadiene or isoprene. It can be obtained by a method such as homopolymerizing a system compound or copolymerizing a diene compound and an olefin compound and then hydrogenating. The isobutylene polymer and the hydrogenated polybutadiene polymer are preferable because it is easy to introduce a functional group at the terminal, easily control the molecular weight, and can increase the number of terminal functional groups, and the isobutylene polymer is particularly preferable. preferable. When the main chain skeleton is a saturated hydrocarbon polymer, the main chain skeleton has characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties. Examples of the saturated hydrocarbon polymer include 1,2-polybutadiene, 1,4-polybutadiene, polyisoprene, and the like.
 イソブチレン系重合体は、単量体単位の全てがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよい。ゴム特性の面からは、イソブチレンに由来する繰り返し単位を50質量%以上含有する重合体が好ましく、80質量%以上含有する重合体がより好ましく、90~99質量%含有する重合体が特に好ましい。 In the isobutylene polymer, all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers. From the viewpoint of rubber properties, a polymer containing 50% by mass or more of repeating units derived from isobutylene is preferred, a polymer containing 80% by mass or more is more preferred, and a polymer containing 90 to 99% by mass is particularly preferred.
(ポリエステル重合体)
 ポリエステル重合体は公知の種々の方法により得ることができるが、代表的な方法としては、以下に挙げるような多塩基酸とポリヒドロキシ化合物、若しくはε-カプロラクトン、β-メチル-δ-バレロラクトン等のラクトンモノマーの各々1種以上とを脱水又は脱アルコール反応若しくは付加反応させて得られる。例えば、琥珀酸、無水琥珀酸、グルタル酸、アジピン酸、セバチン酸等の炭素数4~28の脂肪族ジカルボン酸、及びそれらのジメチルエステルのようなジカルボン酸の同効化合物、ヘキサヒドロ無水フタル酸等の脂環族ジカルボン酸;無水フタル酸等の芳香族ジカルボン酸又はその同効化合物;無水トリメリット酸等の多塩基酸及びその同効化合物を酸成分として挙げることができる。これらの中で、ポリエステル重合体が柔軟になることから、脂肪族ジカルボン酸が好ましい。
(Polyester polymer)
Polyester polymers can be obtained by various known methods. Typical methods include polybasic acids and polyhydroxy compounds, ε-caprolactone, β-methyl-δ-valerolactone, etc. It can be obtained by dehydration, dealcoholization reaction or addition reaction with one or more lactone monomers. For example, aliphatic dicarboxylic acids having 4 to 28 carbon atoms such as succinic acid, succinic anhydride, glutaric acid, adipic acid, and sebacic acid, and synergistic compounds of dicarboxylic acids such as dimethyl esters thereof, hexahydrophthalic anhydride, etc. As the acid component, there may be mentioned an alicyclic dicarboxylic acid, an aromatic dicarboxylic acid such as phthalic anhydride or its synergistic compound; a polybasic acid such as trimellitic anhydride and its synergistic compound. Of these, aliphatic dicarboxylic acids are preferred because the polyester polymer becomes flexible.
 ポリヒドロキシ化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール等の直鎖ジオール;2-メチル-1,3-プロパンジオール、1、3-ブチレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール等の分岐ジオール;シクロヘキサン-1,4-ジメタノール、スピログリコール類等の環状ジオール;グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール、ラクトンポリオール、ポリカーボネートポリオール、ポリエーテルポリオール、ポリブタジエンポリオール、又はエポキシ樹脂等をアルコール成分として挙げることができる。また、前記ポリヒドロキシ化合物の同効成分も用いることができる。 Examples of the polyhydroxy compound include linear diols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butylene glycol, 1,6-hexanediol; 2-methyl-1,3-propanediol, 1,3- Branched diols such as butylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol; cyclohexane Cyclic diols such as 1,4-dimethanol and spiroglycols; polyhydric alcohols such as glycerin, trimethylolpropane, pentaerythritol, lactone polyols, polycarbonate polyols, polyether polyols, polybutadiene polyols, or epoxies The fat and the like as the alcohol component. Moreover, the same effect component of the said polyhydroxy compound can also be used.
 これらの中で、ポリエステル重合体が柔軟になることから、分岐ジオール、及び環状ジオールが好ましく、分岐ジオールがより好ましい。 Of these, branched diols and cyclic diols are preferred, and branched diols are more preferred because the polyester polymer becomes flexible.
 ポリエーテルポリオールとしては、例えば、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等を単独で重合したポリオキシエチレンポリオール、ポリオキシプロピレンポリオール、ポリオキシテトラメチレンポリオール、又はエチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の1種以上を共重合させて得られるポリエーテルポリオール等を挙げることができる。 As the polyether polyol, for example, one or more of polyoxyethylene polyol, polyoxypropylene polyol, polyoxytetramethylene polyol, or ethylene oxide, propylene oxide, tetrahydrofuran, or the like obtained by polymerizing ethylene oxide, propylene oxide, tetrahydrofuran or the like alone And polyether polyols obtained by copolymerization of
 また、その他のポリオール及び同効成分として前記のポリヒドロキシ化合物を用いることができる。これらのポリオールは必要に応じて1種又は2種以上を同時に用いることができる。 In addition, the above-mentioned polyhydroxy compounds can be used as other polyols and synergistic components. These polyols can be used alone or in combination of two or more as required.
 そして、ポリエステル重合体は酸素硬化性の不飽和基を有しないポリエステル重合体が好ましく、飽和ポリエステル重合体がより好ましい。ポリエステル重合体が柔軟になることから、非芳香族ポリエステル重合体が好ましく、非芳香族飽和ポリエステル重合体がより好ましい。硬化性組成物の塗布作業性を確保する観点から、ポリエステル重合体は50℃で液状であることが好ましく、20℃で液状であることがより好ましく、0℃で液状であることが最も好ましい。 The polyester polymer is preferably a polyester polymer having no oxygen curable unsaturated group, and more preferably a saturated polyester polymer. A non-aromatic polyester polymer is preferable and a non-aromatic saturated polyester polymer is more preferable because the polyester polymer becomes flexible. From the viewpoint of ensuring application workability of the curable composition, the polyester polymer is preferably liquid at 50 ° C., more preferably liquid at 20 ° C., and most preferably liquid at 0 ° C.
((メタ)アクリル酸エステル系重合体)
 (メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては、各種のモノマーを用いることができる。例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系モノマー;脂環式(メタ)アクリル酸エステル系モノマー;芳香族(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸2-メトキシエチル等の(メタ)アクリル酸エステル系モノマー;γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン等のシリル基含有(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸の誘導体;フッ素含有(メタ)アクリル酸エステル系モノマー等が挙げられる。
((Meth) acrylic acid ester polymer)
Various monomers can be used as the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer. For example, alkyl (meth) acrylate esters such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, etc. Monomer; Alicyclic (meth) acrylic acid ester monomer; Aromatic (meth) acrylic acid ester monomer; (Meth) acrylic acid ester monomer such as 2-methoxyethyl (meth) acrylate; γ- (methacryloyloxy) Propyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane and other silyl group-containing (meth) acrylate monomers; (meth) acrylic acid derivatives; fluorine-containing (meth) acrylate monomers Can be mentioned.
 (メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーと共に、以下のビニル系モノマーを共重合することもできる。ビニル系モノマーを例示すると、スチレン、無水マレイン酸、酢酸ビニル等が挙げられる。 In the (meth) acrylate polymer, the following vinyl monomers can be copolymerized with the (meth) acrylate monomer. Examples of vinyl monomers include styrene, maleic anhydride, vinyl acetate and the like.
 これらは、単独で用いても、複数を共重合させてもよい。更に、反応性官能基含有(メタ)アクリル酸エステル系モノマーを併用することで、(メタ)アクリル酸エステル系重合体中の反応性官能基の数を制御できる。接着性が良いことからメタクリル酸エステルモノマーからなるメタクリル酸エステル系重合体が特に好ましい。また、低粘度化、柔軟性の付与、粘着性の付与をする場合、アクリル酸エステルモノマーを適時用いることが好適である。なお、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を表す。 These may be used alone or may be copolymerized. Furthermore, the number of reactive functional groups in the (meth) acrylic acid ester polymer can be controlled by using the reactive functional group-containing (meth) acrylic acid ester monomer in combination. A methacrylic acid ester polymer comprising a methacrylic acid ester monomer is particularly preferred because of its good adhesion. In addition, when the viscosity is reduced, the flexibility is imparted, and the tackiness is imparted, it is preferable to use an acrylate monomer as appropriate. In addition, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
 (メタ)アクリル酸エステル系重合体の製造方法は、特に限定されず、例えば、ラジカル重合反応を用いたラジカル重合法を用いることができる。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端等の制御された位置に反応性を有する官能基を導入できる制御ラジカル重合法が挙げられる。ただし、重合開始剤としてアゾ系化合物、過酸化物等を用いるフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなる。したがって、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、制御ラジカル重合法を用いることが好適である。 The method for producing the (meth) acrylate polymer is not particularly limited, and for example, a radical polymerization method using a radical polymerization reaction can be used. As the radical polymerization method, a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator, or a functional group having reactivity at a controlled position such as a terminal can be introduced. Examples include controlled radical polymerization. However, a polymer obtained by a free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a large molecular weight distribution value of 2 or more and a high viscosity. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high rate It is preferable to use a controlled radical polymerization method.
 制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられる。原子移動ラジカル重合法(Atom Transfer Radical Polymerization;ATRP)等のリビングラジカル重合法を採用することが好ましい。なお、主鎖骨格が(メタ)アクリル酸エステル系重合体であって、その一部がテレケリックポリマーである重合体(以下、「疑似テレケリックポリマー」という。)を合成する反応として、反応性を有する官能基を有するチオール化合物を用いた反応や、反応性を有する官能基を有するチオール化合物、及びメタロセン化合物を用いた反応が挙げられる。これらの反応により得られる疑似テレケリックポリマーも、硬化性組成物の機能、及び奏する効果を阻害しない範囲で用いることができる。 Examples of the controlled radical polymerization method include a free radical polymerization method and a living radical polymerization method using a chain transfer agent having a specific functional group. It is preferable to employ a living radical polymerization method such as an atom transfer radical polymerization method (Atom Transfer Radical Polymerization; ATRP). As a reaction for synthesizing a polymer whose main chain skeleton is a (meth) acrylic acid ester polymer and a part of which is a telechelic polymer (hereinafter referred to as “pseudo-telechelic polymer”), it is reactive. Reaction using a thiol compound having a functional group having a thiol compound, a reaction using a thiol compound having a reactive functional group, and a metallocene compound. The pseudo-telechelic polymer obtained by these reactions can also be used as long as it does not impair the function of the curable composition and the effect produced.
 なお、片末端に水酸基を有する(メタ)アクリル酸エステル系重合体を得る場合、特開2000-344823号公報記載の2-メルカプトエタノール等の水酸基を有するチオール化合物及びメタロセン化合物を用いた反応を用いることができ、特開2000-128911号公報記載のチオグリセロール(3-メルカプト-1,2-プロパンジオール)等のチオール基と2級水酸基とを有する化合物を用いた反応を用いることもできる。 When obtaining a (meth) acrylate polymer having a hydroxyl group at one end, a reaction using a thiol compound having a hydroxyl group and a metallocene compound such as 2-mercaptoethanol described in JP-A No. 2000-344823 is used. A reaction using a compound having a thiol group and a secondary hydroxyl group such as thioglycerol (3-mercapto-1,2-propanediol) described in JP-A No. 2000-128911 can also be used.
(ポリカーボネート系重合体)
 ポリカーボネート系重合体としては、例えば、カーボネートとポリオールとの反応生成物が挙げられる。具体的にカーボネートとしては、ジフェニルカーボネート等のジアリールカーボネート、並びにジメチルカーボネート及びジエチルカーボネート等のジアルキルカーボネート等が挙げられる。硬化性組成物が柔軟になることから、ジアルキルカーボネートが好ましい。
(Polycarbonate polymer)
As a polycarbonate-type polymer, the reaction product of a carbonate and a polyol is mentioned, for example. Specific examples of the carbonate include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate. Dialkyl carbonate is preferred because the curable composition becomes flexible.
 ポリオールとしては、前記のポリヒドロキシ化合物、及びポリエステルポリオールが挙げられる。なお、ポリエステルポリオールとしては前記のポリエステル重合体のポリエステルポリオール(ポリヒドロキシ化合物が末端に存在するポリエステルポリオール)を用いることができる。ポリカーボネートとしては、硬化性組成物が柔軟になることから、非芳香族ポリカーボネートが好ましい。 Examples of the polyol include the above-mentioned polyhydroxy compound and polyester polyol. In addition, as a polyester polyol, the polyester polyol (polyester polyol in which the polyhydroxy compound exists in the terminal) of the said polyester polymer can be used. As the polycarbonate, a non-aromatic polycarbonate is preferable because the curable composition becomes flexible.
[架橋性ケイ素基を含有する重合体]
 上記主鎖骨格の重合体に架橋性ケイ素基が含まれていてもよい。架橋性ケイ素基は、上記主鎖骨格の重合体中、及び/又は末端に含まれる。すなわち、(A)成分は、一般式(1)で表される基と架橋性ケイ素基との双方を含有することができる。この場合、接着性の向上、及び架橋点増加による耐熱性の向上が望める。また、光反応、熱反応、又はレドックス反応による一般式(1)で表される基の硬化に加え、更に湿気によって架橋性ケイ素基が硬化するため、硬化物の硬化度合いを更に高める事ができる。
[Polymer containing crosslinkable silicon group]
The main chain skeleton polymer may contain a crosslinkable silicon group. The crosslinkable silicon group is contained in the main chain skeleton polymer and / or at the terminal. That is, the component (A) can contain both a group represented by the general formula (1) and a crosslinkable silicon group. In this case, it is possible to improve adhesiveness and heat resistance by increasing the number of crosslinking points. In addition to curing of the group represented by the general formula (1) by photoreaction, thermal reaction, or redox reaction, the crosslinkable silicon group is further cured by moisture, so that the degree of curing of the cured product can be further increased. .
 架橋性ケイ素基としては、例えば、一般式(3)で示される基が好ましい。なお、架橋性ケイ素基とは、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋し得る基である。 As the crosslinkable silicon group, for example, a group represented by the general formula (3) is preferable. The crosslinkable silicon group is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(3)中、Rは有機基を示す。Rは、炭素数が1~20の炭化水素基が好ましい。これらの中でRは、特にメチル基が好ましい。Rは置換基を有していてもよい。Rが2個以上存在する場合、複数のRは同一であっても、異なっていてもよい。Wは水酸基、又は加水分解性基を示し、Wが2個以上存在する場合、複数のWは同一であっても、異なっていてもよい。aは0、1、2又は3の整数のいずれかである。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るためには、式(3)においてaは2以上が好ましく、3がより好ましい。硬化性組成物を光硬化性組成物として用いる場合、十分な柔軟性を有する光硬化性組成物を得る観点からは、aは2が好ましい。 In formula (3), R 4 represents an organic group. R 4 is preferably a hydrocarbon group having 1 to 20 carbon atoms. Among these, R 4 is particularly preferably a methyl group. R 4 may have a substituent. When two or more R 4 are present, the plurality of R 4 may be the same or different. W represents a hydroxyl group or a hydrolyzable group, and when two or more W exist, the plurality of W may be the same or different. a is an integer of 0, 1, 2, or 3. In view of curability, in order to obtain a curable composition having a sufficient curing rate, in formula (3), a is preferably 2 or more, more preferably 3. When using a curable composition as a photocurable composition, a is 2 from a viewpoint of obtaining the photocurable composition which has sufficient softness | flexibility.
 加水分解性基や水酸基は1個のケイ素原子に1~3個の範囲で結合することができる。加水分解性基や水酸基が架橋性ケイ素基中に2個以上結合する場合には、それらは同一であっても、異なっていてもよい。 Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
 Wで示される加水分解性基としては、F原子以外であれば特に限定されないが、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が好ましい。反応性が高い点からメトキシ基やエトキシ基が更に好ましい。架橋性ケイ素基の具体的な構造としては、反応性が高い点からトリメトキシシリル基、トリエトキシシリル基が好ましく、トリメトキシシリル基が更に好ましい。十分な柔軟性を有する硬化性組成物を得る観点からメチルジメトキシシリル基、メチルジエトキシシリル基が好ましい。 The hydrolyzable group represented by W is not particularly limited as long as it is other than an F atom, but an alkoxy group is preferable from the viewpoint of mild hydrolyzability and easy handling. From the viewpoint of high reactivity, a methoxy group or an ethoxy group is more preferable. The specific structure of the crosslinkable silicon group is preferably a trimethoxysilyl group or a triethoxysilyl group, and more preferably a trimethoxysilyl group from the viewpoint of high reactivity. From the viewpoint of obtaining a curable composition having sufficient flexibility, a methyldimethoxysilyl group and a methyldiethoxysilyl group are preferred.
[有機重合体の合成方法]
 (A)成分の有機重合体は、分子中にグリシジル基、カルボキシル基、アミノ基、メルカプト基、又はイソシアネート基等の官能基を有する重合体にグリシジル(メタ)アクリレート、(メタ)アクリル酸、グリセリンモノ(メタ)アクリレート等の重合体の官能基に対して反応性を有する官能基、並びに(メタ)アクリレート基を有する化合物を反応させて得られる。例えば、下記一般式(I)で表される有機重合体は、グリシジル(メタ)アクリレート(Rは前記に同じ)にカルボキシル基を有する所定の重合体(-RCOOH、Rは置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、複素環構造含有連結基、複数の環を有する連結基、-(C2mO)β-(mは2~4の整数、nは1~30の整数、Rβは非置換若しくは置換のアルキレン基、非置換若しくは置換のアリーレン基である。)、又は直接結合を示す。「R-」以降がポリマー鎖である。直接結合とは、ポリマー鎖に直接に結合することを意味する。)を反応させることで合成できる。例えば、グリシジル(メタ)アクリレートと所定のカルボキシル基含有重合体と必要に応じて所定の触媒とを所定の割合で所定の溶媒中で混合し、所定の温度で所定時間反応させ、溶媒を除去することで一般式(I)で表される有機重合体が合成される。
[Synthesis Method of Organic Polymer]
The organic polymer of component (A) is a polymer having a functional group such as glycidyl group, carboxyl group, amino group, mercapto group, or isocyanate group in the molecule, glycidyl (meth) acrylate, (meth) acrylic acid, glycerin. It is obtained by reacting a functional group having reactivity with a functional group of a polymer such as mono (meth) acrylate and a compound having a (meth) acrylate group. For example, the organic polymer represented by the following general formula (I) is a predetermined polymer having a carboxyl group in glycidyl (meth) acrylate (R 1 is the same as above) (-R 5 COOH, R 5 is substituted or An unsubstituted alkylene group, a substituted or unsubstituted arylene group, a heterocyclic structure-containing linking group, a linking group having a plurality of rings,-(C m H 2m O) n R β- (m is an integer of 2 to 4, n is an integer of 1-30, the R beta unsubstituted or substituted alkylene group, an unsubstituted or substituted arylene group), or show a direct bond.. "R 5 -." later is a polymer chain directly Bonding means directly bonding to a polymer chain.) Can be synthesized. For example, glycidyl (meth) acrylate, a predetermined carboxyl group-containing polymer and, if necessary, a predetermined catalyst are mixed in a predetermined solvent in a predetermined ratio, reacted at a predetermined temperature for a predetermined time, and the solvent is removed. Thus, the organic polymer represented by the general formula (I) is synthesized.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、下記一般式(II)で表される有機重合体は、グリシジル(メタ)アクリレートにアミノ基を有する所定の重合体(NHR-、Rは-H、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、複素環構造含有基、-(C2mO)α(m、n、及びRαは前記に同じ)、又は複数の環を有する基を示す。RはRと同じ。「R-」以降がポリマー鎖である。)を反応させることで合成できる。例えば、グリシジル(メタ)アクリレートと所定のアミノ基含有重合体と必要に応じて所定の触媒とを所定の割合で混合し、所定の温度で所定時間反応させることで一般式(II)で表される有機重合体が合成される。 The organic polymer represented by the following general formula (II) is a predetermined polymer having an amino group in glycidyl (meth) acrylate (NHR 6 R 7 —, R 6 is —H, substituted or unsubstituted alkyl). A group, a substituted or unsubstituted aryl group, a heterocyclic structure-containing group, — (C m H 2m O) n R α (m, n, and R α are the same as described above), or a group having a plurality of rings .R 7 are the same as R 5 - can be synthesized in the following is a polymer chain) reacting. "R 7".. For example, it is represented by the general formula (II) by mixing glycidyl (meth) acrylate, a predetermined amino group-containing polymer and a predetermined catalyst as required at a predetermined ratio and reacting at a predetermined temperature for a predetermined time. An organic polymer is synthesized.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、下記一般式(III)で表される有機重合体は、グリシドールにイソシアネート基を有する所定の重合体(O=C=N-R-、Rは前記に同じ。)を反応させて得られる中間反応物に、(メタ)アクリル酸を反応させることで合成できる。例えば、グリシドールとイソシアネート基を有する所定の重合体と必要に応じて所定の触媒とを所定の割合で混合し、所定の温度で所定時間反応させることで中間反応物を合成する。そして、この合成で得られた中間反応物と所定の(メタ)アクリレートと必要に応じて所定の触媒とを所定の割合で混合し、所定の温度で所定時間反応させることで一般式(III)で表される有機重合体が合成される。 In addition, an organic polymer represented by the following general formula (III) is reacted with a predetermined polymer having an isocyanate group on glycidol (O═C═N—R 7 —, R 7 is the same as described above). It can be synthesized by reacting the resulting intermediate reactant with (meth) acrylic acid. For example, an intermediate reaction product is synthesized by mixing a predetermined polymer having glycidol and an isocyanate group and a predetermined catalyst as required at a predetermined ratio and reacting at a predetermined temperature for a predetermined time. Then, the intermediate reactant obtained in this synthesis, a predetermined (meth) acrylate, and a predetermined catalyst as required are mixed at a predetermined ratio, and reacted at a predetermined temperature for a predetermined time, thereby allowing the general formula (III) Is synthesized.
 なお、一般式(III)の化合物の合成反応中に、グリシジルメタクリレートのエポキシ基が開環して不飽和カルボン酸とエステル結合を生じて結合する。この開環はα位及びβ位のいずれでも起こるが、α位で開環したα付加体が主成分となり、β位で開環したβ付加体が副成分となる。通常、α付加体とβ付加体との生成割合は、モル比で100/0.01~100/70であり、好ましくは100/0.1~100/50である。一般式(III)の化合物の合成反応では、通常はα付加体である化合物を主成分とし、β付加体を副成分とした生成物が得られる。主成分であるα付加体を単離する場合、生成物を公知の分離方法によって分離することで単離できる。一般式(III)の化合物の合成反応においては、α付加体とβ付加体とを含む混合物を得ている。すなわち、一般式(III)の化合物の合成反応で得られる生成物は、上記合成法で得られる生成物にβ付加体の全部又は一部を残したものであり、α付加体を主成分とする。ここで、「主成分」は、生成物中に60モル%以上含む成分をいい、「副成分」は、40モル%以下含む成分をいう(以下同じ。)。 In addition, during the synthesis reaction of the compound of the general formula (III), the epoxy group of glycidyl methacrylate is ring-opened to form an ester bond with the unsaturated carboxylic acid. This ring opening occurs at both the α-position and the β-position, but the α-adduct opened at the α-position is the main component, and the β-adduct opened at the β-position is the subcomponent. Usually, the production ratio of the α adduct and the β adduct is 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in terms of molar ratio. In the synthesis reaction of the compound of the general formula (III), a product having a compound that is usually an α-adduct as a main component and a β-adduct as a subcomponent is obtained. When isolating the α-adduct that is the main component, the product can be isolated by separating it by a known separation method. In the synthesis reaction of the compound of the general formula (III), a mixture containing an α adduct and a β adduct is obtained. That is, the product obtained by the synthesis reaction of the compound of the general formula (III) is a product obtained by the above synthesis method in which all or part of the β adduct is left, and the α adduct is the main component. To do. Here, “main component” refers to a component contained in the product in an amount of 60 mol% or more, and “subcomponent” refers to a component contained in an amount of 40 mol% or less (the same applies hereinafter).
 よって、一般式(III)の化合物の合成反応においては、α付加体が主成分となりβ付加体が副成分となるので、一般式(III)で表される有機重合体を、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基を主に含有するウレタンオリゴマーと称する。 Therefore, in the synthesis reaction of the compound of the general formula (III), the α adduct is the main component and the β adduct is the subcomponent, so the organic polymer represented by the general formula (III) is converted into 3- (meta ) Urethane oligomer mainly containing acryloxy-2-hydroxypropyl group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、下記一般式(IV)で表される有機重合体は、グリセリンモノ(メタ)アクリレートにイソシアネート基を有する所定の重合体(O=C=N-R-、Rは前記に同じ。)を反応させることで合成できる。例えば、所定のジヒドロキシアクリレート化合物とイソシアネート基を有する所定の重合体と必要に応じて所定の触媒とを所定の割合で混合し、所定の温度で所定時間反応させることで一般式(IV)で表される有機重合体が合成される。ここで、一般式(IV)の化合物の合成反応においては、α付加体のみとなるので、一般式(IV)で表される有機重合体を、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基を含有するウレタンオリゴマーと称する。 The organic polymer represented by the following general formula (IV) is a predetermined polymer having an isocyanate group in glycerin mono (meth) acrylate (O═C═N—R 7 —, R 7 is the same as described above. ) Can be synthesized. For example, a predetermined dihydroxy acrylate compound, a predetermined polymer having an isocyanate group, and a predetermined catalyst as required are mixed at a predetermined ratio, and reacted at a predetermined temperature for a predetermined time, and expressed by the general formula (IV). An organic polymer is synthesized. Here, in the synthesis reaction of the compound of the general formula (IV), only the α adduct is used. Therefore, the organic polymer represented by the general formula (IV) is substituted with a 3- (meth) acrylooxy 2-hydroxypropyl group. It is called a urethane oligomer.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 更に、下記一般式(V)で表される有機重合体は、所定の(メタ)アクリレートとグリシジル基を有する所定の重合体(Rは前記Xに同じ。)とを反応させることで合成できる。例えば、(メタ)アクリレート化合物とグリシジル基を有する所定の重合体と必要に応じて所定の触媒とを所定の割合で混合し、所定の温度で所定時間反応させることで一般式(V)で表される有機重合体が合成される。 Furthermore, the organic polymer represented by the following general formula (V) can be synthesized by reacting a predetermined (meth) acrylate and a predetermined polymer having a glycidyl group (R 8 is the same as X). . For example, it is represented by the general formula (V) by mixing a (meth) acrylate compound and a predetermined polymer having a glycidyl group and a predetermined catalyst as required at a predetermined ratio and reacting at a predetermined temperature for a predetermined time. An organic polymer is synthesized.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 官能基を有する所定の重合体が入手し易い観点から、グリセリンモノ(メタ)アクリレートとイソシアネート基を有する重合体との反応による有機重合体、(メタ)アクリレートとグリシジル基を有する重合体との反応による有機重合体、及びグリシジル(メタ)アクリレートとカルボキシル基含有重合体との反応による有機重合体が好ましく、グリセリンモノ(メタ)アクリレートとイソシアネート基を有する重合体との反応による有機重合体、及び(メタ)アクリレートとグリシジル基を有する重合体との反応による有機重合体がより好ましく、合成反応がし易い観点から、グリセリンモノ(メタ)アクリレートとイソシアネート基を有する重合体との反応による有機重合体が最も好ましい。 From the viewpoint that a predetermined polymer having a functional group is easily available, an organic polymer obtained by a reaction between a glycerin mono (meth) acrylate and a polymer having an isocyanate group, a reaction between a (meth) acrylate and a polymer having a glycidyl group And an organic polymer obtained by reacting glycidyl (meth) acrylate with a carboxyl group-containing polymer is preferred, an organic polymer obtained by reacting glycerin mono (meth) acrylate and a polymer having an isocyanate group, and ( An organic polymer obtained by a reaction between a meth) acrylate and a polymer having a glycidyl group is more preferable, and an organic polymer obtained by a reaction between a glycerin mono (meth) acrylate and a polymer having an isocyanate group is more preferable from the viewpoint of easy synthesis reaction. Most preferred.
(有機重合体中の官能基数について)
 そして、有機重合体は、分子間架橋を増加させる観点から1分子中に平均して0.5個以上の官能基を有することが好ましく、0.7個以上の官能基を有することがより好ましく、0.9個以上の官能基を有することが更に好ましく、1.0個以上の官能基を有することが最も好ましい。また、有機重合体は、硬化後の柔軟性を増加させる観点から1分子中に平均して10個以下の官能基を有することが好ましく、5.0個以下の官能基を有することがより好ましく、2.5個以下の官能基を有することが更に好ましく、2.0個以下の官能基を有することが最も好ましい。
(Regarding the number of functional groups in the organic polymer)
The organic polymer preferably has an average of 0.5 or more functional groups, more preferably 0.7 or more functional groups, from the viewpoint of increasing intermolecular crosslinking. More preferably 0.9 or more functional groups, and most preferably 1.0 or more functional groups. Moreover, the organic polymer preferably has 10 or less functional groups on average in one molecule from the viewpoint of increasing flexibility after curing, and more preferably has 5.0 or less functional groups. , More preferably 2.5 or less functional groups, and most preferably 2.0 or less functional groups.
(グリシジル基とカルボキシル基との反応触媒)
 カルボキシル基とエポキシ基との付加反応の触媒としては、3級アミン、4級アンモニウム塩、4級ホスホニウム塩、トリフェニルホスフィン等のホスフィン化合物、カルボン酸の金属塩(例えばオクタン酸クロム、ステアリン酸ナトリウム等)、及びアルカリ金属又はアルカリ土類金属の水酸化物が挙げられる。これらの中でも、樹脂の着色が少ない点から、トリフェニルホスフィンを用いることが好ましく、反応収率が良い点から、カルボン酸の金属塩、アルカリ金属又はアルカリ土類金属の水酸化物が好ましく、アルカリ金属又はアルカリ土類金属の水酸化物がより好ましく、アルカリ金属の水酸化物が更に好ましい。付加反応の触媒は、エポキシ基1当量に対し、0.01当量以上0.1当量以下が好ましく、0.02当量以上0.08当量以下がより好ましい。
(Reaction catalyst of glycidyl group and carboxyl group)
Catalysts for the addition reaction between carboxyl groups and epoxy groups include tertiary amines, quaternary ammonium salts, quaternary phosphonium salts, phosphine compounds such as triphenylphosphine, metal salts of carboxylic acids (eg chromium octoate, sodium stearate). Etc.), and alkali metal or alkaline earth metal hydroxides. Among these, it is preferable to use triphenylphosphine from the viewpoint that the resin is less colored, and from the viewpoint of good reaction yield, a metal salt of carboxylic acid, an alkali metal or alkaline earth metal hydroxide is preferable, and an alkali More preferred are metal or alkaline earth metal hydroxides, and even more preferred are alkali metal hydroxides. The catalyst for the addition reaction is preferably 0.01 equivalents or more and 0.1 equivalents or less, and more preferably 0.02 equivalents or more and 0.08 equivalents or less with respect to 1 equivalent of the epoxy group.
 本発明において、合成時のラジカル重合を抑制する観点から、重合禁止剤を添加してもよい。重合禁止剤としては、2,6-ジ-t-ブチルヒドロキシトルエン等のアルキルフェノール類が挙げられる。また、アミン系の重合禁止剤も用いることができる。アミン系の重合禁止剤としては、例えば、N,N’-ジフェニル-p-フェニレンジアミン等が挙げられる。 In the present invention, a polymerization inhibitor may be added from the viewpoint of suppressing radical polymerization during synthesis. Examples of the polymerization inhibitor include alkylphenols such as 2,6-di-t-butylhydroxytoluene. An amine polymerization inhibitor can also be used. Examples of the amine-based polymerization inhibitor include N, N′-diphenyl-p-phenylenediamine.
(イソシアネート基を有する所定の重合体)
 また、一般式(III)及び一般式(IV)において用いられるイソシアネート基を有する所定の重合体(O=C=N-R-、Rは前記に同じ。)としては、例えば、「一般式(1)で表される基を有する有機重合体」からなる群から選択される所定の主鎖骨格を有する反応基含有重合体(水酸基、カルボキシ基、及び/又は活性水素含有アミノ基含有有機重合体)と、過剰のポリイソシアネートとを反応させることにより形成されるイソシアネート官能性ウレタンを用いることができる。
(Predetermined polymer having an isocyanate group)
Further, as the predetermined polymer having an isocyanate group used in the general formula (III) and the general formula (IV) (O═C═N—R 7 —, R 7 is the same as described above), for example, “general Reactive group-containing polymer having a predetermined main chain skeleton selected from the group consisting of “organic polymer having group represented by formula (1)” (hydroxyl group, carboxy group, and / or active hydrogen-containing amino group-containing organic group) Polymers) and isocyanate functional urethanes formed by reacting excess polyisocyanates can be used.
 所定の主鎖骨格を有する反応基含有重合体の反応基の位置が末端の場合は(すなわち、主鎖骨格中に存在しない場合は)、反応基数は硬化後の柔軟性の観点から2個が好ましく、特に柔軟性が要求されない場合は1個が好ましい。1個の反応基を含有する重合体と多数の反応基を含有する重合体とを併用することにより、硬化後の硬さを自由に設計できる。1個の反応基を含有する重合体及び2個の反応基を含有する重合体を併用することがより好ましい。 When the position of the reactive group of the reactive group-containing polymer having a predetermined main chain skeleton is the terminal (that is, when it does not exist in the main chain skeleton), the number of reactive groups is two from the viewpoint of flexibility after curing. One is preferable when flexibility is not particularly required. By using a polymer containing one reactive group and a polymer containing a large number of reactive groups, the hardness after curing can be designed freely. It is more preferred to use a polymer containing one reactive group and a polymer containing two reactive groups in combination.
 ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネートの脂肪族イソシアネート類、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類、イソホロンジイソシアネート等の脂環族イソシアネート類、又は、これらのアダクトタイプ、イソシアヌレートタイプ、ビュレットタイプ等の多量体が挙げられる。ポリイソシアネートの官能基数は硬化後の柔軟性より2個が好ましい。 Examples of the polyisocyanate include aliphatic isocyanates such as hexamethylene diisocyanate, tolylene diisocyanate, aromatic isocyanates such as 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and alicyclic isocyanates such as isophorone diisocyanate, or These adduct types, isocyanurate types, burette types, and other multimers can be mentioned. The number of functional groups of polyisocyanate is preferably two from the flexibility after curing.
 これらの有機重合体は、単独で用いても、2種以上併用してもよい。具体的には、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、及び(メタ)アクリル酸エステル系重合体からなる群から選択される2種以上をブレンドした有機重合体も用いることができる。 These organic polymers may be used alone or in combination of two or more. Specifically, an organic polymer obtained by blending two or more selected from the group consisting of a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth) acrylate polymer can also be used. .
 また、硬化性組成物の硬化物の柔軟性確保の観点から、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、非芳香族ポリエステル系重合体、非芳香族ポリカーボネート重合体が好ましく、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体がより好ましく、ポリオキシアルキレン系重合体が更に好ましい。 Further, from the viewpoint of ensuring the flexibility of the cured product of the curable composition, a polyoxyalkylene polymer, a (meth) acrylic acid ester polymer, a non-aromatic polyester polymer, and a non-aromatic polycarbonate polymer are preferable. , Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are more preferred, and polyoxyalkylene polymers are more preferred.
[主鎖骨格重合体に官能基を導入した構造を有する有機重合体]
 (A)成分は、分子中にグリシジル基、カルボキシル基、アミノ基、メルカプト基、又はイソシアネート基等の官能基を主鎖骨格重合体に導入した構造を有する有機重合体にグリシジル(メタ)アクリレート、(メタ)アクリル酸、グリセリンモノ(メタ)アクリレート等の重合体の官能基に対して反応性を有する官能基、並びに(メタ)アクリレート基を有する化合物を反応させることで合成できる。主鎖骨格重合体に官能基を導入した構造を有する有機重合体としては、ランダムに官能基を導入した「官能基共重合タイプ」(下記式(a)に示す。)の有機重合体、片末端に官能基を導入した「片末端官能基タイプ」(下記式(b))の有機重合体、片末端及び主鎖中に官能基を導入した「分子末端及び官能基共重合タイプ」(下記式(c))の有機重合体、片末端官能基タイプを多官能モノマーで連結した「末端官能基タイプの多量体化タイプ」(下記式(d))の有機重合体、及び主鎖末端に官能基を導入した「テレケリックタイプ」(下記式(e))の有機重合体が存在する。なお、式(a)~式(e)は各重合体の構造の概念的な式であり、式(a)~式(e)中、Xは官能基(例えば、カルボン酸基、アミノ基、エポキシ基、水酸基等)であり、Xが複数存在する場合は同一でも互いに異なっていてもよい。また、式(a)~式(e)中のnは正の実数、mは0又は正の実数である。主鎖骨格重合体に導入する官能基の位置を制御することで、硬化性組成物の特性を調整することができる。
[Organic polymer having a structure in which a functional group is introduced into the main chain skeleton polymer]
The component (A) is an organic polymer having a structure in which a functional group such as a glycidyl group, a carboxyl group, an amino group, a mercapto group, or an isocyanate group is introduced into the main chain skeleton polymer in the molecule, glycidyl (meth) acrylate, It can be synthesized by reacting a functional group having reactivity with a functional group of a polymer such as (meth) acrylic acid or glycerin mono (meth) acrylate, and a compound having a (meth) acrylate group. As an organic polymer having a structure in which a functional group is introduced into the main chain skeleton polymer, an organic polymer of “functional group copolymerization type” (shown in the following formula (a)) in which functional groups are randomly introduced, pieces Organic polymer of "one-end functional group type" (following formula (b)) having a functional group introduced at the terminal, "molecular terminal and functional group copolymerization type" (below Organic polymer of formula (c)), organic polymer of “multifunctionalization type of terminal functional group type” in which one terminal functional group type is linked with a polyfunctional monomer (formula (d) below), and main chain terminal There is an organic polymer of “telechelic type” (following formula (e)) into which a functional group is introduced. The formulas (a) to (e) are conceptual formulas of the structures of the respective polymers. In the formulas (a) to (e), X represents a functional group (for example, a carboxylic acid group, an amino group, Epoxy group, hydroxyl group, etc.), and when there are a plurality of X, they may be the same or different. In the expressions (a) to (e), n is a positive real number, and m is 0 or a positive real number. By controlling the position of the functional group introduced into the main chain skeleton polymer, the characteristics of the curable composition can be adjusted.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(a)において、平均官能基数はnである。そして、式(a)で表される有機重合体は、硬化後の柔軟性を増加させる観点から1分子中の平均官能基数が10個以下であることが好ましく、5.0個以下の平均官能基数であることがより好ましく、2.5個以下の平均官能基数であることが更に好ましく、1.1個以下の平均官能基数であることが最も好ましい。また、式(a)で表される有機重合体は、分子間架橋を増加させる観点から1分子中の平均官能基数が0.5個以上であることが好ましく、0.7個以上の平均官能基数であることがより好ましく、0.9個以上の平均官能基数であることが更に好ましく、1.0個以上の平均官能基数であることが最も好ましい。 In the formula (a), the average number of functional groups is n. The organic polymer represented by the formula (a) preferably has an average functional group number of 10 or less, and an average functionality of 5.0 or less from the viewpoint of increasing the flexibility after curing. The number of functional groups is more preferable, the average number of functional groups is 2.5 or less, and the average number of functional groups is 1.1 or less. The organic polymer represented by the formula (a) preferably has an average functional group number of 0.5 or more in one molecule from the viewpoint of increasing intermolecular crosslinking, and has an average functionality of 0.7 or more. The number of groups is more preferable, the number of average functional groups of 0.9 or more is further preferable, and the number of average functional groups of 1.0 or more is most preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 なお、式(b)において、官能基数は1である。 In the formula (b), the number of functional groups is 1.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(c)及び式(d)においてはいずれも、平均官能基数はn+1である。また、式(e)において平均官能基数はm+n+1である。そして、式(c)、式(d)、及び式(e)で表される有機重合体はいずれも、硬化後の柔軟性を増加させる観点から1分子中の平均官能基数が10個以下であることが好ましく、5.0個以下の平均官能基数であることがより好ましく、2.5個以下の平均官能基数であることが更に好ましく、2.0個以下の平均官能基数であることが最も好ましい。また、式(c)、式(d)、及び式(e)で表される有機重合体はいずれも、分子間架橋を増加させる観点から1分子中の平均官能基数が1.1個以上であることが好ましく、1.3個以上の平均官能基数であることがより好ましく、1.5個以上の平均官能基数であることが更に好ましく、1.8個以上の平均官能基数であることが最も好ましい。 In both formula (c) and formula (d), the average number of functional groups is n + 1. In the formula (e), the average number of functional groups is m + n + 1. The organic polymers represented by formula (c), formula (d), and formula (e) all have an average number of functional groups in one molecule of 10 or less from the viewpoint of increasing flexibility after curing. Preferably, the average functional group number is 5.0 or less, more preferably 2.5 or less, still more preferably 2.0 or less. Most preferred. In addition, all of the organic polymers represented by the formula (c), the formula (d), and the formula (e) have an average functional group number of 1.1 or more per molecule from the viewpoint of increasing intermolecular crosslinking. Preferably, the average functional group number is 1.3 or more, more preferably 1.5 or more, still more preferably 1.8 or more. Most preferred.
 そして、式(a)、式(c)、式(d)、及び式(e)で表される有機重合体はいずれも、(メタ)アクリル当量((メタ)アクリル基1個当たりの数平均分子量)は硬化性組成物の硬化物の良好な伸び特性を確保する観点から1,000以上が好ましく、2,000以上がより好ましく、3,000以上が更に好ましい。また、硬化性組成物の適切な粘度を確保し、良好な作業性を確保する観点から(メタ)アクリル当量は、100,000程度以下が好ましく、50,000以下がより好ましく、30,000以下が更に好ましい。 The organic polymers represented by formula (a), formula (c), formula (d), and formula (e) are all (meth) acryl equivalent (number average per (meth) acryl group). The molecular weight) is preferably 1,000 or more, more preferably 2,000 or more, and still more preferably 3,000 or more from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. In addition, from the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the (meth) acryl equivalent is preferably about 100,000 or less, more preferably 50,000 or less, and 30,000 or less. Is more preferable.
 また、式(b)で表される有機重合体の(メタ)アクリル当量は、硬化性組成物の硬化物の良好な伸び特性を確保する観点から500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましい。更に、硬化性組成物の適切な粘度を確保し、良好な作業性を確保する観点から(メタ)アクリル当量は、100,000程度以下が好ましく、50,000以下がより好ましく、30,000以下が更に好ましい。 Further, the (meth) acryl equivalent of the organic polymer represented by the formula (b) is preferably 500 or more, more preferably 1,000 or more, from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. More preferably, 2,000 or more. Further, from the viewpoint of ensuring an appropriate viscosity of the curable composition and ensuring good workability, the (meth) acryl equivalent is preferably about 100,000 or less, more preferably 50,000 or less, and 30,000 or less. Is more preferable.
[(a)共重合(b)片末端(c)分子末端及び共重合タイプ]
 式(a)で表される「官能基共重合タイプ」の重合体は、官能基を有するモノマーを共重合させることで比較的容易に合成できる。また、一分子中の官能基数を増加させる観点から「官能基共重合タイプ」の重合体は有効である。なお、「官能基共重合タイプ」の重合体は、官能基間の距離が短く、硬脆い性質を有する場合がある。また、式(b)で表される「片末端官能基タイプ」の重合体は、分子末端に官能基を導入しており、硬化後の柔軟性を要する場合に有効な重合体である。また、相溶化成分としても有用である。また、式(c)で表される「分子末端及び官能基共重合タイプ」の重合体(式(c)で表される重合体は、例えば、主鎖中にアクリル酸由来の官能基を含み、片末端に官能基を有する片末端疑似テレケリック重合体である。)は、片末端官能基タイプ(式(b))と官能基共重合タイプ(式(a))との長所を兼ね備える重合体である。また、「分子末端及び官能基共重合タイプ」の重合体は、分子末端の官能基と主鎖中の官能基とを異ならせた異種官能基の組合わせも可能であり、更に高機能化の追求もできる。
[(A) Copolymerization (b) Single terminal (c) Molecular terminal and copolymerization type]
The polymer of the “functional group copolymerization type” represented by the formula (a) can be synthesized relatively easily by copolymerizing a monomer having a functional group. From the viewpoint of increasing the number of functional groups in one molecule, a “functional group copolymerization type” polymer is effective. In addition, the “functional group copolymerization type” polymer has a short distance between the functional groups and may have a hard and brittle property. Moreover, the polymer of the “single terminal functional group type” represented by the formula (b) is an effective polymer when a functional group is introduced at the molecular terminal and flexibility after curing is required. It is also useful as a compatibilizing component. Moreover, the polymer of the “molecular end and functional group copolymerization type” represented by the formula (c) (the polymer represented by the formula (c) includes, for example, a functional group derived from acrylic acid in the main chain. , A one-end pseudo-telechelic polymer having a functional group at one end.) Is a polymer having the advantages of a one-end functional group type (formula (b)) and a functional group copolymerization type (formula (a)). It is. In addition, the polymer of “molecular end and functional group copolymerization type” can be combined with different functional groups in which the functional group at the molecular end is different from the functional group in the main chain. It can also be pursued.
[(d)末端官能基タイプの多量体化タイプ]
 更に式(d)で表される「末端官能基タイプの多量体化タイプ」の重合体(式(d)で表される重合体は、例えば、片末端官能基タイプの重合体を多官能モノマーで連結した疑似テレケリック重合体である。)は、反応性の高い末端官能基を複数有する分子構造と、多分岐化した分子構造とにより、架橋成分・相溶化成分、熱硬化樹脂成分として有用である。
[(D) Multimerization type of terminal functional group type]
Furthermore, the polymer of the “terminal functional group type multimerization type” represented by the formula (d) (the polymer represented by the formula (d) is, for example, a polymer having a single terminal functional group type as a polyfunctional monomer. ) Is useful as a crosslinking component, compatibilizing component, and thermosetting resin component due to the molecular structure having a plurality of highly reactive terminal functional groups and the multi-branched molecular structure. is there.
[(e)テレケリックタイプ]
 (メタ)アクリル酸エステル系重合体を例に挙げて説明すると、「テレケリックタイプ」の重合体(式(e))は、例えば、特開2000-44626号公報、特表2013-523929号公報記載の特定の官能基を主鎖末端に導入するリビングラジカル重合法によって合成できる。リビングラジカル重合法を用いると、重合中若しくは重合終了後に、官能基を有する重合性の低いオレフィン化合物を添加することにより、末端に官能基を有するテレケリックタイプの重合体を製造できる。例えば、カルボン酸基、エステル基、エーテル基、水酸基、エポキシ基、アミノ基、アミド基、シリル基等を導入することができる。
[(E) Telechelic type]
Taking a (meth) acrylic acid ester-based polymer as an example, a “telechelic type” polymer (formula (e)) is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-44626 and Japanese Translation of PCT International Publication No. 2013-523929. It can be synthesized by a living radical polymerization method in which the specific functional group described is introduced at the end of the main chain. When the living radical polymerization method is used, a telechelic type polymer having a functional group at the terminal can be produced by adding a low-polymerization olefin compound having a functional group during or after the polymerization. For example, a carboxylic acid group, ester group, ether group, hydroxyl group, epoxy group, amino group, amide group, silyl group and the like can be introduced.
 そして、原子移動ラジカル重合法においては、有機ハロゲン化物、又はハロゲン化スルホニル化合物が開始剤として用いられる。重合を開始する化合物以外に官能基を有する有機ハロゲン化物、又はハロゲン化スルホニル化合物を用いることで、末端に官能基が導入された重合体を容易に合成できる。このような官能基としては、水酸基、エポキシ基、アミノ基等が挙げられる。 In the atom transfer radical polymerization method, an organic halide or a sulfonyl halide compound is used as an initiator. By using an organic halide having a functional group or a sulfonyl halide compound in addition to the compound for initiating polymerization, a polymer having a functional group introduced at the terminal can be easily synthesized. Examples of such a functional group include a hydroxyl group, an epoxy group, and an amino group.
 また、例えば、特開昭62-232408号公報記載の特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法、又は特開2000-344823号公報記載の特定の官能基を有するチオール化合物及びメタロセン化合物を用いた反応法により片末端に特定の官能基を導入することができる。一例として、アクリル系モノマー及び官能基含有メルカプタン系連鎖移動剤それぞれの一部乃至全量を重合系に連続供給し、かつ、アクリル系モノマーに対して所定量の重合開始剤を用いてアクリル系モノマーをラジカル重合させることで、片末端に官能基を有するアクリル系重合体を合成できる。なお、重合開始剤の所定量は、片末端に官能基を有するアクリル系ポリマーの選択率を考慮して決定される。そして、特定の官能基を片末端に導入した上で特定の官能基を有するモノマーにより主鎖中に官能基を導入することで「分子末端及び官能基共重合タイプ」を合成できる。更に、片末端に特定の官能基を導入した重合体を多官能モノマーで連結することで「末端官能基タイプの多量体化タイプ」の重合体を合成できる。 Further, for example, a free radical polymerization method using a chain transfer agent having a specific functional group described in JP-A No. 62-232408, or a thiol compound having a specific functional group described in JP-A No. 2000-344823 and A specific functional group can be introduced at one end by a reaction method using a metallocene compound. As an example, a part or all of the acrylic monomer and the functional group-containing mercaptan chain transfer agent are continuously supplied to the polymerization system, and the acrylic monomer is added to the acrylic monomer using a predetermined amount of the polymerization initiator. By carrying out radical polymerization, an acrylic polymer having a functional group at one end can be synthesized. The predetermined amount of the polymerization initiator is determined in consideration of the selectivity of the acrylic polymer having a functional group at one end. A “molecular end and functional group copolymerization type” can be synthesized by introducing a specific functional group into one end and then introducing the functional group into the main chain using a monomer having the specific functional group. Furthermore, a polymer having a terminal functional group type multimerization type can be synthesized by linking a polymer having a specific functional group introduced at one end with a polyfunctional monomer.
 例えば、特開2000-344823号公報の実施例1に記載の、金属触媒としてルテノセン(メタロセン触媒)、β‐メルカプトプロピオン酸(重合開始剤)を用いて、エチルアクリレート(重合性モノマー)を重合してプロピオン酸末端の重合体を合成する方法に、更に、重合性モノマーとしてアクリル酸等のカルボキシ基含有モノマーを反応させる方法により、分子末端(カルボキシ基)及び官能基(カルボキシ基)共重合タイプが合成される。また、例えば、特開2000-344823号公報に記載の実施例1に記載の合成方法に、更に、多官能モノマーを反応させる方法により、末端官能基(カルボキシ基)タイプの多量体化(疑似テレケリックタイプ)が合成される。なお、β‐メルカプトプロピオン酸を、特開2000-344823号公報に記載の実施例3に記載されている2-メルカプトエタノールに代え、更に、重合性モノマーとし水酸基含有モノマーを反応させる方法により、分子末端(水酸基)及び官能基(水酸基)共重合タイプが合成される。また、多官能モノマーを反応させる方法により、末端官能基(水酸基)タイプの多量体化(疑似テレケリックタイプ)が合成される。また、例えば、特開昭62-232408号公報に記載の特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法を用いても理論上は同様の分子末端及び官能基共重合タイプ、及び末端官能基タイプの多量体化が合成できるが、末端基の発生確率等が高い(柔軟な重合体になる。)ことより、メタロセン触媒を用いる重合体が好ましい。 For example, ethyl acrylate (polymerizable monomer) is polymerized using ruthenocene (metallocene catalyst) and β-mercaptopropionic acid (polymerization initiator) as a metal catalyst described in Example 1 of JP-A-2000-344823. In addition to the method of synthesizing a propionic acid-terminated polymer, and the method of reacting a carboxy group-containing monomer such as acrylic acid as a polymerizable monomer, the molecular end (carboxy group) and functional group (carboxy group) copolymerization types are Synthesized. Further, for example, a terminal functional group (carboxy group) type multimerization (pseudotelephone) can be obtained by further reacting the polyfunctional monomer with the synthesis method described in Example 1 described in JP-A-2000-344823. Rick type) is synthesized. Note that β-mercaptopropionic acid is replaced with 2-mercaptoethanol described in Example 3 described in JP-A No. 2000-344823, and further, a method of reacting a hydroxyl group-containing monomer as a polymerizable monomer is used. Terminal (hydroxyl) and functional group (hydroxyl) copolymer types are synthesized. In addition, terminal functional group (hydroxyl) type multimerization (pseudo telechelic type) is synthesized by a method of reacting a polyfunctional monomer. Further, for example, even when a free radical polymerization method using a chain transfer agent having a specific functional group described in JP-A No. 62-232408 is used, theoretically the same molecular end and functional group copolymerization type, and A terminal functional group type multimerization can be synthesized, but a polymer using a metallocene catalyst is preferred because the terminal group generation probability is high (becomes a flexible polymer).
 なお、主鎖骨格重合体に官能基をランダム重合で導入した構造は官能基間の距離が短くなることから、柔軟な有機重合体が得られにくい。また、官能基が導入されない分子も生じるので、ラジカル重合しない成分が含有される。したがって、柔軟性を有する有機重合体を得る観点から、主鎖骨格重合体に官能基を導入した構造としては、「片末端官能基タイプ」、「テレケリックタイプ」、「分子末端及び官能基共重合タイプ」、「末端官能基タイプの多量体化(疑似テレケリックタイプ)」が好ましく、「片末端官能基タイプ」、「テレケリックタイプ」が更に好ましく、「テレケリックタイプ」が最も好ましい。 Note that a structure in which a functional group is introduced into the main chain skeleton polymer by random polymerization makes it difficult to obtain a flexible organic polymer because the distance between the functional groups is shortened. Moreover, since a molecule into which a functional group is not introduced is generated, a component that does not undergo radical polymerization is contained. Therefore, from the viewpoint of obtaining a flexible organic polymer, the structure in which a functional group is introduced into the main chain skeleton polymer includes “one-end functional group type”, “telechelic type”, “molecular end and functional group co-polymerization”. "Polymerization type" and "multimerization of terminal functional group type (pseudo-telechelic type)" are preferred, "one-end functional group type" and "telechelic type" are more preferred, and "telechelic type" is most preferred.
 本発明において、重合開始剤として、(B1)光開始剤、(B2)熱開始剤、及び/又は(B3)レドックス開始剤が用いられる。 In the present invention, (B1) a photoinitiator, (B2) a thermal initiator, and / or (B3) a redox initiator are used as a polymerization initiator.
<(B1)成分:光開始剤>
 (B1)光開始剤としては、光ラジカル発生剤や、光塩基発生剤、光酸発生剤等を用いることができる。光ラジカル発生剤は、紫外線や電子線等の活性エネルギー線の照射によりラジカルを発生させる化合物である。本発明の硬化性組成物において、重合開始剤として(B1)光開始剤を用いる場合、熱に弱い部材に対しても好適に用いることができるため、様々な用途に用いることができる。
<(B1) component: Photoinitiator>
(B1) As the photoinitiator, a photoradical generator, a photobase generator, a photoacid generator, or the like can be used. The photo radical generator is a compound that generates radicals by irradiation with active energy rays such as ultraviolet rays and electron beams. In the curable composition of this invention, when (B1) photoinitiator is used as a polymerization initiator, since it can be used suitably also with respect to a heat-sensitive member, it can be used for various uses.
(光ラジカル発生剤)
 光ラジカル発生剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンジルケタール系、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のα-ヒドロキシアセトフェノン系、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のα-アミノアセトフェノン系、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド系、ベンゾイル安息香酸メチル等のベンゾフェノン系、イソプロピルチオキサントン等のチオキサントン系、1.2-オクタンジオン、1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]等のオキシムエステル系、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピロール-1-イル)フェニル)チタニウム等のチタノセン系、ベンゾインエーテル系、トリアジン系、ボレート系、カルバゾール系、イミダゾール系等、及びそれらを高分子量化した誘導体が挙げられる。
(Photo radical generator)
Examples of the photo radical generator include benzyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-methyl-1-phenyl-propan-1-one. α-aminoacetophenone series, bis (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, etc. Acylphosphine oxides such as (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, benzophenones such as methyl benzoylbenzoate, thioxanthones such as isopropylthioxanthone, 1.2-octanedione, 1- [4- ( Oxime esters such as phenylthio)-, 2- (O-benzoyloxime)], bis (Cyclopentadienyl) -bis (2,6-difluoro-3- (pyrrol-1-yl) phenyl) titanium, titanocene, benzoin ether, triazine, borate, carbazole, imidazole, etc. Derivatives obtained by increasing the molecular weight thereof can be mentioned.
 これらのなかでもベンジルケタール系、α-ヒドロキシアセトフェノン系、α-アミノアセトフェノン系、アシルホスフィンオキサイド系、オキシムエステル系、及びチタノセン系の光重合開始剤は感度が高く、添加量が少なくて良いため好ましく、α-アミノアセトフェノン系、アシルホスフィンオキサイド系、オキシムエステル系、及びチタノセン系の光重合開始剤は長波長紫外線(i線(波長365nm)、h線(波長405nm)、g線(波長436nm)等)に対する感度が高いためLED光源を用いることができることから更に好ましく、α-アミノアセトフェノン系、アシルホスフィンオキサイド系、及びオキシムエステル系の光重合開始剤は可視光に対する感度が低いため取り扱いやすく最も好ましい。 Of these, benzyl ketal, α-hydroxyacetophenone, α-aminoacetophenone, acylphosphine oxide, oxime ester, and titanocene photopolymerization initiators are preferred because they have high sensitivity and can be added in small amounts. , Α-aminoacetophenone-based, acylphosphine oxide-based, oxime ester-based, and titanocene-based photopolymerization initiators include long-wave ultraviolet rays (i-line (wavelength 365 nm), h-line (wavelength 405 nm), g-line (wavelength 436 nm), etc. ) Is more preferable because an LED light source can be used, and α-aminoacetophenone-based, acylphosphine oxide-based, and oxime ester-based photopolymerization initiators are most preferable because of their low sensitivity to visible light.
(光塩基発生剤)
 光塩基発生剤としては、様々な光塩基発生剤を用いることができる。活性エネルギー線の作用によりアミン化合物を発生する光潜在性アミン化合物が好ましい。光潜在性アミン化合物としては、活性エネルギー線の作用により第1級アミノ基を有するアミン化合物を発生する光潜在性第1級アミン、活性エネルギー線の作用により第2級アミノ基を有するアミン化合物を発生する光潜在性第2級アミン、及び活性エネルギー線の作用により第3級アミノ基を有するアミン化合物を発生する光潜在性第3級アミンのいずれも用いることができる。発生塩基が高い触媒活性を示す点からは、光潜在性第3級アミンがより好ましい。
(Photobase generator)
Various photobase generators can be used as the photobase generator. Photolatent amine compounds that generate amine compounds by the action of active energy rays are preferred. The photolatent amine compound includes a photolatent primary amine that generates an amine compound having a primary amino group by the action of active energy rays, and an amine compound having a secondary amino group by the action of active energy rays. Any of the photolatent secondary amine that is generated and the photolatent tertiary amine that generates an amine compound having a tertiary amino group by the action of active energy rays can be used. In view of the high catalytic activity of the generated base, a photolatent tertiary amine is more preferable.
 光潜在性第1級アミン及び光潜在性第2級アミンとしては、例えば、WO2015/088021号公報記載のオルトニトロベンジルウレタン系化合物;ジメトキシベンジルウレタン系化合物;カルバミン酸ベンゾイン類;o-アシルオキシム類;o-カルバモイルオキシム類;N-ヒドロキシイミドカルバマート類;ホルムアニリド誘導体;芳香族スルホンアミド類;コバルトアミン錯体等が挙げられる。 Examples of photolatent primary amines and photolatent secondary amines include orthonitrobenzylurethane compounds described in WO2015 / 088021, dimethoxybenzylurethane compounds, benzoins carbamates, o-acyloximes O-carbamoyl oximes; N-hydroxyimide carbamates; formanilide derivatives; aromatic sulfonamides; cobalt amine complexes and the like.
 光潜在性第3級アミンとしては、例えば、WO2015-088021号公報記載のα-アミノケトン誘導体、α-アンモニウムケトン誘導体、ベンジルアミン誘導体、ベンジルアンモニウム塩誘導体、α-アミノアルケン誘導体、α-アンモニウムアルケン誘導体、アミンイミド類、光によりアミジンを発生するベンジルオキシカルボニルアミン誘導体、及びカルボン酸と3級アミンとの塩等が挙げられる。光塩基発生剤の中でも、発生塩基が高い触媒活性を示す点から光潜在性第3級アミンが好ましく、塩基の発生効率が高いこと及び光硬化組成物としての貯蔵安定性が良いこと等から、ベンジルアンモニウム塩誘導体、ベンジル置換アミン誘導体、α-アミノケトン誘導体、α-アンモニウムケトン誘導体が好ましい。 Examples of photolatent tertiary amines include α-aminoketone derivatives, α-ammonium ketone derivatives, benzylamine derivatives, benzylammonium salt derivatives, α-aminoalkene derivatives, α-ammonium alkene derivatives described in WO2015-088021. Amine imides, benzyloxycarbonylamine derivatives that generate amidine by light, and salts of carboxylic acids and tertiary amines. Among photobase generators, photolatent tertiary amines are preferred from the point that the generated bases exhibit high catalytic activity, because the base generation efficiency is high and the storage stability as a photocuring composition is good. Benzyl ammonium salt derivatives, benzyl substituted amine derivatives, α-amino ketone derivatives, and α-ammonium ketone derivatives are preferred.
 光開始剤を用いる場合、一種単独で用いてもよく、二種以上を任意の割合で組み合わせて用いてもよい。光開始剤は、その添加量は特に制限はないが、添加量が少ないと硬化が深部まで進行せず、硬化不良が生じる場合があるので、「(A)成分及び(A)成分を除く他の(メタ)アクリレート」(ただし、A成分を除く他の(メタ)アクリレートは、A成分を除く他の(メタ)アクリレートのモノマー、オリゴマー、マクロマー、及び/又は(C)成分を含むものとする。以下同じ。)100重量部に対して、0.05重量部以上が好ましく、0.1重量部以上がより好ましく、1重量部以上が更に好ましい。また、開始剤が多いと開始剤が残存し、硬化物性に悪影響が生じる場合があるので、添加量は「(A)成分及び(A)成分を除く他の(メタ)アクリレート」100重量部に対して、30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下が更に好ましい。 When a photoinitiator is used, one kind may be used alone, or two or more kinds may be used in combination at any ratio. The addition amount of the photoinitiator is not particularly limited, but if the addition amount is small, the curing does not proceed to the deep part and the curing failure may occur. Therefore, “other than (A) component and (A) component is excluded. (Meth) acrylate "(however, other (meth) acrylates excluding component A include other (meth) acrylate monomers, oligomers, macromers, and / or components (C) other than component A). The same)) With respect to 100 parts by weight, 0.05 parts by weight or more is preferable, 0.1 parts by weight or more is more preferable, and 1 part by weight or more is still more preferable. In addition, if the initiator is large, the initiator may remain and adversely affect the cured properties, so the amount added is 100 parts by weight of “(A) component and other (meth) acrylates excluding component (A)”. On the other hand, it is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and still more preferably 10 parts by weight or less.
<(B2)成分:熱開始剤>
 本発明に用いる(B2)熱開始剤としては、例えば、過酸化ベンゾイル、過安息香酸t-ブチル、クメンハイドロパーオキサイト等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物等が挙げられる。
<(B2) component: thermal initiator>
Examples of (B2) thermal initiator used in the present invention include organic peroxides such as benzoyl peroxide, t-butyl perbenzoate and cumene hydroperoxide, 2,2′-azobisisobutyronitrile, And azo compounds such as 2,2′-azobis- (2-methylbutyronitrile) and 2,2′-azobis (2,4-dimethylvaleronitrile).
 熱開始剤(熱重合開始剤)を用いる場合は、一種単独で用いてもよく、二種以上を任意の割合で組み合わせて用いてもよい。その添加量は特に限定されないが、貯蔵安定性の観点から、(A)成分及び(A)成分を除く他の(メタ)アクリレート100重量部に対して、好ましくは5重量部以下、より好ましくは2重量部以下であり、更に好ましくは1重量部以下である。また、硬化性の観点から、(A)成分及び(A)成分を除く他の(メタ)アクリレート100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.025重量部以上であり、更に好ましくは0.05重量部以上である。 When using a thermal initiator (thermal polymerization initiator), one kind may be used alone, or two or more kinds may be used in combination at any ratio. The addition amount is not particularly limited, but from the viewpoint of storage stability, it is preferably 5 parts by weight or less, more preferably 100 parts by weight of (A) component and other (meth) acrylates excluding component (A). 2 parts by weight or less, more preferably 1 part by weight or less. Further, from the viewpoint of curability, it is preferably 0.01 parts by weight or more, more preferably 0.025 parts by weight or more, with respect to 100 parts by weight of other (meth) acrylates excluding the component (A) and the component (A). More preferably 0.05 parts by weight or more.
 本発明において、(B1)光開始剤と(B2)熱開始剤とを併用することで、光硬化と熱硬化とを両立することもできる。 In the present invention, both (B1) photoinitiator and (B2) thermal initiator can be used together to achieve both photocuring and thermosetting.
<(B3)成分:レドックス開始剤>
 本発明に用いるレドックス開始剤としては、限定されないが、過硫酸塩開始剤と還元剤(メタ亜硫酸水素ナトリウム、亜硫酸水素ナトリウム、チオ尿素化合物等)との組み合わせ;有機過酸化物と第3級アミンとの組み合わせ(例えば、過酸化ベンゾイルとジメチルアニリンとの組み合わせ、クメンハイドロパーオキサイドとアニリン類との組み合わせ等);有機過酸化物と遷移金属との組み合わせ等が挙げられる。
<(B3) component: Redox initiator>
The redox initiator used in the present invention is not limited, but a combination of a persulfate initiator and a reducing agent (sodium metabisulfite, sodium bisulfite, thiourea compound, etc.); an organic peroxide and a tertiary amine (For example, a combination of benzoyl peroxide and dimethylaniline, a combination of cumene hydroperoxide and anilines), a combination of an organic peroxide and a transition metal, or the like.
 好ましいレドックス開始剤としては、有機過酸化物と第3級アミンとの組み合わせ、有機過酸化物と遷移金属との組み合わせが挙げられ、より好ましくは、クメンハイドロパーオキサイドとアニリン類との組み合わせ、クメンハイドロパーオキサイドとコバルトナフテートとの組み合わせ、クメンヒドロパーオキサイドと3価又は4価のバナジウム化合物等との組み合わせが挙げられる。レドックス開始剤は、単独で用いても、2種以上を併用してもよい。 Preferred redox initiators include a combination of an organic peroxide and a tertiary amine, a combination of an organic peroxide and a transition metal, and more preferably a combination of cumene hydroperoxide and anilines, cumene. A combination of hydroperoxide and cobalt naphthate, a combination of cumene hydroperoxide and a trivalent or tetravalent vanadium compound, and the like can be given. A redox initiator may be used independently or may use 2 or more types together.
 レドックス開始剤を用いる場合、その添加量は特に制限はないが、貯蔵安定性の観点から、(A)成分及び(A)成分を除く他の(メタ)アクリレート100重量部に対して、好ましくは10重量部以下、より好ましくは5重量部以下であり、更に好ましくは2重量部以下である。また、硬化性の観点から、(A)成分及び(A)成分を除く他の(メタ)アクリレート100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.025重量部以上であり、更に好ましくは0.05重量部以上である。また、α-ヒドロキシカルボニル化合物等の硬化促進剤を配合することもできる。 When using a redox initiator, the amount of addition is not particularly limited, but from the viewpoint of storage stability, it is preferably based on 100 parts by weight of the (A) component and other (meth) acrylates excluding the (A) component. It is 10 parts by weight or less, more preferably 5 parts by weight or less, and further preferably 2 parts by weight or less. Further, from the viewpoint of curability, it is preferably 0.01 parts by weight or more, more preferably 0.025 parts by weight or more, with respect to 100 parts by weight of other (meth) acrylates excluding the component (A) and the component (A). More preferably 0.05 parts by weight or more. Further, a curing accelerator such as an α-hydroxycarbonyl compound can be blended.
 本発明において、(B1)光開始剤と(B3)レドックス開始剤とを併用することで、光硬化とレドックス硬化とを両立することもできる。 In the present invention, both (B1) photoinitiator and (B3) redox initiator can be used together to achieve both photocuring and redox curing.
<(C)成分:単官能(メタ)アクリレート>
 単官能(メタ)アクリレートとしては、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基と極性基とを含有する(メタ)アクリレート(下記一般式(4)。以後、一般式(4)の(メタ)アクリレートと記述する。なお、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを表す。)、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基と極性基とを含有する(メタ)アクリレート以外の(メタ)アクリレート基を1つ有するモノマー(以下、本説明において「単官能(メタ)アクリレートモノマー」と称する。)、又は3-(メタ)アクリロオキシ2-ヒドロキシプロピル基を含有する有機重合体以外の(メタ)アクリレート基を1つ有する重合体(以下、本説明において「単官能(メタ)アクリレート重合体」と称する。)が挙げられる。
<(C) component: monofunctional (meth) acrylate>
As the monofunctional (meth) acrylate, a (meth) acrylate containing a 3- (meth) acryloxyoxy-2-hydroxypropyl group and a polar group (the following general formula (4); hereinafter, (meth) in the general formula (4)) (Meth) acrylate represents acrylate and / or methacrylate), (meth) acrylates other than (meth) acrylates containing 3- (meth) acryloxyoxy-2-hydroxypropyl groups and polar groups ) A monomer having one acrylate group (hereinafter referred to as “monofunctional (meth) acrylate monomer” in the present description), or an organic polymer other than an organic polymer containing a 3- (meth) acryloxy-2-hydroxypropyl group. ) Polymer having one acrylate group (hereinafter referred to as “monofunctional (meth) acrylate polymer” It referred to as.) And the like.
(3-(メタ)アクリロオキシ2-ヒドロキシプロピル基と極性基とを含有する(メタ)アクリレート)
Figure JPOXMLDOC01-appb-C000017
((Meth) acrylate containing 3- (meth) acrylooxy 2-hydroxypropyl group and polar group)
Figure JPOXMLDOC01-appb-C000017
 一般式(4)中、Rは-H又は-CHを示し、Yは極性基を示す。極性基としては、フェノキシ誘導体基(-O-Ph-R 〔Phはフェニル基の骨格〕。以下「一般式(5)」と表す。)と、エステル基(-O-CO-R10。以下「一般式(6)」と表す。)と、(チオ)エーテル基(-O-R11、及び/又は-S-R11。以下「一般式(7)」と表す。)と、アミン基(-NHpR12 2-p[pは0又は1である。以下「一般式(8)」と表す。])と、ウレタン基(-O-CO-NH-R13。以下「一般式(9)」と表す。)とが挙げられる。 In the general formula (4), R 1 represents —H or —CH 3 , and Y represents a polar group. Examples of the polar group include a phenoxy derivative group (—O—Ph—R 9 5 [Ph is a skeleton of a phenyl group], hereinafter referred to as “general formula (5)”), and an ester group (—O—CO—R 10 Hereinafter referred to as “general formula (6)”), (thio) ether group (—O—R 11 and / or —S—R 11, hereinafter referred to as “general formula (7)”), amine group (-NHpR 12 2-p [p is 0 or 1. hereinafter referred to as "the general formula (8)".]) and, urethane groups (-O-CO-NH-R 13. the following "general formula (9) ").
 ここで、一般式(5)中、PhにRは5個結合しており、複数のRはそれぞれ独立して、水素原子又は置換基を表す。置換基としては、例えば、ニトロ基、シアノ基、ヒドロキシ基、ハロゲン原子、アセチル基、カルボニル基、置換又は非置換のアリル基、置換又は非置換のアルキル基(好ましくは炭素数が1~5のアルキル基)、置換又は非置換のアルコキシ基(好ましくは炭素数が1~5のアルコキシ基)、非置換若しくは置換アリール基、非置換若しくは置換アリールオキシ基、複素環構造含有基、複数の環を有する基やこれらの組合せ等が挙げられる。複数のRのいずれかが互いに結合し、環状構造を形成してもよい。複数のRからなる群から選択される少なくとも2つの基が互いに結合し、環状構造を形成する場合、複数のベンゼン環が縮合した構造、ベンゼン環と複素環や非芳香族性の環、カルボニル基等の官能基とが結合した環等が縮合した構造等を形成してもよい。これらの置換基の中では、置換又は非置換のアルキル基が好ましく、置換又は非置換の炭素数が1~5のアルキル基がより好ましい。 Here, in the general formula (5), five R 9 are bonded to Ph, and each of the plurality of R 9 independently represents a hydrogen atom or a substituent. Examples of the substituent include a nitro group, a cyano group, a hydroxy group, a halogen atom, an acetyl group, a carbonyl group, a substituted or unsubstituted allyl group, and a substituted or unsubstituted alkyl group (preferably having 1 to 5 carbon atoms). An alkyl group), a substituted or unsubstituted alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms), an unsubstituted or substituted aryl group, an unsubstituted or substituted aryloxy group, a heterocyclic structure-containing group, and a plurality of rings. And a combination thereof. Any of a plurality of R 9 may be bonded to each other to form a cyclic structure. When at least two groups selected from the group consisting of a plurality of R 9 are bonded to each other to form a cyclic structure, a structure in which a plurality of benzene rings are condensed, a benzene ring and a heterocyclic ring, a non-aromatic ring, carbonyl A structure in which a ring or the like bonded to a functional group such as a group is condensed may be formed. Among these substituents, a substituted or unsubstituted alkyl group is preferable, and a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms is more preferable.
 また、一般式(6)、一般式(7)、一般式(8)、一般式(9)中、R10、R11、R12、R13は、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、複素環構造含有基、複数の環を有する基、又は-(C2mO)14基を示す。また、一般式(8)中、R12が2つある場合、2つのR12は、互いに結合して、それらが結合している炭素原子と共に環状構造、又は複素環構造を形成していてもよい。また、R、R10、R11、R12、及び/又はR13は、シリル基を有する基であってもよい。一般式(4)の(メタ)アクリレートがシリル基を有する場合、硬化性組成物を湿気硬化による後硬化させることができる(いわゆる、デュアル硬化型)。 In general formula (6), general formula (7), general formula (8), and general formula (9), R 10 , R 11 , R 12 , and R 13 are substituted or unsubstituted alkyl groups, substituted or It represents an unsubstituted aryl group, a heterocyclic structure-containing group, a group having a plurality of rings, or a — (C m H 2m O) n R 14 group. In the general formula (8), when there are two R 12 , the two R 12 may be bonded to each other to form a cyclic structure or a heterocyclic structure together with the carbon atom to which they are bonded. Good. R 9 , R 10 , R 11 , R 12 , and / or R 13 may be a group having a silyl group. When the (meth) acrylate of the general formula (4) has a silyl group, the curable composition can be post-cured by moisture curing (so-called dual curing type).
 ここで、-(C2mO)14基において、mは2~4の整数、nは1~30の整数、R14は-H、又は非置換若しくは置換のアルキル基、非置換若しくは置換のフェニル基である。具体的に、Rとしては、-(C2mO)14基においてR14がHの水酸基を有する基;-(C2mO)14基においてR14が非置換若しくは置換のアルキル基のアルコキシ基を有する基;-(C2mO)14基においてR14が非置換若しくは置換のフェニル基のフェノキシ基を有する基が挙げられる。 Here, in the — (C m H 2m O) n R 14 group, m is an integer of 2 to 4, n is an integer of 1 to 30, R 14 is —H, or an unsubstituted or substituted alkyl group, unsubstituted Or it is a substituted phenyl group. Specifically, examples of R 9, - (C m H 2m O) group R 14 in the n R 14 groups having a hydroxyl group H ;-( C m H 2m O) R 14 in n R 14 groups unsubstituted or group having an alkoxy group-substituted alkyl group ;-( C m H 2m O) R 14 in n R 14 groups include groups having a phenoxy group unsubstituted or substituted phenyl group.
 また、置換若しくは非置換のアルキル基は、特に限定されないが、例えば、炭素数1~30のアルキル基が好ましい。なお、当該アルキル基は、二重結合を有する基を含むアルキル基(広義のアルキル基)を含むものとする。また、置換若しくは非置換のアリール基は、特に限定されないが、例えば、炭素数6~20のアリール基が好ましい。更に、置換若しくは非置換のアルキル基は、直鎖状、分岐状、若しくは環状であってよい。また、置換アルキル基及び置換アリール基における置換基としては、特に限定されないが、例えば、ハロゲン原子、水酸基、アルコキシ基、エステル基、ケトン基、アルデヒド基、カルボキシル基、グリシジル基、アミノ基、又はアミド基等が挙げられる。そして、複素環構造含有基としては、特に限定されないが、例えば、炭素数3~20の複素環構造含有基が好ましい。また、アルコキシ基としては、特に限定されないが、炭素数1~30のアルコキシ基が好ましく、炭素数1~18のアルコキシ基がより好ましい。また、エステル基としては、炭素数2~30のエステル基が好ましく、炭素数2~18のエステル基がより好ましい。ケトン基としては、炭素数2~30のケトン基が好ましく、炭素数2~18のケトン基がより好ましい。 The substituted or unsubstituted alkyl group is not particularly limited, but for example, an alkyl group having 1 to 30 carbon atoms is preferable. In addition, the said alkyl group shall contain the alkyl group (broadly-defined alkyl group) containing the group which has a double bond. The substituted or unsubstituted aryl group is not particularly limited, but for example, an aryl group having 6 to 20 carbon atoms is preferable. Further, the substituted or unsubstituted alkyl group may be linear, branched or cyclic. In addition, the substituent in the substituted alkyl group and the substituted aryl group is not particularly limited, and examples thereof include a halogen atom, a hydroxyl group, an alkoxy group, an ester group, a ketone group, an aldehyde group, a carboxyl group, a glycidyl group, an amino group, and an amide. Groups and the like. The heterocyclic structure-containing group is not particularly limited, but for example, a heterocyclic structure-containing group having 3 to 20 carbon atoms is preferable. Further, the alkoxy group is not particularly limited, but an alkoxy group having 1 to 30 carbon atoms is preferable, and an alkoxy group having 1 to 18 carbon atoms is more preferable. Further, the ester group is preferably an ester group having 2 to 30 carbon atoms, and more preferably an ester group having 2 to 18 carbon atoms. As the ketone group, a ketone group having 2 to 30 carbon atoms is preferable, and a ketone group having 2 to 18 carbon atoms is more preferable.
 更に、R、R10、R11、R12、及び/又はR13は、炭素数が8~20の長鎖炭化水素基、カルボキシイミド基、又は架橋性ケイ素基を有する基であってもよい。硬化性組成物の硬化物の柔軟性が優れている点で、炭素数が8~20の長鎖炭化水素基、及び/又は-(C2mO)14基が好ましく、炭素数が8~20の長鎖炭化水素基、水酸基を有する基、アルコキシ基を有する基がより好ましく、炭素数が8~20の長鎖炭化水素基が最も好ましい。硬化性組成物を湿気硬化による硬化反応もするデュアル硬化機構によって硬化させる観点からは、架橋性ケイ素基を有する基が好ましい。 Further, R 9 , R 10 , R 11 , R 12 , and / or R 13 may be a group having a long chain hydrocarbon group having 8 to 20 carbon atoms, a carboximide group, or a crosslinkable silicon group. Good. From the viewpoint of excellent flexibility of the cured product of the curable composition, a long-chain hydrocarbon group having 8 to 20 carbon atoms and / or — (C m H 2m O) n R 14 group is preferable. Is more preferably a long chain hydrocarbon group having 8 to 20 groups, a group having a hydroxyl group or a group having an alkoxy group, and most preferably a long chain hydrocarbon group having 8 to 20 carbon atoms. From the viewpoint of curing the curable composition by a dual curing mechanism that also performs a curing reaction by moisture curing, a group having a crosslinkable silicon group is preferable.
 R、R10、R11、R12、及び/又はR13の具体例は以下の通りである。まず、水酸基を有する基としては、2-ヒドロキシプロピル基、4-ヒドロキシブチル基、ヒドロキシヘキサ(エチレンエーテル)基、ヒドロキシオクタ(プロピレンエーテル)基、2-ヒドロキシ-3-ブチルオキシプロピル基等が挙げられる。アルコキシ基を有する基としては、メトキシトリ(エチレンエーテル)基、エトキシジ(エチレンエーテル)基、ジシクロペンテニルオキシエチル基等が挙げられる。芳香族基としては、フェノキシエチル基、ノニルフェノキシエチル基、ベンジル基等が挙げられる。炭素数が8~20の長鎖炭化水素系(メタ)アクリレート基としては、2-エチルヘキシル基、イソオクチル基、ラウリル基、及びイソステアリル基等が挙げられ、入手の容易性の観点から炭素数が8~18の長鎖炭化水素基が好ましい。脂環式基としては、シクロヘキシル基、ジシクロペンテニル基、イソボルニル基等が挙げられる。複素環基を有する基としては、テトラヒドロフルフリル基等が挙げられる。また、架橋性ケイ素基を有する(メタ)アクリレート基としては、3-(トリメトキシシリル)プロピル基等が挙げられ、係る基を含有する硬化性組成物は湿気硬化反応し、デュアル硬化機構になる。架橋性ケイ素基を有する(メタ)アクリレート基は、特にR12として有効である。 Specific examples of R 9 , R 10 , R 11 , R 12 , and / or R 13 are as follows. First, examples of the group having a hydroxyl group include a 2-hydroxypropyl group, a 4-hydroxybutyl group, a hydroxyhexa (ethylene ether) group, a hydroxyocta (propylene ether) group, and a 2-hydroxy-3-butyloxypropyl group. It is done. Examples of the group having an alkoxy group include a methoxytri (ethylene ether) group, an ethoxydi (ethylene ether) group, and a dicyclopentenyloxyethyl group. Examples of the aromatic group include a phenoxyethyl group, a nonylphenoxyethyl group, and a benzyl group. Examples of the long-chain hydrocarbon (meth) acrylate group having 8 to 20 carbon atoms include 2-ethylhexyl group, isooctyl group, lauryl group, and isostearyl group. From the viewpoint of availability, the carbon number is 8-18 long chain hydrocarbon groups are preferred. Examples of the alicyclic group include a cyclohexyl group, a dicyclopentenyl group, and an isobornyl group. Examples of the group having a heterocyclic group include a tetrahydrofurfuryl group. Examples of the (meth) acrylate group having a crosslinkable silicon group include a 3- (trimethoxysilyl) propyl group, and the curable composition containing such a group undergoes a moisture curing reaction to form a dual curing mechanism. . A (meth) acrylate group having a crosslinkable silicon group is particularly effective as R 12 .
(単官能(メタ)アクリレートモノマー)
 単官能(メタ)アクリレートモノマーとしては、例えば、以下の化合物が挙げられる。まず、炭素数が8~20の長鎖炭化水素系(メタ)アクリレートとしては、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、及びイソステアリル(メタ)アクリレート等が挙げられ、入手の容易性の観点から炭素数が8~18の長鎖炭化水素系(メタ)アクリレートが好ましい。
(Monofunctional (meth) acrylate monomer)
Examples of the monofunctional (meth) acrylate monomer include the following compounds. First, as the long chain hydrocarbon (meth) acrylate having 8 to 20 carbon atoms, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate, and the like are included. From the viewpoint of availability, long-chain hydrocarbon (meth) acrylates having 8 to 18 carbon atoms are preferable.
 脂環式(メタ)アクリレートとしては、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が挙げられる。 Examples of the alicyclic (meth) acrylate include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
 水酸基を有する(メタ)アクリレートとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、及びポリエチレングリコール-ポリプロピレングリコール共重合体等のポリアルキレングリコールモノ(メタ)アクリレート等を挙げることができる。 Examples of the (meth) acrylate having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, glycerol mono ( Hydroxyalkyl (meth) acrylates such as (meth) acrylate; polyalkylene glycol mono (meth) acrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and polyethylene glycol-polypropylene glycol copolymers be able to.
 芳香環を有する(メタ)アクリレートとしては、ベンジル(メタ)アクリレート、フェノールアルキレンオキサイド変性(メタ)アクリレート、アルキルフェノールアルキレンオキサイド変性(メタ)アクリレート、p-クミルフェノールアルキレンオキサイド変性(メタ)アクリレート、及びo-フェニルフェノールアルキレンオキサイド変性(メタ)アクリレート等が挙げられる。なお、アルキレンオキサイドとしては、エチレンオキサイド、及びプロピレンオキサイド等が挙げられる。 Examples of the (meth) acrylate having an aromatic ring include benzyl (meth) acrylate, phenol alkylene oxide modified (meth) acrylate, alkylphenol alkylene oxide modified (meth) acrylate, p-cumylphenol alkylene oxide modified (meth) acrylate, and o -Phenylphenol alkylene oxide modified (meth) acrylate and the like. Examples of the alkylene oxide include ethylene oxide and propylene oxide.
 アルコキシ基含有(メタ)アクリレートとしては、エトキシジエチレングリコール(メタ)アクリレート等のアルコキシポリエチレングリコールモノ(メタ)アクリレート;メトキシトリプロピレングリコール(メタ)アクリレート等のアルコキシポリプロピレングリコールモノ(メタ)アクリレート;アルコキシポリエチレングリコール-ポリプロピレングリコール共重合体等を挙げることができる。 Examples of alkoxy group-containing (meth) acrylates include alkoxy polyethylene glycol mono (meth) acrylates such as ethoxydiethylene glycol (meth) acrylate; alkoxypolypropylene glycol mono (meth) acrylates such as methoxytripropylene glycol (meth) acrylate; A polypropylene glycol copolymer etc. can be mentioned.
 カルボキシル基を有する(メタ)アクリレートとしては、(メタ)アクリル酸、(メタ)アクリル酸のポリカプロラクトン変性物、(メタ)アクリル酸のマイケル付加型多量体、2-ヒドロキシエチル(メタ)アクリレートと無水フタル酸の付加物、2-ヒドロキシエチル(メタ)アクリレートと無水コハク酸の付加物等が挙げられる。 Examples of the (meth) acrylate having a carboxyl group include (meth) acrylic acid, modified polycaprolactone of (meth) acrylic acid, Michael addition type multimer of (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate and anhydrous Examples include adducts of phthalic acid and adducts of 2-hydroxyethyl (meth) acrylate and succinic anhydride.
 複素環基を有する(メタ)アクリレートとしては、テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられ、アミノ基を有する(メタ)アクリレートとしては、N、N-ジメチルアミノエチルアクリレート等が挙げられる。 Examples of the (meth) acrylate having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, and the (meth) acrylate having an amino group includes N, N -Dimethylaminoethyl acrylate and the like.
 架橋性ケイ素基を有する(メタ)アクリレートとしては、3-(トリメトキシシリル)プロピル(メタ)アクリレート等が挙げられ、エポキシ基を有する(メタ)アクリレートとしては、グリシジル(メタ)アクリレート、及びシクロヘキセンオキサイド含有(メタ)アクリレート等が挙げられ、リン酸基を有する(メタ)アクリレートとしては、2-(メタ)アクリロイルオキシエチルアシッドフォスフェート等が挙げられる。また、フルオロアルキル基を有する(メタ)アクリレート、トリブロモフェニル基を有する(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylate having a crosslinkable silicon group include 3- (trimethoxysilyl) propyl (meth) acrylate, and the (meth) acrylate having an epoxy group includes glycidyl (meth) acrylate and cyclohexene oxide. Examples of the (meth) acrylate having a phosphoric acid group include 2- (meth) acryloyloxyethyl acid phosphate. Moreover, the (meth) acrylate which has a fluoroalkyl group, the (meth) acrylate which has a tribromophenyl group, etc. are mentioned.
(単官能(メタ)アクリレート重合体)
 また、単官能(メタ)アクリレート重合体を用いることができる。例えば、(メタ)アクリロイルオキシ基を1個有するアクリル重合体を骨格とするアクリル系重合体、ウレタン(メタ)アクリレート系重合体、ポリエステル(メタ)アクリレート系重合体、ポリエーテル(メタ)アクリレート系重合体、エポキシ(メタ)アクリレート系重合体等が挙げられる。
(Monofunctional (meth) acrylate polymer)
Moreover, a monofunctional (meth) acrylate polymer can be used. For example, an acrylic polymer having an acrylic polymer having one (meth) acryloyloxy group as a skeleton, a urethane (meth) acrylate polymer, a polyester (meth) acrylate polymer, a polyether (meth) acrylate polymer Examples thereof include an epoxy polymer and an epoxy (meth) acrylate polymer.
 (メタ)アクリレート基を1つ有する重合体の重量平均分子量は硬化性組成物の硬化物の良好な伸び特性を確保する観点からGPCにおけるポリスチレン換算において1,000以上が好ましく、2,000以上がより好ましく、3,000以上が更に好ましい。硬化性組成物の適切な粘度を確保し、良好な作業性を確保する観点から重量平均分子量は100,000程度以下が好ましく、50,000以下がより好ましく、30,000以下が更に好ましい。また、ガラス転移温度(Tg)は、硬化性粘物の柔軟性の維持・向上の観点から、10℃以下が好ましく、0℃以下がより好ましく、-10℃以下が更に好ましい。また、他の成分と配合する場合における取扱い易さを確保する観点からは、50℃で液状を示すことが好ましく、20℃で液状を示すことがより好ましく、0℃で液状を示すことが更に好ましい。 The weight average molecular weight of the polymer having one (meth) acrylate group is preferably 1,000 or more and 2,000 or more in terms of polystyrene in GPC from the viewpoint of securing good elongation characteristics of the cured product of the curable composition. More preferred is 3,000 or more. From the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the weight average molecular weight is preferably about 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less. The glass transition temperature (Tg) is preferably 10 ° C. or less, more preferably 0 ° C. or less, and further preferably −10 ° C. or less from the viewpoint of maintaining and improving the flexibility of the curable mucilage. Further, from the viewpoint of ensuring ease of handling when blended with other components, it is preferable to exhibit a liquid state at 50 ° C., more preferably a liquid state at 20 ° C., and a liquid state at 0 ° C. preferable.
 空気中で用いても酸素による重合阻害を受けにくく、硬化性がよいことから、一般式(4)の(メタ)アクリレート、水酸基を有する(メタ)アクリレート、脂環式(メタ)アクリレートが好ましく、一般式(4)の(メタ)アクリレート、水酸基を有する(メタ)アクリレート、イソボルニル(メタ)アクリレートがより好ましく、一般式(4)の(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、イソボルニル(メタ)アクリレートが更に好ましく、一般式(4)の(メタ)アクリレートが最も好ましい。 Even if it is used in the air, it is less susceptible to polymerization inhibition by oxygen and has good curability. Therefore, (meth) acrylate of general formula (4), (meth) acrylate having a hydroxyl group, and alicyclic (meth) acrylate are preferable, (Meth) acrylate of general formula (4), (meth) acrylate having a hydroxyl group, and isobornyl (meth) acrylate are more preferable. (Meth) acrylate of general formula (4), 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and isobornyl (meth) acrylate are more preferable. Most preferred is (meth) acrylate.
 得られる硬化性組成物の安全性(防爆上の観点)を考慮する場合、硬化性組成物の引火点が高い方が望ましい。したがって、単官能(メタ)アクリレートの引火点は60℃以上が好ましく、70℃以上がより好ましい。 When considering the safety (explosion-proof viewpoint) of the obtained curable composition, it is desirable that the flash point of the curable composition is higher. Therefore, the flash point of monofunctional (meth) acrylate is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher.
 硬化性組成物の硬化物の硬さを適正に保ち、十分な柔軟性を発揮させる観点から、単官能(メタ)アクリレートモノマーの配合割合は、一般式(4)の(メタ)アクリレートと、単官能(メタ)アクリレートモノマー100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が最も好ましい。一般式(4)の(メタ)アクリレートによる酸素阻害の抑制効果を発揮させ、十分な硬化性を発揮させる観点から、単官能(メタ)アクリレートモノマーの配合割合は80質量部以下が好ましく、70質量部以下がより好ましく、60質量部以下が最も好ましい。 From the viewpoint of keeping the hardness of the cured product of the curable composition properly and exhibiting sufficient flexibility, the blending ratio of the monofunctional (meth) acrylate monomer is the same as the (meth) acrylate of the general formula (4), 10 mass parts or more are preferable with respect to 100 mass parts of functional (meth) acrylate monomers, 20 mass parts or more are more preferable, and 30 mass parts or more are the most preferable. From the viewpoint of exhibiting the effect of suppressing oxygen inhibition by the (meth) acrylate of the general formula (4) and exhibiting sufficient curability, the blending ratio of the monofunctional (meth) acrylate monomer is preferably 80 parts by mass or less, and 70 masses. Part or less is more preferable, and 60 parts by weight or less is most preferable.
 また、一般式(1)で表される基を有する有機重合体による酸素阻害の抑制効果を発揮させ、十分な硬化性を発揮させる観点から、単官能(メタ)アクリレート重合体の配合割合は、一般式(1)で表される基を有する有機重合体と、単官能(メタ)アクリレート重合体100質量部に対して、80質量部以下が好ましく、70質量部以下がより好ましく、60質量部以下が最も好ましい。 In addition, from the viewpoint of exhibiting the inhibitory effect of oxygen inhibition by the organic polymer having a group represented by the general formula (1) and exhibiting sufficient curability, the blending ratio of the monofunctional (meth) acrylate polymer is: 80 parts by mass or less is preferable, 70 parts by mass or less is more preferable, and 60 parts by mass with respect to 100 parts by mass of the organic polymer having the group represented by the general formula (1) and the monofunctional (meth) acrylate polymer. The following are most preferred.
<その他の添加剤>
 本発明に係る硬化性組成物には、必要に応じて、若しくは硬化方法に応じて、多官能(メタ)アクリレートモノマー、多官能(メタ)アクリレート重合体、アクリレート系モノマ
ーと共重合可能なビニル系モノマー、光増感剤、光重合促進剤、重合禁止剤、フィラー、粘着付与樹脂、シランカップリング剤、増量剤、希釈剤、可塑剤、水分吸収剤、硬化触媒、引張特性等を改善する物性調整剤、補強剤、着色剤、難燃剤、タレ防止剤、酸化防止剤、老化防止剤、紫外線吸収剤、光安定剤(HALS)、溶剤、香料、顔料、染料、希釈剤等の各種添加剤を加えてもよい。
<Other additives>
The curable composition according to the present invention includes a vinyl-based copolymerizable with a polyfunctional (meth) acrylate monomer, a polyfunctional (meth) acrylate polymer, and an acrylate monomer as necessary or according to a curing method. Monomers, photosensitizers, photopolymerization accelerators, polymerization inhibitors, fillers, tackifying resins, silane coupling agents, extenders, diluents, plasticizers, moisture absorbers, curing catalysts, physical properties that improve tensile properties, etc. Various additives such as regulators, reinforcing agents, colorants, flame retardants, anti-sagging agents, antioxidants, anti-aging agents, UV absorbers, light stabilizers (HALS), solvents, fragrances, pigments, dyes, diluents, etc. May be added.
(多官能(メタ)アクリレートモノマー)
 2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーとしては、1,6-ヘキサジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、又は2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン等の2官能(メタ)アクリレートモノマー、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート等の3官能(メタ)アクリレートモノマー、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、又はペンタエリスリトールエトキシテトラ(メタ)アクリレート等の4官能以上の(メタ)アクリレートモノマーが挙げられる。
(Multifunctional (meth) acrylate monomer)
Polyfunctional (meth) acrylate monomers having two or more (meth) acryloyl groups include 1,6-hexadiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) Acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxytetraethoxyphenyl) propane, etc. Trifunctional (meth) acrylate monomer such as bifunctional (meth) acrylate monomer, trimethylolpropane tri (meth) acrylate, tris [(meth) acryloxyethyl] isocyanurate, dimethylolpropane tetra (meth) acrylate, pentaerythritol Tetra ( Data) acrylate, or pentaerythritol ethoxy tetra (meth) acrylate 4 or more functional groups of the (meth) acrylate monomers.
(多官能(メタ)アクリレート重合体)
 また、(メタ)アクリレート基を複数有する重合体としては、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基と極性基とを含有する(メタ)アクリレート以外の(メタ)アクリロイルオキシ基を2個以上有する多官能(メタ)アクリレート重合体を用いることができる。
(Polyfunctional (meth) acrylate polymer)
The polymer having a plurality of (meth) acrylate groups has two or more (meth) acryloyloxy groups other than (meth) acrylates containing 3- (meth) acrylooxy-2-hydroxypropyl groups and polar groups. A polyfunctional (meth) acrylate polymer can be used.
 多官能(メタ)アクリレート重合体の重量平均分子量は硬化性組成物の硬化物の良好な伸び特性を確保する観点からGPCにおけるポリスチレン換算において1,000以上が好ましく、2,000以上がより好ましく、3,000以上が更に好ましい。硬化性組成物の適切な粘度を確保し、良好な作業性を確保する観点から重量平均分子量は100,000程度以下が好ましく、80,000以下がより好ましく、50,000以下が更に好ましい。また、ガラス転移温度(Tg)は、硬化性粘物の硬化物の柔軟性の維持・向上の観点から、10℃以下が好ましく、0℃以下がより好ましく、-10℃以下が更に好ましい。また、他の成分と配合する場合における取扱い易さを確保する観点からは、50℃で液状を示すことが好ましく、20℃で液状を示すことがより好ましく、0℃で液状を示すことが更に好ましい。 The weight average molecular weight of the polyfunctional (meth) acrylate polymer is preferably 1,000 or more, more preferably 2,000 or more in terms of polystyrene in GPC, from the viewpoint of ensuring good elongation characteristics of the cured product of the curable composition. More preferably 3,000 or more. From the viewpoint of securing an appropriate viscosity of the curable composition and ensuring good workability, the weight average molecular weight is preferably about 100,000 or less, more preferably 80,000 or less, and even more preferably 50,000 or less. The glass transition temperature (Tg) is preferably 10 ° C. or lower, more preferably 0 ° C. or lower, and further preferably −10 ° C. or lower, from the viewpoint of maintaining and improving the flexibility of the cured curable mucilage. Further, from the viewpoint of ensuring ease of handling when blended with other components, it is preferable to exhibit a liquid state at 50 ° C., more preferably a liquid state at 20 ° C., and a liquid state at 0 ° C. preferable.
 多官能(メタ)アクリレート重合体としては、ポリエーテル系ウレタン(メタ)アクリレート(例えば、日本合成社製「UV-3700B」、「UV-6100B」)、ポリエステル系ウレタン(メタ)アクリート(例えば、日本合成社製「UV-2000B」、「UV-3000B」、「UV-7000B」、根上工業社製「KHP-11」、「KHP-17」)、非芳香族ポリカーボネート系ウレタン(メタ)アクリレート(例えば、根上工業社製「アートレジンUN-9200A」)、アクリル系(メタ)アクリレート(例えば、カネカ社製「RC-100C」、「RC-200C」、「RC-300C」)、1,2-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、日本曹達社製「TE-2000」、「TEA-1000」)、1,2-ポリブタジエン末端ウレタン(メタ)アクリレートの水素添加物(例えば、日本曹達社製「TEAI-1000」)、1,4-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、大阪有機化学社製「BAC-45」)、ポリイソプレン末端(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート等が挙げられる。 Polyfunctional (meth) acrylate polymers include polyether-based urethane (meth) acrylates (eg, “UV-3700B” and “UV-6100B” manufactured by Nippon Gosei Co., Ltd.), polyester-based urethane (meth) acrylates (eg, Japan) “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Synthetic Co., Ltd. “KHP-11”, “KHP-17” manufactured by Negami Kogyo Co., Ltd.), non-aromatic polycarbonate urethane (meth) acrylate (for example, “Art Resin UN-9200A” manufactured by Negami Kogyo Co., Ltd.), acrylic (meth) acrylate (for example, “RC-100C”, “RC-200C”, “RC-300C” manufactured by Kaneka Corporation), 1,2-polybutadiene Terminal urethane (meth) acrylate (for example, “TE-2000”, “TEA-10” manufactured by Nippon Soda Co., Ltd.) 0 "), 1,2-polybutadiene-terminated urethane (meth) acrylate hydrogenated product (for example," TEAI-1000 "manufactured by Nippon Soda Co., Ltd.), 1,4-polybutadiene-terminated urethane (meth) acrylate (for example, Osaka Organic Chemical Co., Ltd.) "BAC-45" manufactured by the company), polyisoprene-terminated (meth) acrylate, bisphenol A type epoxy (meth) acrylate, and the like.
(アクリレート系モノマーと共重合可能なビニル系モノマー)
 アクリレート系モノマーと共重合可能なビニル系モノマーとしては、例えば、アクリル酸、メタクリル酸、アクリルアミド、アクリロニトリル、メタクリロニトリル、N-置換アクリルアミド、ヒドロキシエチルアクリレート、N-ビニルピロリドン、マレイン酸、イタコン酸、N-メチロールアクリルアミド、ヒドロキシエチルメタクリレート等が挙げられる。
(Vinyl monomer copolymerizable with acrylate monomer)
Examples of vinyl monomers copolymerizable with acrylate monomers include acrylic acid, methacrylic acid, acrylamide, acrylonitrile, methacrylonitrile, N-substituted acrylamide, hydroxyethyl acrylate, N-vinyl pyrrolidone, maleic acid, itaconic acid, Examples thereof include N-methylol acrylamide and hydroxyethyl methacrylate.
(光増感剤)
 光増感剤としては、225-310kJ/molの三重項エネルギーを有するカルボニル化合物が好ましく、例えば、イソプロピルチオキサントン等のチオキサントンとその誘導体、9,10-ジブトキシアントラセン等のジアルコキシアントラセン誘導体、2-ベンゾイル安息香酸メチル等のベンゾフェノンとその誘導体、3-アシルクマリン、3,3′-カルボニルビスクマリン等のクマリン誘導体等が挙げられ、チオキサントンとその誘導体及びクマリン誘導体が好ましく、チオキサントンとその誘導体、ベンゾフェノンとその誘導体、及びクマリン誘導体がより好ましい。
(Photosensitizer)
As the photosensitizer, a carbonyl compound having a triplet energy of 225 to 310 kJ / mol is preferable. For example, thioxanthone such as isopropylthioxanthone and derivatives thereof, dialkoxyanthracene derivative such as 9,10-dibutoxyanthracene, 2- Examples include benzophenone and its derivatives such as methyl benzoylbenzoate, and coumarin derivatives such as 3-acyl coumarin and 3,3'-carbonylbiscoumarin, thioxanthone and its derivatives and coumarin derivatives are preferred, thioxanthone and its derivatives, benzophenone and Its derivatives and coumarin derivatives are more preferred.
 光増感剤の配合割合は特に制限はないが、硬化性組成物中に0.01~5質量%が好ましく、0.025~2質量%がより好ましい。これら光増感剤は単独で用いてもよく、2種以上を併用してもよい。 The mixing ratio of the photosensitizer is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.025 to 2% by mass in the curable composition. These photosensitizers may be used independently and may use 2 or more types together.
(光重合促進剤)
 光重合開始剤による硬化反応を促進させる目的で光重合促進剤を開始剤と併用することができる。光重合促進剤としては、トリエチルアミン、トリエタノールアミン、2-ジメチルアミノエタノール等の第3級アミン類;トリフェニルホスフィン等のアリールホスフィン類、トリフェニルホスフィンオキシド等のアリールホスフィンオキシド類、トリフェニルホスファイト等のアリールホスファイト類、トリフェニルホスフェート等のアリールホスフェート類等を含むホスフィン類(アリール基は置換を有することもできる。);β-チオグリコールで代表されるチオール類等を挙げることができる。好ましいホスフィン類は三官能性ホスフィン誘導体であり、トリアリールホスフィンがより好ましく、トリフェニルホスフィンが最も好ましい。
(Photopolymerization accelerator)
A photopolymerization accelerator can be used in combination with an initiator for the purpose of accelerating the curing reaction by the photopolymerization initiator. Photopolymerization accelerators include tertiary amines such as triethylamine, triethanolamine, 2-dimethylaminoethanol; aryl phosphines such as triphenylphosphine; aryl phosphine oxides such as triphenylphosphine oxide; triphenyl phosphite Phosphines including aryl phosphates such as triphenyl phosphate and the like (aryl groups may have a substituent); thiols typified by β-thioglycol and the like. Preferred phosphines are trifunctional phosphine derivatives, triarylphosphine is more preferred, and triphenylphosphine is most preferred.
(重合禁止剤)
 重合禁止剤としては、特に限定されないが、例えば、ヒンダードフェノール及びヒンダードアミン等のラジカル捕捉剤、リン系第二次酸化劣化防止剤、ジエチルヒドロキシルアミン、硫黄、t-ブチルカテコール、三ヨウ化カリウム、N-ニトロソフェニルヒドロキシアミンアルミニウム塩等が挙げられる。重合禁止剤は、単独で用いてもよいし、2種以上を併用してもよい。
(Polymerization inhibitor)
The polymerization inhibitor is not particularly limited. For example, radical scavengers such as hindered phenols and hindered amines, phosphorus secondary oxidative degradation inhibitors, diethylhydroxylamine, sulfur, t-butylcatechol, potassium triiodide, Examples thereof include N-nitrosophenylhydroxyamine aluminum salt. A polymerization inhibitor may be used independently and may use 2 or more types together.
 重合禁止剤の含有量は、重合禁止剤の含有量が少なすぎると重合禁止効果が十分でない傾向があるので、(A)成分及び(A)成分を除く他の(メタ)アクリレート100重量部に対して0.001重量部以上が好ましく、より好ましくは0.005重量部以上、特に好ましくは0.01重量部以上である。また、重合禁止剤の含有量が多すぎると硬化性に劣る傾向があるので、2重量部以下が好ましく、より好ましくは0.5重量部以下、特に好ましくは0.3重量部以下である。 If the content of the polymerization inhibitor is too small, the polymerization inhibitory effect tends to be insufficient, so that the (A) component and the (meth) acrylate other than the (A) component are 100 parts by weight. The amount is preferably 0.001 part by weight or more, more preferably 0.005 part by weight or more, and particularly preferably 0.01 part by weight or more. Moreover, since there exists a tendency for it to be inferior to curability when there is too much content of a polymerization inhibitor, 2 weight part or less is preferable, More preferably, it is 0.5 weight part or less, Most preferably, it is 0.3 weight part or less.
(フィラー)
 フィラーとしては樹脂フィラー(樹脂微粉末)や無機フィラー、及び機能性フィラーを用いることができる。フィラーに、シランカップリング剤、チタンキレート剤、アルミカップリング剤、脂肪酸、脂肪酸エステル、ロジン等で表面処理を施してもよい。樹脂フィラーとしては、有機樹脂等からなる粒子状のフィラーを用いることができる。例えば、樹脂フィラーとして、ポリアクリル酸エチル樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、尿素樹脂、メラミン樹脂系、ベンゾグアナミン樹脂、フェノール樹脂、アクリル樹脂、スチレン樹脂等の有機質微粒子を用いることができる。なお、液晶表示装置の周辺部等の遮光性が要求される用途に用いる場合は、樹脂フィラーが黒色の樹脂フィラーを含むことが好ましい。単一波長のLEDランプ等を用いた場合においても良好な深部硬化性を得ることができ、優れた遮光性と深部硬化性とを達成できる。
(Filler)
As the filler, a resin filler (resin fine powder), an inorganic filler, and a functional filler can be used. The filler may be subjected to a surface treatment with a silane coupling agent, a titanium chelating agent, an aluminum coupling agent, a fatty acid, a fatty acid ester, rosin or the like. As the resin filler, a particulate filler made of an organic resin or the like can be used. For example, as the resin filler, organic fine particles such as polyethyl acrylate resin, polyurethane resin, polyethylene resin, polypropylene resin, urea resin, melamine resin, benzoguanamine resin, phenol resin, acrylic resin, and styrene resin can be used. In addition, when using for the use as which the light-shielding property of the periphery part etc. of a liquid crystal display device is requested | required, it is preferable that a resin filler contains a black resin filler. Even when a single wavelength LED lamp or the like is used, good deep curability can be obtained, and excellent light shielding properties and deep curability can be achieved.
 無機フィラーとしては、例えば、タルク、クレー、炭酸カルシウム、炭酸マグネシウム、無水ケイ素、含水ケイ素、ケイ酸カルシウム、二酸化チタン、カーボンブラック等が挙げられる。 Examples of the inorganic filler include talc, clay, calcium carbonate, magnesium carbonate, anhydrous silicon, hydrated silicon, calcium silicate, titanium dioxide, and carbon black.
 機能性フィラーとしては、例えば、特開2013-14734、特開2017-2267、特表2011-508012等に記載の導電性フィラー;特開2016-199668等に記載の断熱性や軽量性等に優れる中空粒子;特開2016-199669等に記載の遮音性、及び制振性等に優れるコアシェル粒子;特開2016-199670等に記載のガスバリア等に優れる層状ケイ酸塩;特開2016-199671等に記載の光反射性フィラー;特開2016-199750等に記載の電磁波遮蔽材等を用いることができる。 As the functional filler, for example, conductive fillers described in JP2013-14734, JP2017-2267, JP2011-508012, and the like; excellent heat insulation and lightness described in JP2016-199668, etc. Hollow particles; core-shell particles having excellent sound insulation and damping properties described in JP-A-2016-199669, etc .; layered silicates having excellent gas barriers described in JP-A-2016-199670, etc .; JP-A-2016-199671, etc. The light reflecting filler described in the above; the electromagnetic shielding material described in JP-A-2016-199750 and the like can be used.
(希釈剤)
 本発明の硬化性組成物は、希釈剤を含有することができる。ここでは、引火点(開放式)が50℃以上の溶剤を希釈剤とする。希釈剤を含有することにより、粘度等の物性を調整できる。希釈剤としては、様々な希釈剤を用いることができる。希釈剤としては、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤、リニアレンダイマー(出光興産株式会社商品名)等のα-オレフィン誘導体、芳香族炭化水素系溶剤、アルコール系溶剤、エステル系溶剤、クエン酸アセチルトリエチル等のクエン酸エステル系溶剤、ケトン系溶剤等の各種溶剤が挙げられる。
(Diluent)
The curable composition of the present invention can contain a diluent. Here, a solvent having a flash point (open type) of 50 ° C. or higher is used as a diluent. By containing a diluent, physical properties such as viscosity can be adjusted. Various diluents can be used as the diluent. Diluents include, for example, saturated hydrocarbon solvents such as normal paraffin and isoparaffin, α-olefin derivatives such as linearlen dimer (trade name of Idemitsu Kosan Co., Ltd.), aromatic hydrocarbon solvents, alcohol solvents and ester solvents. Examples of the solvent include various solvents such as a solvent, a citrate ester solvent such as acetyltriethyl citrate, and a ketone solvent.
 得られる硬化性組成物の安全性を考慮する場合、硬化性組成物の引火点が高い方が望ましく、硬化性組成物からの揮発物質が少ない方が好ましい。したがって、希釈剤の引火点は60℃以上が好ましく、70℃以上がより好ましい。しかし、一般的に引火点が高い希釈剤は硬化性組成物に対する希釈効果が低くなる傾向があるので、引火点が250℃以下である希釈剤を用いることが好ましい。なお、2種類以上の希釈剤を混合する場合、混合液の引火点が上記の引火点である。 When considering the safety of the curable composition to be obtained, it is desirable that the curable composition has a high flash point, and it is preferable that the volatile material from the curable composition is small. Therefore, the flash point of the diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. However, since a diluent generally having a high flash point tends to have a low dilution effect on the curable composition, it is preferable to use a diluent having a flash point of 250 ° C. or lower. In addition, when mixing 2 or more types of diluents, the flash point of a liquid mixture is said flash point.
 本発明の硬化性組成物の安全性、希釈効果の双方を考慮する場合、希釈剤としては、飽和炭化水素系溶剤が好ましく、ノルマルパラフィン、イソパラフィンがより好ましい。ノルマルパラフィン、イソパラフィンの炭素数は10~16であることが好ましい。 When considering both safety and dilution effect of the curable composition of the present invention, the diluent is preferably a saturated hydrocarbon solvent, more preferably normal paraffin or isoparaffin. Normal paraffin and isoparaffin preferably have 10 to 16 carbon atoms.
 希釈剤の配合割合は、(A)有機重合体100質量部に対して、0~50質量部の範囲で配合することが好ましく、0.1~30質量部の範囲で配合することがより好ましく、0.1~15質量部の範囲で配合することが更に好ましい。希釈剤は単独で用いることも、2種以上を併用することもできる。 The blending ratio of the diluent is preferably 0 to 50 parts by weight, more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably, it is blended in the range of 0.1 to 15 parts by mass. The diluent can be used alone or in combination of two or more.
 本発明においては、硬化性組成物全体に対して液状媒体(揮発性溶剤、水)の含有量が5重量%以下であることが好ましく、3重量%以下がより好ましく、1重量%以下であることが更に好ましく、液状媒体を実質的に含有しない組成(すなわち、実質的に無溶剤の組成)が最も好ましい。ここで液状媒体を「実質的に含有しない」とは、硬化性組成物が液状媒体を全く含有しないか、あるいはその含有量が硬化性組成物の0.1質量%以下であることをいう。ここでは、引火点が50℃以下の溶剤を揮発性溶剤とする。なお、例えば、液状媒体を含む形態の光硬化性組成物では、支持体に付与した組成物を乾燥させた後に活性エネルギー線を照射することが好ましい。 In the present invention, the content of the liquid medium (volatile solvent, water) is preferably 5% by weight or less, more preferably 3% by weight or less, and more preferably 1% by weight or less based on the entire curable composition. More preferably, a composition containing substantially no liquid medium (that is, a substantially solvent-free composition) is most preferred. Here, “substantially does not contain” the liquid medium means that the curable composition does not contain any liquid medium or the content thereof is 0.1% by mass or less of the curable composition. Here, a solvent having a flash point of 50 ° C. or lower is used as a volatile solvent. For example, in a photocurable composition containing a liquid medium, it is preferable to irradiate active energy rays after drying the composition applied to the support.
<硬化性組成物の製造方法>
 硬化性組成物の製造方法は特に制限はなく、例えば、(A)成分、(B1)成分、及び/又は(B2)成分を所定量配合し、更に、必要に応じて(C)成分や他の配合物質を配合し、脱気攪拌することにより製造できる。各成分及び他の配合物質の配合順は特に制限はなく、適宜決定できる。また、硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできる。
<Method for producing curable composition>
There is no restriction | limiting in particular in the manufacturing method of a curable composition, For example, (A) component, (B1) component, and / or (B2) component are mix | blended with predetermined amount, and also (C) component and others as needed. It can manufacture by mix | blending these compounding substances and carrying out deaeration stirring. The order of blending each component and other compounding substances is not particularly limited and can be determined as appropriate. Moreover, a curable composition can also be made into 1 liquid type as needed, and can also be made into 2 liquid type.
<光硬化性組成物>
 光硬化により硬化反応が進行する光硬化性組成物は、(A)一般式(1)で表される基を有する有機重合体を含有する硬化性組成物と、上記のような硬化開始剤としての(B1)光開始剤とを含有する。また、光硬化性組成物は、必要に応じ硬化促進剤を更に含有してもよい。光硬化性組成物は、酸素による重合阻害を大幅に抑制でき、適切な硬化反応を進行させることができることから、空気中において用いることができる。例えば、本発明の光硬化性組成物は、空気中において感圧接着剤、又は接着剤(光照射直後は粘着による仮固定ができることから感圧接着剤として機能し、その後に湿気硬化が進行して接着剤として機能する。)として用いることができる。
<Photocurable composition>
A photocurable composition in which a curing reaction proceeds by photocuring includes (A) a curable composition containing an organic polymer having a group represented by the general formula (1), and the above-described curing initiator. (B1) a photoinitiator. Moreover, the photocurable composition may further contain a curing accelerator as necessary. The photocurable composition can be used in the air because the polymerization inhibition by oxygen can be significantly suppressed and an appropriate curing reaction can proceed. For example, the photo-curable composition of the present invention functions as a pressure-sensitive adhesive or an adhesive in air, since it can be temporarily fixed by adhesion immediately after light irradiation, and then moisture curing proceeds. Function as an adhesive).
 具体的に、光硬化性組成物からなる感圧接着剤、又は接着剤を第1の被着体に塗布し、光を直接照射することにより光硬化性組成物に粘着性を発現させた後、その状態で第2の被着体に第1の被着体を貼り合せ(仮固定)、続いて、光硬化性組成物を湿気硬化させることで第1の被着体と第2の被着体とが接着され、第1の被着体と第2の被着体とを備える製品を製造できる。 Specifically, after a pressure-sensitive adhesive composed of a photocurable composition, or an adhesive is applied to the first adherend, and the photocurable composition is made to exhibit tackiness by direct light irradiation. In this state, the first adherend is bonded to the second adherend (temporarily fixed), and then the photocurable composition is moisture-cured to cure the first adherend and the second adherend. A product having a first adherend and a second adherend can be manufactured by bonding the adherend.
 また、コーティング剤、ガスケットは通常は酸素による重合阻害を抑制するため、多官能のモノマー、多官能オリゴマー、又はアクリルアミド等を用いる。しかしながら、これらの材料は硬化物性が硬く、伸びが小さく、柔軟性が要求される用途に不向きである。しかし、本発明に係る光硬化性組成物は酸素による重合阻害を官能基が抑制する構造を有するので、従来の用途に加え、柔軟性を要する用途まで幅広く用いることができる。また、本発明の光硬化性組成物に接着性を付与することもできるので、光硬化性組成物を柔軟性を有するコーティング剤やガスケットとして構成することもできる。同様に、光硬化性組成物は柔軟性を有する塗料、コーティング剤、インク、ガスケット、パッキン類、Oリング、シーリング剤、ポッティング剤、注型材料、封止剤等として構成することもできる。 Also, for the coating agent and gasket, a polyfunctional monomer, polyfunctional oligomer, acrylamide, or the like is usually used in order to suppress polymerization inhibition by oxygen. However, these materials have hard cured properties, small elongation, and are not suitable for applications requiring flexibility. However, since the photocurable composition according to the present invention has a structure in which a functional group suppresses polymerization inhibition by oxygen, it can be widely used for applications requiring flexibility in addition to conventional applications. Moreover, since adhesiveness can also be provided to the photocurable composition of this invention, a photocurable composition can also be comprised as a coating agent and a gasket which have a softness | flexibility. Similarly, the photocurable composition can also be configured as a flexible paint, coating agent, ink, gasket, packing, O-ring, sealing agent, potting agent, casting material, sealing agent, and the like.
(光硬化性組成物が架橋性ケイ素基を含有する場合)
 また、(A)一般式(1)で表される基を有する有機重合体が架橋性ケイ素基を含有する化合物である場合、湿気硬化方法も併用できる。この場合、光硬化性組成物は、光塩基発生剤を硬化開始剤として含有することが好ましい。また、硬化促進剤としては、Si-F結合を有するケイ素化合物を添加することができる。光硬化性組成物が含有する(A)成分が架橋性ケイ素基を有することにより、光硬化性組成物が光硬化した後、空気中の水分により光硬化性組成物を後硬化させることができる。
(When the photocurable composition contains a crosslinkable silicon group)
In addition, when the organic polymer having the group represented by (A) the general formula (1) is a compound containing a crosslinkable silicon group, a moisture curing method can be used in combination. In this case, the photocurable composition preferably contains a photobase generator as a curing initiator. In addition, a silicon compound having a Si—F bond can be added as a curing accelerator. Since the component (A) contained in the photocurable composition has a crosslinkable silicon group, after the photocurable composition is photocured, the photocurable composition can be postcured by moisture in the air. .
 Si-F結合を有するケイ素化合物としては、Si-F結合を有するケイ素基(以下、フルオロシリル基と称することがある)を含む様々な化合物を用いることができる。Si-F結合を有するケイ素化合物として無機化合物及び有機化合物のいずれも用いることができる。Si-F結合を有するケイ素化合物としてはフルオロシリル基を有する有機化合物が好ましく、フルオロシリル基を有する有機重合体が、安全性が高くより好適である。また、光硬化性組成物が低粘度となる点からフルオロシリル基を有する低分子有機ケイ素化合物が好ましい。 As the silicon compound having a Si—F bond, various compounds containing a silicon group having a Si—F bond (hereinafter sometimes referred to as a fluorosilyl group) can be used. Either an inorganic compound or an organic compound can be used as the silicon compound having a Si—F bond. As the silicon compound having a Si—F bond, an organic compound having a fluorosilyl group is preferable, and an organic polymer having a fluorosilyl group is more preferable because of high safety. Moreover, the low molecular organosilicon compound which has a fluoro silyl group from the point from which a photocurable composition becomes low viscosity is preferable.
 Si-F結合を有するケイ素化合物の例としては、WO2015-088021号公報に記載のフルオロシラン、WO2015-088021号公報に記載のフルオロシリル基を有する化合物、及びWO2015-088021号公報に記載のフルオロシリル基を有する有機重合体等が挙げられる。 Examples of silicon compounds having a Si—F bond include fluorosilanes described in WO2015-088021, compounds having a fluorosilyl group described in WO2015-088021, and fluorosilyls described in WO2015-088021 And an organic polymer having a group.
<熱硬化性組成物>
 熱により硬化反応が進行する熱硬化性組成物は、(A)一般式(1)で表される基を有する有機重合体を含有する硬化性組成物と、上記のような硬化開始剤としての(B2)熱開始剤とを含有する。また、熱硬化性組成物は、必要に応じ硬化促進剤を更に含有してもよい。また、酸素による重合阻害を大幅に抑制できる一般式(4)に示す(メタ)アクリレートを併用することにより作業性が良好な(粘度が低い)熱硬化性組成物が得られる。
<Thermosetting composition>
The thermosetting composition in which the curing reaction proceeds by heat includes (A) a curable composition containing an organic polymer having a group represented by the general formula (1), and the above-described curing initiator. (B2) contains a thermal initiator. Moreover, the thermosetting composition may further contain a curing accelerator as necessary. Moreover, the thermosetting composition with favorable workability (low viscosity) is obtained by using together with the (meth) acrylate shown by General formula (4) which can suppress the superposition | polymerization inhibition by oxygen significantly.
 熱硬化性組成物は、様々な用途に用いることができる。特に、本発明の熱硬化性組成物は、酸素による重合阻害を大幅に抑制でき、適切な硬化反応を進行させることができることから空気の存在下において好適に用いることができる。例えば、本発明の熱硬化性組成物は、空気中の酸素による影響を排除できないLIM成形に用いることが可能であり、かつ、従来の用途に加え、柔軟性を要する用途まで幅広く用いることができる。また、本発明の熱硬化性組成物に接着性を付与することもできるので、インサートLIM成形(LIMインサート加硫接着成形)に適する。 The thermosetting composition can be used for various purposes. In particular, the thermosetting composition of the present invention can be suitably used in the presence of air because it can greatly suppress inhibition of polymerization due to oxygen and can promote an appropriate curing reaction. For example, the thermosetting composition of the present invention can be used for LIM molding in which the influence of oxygen in the air cannot be excluded, and can be widely used for applications requiring flexibility in addition to conventional applications. . Moreover, since adhesiveness can also be provided to the thermosetting composition of this invention, it is suitable for insert LIM shaping | molding (LIM insert vulcanization adhesion shaping | molding).
 LIM成形用熱硬化性組成物に用いる開始剤としては、130~160℃の間の任意の反応温度における半減期が0.5~120秒、好ましくは1~60秒であるラジカル開始剤が挙げられる。半減期が120秒を超える開始剤の場合、モノマー転化率の変動幅が大きくなり安定運転の確保が困難になる。また、半減期が0.5秒未満の開始剤の場合、開始剤の使用量が多すぎて製品ポリマーが着色する問題が生じる。本発明で用いる開始剤としては、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾヒス(2-メチルブチロニトリル)等のアゾ化合物、及び1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ベチルパーオキシイソブチレート、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等の有機過酸化物が好ましい。なお、本発明において開始剤の半減期の値は、アゾ化合物については和光純薬(株)発行のテクニカルビュレタン、有機過酸化物については日本油脂(株)発行のカタログ(12版)の値を採用している。また、LIM成型工程の重合反応温度は、100~180℃の範囲が好ましく、130~160℃の範囲がより好ましく、140~155℃の範囲が更に好ましい。 Examples of the initiator used in the thermosetting composition for LIM molding include a radical initiator having a half-life of 0.5 to 120 seconds, preferably 1 to 60 seconds, at any reaction temperature between 130 and 160 ° C. It is done. In the case of an initiator having a half-life exceeding 120 seconds, the fluctuation range of the monomer conversion rate becomes large and it is difficult to ensure stable operation. In the case of an initiator having a half-life of less than 0.5 seconds, there is a problem that the amount of the initiator used is too large and the product polymer is colored. Examples of the initiator used in the present invention include 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2-methylbutyronitrile), and the like. Preferred are azo compounds and organic peroxides such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butyl peroxyisobutyrate, benzoyl peroxide, lauroyl peroxide. In the present invention, the half-life value of the initiator is the value of technical bulletin issued by Wako Pure Chemical Industries, Ltd. for azo compounds, and the catalog (12th edition) issued by Nippon Oil & Fats Co., Ltd. for organic peroxides. Is adopted. The polymerization reaction temperature in the LIM molding step is preferably in the range of 100 to 180 ° C, more preferably in the range of 130 to 160 ° C, and still more preferably in the range of 140 to 155 ° C.
<レドックス硬化性組成物>
 レドックス反応により硬化が進行するレドックス硬化性組成物は、(A)一般式(1)で表される基を有する有機重合体を含有する硬化性組成物と、上記のような硬化開始剤としての(B3)レドックス開始剤とを含有する。また、レドックス硬化性組成物は、必要に応じ、硬化促進剤を更に含有してもよい。レドックス硬化性組成物は、光硬化性組成物と同様の理由により、様々な用途に用いることができる。
<Redox curable composition>
The redox curable composition in which curing proceeds by a redox reaction includes (A) a curable composition containing an organic polymer having a group represented by the general formula (1), and the above-described curing initiator. (B3) contains a redox initiator. Moreover, the redox curable composition may further contain a hardening accelerator as needed. The redox curable composition can be used for various applications for the same reason as the photocurable composition.
 (A)一般式(1)で表される基を有する有機重合体を含有するレドックス硬化性組成物は、空気中において二液混合型接着剤として用いることができる。例えば、過硫酸塩開始剤若しくは有機過酸化物と、(A)成分若しくは(C)成分等とを含有する第1液と、還元剤、第3級アミン、若しくは遷移金属と、(A)成分若しくは(C)成分等とを含有する第2液とを用いることで、二液混合型接着剤を構成できる。第1液と第2液とを混合することで反応が進行するので、一方の被着体と他方の被着体とを貼り合せる接着剤として機能する。なお、第1液又は第2液の少なくともいずれかに(A)成分が含有される。また、(B3)成分であるレドックス開始剤の項で説明したように、第1液に含有させる化合物と第2液に含有させる化合物との組み合わせは、過硫酸塩開始剤と還元剤との組み合わせ;有機過酸化物と第3級アミンとの組み合わせ;有機過酸化物と遷移金属との組み合わせ等の組合わせを適宜採用することができる。 (A) A redox curable composition containing an organic polymer having a group represented by the general formula (1) can be used as a two-component mixed adhesive in the air. For example, a first liquid containing a persulfate initiator or an organic peroxide, a component (A) or a component (C), a reducing agent, a tertiary amine, or a transition metal, and a component (A) Alternatively, by using a second liquid containing component (C) and the like, a two-component mixed adhesive can be configured. Since the reaction proceeds by mixing the first liquid and the second liquid, it functions as an adhesive that bonds one adherend and the other adherend together. The component (A) is contained in at least one of the first liquid and the second liquid. In addition, as described in the section of the redox initiator which is the component (B3), the combination of the compound contained in the first liquid and the compound contained in the second liquid is a combination of a persulfate initiator and a reducing agent. A combination of an organic peroxide and a tertiary amine, a combination of an organic peroxide and a transition metal, or the like can be appropriately employed.
 具体的には、例えば、特開2013-117011号公報に記載のように、第1液に、有機過酸化物、酸性リン酸エステル(保存安定性向上剤)、α-ヒドロキシカルボニル化合物(硬化促進剤)、ヒドラジン化合物(アルデヒド類の放散抑制剤)等を配合することができ、第2液に3価又は4価のバナジウム化合物、チオ尿素化合物、サッカリン等の還元剤、アルミニウム化合物(保存安定性向上剤)等を配合することができ、また、第1液及び/又は第2液に、2置換ハイドロキノン等の安定剤を配合することができる。なお、本発明のレドックス硬化性組成物をプライマー型とする場合は、揮発性溶剤に、バナジウム化合物やチオ尿素化合物等の還元剤を溶解させて用いることができる。 Specifically, for example, as described in JP2013-111701, the first liquid contains an organic peroxide, an acidic phosphate ester (storage stability improver), an α-hydroxycarbonyl compound (a curing accelerator). Agent), hydrazine compound (aldehyde emission inhibitor), etc., and the second liquid is a reducing agent such as trivalent or tetravalent vanadium compound, thiourea compound, saccharin, aluminum compound (storage stability) Improver) and the like, and a stabilizer such as disubstituted hydroquinone can be added to the first liquid and / or the second liquid. In addition, when making the redox curable composition of this invention into a primer type, reducing agents, such as a vanadium compound and a thiourea compound, can be dissolved and used in a volatile solvent.
 また、接着剤、コーティング剤、ガスケットは通常は酸素による重合阻害を抑制するため、多官能のモノマー、多官能オリゴマー、又はアクリルアミド等を用いる。しかしながら、これらの材料は硬化物性が硬く、伸びが小さく、柔軟性が要求される用途に不向きである。しかし、本発明に係るレドックス硬化性組成物は酸素による重合阻害を官能基が抑制する構造を有するので、従来の用途に加え、柔軟性を要する用途まで幅広く用いることができるので、レドックス硬化性組成物を柔軟性を有する接着剤、コーティング剤やガスケット、また、柔軟性を要する用途の感圧接着剤として構成することもできる。接着剤、感圧接着剤、コーティング剤、ガスケットは、特に現場施工用として有用である。同様に、レドックス硬化性組成物は柔軟性を有する塗料、コーティング剤、インク、ガスケット、パッキン類、Oリング、シーリング剤、ポッティング剤、注型材料、封止剤等として構成することもでき、現場施工用として有用である。なお、本発明のレドックス硬化性組成物は、二液硬化型のLIM成形に用いることもできる。 Also, adhesives, coating agents, and gaskets usually use polyfunctional monomers, polyfunctional oligomers, acrylamide, or the like in order to suppress polymerization inhibition by oxygen. However, these materials have hard cured properties, small elongation, and are not suitable for applications requiring flexibility. However, since the redox curable composition according to the present invention has a structure in which a functional group suppresses the inhibition of polymerization by oxygen, it can be widely used for applications requiring flexibility in addition to conventional applications. The product can be configured as a flexible adhesive, a coating agent or a gasket, or a pressure-sensitive adhesive for applications requiring flexibility. Adhesives, pressure sensitive adhesives, coating agents and gaskets are particularly useful for field construction. Similarly, redox curable compositions can also be configured as flexible paints, coating agents, inks, gaskets, packings, O-rings, sealing agents, potting agents, casting materials, sealants, etc. Useful for construction. The redox curable composition of the present invention can also be used for two-component curable LIM molding.
<硬化性組成物の硬化物を構成要素として有する製品>
 本発明に係る硬化性組成物は、光硬化、熱硬化、及び/又はレドックス硬化により硬化する。この硬化により硬化性組成物の硬化物を得ることができる。したがって、硬化性組成物の硬化物を用い、電子回路、電子部品、建材、自動車等の様々な製品を製造できる。例えば、本発明に係る硬化性組成物を所定の被着体に塗布し、硬化させることで製品を製造できる。
<Products having cured products of curable compositions as constituent elements>
The curable composition according to the present invention is cured by photocuring, heat curing, and / or redox curing. By this curing, a cured product of the curable composition can be obtained. Therefore, various products, such as an electronic circuit, an electronic component, a building material, and a motor vehicle, can be manufactured using the hardened | cured material of a curable composition. For example, a product can be manufactured by apply | coating the curable composition which concerns on this invention to a predetermined to-be-adhered body, and making it harden | cure.
 本発明の硬化性組成物は、空気中で用いても酸素による重合阻害を大幅に抑制して適切な硬化反応を進行させることができると共に柔軟な硬化物になることから、現場施工用にも適する。すなわち、本発明の硬化性組成物を被着体に塗布し、その場で硬化させることや、本発明の硬化性組成物を所定の形状(例えばパッキンやガスケットに用いるリング状)に塗布し、硬化させることで、その場でリング状のパッキンやガスケット等を製造できる。ここで、本発明において「現場施工用」とは、製品を製造する現場において硬化性組成物をそのまま(空気中において)被着体同士の貼り合せや所定の形状を有する部材の作製に用いることを指す。例えば、「現場施工用」とは、硬化性組成物を一方の被着体にそのまま塗布し、その状態で(若しくはその現場で)他方の被着体に一方の被着体を貼り付ける用途、及び/又は硬化性組成物を所定の形状にして硬化させることで当該形状を有する製品を製造する用途等を指す。 The curable composition of the present invention can suppress the polymerization inhibition due to oxygen even when used in the air, and can proceed with an appropriate curing reaction, and becomes a flexible cured product. Suitable. That is, the curable composition of the present invention is applied to an adherend and cured in situ, or the curable composition of the present invention is applied in a predetermined shape (for example, a ring shape used for packing or gasket), By curing, a ring-shaped packing or gasket can be manufactured on the spot. Here, in the present invention, “for on-site construction” means that the curable composition is used as it is (in the air) for adhering adherends to each other and for producing a member having a predetermined shape at the site where the product is manufactured. Point to. For example, “for on-site construction” is an application in which a curable composition is directly applied to one adherend, and in that state (or on the spot), one adherend is attached to the other adherend; And / or the use etc. which manufacture the product which has the said shape by making a curable composition into a predetermined shape and hardening.
 具体的に、本発明の硬化性組成物は、感圧接着剤、接着剤、弾性接着剤、コンタクト接着剤、塗料、コーティング材、缶蓋等のシール材、電気電子用ポッティング剤、フィルム、ガスケット、マリンデッキコーキング、注型材料、各種成形材料、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車や船舶、家電等に使用される防振・制振・防音・免震材料、自動車部品、電機部品、各種機械部品等において用いられる液状シール剤、防水剤等、複層ガラス用シーリング剤、車両用シーリング剤等建築用及び工業用のシーリング剤、太陽電池裏面封止剤等の電気・電子部品材料、電線・ケーブル用絶縁被覆材等の電気絶縁材料等の様々な用途に利用できる。 Specifically, the curable composition of the present invention includes a pressure-sensitive adhesive, an adhesive, an elastic adhesive, a contact adhesive, a coating material, a coating material, a sealing material such as a can lid, an electric and electronic potting agent, a film, and a gasket. , Marine deck caulking, casting materials, various molding materials, anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cutting parts), anti-vibration / damping / Liquid and sealing materials used in soundproofing and seismic isolation materials, automobile parts, electrical parts, various machine parts, waterproofing agents, sealing materials for double-glazed glass, sealing materials for vehicles, such as architectural and industrial sealing agents, solar cells It can be used for various applications such as electrical / electronic component materials such as backside sealants, and electrical insulation materials such as insulation coating materials for electric wires and cables.
 また、本発明の硬化性組成物からなるゴム弾性を示す現場施工の成形体は、ガスケット、パッキン類を中心に広く用いることができる。例えば、自動車分野ではボディ部品として、気密保持のためのシール材、ガラスの振動防止材、車体部位の防振材、特にウインドシールガスケット、ドアガラス用ガスケットに用いることができる。また、家電分野では、現場施工のパッキン、Oリング等に用いることができる。具体的に、照明器具用の飾り類、防水パッキン類、防振ゴム類、防虫パッキン類、クリーナ用の防振・吸音と空気シール材、電気温水器用の防滴カバー、防水パッキン、ヒータ部パッキン、電極部パッキン、スマホの防水パッキン、電磁弁、スチームオーブンレンジ及びジャー炊飯器用の防水パッキン、給水タンクパッキン、吸水バルブ、水受けパッキン、保温ヒータ部パッキン、蒸気吹き出し口シール等の燃焼機器用のオイルパッキン、Oリング、ドレインパッキン、送・吸気パッキン、防振ゴム、給油口パッキン、油量計パッキン等、音響機器用のスピーカーガスケット、スピーカーエッジ等が挙げられる。建築分野では、ガスケット、防水材、防振材、防音材等に用いることができる。DIY分野では、靴底補修材、中底補修材等に用いることができる。防振ゴム分野では、自動車用防振ゴム、鉄道車両用防振ゴム、航空機用防振ゴム等に用いることができる。 Also, the on-site molded body showing rubber elasticity composed of the curable composition of the present invention can be widely used mainly for gaskets and packings. For example, in the automobile field, it can be used as a body part as a sealing material for maintaining airtightness, an anti-vibration material for glass, an anti-vibration material for vehicle body parts, particularly a wind seal gasket and a door glass gasket. In the field of home appliances, it can be used for on-site packing, O-rings, and the like. Specifically, decorations for lighting fixtures, waterproof packings, anti-vibration rubbers, insect-proof packings, anti-vibration / sound absorption and air sealing materials for cleaners, drip-proof covers for electric water heaters, waterproof packings, heater unit packings , Electrode packing, waterproof packing for smartphones, solenoid valve, waterproof packing for steam microwave oven and jar rice cooker, water tank packing, water absorption valve, water receiving packing, heat insulation heater packing, steam outlet seal, etc. Examples include oil gaskets, O-rings, drain packings, feed / intake packings, anti-vibration rubbers, oil filler packings, oil meter packings, speaker gaskets and speaker edges for acoustic equipment. In the construction field, it can be used for gaskets, waterproof materials, vibration-proof materials, sound-proof materials, and the like. In the DIY field, it can be used for shoe sole repair materials, insole repair materials, and the like. In the field of anti-vibration rubber, it can be used for anti-vibration rubber for automobiles, anti-vibration rubber for railway vehicles, anti-vibration rubber for aircraft, and the like.
 これらのなかでも、本発明の硬化性組成物は、感圧接着剤や接着剤として特に有用であり、特に現場施工が要求される用途に有用である。また、本発明の硬化性組成物は良好な柔軟性を有する硬化物として構成できるので、線膨張係数が互いに異なる材料同士の接着や、ヒートサイクルにより繰り返し変位を受ける部材の接着に用いる弾性接着剤の用途や、柔軟性を活かした屈曲部材用途でのコーティング剤等の用途等にも有用である。また、その良好な表面硬化性を活かして現場成形ガスケット、いわゆる自動車部品、電機部品、各種機械部品等において用いられる液状シール材に好適に用いることもできる。 Among these, the curable composition of the present invention is particularly useful as a pressure-sensitive adhesive or an adhesive, and is particularly useful for applications requiring on-site construction. In addition, since the curable composition of the present invention can be configured as a cured product having good flexibility, it is an elastic adhesive used for bonding materials having different linear expansion coefficients to each other or a member that repeatedly undergoes displacement by heat cycle. It is also useful for applications such as coating agents for bending members that utilize flexibility and flexibility. Moreover, it can also be suitably used for a liquid sealing material used in on-site molded gaskets, so-called automobile parts, electrical parts, various machine parts, etc., taking advantage of its good surface curability.
 上記用途の中でも、特に、電気・電子機器用の接着剤、感圧接着剤、シール材、ポッティング剤、パッキン、コーティング材等に有用である。 Among the above applications, it is particularly useful for adhesives for electric and electronic devices, pressure sensitive adhesives, sealing materials, potting agents, packings, coating materials and the like.
<実施の形態の効果>
 本発明に係る硬化性組成物は、(A)一般式(1)で表される基を有する有機重合体を含有するので、空気中で用いても酸素による重合阻害を大幅に抑制でき、適切な硬化反応を進行させることができることから硬化性に優れる硬化物を得ることができる。また、本発明に係る硬化性組成物は、一般式(1)のXとして様々な連結基を選択することができ、また、連結基を介して一般式(1)で表される基に連結する重合体の主鎖骨格として様々な骨格を選択することができるので、硬化物が得られる硬化性組成物の設計の自由度を幅広く確保することができる(すなわち、硬化物の硬度等の物性の設計の自由度を確保でき、また、硬化物を用いる目的に応じた物性を選択できる。)。更に、硬化性組成物は相溶性に優れているので、発明の効果を阻害しない範囲で様々な化合物を添加できる。
<Effect of Embodiment>
Since the curable composition according to the present invention contains (A) an organic polymer having a group represented by the general formula (1), the polymerization inhibition due to oxygen can be greatly suppressed even when used in the air, and appropriate. A cured product having excellent curability can be obtained. Moreover, the curable composition which concerns on this invention can select various coupling groups as X of General formula (1), and it connects with group represented by General formula (1) through a coupling group. Since various skeletons can be selected as the main chain skeleton of the polymer to be cured, it is possible to ensure a wide range of design freedom of the curable composition from which the cured product is obtained (that is, physical properties such as hardness of the cured product) The degree of freedom of design can be secured, and the physical properties can be selected according to the purpose of using the cured product. Furthermore, since the curable composition is excellent in compatibility, various compounds can be added as long as the effects of the invention are not impaired.
 以下に実施例を挙げて更に具体的に説明する。なお、これらの実施例は例示であり、限定的に解釈されるべきでないことはいうまでもない。 More specific description will be given below with reference to examples. Needless to say, these examples are illustrative and should not be interpreted in a limited manner.
(合成例1)ポリマーA
 カルボキシル基含有アクリル重合体10.0g(製品名「アクトフローCB-3098」、綜研化学株式会社製、分子末端及び官能基共重合タイプのポリ2-エチルヘキシルアクリレート、重量平均分子量=3,000、AV=98±1)に等モル当量のグリシジルメタクリレート2.48g、触媒としてTPP(トリフェニルホスフィン) 0.009g、溶媒として酢酸エチル10.0gを加え、70℃で24時間反応させた。反応後、酢酸エチルを減圧留去した。そして、生成した常温で液状のポリマーAのIRスペクトル測定の結果、グリシジル基開環に起因する-OH伸縮(ブロード、3,200~3,500cm-1)ピークが生じていることが確認された。また、ポリマーAに含まれる官能基は1分子中に平均して2.3個であった(ただし、末端に1.0個、分子中に1.3個である。)。
(Synthesis Example 1) Polymer A
Carboxyl group-containing acrylic polymer 10.0 g (product name “Actoflow CB-3098”, manufactured by Soken Chemical Co., Ltd., molecular terminal and functional group copolymerization type poly-2-ethylhexyl acrylate, weight average molecular weight = 3,000, AV = 98 ± 1), 2.48 g of equimolar equivalent of glycidyl methacrylate, 0.009 g of TPP (triphenylphosphine) as a catalyst, and 10.0 g of ethyl acetate as a solvent were added and reacted at 70 ° C. for 24 hours. After the reaction, ethyl acetate was distilled off under reduced pressure. As a result of IR spectrum measurement of the produced polymer A at room temperature, it was confirmed that an —OH stretching (broad, 3,200 to 3,500 cm −1 ) peak caused by glycidyl group ring opening occurred. . In addition, the average number of functional groups contained in polymer A was 2.3 per molecule (however, 1.0 at the end and 1.3 per molecule).
 なお、上記合成反応中に、グリシジルメタクリレートのエポキシ基が開環して不飽和カルボン酸とエステル結合を生じて結合する。この開環はα位及びβ位のいずれでも起こるが、α位で開環したα付加体が主成分となり、β位で開環したβ付加体が副成分となる。通常、α付加体とβ付加体との生成割合は、モル比で100/0.01~100/70であり、好ましくは100/0.1~100/50である。上記合成例1では、通常はα付加体である化合物を主成分とし、β付加体を副成分とした生成物が得られる。主成分であるα付加体は生成物から公知の分離方法によって分離して単離できる。合成例1においては、α付加体とβ付加体とを含む混合物をポリマーAとして得ている。すなわち、合成例1で得られる生成物は、上記合成法で得られる生成物にβ付加体の全部又は一部を残したものであり、α付加体を主成分とする硬化性組成物である。 During the above synthesis reaction, the epoxy group of glycidyl methacrylate is ring-opened to form an ester bond with the unsaturated carboxylic acid. This ring opening occurs at both the α-position and the β-position, but the α-adduct opened at the α-position is the main component, and the β-adduct opened at the β-position is the subcomponent. Usually, the production ratio of the α adduct and the β adduct is 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in terms of molar ratio. In Synthesis Example 1, a product having a compound that is usually an α-adduct as a main component and a β-adduct as a subcomponent is obtained. The α-adduct as the main component can be separated and isolated from the product by a known separation method. In Synthesis Example 1, a mixture containing an α adduct and a β adduct is obtained as the polymer A. That is, the product obtained in Synthesis Example 1 is a product obtained by leaving the whole or part of the β adduct in the product obtained by the above synthesis method, and is a curable composition containing the α adduct as a main component. .
(合成例2)ポリマーB
 ポリオキシプロピレンジアミン10g(製品名「JEFFAMINE D2000」、Huntsman Corporation製、重量平均分子量=2,000)に等モル当量のグリシジルメタクリレート2.84g、触媒としてアクセラレーター399 0.3g(Huntsman Corporation製)を加え、70℃で24時間反応させた。生成した常温で液状のポリマーBのIRスペクトル測定の結果、グリシジル基開環に起因する-OH伸縮(ブロード、3,200~3,500cm-1)ピークが生じていることが確認された。また、ポリマーBには、両末端に官能基が含まれている。
(Synthesis Example 2) Polymer B
Polyoxypropylene diamine 10 g (product name “JEFFAMINE D2000”, manufactured by Huntsman Corporation, weight average molecular weight = 2,000) and equimolar equivalent of glycidyl methacrylate 2.84 g, accelerator 399 0.3 g (manufactured by Huntsman Corporation) In addition, the mixture was reacted at 70 ° C. for 24 hours. As a result of IR spectrum measurement of the produced polymer B at room temperature, it was confirmed that an —OH stretching (broad, 3,200 to 3,500 cm −1 ) peak due to ring opening of the glycidyl group occurred. Polymer B contains functional groups at both ends.
(合成例3)ポリマーC
 PTMG(ポリテトラメチレンエーテルグリコール)骨格のウレタンプレポリマー10.0g(重量平均分子量=3,500)に等モル当量のグリシドール0.46g(製品名「エピオールOH」、日油株式会社製)を加え、70℃で48時間反応させた。生成物のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。得た生成物にアクリル酸0.43g(三菱レイヨン株式会社製)と触媒としてTPP 0.007gとを加え、70℃で24時間反応させた。生成した常温で液状のポリマーCのIRスペクトル測定の結果、グリシジル基開環に起因する-OH伸縮(ブロード、3,200~3,500cm-1)ピークが生じていることが確認された。また、ポリマーCには、両末端に官能基が含まれている。
(Synthesis Example 3) Polymer C
Add 0.46 g of glycidol (product name “Epiol OH”, manufactured by NOF Corporation) to 10.0 g of urethane prepolymer (weight average molecular weight = 3,500) having a PTMG (polytetramethylene ether glycol) skeleton. , And reacted at 70 ° C. for 48 hours. As a result of IR spectrum measurement of the product, it was confirmed that absorption of —NCO derived from isocyanate group disappeared. To the obtained product, 0.43 g of acrylic acid (manufactured by Mitsubishi Rayon Co., Ltd.) and 0.007 g of TPP as a catalyst were added and reacted at 70 ° C. for 24 hours. As a result of IR spectrum measurement of the produced polymer C at room temperature, it was confirmed that an —OH stretching (broad, 3,200 to 3,500 cm −1 ) peak caused by glycidyl group ring opening was generated. Polymer C contains functional groups at both ends.
(合成例4)ポリマーD
 PPG(ポリプロピレングリコール)骨格のウレタンプレポリマー10.0g(重量平均分子量=3,000)に等モル当量のグリシドール0.47gを加え、70℃で48時間反応させた。生成物のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。得た生成物に等モル当量のアクリル酸0.46g、触媒としてTPP 0.01gを加え、70℃で24時間反応させた。生成した常温で液状のポリマーDのIRスペクトル測定の結果、グリシジル基開環に起因する-OH伸縮(ブロード、3,200~3,500cm-1)ピークが生じていることが確認された。また、ポリマーDには、両末端に官能基が含まれている。
(Synthesis Example 4) Polymer D
0.47 g of equimolar equivalent of glycidol was added to 10.0 g of urethane prepolymer having a PPG (polypropylene glycol) skeleton (weight average molecular weight = 3,000), and reacted at 70 ° C. for 48 hours. As a result of IR spectrum measurement of the product, it was confirmed that absorption of —NCO derived from isocyanate group disappeared. To the obtained product, 0.46 g of equimolar equivalent acrylic acid and 0.01 g of TPP as a catalyst were added and reacted at 70 ° C. for 24 hours. Result of IR spectra of the polymer D of the liquid in the generated normal temperature, it was confirmed that -OH stretch (broad, 3,200 ~ 3,500cm -1) due to the glycidyl group ring opening peak has occurred. Moreover, the polymer D contains a functional group at both ends.
(合成例5)ポリマーE
 PPG骨格のウレタンプレポリマー10.0g(重量平均分子量=3,000)に等モル当量のグリセリンモノメタクリレート1.01gを加え、70℃で24時間反応させた。生成した常温で液状のポリマーEのIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。また、ポリマーEには、両末端に官能基が含まれている。
(Synthesis Example 5) Polymer E
An equimolar equivalent of 1.01 g of glycerol monomethacrylate was added to 10.0 g (weight average molecular weight = 3,000) of a urethane prepolymer having a PPG skeleton, and reacted at 70 ° C. for 24 hours. As a result of IR spectrum measurement of the produced polymer E at room temperature, it was confirmed that absorption of —NCO derived from isocyanate group disappeared. Polymer E contains functional groups at both ends.
 なお、合成例1で得られる重合体は実施の形態で説明した一般式(I)で示す有機重合体に、合成例2は一般式(II)で示す有機重合体に、合成例3~4は一般式(III)で示す有機重合体に、合成例5は一般式(IV)で示す有機重合体に対応している。 The polymer obtained in Synthesis Example 1 is an organic polymer represented by the general formula (I) described in the embodiment, Synthesis Example 2 is an organic polymer represented by the general formula (II), and Synthesis Examples 3 to 4 are used. Corresponds to the organic polymer represented by the general formula (III), and Synthesis Example 5 corresponds to the organic polymer represented by the general formula (IV).
(合成例6)ポリマーF
 特開2000-128911号公報記載のチオグリセロールを用いた反応で得られたアクリル酸n-ブチル(BA)骨格の水酸基含有オリゴマー(PBA1;数平均分子量10,000、片末端に1級及び2級水酸基が各一個存在している。)100gにキシリレンジイソシアネート(XDI)3.8gを反応させて得た、イソシアネート基両末端のBA骨格のウレタンプレポリマー(PU-BA)103.8gにグリセリンモノメタクリレート3.7gと重合禁止剤(ヒドロキノン)0.05gとを加え、70℃で24時間反応させ、数平均分子量が22,000であり、常温で液状のメタクリル酸2-ヒドロキシプロピル基が片末端に2個ついたBA骨格のウレタンアクリレート(ポリマーF)得た。IRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失し、水酸基由来の-OH伸縮の吸収が残っていることが確認された。なお、数平均分子量は送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GELHタイプを用い、溶媒はTHFを用いてゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算分子量である。
(Synthesis Example 6) Polymer F
Hydroxyl group-containing oligomers (PBA1; number average molecular weight 10,000, primary and secondary at one end) of n-butyl acrylate (BA) skeleton obtained by reaction using thioglycerol described in JP-A No. 2000-128911 There is one hydroxyl group each). 100 g of xylylene diisocyanate (XDI) is reacted with 3.8 g of xylene diisocyanate (XDI). 3.7 g of methacrylate and 0.05 g of a polymerization inhibitor (hydroquinone) were added and reacted at 70 ° C. for 24 hours. The number average molecular weight was 22,000, and the liquid 2-hydroxypropyl methacrylate group was liquid at room temperature. Thus, a urethane acrylate (polymer F) having two BA skeletons was obtained. As a result of IR spectrum measurement, it was confirmed that absorption of —NCO derived from an isocyanate group disappeared and absorption of —OH stretching derived from a hydroxyl group remained. The number average molecular weight is a polystyrene equivalent molecular weight measured by gel permeation chromatography using Tosoh's HLC-8120GPC as the liquid feeding system, the column using Tosoh's TSK-GELH type, and the solvent using THF.
(合成例7)ポリマーG
 PPG(ポリプロピレングリコール、Mw/Mn=1.1、数平均分子量:10,000)100gにキシリレンジイソシアネート(XDI)4.0gを反応させて得た、イソシアネート基両末端のPPG骨格のウレタンプレポリマー(PU-PPG10000)104.0gにグリセリンモノメタクリレート3.9gと重合禁止剤(ヒドロキノン)0.05gとを加え、70℃で24時間反応させ、数平均分子量が32,000であり、常温で液状のメタクリル酸2-ヒドロキシプロピル基両末端のPPG骨格のウレタンアクリレート(ポリマーG)を得た。IRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失し、水酸基由来の-OH伸縮の吸収が残っていることが確認された。
(Synthesis Example 7) Polymer G
A urethane prepolymer having a PPG skeleton at both ends of an isocyanate group, obtained by reacting 4.0 g of xylylene diisocyanate (XDI) with 100 g of PPG (polypropylene glycol, Mw / Mn = 1.1, number average molecular weight: 10,000) (PU-PPG10000) 3.9 g of glycerol monomethacrylate and 0.05 g of a polymerization inhibitor (hydroquinone) are added to 104.0 g and reacted at 70 ° C. for 24 hours. The number average molecular weight is 32,000 and is liquid at room temperature. A urethane acrylate (polymer G) having a PPG skeleton at both ends of 2-hydroxypropyl methacrylate was obtained. As a result of IR spectrum measurement, it was confirmed that absorption of —NCO derived from an isocyanate group disappeared and absorption of —OH stretching derived from a hydroxyl group remained.
(合成例8)ポリマーH
 PTMG(ポリテトラメチレンエーテルグリコール、数平均分子量=2,000)100gにキシリレンジイソシアネート(XDI)18.8gを反応させて得た、イソシアネート基両末端のPTMG骨格のウレタンプレポリマー118.8gにグリセリンモノメタクリレート16gと重合禁止剤(ヒドロキノン)0.05gとを加え、70℃で24時間反応させ、数平均分子量が2,800であり、常温で液状のメタクリル酸2-ヒドロキシプロピル基両末端のPTMG骨格のウレタンアクリレート(ポリマーH)を得た。IRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失し、水酸基由来の-OH伸縮の吸収が残っていることが確認された。
(Synthesis Example 8) Polymer H
PTGM (polytetramethylene ether glycol, number average molecular weight = 2,000) obtained by reacting 18.8 g of xylylene diisocyanate (XDI) with 118.8 g of a urethane prepolymer having a PTMG skeleton at both ends of the isocyanate group 16 g of monomethacrylate and 0.05 g of a polymerization inhibitor (hydroquinone) were added and reacted at 70 ° C. for 24 hours. The number average molecular weight was 2,800, and liquid PTGM at both ends of the 2-hydroxypropyl methacrylate group at room temperature. A skeleton urethane acrylate (polymer H) was obtained. As a result of IR spectrum measurement, it was confirmed that absorption of —NCO derived from an isocyanate group disappeared and absorption of —OH stretching derived from a hydroxyl group remained.
(合成例9)モノマーB
 イソステアリン酸10.0g(35.2mmol;日産化学工業株式会社製)に等モル量のグリシジルメタクリレート5.00g、触媒としてTPP 0.09gを加え、70℃で8時間反応させた。生成したモノマーBのIRスペクトル測定の結果、カルボン酸由来の-OH伸縮(ブロード、3,300~3,500cm-1)の吸収が消失していることが確認された。そして、グリシジル基開環に起因する-OH伸縮(ブロード、3,200~3,600cm-1)ピークが生じていることが確認された。
Synthesis Example 9 Monomer B
An equimolar amount of 5.00 g of glycidyl methacrylate and 0.09 g of TPP as a catalyst were added to 10.0 g (35.2 mmol; manufactured by Nissan Chemical Industries, Ltd.) of isostearic acid and reacted at 70 ° C. for 8 hours. As a result of IR spectrum measurement of the produced monomer B, it was confirmed that absorption of —OH stretching (broad, 3,300 to 3,500 cm −1 ) derived from carboxylic acid disappeared. Then, it was confirmed that -OH stretch (broad, 3,200 ~ 3,600cm -1) due to the glycidyl group ring opening peak has occurred.
(比較合成例1)ポリマーA’:アクリロイル基両末端ポリ(アクリル酸n-ブチルアクリレート)の合成例
 臭化第一銅を触媒、ペンタメチルジエチレントリアミンを配位子、ジエチル-2,5-ジブロモアジペートを開始剤、アクリル酸n-ブチルをモノマー、そして、アクリル酸カリウムを末端基導入剤として用い、WO2008/041768号公報記載の合成例2の方法に準じた方法で反応させ、ポリスチレン換算で数平均分子量が20,000、アクリロイル基数が平均して1分子中に約1.9個、両末端にアクリロイル基を有するポリ(アクリル酸-n-ブチル)重合体である常温で液状のポリマーA’を得た。
(Comparative Synthesis Example 1) Polymer A ′: Synthesis example of poly (acrylic acid n-butyl acrylate) at both terminals of acryloyl group Cuprous bromide as catalyst, pentamethyldiethylenetriamine as ligand, diethyl-2,5-dibromoadipate Using n-butyl acrylate as a monomer and potassium acrylate as an end group introducing agent, and a reaction according to the method of Synthesis Example 2 described in WO2008 / 041768, and the number average in terms of polystyrene. A polymer A ′ which is a poly (acrylic acid-n-butyl) polymer having a molecular weight of 20,000, an average number of acryloyl groups of about 1.9 per molecule, and acryloyl groups at both ends at room temperature. Obtained.
(比較合成例2)ポリマーB’:アクリロイル基両末端ポリ(アクリル酸n-ブチル/アクリル酸エチル/2-メトキシエチルアクリレート)の合成例
 臭化第一銅を触媒、ペンタメチルジエチレントリアミンを配位子、ジエチル-2,5-ジブロモアジペートを開始剤、モル数で25/46/29の比率のアクリル酸n-ブチル/アクリル酸エチル/2-メトキシエチルアクリレートをモノマー、そして、アクリル酸カリウムを末端基導入剤として用い、WO2007/029733号公報記載の合成例4の方法に準じた方法で反応させ、ポリスチレン換算で数平均分子量が20,000、アクリロイル基数が平均して1分子中に約1.8個、両末端にアクリロイル基を有するポリ(アクリル酸n-ブチル/アクリル酸エチル/2-メトキシエチルアクリレート)重合体である常温で液状のポリマーB’を得た。
(Comparative Synthesis Example 2) Polymer B ′: Synthesis example of poly (poly (n-butyl acrylate) / ethyl acrylate / 2-methoxyethyl acrylate) at both terminals of acryloyl group Cuprous bromide as catalyst and pentamethyldiethylenetriamine as ligand Diethyl-2,5-dibromoadipate as an initiator, n-butyl acrylate / ethyl acrylate / 2-methoxyethyl acrylate in a mole ratio of 25/46/29 as a monomer, and potassium acrylate as a terminal group Used as an introducing agent, the reaction was carried out in accordance with the method of Synthesis Example 4 described in WO2007 / 029733, and the number average molecular weight was 20,000 in terms of polystyrene, and the number of acryloyl groups was about 1.8 per molecule on average. Poly (n-butyl acrylate / ethyl acrylate / 2-methoxy) having acryloyl groups at both ends Chill acrylate) was at room temperature a polymer to obtain a polymer B 'of the liquid.
(比較合成例3)ポリマーC’:アクリロイル基両末端のウレタンアクリレートの合成例
 ポリプロピレングリコールとイソホロンジイソシアネートとを用いて合成された分子量38,000のウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させることで、常温で液状のポリマーC’を得た。
(Comparative Synthesis Example 3) Polymer C ′: Synthesis Example of Urethane Acrylate at Both Ends of Acrylyl Group 2-hydroxyethyl acrylate is reacted with a 38,000 molecular weight urethane prepolymer synthesized using polypropylene glycol and isophorone diisocyanate As a result, a liquid polymer C ′ was obtained at room temperature.
(実施例1~11、比較例1~4)
 表1に示す配合割合で各配合物質をそれぞれ添加し、混合撹拌して硬化性組成物を調製した。
(Examples 1 to 11, Comparative Examples 1 to 4)
Each compounding substance was added at the blending ratio shown in Table 1, mixed and stirred to prepare a curable composition.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1において、各配合物質の配合量の単位は「重量部」である。また、表1中、ポリマーA乃至ポリマーH、及びポリマーA’乃至ポリマーC’はそれぞれ、上記合成例1~8、及び上記比較合成例1~3により得られたポリマーであり、配合物質の詳細は下記の通りである。また、モノマーBは上記合成例9により得られたモノマーである。更に、表1において実施例の「アクリル基の構造」は一般式(1)の連結基に結合している部分の構造を示し、実施例の「連結基」は一般式(1)の「アクリル基の構造」に最初に結合している基、若しくは一般式(1)のXを示す。
(C:モノマーA)
 2-ヒドロキシ-3-フェノキシプロピルアクリレート(製品名「エポキシエステルM-600A」、共栄社化学(株))
(B1:光開始剤)
 2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(製品名:IRGACURE TPO、BASF社製)
(B1:光開始剤)
 2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(製品名:IRGACURE 1173、BASF社製)
(B1:光開始剤)
 2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(製品名:Darocur 1173、BASF社製)
(B2:熱開始剤)
 ジ‐tert‐ブチルペルオキシド(製品名:パーブチル(PERBUTYL)D、日本油脂株式会社製)
In Table 1, the unit of the amount of each compounding substance is “parts by weight”. In Table 1, polymer A to polymer H and polymer A ′ to polymer C ′ are the polymers obtained in Synthesis Examples 1 to 8 and Comparative Synthesis Examples 1 to 3, respectively. Is as follows. Monomer B is a monomer obtained in Synthesis Example 9 above. Further, in Table 1, “Acrylic group structure” in the examples represents the structure of the portion bonded to the linking group of the general formula (1), and the “linking group” in the examples represents the “acrylic group” in the general formula (1). In the “group structure”, the first bonded group or X in the general formula (1) is shown.
(C: Monomer A)
2-Hydroxy-3-phenoxypropyl acrylate (Product name “Epoxy ester M-600A”, Kyoeisha Chemical Co., Ltd.)
(B1: Photoinitiator)
2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide (Product name: IRGACURE TPO, manufactured by BASF)
(B1: Photoinitiator)
2-Hydroxy-2-methyl-1-phenyl-propan-1-one (Product name: IRGACURE 1173, manufactured by BASF)
(B1: Photoinitiator)
2-Hydroxy-2-methyl-1-phenyl-propan-1-one (Product name: Darocur 1173, manufactured by BASF)
(B2: thermal initiator)
Di-tert-butyl peroxide (Product name: PERBUTYL D, manufactured by NOF Corporation)
(表面硬化性試験~光開始剤)
 実施例1~5、実施例7~11、及び比較例1~3に係る光硬化性組成物を被着材(PETフィルム)にガラス棒を用いて厚さが200μmとなるように空気中で塗布した。次に、被着材上の光硬化性組成物に直接に紫外線(UV)を照射した[照射条件:UV-LEDランプ(波長365nm、照度:1000mW/cm)、積算光量:3000mJ/cm]。UV照射の直後、暗室下、23℃50%RHの環境下において、指触にて表面硬化性を試験した。指に未硬化物が付着しない、又は液状物が付着するがかすかである場合を「○」、指の表面に液状物が付着する場合を「×」と評価した。
(Surface Curability Test-Photoinitiator)
The photocurable compositions according to Examples 1 to 5, Examples 7 to 11 and Comparative Examples 1 to 3 were used in the air so that the thickness was 200 μm using a glass rod as the adherend (PET film). Applied. Next, the photocurable composition on the adherend was directly irradiated with ultraviolet rays (UV) [irradiation conditions: UV-LED lamp (wavelength 365 nm, illuminance: 1000 mW / cm 2 ), integrated light amount: 3000 mJ / cm 2]. ]. Immediately after UV irradiation, surface curability was tested by finger touch in an environment of 23 ° C. and 50% RH in a dark room. The case where the uncured material did not adhere to the finger or the liquid material adhered but was faint was evaluated as “◯”, and the case where the liquid material adhered to the finger surface was evaluated as “x”.
(硬度試験~光開始剤)
 硬度試験は、JIS K 7312(1996)に準拠して実施した。まず、実施例1~5、実施例7~11、及び比較例1~3に係る光硬化性組成物のそれぞれを高さ6mmのキャップに入れ、紫外線(UV)を照射した[照射条件:UV-LEDランプ(波長365nm、照度:1000mW/cm)、積算光量:6000mJ/cm]。そして、実施例1~5、実施例7~11、及び比較例1~3に係る光硬化性組成物それぞれについて得られた光硬化性組成物の硬化物を2枚重ねて、23℃雰囲気下において、タイプAデュロメータの加圧面を密着させてから30秒後に測定した。
(Hardness test-photoinitiator)
The hardness test was performed according to JIS K 7312 (1996). First, each of the photocurable compositions according to Examples 1 to 5, Examples 7 to 11, and Comparative Examples 1 to 3 was put in a cap having a height of 6 mm and irradiated with ultraviolet rays (UV) [Irradiation condition: UV LED lamp (wavelength 365 nm, illuminance: 1000 mW / cm 2 ), integrated light quantity: 6000 mJ / cm 2 ]. Then, two cured products of the photocurable compositions obtained for each of the photocurable compositions according to Examples 1 to 5, Examples 7 to 11, and Comparative Examples 1 to 3 were stacked and placed in an atmosphere at 23 ° C. , Measurement was performed 30 seconds after the pressing surface of the type A durometer was brought into close contact.
(表面硬化性試験~熱開始剤)
 実施例6、及び比較例4に係る熱硬化性組成物を被着材(アルミ板)にガラス棒を用いて厚さが200μmとなるように塗布した。次に、被着材内の熱硬化性組成物を180℃の乾燥機に10分間静置した。乾燥機より取り出し直後、23℃50%RHの環境下において、指触にて表面硬化性を試験した。指に未硬化物が付着しない、又は液状物が付着するがかすかである場合を「○」、指の表面に液状物が付着する場合を「×」と評価した。
(Surface hardening test-thermal initiator)
The thermosetting composition according to Example 6 and Comparative Example 4 was applied to an adherend (aluminum plate) using a glass rod so that the thickness was 200 μm. Next, the thermosetting composition in the adherend was left to stand in a dryer at 180 ° C. for 10 minutes. Immediately after removal from the dryer, the surface curability was tested by finger touch in an environment of 23 ° C. and 50% RH. The case where the uncured material did not adhere to the finger or the liquid material adhered but was faint was evaluated as “◯”, and the case where the liquid material adhered to the finger surface was evaluated as “x”.
(硬度試験~熱開始剤)
 実施例6、及び比較例4に係る熱硬化性組成物の硬化物の硬度試験を、JIS K 7312(1996)に準拠して実施した。まず、実施例6、及び比較例4に係る熱硬化性組成物のそれぞれについて高さ6mmの金属製キャップに入れ、180℃雰囲気化に10分間静置した。そして、実施例6、及び比較例4に係る熱硬化性組成物それぞれについて得られた熱硬化性組成物の硬化物を2枚重ねて、23℃雰囲気下において、タイプAデュロメータの加圧面を密着させてから30秒後に測定した。
(Hardness test-thermal initiator)
The hardness test of the cured product of the thermosetting composition according to Example 6 and Comparative Example 4 was performed according to JIS K 7312 (1996). First, each of the thermosetting compositions according to Example 6 and Comparative Example 4 was put in a metal cap having a height of 6 mm, and left in an atmosphere at 180 ° C. for 10 minutes. Then, two cured products of the thermosetting composition obtained for each of the thermosetting compositions according to Example 6 and Comparative Example 4 were stacked, and in close contact with the pressure surface of the type A durometer in a 23 ° C. atmosphere. It was measured 30 seconds after the test.
 表1を参照すると分かるように、実施例においてはいずれも表面硬化性が良好であることが示された。また、実施例に係る硬化性組成物の硬化物は、主鎖骨格等を選択することでタイプAデュロメータにおいて5から70の硬度に調整できることが示された。 As can be seen by referring to Table 1, in the examples, it was shown that the surface curability was good. Moreover, it was shown that the hardened | cured material of the curable composition which concerns on an Example can be adjusted to the hardness of 5 to 70 in a type A durometer by selecting main chain frame | skeleton etc.
 以上より、実施例に係る硬化性組成物においては酸素による重合阻害が抑制され、優れた硬化性を発揮し、硬化物の硬度等の物性を自由に調整できることが示された。 From the above, it was shown that in the curable compositions according to the examples, inhibition of polymerization by oxygen was suppressed, excellent curability was exhibited, and physical properties such as hardness of the cured product could be freely adjusted.
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点、及び本発明の技術思想から逸脱しない限り種々の変形が可能である点に留意すべきである。 The embodiments and examples of the present invention have been described above. However, the embodiments and examples described above do not limit the invention according to the claims. In addition, all the combinations of features described in the embodiments and examples are not necessarily essential to the means for solving the problems of the invention, and various combinations are possible without departing from the technical idea of the present invention. It should be noted that variations are possible.

Claims (13)

  1.  (A)下記一般式(1)で表される基を有する有機重合体と、
     (B1)光開始剤、(B2)熱開始剤、及び(B3)レドックス開始剤からなる群から選択される少なくとも1つの開始剤と
    を含有する硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは-H又は-CHを示し、Xは連結基であり、連結基は置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、極性連結基〔(チオ)エーテル連結基、-O-CO-連結基、-O-CO-NH-連結基、-NR-連結基(Rは水素基、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、複素環構造含有基、又は複数の環を有する基を示す。)〕、又は直接結合である。)
    (A) an organic polymer having a group represented by the following general formula (1);
    A curable composition comprising (B1) a photoinitiator, (B2) a thermal initiator, and (B3) at least one initiator selected from the group consisting of a redox initiator.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents —H or —CH 3 , X represents a linking group, and the linking group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group [ (Thio) ether linking group, —O—CO— linking group, —O—CO—NH— linking group, —NR 2 linking group (where R 2 is a hydrogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group) An aryl group, a heterocyclic structure-containing group, or a group having a plurality of rings.)], Or a direct bond.
  2.  (C)単官能(メタ)アクリル系モノマーを更に含有する請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising (C) a monofunctional (meth) acrylic monomer.
  3.  前記(C)単官能(メタ)アクリル系モノマーが、3-(メタ)アクリロオキシ2-ヒドロキシプロピル基と極性基とを含有する(メタ)アクリレート、-C2pOH基を有する(メタ)アクリレート(ただし、pは2~6の整数)、及び脂環式(メタ)アクリレートからなる群から選択される少なくとも1つの単官能(メタ)アクリル系モノマーを含有する請求項2に記載の硬化性組成物。 Wherein (C) a monofunctional (meth) acrylic monomer is 3- (meth) acryloxy containing a 2-hydroxypropyl group and a polar group-containing (meth) acrylates, having a -C p H 2p OH group (meth) acrylate 3. The curable composition according to claim 2, comprising at least one monofunctional (meth) acrylic monomer selected from the group consisting of (wherein p is an integer of 2 to 6) and an alicyclic (meth) acrylate. object.
  4.  前記(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、ポリエステル重合体、ポリカーボネート系重合体、グラフト重合体、炭化水素系重合体、ポリサルファイド系重合体、ポリアミド系重合体、及びジアリルフタレート系重合体からなる群から選択される少なくとも1つの有機重合体を含む請求項1~3のいずれか1項に記載の硬化性組成物。 (A) The main chain skeleton of the organic polymer having the group represented by the general formula (1) is a polyoxyalkylene polymer, a (meth) acrylate polymer, a polyester polymer, or a polycarbonate polymer. And at least one organic polymer selected from the group consisting of a graft polymer, a hydrocarbon polymer, a polysulfide polymer, a polyamide polymer, and a diallyl phthalate polymer. The curable composition according to item 1.
  5.  前記(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体を含む請求項1~3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the main chain skeleton of the organic polymer (A) having a group represented by the general formula (1) includes a polyoxyalkylene polymer. .
  6.  前記(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、(メタ)アクリル酸エステル系重合体を含む請求項1~3のいずれか1項に記載の硬化性組成物。 The curing according to any one of claims 1 to 3, wherein the main chain skeleton of the organic polymer (A) having a group represented by the general formula (1) includes a (meth) acrylate polymer. Sex composition.
  7.  前記(メタ)アクリル酸エステル系重合体が、テレケリックタイプの有機重合体、分子末端及び官能基共重合タイプの有機重合体、及び末端官能基タイプの有機重合体からなる群から選択される1つの有機重合体である請求項6に記載の硬化性組成物。 The (meth) acrylic acid ester-based polymer is selected from the group consisting of a telechelic type organic polymer, a molecular terminal and functional group copolymer type organic polymer, and a terminal functional group type organic polymer. The curable composition according to claim 6, which is one organic polymer.
  8.  前記分子末端及び官能基共重合タイプの有機重合体、又は末端官能基タイプの有機重合体が、メタロセン触媒の存在下、重合性モノマーを重合させてなる重合体である請求項7に記載の硬化性組成物。 The curing according to claim 7, wherein the molecular terminal and functional group copolymer type organic polymer or the terminal functional group type organic polymer is a polymer obtained by polymerizing a polymerizable monomer in the presence of a metallocene catalyst. Sex composition.
  9.  前記(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリエステル重合体を含む請求項1~3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the main chain skeleton of the organic polymer having the group represented by the general formula (1) includes a polyester polymer.
  10.  前記(A)一般式(1)で表される基を有する有機重合体の主鎖骨格が、ポリカーボネート系重合体を含む請求項1~3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the main chain skeleton of the organic polymer having a group represented by the general formula (1) includes a polycarbonate polymer.
  11.  請求項1~10のいずれか1項に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載の硬化性組成物の硬化物を構成要素として有する製品。 A product having a cured product of the curable composition according to any one of claims 1 to 10 as a constituent element.
  13.  所定の官能基を有する重合体に前記所定の官能基に対して反応性を有する官能基、及び(メタ)アクリレート基を有する化合物を反応させて得られる(A)下記一般式(1)で表される基を有する有機重合体と、
     (B1)光開始剤、(B2)熱開始剤、及び(B3)レドックス開始剤からなる群から選択される少なくとも1つの開始剤とを混合して硬化性組成物を得る硬化性組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、Rは-H又は-CHを示し、Xは連結基であり、連結基は置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、極性連結基〔(チオ)エーテル連結基、-O-CO-連結基、-O-CO-NH-連結基、-NR-連結基(Rは水素基、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、複素環構造含有基、又は複数の環を有する基を示す。)〕、又は直接結合である。)
    (A) obtained by reacting a polymer having a predetermined functional group with a functional group having reactivity with the predetermined functional group and a compound having a (meth) acrylate group, represented by the following general formula (1) An organic polymer having a group
    Production of a curable composition obtained by mixing (B1) a photoinitiator, (B2) a thermal initiator, and (B3) at least one initiator selected from the group consisting of a redox initiator to obtain a curable composition. Method.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (1), R 1 represents —H or —CH 3 , X represents a linking group, and the linking group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a polar linking group [ (Thio) ether linking group, —O—CO— linking group, —O—CO—NH— linking group, —NR 2 linking group (where R 2 is a hydrogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group) An aryl group, a heterocyclic structure-containing group, or a group having a plurality of rings.)], Or a direct bond.
PCT/JP2017/024800 2016-07-11 2017-07-06 Curable composition and product WO2018012396A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780035193.6A CN109312034A (en) 2016-07-11 2017-07-06 Solidification compound and product
JP2018527559A JPWO2018012396A1 (en) 2016-07-11 2017-07-06 Curable composition and product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-136567 2016-07-11
JP2016136567 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012396A1 true WO2018012396A1 (en) 2018-01-18

Family

ID=60952461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024800 WO2018012396A1 (en) 2016-07-11 2017-07-06 Curable composition and product

Country Status (4)

Country Link
JP (1) JPWO2018012396A1 (en)
CN (1) CN109312034A (en)
TW (1) TW201829499A (en)
WO (1) WO2018012396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113176705A (en) * 2020-01-27 2021-07-27 株式会社田村制作所 Photosensitive resin composition
WO2022123341A1 (en) * 2020-12-08 2022-06-16 3M Innovative Properties Company Adhesive compositions and articles

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344823A (en) * 1999-03-31 2000-12-12 Soken Chem & Eng Co Ltd Catalyst for bulk polymerization and polymerization process using the catalyst
JP2001228606A (en) * 2000-02-14 2001-08-24 Tamura Kaken Co Ltd Active energy beam curable composition and printed wiring board
JP2002003552A (en) * 2000-04-17 2002-01-09 Dainippon Ink & Chem Inc Polymeric unsaturated polyester resin composition
JP2002069144A (en) * 2000-06-13 2002-03-08 Kansai Paint Co Ltd Copolymer excellent in pigment dispersibility
JP2002179991A (en) * 2000-09-29 2002-06-26 Byk Chem Gmbh Leveling agent for surface coating
WO2004039856A1 (en) * 2002-10-31 2004-05-13 Kyoeisha Chemical Co.,Ltd. Resin composition, transfer material and process for producing shaped item
JP2008015364A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
JP2008297440A (en) * 2007-05-31 2008-12-11 Showa Denko Kk Curable resin composition and cured product
JP2009236942A (en) * 2008-03-25 2009-10-15 Fujifilm Corp Planographic printing plate precursor and plate making method of the same
JP2009292890A (en) * 2008-06-03 2009-12-17 Showa Highpolymer Co Ltd Low-temperature curable resin composition, coating film forming method using the same, resin mortar and fiber-reinforced resin
JP2010059371A (en) * 2008-09-05 2010-03-18 Fujifilm Corp Manufacturing method for curable polymer compound, composition, and lithographic printing original plate
JP2010168419A (en) * 2009-01-20 2010-08-05 Dic Corp Protective adhesive film, screen panel and portable electronic terminal
JP2011074236A (en) * 2009-09-30 2011-04-14 Sekisui Plastics Co Ltd Photocurable resin composition and adhesive polymer gel
WO2011142393A1 (en) * 2010-05-13 2011-11-17 日産化学工業株式会社 Thermosetting resin composition and display device
JP2012012580A (en) * 2010-06-01 2012-01-19 Nippon Steel Chem Co Ltd Thermosetting resin composition containing (meth)acrylate resin, and cured product using the same
JP2012220615A (en) * 2011-04-06 2012-11-12 Dainippon Printing Co Ltd Photocurable resin composition
JP2013527937A (en) * 2010-05-03 2013-07-04 ビーエーエスエフ ソシエタス・ヨーロピア Color filters for low temperature applications
JP2014118451A (en) * 2012-12-14 2014-06-30 Dic Corp Radical polymerizable resin composition, primer and floor slab waterproofing structure
JP2016029125A (en) * 2014-07-25 2016-03-03 昭和電工株式会社 Two-pack curable resin composition, covering material, covering method and covering structure
JP2016084446A (en) * 2014-10-28 2016-05-19 大日精化工業株式会社 Polysiloxane group-containing polymer and heat-cured coating

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344823A (en) * 1999-03-31 2000-12-12 Soken Chem & Eng Co Ltd Catalyst for bulk polymerization and polymerization process using the catalyst
JP2001228606A (en) * 2000-02-14 2001-08-24 Tamura Kaken Co Ltd Active energy beam curable composition and printed wiring board
JP2002003552A (en) * 2000-04-17 2002-01-09 Dainippon Ink & Chem Inc Polymeric unsaturated polyester resin composition
JP2002069144A (en) * 2000-06-13 2002-03-08 Kansai Paint Co Ltd Copolymer excellent in pigment dispersibility
JP2002179991A (en) * 2000-09-29 2002-06-26 Byk Chem Gmbh Leveling agent for surface coating
WO2004039856A1 (en) * 2002-10-31 2004-05-13 Kyoeisha Chemical Co.,Ltd. Resin composition, transfer material and process for producing shaped item
JP2008015364A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
JP2008297440A (en) * 2007-05-31 2008-12-11 Showa Denko Kk Curable resin composition and cured product
JP2009236942A (en) * 2008-03-25 2009-10-15 Fujifilm Corp Planographic printing plate precursor and plate making method of the same
JP2009292890A (en) * 2008-06-03 2009-12-17 Showa Highpolymer Co Ltd Low-temperature curable resin composition, coating film forming method using the same, resin mortar and fiber-reinforced resin
JP2010059371A (en) * 2008-09-05 2010-03-18 Fujifilm Corp Manufacturing method for curable polymer compound, composition, and lithographic printing original plate
JP2010168419A (en) * 2009-01-20 2010-08-05 Dic Corp Protective adhesive film, screen panel and portable electronic terminal
JP2011074236A (en) * 2009-09-30 2011-04-14 Sekisui Plastics Co Ltd Photocurable resin composition and adhesive polymer gel
JP2013527937A (en) * 2010-05-03 2013-07-04 ビーエーエスエフ ソシエタス・ヨーロピア Color filters for low temperature applications
WO2011142393A1 (en) * 2010-05-13 2011-11-17 日産化学工業株式会社 Thermosetting resin composition and display device
JP2012012580A (en) * 2010-06-01 2012-01-19 Nippon Steel Chem Co Ltd Thermosetting resin composition containing (meth)acrylate resin, and cured product using the same
JP2012220615A (en) * 2011-04-06 2012-11-12 Dainippon Printing Co Ltd Photocurable resin composition
JP2014118451A (en) * 2012-12-14 2014-06-30 Dic Corp Radical polymerizable resin composition, primer and floor slab waterproofing structure
JP2016029125A (en) * 2014-07-25 2016-03-03 昭和電工株式会社 Two-pack curable resin composition, covering material, covering method and covering structure
JP2016084446A (en) * 2014-10-28 2016-05-19 大日精化工業株式会社 Polysiloxane group-containing polymer and heat-cured coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113176705A (en) * 2020-01-27 2021-07-27 株式会社田村制作所 Photosensitive resin composition
WO2022123341A1 (en) * 2020-12-08 2022-06-16 3M Innovative Properties Company Adhesive compositions and articles

Also Published As

Publication number Publication date
TW201829499A (en) 2018-08-16
CN109312034A (en) 2019-02-05
JPWO2018012396A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6088972B2 (en) (Meth) acryloyl-terminated polyisobutylene polymer, method for producing the same, and active energy ray-curable composition
JP6010322B2 (en) Curable composition and use thereof
WO2018008580A1 (en) Curable composition and product
EP2248835B1 (en) Curable composition
WO2005092981A1 (en) Composition curable by both free-radical photocuring and cationic photocuring
WO2007077888A1 (en) Curable composition
KR102494910B1 (en) Photocurable composition
WO2004106400A1 (en) Curing composition
KR20130064736A (en) Photocurable silicone gel composition and application thereof
CN108431157B (en) Bonding method using photocurable adhesive
JPWO2019073978A1 (en) Adhesive method and photocurable pressure-sensitive adhesive composition
JP2011116965A (en) Terminal modified (hydrogenation) polybutadiene
WO2007074890A1 (en) Curable composition in combination with thermal radical curing/thermal latent curable epoxy
WO2007034914A1 (en) Photoradial- and photocation-curable composition
JPWO2019073979A1 (en) Photocurable pressure-sensitive adhesive composition and bonding method
WO2018012396A1 (en) Curable composition and product
WO2005030866A1 (en) Composition for on-site forming gasket, gasket, (meth)acrylic polymer and curing composition thereof
JP2017122139A (en) Photocurable composition
TW202144514A (en) Adhesive composition
KR20200066320A (en) Photocurable pressure-sensitive adhesive composition and adhesion method
JP2008069297A (en) Blocked resin and method for producing the same
JP6650434B2 (en) (Meth) acrylic polymer composition and method for producing the same
JP6259657B2 (en) Sealant for liquid crystal display elements
JP2012188550A (en) Curable composition and cured product obtained from the same
JP2022163691A (en) Isobutylene copolymer, manufacturing method of polymer and curable composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527559

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827524

Country of ref document: EP

Kind code of ref document: A1