WO2018012160A1 - Heat sink and lighting apparatus - Google Patents

Heat sink and lighting apparatus Download PDF

Info

Publication number
WO2018012160A1
WO2018012160A1 PCT/JP2017/021409 JP2017021409W WO2018012160A1 WO 2018012160 A1 WO2018012160 A1 WO 2018012160A1 JP 2017021409 W JP2017021409 W JP 2017021409W WO 2018012160 A1 WO2018012160 A1 WO 2018012160A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
heat sink
fin
base
sub
Prior art date
Application number
PCT/JP2017/021409
Other languages
French (fr)
Japanese (ja)
Inventor
梢吾 供田
基徳 島村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018527448A priority Critical patent/JP6664083B2/en
Publication of WO2018012160A1 publication Critical patent/WO2018012160A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section

Definitions

  • the present invention relates to a heat sink and a lighting fixture including the heat sink.
  • a lamp including an LED (Light Emitting Diode) as a light source includes a heat sink that dissipates heat generated by the light source (see, for example, Patent Document 1).
  • the heat sink described in Patent Document 1 has a plurality of fins arranged in a radial pattern, thereby improving heat dissipation performance.
  • the conventional heat sink cannot be said to have sufficiently high heat dissipation performance.
  • an object of the present invention is to provide a heat sink having high heat dissipation performance and a lighting fixture including the heat sink.
  • a heat sink includes a bottomed cylindrical base, a plurality of fins radially disposed on an outer bottom surface of the bottom of the base, and the plurality of fins.
  • a sub fin disposed on the outer bottom surface between two adjacent fins, and the height of the sub fin from the outer bottom surface is lower than the height of the fin from the outer bottom surface.
  • the lighting fixture which concerns on 1 aspect of this invention is equipped with the said heat sink and the light source attached to the inner bottom face of the said bottom part.
  • a heat sink having high heat dissipation performance can be provided.
  • FIG. 1 is a perspective view of a lighting apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view of the lighting fixture according to the embodiment.
  • FIG. 3 is an exploded perspective view showing a part of the lighting apparatus according to the embodiment.
  • FIG. 4 is a perspective view of a heat sink (apparatus body) according to the embodiment.
  • FIG. 5 is a top view of the heat sink according to the embodiment.
  • FIG. 6 is a bottom view of the base according to the embodiment.
  • FIG. 7 is a cross-sectional view of the base according to the embodiment taken along line VII-VII in FIG.
  • FIG. 8 is a perspective view of the fin according to the embodiment.
  • FIG. 9 is a top view of the fin according to the embodiment.
  • FIG. 1 is a perspective view of a lighting apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view of the lighting fixture according to the embodiment.
  • FIG. 3 is an exploded perspective view showing a part of the lighting apparatus
  • FIG. 10 is a cross-sectional view of the heat sink according to the embodiment taken along line XX of FIG.
  • FIG. 11 is an enlarged cross-sectional view of a main part showing an area XI in FIG.
  • FIG. 12 is a perspective view showing a fin and base positioning step in the heat sink manufacturing method according to the embodiment.
  • FIG. 13 is sectional drawing which shows the plastic deformation process of the projection part in the manufacturing method of the heat sink concerning embodiment.
  • FIG. 14 is a cross-sectional view for explaining the insulation distance from the LED according to the comparative example to the inner bottom surface of the base.
  • FIG. 15 is a cross-sectional view for explaining an insulation distance from the LED to the inner bottom surface of the base according to the embodiment.
  • FIG. 1 is a perspective view of a lighting fixture 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the lighting fixture 1 according to the present embodiment. Specifically, FIG. 2 shows a cross section passing through the optical axis J of the luminaire 1 (cross section taken along line II-II in FIG. 5 described later).
  • the direction parallel to the optical axis J is the Z-axis direction
  • the two directions perpendicular to the optical axis J and perpendicular to each other are the X-axis direction and the Y-axis direction.
  • the Z-axis direction is, for example, the vertical direction.
  • the luminaire 1 is an example of an embedded luminaire such as a downlight.
  • the luminaire 1 is embedded in a mounting hole provided in a ceiling of a building and irradiates light downward (such as a floor).
  • FIG. 1 has shown the lighting fixture 1 when it looks up from diagonally downward.
  • the luminaire 1 includes a heat sink 10, an optical member 60, a frame body 70, and an attachment spring 80. Furthermore, as shown in FIG. 2, the lighting fixture 1 includes a light source 20, a mounting member 30, a connecting member 40, and a reflecting member 50.
  • each component (component) of the lighting fixture 1 will be described in detail with reference to FIGS. 1 and 2 as appropriate.
  • the fixing members such as the latching
  • the heat sink 10 is a fixture body of the lighting fixture 1 and is a metal member to which the light source 20 is attached.
  • the heat sink 10 dissipates heat generated by the light source 20.
  • the heat sink 10 is formed from a metal material having high thermal conductivity such as aluminum.
  • the heat sink 10 includes a base 11 and a plurality of fins 12. As will be described in detail later, the heat sink 10 further includes one or more sub fins 13 (see FIG. 4 and the like). The detailed structure of the heat sink 10 will be described later.
  • the light source 20 is an example of a light source in the lighting fixture 1 and is a light emitting unit that emits light of a predetermined color (wavelength) such as white.
  • the light source 20 is attached to the base 11 of the heat sink 10. In the present embodiment, as illustrated in FIG. 2, the light source 20 is fixed to the mounted portion 112 of the bottom portion 110 of the base 11 by the mounting member 30 and the connecting member 40.
  • the light source 20 is an LED module including a substrate 21 and a plurality of LEDs 22.
  • the light source 20 is a so-called COB (Chip On Board) module in which a bare chip (LED 22) is directly mounted on the substrate 21.
  • COB Chip On Board
  • FIG. 3 is an exploded perspective view showing a part of the lighting fixture 1 according to the present embodiment. Specifically, FIG. 3 shows the heat sink 10, the light source 20, the attachment member 30, and the connection member 40.
  • the substrate 21 for example, a ceramic substrate, a resin substrate, a metal base substrate, or the like can be used.
  • the planar view shape of the substrate 21 is, for example, a rectangle, but may be a polygon such as a hexagon or an octagon, or a circle.
  • Metal wiring (not shown) is formed on the substrate 21, and the plurality of LEDs 22 are electrically connected.
  • the LED 22 is an example of a light emitting element, and is a semiconductor light emitting element that emits light with a predetermined power.
  • the LED 22 is, for example, a bare chip that emits monochromatic visible light.
  • the LED 22 is a blue light emitting LED chip that emits blue light when energized.
  • the plurality of LEDs 22 are arranged in a plurality of rows or a matrix on the main surface of the substrate 21.
  • the plurality of LEDs 22 are collectively sealed by a sealing member (not shown).
  • the plurality of LEDs 22 may be collectively sealed for each element row, or all the LEDs 22 on the substrate 21 may be collectively sealed.
  • the sealing member includes, for example, a translucent resin material such as silicone resin as a main component, and includes a wavelength conversion material that converts the wavelength of light from the LED 22.
  • the wavelength conversion material is, for example, phosphor particles, and specifically, yellow phosphor particles.
  • the light source 20 emits white light by mixing the blue light emitted from the LED 22 and the yellow light emitted when the yellow phosphor particles are excited by the blue light.
  • the sealing member may contain a light diffusing material (light scattering particles) such as silica (SiO 2 ).
  • the light source 20 may be an SMD (Surface Mounted Device) type module.
  • a package type LED element (SMD type LED element) may be mounted on the substrate 21.
  • the package type LED element includes, for example, a resin container having a recess (cavity), an LED chip (LED 22) mounted in the recess, and a sealing member (phosphor-containing resin) sealed in the recess.
  • the attachment member 30 is a member for attaching the light source 20 to the attached portion 112 of the base 11.
  • the attachment member 30 functions as a frame for the light source 20.
  • the attachment member 30 regulates the position of the light source 20 in the lateral direction (directions orthogonal to the optical axis J (X-axis direction and Y-axis direction)).
  • the attachment member 30 includes a restriction portion 31 and a claw portion 32.
  • the restricting portion 31 is a rectangular frame portion having an opening 33 at the center.
  • the opening 33 has a shape (for example, a rectangle) corresponding to the substrate 21 of the light source 20, and the light source 20 is disposed in the opening 33.
  • the claw portion 32 is a claw-shaped portion for supporting the reflecting member 50.
  • the two claw portions 32 are erected from the restricting portion 31 in the direction along the optical axis J (the negative side in the Z-axis direction).
  • the mounting member 30 is disposed on the bottom 110 of the base 11 and is fixed to the bottom 110 by the connecting member 40 and the screw 91.
  • the restricting portion 31 and the bottom portion 110 are provided with two screw holes 34 and two screw holes 115, respectively.
  • the screw 91 is inserted into the screw hole 34 of the restricting portion 31 and screwed into the screw hole 115 of the bottom portion 110, whereby the attachment member 30 is fixed to the bottom portion 110.
  • the mounting member 30 is integrally formed using a resin material such as polybutylene terephthalate (PBT) or ABS (acrylonitrile / butadiene / styrene).
  • PBT polybutylene terephthalate
  • ABS acrylonitrile / butadiene / styrene
  • connection member 40 is a member to which an electric wire (not shown) that supplies current to the light source 20 is connected.
  • the luminaire 1 includes two connection members 40.
  • One of the two connecting members 40 is connected to a high potential side electric wire, and the other is connected to a low potential side electric wire.
  • connection member 40 includes a main body 41 and an electrode 42 as shown in FIG.
  • the main body 41 is a resin casing for supporting the electric wire.
  • a screw hole 43 is provided in the main body 41 of the connection member 40.
  • the screw 91 is inserted into the screw hole 43 and screwed into the screw hole 34 of the restricting portion 31 and the screw hole 115 of the bottom portion 110, so that the connecting member 40 sandwiches the attachment member 30 and the bottom portion 110. Fixed to.
  • connection member 40 has a function of regulating the position of the light source 20 in the direction along the optical axis J (Z-axis direction).
  • the electrode 42 is electrically connected to an electric wire (not shown) supported by the main body 41 and electrically connected to an electrode terminal provided on the substrate 21 of the light source 20.
  • the electrode 42 is formed in the shape of a leaf spring and presses the electrode terminal toward the attached portion 112 by its urging force. Thereby, the electrode 42 and the electrode terminal of the board
  • connection member 40 is formed by insert molding using, for example, a conductive material that constitutes the electrode 42 and a resin material that constitutes the main body 41.
  • the main body 41 is molded using a resin material such as PBT or ABS, for example.
  • the electrode 42 is formed using a conductive material such as copper.
  • the reflecting member 50 is a member that controls light distribution from the light source 20.
  • the reflecting member 50 reflects the light from the light source 20 toward the optical member 60.
  • the reflecting member 50 is a substantially cylindrical body provided with an opening through which the optical axis J passes substantially through the center.
  • the reflecting member 50 has an end on the side (negative side in the Z-axis direction) from which light from the light source 20 is incident (positive side in the Z-axis direction).
  • the inner diameter is gradually increased toward the portion.
  • the inner surface of the reflecting member 50 is a reflecting surface that reflects light from the light source 20.
  • the reflecting member 50 is formed using a hard white resin material such as PBT, for example. At this time, a metal reflecting film such as aluminum may be provided on the inner surface of the reflecting member 50.
  • the optical member 60 is a translucent member into which light from the reflecting member 50 is incident. As shown in FIG. 2, the optical member 60 is disposed so as to cover the opening on the light emitting side (the negative side in the Z-axis direction) of the reflecting member 50.
  • the optical member 60 may have a function of controlling and emitting the light distribution of the light that has passed through the reflecting member 50.
  • the optical member 60 is a Fresnel lens.
  • the optical member 60 is formed from a material having translucency.
  • the optical member 60 is formed from a transparent resin material such as acrylic (PMMA) or polycarbonate (PC).
  • the optical member 60 may be formed from a transparent glass material.
  • the optical member 60 may have a light diffusion (scattering) structure.
  • the optical member 60 may be formed using a resin material in which a diffusing material is dispersed, or an unevenness or a dot pattern may be formed on the surface.
  • the frame body 70 is a cylindrical member that allows the light emitted from the optical member 60 to pass therethrough.
  • the frame body 70 includes an auxiliary reflection member 71, a frame main body 72, and a collar 73.
  • the auxiliary reflecting member 71 is a cylindrical member arranged inside the cylindrical frame main body 72.
  • the auxiliary reflection member 71 has an auxiliary reflection surface on the inner side, and has a function of controlling the light distribution of the lighting fixture 1.
  • the auxiliary reflecting member 71 is formed of a thin metal plate such as aluminum.
  • the frame main body 72 is a main body of the cylindrical frame 70.
  • the frame body 72 has substantially the same outer diameter as the base 11 of the heat sink 10.
  • the frame main body 72 and the base 11 are fixed by screws (not shown).
  • the frame main body 72 is formed using a metal material such as aluminum, for example.
  • ⁇ 73 is a part of the frame body 72, and is a part extending from the end of the frame body 72 on the light emitting side (the negative side in the Z-axis direction) toward the outside in the radial direction.
  • the collar 73 is provided in an annular shape. For example, when the lighting fixture 1 is attached to the ceiling, the flange 73 contacts the lower surface of the ceiling plate.
  • the attachment spring 80 is used for attaching the lighting fixture 1 to an attachment hole such as a ceiling. Specifically, the lighting fixture 1 can be attached by holding the ceiling plate between the attachment spring 80 and the flange 73 of the frame body 72 using the restoring force of the attachment spring 80.
  • the mounting spring 80 is formed into a long and narrow plate shape by pressing or the like using a metal material such as iron.
  • the lighting fixture 1 includes two attachment springs 80, but the number and positions of the attachment springs 80 are not limited thereto.
  • FIG 4 and 5 are a perspective view and a top view of the heat sink 10 according to the present embodiment, respectively.
  • the heat sink 10 is not formed integrally (as an integrally molded product) such as aluminum die casting, but is formed by connecting a plurality of components.
  • the protrusions 114 provided on the base 11 are plastically deformed, so that the base 11 and the fins 12 which are separate parts are connected and fixed. More specifically, as shown in FIG. 2, the fin 12 is fixed to the base 11 in a state where the protrusion 114 is inserted into the through hole 123 provided in the fin 12 and the protrusion 114 is plastically deformed. Has been.
  • the heat sink 10 includes a plurality of sub fins 13.
  • the base 11 and the plurality of sub fins 13 are integrally formed products.
  • the base 11 and the plurality of sub fins 13 are integrally formed (as one component) by forging a cylindrical member (slag) made of aluminum.
  • Each of the plurality of fins 12 is formed integrally (as one component) by, for example, pressing or bending an aluminum sheet metal.
  • the plate thickness of the sheet metal (that is, the plate thickness of the fins 12) is, for example, 1 mm, but is not limited thereto.
  • each member such as the base 11 and the plurality of fins 12 by forging, pressing or bending.
  • the thickness of each member can be made thin, the weight reduction of the heat sink 10 is realizable.
  • the base 11 and the plurality of sub fins 13 may be made of aluminum die casting.
  • each of the plurality of fins 12 may be made of aluminum die casting.
  • FIG. 6 is a bottom view of the base 11 according to the present embodiment.
  • FIG. 7 is a cross-sectional view of the base 11 according to the embodiment taken along line VII-VII in FIG.
  • the base 11 is a bottomed cylindrical base (base) as shown in FIGS. Thereby, the thickness of the bottom part 110 can be made thin, ensuring the envelope volume of the base 11. Therefore, the heat from the light source 20 can be efficiently conducted to the plurality of fins 12 and the plurality of sub fins 13. As shown in FIG. 2 and the like, the base 11 has a bottom portion 110 and a side wall portion 111.
  • the bottom portion 110 is a disc-shaped portion having an inner bottom surface 110a to which the light source 20 is attached and an outer bottom surface 110b on which the plurality of fins 12 are disposed. As shown in FIG. 2, the inner bottom surface 110 a and the outer bottom surface 110 b are substantially orthogonal to the optical axis J and face each other.
  • the inner bottom surface 110a is the bottom surface inside the bottomed cylindrical base 11, and has a substantially circular shape in plan view.
  • the outer bottom surface 110b is an outer bottom surface of the bottomed cylindrical base 11 and has a substantially circular shape in plan view. In the present embodiment, as shown in FIG. 7, the outer bottom surface 110b is a flat surface. Specifically, the outer bottom surface 110b is not provided with a recess.
  • the side wall portion 111 is a portion erected from the periphery of the bottom portion 110.
  • the side wall 111 has a flat and substantially cylindrical shape with the optical axis J as the central axis.
  • the thickness of the bottom part 110 and the side wall part 111 is, for example, 1 mm to 10 mm.
  • the diameter of the outer bottom surface 110b of the bottom part 110 is, for example, 70 mm to 90 mm.
  • the height of the side wall 111 is, for example, 15 mm to 18 mm. These dimensions are merely examples and are not limited to these.
  • the inner bottom surface 110a is provided with a mounted portion 112 and a groove 113 as shown in FIG. 2, FIG. 3, FIG. 6, and FIG.
  • the attached portion 112 is a part of the inner bottom surface 110a and is a portion to which the light source 20 is attached.
  • the mounted portion 112 is a flat surface having a substantially rectangular shape in plan view, and the substrate 21 of the light source 20 is placed thereon.
  • substrate 21 are in surface contact, as shown in FIG.
  • the groove 113 is provided along the outer periphery of the attached portion 112. In the present embodiment, as shown in FIG. 3 and FIG. 6, the groove 113 is provided over the entire outer periphery of the attached portion 112. The groove 113 is provided to avoid interference between the attachment member 30 and the connection member 40 and the inner bottom surface 110a.
  • the groove 113 has a first side wall 113a and a second side wall 113b.
  • the first side wall 113a is a side wall close to the mounted portion 112
  • the second side wall 113b is a side wall farther from the mounted portion 112 than the first side wall 113a. That is, when the inner bottom surface 110a is viewed in plan (bottom view), the first side wall 113a is an inner peripheral side wall, and the second side wall 113b is an outer peripheral side wall.
  • the first side wall 113a is perpendicular to the inner bottom surface 110a.
  • the second side wall 113b is inclined with respect to the inner bottom surface 110a. Specifically, the second side wall 113b is inclined so as to approach the first side wall 113a toward the positive side in the Z-axis direction. That is, the opening width of the groove 113 is larger than the bottom surface width of the groove 113.
  • the opening width and the bottom surface width are the distance between the negative side ends in the Z-axis direction and the positive side end in the Z-axis direction among the distances between the first side wall 113a and the second side wall 113b, respectively. It is the distance between parts.
  • the outer bottom surface 110 b is provided with a plurality of protrusions 114.
  • each of the plurality of protrusions 114 protrude from the outer bottom surface 110b of the bottom 110. As shown in FIG. 2, each of the plurality of protrusions 114 is inserted into the through hole 123 of the fin 12 and is in a state of plastic deformation. Specifically, each of the plurality of protrusions 114 is a substantially cylindrical portion that protrudes from the outer bottom surface 110b to the positive side in the Z-axis direction, and is formed by plastic deformation of the tip.
  • the plurality of protrusions 114 are arranged radially in plan view. Specifically, two protrusions 114 are arranged on each of a plurality of straight lines extending radially from the optical axis J. One fin 12 is fixed to two projections 114 arranged on a straight line extending from the optical axis J.
  • the plurality of protrusions 114 have the same shape and the same size as each other, but are not limited thereto.
  • the height of the protrusion 114 is, for example, 3 mm to 5 mm.
  • the diameter of the protrusion 114 is, for example, 3 mm to 5 mm. These dimensions are merely examples and are not limited to these.
  • FIG.4 and FIG.5 the several protrusion part 114 before plastic deformation is shown. Details of the method of plastic deformation of the protrusion 114 and the shape after the plastic deformation will be described later with reference to FIGS.
  • the fin 12 is a heat radiating fin for radiating heat from the light source 20.
  • the plurality of fins 12 are configured separately from the base 11.
  • the plurality of fins 12 are fixed to the base 11. Specifically, each of the plurality of fins 12 is caulked and fixed to the base 11 by plastic deformation of the protrusions 114 of the base 11.
  • the plurality of fins 12 are arranged radially on the outer bottom surface 110b of the bottom portion 110 of the base 11, as shown in FIGS.
  • Each of the plurality of fins 12 is long along the radial direction of the outer bottom surface 110b and is arranged at equal intervals.
  • the eight fins 12 are arranged at an equal angle (specifically, 45 °) around the optical axis J.
  • the plurality of fins 12 have the same shape and the same size. Specifically, the cross-sectional shape of each of the plurality of fins 12 is U-shaped. As shown in FIGS. 8 and 9, each of the plurality of fins 12 includes a bottom plate 120, and a pair of first side plate 121 and second side plate 122 erected on the bottom plate 120. 8 and 9 are a perspective view and a top view of the fin 12 according to the present embodiment, respectively.
  • the fins 12 shown in FIG. 8 and FIG. 9 are fins 12 that are located diagonally to the left of the optical axis J among the eight fins 12 shown in FIG.
  • the bottom plate 120 is provided with a through-hole 123 as shown in FIG.
  • the bottom plate 120 is a long flat plate portion.
  • the longitudinal direction of the bottom plate 120 substantially coincides with the radial direction of the outer bottom surface 110b.
  • the first side plate 121 and the second side plate 122 are a pair of side plates, and are arranged substantially parallel to each other. Specifically, each of the first side surface plate 121 and the second side surface plate 122 is a flat plate portion erected substantially vertically from an end portion of the bottom plate 120 in the short direction (X-axis direction).
  • the first side plate 121 and the second side plate 122 have substantially the same shape and the same size as each other, but are not limited thereto.
  • the protrusion 114 of the base 11 is inserted into the through hole 123 provided in the bottom plate 120.
  • the protrusion 114 is in plastic contact with the inner surface of the through hole 123.
  • the base 11 and the bottom plate 120 are thermally connected via the protrusion 114.
  • the bottom plate 120 has a protrusion 124 as shown in FIGS.
  • the protrusion 124 protrudes outward of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan. As shown in FIGS. 4 and 5, the distal end of the protruding portion 124 is located on the outer peripheral edge 110 c of the outer bottom surface 110 b. Since the surface area of the bottom plate 120 can be increased by providing the protrusions 124, the heat dissipation performance of the fins 12 can be improved.
  • the bottom plate 120 further has a protrusion 125.
  • the protrusion 125 protrudes toward the inside of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan.
  • the protruding portion 125 protrudes toward the optical axis J.
  • each of the plurality of fins 12 further includes a first projecting portion 126 and a second projecting portion 127.
  • the first projecting portion 126 is on the center side (that is, the optical axis J side)
  • the second projecting portion 127 is on the outer side (that is, the outer peripheral edge 110c side of the outer bottom surface 110b).
  • the plurality of fins 12 are fixed on the outer bottom surface 110b.
  • the fin 12 has a point-symmetric shape when viewed from above. That is, when the fin 12 is fixed to the base 11, either the first projecting portion 126 or the second projecting portion 127 may be near the optical axis J. That is, since there is no restriction
  • the first projecting portion 126 is a portion extending from the first side plate 121 toward the second side plate 122. Specifically, the first projecting portion 126 is substantially formed on each of the first side plate 121 and the second side plate 122 from one longitudinal end of the first side plate 121 toward the second side plate 122. It extends so as to be orthogonal.
  • the width W in the Z-axis direction of the first projecting portion 126 is shorter than the height H of the first side plate 121.
  • W is H / 2 or less.
  • the first projecting portion 126 does not cover the entire end portion of the fin 12 in the longitudinal direction (between the first side surface plate 121 and the second side surface plate 122), and air flows through the end portion. Is provided.
  • FIG. 10 is a cross-sectional view of the heat sink 10 according to the present embodiment taken along the line XX of FIG.
  • the first struts 126 are provided only on the upper end side of the first side plate 121 (the side opposite to the bottom plate 120). That is, as shown in FIGS. 4 and 8, a gap 128 is provided between the first projecting portion 126 and the protruding portion 125 provided at the end of the bottom plate 120 in the longitudinal direction. Thereby, retention of air between the first side plate 121 and the second side plate 122 can be suppressed.
  • the upper end side of the first side plate 121 is a portion where other objects (such as a finger of the builder of the lighting fixture 1 or a ceiling plate) are likely to come into contact, and a portion to which external force is easily applied. Accordingly, since the first projecting portion 126 is provided on the upper end side of the first side plate 121, the first side plate 121 bends toward the second side plate 122 when an external force is applied. Can be suppressed.
  • the root of the first strut 126 has a round shape.
  • the connection portion 126a between the first projecting portion 126 and the first side plate 121 has a smooth curved surface.
  • the connection between the end portion of the second side plate 122 of one fin 12 near the optical axis J and the first side plate 121 of another fin 12 adjacent to the one fin 12 is performed.
  • a gap 130 is provided between the portion 126a.
  • the gap 130 becomes larger than when the connecting portion 126a is not a smooth curved surface. For this reason, it becomes easy for air to flow outward from the vicinity of the optical axis J, and it can suppress that air accumulates in the vicinity of the optical axis J.
  • the second projecting portion 127 is a portion extending from the second side plate 122 toward the first side plate 121. Specifically, the second projecting portion 127 is substantially formed on each of the second side plate 122 and the first side plate 121 from one end portion in the longitudinal direction of the second side plate 122 toward the first side plate 121. It extends so as to be orthogonal.
  • the second projecting portion 127 has substantially the same shape and the same size as the first projecting portion 126. As shown in FIGS. 8 and 9, the second tension portion 127 is disposed to face the first tension portion 126. Specifically, the second projecting portion 127 is provided only on the upper end side of the second side plate 122. That is, as shown in FIGS. 4, 8, and 10, a gap 129 is provided between the second projecting portion 127 and the protruding portion 124 provided at the end of the bottom plate 120 in the longitudinal direction.
  • the gap 128 and the gap 129 are opposed to each other along the longitudinal direction of the fin 12. For this reason, air becomes easy to flow along the longitudinal direction of the fin 12, and retention of air in the fin 12 can be suppressed.
  • the root of the second projecting portion 127 has a round shape.
  • the connecting portion 127a between the second projecting portion 127 and the second side plate 122 has a smooth curved surface. Therefore, even when the fins 12 are arranged so that the second projecting portion 127 is on the center side and the first projecting portion 126 is on the outer side, the gap 130 can be formed. Therefore, the retention of air can be suppressed.
  • the sub fin 13 is a heat dissipating sub fin for dissipating heat from the light source 20.
  • the sub fin 13 is an auxiliary fin for further enhancing the heat dissipation effect of the heat sink 10, and is a smaller heat dissipation portion than the fin 12.
  • the sub fin 13 is arrange
  • the sub fins 13 are arranged between two adjacent fins 12.
  • the number of fins 12 and the number of sub fins 13 are the same.
  • Two or more sub fins 13 may be arranged between the two fins 12.
  • the number of sub-fins 13 disposed between two adjacent fins 12 may be different between the fins 12.
  • the outer shape of the sub fin 13 is an ellipse or an ellipse (oval).
  • the planar view shape of the sub fin 13 is a rounded rectangle.
  • the sub fins 13 are arranged such that the longitudinal direction thereof follows the radial direction of the plurality of fins 12. Specifically, the longitudinal direction of the sub fin 13 passes through the center of radiation of the fin 12, that is, the optical axis J.
  • the height h from the outer bottom surface 110 b of the sub fin 13 is lower than the height H from the outer bottom surface 110 b of the fin 12.
  • the height h of the sub fin 13 is less than or equal to one half of the height H of the fin 12.
  • the height h of the sub fin 13 is equal to or less than a quarter of the height H of the fin 12.
  • the height of the sub fin 13 is 2 mm to 5 mm.
  • the width (length in the short direction) of the sub fin 13 is, for example, 2 mm to 6 mm.
  • the sub-fins 13 are arranged at equidistant positions from the two adjacent fins 12 when the outer bottom surface 110b is viewed in plan.
  • the longitudinal direction of the sub fin 13 is a bisector of an angle (an angle centered on the optical axis J) formed by the radial direction (longitudinal direction) of two adjacent fins 12.
  • the sub fins 13 are arranged along the outer peripheral edge 110c of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan. Specifically, the sub fin 13 is provided in a region on the outer peripheral edge 110c side from a center line (circle of radius r / 2, r is a diameter of the outer bottom surface 110b) between the optical axis J and the outer peripheral edge 110c. .
  • two screw holes 116 into which screws for fixing the frame body 70 are inserted are formed in the bottom portion 110 of the base 11.
  • Each of the two screw holes 116 passes through the bottom 110 of the base 11.
  • two of the eight sub-fins 13 are externally arranged to avoid interference with the screw holes 116. It is provided apart from the peripheral edge 110c.
  • the two sub fins 13 are provided at positions close to the center line (circle of radius r / 2).
  • a tap 117 into which a screw 91 for fixing the connection member 40 is screwed is provided on the bottom 110 of the base 11.
  • the tap 117 is a convex portion protruding from the outer bottom surface 110b of the bottom portion 110, and has a cavity for receiving a screw 91 therein.
  • the tap 117 is not mainly intended to improve the heat dissipation performance, and the position of the tap 117 depends on the position of the connection member 40 and the like. Therefore, for example, as shown in FIG. 5, the tap 117 is disposed close to the fin 12.
  • the sub fin 13 according to the present embodiment is mainly intended to improve the heat dissipation performance.
  • FIG. 11 is an enlarged cross-sectional view of a main part showing a region XI in FIG. 10 in an enlarged manner.
  • the protrusion 114 is provided with a fillet 114a at the root.
  • the fillet part 114 a is a thick part provided to increase the strength of the protrusion 114.
  • the fillet portion 114 a is provided in an annular shape along the outer periphery of the protruding portion 114.
  • the fillet portion 114a is, for example, a round having a radius of 1 mm to 2 mm.
  • the protrusion 114 is provided with an enlarged diameter portion 114b at the tip.
  • the enlarged diameter portion 114b is a portion formed by plastic deformation of the tip end portion of the projection portion 114, and is a portion extending in the radial direction of the projection portion 114 in a top view.
  • the fin 12 is fixed to the base 11 by sandwiching the bottom plate 120 between the fillet portion 114a and the enlarged diameter portion 114b.
  • a gap 140 is provided between the bottom plate 120 of the fin 12 and the outer bottom surface 110 b of the base 11.
  • the bottom plate 120 and the outer bottom surface 110b are parallel. That is, the gap 140 is a flat gap having a substantially constant width d.
  • the gap 140 is formed by fixing the fins 12 and the base 11 with the bottom plate 120 placed on the fillet portion 114a.
  • the width d of the gap 140 is, for example, 0.2 mm to 0.3 mm, but is not limited thereto.
  • the fin 12 is thermally coupled to the base 11 through the protrusion 114.
  • the side surface of the protruding portion 114 and the inner wall of the through hole of the bottom plate 120 are in surface contact
  • the lower surface of the enlarged diameter portion 114b of the protruding portion 114 and a part of the upper surface of the bottom plate 120 are in surface contact
  • the fillet portion 114a and the bottom plate A part of the lower surface of 120 is in surface contact or point contact.
  • heat from the light source 20 is transmitted to the fins 12 from the protrusions 114.
  • the heat transferred to the fins 12 is mainly dissipated into the air from the bottom plate 120, the first side plate 121, the second side plate 122, and the like.
  • the gap 140 since the gap 140 is provided, it is possible to suppress the retention of air between the bottom plate 120 and the outer bottom surface 110b. That is, since heat generation between the bottom plate 120 and the outer bottom surface 110b can be suppressed, the heat dissipation performance can be further enhanced.
  • FIG. 12 is a perspective view showing a positioning step of the fin 12 with the base 11 in the method of manufacturing the heat sink 10 according to the present embodiment.
  • FIG. 12 shows a state immediately before the four fins 12 are arranged at positions to be fixed and the protrusions 114 are inserted into the through holes 123 of the fifth and sixth fins 12.
  • positions the fin 12 one by one is shown here, you may arrange
  • the protrusion 114 is plastically deformed. Thereby, the fin 12 and the base 11 are fixed.
  • FIG. 13 is a cross-sectional view showing a plastic deformation step (caulking step) of the protrusion 114 in the method for manufacturing the heat sink 10 according to the present embodiment.
  • the punch 150 is pressed from the tip end direction of the protrusion 114.
  • the protrusion 114 is plastically deformed to form the enlarged diameter portion 114b.
  • not only the projection 114 but also the periphery of the through hole 123 of the bottom plate 120 of the fin 12 may be plastically deformed.
  • the fins 12 are joined and fixed to the base 11 by caulking. Specifically, the enlarged diameter portion 114 b formed by plastic deformation presses the bottom plate 120 of the fin 12 toward the outer bottom surface 110 b of the base 11. Thereby, detachment
  • a gap is formed between the protrusion 114 before plastic deformation and the through-hole 123 of the fin 12, whereas the plasticity No gap is formed between the deformed protrusion 114 and the through hole 123. This is because when the protrusion 114 is pressed by the punch 150, the protrusion 114 spreads in the lateral direction.
  • the side surface of the protrusion 114 comes into contact with the inner wall surface of the through hole 123 of the bottom plate 120. Further, the lower surface of the enlarged diameter portion 114 b is in contact with the upper surface of the bottom plate 120. Thereby, the heat conduction from the base 11 to the fin 12 can be performed efficiently.
  • the thermal conductivity can be increased.
  • the fin 12 and the base 11 can be easily joined as compared with the case of screwing, and is excellent in mass production.
  • the enlarged diameter portion 114b is close to the first side plate 121 and the second side plate 122.
  • the gap between the enlarged diameter portion 114b and one of the first side plate 121 and the second side plate 122 is, for example, 0.5 mm or less.
  • the enlarged diameter portion 114 b may be in contact with at least one of the first side plate 121 and the second side plate 122.
  • the contact area between the fins 12 and the base 11 is increased, so that the thermal conductivity is further increased. .
  • the enlarged diameter portion 114 b is not formed so as to be recessed with respect to the first side plate 121 and the second side plate 122. That is, the enlarged diameter portion 114b formed by plastic deformation is formed so as not to deform the first side plate 121 and the second side plate 122. Thereby, it can suppress that the heat dissipation performance of the fin 12 is impaired.
  • the present invention is not limited to this.
  • the protrusion 114 may be plastically deformed and fixed for each fin 12.
  • the heat sink 10 includes the bottomed cylindrical base 11, the plurality of fins 12 arranged radially on the outer bottom surface 110 b of the bottom portion 110 of the base 11, and the plurality of fins 12.
  • the sub-fin 13 is disposed on the outer bottom surface 110b between two adjacent fins 12, and the height of the sub-fin 13 from the outer bottom surface 110b is lower than the height of the fin 12 from the outer bottom surface 110b.
  • the lighting fixture 1 according to the present embodiment includes the heat sink 10 and the light source 20 attached to the inner bottom surface 110 a of the bottom portion 110.
  • the heat sink 10 since the heat sink 10 includes not only the plurality of fins 12 but also the sub fins 13, the surface area of the heat sink 10 increases, so that the heat dissipation performance can be improved. Moreover, since the height of the sub fin 13 is lower than the height of the fin 12, it is possible to make it difficult to inhibit the air flow between the two adjacent fins 12. Thereby, it can suppress that the fin 12 and the subfin 13 are crowded too much, and heat is accumulated and heat dissipation performance falls. Thus, in this Embodiment, the heat sink 10 which has high heat dissipation performance, and the lighting fixture 1 provided with this heat sink 10 can be provided.
  • the base 11 and the sub fin 13 are integrally molded products.
  • the outer shape of the sub fin 13 is an ellipse or an ellipse, and the sub fin 13 is arranged such that the longitudinal direction thereof is along the radial direction of the plurality of fins 12. .
  • the longitudinal direction of the sub fin 13 is the same as the flow direction of the material during forging, so that the processing load can be reduced. Therefore, since the lifetime of the mold can be extended, the cost of the heat sink 10 and the lighting fixture 1 can be reduced.
  • the sub fins 13 are arranged between two adjacent fins 12.
  • the heat sink 10 includes the plurality of sub fins 13, the surface area of the heat sink 10 is further increased, so that the heat dissipation performance can be improved. Further, the heat dissipation performance of the heat sink 10 can be made uniform in the plane.
  • the sub fin 13 is arranged at an equal distance from the two adjacent fins 12 when the outer bottom surface 110b is viewed in plan.
  • the sub fin 13 is disposed along the outer peripheral edge 110c of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan.
  • the sub fins 13 are provided along the outer peripheral edge instead of the central portion of the outer bottom surface 110b where the plurality of fins 12 are densely packed. Therefore, since it becomes difficult to inhibit the air flow between the adjacent fins 12, it is possible to suppress a decrease in heat dissipation performance.
  • the plurality of fins 12 are configured separately from the base 11.
  • the dimensional accuracy of each can be improved by manufacturing the fin 12 and the base 11 separately. Therefore, the fin 12 and the base 11 can be effectively brought into contact with each other, and the thermal conductivity can be improved. Moreover, since air can flow smoothly between the plurality of fins 12 and the like, the heat dissipation performance can be further enhanced.
  • the heat dissipation performance of the heat sink 10 can be changed as appropriate.
  • the heat sink 10 having a different number of fins 12 and different heat dissipation performance that is, a different number of fins 12
  • the fins 12 and the base 11 can be manufactured in large quantities, cost reduction can be realized.
  • the light source 20 is attached to the inner bottom surface 110a of the base 11, and the connection member 40 and the like for fixing the light source 20 are fixed to the inner bottom surface 110a.
  • a groove 113 is provided in the inner bottom surface 110a. The groove 113 also functions to ensure an insulation distance between the LED 22 mounted on the substrate 21 of the light source 20 and the base 11.
  • the base 11 is formed, for example, by forging using a mold. For this reason, in order to form the groove 113, a mold having a convex portion that matches the groove 113 is required. In order to ensure the strength of the convex portion of the mold, it is conceivable to increase the base of the convex portion. However, in this case, there is a problem that the insulation distance from the LED 22 to the inner bottom surface 110a is shortened.
  • the inner bottom surface 110a of the bottom portion 110 is provided with a groove 113 along the outer periphery of the attached portion 112 to which the light source 20 is attached.
  • the first side wall 113a is close to the mounted portion 112, and the second side wall 113b is farther from the mounted portion 112 than the first side wall 113a.
  • the first side wall 113a is perpendicular to the inner bottom surface 110a.
  • the two side walls 113b are inclined with respect to the inner bottom surface 110a.
  • 14 and 15 are cross-sectional views for explaining the insulation distance from the LED 22 to the inner bottom surface 110a according to the comparative example and the embodiment, respectively.
  • 14A and 15A show the base 11x and the molds 190x and 190 used when the base 11 is manufactured, respectively.
  • the molds 190x and 190 have convex portions 191x and 191 having shapes matching the grooves 113x and 113, respectively.
  • 14 (b) and 15 (b) correspond to an enlarged cross section near the groove 113 shown in FIG.
  • FIG. 14 shows a groove 113x formed by using a mold 190x having a thick base at the convex portion 191x in order to increase the strength of the mold.
  • both the first side wall 113ax and the second side wall 113b are inclined with respect to the inner bottom surface 110a.
  • the insulation distance from the LED 22 to the inner bottom surface 110a is the shortest distance along the surface of the insulator or in the atmosphere.
  • the insulation distances L1 and L2 are indicated by thick lines, respectively.
  • the insulation distance L1 according to the comparative example is the sum of the distance from the LED 22 along the upper surface and the end surface of the substrate 21 and the length of the perpendicular line from the lower right end of the substrate 21 to the first side wall 113ax. become.
  • the insulation distance L ⁇ b> 2 according to the present embodiment is a distance along the upper surface, end surface, and lower surface of the substrate 21 from the LED 22.
  • the insulation distance L1 becomes shorter than the insulation distance L2.
  • the insulation distance L2 can be secured longer than the insulation distance L1.
  • the root of the convex portion of the mold can be increased as in the comparative example.
  • the root of the convex portion 191 of the mold 190 can be made larger than when both the first side wall 113a and the second side wall 113b are perpendicular to the inner bottom surface 110a.
  • the heat sink 10 As described above, according to the heat sink 10 according to the present embodiment, it is possible to increase the mold strength while ensuring the insulation distance.
  • the fins 12 and the base 11 are configured separately.
  • the fin 12 is caulked to the base 11 and fixed.
  • the protruding portion 114 protruding from the outer bottom surface 110 b of the base 11 is inserted into the through hole 123 provided in the bottom plate 120 of the fin 12 to plastically deform the protruding portion 114.
  • a minute space may be formed between the bottom plate 120 and the outer bottom surface 110b. The minute space is unlikely (or not) to flow air between the external space and can become a heat pool. Therefore, the heat dissipation performance of the heat sink 10 may be deteriorated.
  • At least one of the plurality of fins 12 includes the bottom plate 120 provided with the through holes 123 and the first side plate 121 erected on the bottom plate 120.
  • the base 11 has a protrusion 114 inserted into the through-hole 123.
  • the base 11 and the bottom plate 120 are thermally connected via the protrusion 114, and the bottom plate 120 and the outer bottom surface 110b are connected to each other.
  • a gap 140 is provided between them.
  • the fins 12 are manufactured by bending a sheet metal having a thickness of 1 mm. That is, the plate thickness of the fin 12 can be reduced. Since the plate thickness of the fin 12 is reduced, there is a risk that the fin 12 is easily deformed when an external force is applied.
  • At least one of the plurality of fins 12 includes a bottom plate 120, a pair of first side plates 121 and second side plates provided upright on the bottom plate 120. 122 and a first protruding portion 126 extending from the first side plate 121 toward the second side plate 122.
  • the first side plate 121 and the second side plate are supported by the first projecting portion 126 projecting to the second side plate 122.
  • the deformation of the face plate 122 can be suppressed.
  • the strength of the fin 12 can be increased.
  • a space between the first side plate 121 and the second side plate 122 can be secured by the first protruding portion 126, air flows between the first side plate 121 and the second side plate 122. be able to. Therefore, the heat dissipation performance of the heat sink 10 can be enhanced.
  • At least one of the plurality of fins 12 further includes a second projecting portion 127 extending from the second side plate 122 toward the first side plate 121.
  • the strength of the fin 12 can be further increased.
  • the root of the first strut 126 has a round shape.
  • a gap between two adjacent fins 12 can be secured.
  • the connecting portion 126a has a round shape, so that air can flow smoothly from the central portion of the heat sink 10 toward the outside. Therefore, the heat dissipation performance of the heat sink 10 can be enhanced.
  • the bottom plate 120 has a protrusion 124 that protrudes outward from the outer bottom surface 110b, and the tip of the protrusion 124 has an outer peripheral edge 110c of the outer bottom surface 110b. Is located.
  • the surface area of the fin 12 can be increased, the heat dissipation performance of the heat sink 10 can be enhanced.
  • the protruding portion 124 is positioned so as not to protrude outward from the outer peripheral edge 110 c, other objects are not easily caught by the protruding portion 124. For this reason, for example, since the finger of the builder of the lighting fixture 1 is not likely to accidentally hit the protruding portion 124, the safety of handling during construction can be improved.
  • the wiring for supplying power to the light source 20 is not easily caught by the protruding portion 124, the wiring can be prevented from being damaged, and the reliability of the lighting fixture 1 can be improved.
  • plan view shape of the outer bottom surface 110b is circular, and each of the plurality of fins 12 is long along the radial direction of the outer bottom surface 110b and is arranged at equal intervals.
  • the arrangement of the plurality of fins 12 can be made symmetrical, and the heat radiation performance can be made uniform in the plane.
  • the base 11 and the plurality of fins 12 of the heat sink 10 are configured as separate bodies (separate members)
  • the base 11 and the plurality of fins 12 are integrally formed. It may be. That is, the entire heat sink 10 may be an integrally molded product, for example, an aluminum die cast.
  • the base 11 and the plurality of sub fins 13 are integrally formed has been shown, but the base 11 and the plurality of sub fins 13 are configured as separate bodies (separate members). May be.
  • the sub fin 13 may have a structure equivalent to the fin 12 and may be caulked and fixed to the base 11.
  • the fixing method of the base 11 and the fins 12 is not limited thereto.
  • the fin 12 may be press-fitted into the base 11 and may be fixed using a fixing member such as a screw. The same may be applied to the case where the sub fin 13 is a separate body from the base 11.
  • the fin 12 may include only one of the first tension part 126 and the second tension part 127. Further, the fin 12 may include only one of the projecting portions 124 and 125.
  • first strut 126 may be provided from the center instead of the end of the first side plate 121 in the longitudinal direction.
  • first strut 126 may be provided at the upper end of the first side plate 121. The same may be applied to the second strut portion 127.
  • the fin 12 is not limited to a U-shaped section, but may have an L-shaped section.
  • the fin 12 may include the bottom plate 120 and only one of the first side plate 121 and the second side plate 122.
  • the fins 12 including only the first side plate 121 may be fixed by press-fitting into the base 11. That is, the fin 12 may not include the bottom plate 120.
  • the sub fin 13 may be a plate-like fin erected on the outer bottom surface 110b, and may have a rectangular shape when viewed from above.
  • the sub fin 13 may be a cylindrical fin standing on the outer bottom surface 110b, and the top view shape may be an annular shape or a rectangular shape.
  • the sub fin 13 is provided between every two adjacent fins 12, but this is not restrictive. Only one sub fin 13 may be provided on the outer bottom surface 110b.
  • the base 11 is disk-shaped, that is, an example in which each of the outer bottom surface 110b and the inner bottom surface 110a is circular in plan view is shown, but the present invention is not limited thereto.
  • the base 11 may have a rectangular plate shape, and the planar view shape of each of the outer bottom surface 110b and the inner bottom surface 110a may be a polygon such as a rectangle or a square.
  • the lighting device 1 is an embedded lighting device such as a downlight
  • the lighting fixture 1 may be a spotlight or the like.
  • the heat sink 10 is used as the fixture body of the lighting fixture 1, but the present invention is not limited thereto.
  • the heat sink 10 can be used to radiate heat generating components such as a power circuit.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Abstract

This heat sink (10) is provided with: a cylindrical base (11) having a bottom; a plurality of fins (12) radially disposed on an outer bottom surface (110b) of a bottom section (110) of the base (11); and sub fins (13) each disposed on the outer bottom surface (110b) between two neighboring fins (12) from among the plurality of fins (12), wherein the heights of the sub fins (13) from the outer bottom surface (110b) are lower than the heights of the pins (12) from the outer bottom surface (110b).

Description

ヒートシンク及び照明器具Heat sink and lighting fixture
 本発明は、ヒートシンク及び当該ヒートシンクを備える照明器具に関する。 The present invention relates to a heat sink and a lighting fixture including the heat sink.
 従来、LED(Light Emitting Diode)を光源として備えるランプは、光源が発する熱を放散するヒートシンクを備える(例えば、特許文献1を参照)。特許文献1に記載のヒートシンクは、放射状に配置された複数のフィンを備えることで、放熱性能を高めている。 Conventionally, a lamp including an LED (Light Emitting Diode) as a light source includes a heat sink that dissipates heat generated by the light source (see, for example, Patent Document 1). The heat sink described in Patent Document 1 has a plurality of fins arranged in a radial pattern, thereby improving heat dissipation performance.
特開2014-212059号公報JP 2014-212059 A
 しかしながら、上記従来のヒートシンクでは、放熱性能が十分に高いとは言えない。 However, the conventional heat sink cannot be said to have sufficiently high heat dissipation performance.
 そこで、本発明は、高い放熱性能を有するヒートシンク及び当該ヒートシンクを備える照明器具を提供することを目的とする。 Therefore, an object of the present invention is to provide a heat sink having high heat dissipation performance and a lighting fixture including the heat sink.
 上記目的を達成するため、本発明の一態様に係るヒートシンクは、有底筒状のベースと、前記ベースの底部の外側底面上に放射状に配置された複数のフィンと、前記複数のフィンのうち隣り合う2つのフィンの間の前記外側底面上に配置されたサブフィンとを備え、前記サブフィンの前記外側底面からの高さは、前記フィンの前記外側底面からの高さより低い。 In order to achieve the above object, a heat sink according to one aspect of the present invention includes a bottomed cylindrical base, a plurality of fins radially disposed on an outer bottom surface of the bottom of the base, and the plurality of fins. A sub fin disposed on the outer bottom surface between two adjacent fins, and the height of the sub fin from the outer bottom surface is lower than the height of the fin from the outer bottom surface.
 また、例えば、本発明の一態様に係る照明器具は、前記ヒートシンクと、前記底部の内側底面に取り付けられた光源とを備える。 For example, the lighting fixture which concerns on 1 aspect of this invention is equipped with the said heat sink and the light source attached to the inner bottom face of the said bottom part.
 本発明によれば、高い放熱性能を有するヒートシンクなどを提供することができる。 According to the present invention, a heat sink having high heat dissipation performance can be provided.
図1は、実施の形態に係る照明器具の斜視図である。FIG. 1 is a perspective view of a lighting apparatus according to an embodiment. 図2は、実施の形態に係る照明器具の断面図である。FIG. 2 is a cross-sectional view of the lighting fixture according to the embodiment. 図3は、実施の形態に係る照明器具の一部を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a part of the lighting apparatus according to the embodiment. 図4は、実施の形態に係るヒートシンク(器具本体)の斜視図である。FIG. 4 is a perspective view of a heat sink (apparatus body) according to the embodiment. 図5は、実施の形態に係るヒートシンクの上面図である。FIG. 5 is a top view of the heat sink according to the embodiment. 図6は、実施の形態に係るベースの下面図である。FIG. 6 is a bottom view of the base according to the embodiment. 図7は、図6のVII-VII線における実施の形態に係るベースの断面図である。FIG. 7 is a cross-sectional view of the base according to the embodiment taken along line VII-VII in FIG. 図8は、実施の形態に係るフィンの斜視図である。FIG. 8 is a perspective view of the fin according to the embodiment. 図9は、実施の形態に係るフィンの上面図である。FIG. 9 is a top view of the fin according to the embodiment. 図10は、図5のX-X線における実施の形態に係るヒートシンクの断面図である。FIG. 10 is a cross-sectional view of the heat sink according to the embodiment taken along line XX of FIG. 図11は、図10の領域XIを拡大して示す要部拡大断面図である。FIG. 11 is an enlarged cross-sectional view of a main part showing an area XI in FIG. 図12は、実施の形態に係るヒートシンクの製造方法におけるフィンとベースとの位置決め工程を示す斜視図である。FIG. 12 is a perspective view showing a fin and base positioning step in the heat sink manufacturing method according to the embodiment. 図13は、実施の形態に係るヒートシンクの製造方法における突起部の塑性変形工程を示す断面図である。FIG. 13: is sectional drawing which shows the plastic deformation process of the projection part in the manufacturing method of the heat sink concerning embodiment. 図14は、比較例に係るLEDからベースの内側底面までの絶縁距離を説明するための断面図である。FIG. 14 is a cross-sectional view for explaining the insulation distance from the LED according to the comparative example to the inner bottom surface of the base. 図15は、実施の形態に係るLEDからベースの内側底面までの絶縁距離を説明するための断面図である。FIG. 15 is a cross-sectional view for explaining an insulation distance from the LED to the inner bottom surface of the base according to the embodiment.
 以下では、本発明の実施の形態に係るヒートシンク及び照明器具について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the heat sink and the lighting fixture according to the embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Therefore, for example, the scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code | symbol is attached | subjected about the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 (実施の形態)
 [照明器具]
 まず、本実施の形態に係る照明器具の概要について、図1及び図2を用いて説明する。
(Embodiment)
[lighting equipment]
First, the outline | summary of the lighting fixture which concerns on this Embodiment is demonstrated using FIG.1 and FIG.2.
 図1は、本実施の形態に係る照明器具1の斜視図である。図2は、本実施の形態に係る照明器具1の断面図である。具体的には、図2は、照明器具1の光軸Jを通る断面(後述する図5のII-II線における断面)を示している。 FIG. 1 is a perspective view of a lighting fixture 1 according to the present embodiment. FIG. 2 is a cross-sectional view of the lighting fixture 1 according to the present embodiment. Specifically, FIG. 2 shows a cross section passing through the optical axis J of the luminaire 1 (cross section taken along line II-II in FIG. 5 described later).
 各図において、光軸Jに平行な方向をZ軸方向、光軸Jに直交し、かつ、互いに直交する2つの方向をX軸方向及びY軸方向としている。本実施の形態では、Z軸方向は、例えば、鉛直方向である。 In each figure, the direction parallel to the optical axis J is the Z-axis direction, the two directions perpendicular to the optical axis J and perpendicular to each other are the X-axis direction and the Y-axis direction. In the present embodiment, the Z-axis direction is, for example, the vertical direction.
 照明器具1は、ダウンライトなどの埋込型照明器具の一例であり、例えば建物の天井などに設けられた取付穴に埋込配設されて下方(床など)に光を照射する。なお、図1は、斜め下方から見上げたときの照明器具1を示している。 The luminaire 1 is an example of an embedded luminaire such as a downlight. For example, the luminaire 1 is embedded in a mounting hole provided in a ceiling of a building and irradiates light downward (such as a floor). In addition, FIG. 1 has shown the lighting fixture 1 when it looks up from diagonally downward.
 本実施の形態では、図1に示すように、照明器具1は、ヒートシンク10と、光学部材60と、枠体70と、取付バネ80とを備える。さらに、図2に示すように、照明器具1は、光源20と、取付部材30と、接続部材40と、反射部材50とを備える。 In the present embodiment, as shown in FIG. 1, the luminaire 1 includes a heat sink 10, an optical member 60, a frame body 70, and an attachment spring 80. Furthermore, as shown in FIG. 2, the lighting fixture 1 includes a light source 20, a mounting member 30, a connecting member 40, and a reflecting member 50.
 以下では、照明器具1の各構成部材(部品)について、図1及び図2を適宜参照しながら詳細に説明する。なお、一部を除いて詳細な説明を省略するが、照明器具1には、構成部材同士を連結固定するための係止部又はネジなどの固定部材などが適宜設けられている。 Hereinafter, each component (component) of the lighting fixture 1 will be described in detail with reference to FIGS. 1 and 2 as appropriate. In addition, although detailed description is abbreviate | omitted except for one part, the fixing members, such as the latching | locking part or screw for connecting and fixing component members, are suitably provided in the lighting fixture 1.
 [ヒートシンク(器具本体)]
 ヒートシンク10は、照明器具1の器具本体であり、光源20が取り付けられる金属製の部材である。ヒートシンク10は、光源20で発生する熱を放散する。ヒートシンク10は、例えば、アルミニウムなどの熱伝導率の高い金属材料から形成される。
[Heat sink (equipment body)]
The heat sink 10 is a fixture body of the lighting fixture 1 and is a metal member to which the light source 20 is attached. The heat sink 10 dissipates heat generated by the light source 20. The heat sink 10 is formed from a metal material having high thermal conductivity such as aluminum.
 ヒートシンク10は、図1及び図2に示すように、ベース11と、複数のフィン12とを備える。詳しくは後で説明するが、ヒートシンク10は、さらに、1以上のサブフィン13(図4などを参照)を備える。ヒートシンク10の詳細な構造については、後で説明する。 As shown in FIGS. 1 and 2, the heat sink 10 includes a base 11 and a plurality of fins 12. As will be described in detail later, the heat sink 10 further includes one or more sub fins 13 (see FIG. 4 and the like). The detailed structure of the heat sink 10 will be described later.
 [光源]
 光源20は、照明器具1における光源の一例であり、白色などの所定の色(波長)の光を発する発光部である。光源20は、ヒートシンク10のベース11に取り付けられている。本実施の形態では、図2に示すように、光源20は、取付部材30及び接続部材40によって、ベース11の底部110の被取付部112に固定されている。
[light source]
The light source 20 is an example of a light source in the lighting fixture 1 and is a light emitting unit that emits light of a predetermined color (wavelength) such as white. The light source 20 is attached to the base 11 of the heat sink 10. In the present embodiment, as illustrated in FIG. 2, the light source 20 is fixed to the mounted portion 112 of the bottom portion 110 of the base 11 by the mounting member 30 and the connecting member 40.
 図2及び図3に示すように、光源20は、基板21と、複数のLED22とを備えるLEDモジュールである。光源20は、ベアチップ(LED22)が基板21上に直接実装された、いわゆるCOB(Chip On Board)モジュールである。 2 and 3, the light source 20 is an LED module including a substrate 21 and a plurality of LEDs 22. The light source 20 is a so-called COB (Chip On Board) module in which a bare chip (LED 22) is directly mounted on the substrate 21.
 なお、図3は、本実施の形態に係る照明器具1の一部を示す分解斜視図である。具体的には、図3は、ヒートシンク10と、光源20と、取付部材30と、接続部材40とを示している。 FIG. 3 is an exploded perspective view showing a part of the lighting fixture 1 according to the present embodiment. Specifically, FIG. 3 shows the heat sink 10, the light source 20, the attachment member 30, and the connection member 40.
 基板21としては、例えば、セラミック基板、樹脂基板又はメタルベース基板などを用いることができる。基板21の平面視形状は、例えば矩形であるが、六角形若しくは八角形などの多角形又は円形などでもよい。基板21には、金属配線(図示せず)が形成され、複数のLED22を電気的に接続している。 As the substrate 21, for example, a ceramic substrate, a resin substrate, a metal base substrate, or the like can be used. The planar view shape of the substrate 21 is, for example, a rectangle, but may be a polygon such as a hexagon or an octagon, or a circle. Metal wiring (not shown) is formed on the substrate 21, and the plurality of LEDs 22 are electrically connected.
 LED22は、発光素子の一例であり、所定の電力により発光する半導体発光素子である。LED22は、例えば、単色の可視光を発するベアチップであり、具体的には、通電されれば青色光を発する青色発光LEDチップである。複数のLED22は、基板21の主面上において、複数列又はマトリクス状に配置されている。 The LED 22 is an example of a light emitting element, and is a semiconductor light emitting element that emits light with a predetermined power. The LED 22 is, for example, a bare chip that emits monochromatic visible light. Specifically, the LED 22 is a blue light emitting LED chip that emits blue light when energized. The plurality of LEDs 22 are arranged in a plurality of rows or a matrix on the main surface of the substrate 21.
 なお、複数のLED22は、封止部材(図示せず)によって一括封止されている。例えば、複数のLED22は、素子列毎に一括封止されてもよく、あるいは、基板21上の全てのLED22が一括封止されてもよい。 The plurality of LEDs 22 are collectively sealed by a sealing member (not shown). For example, the plurality of LEDs 22 may be collectively sealed for each element row, or all the LEDs 22 on the substrate 21 may be collectively sealed.
 封止部材は、例えば、シリコーン樹脂などの透光性樹脂材料を主成分として含み、LED22からの光の波長を変換する波長変換材を含んでいる。波長変換材は、例えば、蛍光体粒子であり、具体的には、黄色蛍光体粒子である。本実施の形態では、LED22が発する青色光と、黄色蛍光体粒子が青色光によって励起されて発する黄色光とが混合されることにより、光源20は白色光を発する。なお、封止部材には、シリカなど(SiO)の光拡散材(光散乱粒子)を含んでいてもよい。 The sealing member includes, for example, a translucent resin material such as silicone resin as a main component, and includes a wavelength conversion material that converts the wavelength of light from the LED 22. The wavelength conversion material is, for example, phosphor particles, and specifically, yellow phosphor particles. In the present embodiment, the light source 20 emits white light by mixing the blue light emitted from the LED 22 and the yellow light emitted when the yellow phosphor particles are excited by the blue light. The sealing member may contain a light diffusing material (light scattering particles) such as silica (SiO 2 ).
 なお、光源20は、SMD(Surface Mounted Device)型のモジュールでもよい。具体的には、基板21上にパッケージ型のLED素子(SMD型LED素子)が実装されていてもよい。パッケージ型のLED素子は、例えば、凹部(キャビティ)を有する樹脂製の容器と、凹部の中に実装されたLEDチップ(LED22)と、凹部内に封入された封止部材(蛍光体含有樹脂)とを備える。 The light source 20 may be an SMD (Surface Mounted Device) type module. Specifically, a package type LED element (SMD type LED element) may be mounted on the substrate 21. The package type LED element includes, for example, a resin container having a recess (cavity), an LED chip (LED 22) mounted in the recess, and a sealing member (phosphor-containing resin) sealed in the recess. With.
 [取付部材]
 取付部材30は、光源20をベース11の被取付部112に取り付けるための部材である。本実施の形態では、取付部材30は、光源20に対する枠体として機能する。具体的には、取付部材30は、光源20の横方向(光軸Jに直交する方向(X軸方向及びY軸方向))の位置を規制する。
[Mounting member]
The attachment member 30 is a member for attaching the light source 20 to the attached portion 112 of the base 11. In the present embodiment, the attachment member 30 functions as a frame for the light source 20. Specifically, the attachment member 30 regulates the position of the light source 20 in the lateral direction (directions orthogonal to the optical axis J (X-axis direction and Y-axis direction)).
 図3に示すように、取付部材30は、規制部31と、爪部32とを備える。 As shown in FIG. 3, the attachment member 30 includes a restriction portion 31 and a claw portion 32.
 規制部31は、中央に開口33を有する矩形枠状の部分である。開口33は、光源20の基板21に対応する形状(例えば、矩形)を有し、開口33内に光源20が配置される。 The restricting portion 31 is a rectangular frame portion having an opening 33 at the center. The opening 33 has a shape (for example, a rectangle) corresponding to the substrate 21 of the light source 20, and the light source 20 is disposed in the opening 33.
 爪部32は、反射部材50を支持するための爪状の部分である。本実施の形態では、2つの爪部32が光軸Jに沿った方向(Z軸方向の負側)に規制部31から立設している。 The claw portion 32 is a claw-shaped portion for supporting the reflecting member 50. In the present embodiment, the two claw portions 32 are erected from the restricting portion 31 in the direction along the optical axis J (the negative side in the Z-axis direction).
 取付部材30は、ベース11の底部110に配置されて、接続部材40及びネジ91によって底部110に固定される。具体的には、図3に示すように、規制部31と底部110とにはそれぞれ、2つのネジ孔34と2つのネジ穴115とが設けられている。ネジ91が規制部31のネジ孔34に挿入されて、底部110のネジ穴115にねじ込まれることで、取付部材30が底部110に固定される。 The mounting member 30 is disposed on the bottom 110 of the base 11 and is fixed to the bottom 110 by the connecting member 40 and the screw 91. Specifically, as shown in FIG. 3, the restricting portion 31 and the bottom portion 110 are provided with two screw holes 34 and two screw holes 115, respectively. The screw 91 is inserted into the screw hole 34 of the restricting portion 31 and screwed into the screw hole 115 of the bottom portion 110, whereby the attachment member 30 is fixed to the bottom portion 110.
 取付部材30は、例えば、ポリブチレンテレフタレート(PBT)、ABS(アクリロニトリル・ブタジエン・スチレン)などの樹脂材料を用いて一体成形される。 The mounting member 30 is integrally formed using a resin material such as polybutylene terephthalate (PBT) or ABS (acrylonitrile / butadiene / styrene).
 [接続部材]
 接続部材40は、光源20へ電流を供給する電線(図示せず)が接続される部材である。図3に示すように、本実施の形態では、照明器具1は、2つの接続部材40を備える。2つの接続部材40の一方には、高電位側の電線が接続され、他方には、低電位側の電線が接続される。
[Connecting member]
The connection member 40 is a member to which an electric wire (not shown) that supplies current to the light source 20 is connected. As shown in FIG. 3, in the present embodiment, the luminaire 1 includes two connection members 40. One of the two connecting members 40 is connected to a high potential side electric wire, and the other is connected to a low potential side electric wire.
 本実施の形態では、接続部材40は、図3に示すように、本体41と、電極42とを備える。 In the present embodiment, the connection member 40 includes a main body 41 and an electrode 42 as shown in FIG.
 本体41は、電線を支持するための樹脂製の筐体である。接続部材40の本体41には、ネジ孔43が設けられている。本実施の形態では、ネジ91が、ネジ孔43に挿入されて、規制部31のネジ孔34及び底部110のネジ穴115にねじ込まれることで、接続部材40が取付部材30を挟んで底部110に固定される。 The main body 41 is a resin casing for supporting the electric wire. A screw hole 43 is provided in the main body 41 of the connection member 40. In the present embodiment, the screw 91 is inserted into the screw hole 43 and screwed into the screw hole 34 of the restricting portion 31 and the screw hole 115 of the bottom portion 110, so that the connecting member 40 sandwiches the attachment member 30 and the bottom portion 110. Fixed to.
 また、本体41の一部は、基板21を底部110に向かって押圧する。これにより、接続部材40は、光源20の光軸Jに沿った方向(Z軸方向)の位置を規制する機能を有する。 Also, a part of the main body 41 presses the substrate 21 toward the bottom 110. Thereby, the connection member 40 has a function of regulating the position of the light source 20 in the direction along the optical axis J (Z-axis direction).
 電極42は、本体41に支持された電線(図示せず)と電気的に接続され、かつ、光源20の基板21に設けられた電極端子と電気的に接続される。例えば、電極42は、板バネ状に形成されており、その付勢力によって電極端子を被取付部112に向けて押さえる。これにより、電極42と基板21の電極端子とを電気的に接続することができる。 The electrode 42 is electrically connected to an electric wire (not shown) supported by the main body 41 and electrically connected to an electrode terminal provided on the substrate 21 of the light source 20. For example, the electrode 42 is formed in the shape of a leaf spring and presses the electrode terminal toward the attached portion 112 by its urging force. Thereby, the electrode 42 and the electrode terminal of the board | substrate 21 can be electrically connected.
 接続部材40は、例えば、電極42を構成する導電性材料と本体41を構成する樹脂材料とを用いたインサート成形により形成される。本体41は、例えば、PBT、ABSなどの樹脂材料を用いて成形される。また、電極42は、銅などの導電性材料を用いて形成されている。 The connection member 40 is formed by insert molding using, for example, a conductive material that constitutes the electrode 42 and a resin material that constitutes the main body 41. The main body 41 is molded using a resin material such as PBT or ABS, for example. The electrode 42 is formed using a conductive material such as copper.
 [反射部材]
 反射部材50は、光源20からの光の配光を制御する部材である。本実施の形態では、反射部材50は、光源20からの光を光学部材60に向けて反射させる。図2に示すように、反射部材50は、光軸Jが略中央を貫通する開口が設けられた略筒体である。
[Reflection member]
The reflecting member 50 is a member that controls light distribution from the light source 20. In the present embodiment, the reflecting member 50 reflects the light from the light source 20 toward the optical member 60. As shown in FIG. 2, the reflecting member 50 is a substantially cylindrical body provided with an opening through which the optical axis J passes substantially through the center.
 具体的には、反射部材50は、光源20からの光が入射される側(Z軸方向の正側)の端部から、当該光が出射される側(Z軸方向の負側)の端部に向かって内径が漸次大きくなるように形成されている。反射部材50の内面が、光源20からの光を反射する反射面である。 Specifically, the reflecting member 50 has an end on the side (negative side in the Z-axis direction) from which light from the light source 20 is incident (positive side in the Z-axis direction). The inner diameter is gradually increased toward the portion. The inner surface of the reflecting member 50 is a reflecting surface that reflects light from the light source 20.
 反射部材50は、例えばPBTなどの硬質の白色樹脂材料を用いて形成される。このとき、反射部材50の内面には、アルミニウムなどの金属反射膜が設けられてもよい。 The reflecting member 50 is formed using a hard white resin material such as PBT, for example. At this time, a metal reflecting film such as aluminum may be provided on the inner surface of the reflecting member 50.
 [光学部材]
 光学部材60は、反射部材50からの光が入射される透光性の部材である。図2に示すように、光学部材60は、反射部材50の光出射側(Z軸方向の負側)の開口を覆うように配置されている。光学部材60は、反射部材50を通過した光の配光を制御して出射する機能を有してもよい。本実施の形態では、光学部材60は、フレネルレンズである。
[Optical member]
The optical member 60 is a translucent member into which light from the reflecting member 50 is incident. As shown in FIG. 2, the optical member 60 is disposed so as to cover the opening on the light emitting side (the negative side in the Z-axis direction) of the reflecting member 50. The optical member 60 may have a function of controlling and emitting the light distribution of the light that has passed through the reflecting member 50. In the present embodiment, the optical member 60 is a Fresnel lens.
 光学部材60は、透光性を有する材料から形成されている。例えば、光学部材60は、アクリル(PMMA)、ポリカーボネート(PC)などの透明樹脂材料から形成される。あるいは、光学部材60は、透明なガラス材料から形成されてもよい。 The optical member 60 is formed from a material having translucency. For example, the optical member 60 is formed from a transparent resin material such as acrylic (PMMA) or polycarbonate (PC). Alternatively, the optical member 60 may be formed from a transparent glass material.
 なお、光学部材60は、光拡散(散乱)構造を有してもよい。例えば、光学部材60は、拡散材が分散された樹脂材料を用いて形成されてもよく、あるいは、表面に凹凸又はドットパターンが形成されてもよい。 The optical member 60 may have a light diffusion (scattering) structure. For example, the optical member 60 may be formed using a resin material in which a diffusing material is dispersed, or an unevenness or a dot pattern may be formed on the surface.
 [枠体]
 枠体70は、光学部材60から出射された光を通過させる筒状の部材である。本実施の形態では、図2に示すように、枠体70は、補助反射部材71と、枠本体72と、鍔73とを備える。
[Frame]
The frame body 70 is a cylindrical member that allows the light emitted from the optical member 60 to pass therethrough. In the present embodiment, as shown in FIG. 2, the frame body 70 includes an auxiliary reflection member 71, a frame main body 72, and a collar 73.
 補助反射部材71は、筒状の枠本体72の内側に配置された筒状の部材である。補助反射部材71は、内側に補助反射面を有し、照明器具1の配光を制御する機能を有する。本実施の形態では、補助反射部材71は、アルミニウムなどの薄い金属板で形成されている。 The auxiliary reflecting member 71 is a cylindrical member arranged inside the cylindrical frame main body 72. The auxiliary reflection member 71 has an auxiliary reflection surface on the inner side, and has a function of controlling the light distribution of the lighting fixture 1. In the present embodiment, the auxiliary reflecting member 71 is formed of a thin metal plate such as aluminum.
 枠本体72は、筒状の枠体70の本体である。枠本体72は、ヒートシンク10のベース11と略同じ外径を有する。枠本体72とベース11とは、ネジ(図示せず)によって固定されている。枠本体72は、例えば、アルミニウムなどの金属材料を用いて形成されている。 The frame main body 72 is a main body of the cylindrical frame 70. The frame body 72 has substantially the same outer diameter as the base 11 of the heat sink 10. The frame main body 72 and the base 11 are fixed by screws (not shown). The frame main body 72 is formed using a metal material such as aluminum, for example.
 鍔73は、枠本体72の一部であり、枠本体72の光出射側(Z軸方向の負側)の端部から径方向の外側に向かって延設された部分である。鍔73は、環状に設けられている。鍔73は、例えば照明器具1が天井に取り付けられた場合に、天井板の下面に接触する。 鍔 73 is a part of the frame body 72, and is a part extending from the end of the frame body 72 on the light emitting side (the negative side in the Z-axis direction) toward the outside in the radial direction. The collar 73 is provided in an annular shape. For example, when the lighting fixture 1 is attached to the ceiling, the flange 73 contacts the lower surface of the ceiling plate.
 [取付バネ]
 取付バネ80は、照明器具1を天井などの取付穴に取り付けるために用いられる。具体的には、取付バネ80の復元力を利用して、取付バネ80と枠本体72の鍔73とで天井板を挟持することで、照明器具1を取り付けることができる。
[Mounting spring]
The attachment spring 80 is used for attaching the lighting fixture 1 to an attachment hole such as a ceiling. Specifically, the lighting fixture 1 can be attached by holding the ceiling plate between the attachment spring 80 and the flange 73 of the frame body 72 using the restoring force of the attachment spring 80.
 取付バネ80は、鉄などの金属材料を用いてプレス加工などによって長尺状の細板形状に成形されている。本実施の形態では、図1に示すように、照明器具1は、2つの取付バネ80を備えるが、取付バネ80の個数及び位置はこれに限定されない。 The mounting spring 80 is formed into a long and narrow plate shape by pressing or the like using a metal material such as iron. In the present embodiment, as illustrated in FIG. 1, the lighting fixture 1 includes two attachment springs 80, but the number and positions of the attachment springs 80 are not limited thereto.
 [ヒートシンクの詳細な構成]
 以下では、ヒートシンク10の詳細な構成について説明する。
[Detailed configuration of heat sink]
Below, the detailed structure of the heat sink 10 is demonstrated.
 図4及び図5はそれぞれ、本実施の形態に係るヒートシンク10の斜視図及び上面図である。 4 and 5 are a perspective view and a top view of the heat sink 10 according to the present embodiment, respectively.
 本実施の形態では、ヒートシンク10は、アルミダイカストなどの一体に(一体成形品として)成形されておらず、複数の部品を接続することで形成されている。具体的には、ベース11に設けられた突起部114を塑性変形させることで、別部品であるベース11とフィン12とが接続されて固定されている。より具体的には、図2に示すように、フィン12に設けられた貫通孔123に突起部114が挿入され、かつ、突起部114が塑性変形した状態で、フィン12は、ベース11に固定されている。 In the present embodiment, the heat sink 10 is not formed integrally (as an integrally molded product) such as aluminum die casting, but is formed by connecting a plurality of components. Specifically, the protrusions 114 provided on the base 11 are plastically deformed, so that the base 11 and the fins 12 which are separate parts are connected and fixed. More specifically, as shown in FIG. 2, the fin 12 is fixed to the base 11 in a state where the protrusion 114 is inserted into the through hole 123 provided in the fin 12 and the protrusion 114 is plastically deformed. Has been.
 本実施の形態では、図4及び図5に示すように、ヒートシンク10は、複数のサブフィン13を備える。ベース11と複数のサブフィン13とは、一体成形品である。例えば、ベース11と複数のサブフィン13とは、アルミニウム製の円柱部材(スラグ)を鍛造加工することで一体に(一部品として)成形される。複数のフィン12の各々は、例えば、アルミニウム製の板金をプレス加工又は曲げ加工することで一体に(一部品として)成形される。板金の板厚(すなわち、フィン12の板厚)は、例えば、1mmであるが、これに限らない。 In the present embodiment, as shown in FIGS. 4 and 5, the heat sink 10 includes a plurality of sub fins 13. The base 11 and the plurality of sub fins 13 are integrally formed products. For example, the base 11 and the plurality of sub fins 13 are integrally formed (as one component) by forging a cylindrical member (slag) made of aluminum. Each of the plurality of fins 12 is formed integrally (as one component) by, for example, pressing or bending an aluminum sheet metal. The plate thickness of the sheet metal (that is, the plate thickness of the fins 12) is, for example, 1 mm, but is not limited thereto.
 本実施の形態では、ベース11及び複数のフィン12などの各部材を鍛造加工、プレス加工又は曲げ加工で形成することで、寸法の精度を高めることができる。また、各部材の厚みを薄くすることができるので、ヒートシンク10の軽量化を実現することができる。なお、ベース11と複数のサブフィン13とは、アルミダイカスト製でもよい。複数のフィン12の各々も同様に、アルミダイカスト製でもよい。 In this embodiment, the dimensional accuracy can be increased by forming each member such as the base 11 and the plurality of fins 12 by forging, pressing or bending. Moreover, since the thickness of each member can be made thin, the weight reduction of the heat sink 10 is realizable. The base 11 and the plurality of sub fins 13 may be made of aluminum die casting. Similarly, each of the plurality of fins 12 may be made of aluminum die casting.
 [ベース]
 図6は、本実施の形態に係るベース11の下面図である。図7は、図6のVII-VII線における実施の形態に係るベース11の断面図である。
[base]
FIG. 6 is a bottom view of the base 11 according to the present embodiment. FIG. 7 is a cross-sectional view of the base 11 according to the embodiment taken along line VII-VII in FIG.
 ベース11は、図2~図7に示すように、有底筒状のベース(基台)である。これにより、ベース11の包絡体積を確保しつつ、底部110の厚みを薄くすることができる。したがって、光源20からの熱を効率良く複数のフィン12及び複数のサブフィン13に伝導させることができる。図2などに示すように、ベース11は、底部110と、側壁部111とを有する。 The base 11 is a bottomed cylindrical base (base) as shown in FIGS. Thereby, the thickness of the bottom part 110 can be made thin, ensuring the envelope volume of the base 11. Therefore, the heat from the light source 20 can be efficiently conducted to the plurality of fins 12 and the plurality of sub fins 13. As shown in FIG. 2 and the like, the base 11 has a bottom portion 110 and a side wall portion 111.
 底部110は、光源20が取り付けられる内側底面110aと、複数のフィン12が配置される外側底面110bとを有する円盤状の部分である。内側底面110aと外側底面110bとは、図2に示すように、光軸Jに略直交し、かつ、互いに背向している。 The bottom portion 110 is a disc-shaped portion having an inner bottom surface 110a to which the light source 20 is attached and an outer bottom surface 110b on which the plurality of fins 12 are disposed. As shown in FIG. 2, the inner bottom surface 110 a and the outer bottom surface 110 b are substantially orthogonal to the optical axis J and face each other.
 内側底面110aは、有底筒状のベース11の内側の底面であり、平面視形状が略円形である。外側底面110bは、有底筒状のベース11の外側の底面であり、平面視形状が略円形である。本実施の形態では、図7に示すように、外側底面110bは、平坦な面である。具体的には、外側底面110bには、凹部が設けられていない。 The inner bottom surface 110a is the bottom surface inside the bottomed cylindrical base 11, and has a substantially circular shape in plan view. The outer bottom surface 110b is an outer bottom surface of the bottomed cylindrical base 11 and has a substantially circular shape in plan view. In the present embodiment, as shown in FIG. 7, the outer bottom surface 110b is a flat surface. Specifically, the outer bottom surface 110b is not provided with a recess.
 側壁部111は、底部110の周縁から立設された部分である。側壁部111は、光軸Jを中心軸とする扁平な略円筒形状を有する。 The side wall portion 111 is a portion erected from the periphery of the bottom portion 110. The side wall 111 has a flat and substantially cylindrical shape with the optical axis J as the central axis.
 なお、底部110及び側壁部111の厚みは、例えば1mm~10mmである。底部110の外側底面110bの径は、例えば70mm~90mmである。側壁部111の高さは、例えば15mm~18mmである。これらの寸法は一例に過ぎず、これらに限定されない。 The thickness of the bottom part 110 and the side wall part 111 is, for example, 1 mm to 10 mm. The diameter of the outer bottom surface 110b of the bottom part 110 is, for example, 70 mm to 90 mm. The height of the side wall 111 is, for example, 15 mm to 18 mm. These dimensions are merely examples and are not limited to these.
 本実施の形態では、内側底面110aには、図2、図3、図6及び図7に示すように、被取付部112と、溝113とが設けられている。 In the present embodiment, the inner bottom surface 110a is provided with a mounted portion 112 and a groove 113 as shown in FIG. 2, FIG. 3, FIG. 6, and FIG.
 被取付部112は、内側底面110aの一部であり、光源20が取り付けられる部分である。被取付部112は、平面視形状が略矩形の平坦な面であり、光源20の基板21が載置される。被取付部112と基板21とは、図2に示すように、面接触している。 The attached portion 112 is a part of the inner bottom surface 110a and is a portion to which the light source 20 is attached. The mounted portion 112 is a flat surface having a substantially rectangular shape in plan view, and the substrate 21 of the light source 20 is placed thereon. The to-be-attached part 112 and the board | substrate 21 are in surface contact, as shown in FIG.
 溝113は、被取付部112の外周に沿って設けられている。本実施の形態では、図3及び図6に示すように、溝113は、被取付部112の外周の全周に亘って設けられている。溝113は、取付部材30及び接続部材40などと内側底面110aとの干渉を避けるために設けられている。 The groove 113 is provided along the outer periphery of the attached portion 112. In the present embodiment, as shown in FIG. 3 and FIG. 6, the groove 113 is provided over the entire outer periphery of the attached portion 112. The groove 113 is provided to avoid interference between the attachment member 30 and the connection member 40 and the inner bottom surface 110a.
 溝113は、図6及び図7に示すように、第1側壁113aと、第2側壁113bとを有する。第1側壁113aは、被取付部112に近い側壁であり、第2側壁113bは、第1側壁113aより被取付部112から離れた側壁である。すなわち、内側底面110aを平面視(下面視)した場合において、第1側壁113aは、内周側の側壁であり、第2側壁113bは、外周側の側壁である。 As shown in FIGS. 6 and 7, the groove 113 has a first side wall 113a and a second side wall 113b. The first side wall 113a is a side wall close to the mounted portion 112, and the second side wall 113b is a side wall farther from the mounted portion 112 than the first side wall 113a. That is, when the inner bottom surface 110a is viewed in plan (bottom view), the first side wall 113a is an inner peripheral side wall, and the second side wall 113b is an outer peripheral side wall.
 図7に示すように、第1側壁113aは、内側底面110aに対して垂直である。第2側壁113bは、内側底面110aに対して傾斜している。具体的には、第2側壁113bは、Z軸方向の正側に向かうにつれて第1側壁113aに近づくように傾斜している。すなわち、溝113の開口幅は、溝113の底面幅より大きくなる。なお、開口幅及び底面幅はそれぞれ、第1側壁113aと第2側壁113bとの間の距離のうち、Z軸方向の負側の端部間の距離、及び、Z軸方向の正側の端部間の距離である。 As shown in FIG. 7, the first side wall 113a is perpendicular to the inner bottom surface 110a. The second side wall 113b is inclined with respect to the inner bottom surface 110a. Specifically, the second side wall 113b is inclined so as to approach the first side wall 113a toward the positive side in the Z-axis direction. That is, the opening width of the groove 113 is larger than the bottom surface width of the groove 113. Note that the opening width and the bottom surface width are the distance between the negative side ends in the Z-axis direction and the positive side end in the Z-axis direction among the distances between the first side wall 113a and the second side wall 113b, respectively. It is the distance between parts.
 本実施の形態では、図4及び図5に示すように、外側底面110bには、複数の突起部114が設けられている。 In the present embodiment, as shown in FIGS. 4 and 5, the outer bottom surface 110 b is provided with a plurality of protrusions 114.
 複数の突起部114は、底部110の外側底面110bから突出している。複数の突起部114の各々は、図2に示すように、フィン12の貫通孔123に挿入されて塑性変形された状態にある。具体的には、複数の突起部114の各々は、外側底面110bからZ軸方向の正側に突出した略円柱状の部分であり、その先端が塑性変形することで形成されている。 The plurality of protrusions 114 protrude from the outer bottom surface 110b of the bottom 110. As shown in FIG. 2, each of the plurality of protrusions 114 is inserted into the through hole 123 of the fin 12 and is in a state of plastic deformation. Specifically, each of the plurality of protrusions 114 is a substantially cylindrical portion that protrudes from the outer bottom surface 110b to the positive side in the Z-axis direction, and is formed by plastic deformation of the tip.
 本実施の形態では、図5に示すように、複数の突起部114は、平面視において、放射状に配置されている。具体的には、光軸Jから放射状に延びる複数の直線の各々に、突起部114が2つずつ配置されている。光軸Jから延びる直線上に配置された2つの突起部114に、1つのフィン12が固定される。 In the present embodiment, as shown in FIG. 5, the plurality of protrusions 114 are arranged radially in plan view. Specifically, two protrusions 114 are arranged on each of a plurality of straight lines extending radially from the optical axis J. One fin 12 is fixed to two projections 114 arranged on a straight line extending from the optical axis J.
 複数の突起部114は、互いに同じ形状及び同じ大きさであるが、これに限らない。突起部114の高さは、例えば3mm~5mmである。突起部114の径は、例えば、3mm~5mmである。これらの寸法は一例に過ぎず、これらに限定されない。 The plurality of protrusions 114 have the same shape and the same size as each other, but are not limited thereto. The height of the protrusion 114 is, for example, 3 mm to 5 mm. The diameter of the protrusion 114 is, for example, 3 mm to 5 mm. These dimensions are merely examples and are not limited to these.
 なお、図4及び図5では、塑性変形前の複数の突起部114を示している。突起部114の塑性変形の方法及び塑性変形後の形状の詳細については、図10及び図11を用いて後で説明する。 In addition, in FIG.4 and FIG.5, the several protrusion part 114 before plastic deformation is shown. Details of the method of plastic deformation of the protrusion 114 and the shape after the plastic deformation will be described later with reference to FIGS.
 [フィン]
 フィン12は、光源20からの熱を放散させるための放熱用のフィンである。本実施の形態では、複数のフィン12は、ベース11と別体で構成されている。複数のフィン12は、ベース11に固定されている。具体的には、複数のフィン12はそれぞれ、ベース11の突起部114の塑性変形によって、かしめられてベース11に固定されている。
[fin]
The fin 12 is a heat radiating fin for radiating heat from the light source 20. In the present embodiment, the plurality of fins 12 are configured separately from the base 11. The plurality of fins 12 are fixed to the base 11. Specifically, each of the plurality of fins 12 is caulked and fixed to the base 11 by plastic deformation of the protrusions 114 of the base 11.
 複数のフィン12は、図4及び図5に示すように、ベース11の底部110の外側底面110b上に放射状に配置されている。複数のフィン12の各々は、外側底面110bの径方向に沿って長尺であり、かつ、互いに等間隔に配置されている。具体的には、8つのフィン12が、光軸Jを中心に等角度(具体的には、45°)で配置されている。 The plurality of fins 12 are arranged radially on the outer bottom surface 110b of the bottom portion 110 of the base 11, as shown in FIGS. Each of the plurality of fins 12 is long along the radial direction of the outer bottom surface 110b and is arranged at equal intervals. Specifically, the eight fins 12 are arranged at an equal angle (specifically, 45 °) around the optical axis J.
 本実施の形態では、複数のフィン12は、互いに同じ形状及び同じ大きさである。具体的には、複数のフィン12の各々の断面形状は、U字状である。複数のフィン12の各々は、図8及び図9に示すように、底板120と、底板120に立設された一対の第1側面板121及び第2側面板122とを備える。なお、図8及び図9はそれぞれ、本実施の形態に係るフィン12の斜視図及び上面図である。図8及び図9に示すフィン12は、図5に示す8つのフィン12のうち、光軸Jの左斜め下方に位置しているフィン12を示している。 In the present embodiment, the plurality of fins 12 have the same shape and the same size. Specifically, the cross-sectional shape of each of the plurality of fins 12 is U-shaped. As shown in FIGS. 8 and 9, each of the plurality of fins 12 includes a bottom plate 120, and a pair of first side plate 121 and second side plate 122 erected on the bottom plate 120. 8 and 9 are a perspective view and a top view of the fin 12 according to the present embodiment, respectively. The fins 12 shown in FIG. 8 and FIG. 9 are fins 12 that are located diagonally to the left of the optical axis J among the eight fins 12 shown in FIG.
 底板120には、図9に示すように、貫通孔123が設けられている。底板120は、長尺状の平板部である。底板120の長手方向は、外側底面110bの径方向に略一致する。 The bottom plate 120 is provided with a through-hole 123 as shown in FIG. The bottom plate 120 is a long flat plate portion. The longitudinal direction of the bottom plate 120 substantially coincides with the radial direction of the outer bottom surface 110b.
 第1側面板121及び第2側面板122は、一対の側面板であり、互いに略平行に配置されている。具体的には、第1側面板121及び第2側面板122はそれぞれ、底板120の短手方向(X軸方向)の端部から略垂直に立設された平板部である。第1側面板121及び第2側面板122は、互いに略同じ形状及び略同じ大きさであるが、これに限らない。 The first side plate 121 and the second side plate 122 are a pair of side plates, and are arranged substantially parallel to each other. Specifically, each of the first side surface plate 121 and the second side surface plate 122 is a flat plate portion erected substantially vertically from an end portion of the bottom plate 120 in the short direction (X-axis direction). The first side plate 121 and the second side plate 122 have substantially the same shape and the same size as each other, but are not limited thereto.
 底板120に設けられた貫通孔123には、ベース11の突起部114が挿入されている。突起部114は、塑性変形されることで、貫通孔123の内側面と接触している。これにより、ベース11と底板120とは、突起部114を介して熱的に接続されている。 The protrusion 114 of the base 11 is inserted into the through hole 123 provided in the bottom plate 120. The protrusion 114 is in plastic contact with the inner surface of the through hole 123. As a result, the base 11 and the bottom plate 120 are thermally connected via the protrusion 114.
 底板120は、図8及び図9に示すように、突出部124を有する。突出部124は、外側底面110bを平面視した場合において、外側底面110bの外方に向かって突出している。突出部124の先端は、図4及び図5に示すように、外側底面110bの外周縁110cに位置している。突出部124を設けることで、底板120の表面積を大きくすることができるので、フィン12の放熱性能を高めることができる。 The bottom plate 120 has a protrusion 124 as shown in FIGS. The protrusion 124 protrudes outward of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan. As shown in FIGS. 4 and 5, the distal end of the protruding portion 124 is located on the outer peripheral edge 110 c of the outer bottom surface 110 b. Since the surface area of the bottom plate 120 can be increased by providing the protrusions 124, the heat dissipation performance of the fins 12 can be improved.
 本実施の形態では、図9に示すように、底板120は、さらに、突出部125を有する。突出部125は、外側底面110bを平面視した場合において、外側底面110bの内側に向かって突出している。具体的には、突出部125は、光軸Jに向かって突出している。これにより、底板120の表面積をさらに大きくすることができるので、フィン12の放熱性能をさらに高めることができる。 In the present embodiment, as shown in FIG. 9, the bottom plate 120 further has a protrusion 125. The protrusion 125 protrudes toward the inside of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan. Specifically, the protruding portion 125 protrudes toward the optical axis J. Thereby, since the surface area of the bottom plate 120 can be further increased, the heat dissipation performance of the fins 12 can be further enhanced.
 図8及び図9に示すように、複数のフィン12の各々は、さらに、第1突っ張り部126と、第2突っ張り部127とを有する。本実施の形態では、図5に示すように、第1突っ張り部126が中心側(すなわち、光軸J側)になり、第2突っ張り部127が外側(すなわち、外側底面110bの外周縁110c側)になるように、複数のフィン12が外側底面110b上に固定されている。 As shown in FIGS. 8 and 9, each of the plurality of fins 12 further includes a first projecting portion 126 and a second projecting portion 127. In the present embodiment, as shown in FIG. 5, the first projecting portion 126 is on the center side (that is, the optical axis J side), and the second projecting portion 127 is on the outer side (that is, the outer peripheral edge 110c side of the outer bottom surface 110b). The plurality of fins 12 are fixed on the outer bottom surface 110b.
 図8及び図9に示すように、フィン12は、上面視において点対称な形状を有する。すなわち、ベース11にフィン12を固定する際に、第1突っ張り部126及び第2突っ張り部127のいずれが光軸Jの近くであってもよい。すなわち、フィン12の取り付けの向きに制限がないので、ベース11に対するフィン12の配置工程を簡単に行うことができる。 As shown in FIGS. 8 and 9, the fin 12 has a point-symmetric shape when viewed from above. That is, when the fin 12 is fixed to the base 11, either the first projecting portion 126 or the second projecting portion 127 may be near the optical axis J. That is, since there is no restriction | limiting in the direction of attachment of the fin 12, the arrangement | positioning process of the fin 12 with respect to the base 11 can be performed easily.
 第1突っ張り部126は、第1側面板121から第2側面板122に向かって延設された部分である。具体的には、第1突っ張り部126は、第1側面板121の長手方向の一方の端部から第2側面板122に向かって、第1側面板121及び第2側面板122の各々に略直交するように延設されている。 The first projecting portion 126 is a portion extending from the first side plate 121 toward the second side plate 122. Specifically, the first projecting portion 126 is substantially formed on each of the first side plate 121 and the second side plate 122 from one longitudinal end of the first side plate 121 toward the second side plate 122. It extends so as to be orthogonal.
 本実施の形態では、図10に示すように、第1突っ張り部126のZ軸方向の幅Wは、第1側面板121の高さHより短い。例えば、Wは、H/2以下である。つまり、第1突っ張り部126は、フィン12の長手方向の端部(第1側面板121と第2側面板122との間)の全体を覆わずに、当該端部には、空気が流れるための隙間が設けられる。なお、図10は、図5のX-X線における本実施の形態に係るヒートシンク10の断面図である。 In the present embodiment, as shown in FIG. 10, the width W in the Z-axis direction of the first projecting portion 126 is shorter than the height H of the first side plate 121. For example, W is H / 2 or less. In other words, the first projecting portion 126 does not cover the entire end portion of the fin 12 in the longitudinal direction (between the first side surface plate 121 and the second side surface plate 122), and air flows through the end portion. Is provided. FIG. 10 is a cross-sectional view of the heat sink 10 according to the present embodiment taken along the line XX of FIG.
 具体的には、第1突っ張り部126は、第1側面板121の上端側(底板120の反対側)のみに設けられている。すなわち、図4及び図8に示すように、第1突っ張り部126と底板120の長手方向の端部に設けられた突出部125との間には、隙間128が設けられている。これにより、第1側面板121と第2側面板122との間の空気の滞留を抑制することができる。 Specifically, the first struts 126 are provided only on the upper end side of the first side plate 121 (the side opposite to the bottom plate 120). That is, as shown in FIGS. 4 and 8, a gap 128 is provided between the first projecting portion 126 and the protruding portion 125 provided at the end of the bottom plate 120 in the longitudinal direction. Thereby, retention of air between the first side plate 121 and the second side plate 122 can be suppressed.
 なお、第1側面板121の上端側は、他の物体(照明器具1の施工者の指、又は、天井板など)が接触しやすい部分であり、外部からの力が加わりやすい部分である。したがって、第1突っ張り部126が第1側面板121の上端側に設けられていることで、外部からの力が加わった場合に、第1側面板121が第2側面板122に向かって折れ曲がるのを抑制することができる。 Note that the upper end side of the first side plate 121 is a portion where other objects (such as a finger of the builder of the lighting fixture 1 or a ceiling plate) are likely to come into contact, and a portion to which external force is easily applied. Accordingly, since the first projecting portion 126 is provided on the upper end side of the first side plate 121, the first side plate 121 bends toward the second side plate 122 when an external force is applied. Can be suppressed.
 第1突っ張り部126の根元は、アール形状を有する。具体的には、第1突っ張り部126と第1側面板121との接続部126aは、滑らかな曲面を有する。 The root of the first strut 126 has a round shape. Specifically, the connection portion 126a between the first projecting portion 126 and the first side plate 121 has a smooth curved surface.
 これにより、図5に示すように、一のフィン12の第2側面板122の光軸Jに近い端部と、当該一のフィン12に隣り合う別のフィン12の第1側面板121の接続部126aとの間に、隙間130が設けられる。隙間130は、接続部126aが滑らかな曲面ではない場合に比べて大きくなる。このため、光軸Jの近傍から外方に向かって空気が流れやすくなり、光軸Jの近傍に空気が溜まるのを抑制することができる。 As a result, as shown in FIG. 5, the connection between the end portion of the second side plate 122 of one fin 12 near the optical axis J and the first side plate 121 of another fin 12 adjacent to the one fin 12 is performed. A gap 130 is provided between the portion 126a. The gap 130 becomes larger than when the connecting portion 126a is not a smooth curved surface. For this reason, it becomes easy for air to flow outward from the vicinity of the optical axis J, and it can suppress that air accumulates in the vicinity of the optical axis J.
 第2突っ張り部127は、第2側面板122から第1側面板121に向かって延設された部分である。具体的には、第2突っ張り部127は、第2側面板122の長手方向の一方の端部から第1側面板121に向かって、第2側面板122及び第1側面板121の各々に略直交するように延設されている。 The second projecting portion 127 is a portion extending from the second side plate 122 toward the first side plate 121. Specifically, the second projecting portion 127 is substantially formed on each of the second side plate 122 and the first side plate 121 from one end portion in the longitudinal direction of the second side plate 122 toward the first side plate 121. It extends so as to be orthogonal.
 本実施の形態では、第2突っ張り部127は、第1突っ張り部126と略同じ形状及び略同じ大きさを有する。第2突っ張り部127は、図8及び図9に示すように、第1突っ張り部126と対向配置されている。具体的には、第2突っ張り部127は、第2側面板122の上端側のみに設けられている。すなわち、図4、図8及び図10に示すように、第2突っ張り部127と底板120の長手方向の端部に設けられた突出部124との間には、隙間129が設けられている。 In the present embodiment, the second projecting portion 127 has substantially the same shape and the same size as the first projecting portion 126. As shown in FIGS. 8 and 9, the second tension portion 127 is disposed to face the first tension portion 126. Specifically, the second projecting portion 127 is provided only on the upper end side of the second side plate 122. That is, as shown in FIGS. 4, 8, and 10, a gap 129 is provided between the second projecting portion 127 and the protruding portion 124 provided at the end of the bottom plate 120 in the longitudinal direction.
 隙間128及び隙間129は、フィン12の長手方向に沿って互いに対向している。このため、フィン12の長手方向に沿って空気が流れやすくなり、フィン12内での空気の滞留を抑制することができる。 The gap 128 and the gap 129 are opposed to each other along the longitudinal direction of the fin 12. For this reason, air becomes easy to flow along the longitudinal direction of the fin 12, and retention of air in the fin 12 can be suppressed.
 第2突っ張り部127の根元は、アール形状を有する。具体的には、第2突っ張り部127と第2側面板122との接続部127aは、滑らかな曲面を有する。これにより、第2突っ張り部127が中心側で、第1突っ張り部126が外側になるようにフィン12が配置された場合であっても、隙間130を形成することができる。したがって、空気の滞留を抑制することができる。 The root of the second projecting portion 127 has a round shape. Specifically, the connecting portion 127a between the second projecting portion 127 and the second side plate 122 has a smooth curved surface. Thereby, even when the fins 12 are arranged so that the second projecting portion 127 is on the center side and the first projecting portion 126 is on the outer side, the gap 130 can be formed. Therefore, the retention of air can be suppressed.
 [サブフィン]
 サブフィン13は、光源20からの熱を放散させるための放熱用のサブフィンである。サブフィン13は、ヒートシンク10の放熱効果をさらに高めるための補助的なフィンであり、フィン12より小型の放熱部である。
[Subfin]
The sub fin 13 is a heat dissipating sub fin for dissipating heat from the light source 20. The sub fin 13 is an auxiliary fin for further enhancing the heat dissipation effect of the heat sink 10, and is a smaller heat dissipation portion than the fin 12.
 サブフィン13は、図4及び図5に示すように、複数のフィン12のうち隣り合う2つのフィン12の間の外側底面110b上に配置されている。本実施の形態では、サブフィン13は、隣り合う2つのフィン12の間毎に配置されている。具体的には、フィン12が環状に並んでいるので、フィン12の個数とサブフィン13の個数とが同じである。なお、2以上のサブフィン13が、2つのフィン12の間に配置されていてもよい。また、隣り合う2つのフィン12の間に配置されるサブフィン13の個数は、フィン12の間毎に異なっていてもよい。 The sub fin 13 is arrange | positioned on the outer bottom face 110b between the two adjacent fins 12 among the several fins 12, as shown in FIG.4 and FIG.5. In the present embodiment, the sub fins 13 are arranged between two adjacent fins 12. Specifically, since the fins 12 are arranged in a ring shape, the number of fins 12 and the number of sub fins 13 are the same. Two or more sub fins 13 may be arranged between the two fins 12. In addition, the number of sub-fins 13 disposed between two adjacent fins 12 may be different between the fins 12.
 図5に示すように、外側底面110bを平面視した場合において、サブフィン13の外形は、長円又は楕円(オーバル)である。例えば、サブフィン13の平面視形状は、角丸長方形である。 As shown in FIG. 5, when the outer bottom surface 110b is viewed in plan, the outer shape of the sub fin 13 is an ellipse or an ellipse (oval). For example, the planar view shape of the sub fin 13 is a rounded rectangle.
 このとき、サブフィン13は、その長手方向が複数のフィン12の放射方向に沿うように配置されている。具体的には、サブフィン13の長手方向は、フィン12の放射の中心、すなわち、光軸Jを通過する。 At this time, the sub fins 13 are arranged such that the longitudinal direction thereof follows the radial direction of the plurality of fins 12. Specifically, the longitudinal direction of the sub fin 13 passes through the center of radiation of the fin 12, that is, the optical axis J.
 図10に示すように、サブフィン13の外側底面110bからの高さhは、フィン12の外側底面110bからの高さHより低い。本実施の形態では、サブフィン13の高さhは、フィン12の高さHの2分の1以下である。具体的には、サブフィン13の高さhは、フィン12の高さHの4分の1以下である。例えば、サブフィン13の高さは、2mm~5mmである。また、サブフィン13の幅(短手方向の長さ)は、例えば、2mm~6mmである。 As shown in FIG. 10, the height h from the outer bottom surface 110 b of the sub fin 13 is lower than the height H from the outer bottom surface 110 b of the fin 12. In the present embodiment, the height h of the sub fin 13 is less than or equal to one half of the height H of the fin 12. Specifically, the height h of the sub fin 13 is equal to or less than a quarter of the height H of the fin 12. For example, the height of the sub fin 13 is 2 mm to 5 mm. Further, the width (length in the short direction) of the sub fin 13 is, for example, 2 mm to 6 mm.
 本実施の形態では、サブフィン13は、外側底面110bを平面視した場合において、隣り合う2つのフィン12から等距離の位置に配置されている。具体的には、サブフィン13の長手方向は、隣り合う2つのフィン12の放射方向(長手方向)がなす角(光軸Jを中心とする角)の二等分線になる。 In the present embodiment, the sub-fins 13 are arranged at equidistant positions from the two adjacent fins 12 when the outer bottom surface 110b is viewed in plan. Specifically, the longitudinal direction of the sub fin 13 is a bisector of an angle (an angle centered on the optical axis J) formed by the radial direction (longitudinal direction) of two adjacent fins 12.
 また、サブフィン13は、外側底面110bを平面視した場合において、外側底面110bの外周縁110cに沿って配置されている。具体的には、サブフィン13は、光軸Jと外周縁110cとの間の中央線(半径r/2の円、rは外側底面110bの直径)より外周縁110c側の領域に設けられている。 Further, the sub fins 13 are arranged along the outer peripheral edge 110c of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan. Specifically, the sub fin 13 is provided in a region on the outer peripheral edge 110c side from a center line (circle of radius r / 2, r is a diameter of the outer bottom surface 110b) between the optical axis J and the outer peripheral edge 110c. .
 なお、本実施の形態では、図4及び図5に示すように、ベース11の底部110には、枠体70を固定するネジが挿入される2つのネジ孔116が形成されている。2つのネジ孔116はそれぞれ、ベース11の底部110を貫通している。このため、例えば、8つのサブフィン13のうち2つのサブフィン13(図5における光軸Jから右斜め下方向及び左斜め上方向のサブフィン13)は、ネジ孔116との干渉を避けるように、外周縁110cから離れて設けられている。例えば、当該2つのサブフィン13は、中央線(半径r/2の円)上に近い位置に設けられている。 In the present embodiment, as shown in FIGS. 4 and 5, two screw holes 116 into which screws for fixing the frame body 70 are inserted are formed in the bottom portion 110 of the base 11. Each of the two screw holes 116 passes through the bottom 110 of the base 11. For this reason, for example, two of the eight sub-fins 13 (sub-fins 13 in the lower right direction and the upper left direction from the optical axis J in FIG. 5) are externally arranged to avoid interference with the screw holes 116. It is provided apart from the peripheral edge 110c. For example, the two sub fins 13 are provided at positions close to the center line (circle of radius r / 2).
 また、ベース11の底部110には、接続部材40を固定するネジ91がネジ入れられるタップ117が設けられている。タップ117は、底部110の外側底面110bから突出した凸部であり、内部にネジ91が入れられるための空洞を有する。タップ117は、放熱性能の向上を主たる目的としておらず、配置される位置は、接続部材40などの位置に依存している。したがって、例えば、図5に示すように、タップ117は、フィン12に近接して配置されている。本実施の形態に係るサブフィン13は、タップ117とは異なり、放熱性能の向上を主たる目的としている。 Further, a tap 117 into which a screw 91 for fixing the connection member 40 is screwed is provided on the bottom 110 of the base 11. The tap 117 is a convex portion protruding from the outer bottom surface 110b of the bottom portion 110, and has a cavity for receiving a screw 91 therein. The tap 117 is not mainly intended to improve the heat dissipation performance, and the position of the tap 117 depends on the position of the connection member 40 and the like. Therefore, for example, as shown in FIG. 5, the tap 117 is disposed close to the fin 12. Unlike the tap 117, the sub fin 13 according to the present embodiment is mainly intended to improve the heat dissipation performance.
 [突起部の形状と空隙]
 続いて、塑性変形後の突起部114の形状、及び、ベース11とフィン12との接続について説明する。図11は、図10の領域XIを拡大して示す要部拡大断面図である。
[Projection shape and gap]
Next, the shape of the protrusion 114 after plastic deformation and the connection between the base 11 and the fin 12 will be described. FIG. 11 is an enlarged cross-sectional view of a main part showing a region XI in FIG. 10 in an enlarged manner.
 突起部114は、図9に示すように、根元にフィレット部114aが設けられている。フィレット部114aは、突起部114の強度を高めるために設けられた厚肉部である。フィレット部114aは、突起部114の外周に沿って環状に設けられている。フィレット部114aは、例えば、半径が1mm~2mmのアールである。 As shown in FIG. 9, the protrusion 114 is provided with a fillet 114a at the root. The fillet part 114 a is a thick part provided to increase the strength of the protrusion 114. The fillet portion 114 a is provided in an annular shape along the outer periphery of the protruding portion 114. The fillet portion 114a is, for example, a round having a radius of 1 mm to 2 mm.
 突起部114は、先端に拡径部114bが設けられている。拡径部114bは、突起部114の先端部が塑性変形することで形成された部分であり、上面視において突起部114の径方向に延びた部分である。 The protrusion 114 is provided with an enlarged diameter portion 114b at the tip. The enlarged diameter portion 114b is a portion formed by plastic deformation of the tip end portion of the projection portion 114, and is a portion extending in the radial direction of the projection portion 114 in a top view.
 フィン12は、図9に示すように、底板120がフィレット部114aと拡径部114bとに挟まれることで、ベース11に固定されている。本実施の形態では、フィン12の底板120とベース11の外側底面110bとの間には、空隙140が設けられている。底板120と外側底面110bとは、平行である。すなわち、空隙140は、幅dが略一定の扁平な隙間である。空隙140は、底板120がフィレット部114aに載置された状態でフィン12とベース11とが固定されることで、形成される。空隙140の幅dは、例えば、0.2mm~0.3mmであるが、これに限らない。 As shown in FIG. 9, the fin 12 is fixed to the base 11 by sandwiching the bottom plate 120 between the fillet portion 114a and the enlarged diameter portion 114b. In the present embodiment, a gap 140 is provided between the bottom plate 120 of the fin 12 and the outer bottom surface 110 b of the base 11. The bottom plate 120 and the outer bottom surface 110b are parallel. That is, the gap 140 is a flat gap having a substantially constant width d. The gap 140 is formed by fixing the fins 12 and the base 11 with the bottom plate 120 placed on the fillet portion 114a. The width d of the gap 140 is, for example, 0.2 mm to 0.3 mm, but is not limited thereto.
 フィン12は、突起部114を介してベース11と熱的に結合されている。例えば、突起部114の側面と底板120の貫通孔の内壁とが面接触し、突起部114の拡径部114bの下面と底板120の上面の一部とが面接触し、フィレット部114aと底板120の下面の一部とが面接触又は点接触している。これらの接触部分を介して、フィン12には、光源20からの熱が突起部114から伝えられる。フィン12に伝えられた熱は、主に、底板120、第1側面板121及び第2側面板122などから空気中に放散される。 The fin 12 is thermally coupled to the base 11 through the protrusion 114. For example, the side surface of the protruding portion 114 and the inner wall of the through hole of the bottom plate 120 are in surface contact, the lower surface of the enlarged diameter portion 114b of the protruding portion 114 and a part of the upper surface of the bottom plate 120 are in surface contact, and the fillet portion 114a and the bottom plate A part of the lower surface of 120 is in surface contact or point contact. Through these contact portions, heat from the light source 20 is transmitted to the fins 12 from the protrusions 114. The heat transferred to the fins 12 is mainly dissipated into the air from the bottom plate 120, the first side plate 121, the second side plate 122, and the like.
 本実施の形態では、空隙140が設けられているので、底板120と外側底面110bとの間で空気が滞留するのを抑制することができる。すなわち、底板120と外側底面110bとの間の熱溜まりの発生を抑制することができるので、放熱性能をさらに高めることができる。 In the present embodiment, since the gap 140 is provided, it is possible to suppress the retention of air between the bottom plate 120 and the outer bottom surface 110b. That is, since heat generation between the bottom plate 120 and the outer bottom surface 110b can be suppressed, the heat dissipation performance can be further enhanced.
 [製造方法]
 続いて、ヒートシンク10の製造方法について説明する。
[Production method]
Then, the manufacturing method of the heat sink 10 is demonstrated.
 図12は、本実施の形態に係るヒートシンク10の製造方法におけるフィン12のベース11との位置決め工程を示す斜視図である。なお、図12では、4個のフィン12が既に固定すべき位置に配置され、5個目及び6個目のフィン12の貫通孔123に突起部114を挿入する直前の様子を示している。なお、ここでは、フィン12を1個ずつ配置する例について示しているが、8個のフィン12を一括して配置してもよい。 FIG. 12 is a perspective view showing a positioning step of the fin 12 with the base 11 in the method of manufacturing the heat sink 10 according to the present embodiment. FIG. 12 shows a state immediately before the four fins 12 are arranged at positions to be fixed and the protrusions 114 are inserted into the through holes 123 of the fifth and sixth fins 12. In addition, although the example which arrange | positions the fin 12 one by one is shown here, you may arrange | position the eight fins 12 collectively.
 図12の一点鎖線の矢印で示すように、ベース11の径方向に並んだ2つの塑性変形前の突起部114と、フィン12の2つの貫通孔123とが上面視において重複する位置で、フィン12を下方に移動させる。これにより、2つの突起部114が2つの貫通孔123に挿入される。2つの貫通孔123の大きさと突起部114の大きさとは略同じであるので、フィン12の横方向への移動は規制されている。 As indicated by the one-dot chain line arrow in FIG. 12, at the position where the two protrusions 114 before plastic deformation aligned in the radial direction of the base 11 and the two through holes 123 of the fin 12 overlap in the top view, 12 is moved downward. As a result, the two protrusions 114 are inserted into the two through holes 123. Since the size of the two through holes 123 and the size of the protrusion 114 are substantially the same, the movement of the fins 12 in the lateral direction is restricted.
 全てのフィン12を配置した後、突起部114を塑性変形させる。これにより、フィン12とベース11とを固定する。 After all the fins 12 are arranged, the protrusion 114 is plastically deformed. Thereby, the fin 12 and the base 11 are fixed.
 図13は、本実施の形態に係るヒートシンク10の製造方法における突起部114の塑性変形工程(かしめ工程)を示す断面図である。図13の(a)に示すように、突起部114の先端方向からパンチ150を押し当てる。そのままパンチ150を押し込むことで、図13の(b)に示すように、突起部114が塑性変形して拡径部114bが形成される。このとき、突起部114だけでなく、フィン12の底板120の貫通孔123の周りも塑性変形していてもよい。 FIG. 13 is a cross-sectional view showing a plastic deformation step (caulking step) of the protrusion 114 in the method for manufacturing the heat sink 10 according to the present embodiment. As shown in FIG. 13A, the punch 150 is pressed from the tip end direction of the protrusion 114. By pushing the punch 150 as it is, as shown in FIG. 13B, the protrusion 114 is plastically deformed to form the enlarged diameter portion 114b. At this time, not only the projection 114 but also the periphery of the through hole 123 of the bottom plate 120 of the fin 12 may be plastically deformed.
 このように、フィン12は、かしめによりベース11に接合され固定されている。具体的には、塑性変形により形成された拡径部114bがフィン12の底板120をベース11の外側底面110bに向けて押さえている。これにより、フィン12の脱離を抑えることができる。 Thus, the fins 12 are joined and fixed to the base 11 by caulking. Specifically, the enlarged diameter portion 114 b formed by plastic deformation presses the bottom plate 120 of the fin 12 toward the outer bottom surface 110 b of the base 11. Thereby, detachment | desorption of the fin 12 can be suppressed.
 図13の(a)及び(b)を比較して分かるように、塑性変形前の突起部114とフィン12の貫通孔123との間には、隙間が形成されているのに対して、塑性変形後の突起部114と貫通孔123との間には、隙間が形成されていない。これは、パンチ150によって突起部114が押圧された際に、突起部114が横方向に拡がったためである。 As can be seen by comparing FIGS. 13A and 13B, a gap is formed between the protrusion 114 before plastic deformation and the through-hole 123 of the fin 12, whereas the plasticity No gap is formed between the deformed protrusion 114 and the through hole 123. This is because when the protrusion 114 is pressed by the punch 150, the protrusion 114 spreads in the lateral direction.
 したがって、本実施の形態では、突起部114の側面が底板120の貫通孔123の内壁面と接触する。さらに、拡径部114bの下面が底板120の上面と接触する。これにより、ベース11からフィン12への熱伝導を効率良く行うことができる。 Therefore, in the present embodiment, the side surface of the protrusion 114 comes into contact with the inner wall surface of the through hole 123 of the bottom plate 120. Further, the lower surface of the enlarged diameter portion 114 b is in contact with the upper surface of the bottom plate 120. Thereby, the heat conduction from the base 11 to the fin 12 can be performed efficiently.
 例えば、フィン12をベース11にネジ止めする場合に比べて接触面積が大きくなるので、熱伝導性を高めることができる。また、ネジ止めの場合に比べてフィン12とベース11との接合が容易であり、量産化に優れている。 For example, since the contact area is larger than when the fins 12 are screwed to the base 11, the thermal conductivity can be increased. In addition, the fin 12 and the base 11 can be easily joined as compared with the case of screwing, and is excellent in mass production.
 ここで、本実施の形態では、拡径部114bは、第1側面板121及び第2側面板122に近接している。具体的には、拡径部114bと第1側面板121及び第2側面板122の一方との間の隙間は、例えば、0.5mm以下である。拡径部114bは、第1側面板121及び第2側面板122の少なくとも一方に当接していてもよい。拡径部114bと第1側面板121及び第2側面板122の少なくとも一方とが当接している場合には、フィン12とベース11との接触面積が大きくなるので、熱伝導性がさらに高くなる。 Here, in the present embodiment, the enlarged diameter portion 114b is close to the first side plate 121 and the second side plate 122. Specifically, the gap between the enlarged diameter portion 114b and one of the first side plate 121 and the second side plate 122 is, for example, 0.5 mm or less. The enlarged diameter portion 114 b may be in contact with at least one of the first side plate 121 and the second side plate 122. When the enlarged diameter portion 114b is in contact with at least one of the first side plate 121 and the second side plate 122, the contact area between the fins 12 and the base 11 is increased, so that the thermal conductivity is further increased. .
 このように、拡径部114bは、第1側面板121及び第2側面板122に対してめり込むようには形成されていない。すなわち、塑性変形によって形成された拡径部114bは、第1側面板121及び第2側面板122を変形させないように形成されている。これにより、フィン12の放熱性能が損なわれるのを抑制することができる。 Thus, the enlarged diameter portion 114 b is not formed so as to be recessed with respect to the first side plate 121 and the second side plate 122. That is, the enlarged diameter portion 114b formed by plastic deformation is formed so as not to deform the first side plate 121 and the second side plate 122. Thereby, it can suppress that the heat dissipation performance of the fin 12 is impaired.
 なお、本実施の形態では、複数のフィン12を同時にベース11に固定する例について示したが、これに限らない。フィン12毎に突起部114を塑性変形させて固定してもよい。 In the present embodiment, the example in which the plurality of fins 12 are fixed to the base 11 at the same time has been described. However, the present invention is not limited to this. The protrusion 114 may be plastically deformed and fixed for each fin 12.
 [効果など]
 以上のように、本実施の形態に係るヒートシンク10は、有底筒状のベース11と、ベース11の底部110の外側底面110b上に放射状に配置された複数のフィン12と、複数のフィン12のうち隣り合う2つのフィン12の間の外側底面110b上に配置されたサブフィン13とを備え、サブフィン13の外側底面110bからの高さは、フィン12の外側底面110bからの高さより低い。また、例えば、本実施の形態に係る照明器具1は、ヒートシンク10と、底部110の内側底面110aに取り付けられた光源20とを備える。
[Effects, etc.]
As described above, the heat sink 10 according to the present embodiment includes the bottomed cylindrical base 11, the plurality of fins 12 arranged radially on the outer bottom surface 110 b of the bottom portion 110 of the base 11, and the plurality of fins 12. The sub-fin 13 is disposed on the outer bottom surface 110b between two adjacent fins 12, and the height of the sub-fin 13 from the outer bottom surface 110b is lower than the height of the fin 12 from the outer bottom surface 110b. In addition, for example, the lighting fixture 1 according to the present embodiment includes the heat sink 10 and the light source 20 attached to the inner bottom surface 110 a of the bottom portion 110.
 これにより、ヒートシンク10が複数のフィン12だけでなく、サブフィン13を備えることで、ヒートシンク10の表面積が増加するので、放熱性能を高めることができる。また、サブフィン13の高さがフィン12の高さより低いので、隣り合う2つのフィン12間の空気の流れを阻害しにくくすることができる。これにより、フィン12及びサブフィン13が密集し過ぎて熱がこもって放熱性能が低下するのを抑制することができる。このように、本実施の形態では、高い放熱性能を有するヒートシンク10、及び、このヒートシンク10を備える照明器具1を提供することができる。 Thereby, since the heat sink 10 includes not only the plurality of fins 12 but also the sub fins 13, the surface area of the heat sink 10 increases, so that the heat dissipation performance can be improved. Moreover, since the height of the sub fin 13 is lower than the height of the fin 12, it is possible to make it difficult to inhibit the air flow between the two adjacent fins 12. Thereby, it can suppress that the fin 12 and the subfin 13 are crowded too much, and heat is accumulated and heat dissipation performance falls. Thus, in this Embodiment, the heat sink 10 which has high heat dissipation performance, and the lighting fixture 1 provided with this heat sink 10 can be provided.
 また、例えば、ベース11とサブフィン13とは、一体成形品である。 Also, for example, the base 11 and the sub fin 13 are integrally molded products.
 これにより、ヒートシンク10を構成する部品点数を削減することができる。したがって、ヒートシンク10の軽量化、及び、組み立て工程の簡略化による低コスト化などを実現することができる。 Thereby, the number of parts constituting the heat sink 10 can be reduced. Therefore, weight reduction of the heat sink 10 and cost reduction by simplification of the assembly process can be realized.
 また、例えば、外側底面110bを平面視した場合において、サブフィン13の外形は、長円又は楕円であり、サブフィン13は、その長手方向が複数のフィン12の放射方向に沿うように配置されている。 Further, for example, when the outer bottom surface 110 b is viewed in plan, the outer shape of the sub fin 13 is an ellipse or an ellipse, and the sub fin 13 is arranged such that the longitudinal direction thereof is along the radial direction of the plurality of fins 12. .
 これにより、放射方向に沿ったフィン12間の空気の流れを阻害しにくくなるので、放熱性能の低下を抑制することができる。また、ベース11とサブフィン13とを鍛造成形によって一体成形する場合、サブフィン13の長手方向が鍛造成形時の材料の流動方向と同じになるので、加工荷重を低減することができる。したがって、金型の寿命を長くすることができるので、ヒートシンク10及び照明器具1の低コスト化を実現することができる。 This makes it difficult to inhibit the flow of air between the fins 12 along the radial direction, so that deterioration in heat dissipation performance can be suppressed. Further, when the base 11 and the sub fin 13 are integrally formed by forging, the longitudinal direction of the sub fin 13 is the same as the flow direction of the material during forging, so that the processing load can be reduced. Therefore, since the lifetime of the mold can be extended, the cost of the heat sink 10 and the lighting fixture 1 can be reduced.
 また、例えば、サブフィン13は、隣り合う2つのフィン12の間毎に配置されている。 Further, for example, the sub fins 13 are arranged between two adjacent fins 12.
 これにより、ヒートシンク10が複数のサブフィン13を備えることで、ヒートシンク10の表面積がさらに増加するので、放熱性能を高めることができる。また、ヒートシンク10の放熱性能を面内で均等にすることができる。 Thereby, since the heat sink 10 includes the plurality of sub fins 13, the surface area of the heat sink 10 is further increased, so that the heat dissipation performance can be improved. Further, the heat dissipation performance of the heat sink 10 can be made uniform in the plane.
 また、例えば、サブフィン13は、外側底面110bを平面視した場合において、隣り合う2つのフィン12から等距離の位置に配置されている。 Further, for example, the sub fin 13 is arranged at an equal distance from the two adjacent fins 12 when the outer bottom surface 110b is viewed in plan.
 これにより、隣り合うフィン12間の空気の流れを阻害しにくくなるので、放熱性能の低下を抑制することができる。 This makes it difficult for the air flow between adjacent fins 12 to be hindered, so that a reduction in heat dissipation performance can be suppressed.
 また、例えば、サブフィン13は、外側底面110bを平面視した場合において、外側底面110bの外周縁110cに沿って配置されている。 Further, for example, the sub fin 13 is disposed along the outer peripheral edge 110c of the outer bottom surface 110b when the outer bottom surface 110b is viewed in plan.
 これにより、複数のフィン12が密集している外側底面110bの中央部ではなく、外周縁に沿ってサブフィン13が設けられている。したがって、隣り合うフィン12間の空気の流れを阻害しにくくなるので、放熱性能の低下を抑制することができる。 Thus, the sub fins 13 are provided along the outer peripheral edge instead of the central portion of the outer bottom surface 110b where the plurality of fins 12 are densely packed. Therefore, since it becomes difficult to inhibit the air flow between the adjacent fins 12, it is possible to suppress a decrease in heat dissipation performance.
 また、例えば、複数のフィン12は、ベース11と別体で構成されている。 Further, for example, the plurality of fins 12 are configured separately from the base 11.
 これにより、フィン12とベース11とを別個に製造することで、各々の寸法精度を高めることができる。したがって、フィン12とベース11とを効果的に接触させることができ、熱伝導性を高めることができる。また、複数のフィン12の間などにスムーズに空気を流すことができるので、放熱性能をさらに高めることができる。 Thereby, the dimensional accuracy of each can be improved by manufacturing the fin 12 and the base 11 separately. Therefore, the fin 12 and the base 11 can be effectively brought into contact with each other, and the thermal conductivity can be improved. Moreover, since air can flow smoothly between the plurality of fins 12 and the like, the heat dissipation performance can be further enhanced.
 また、ベース11に固定するフィン12の個数を、光源20の出力に応じて設計変更することができるので、ヒートシンク10の放熱性能を適宜変更することができる。これにより、例えば、フィン12の個数を放熱性能の異なる(すなわち、フィン12の枚数の異なる)ヒートシンク10を、同一形状の部品を用いて製造することができる。したがって、例えば、フィン12とベース11とを大量に製造しておくことができるので、低コスト化を実現することができる。 Moreover, since the number of fins 12 fixed to the base 11 can be changed in design according to the output of the light source 20, the heat dissipation performance of the heat sink 10 can be changed as appropriate. Thereby, for example, the heat sink 10 having a different number of fins 12 and different heat dissipation performance (that is, a different number of fins 12) can be manufactured using parts having the same shape. Therefore, for example, since the fins 12 and the base 11 can be manufactured in large quantities, cost reduction can be realized.
 ところで、本実施の形態に係るヒートシンク10では、ベース11の内側底面110aには、光源20が取り付けられており、光源20を固定するための接続部材40などが内側底面110aに固定される。接続部材40などの干渉を防ぐために、内側底面110aには、溝113が設けられている。溝113は、光源20の基板21に実装されたLED22とベース11との絶縁距離を確保する機能も果たしている。 Incidentally, in the heat sink 10 according to the present embodiment, the light source 20 is attached to the inner bottom surface 110a of the base 11, and the connection member 40 and the like for fixing the light source 20 are fixed to the inner bottom surface 110a. In order to prevent interference of the connecting member 40 and the like, a groove 113 is provided in the inner bottom surface 110a. The groove 113 also functions to ensure an insulation distance between the LED 22 mounted on the substrate 21 of the light source 20 and the base 11.
 ベース11は、例えば、金型を用いた鍛造成形によって形成されている。このため、溝113を形成するためには、溝113に合った凸部を有する金型が必要となる。金型の凸部の強度を確保するためには、凸部の根元を厚くすることが考えられる。しかしながら、この場合、LED22から内側底面110aまでの絶縁距離が短くなるという問題がある。 The base 11 is formed, for example, by forging using a mold. For this reason, in order to form the groove 113, a mold having a convex portion that matches the groove 113 is required. In order to ensure the strength of the convex portion of the mold, it is conceivable to increase the base of the convex portion. However, in this case, there is a problem that the insulation distance from the LED 22 to the inner bottom surface 110a is shortened.
 これに対して、本実施の形態に係るヒートシンク10では、例えば、底部110の内側底面110aには、光源20が取り付けられる被取付部112の外周に沿って溝113が設けられ、溝113は、被取付部112に近い第1側壁113aと、第1側壁113aより被取付部112から離れた第2側壁113bとを有し、第1側壁113aは、内側底面110aに対して垂直であり、第2側壁113bは、内側底面110aに対して傾斜している。 On the other hand, in the heat sink 10 according to the present embodiment, for example, the inner bottom surface 110a of the bottom portion 110 is provided with a groove 113 along the outer periphery of the attached portion 112 to which the light source 20 is attached. The first side wall 113a is close to the mounted portion 112, and the second side wall 113b is farther from the mounted portion 112 than the first side wall 113a. The first side wall 113a is perpendicular to the inner bottom surface 110a. The two side walls 113b are inclined with respect to the inner bottom surface 110a.
 図14及び図15はそれぞれ、比較例及び実施の形態に係るLED22から内側底面110aまでの絶縁距離を説明するための断面図である。なお、図14の(a)及び図15の(a)にはそれぞれ、ベース11x及びベース11を製造する際に用いる金型190x及び190を示している。金型190x及び190はそれぞれ、溝113x及び113に合った形状の凸部191x及び191を有する。また、図14の(b)及び図15の(b)は、図7に示す溝113の近傍を拡大した断面に相当する。 14 and 15 are cross-sectional views for explaining the insulation distance from the LED 22 to the inner bottom surface 110a according to the comparative example and the embodiment, respectively. 14A and 15A show the base 11x and the molds 190x and 190 used when the base 11 is manufactured, respectively. The molds 190x and 190 have convex portions 191x and 191 having shapes matching the grooves 113x and 113, respectively. 14 (b) and 15 (b) correspond to an enlarged cross section near the groove 113 shown in FIG.
 図14には、金型の強度を高めるために、凸部191xの根元を厚くした金型190xを利用して形成した溝113xを示している。溝113xは、第1側壁113ax及び第2側壁113bのいずれもが、内側底面110aに対して傾斜している。 FIG. 14 shows a groove 113x formed by using a mold 190x having a thick base at the convex portion 191x in order to increase the strength of the mold. In the groove 113x, both the first side wall 113ax and the second side wall 113b are inclined with respect to the inner bottom surface 110a.
 LED22から内側底面110aまでの絶縁距離は、絶縁物の表面に沿って、又は、大気中を結ぶ最短距離である。図14及び図15にはそれぞれ、太線で絶縁距離L1及びL2を示している。 The insulation distance from the LED 22 to the inner bottom surface 110a is the shortest distance along the surface of the insulator or in the atmosphere. In FIGS. 14 and 15, the insulation distances L1 and L2 are indicated by thick lines, respectively.
 比較例に係る絶縁距離L1は、図14に示すように、LED22から基板21の上面と端面とに沿った距離と、基板21の右下端部から第1側壁113axまでの垂線の長さとの合計になる。一方で、図15に示すように、本実施の形態に係る絶縁距離L2は、LED22から基板21の上面と端面と下面とに沿った距離になる。 As shown in FIG. 14, the insulation distance L1 according to the comparative example is the sum of the distance from the LED 22 along the upper surface and the end surface of the substrate 21 and the length of the perpendicular line from the lower right end of the substrate 21 to the first side wall 113ax. become. On the other hand, as shown in FIG. 15, the insulation distance L <b> 2 according to the present embodiment is a distance along the upper surface, end surface, and lower surface of the substrate 21 from the LED 22.
 このように、比較例では、第1側壁113axが傾斜しているために、第1側壁113axが基板21の右下端部に近づいている。このため、絶縁距離L1が絶縁距離L2より短くなる。言い換えると、本実施の形態では、絶縁距離L2を絶縁距離L1より長く確保することができる。 Thus, in the comparative example, since the first side wall 113ax is inclined, the first side wall 113ax approaches the lower right end portion of the substrate 21. For this reason, the insulation distance L1 becomes shorter than the insulation distance L2. In other words, in this embodiment, the insulation distance L2 can be secured longer than the insulation distance L1.
 また、本実施の形態では、第2側壁113bが傾斜しているため、比較例と同様に、金型の凸部の根元を大きくすることができる。具体的には、第1側壁113a及び第2側壁113bの両方を内側底面110aに対して垂直にする場合に比べて、金型190の凸部191の根元を大きくすることができる。 Further, in the present embodiment, since the second side wall 113b is inclined, the root of the convex portion of the mold can be increased as in the comparative example. Specifically, the root of the convex portion 191 of the mold 190 can be made larger than when both the first side wall 113a and the second side wall 113b are perpendicular to the inner bottom surface 110a.
 以上のように、本実施の形態に係るヒートシンク10によれば、絶縁距離を確保しつつ、金型強度を高めることができる。 As described above, according to the heat sink 10 according to the present embodiment, it is possible to increase the mold strength while ensuring the insulation distance.
 また、本実施の形態に係るヒートシンク10では、フィン12とベース11とが別体で構成されている。例えば、フィン12は、ベース11にかしめられて固定されている。具体的には、フィン12の底板120に設けられた貫通孔123に、ベース11の外側底面110bから突出した突起部114を挿入し、突起部114を塑性変形させている。このとき、製造誤差などの影響もあり、底板120と外側底面110bとを確実に面接触させることが難しい。すなわち、底板120と外側底面110bとの間には、微小空間が形成される恐れがある。当該微小空間は、外部空間との間で空気の流れが行われにくく(あるいは、行われない)、熱溜まりとなりうる。したがって、ヒートシンク10の放熱性能が劣化する恐れがある。 Further, in the heat sink 10 according to the present embodiment, the fins 12 and the base 11 are configured separately. For example, the fin 12 is caulked to the base 11 and fixed. Specifically, the protruding portion 114 protruding from the outer bottom surface 110 b of the base 11 is inserted into the through hole 123 provided in the bottom plate 120 of the fin 12 to plastically deform the protruding portion 114. At this time, it is difficult to make sure that the bottom plate 120 and the outer bottom surface 110b are in surface contact due to the influence of manufacturing errors and the like. That is, a minute space may be formed between the bottom plate 120 and the outer bottom surface 110b. The minute space is unlikely (or not) to flow air between the external space and can become a heat pool. Therefore, the heat dissipation performance of the heat sink 10 may be deteriorated.
 これに対して、本実施の形態に係るヒートシンク10では、例えば、複数のフィン12の少なくとも1つは、貫通孔123が設けられた底板120と、底板120に立設された第1側面板121とを有し、ベース11は、貫通孔123に挿入された突起部114を有し、ベース11と底板120とは、突起部114を介して熱的に接続され、底板120と外側底面110bとの間には、空隙140が設けられている。 On the other hand, in the heat sink 10 according to the present embodiment, for example, at least one of the plurality of fins 12 includes the bottom plate 120 provided with the through holes 123 and the first side plate 121 erected on the bottom plate 120. The base 11 has a protrusion 114 inserted into the through-hole 123. The base 11 and the bottom plate 120 are thermally connected via the protrusion 114, and the bottom plate 120 and the outer bottom surface 110b are connected to each other. A gap 140 is provided between them.
 これにより、敢えて空隙140を設けることで、底板120と外側底面110bとの間に熱溜まりが形成されるのを抑制することができる。したがって、ヒートシンク10の放熱性能を高めることができる。 Thereby, it is possible to suppress the formation of a heat pool between the bottom plate 120 and the outer bottom surface 110b by providing the gap 140. Therefore, the heat dissipation performance of the heat sink 10 can be enhanced.
 また、本実施の形態に係るヒートシンク10では、例えば、フィン12は、板厚1mmの板金などに曲げ加工を行うことで製造される。すなわち、フィン12の板厚を薄くすることができる。フィン12の板厚が薄くなる分、外部からの力が加わった場合に容易に変形してしまう恐れがある。 In the heat sink 10 according to the present embodiment, for example, the fins 12 are manufactured by bending a sheet metal having a thickness of 1 mm. That is, the plate thickness of the fin 12 can be reduced. Since the plate thickness of the fin 12 is reduced, there is a risk that the fin 12 is easily deformed when an external force is applied.
 これに対して、本実施の形態に係るヒートシンク10では、例えば、複数のフィン12の少なくとも1つは、底板120と、底板120に立設された一対の第1側面板121及び第2側面板122と、第1側面板121から第2側面板122に向かって延設された第1突っ張り部126とを有する。 On the other hand, in the heat sink 10 according to the present embodiment, for example, at least one of the plurality of fins 12 includes a bottom plate 120, a pair of first side plates 121 and second side plates provided upright on the bottom plate 120. 122 and a first protruding portion 126 extending from the first side plate 121 toward the second side plate 122.
 これにより、フィン12の第1側面板121又は第2側面板122に力が加わった場合でも、第1突っ張り部126が第2側面板122に突っ張ることで、第1側面板121及び第2側面板122の変形を抑制することができる。このように、フィン12の強度を高めることができる。また、第1側面板121と第2側面板122との間のスペースを第1突っ張り部126によって確保することができるので、第1側面板121と第2側面板122との間を空気が流れることができる。したがって、ヒートシンク10の放熱性能を高めることができる。 Thereby, even when a force is applied to the first side plate 121 or the second side plate 122 of the fin 12, the first side plate 121 and the second side plate are supported by the first projecting portion 126 projecting to the second side plate 122. The deformation of the face plate 122 can be suppressed. In this way, the strength of the fin 12 can be increased. In addition, since a space between the first side plate 121 and the second side plate 122 can be secured by the first protruding portion 126, air flows between the first side plate 121 and the second side plate 122. be able to. Therefore, the heat dissipation performance of the heat sink 10 can be enhanced.
 また、例えば、複数のフィン12の少なくとも1つは、さらに、第2側面板122から第1側面板121に向かって延設された第2突っ張り部127を有する。 In addition, for example, at least one of the plurality of fins 12 further includes a second projecting portion 127 extending from the second side plate 122 toward the first side plate 121.
 これにより、フィン12の強度をさらに高めることができる。 Thereby, the strength of the fin 12 can be further increased.
 また、例えば、第1突っ張り部126の根元は、アール形状を有する。 Also, for example, the root of the first strut 126 has a round shape.
 これにより、例えば、複数のフィン12の一部が密集している場合に、隣り合う2つのフィン12間の隙間を確保することができる。具体的には、図5などに示すように、複数のフィン12が光軸Jを中心として放射状に配置されている場合に、複数のフィン12の各々の光軸J側の端部は、光軸Jを囲むように密集している。接続部126aがアール形状を有することで、隙間130を大きくすることができるので、ヒートシンク10の中央部から外方に向かって空気をスムーズに流すことができる。したがって、ヒートシンク10の放熱性能を高めることができる。 Thereby, for example, when some of the plurality of fins 12 are densely packed, a gap between two adjacent fins 12 can be secured. Specifically, as shown in FIG. 5 and the like, when the plurality of fins 12 are arranged radially around the optical axis J, the end of each of the plurality of fins 12 on the optical axis J side It is dense so as to surround the axis J. Since the connecting portion 126a has a round shape, the gap 130 can be enlarged, so that air can flow smoothly from the central portion of the heat sink 10 toward the outside. Therefore, the heat dissipation performance of the heat sink 10 can be enhanced.
 また、例えば、外側底面110bを平面視した場合において、底板120は、外側底面110bの外方に向かって突出する突出部124を有し、突出部124の先端は、外側底面110bの外周縁110cに位置している。 Further, for example, when the outer bottom surface 110b is viewed in plan, the bottom plate 120 has a protrusion 124 that protrudes outward from the outer bottom surface 110b, and the tip of the protrusion 124 has an outer peripheral edge 110c of the outer bottom surface 110b. Is located.
 これにより、フィン12の表面積を大きくすることができるので、ヒートシンク10の放熱性能を高めることができる。また、突出部124は外周縁110cより外方に突出しないように位置しているので、他の物体が突出部124に引っかかりにくい。このため、例えば、照明器具1の施工者の指などが突出部124に誤ってぶつかりにくくなるので、施工時の取り扱いの安全性を高めることができる。また、例えば、光源20に給電するための配線が突出部124に引っかかりにくくなるので、配線の破損を抑制することができ、照明器具1の信頼性を高めることができる。 Thereby, since the surface area of the fin 12 can be increased, the heat dissipation performance of the heat sink 10 can be enhanced. Further, since the protruding portion 124 is positioned so as not to protrude outward from the outer peripheral edge 110 c, other objects are not easily caught by the protruding portion 124. For this reason, for example, since the finger of the builder of the lighting fixture 1 is not likely to accidentally hit the protruding portion 124, the safety of handling during construction can be improved. In addition, for example, since the wiring for supplying power to the light source 20 is not easily caught by the protruding portion 124, the wiring can be prevented from being damaged, and the reliability of the lighting fixture 1 can be improved.
 また、例えば、外側底面110bの平面視形状は、円形であり、複数のフィン12の各々は、外側底面110bの径方向に沿って長尺であり、かつ、互いに等間隔に配置されている。 For example, the plan view shape of the outer bottom surface 110b is circular, and each of the plurality of fins 12 is long along the radial direction of the outer bottom surface 110b and is arranged at equal intervals.
 これにより、例えば、複数のフィン12の配置を対称な配置にすることができ、放熱性能を面内で均一にすることができる。 Thereby, for example, the arrangement of the plurality of fins 12 can be made symmetrical, and the heat radiation performance can be made uniform in the plane.
 (その他)
 以上、本発明に係るヒートシンク及び照明器具について、実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As mentioned above, although the heat sink and lighting fixture concerning this invention were demonstrated based on embodiment, this invention is not limited to said embodiment.
 例えば、上記の実施の形態では、ヒートシンク10のベース11と複数のフィン12とが別体(別部材)で構成されている例について示したが、ベース11と複数のフィン12とは一体成形されていてもよい。すなわち、ヒートシンク10の全体が一体成形品でもよく、例えば、アルミダイカスト製でもよい。 For example, in the above-described embodiment, an example in which the base 11 and the plurality of fins 12 of the heat sink 10 are configured as separate bodies (separate members) has been described, but the base 11 and the plurality of fins 12 are integrally formed. It may be. That is, the entire heat sink 10 may be an integrally molded product, for example, an aluminum die cast.
 また、例えば、上記の実施の形態では、ベース11と複数のサブフィン13とが一体成形品である例について示したが、ベース11と複数のサブフィン13とは別体(別部材)で構成されていてもよい。例えば、サブフィン13はフィン12と同等の構造を有し、ベース11にかしめられて固定されていてもよい。 Further, for example, in the above-described embodiment, an example in which the base 11 and the plurality of sub fins 13 are integrally formed has been shown, but the base 11 and the plurality of sub fins 13 are configured as separate bodies (separate members). May be. For example, the sub fin 13 may have a structure equivalent to the fin 12 and may be caulked and fixed to the base 11.
 また、例えば、上記の実施の形態では、ベース11と複数のフィン12とがかしめられて固定されている例について示したが、ベース11とフィン12との固定方法はこれに限らない。例えば、フィン12は、ベース11に圧入されてもよく、ネジなどの固定部材を用いて固定されてもよい。サブフィン13がベース11とは別体である場合も同様にしてもよい。 Further, for example, in the above-described embodiment, an example in which the base 11 and the plurality of fins 12 are caulked and fixed is shown, but the fixing method of the base 11 and the fins 12 is not limited thereto. For example, the fin 12 may be press-fitted into the base 11 and may be fixed using a fixing member such as a screw. The same may be applied to the case where the sub fin 13 is a separate body from the base 11.
 また、例えば、上記の実施の形態では、フィン12の上面視形状が点対称である例について示したが、これに限らない。例えば、フィン12は、第1突っ張り部126及び第2突っ張り部127のいずれか一方のみを備えていてもよい。また、フィン12は、突出部124及び125のいずれか一方のみを備えていてもよい。 For example, in the above-described embodiment, the example in which the shape of the fin 12 as viewed from above is point-symmetric is shown, but the present invention is not limited to this. For example, the fin 12 may include only one of the first tension part 126 and the second tension part 127. Further, the fin 12 may include only one of the projecting portions 124 and 125.
 また、例えば、第1突っ張り部126は、第1側面板121の長手方向の端部ではなく、中央から設けられていてもよい。あるいは、第1突っ張り部126は、第1側面板121の上端に設けられていてもよい。第2突っ張り部127についても同様であってもよい。 Further, for example, the first strut 126 may be provided from the center instead of the end of the first side plate 121 in the longitudinal direction. Alternatively, the first strut 126 may be provided at the upper end of the first side plate 121. The same may be applied to the second strut portion 127.
 また、例えば、フィン12は、断面U字状に限らず、断面L字状でもよい。例えば、フィン12は、底板120と、第1側面板121及び第2側面板122のいずれか一方のみとを有してもよい。また、例えば、第1側面板121のみからなるフィン12をベース11に圧入することで固定してもよい。すなわち、フィン12は、底板120を備えなくてもよい。 Further, for example, the fin 12 is not limited to a U-shaped section, but may have an L-shaped section. For example, the fin 12 may include the bottom plate 120 and only one of the first side plate 121 and the second side plate 122. Further, for example, the fins 12 including only the first side plate 121 may be fixed by press-fitting into the base 11. That is, the fin 12 may not include the bottom plate 120.
 また、例えば、上記の実施の形態では、サブフィン13の平面視形状が長円又は楕円である例について示したが、これに限らない。例えば、サブフィン13は、外側底面110bに立設された板状のフィンでもよく、上面視形状が長方形でもよい。あるいは、サブフィン13は、外側底面110bに立設された筒状のフィンでもよく、上面視形状が円環状又は矩形環状でもよい。 For example, in the above-described embodiment, the example in which the planar view shape of the sub fin 13 is an ellipse or an ellipse has been described, but the present invention is not limited thereto. For example, the sub fin 13 may be a plate-like fin erected on the outer bottom surface 110b, and may have a rectangular shape when viewed from above. Alternatively, the sub fin 13 may be a cylindrical fin standing on the outer bottom surface 110b, and the top view shape may be an annular shape or a rectangular shape.
 また、例えば、上記の実施の形態では、サブフィン13が隣り合う2つのフィン12間毎に設けたが、これに限らない。サブフィン13は、外側底面110b上に1つのみ設けられていてもよい。 In addition, for example, in the above embodiment, the sub fin 13 is provided between every two adjacent fins 12, but this is not restrictive. Only one sub fin 13 may be provided on the outer bottom surface 110b.
 また、例えば、上記の実施の形態では、ベース11が円盤状、すなわち、外側底面110b及び内側底面110aの各々の平面視形状が円形である例について示したが、これに限らない。ベース11は、矩形板状でもよく、外側底面110b及び内側底面110aの各々の平面視形状は、長方形又は正方形などの多角形でもよい。 Further, for example, in the above-described embodiment, the base 11 is disk-shaped, that is, an example in which each of the outer bottom surface 110b and the inner bottom surface 110a is circular in plan view is shown, but the present invention is not limited thereto. The base 11 may have a rectangular plate shape, and the planar view shape of each of the outer bottom surface 110b and the inner bottom surface 110a may be a polygon such as a rectangle or a square.
 また、例えば、上記の実施の形態では、照明器具1がダウンライトなどの埋込型照明器具である例について示したが、これに限らない。照明器具1は、スポットライトなどでもよい。 Further, for example, in the above-described embodiment, the example in which the lighting device 1 is an embedded lighting device such as a downlight has been described, but the present invention is not limited thereto. The lighting fixture 1 may be a spotlight or the like.
 また、例えば、上記の実施の形態では、ヒートシンク10が照明器具1の器具本体として用いられる例について示したが、これに限らない。ヒートシンク10は、電源回路などの発熱する部品の放熱に利用することができる。 Further, for example, in the above-described embodiment, the heat sink 10 is used as the fixture body of the lighting fixture 1, but the present invention is not limited thereto. The heat sink 10 can be used to radiate heat generating components such as a power circuit.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1 照明器具
10 ヒートシンク
11 ベース
12 フィン
13 サブフィン
20 光源
110 底部
110a 内側底面
110b 外側底面
110c 外周縁
112 被取付部
113 溝
113a 第1側壁
113b 第2側壁
114 突起部
120 底板
121 第1側面板
122 第2側面板
123 貫通孔
124、125 突出部
126 第1突っ張り部
127 第2突っ張り部
140 空隙
 
DESCRIPTION OF SYMBOLS 1 Lighting fixture 10 Heat sink 11 Base 12 Fin 13 Sub fin 20 Light source 110 Bottom part 110a Inner bottom face 110b Outer bottom face 110c Outer peripheral edge 112 Mounted part 113 Groove 113a First side wall 113b Second side wall 114 Projection part 120 Bottom plate 121 First side plate 122 First 2 side plate 123 Through- holes 124, 125 Protruding portion 126 First strut portion 127 Second strut portion 140 Air gap

Claims (15)

  1.  有底筒状のベースと、
     前記ベースの底部の外側底面上に放射状に配置された複数のフィンと、
     前記複数のフィンのうち隣り合う2つのフィンの間の前記外側底面上に配置されたサブフィンとを備え、
     前記サブフィンの前記外側底面からの高さは、前記フィンの前記外側底面からの高さより低い
     ヒートシンク。
    A bottomed cylindrical base,
    A plurality of fins radially disposed on an outer bottom surface of the bottom of the base;
    A sub-fin disposed on the outer bottom surface between two adjacent fins of the plurality of fins;
    The height of the sub fin from the outer bottom surface is lower than the height of the fin from the outer bottom surface.
  2.  前記ベースと前記サブフィンとは、一体成形品である
     請求項1に記載のヒートシンク。
    The heat sink according to claim 1, wherein the base and the sub fin are integrally molded products.
  3.  前記外側底面を平面視した場合において、
     前記サブフィンの外形は、長円又は楕円であり、
     前記サブフィンは、その長手方向が前記複数のフィンの放射方向に沿うように配置されている
     請求項1又は2に記載のヒートシンク。
    When the outer bottom surface is viewed in plan view,
    The outer shape of the sub-fin is an ellipse or an ellipse,
    The heat sink according to claim 1 or 2, wherein the sub-fins are arranged such that a longitudinal direction thereof follows a radial direction of the plurality of fins.
  4.  前記サブフィンは、前記隣り合う2つのフィンの間毎に配置されている
     請求項1~3のいずれか1項に記載のヒートシンク。
    The heat sink according to any one of claims 1 to 3, wherein the sub fins are arranged between the two adjacent fins.
  5.  前記サブフィンは、前記外側底面を平面視した場合において、前記隣り合う2つのフィンから等距離の位置に配置されている
     請求項1~4のいずれか1項に記載のヒートシンク。
    The heat sink according to any one of claims 1 to 4, wherein the sub fin is disposed at an equal distance from the two adjacent fins when the outer bottom surface is viewed in plan.
  6.  前記サブフィンは、前記外側底面を平面視した場合において、前記外側底面の外周縁に沿って配置されている
     請求項1~5のいずれか1項に記載のヒートシンク。
    The heat sink according to any one of claims 1 to 5, wherein the sub-fin is disposed along an outer peripheral edge of the outer bottom surface when the outer bottom surface is viewed in plan.
  7.  前記複数のフィンは、前記ベースと別体で構成されている
     請求項1~6のいずれか1項に記載のヒートシンク。
    The heat sink according to any one of claims 1 to 6, wherein the plurality of fins are configured separately from the base.
  8.  前記底部の内側底面には、光源が取り付けられる被取付部の外周に沿って溝が設けられ、
     前記溝は、前記被取付部に近い第1側壁と、前記第1側壁より前記被取付部から離れた第2側壁とを有し、
     前記第1側壁は、前記内側底面に対して垂直であり、
     前記第2側壁は、前記内側底面に対して傾斜している
     請求項1~7のいずれか1項に記載のヒートシンク。
    On the inner bottom surface of the bottom portion, a groove is provided along the outer periphery of the attached portion to which the light source is attached,
    The groove has a first side wall close to the mounted portion, and a second side wall separated from the mounted portion from the first side wall,
    The first side wall is perpendicular to the inner bottom surface;
    The heat sink according to any one of claims 1 to 7, wherein the second side wall is inclined with respect to the inner bottom surface.
  9.  前記複数のフィンの少なくとも1つは、
     貫通孔が設けられた底板と、
     前記底板に立設された側面板とを有し、
     前記ベースは、前記貫通孔に挿入された突起部を有し、
     前記ベースと前記底板とは、前記突起部を介して熱的に接続され、
     前記底板と前記外側底面との間には、空隙が設けられている
     請求項1~8のいずれか1項に記載のヒートシンク。
    At least one of the plurality of fins is
    A bottom plate provided with a through hole;
    A side plate erected on the bottom plate,
    The base has a protrusion inserted into the through hole,
    The base and the bottom plate are thermally connected via the protrusions,
    The heat sink according to any one of claims 1 to 8, wherein a gap is provided between the bottom plate and the outer bottom surface.
  10.  前記複数のフィンの少なくとも1つは、
     底板と、
     前記底板に立設された一対の第1側面板及び第2側面板と、
     前記第1側面板から前記第2側面板に向かって延設された第1突っ張り部とを有する
     請求項1~8のいずれか1項に記載のヒートシンク。
    At least one of the plurality of fins is
    The bottom plate,
    A pair of first and second side plates erected on the bottom plate;
    The heat sink according to any one of claims 1 to 8, further comprising a first projecting portion that extends from the first side plate toward the second side plate.
  11.  前記複数のフィンの少なくとも1つは、さらに、
     前記第2側面板から前記第1側面板に向かって延設された第2突っ張り部を有する
     請求項10に記載のヒートシンク。
    At least one of the plurality of fins further includes:
    The heat sink according to claim 10, further comprising a second projecting portion extending from the second side plate toward the first side plate.
  12.  前記第1突っ張り部の根元は、アール形状を有する
     請求項10又は11に記載のヒートシンク。
    The heat sink according to claim 10 or 11, wherein a root of the first projecting portion has a round shape.
  13.  前記外側底面を平面視した場合において、
     前記底板は、前記外側底面の外方に向かって突出する突出部を有し、
     前記突出部の先端は、前記外側底面の外周縁に位置している
     請求項10~12のいずれか1項に記載のヒートシンク。
    When the outer bottom surface is viewed in plan view,
    The bottom plate has a protruding portion protruding outward of the outer bottom surface,
    The heat sink according to any one of claims 10 to 12, wherein a tip of the protruding portion is located on an outer peripheral edge of the outer bottom surface.
  14.  前記外側底面の平面視形状は、円形であり、
     前記複数のフィンの各々は、前記外側底面の径方向に沿って長尺であり、かつ、互いに等間隔に配置されている
     請求項1~13のいずれか1項に記載のヒートシンク。
    The plan view shape of the outer bottom surface is a circle,
    The heat sink according to any one of claims 1 to 13, wherein each of the plurality of fins is elongated along the radial direction of the outer bottom surface and is arranged at equal intervals.
  15.  請求項1~14のいずれか1項に記載のヒートシンクと、
     前記底部の内側底面に取り付けられた光源とを備える
     照明器具。
     
     
    A heat sink according to any one of claims 1 to 14,
    A light source attached to an inner bottom surface of the bottom.

PCT/JP2017/021409 2016-07-15 2017-06-09 Heat sink and lighting apparatus WO2018012160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527448A JP6664083B2 (en) 2016-07-15 2017-06-09 Heat sink and lighting equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140875 2016-07-15
JP2016-140875 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012160A1 true WO2018012160A1 (en) 2018-01-18

Family

ID=60951718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021409 WO2018012160A1 (en) 2016-07-15 2017-06-09 Heat sink and lighting apparatus

Country Status (2)

Country Link
JP (1) JP6664083B2 (en)
WO (1) WO2018012160A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212485A (en) * 2018-06-05 2019-12-12 株式会社小糸製作所 Lamp unit and manufacturing method of the same
CN113280277A (en) * 2021-05-20 2021-08-20 肖静 LED lamp with good heat dissipation effect
JP7463769B2 (en) 2020-03-03 2024-04-09 三菱電機株式会社 Lighting equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163765U (en) * 2010-08-19 2010-10-28 株式会社サンテック Luminaire body and luminaire
JP2013065436A (en) * 2011-09-16 2013-04-11 Iris Ohyama Inc Led lamp
JP2015210880A (en) * 2014-04-24 2015-11-24 コイズミ照明株式会社 lighting equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163765U (en) * 2010-08-19 2010-10-28 株式会社サンテック Luminaire body and luminaire
JP2013065436A (en) * 2011-09-16 2013-04-11 Iris Ohyama Inc Led lamp
JP2015210880A (en) * 2014-04-24 2015-11-24 コイズミ照明株式会社 lighting equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212485A (en) * 2018-06-05 2019-12-12 株式会社小糸製作所 Lamp unit and manufacturing method of the same
JP7298995B2 (en) 2018-06-05 2023-06-27 株式会社小糸製作所 Manufacturing method of lamp unit
JP7463769B2 (en) 2020-03-03 2024-04-09 三菱電機株式会社 Lighting equipment
CN113280277A (en) * 2021-05-20 2021-08-20 肖静 LED lamp with good heat dissipation effect
CN113280277B (en) * 2021-05-20 2023-08-18 深圳市众合网流科技有限公司 LED lamp with good heat dissipation effect

Also Published As

Publication number Publication date
JPWO2018012160A1 (en) 2019-03-22
JP6664083B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP5327601B2 (en) Light emitting module and lighting device
KR101227525B1 (en) Lighting apparatus
JP5699753B2 (en) Lamp apparatus and lighting apparatus
WO2011148536A1 (en) Lamp and illumination apparatus
KR20130033427A (en) Lightbulb-formed lamp and illumination apparatus
KR101349843B1 (en) Lighting apparatus
KR101295281B1 (en) Lighting apparatus
JP5757214B2 (en) LED lighting device
WO2018012160A1 (en) Heat sink and lighting apparatus
JP2014154230A (en) Lamp device, light-emitting device, and lighting device
JP6484967B2 (en) HOLDER, LIGHTING DEVICE, AND LIGHTING DEVICE MANUFACTURING METHOD
WO2013128732A1 (en) Light-emitting device and lighting apparatus using same
JP5582899B2 (en) Lamp and lighting device
JP6508556B2 (en) lighting equipment
KR101227526B1 (en) Lighting apparatus
JP2014222625A (en) Lamp
JP2013069588A (en) Led lighting fixture
JP2012119230A (en) Led lamp and led lighting device
JP6233087B2 (en) Lighting device
JP6611063B2 (en) Lighting apparatus and manufacturing method thereof
JP6671047B2 (en) lighting equipment
JP6979628B2 (en) Mounting structure of light source board
JP2016091958A (en) Luminaire
JP6536990B2 (en) lighting equipment
JP6440059B2 (en) Lighting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527448

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827292

Country of ref document: EP

Kind code of ref document: A1