WO2018011933A1 - Bonded stacked metal sheet body - Google Patents
Bonded stacked metal sheet body Download PDFInfo
- Publication number
- WO2018011933A1 WO2018011933A1 PCT/JP2016/070777 JP2016070777W WO2018011933A1 WO 2018011933 A1 WO2018011933 A1 WO 2018011933A1 JP 2016070777 W JP2016070777 W JP 2016070777W WO 2018011933 A1 WO2018011933 A1 WO 2018011933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal plate
- plate assembly
- gasket
- laminated metal
- joint
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 144
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 144
- 239000011324 bead Substances 0.000 claims abstract description 58
- 230000005484 gravity Effects 0.000 claims description 19
- 230000005855 radiation Effects 0.000 claims description 19
- 229910001220 stainless steel Inorganic materials 0.000 claims description 17
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 14
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 238000005304 joining Methods 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims 1
- 238000003466 welding Methods 0.000 abstract description 17
- 238000007789 sealing Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 41
- 239000000463 material Substances 0.000 description 30
- 230000000712 assembly Effects 0.000 description 12
- 238000000429 assembly Methods 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F11/00—Arrangements of sealings in combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B5/00—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
- F16B5/08—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
Definitions
- the present invention relates to a laminated metal plate assembly.
- Gaskets having heat resistance are used for automobile exhaust system parts such as automobile and motorcycle engines, exhaust manifolds, catalytic converters, EGR coolers, turbochargers, and the like.
- FIG. 1 and FIG. 2 show examples of gaskets used for connecting parts of automobile exhaust system parts.
- a connection portion 30a between the exhaust manifold 10 and the exhaust pipe 20a, a connection portion 30b between the exhaust pipe 20a and the exhaust pipe 20b, and the like are formed on the flanges 21a and 21b, respectively.
- the bolts 40a and 40b inserted in the through holes are fastened to tighten them.
- the gaskets 1a and 1b are sandwiched between the gaps between the connecting portions 30a and 30b.
- the gasket has an uneven portion (hereinafter referred to as “bead”), and the gasket bead is deformed by tightening the bolts 40a and 40b. As a result, prevention of gas leakage from the connection portions 30a and 30b can be achieved.
- bead uneven portion
- Patent Document 1 high nitrogen stainless steel proposed in Japanese Patent Application Laid-Open No. 2009-249658 (Patent Document 1) or JIS G 4902 (corrosion and heat resistance) can be used as a gasket that can withstand use at high temperatures.
- a gasket using a clad material instead of a single metal plate is known.
- Patent Document 2 discloses a metal gasket in which a ferritic stainless steel is joined to a portion exposed to a corrosive atmosphere of a substrate made of austenitic stainless steel. Is disclosed.
- Patent Document 3 discloses a gasket in which a ferrite structure layer is bonded to both surfaces of an austenite structure layer to cause creep deformation in the layer thickness direction.
- Automobile exhaust system parts undergo high-temperature thermal cycles due to the heat of exhaust gas, so that expansion and contraction are repeated, and so-called “sagging” occurs in which the repulsion force of the beads decreases due to material recovery and recrystallization. .
- settling occurs in the bead, the surface pressure between the bead and the flange is lowered, and the exhaust gas pressure cannot be withstood and complete sealing becomes difficult.
- Patent Document 2 In order to increase the combustion gas temperature for the purpose of improving the combustion efficiency, even if a single metal plate is used, a material such as that disclosed in Patent Document 1 cannot be avoided.
- the technique of Patent Document 2 is mainly for the purpose of preventing stress corrosion cracking, and has not been studied for the bead sag.
- patent document 3 it does not describe about forming a bead in a gasket. Further, the thermal expansion at high temperature in the vertical direction of the gasket thickness is suppressed, and the thickness of the entire gasket is increased from the initial dimension, and the sag of the beads has not been studied.
- the present invention has been made in order to solve the above-described problems of the prior art, and is a laminated metal plate useful for use in a gasket capable of effectively preventing a decrease in sealing performance even when a settling of a bead occurs.
- the object is to provide a joined body.
- a heat-resistant gasket for automobiles which is one of the technical fields targeted by the present invention, is mounted on an automobile and its usage time is several thousand hours. was there.
- FIG. 3 is a partially enlarged view of the periphery of the connection portion 30a between the exhaust manifold 10 and the exhaust pipe 20a in FIG.
- the gasket 1a is sandwiched between the gaps of the connecting portion 30a, and the bead of the gasket 1a is deformed by tightening the bolt 40a. Therefore, the gasket 1a and the exhaust manifold 10
- the contact surface is fixed in a state where a predetermined surface pressure is applied.
- the present inventors decided to configure the gasket 1a as a structure in which metal plates were laminated and joined (hereinafter referred to as “laminated metal plate assembly”).
- the gasket 1a can ensure high sealing performance when a laminated metal plate assembly composed of metal plates having different thermal expansion coefficients is used. Specifically, when a laminated metal plate assembly in which a metal plate having a small coefficient of thermal expansion is arranged on the surface side (upper side) where the beads are raised and formed and a metal plate having a large coefficient of thermal expansion is arranged on the lower side is used, The bead warps upward by heating with the exhaust gas. As a result, as shown in FIG.
- the gasket 1a has a high surface pressure between the exhaust manifold 10 and the exhaust pipe flange 21a, and can secure a sealing property. This is effective in increasing the temperature of combustion gas for the purpose of improving combustion efficiency, and the same effect is expected.
- a clad material obtained by bonding the entire surface as a laminated metal plate assembly can also be used.
- the clad material is efficiently bonded by heating generally at a temperature higher than room temperature and lower than the recrystallization temperature, or heat higher than the recrystallization temperature. Heating at the time of joining is considered to be inevitable for steels mainly composed of iron, stainless steel, and the like.
- the clad material cannot maintain flatness due to the difference in shrinkage after cooling to room temperature.
- the metal strip steel strip etc.
- the clad material has a configuration capable of maintaining flatness even after cooling to room temperature.
- the present inventors have studied in detail the structure of a gasket that achieves the object of the present invention and the characteristics after holding at high temperature, and found a laminated metal plate assembly useful for the gasket.
- the gist of the present invention is as follows.
- a multilayer metal plate It comprises a joint part that joins the metal plates of the multilayer, A laminated metal plate assembly in which the joint portion regularly arranges points or lines.
- the joint portion includes a first joint portion group formed on a plurality of parallel lines and a second joint portion group formed on a plurality of parallel lines having a certain angle with respect to the parallel lines.
- the laminated metal plate assembly according to any one of (1) to (3) above.
- a gasket including a first flat surface portion including the exhaust gas conduction hole, a second flat surface portion including a bolt insertion hole, and a bead provided between the first flat surface portion and the second flat surface portion.
- a laminated metal plate assembly used, The joint passes through a point where the length of the boundary line between the position corresponding to the first plane portion and the position corresponding to the bead is equally divided with the position corresponding to the center of gravity of the exhaust gas conduction hole as a base point.
- the laminated metal plate assembly according to (4), formed on radiation.
- the metal plate is an austenitic stainless steel plate and a ferritic stainless steel plate.
- a gasket that can compensate for a decrease in surface pressure even when the beads are set loose and can maintain a sealing property even when used for a long time in a high temperature environment. Can be provided.
- the fragmentary sectional view which shows the example of the gasket used for the connection part of the exhaust system components of a motor vehicle.
- the partial exploded view which shows the example of the gasket used for the connection part of the exhaust system components of a motor vehicle.
- the fragmentary sectional view which shows the various aspects of a gasket.
- (A) shows a mode in which the initial internal pressure is not applied, and
- (b) shows a normal gasket mode in which the sealing performance cannot be secured when the internal pressure is applied after being exposed to high temperature for a long time.
- (C) shows an embodiment of the present invention that ensures sealing performance even when an internal pressure is applied after being exposed to a high temperature for a long time.
- the perspective view which shows the example of the laminated metal plate assembly which concerns on this invention.
- the top view which shows the other example of the laminated metal plate assembly which concerns on this invention The top view which shows the other example of the laminated metal plate assembly which concerns on this invention.
- Sectional drawing which shows the example of the gasket using the laminated metal plate assembly which concerns on this invention.
- the top view which shows the example of the gasket using the laminated metal plate assembly which concerns on this invention.
- the top view which shows the other example of the gasket using the laminated metal plate assembly which concerns on this invention.
- the top view which shows the other example of the gasket using the laminated metal plate assembly which concerns on this invention The figure which shows the example of the gasket comprised by a 2 or more laminated metal plate assembly.
- FIG. 1 shows the gasket comprised by two laminated metal plate assemblies
- FIG. 3 shows the gasket comprised by three laminated metal plate assemblies.
- the laminated metal plate assembly 50 of this embodiment includes a multilayer metal plate (first metal plate 50a, second metal plate 50b) and a multilayer metal plate 50a. , 50b are joined together.
- the joint portion 51 has a point shape and is regularly arranged.
- the joint 51 can be formed by a known method such as spot welding.
- illustration is abbreviate
- the joint portions 51a and 51b are regularly arranged. That is, the joint portion 51a is formed on a plurality of parallel lines Pla and constitutes a first joint portion group, and the joint portion 51b is at a certain angle (90 ° in the example shown in FIG. 5) with respect to the parallel lines Pla. Are formed on a plurality of parallel lines Plb and constitute a second joint group. From another viewpoint, the joint portion 51a is formed on a plurality of parallel lines Pla, and the joint portion 51b is formed on a line Plb that is translationally symmetric with respect to the parallel lines Pla, and constitutes a second joint portion group. is doing.
- the translational line Plb is preferably a straight line with respect to the parallel line Pla.
- the joint portions 51c, 51d, and 51e are regularly arranged. That is, the joint portion 51c is formed on a plurality of parallel lines Plc and constitutes a first joint portion group, and the joint portion 51d is at a certain angle with respect to the parallel lines Plc (60 ° in the example shown in FIG. 6). Are formed on a plurality of parallel lines Pld to form a second joint group, and the joint 51e has a plurality of parallels having a certain angle (120 ° in the example shown in FIG. 6) with respect to the parallel lines Plc. It is formed on the line Ple and constitutes the second joint group.
- the joint portion 51c is formed on a plurality of parallel lines Plc, and the joint portions 51d and 51e are formed on translational symmetry lines Pld and Ple with respect to the parallel line Plc, respectively. It constitutes a joint group.
- the translational symmetry lines Pld and Ple with respect to the parallel line Plc are preferably straight lines.
- Reference numeral 60 in FIG. 5 and reference numeral 61 in FIG. 6 are portions (exhaust gas conduction hole planned portions) scheduled to be punched as exhaust gas conduction holes, and reference numerals 60 a and 61 a denote exhaust gas conduction holes, respectively. It is a position corresponding to the center of gravity.
- the intersections of the plurality of parallel lines Pla formed with the first joint group 51 a and the plurality of parallel lines Plb formed with the second joint group 51 b are the exhaust gas conduction hole planned portions 60.
- exhaust gas conduction hole (exhaust gas conduction hole planned portion 61) may be circular or elliptical, and the shape is not limited.
- the joint 51a and the joint 51b, and the joint 51c, the joint 51d, and the joint 51e are preferably formed at positions corresponding to the following radiations when used in gaskets. This will be described in detail later.
- austenitic stainless steel When austenitic stainless steel is used as the first metal plate layer 50a, it is desirable that the coefficient of thermal expansion is higher, and when ferritic stainless steel is used as the second metal plate layer 50b, the coefficient of thermal expansion is higher. A low is desirable.
- the chemical composition of austenitic stainless steel and ferritic stainless steel is not limited to a specific chemical composition.
- the austenitic stainless steel include SUS301, SUS301L, SUS304, SUS304LN, SUS316L, SUS310S, and SUS201 defined in JIS standards.
- ferritic stainless steel include SUS409L, SUS410L, SUS430, SUS444, SUS436J1L, SUS436L, and SUS430JIL.
- the ratio of the thickness of the first metal layer 50a (austenitic stainless steel layer) to the total thickness is preferably 20 to 80%.
- a preferred lower limit is 30%, and a more preferred value is 45%.
- the preferable upper limit is 70%, and more preferably 55%.
- the laminated metal plate assembly 50 preferably has a two-layer structure from the viewpoint of manufacturing cost, but may include three or more metal plate layers. However, even if the clad has three or more layers, the thickness ratio of the first metal plate layer 50a (the layer having a high coefficient of thermal expansion) needs to be 20% or more and 80% or less.
- FIG. 11 shows an example of a gasket constituted by two or more laminated metal plate assemblies.
- the total thickness of the gasket in the case of a gasket composed of a single laminated metal plate assembly 5, the total thickness of the laminated metal plate assembly 5) is small, the beads are raised and formed at high temperatures. Although it is possible to warp to the surface 8a side, depending on the combination of materials, when the total thickness of the gasket is less than 0.1 mm, the warping force is reduced, and the exhaust gas sealability is poor. For this reason, the total thickness of a gasket shall be 0.1 mm or more. On the other hand, as the total thickness of the gasket increases, the material cost increases. For this reason, the total thickness of the gasket is preferably 1.5 mm or less.
- a more preferred upper limit is 1.0 mm, a more preferred upper limit is 0.7 mm, and a still more preferred upper limit is 0.5 mm.
- the total thickness of the laminated metal plate assembly constituting the gasket is preferably 1.0 mm or less, preferably 0.7 mm or less, and more preferably 0.5 mm or less.
- the total thickness of the laminated metal plate assembly may be thin, but a preferred lower limit is 0.1 mm.
- Manufacturing method of laminated metal plate assembly As a manufacturing method of the laminated metal plate assembly, for example, spot welding (resistance welding), seam welding in a state where metal plates to be the first metal plate 50a and the second metal 50b are laminated. It is good to join by well-known methods, such as welding, such as crimping, and crimping.
- spot welding resistance welding
- seam welding in a state where metal plates to be the first metal plate 50a and the second metal 50b are laminated. It is good to join by well-known methods, such as welding, such as crimping, and crimping.
- the gasket 1 of the present embodiment is composed of a laminated metal plate assembly including a first metal plate layer 5a and a second metal plate layer 5b. And this gasket 1 is provided between the 1st plane part 6 provided with the waste gas conduction hole 6a, the 2nd plane part 7 provided with the bolt insertion hole 7a, and the 1st plane part 6 and the 2nd plane part 7. Provided beads 8.
- the bead 8 is formed so as to rise to one side in the thickness direction of the laminated metal plate assembly at a position surrounding the exhaust gas conduction hole 6a.
- the exhaust gas conduction hole 6a is for conducting fluid.
- the 1st plane part 6 and the 2nd plane part 7 are provided with the junction parts 6b and 7b, and the 1st metal plate layer 5a and the 2nd metal plate layer 5b are joined by these.
- the bead 8 may be provided with the junction part 8b.
- the gasket 1 of the present embodiment utilizes a difference in thermal expansion coefficient at a high temperature between the first metal plate layer 5a and the second metal plate layer 5b joined by the joint portions 6b and 7b. That is, when a material having a high coefficient of thermal expansion (for example, austenitic stainless steel) is used as the first metal plate layer 5a, and a material having a low coefficient of thermal expansion (for example, ferritic stainless steel) is used as the second metal plate layer 5b.
- a material having a high coefficient of thermal expansion for example, austenitic stainless steel
- ferritic stainless steel ferritic stainless steel
- the bead 8 can be warped in the rising direction to restore the surface pressure. .
- the surface pressure between the gasket 1a, the exhaust manifold 10 and the exhaust pipe flange 21a can be maintained, and the internal pressure of the exhaust gas flowing through the exhaust pipe 20a (the white arrow in the figure) can be withstood.
- the necessary sealing performance can be achieved.
- the gasket 1a sandwiched between the connection portions 30a between the exhaust manifold 10 and the exhaust pipe 20a is described as an example, but the effect of the present invention is not limited to such an example.
- the same effects as described above can be obtained as long as the gasket is used in a portion used at a high temperature, such as the gasket 1b sandwiched between the connection portions 30b between the exhaust pipe 20a and the exhaust pipe 20b.
- the exhaust manifold 10 or the flange facing the gasket is collectively referred to as a “flange or the like”.
- the joints 6b and 7b are, for example, radiation La passing through points (intersections of the radiations La and Lb and the inner peripheral edge 6d) that are equiangularly spaced from the center of gravity 6c of the exhaust gas conduction hole 6a.
- Lb may be formed.
- the joint portion may be formed on three radiations that pass through points at intervals of 60 °, or may be formed on three radiations that pass through points at intervals of 45 °. It may be formed on radiation that passes through points that are equiangularly spaced at a narrower angle. In any case, it is important to form the joint in the laminated metal plate assembly in advance so that the joint is disposed at such a desired position.
- the joining portion is formed at least on the first plane portion 6 and the second plane portion 7 (see 6b and 7b in FIG. 8). As shown in FIG. In addition to the plane part 6 and the second plane part 7, it may be formed on the bead 8 (see 8b in FIG. 9).
- the first metal plate layer 5a and the second metal plate layer 5b can be bonded by these bonding portions 6b and 7b (or 8b).
- the joints 6b and 7b are obtained by dividing the length of the inner peripheral edge 6d equally from the center of gravity 6c of the exhaust gas conduction hole 6a (radiations Lc to Le and the inner peripheral edge). It may be formed on the radiations Lc to Le passing through (intersection with 6d). Also in this case, the first metal plate layer 5a and the second metal plate layer 5b can be joined by the joint portions 6b and 7b (or 8b). In addition, the joints 6b and 7b (or 8b) pass through a point that equally divides the length of the boundary line 6e between the first plane part 6 and the bead 8 with the center of gravity 6c of the exhaust gas conduction hole 6a as a base point.
- first metal plate layer 5a and the second metal plate layer 5b can be joined by the joint portions 6b and 7b (or 8b). Also in this case, it is important to form the joint portion in the laminated metal plate assembly in advance so that the joint portion is disposed at such a desired position.
- the bead (cross-sectional) shape is not particularly limited as long as it is formed to rise in one of the thickness directions of the substrate at a position surrounding the exhaust gas conduction hole. That is, the cross-sectional shape may be a bead such as a full bead or a trapezoidal bead formed by partially raising a flat substrate as shown in FIG. 7, or it may be formed upright from the inner peripheral end of the through hole.
- a half bead that is, a half bead configured by a taper may be used.
- the effect of the present invention is remarkable in the case of a gasket having a half bead.
- the gasket 100 in the embodiment shown in FIG. 11 (a) uses two gasket materials 100a and 100b each composed of a laminated metal plate assembly.
- the gasket materials 100a and 100b are respectively provided with first flat portions 110a and 110b (actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10) and second flat portions 130a and 130b (shown in FIGS. 7 to 10). As shown, it is actually provided with bolt insertion holes.), And bead 120a, 120b provided between the first plane part 110a, 110b and the second plane part 130a, 130b.
- the second flat surface portion 130a of the gasket material 100a and the first flat surface portion 110b of the gasket material 100b are joined.
- the gasket materials 100a and 100b are warped to the second metal layer side (the upper side in the drawing) having a small coefficient of thermal expansion, whereby one sheet Compared to a gasket composed of a laminated metal plate assembly, the warpage is expected to increase by about twice, and the surface pressure with the flange or the like increases.
- the gasket 200 uses two gasket materials 200a and 200b each formed of a laminated metal plate assembly.
- the gasket materials 200a and 200b are respectively provided with first plane portions 210a and 210b (actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10) and second plane portions 230a and 230b (as shown in FIGS. 7 to 10). As shown, it is actually provided with bolt insertion holes.), And bead 220a, 220b provided between the first plane part 210a, 210b and the second plane part 230a, 230b. And each 2nd plane part 230a, 230b is joined.
- the second metal layer side having a small coefficient of thermal expansion that is, the gasket material 200a warps on the upper side of the drawing and 200b warps on the lower side of the drawing.
- the warpage is expected to increase by about twice, and the surface pressure with the flange or the like increases.
- the gasket 300 in the embodiment shown in FIG. 11 (c) uses three gasket materials 300a, 300b, and 300c each formed of a laminated metal plate assembly.
- the gasket materials 300a, 300b, and 300c are respectively provided with first flat portions 310a, 310b, and 310c (actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10) and second flat portions 330a, 330b, and 330c, respectively.
- first flat portions 310a, 310b, and 310c actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10
- second flat portions 330a, 330b, and 330c respectively.
- the beads 320a provided between the first flat portions 310a, 310b, 310c and the second flat portions 330a, 330b, 330c, 320b and 320c are provided.
- the first flat portions 310a and 310b of the gasket materials 300a and 300b are joined together, and the second flat portions 330b and 330c of the gasket materials 300b and 300c are joined together.
- the total thickness of the gasket is synonymous with the total thickness of the laminated metal plate assembly in the case of a gasket composed of a single laminated metal plate assembly.
- the total thickness of the respective laminated metal plate assemblies is taken as the total thickness of the gasket.
- Gasket Manufacturing Method A gasket can be manufactured by a technique such as press molding using the above laminated metal plate assembly. Specifically, a gasket having a bead of a predetermined shape can be manufactured by blanking (punching) or press molding. Moreover, it is also possible to overlap these laminated metal plate assemblies and use them as a multi-layer stack such as a two-layer stack or a three-layer stack. In this case, the laminated metal plate assemblies may be fixed by screws or the like or spot welding. At this time, it is also possible to fix by welding a part of the periphery or by welding the whole.
- the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- Example 1 After spot welding in a state where an austenitic stainless steel plate having a chemical composition shown in Table 1 and a ferritic stainless steel plate were laminated, a gasket as shown in FIG. 12 was mainly produced by blanking (punching) and press molding. Some manufactured spot gaskets also on the beads between the first plane part and the second plane part as shown in FIG. 13, and the number of spot welds increased as shown in FIG. Spot welding was performed at 4 mm ⁇ . The dimensions of each part are shown as a representative in FIG. 12, and the same applies to FIGS. As shown in the top view of FIG.
- the blanking has a major axis of 116 mm and a minor axis of 86 mm, and a hole having a diameter of 40 mm around the intersection is also punched out simultaneously.
- it was pressed into a shape simulating a half-bead gasket.
- the initial bead height (from the thickness center on the bottom surface side to the thickness center on the top surface side) was 1.0 mm, and the warpage at high temperature (700 ° C.) was measured.
- an endurance test simulating actual machine conditions was conducted, and the sealability was evaluated with ⁇ (optimum), ⁇ (achieved), and ⁇ (not achieved, but better than conventional materials). The results are shown in Table 2.
- the upper plate in Table 2 is one plate on the upper side of the paper surface when the gasket shown in FIG.
- No. Nos. 1 to 53 exhibit a certain warp at high temperatures and are excellent in sealing properties.
- No. 1 was performed only on the flat surface as shown in FIG. Compared with Nos. 14, 22, and 28, No. 14 was spot welded to the beads as shown in FIG. 15, 23, 29, No. 1 with increased spot welding as shown in FIG.
- the warpages 16 and 24 are both large.
- No. 43 and 44 are clads between ferritic stainless steels, and the difference in coefficient of thermal expansion is small.
- No. 45 and 46 are clads between austenitic stainless steels, and the difference in coefficient of thermal expansion is small. For this reason, warpage at high temperature is small. Sealability is inferior compared to 1-40.
- No. Nos. 47 and 50 have a large total plate thickness, and thus warp at a high temperature is large, but the force for pressing the flange portion is weak. Sealability is inferior compared to 1-40.
- No. Nos. 41, 42, 48, 49, and 51 to 53 have a very high or very low plate thickness ratio of austenitic stainless steel, so the warpage at high temperature is small. Sealability is inferior compared to 1-40.
- Example 2 As shown in FIG. 12, after austenitic stainless steel sheet having the chemical composition shown in Table 1 and a ferritic stainless steel sheet are spot welded in a laminated state to form a three-layer or four-layer clad, blanking and press forming are performed. A gasket (without bead joints) was produced. Table 3 shows the configuration and characteristics of each cladding.
- a laminated metal plate assembly is a 1st board, a 2nd board, and a 3rd board in an order from the side (uppermost side of a paper surface) in which the bead was raised and formed.
- Table 3 The results are shown in Table 3 as the fourth plate.
- no. Nos. 54 to 61 satisfy the requirements of the present invention, warp in a direction to fill a gap with a flange or the like at high temperature, and have excellent sealing properties.
- Example 3 As shown in FIG. 12, after austenitic stainless steel plate having the chemical composition shown in Table 1 and a ferritic stainless steel plate are spot welded to form a two-layer or three-layer clad, blanking and press forming are performed. A gasket material (without a bead joint) was used. Next, a cross-sectional structure as shown in FIGS. 11A to 11C was formed by spot welding. Table 4 shows the configuration and characteristics of each cladding.
- each laminated metal plate assembly includes the first plate, the second plate, and the first plate in order from the side where the beads are raised and formed (the uppermost side of the paper).
- the three plates are shown in Table 4.
- Invention Examples 62 to 67 satisfy the provisions of the present invention, warp in the direction of filling the gap with the flange at high temperature, and have excellent sealing properties.
- the laminated metal plate assembly of the present invention When the laminated metal plate assembly of the present invention is used, a gasket that can compensate for a decrease in surface pressure even when the beads are set loose and can maintain a sealing property even when used for a long time in a high temperature environment. Can be provided. Therefore, the present invention has high applicability in the machine component manufacturing industry.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Gasket Seals (AREA)
- Connection Of Plates (AREA)
- Exhaust Silencers (AREA)
Abstract
This bonded stacked metal sheet body 50 is provided with multiple metal sheets (first metal sheet 50a, second metal sheet 50b) and bonded parts 51 where the multiple metal sheets 50a and 50b are bonded to each other. The bonded parts 51 are, for example, dot-shaped and disposed in a regular pattern. Said bonded parts 51 can be formed by publically known methods such as spot welding. A gasket 1 in which said bonded stacked metal sheet body 50 is used is capable of compensating for reduced surface pressure even when bead fatigue occurs and is capable of maintaining sealing even when used for long periods in a high temperature environment.
Description
本発明は、積層金属板接合体に関する。
The present invention relates to a laminated metal plate assembly.
自動車および二輪車のエンジン、エキゾーストマニホールド、触媒コンバータ、EGRクーラ、ターボチャージャ等の自動車の排気系部品には、耐熱性を有するガスケットが用いられる。
Gaskets having heat resistance are used for automobile exhaust system parts such as automobile and motorcycle engines, exhaust manifolds, catalytic converters, EGR coolers, turbochargers, and the like.
図1および図2には、自動車の排気系部品の接続部に用いられるガスケットの例を示している。図1および図2に示すように、例えば、エキゾーストマニホールド10と排気管20aとの接続部30a、排気管20aと排気管20bとの接続部30bなどは、それぞれのフランジ21a、21bに形成された貫通孔に挿入したボルト40a、40bを締め付けることによって締結される。このとき、接続部30a、30bの隙間にはガスケット1a、1bが挟まれている。ガスケットには、凹凸形状の部位(以下、「ビード」という。)が形成されており、ボルト40a、40bの締め付けにより、ガスケットのビードが変形する。その結果、接続部30a、30bからのガス漏れの防止などを達成することができる。
FIG. 1 and FIG. 2 show examples of gaskets used for connecting parts of automobile exhaust system parts. As shown in FIGS. 1 and 2, for example, a connection portion 30a between the exhaust manifold 10 and the exhaust pipe 20a, a connection portion 30b between the exhaust pipe 20a and the exhaust pipe 20b, and the like are formed on the flanges 21a and 21b, respectively. The bolts 40a and 40b inserted in the through holes are fastened to tighten them. At this time, the gaskets 1a and 1b are sandwiched between the gaps between the connecting portions 30a and 30b. The gasket has an uneven portion (hereinafter referred to as “bead”), and the gasket bead is deformed by tightening the bolts 40a and 40b. As a result, prevention of gas leakage from the connection portions 30a and 30b can be achieved.
自動車の排気系部品の接続部には、高温での使用に耐えうるガスケットとして、特開2009-249658号公報(特許文献1)で提案されている高窒素ステンレス鋼や、JIS G 4902(耐食耐熱超合金板)に規定されるNCF625、NCF718など、Niを質量%で50%以上含む高価な材料が使用されている。また、単体の金属板ではなく、クラッド材を用いたガスケットが知られている。
For connecting parts of automobile exhaust system parts, high nitrogen stainless steel proposed in Japanese Patent Application Laid-Open No. 2009-249658 (Patent Document 1) or JIS G 4902 (corrosion and heat resistance) can be used as a gasket that can withstand use at high temperatures. An expensive material containing 50% or more of Ni by mass%, such as NCF625 and NCF718 defined in (Superalloy plate), is used. A gasket using a clad material instead of a single metal plate is known.
クラッド材を用いたガスケットとして、特開平09-109136号公報(特許文献2)には、オーステナイト系ステンレス鋼製の基板の腐食雰囲気中に曝される部位に、フェライト系ステンレス鋼を接合した金属ガスケットが開示されている。また、実公昭62-2360号公報(特許文献3)には、オーステナイト組織層の両面にフェライト組織層を接合して、層厚さ方向にクリープ変形をさせるようにしたガスケットが開示されている。
As a gasket using a clad material, Japanese Patent Laid-Open No. 09-109136 (Patent Document 2) discloses a metal gasket in which a ferritic stainless steel is joined to a portion exposed to a corrosive atmosphere of a substrate made of austenitic stainless steel. Is disclosed. Japanese Utility Model Publication No. 62-2360 (Patent Document 3) discloses a gasket in which a ferrite structure layer is bonded to both surfaces of an austenite structure layer to cause creep deformation in the layer thickness direction.
自動車の排気系部品は、排気ガスの熱によって高温の熱サイクルを受けて、膨張および収縮を繰り返し、材料の回復、再結晶によりビードの反発力が低下する、いわゆる「ヘタリ」が生じることがある。ビードにヘタリが生じると、ビードとフランジ間の面圧が低下し、排気ガスの圧力に耐え切れず完全なシールが困難となる。
Automobile exhaust system parts undergo high-temperature thermal cycles due to the heat of exhaust gas, so that expansion and contraction are repeated, and so-called “sagging” occurs in which the repulsion force of the beads decreases due to material recovery and recrystallization. . When settling occurs in the bead, the surface pressure between the bead and the flange is lowered, and the exhaust gas pressure cannot be withstood and complete sealing becomes difficult.
燃焼効率向上を目的する燃焼ガスの高温化に対して、単体の金属板では、特許文献1に開示されるような材料を用いてもビードのヘタリを避けられない。特許文献2の技術は、主として応力腐食割れの防止を目的とするものであり、ビードのヘタリについて検討されていない。特許文献3では、ガスケットにビードを形成することについて記載されていない。また、ガスケット厚さの垂直方向における高温時の熱膨張を抑制して、ガスケット全体の厚さを初期寸法より増大させるものであり、ビードのヘタリについて検討されていない。
In order to increase the combustion gas temperature for the purpose of improving the combustion efficiency, even if a single metal plate is used, a material such as that disclosed in Patent Document 1 cannot be avoided. The technique of Patent Document 2 is mainly for the purpose of preventing stress corrosion cracking, and has not been studied for the bead sag. In patent document 3, it does not describe about forming a bead in a gasket. Further, the thermal expansion at high temperature in the vertical direction of the gasket thickness is suppressed, and the thickness of the entire gasket is increased from the initial dimension, and the sag of the beads has not been studied.
本発明は、上記の従来技術の問題を解決するためになされたものであり、ビードのヘタリが生じた場合でも、シール性の低下を効果的に防止できるガスケットに用いるのに有用な積層金属板接合体を提供することを目的としている。
The present invention has been made in order to solve the above-described problems of the prior art, and is a laminated metal plate useful for use in a gasket capable of effectively preventing a decrease in sealing performance even when a settling of a bead occurs. The object is to provide a joined body.
本発明が対象とする技術分野の一つである自動車用耐熱ガスケットは、自動車に搭載され、その使用時間は数1000時間となるが、その間にビードのヘタリが生じ、シール性を確保できなくなる問題があった。
A heat-resistant gasket for automobiles, which is one of the technical fields targeted by the present invention, is mounted on an automobile and its usage time is several thousand hours. was there.
図3には、前掲の図1において、エキゾーストマニホールド10と排気管20aとの接続部30a周辺を部分的に拡大した図を示す。図3(a)初期の状態に示すように、接続部30aの隙間にはガスケット1aが挟まれており、ボルト40aの締め付けにより、ガスケット1aのビードが変形するので、ガスケット1aとエキゾーストマニホールド10との接触面には所定の面圧が負荷された状態で固定されている。
FIG. 3 is a partially enlarged view of the periphery of the connection portion 30a between the exhaust manifold 10 and the exhaust pipe 20a in FIG. As shown in the initial state of FIG. 3 (a), the gasket 1a is sandwiched between the gaps of the connecting portion 30a, and the bead of the gasket 1a is deformed by tightening the bolt 40a. Therefore, the gasket 1a and the exhaust manifold 10 The contact surface is fixed in a state where a predetermined surface pressure is applied.
しかし、図3(b)に示すように、高温で長時間使用されると、ビードにヘタリが生じる。その結果、ガスケット1aとエキゾーストマニホールド10との間の面圧が低下し、排気管20a内を流通する排気ガスの内圧(図中白抜き矢印)に耐え切れなくなり、漏れを生じる。そして、ガスケット1aとエギゾーストマニーホールド10との間に隙間が生じ、シール性を確保できなくなる。
However, as shown in FIG. 3 (b), when used for a long time at a high temperature, the bead becomes sticky. As a result, the surface pressure between the gasket 1a and the exhaust manifold 10 is reduced, and it becomes impossible to withstand the internal pressure of the exhaust gas flowing through the exhaust pipe 20a (the white arrow in the figure), resulting in leakage. And a clearance gap arises between the gasket 1a and the exhaust manifold 10, and it becomes impossible to ensure sealing performance.
そこで、本発明者らは、ガスケット1aとして、金属板を積層し、接合した構造体(以下、「積層金属板接合体」という。)で構成することとした。ガスケット1aは、熱膨張係数が異なる金属板で構成される積層金属板接合体を用いると、高いシール性を確保することが可能となる。具体的には、ビードを立ち上げ形成した面側(上側)に熱膨張率が小さい金属板を、下側に熱膨張率が大きい金属板を配置した積層金属板接合体を用いると、高温の排気ガスでの加熱によりビードが上方に反る。その結果、図3(c)に示すようにガスケット1aは、エキゾーストマニホールド10および排気管フランジ21aの間の面圧が高くなり、シール性を確保できるのである。このことは、燃焼効率向上を目的とする燃焼のガス高温化に際しても有効であり、同様の効果が期待される。
Therefore, the present inventors decided to configure the gasket 1a as a structure in which metal plates were laminated and joined (hereinafter referred to as “laminated metal plate assembly”). The gasket 1a can ensure high sealing performance when a laminated metal plate assembly composed of metal plates having different thermal expansion coefficients is used. Specifically, when a laminated metal plate assembly in which a metal plate having a small coefficient of thermal expansion is arranged on the surface side (upper side) where the beads are raised and formed and a metal plate having a large coefficient of thermal expansion is arranged on the lower side is used, The bead warps upward by heating with the exhaust gas. As a result, as shown in FIG. 3C, the gasket 1a has a high surface pressure between the exhaust manifold 10 and the exhaust pipe flange 21a, and can secure a sealing property. This is effective in increasing the temperature of combustion gas for the purpose of improving combustion efficiency, and the same effect is expected.
一方、積層金属板接合体として全面を接合して得たクラッド材を用いることもできる。その場合、クラッド材は、一般的に室温を超える高温かつ再結晶温度未満の温間、または、再結晶温度以上の熱間に加熱して効率的に接合される。この接合時の加熱は、鉄を主成分とする鋼、ステンレス鋼等では必要不可避と考えられる。しかし、クラッド材は、熱膨張係数が異なる金属板同士を高温で接合すると、室温へ冷却後に収縮度合いの違いから平坦性を維持できない。さらに、工業生産に有利となる金属帯(鋼帯など)に製造する場合には、巻き取りが困難であり、また、仮に巻き取りができたとしても巻取り後の展開が困難である。このことは、安全上も大きな問題である。このため、クラッド材は、室温への冷却後も平坦性を維持できる構成とするのがよい。
On the other hand, a clad material obtained by bonding the entire surface as a laminated metal plate assembly can also be used. In that case, the clad material is efficiently bonded by heating generally at a temperature higher than room temperature and lower than the recrystallization temperature, or heat higher than the recrystallization temperature. Heating at the time of joining is considered to be inevitable for steels mainly composed of iron, stainless steel, and the like. However, when metal plates having different coefficients of thermal expansion are joined at a high temperature, the clad material cannot maintain flatness due to the difference in shrinkage after cooling to room temperature. Furthermore, when it manufactures to the metal strip (steel strip etc.) advantageous to industrial production, winding is difficult, and even if it can wind up, the expansion | deployment after winding is difficult. This is a major safety issue. For this reason, it is preferable that the clad material has a configuration capable of maintaining flatness even after cooling to room temperature.
本発明者らは、上記着想に基づき、本発明の目的を達成するガスケットの構造、高温保持後の特性を詳細に研究し、ガスケットに有用な積層金属板接合体を見出した。本発明の要旨は以下のとおりである。
Based on the above idea, the present inventors have studied in detail the structure of a gasket that achieves the object of the present invention and the characteristics after holding at high temperature, and found a laminated metal plate assembly useful for the gasket. The gist of the present invention is as follows.
(1)複層の金属板と、
前記複層の金属板同士を接合した接合部とを備え、
前記接合部が、点または線を規則的に配置した、積層金属板接合体。 (1) a multilayer metal plate;
It comprises a joint part that joins the metal plates of the multilayer,
A laminated metal plate assembly in which the joint portion regularly arranges points or lines.
前記複層の金属板同士を接合した接合部とを備え、
前記接合部が、点または線を規則的に配置した、積層金属板接合体。 (1) a multilayer metal plate;
It comprises a joint part that joins the metal plates of the multilayer,
A laminated metal plate assembly in which the joint portion regularly arranges points or lines.
(2)前記接合部が、複数の平行線上に形成された第一接合部群と、前記平行線に対して一定の角度を有する複数の平行線上に形成された第二接合部群とを備える、上記(1)の積層金属板接合体。
(2) The joint portion includes a first joint portion group formed on a plurality of parallel lines and a second joint portion group formed on a plurality of parallel lines having a certain angle with respect to the parallel lines. The laminated metal plate assembly of (1) above.
(3)前記接合部が、複数の平行線上に形成された第一接合部群と、前記平行線について並進対称な線上に形成された第二接合部群とを備える、上記(1)の積層金属板接合体。
(3) The laminate according to (1), wherein the joint includes a first joint group formed on a plurality of parallel lines and a second joint group formed on a translationally symmetric line with respect to the parallel lines. Metal plate assembly.
(4)排ガス導通孔を備えるガスケットに用いられる積層金属板接合体であって、
前記第一接合部群が形成された複数の平行線と、前記第二接合部群が形成された複数の平行線と交点が、前記排ガス導通孔の重心に対応する位置となるように配置されている、上記(1)~(3)のいずれかの積層金属板接合体。 (4) A laminated metal plate assembly used for a gasket having an exhaust gas conduction hole,
The plurality of parallel lines in which the first joint group is formed, and the plurality of parallel lines in which the second joint group is formed and intersections are arranged so as to be at positions corresponding to the center of gravity of the exhaust gas conduction hole. The laminated metal plate assembly according to any one of (1) to (3) above.
前記第一接合部群が形成された複数の平行線と、前記第二接合部群が形成された複数の平行線と交点が、前記排ガス導通孔の重心に対応する位置となるように配置されている、上記(1)~(3)のいずれかの積層金属板接合体。 (4) A laminated metal plate assembly used for a gasket having an exhaust gas conduction hole,
The plurality of parallel lines in which the first joint group is formed, and the plurality of parallel lines in which the second joint group is formed and intersections are arranged so as to be at positions corresponding to the center of gravity of the exhaust gas conduction hole. The laminated metal plate assembly according to any one of (1) to (3) above.
(5)前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、等角度間隔となる点を通る放射線上に形成された、上記(4)の積層金属板接合体。
(5) The laminated metal plate assembly according to (4), wherein the joining portion is formed on radiation passing through a point that is equiangularly spaced from a position corresponding to the center of gravity of the exhaust gas conduction hole.
(6)前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、前記排ガス導通孔の内周縁の長さを均等に分割した点を通る放射線上に形成された、上記(4)の積層金属板接合体。
(6) The above (4), wherein the joint portion is formed on radiation passing through a point obtained by equally dividing the length of the inner peripheral edge of the exhaust gas conduction hole with a position corresponding to the center of gravity of the exhaust gas conduction hole as a base point. ) Laminated metal plate assembly.
(7)前記排ガス導通孔を備える第一平面部と、ボルト挿通孔を備える第二平面部と、前記第一平面部と前記第二平面部との間に設けられたビードとを備えるガスケットに用いられる積層金属板接合体であって、
前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、前記第一平面部に対応する位置と前記ビードに対応する位置との境界線の長さを均等に分割した点を通る放射線上に形成された、上記(4)の積層金属板接合体。 (7) A gasket including a first flat surface portion including the exhaust gas conduction hole, a second flat surface portion including a bolt insertion hole, and a bead provided between the first flat surface portion and the second flat surface portion. A laminated metal plate assembly used,
The joint passes through a point where the length of the boundary line between the position corresponding to the first plane portion and the position corresponding to the bead is equally divided with the position corresponding to the center of gravity of the exhaust gas conduction hole as a base point. The laminated metal plate assembly according to (4), formed on radiation.
前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、前記第一平面部に対応する位置と前記ビードに対応する位置との境界線の長さを均等に分割した点を通る放射線上に形成された、上記(4)の積層金属板接合体。 (7) A gasket including a first flat surface portion including the exhaust gas conduction hole, a second flat surface portion including a bolt insertion hole, and a bead provided between the first flat surface portion and the second flat surface portion. A laminated metal plate assembly used,
The joint passes through a point where the length of the boundary line between the position corresponding to the first plane portion and the position corresponding to the bead is equally divided with the position corresponding to the center of gravity of the exhaust gas conduction hole as a base point. The laminated metal plate assembly according to (4), formed on radiation.
(8)前記並進対称な線が、直線である、上記(3)の積層金属板接合体。
(8) The laminated metal plate assembly according to (3), wherein the translationally symmetric line is a straight line.
(9)前記複層の金属板のうち少なくとも一方が、金属帯である、上記(1)~(8)の積層金属板接合体。
(10)前記金属板が、オーステナイト系ステンレス鋼板およびフェライト系ステンレス鋼板である、
上記(1)~(9)のいずれかの積層金属板接合体。 (9) The laminated metal plate assembly of (1) to (8), wherein at least one of the multilayer metal plates is a metal strip.
(10) The metal plate is an austenitic stainless steel plate and a ferritic stainless steel plate.
The laminated metal plate assembly according to any one of (1) to (9) above.
(10)前記金属板が、オーステナイト系ステンレス鋼板およびフェライト系ステンレス鋼板である、
上記(1)~(9)のいずれかの積層金属板接合体。 (9) The laminated metal plate assembly of (1) to (8), wherein at least one of the multilayer metal plates is a metal strip.
(10) The metal plate is an austenitic stainless steel plate and a ferritic stainless steel plate.
The laminated metal plate assembly according to any one of (1) to (9) above.
本発明の積層金属板接合体を用いれば、ビードのヘタリが生じた場合でも、面圧の低下を補うことができ、高温環境で長時間使用されてもシール性を維持することができるガスケットを提供することができる。
When the laminated metal plate assembly of the present invention is used, a gasket that can compensate for a decrease in surface pressure even when the beads are set loose and can maintain a sealing property even when used for a long time in a high temperature environment. Can be provided.
以下、図を用いて、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1.積層金属板接合体
図4に示すように、本実施形態の積層金属板接合体50は、複層の金属板(第一金属板50a、第二金属板50b)と、複層の金属板50a,50b同士を接合した接合部51とを備える。接合部51は、点形状を有し、規則的に配置している。この接合部51は、例えば、スポット溶接などの公知の方法により形成することができる。また、図示は省略するが、点形状ではなく、線形状を有し、規則的に配置したものでもよい。この場合、例えば、シーム溶接などの公知の方法により形成することができる。また、図4では、二層の金属板を積層した例を示しているが、目的に応じて三層以上の金属板を積層してもよい。 1. Laminated Metal Plate Assembly As shown in FIG. 4, the laminatedmetal plate assembly 50 of this embodiment includes a multilayer metal plate (first metal plate 50a, second metal plate 50b) and a multilayer metal plate 50a. , 50b are joined together. The joint portion 51 has a point shape and is regularly arranged. The joint 51 can be formed by a known method such as spot welding. Moreover, although illustration is abbreviate | omitted, what has not a point shape but a linear shape and arrange | positioned regularly may be sufficient. In this case, for example, it can be formed by a known method such as seam welding. 4 shows an example in which two metal plates are laminated, three or more metal plates may be laminated according to the purpose.
図4に示すように、本実施形態の積層金属板接合体50は、複層の金属板(第一金属板50a、第二金属板50b)と、複層の金属板50a,50b同士を接合した接合部51とを備える。接合部51は、点形状を有し、規則的に配置している。この接合部51は、例えば、スポット溶接などの公知の方法により形成することができる。また、図示は省略するが、点形状ではなく、線形状を有し、規則的に配置したものでもよい。この場合、例えば、シーム溶接などの公知の方法により形成することができる。また、図4では、二層の金属板を積層した例を示しているが、目的に応じて三層以上の金属板を積層してもよい。 1. Laminated Metal Plate Assembly As shown in FIG. 4, the laminated
図5に示す積層金属板接合体55aでは、接合部51a,51bが規則的に配置している。すなわち、接合部51aは、複数の平行線Pla上に形成され、第一接合部群を構成し、接合部51bは、平行線Plaに対して一定の角度(図5に示す例では90°)を有する複数の平行線Plb上に形成され、第二接合部群を構成している。また、別の見方をすれば、接合部51aは、複数の平行線Pla上に形成され、接合部51bは、平行線Plaについて並進対称な線Plb上に形成され、第二接合部群を構成している。この平行線Plaについて並進対称な線Plbは、直線であることが好ましい。
In the laminated metal plate assembly 55a shown in FIG. 5, the joint portions 51a and 51b are regularly arranged. That is, the joint portion 51a is formed on a plurality of parallel lines Pla and constitutes a first joint portion group, and the joint portion 51b is at a certain angle (90 ° in the example shown in FIG. 5) with respect to the parallel lines Pla. Are formed on a plurality of parallel lines Plb and constitute a second joint group. From another viewpoint, the joint portion 51a is formed on a plurality of parallel lines Pla, and the joint portion 51b is formed on a line Plb that is translationally symmetric with respect to the parallel lines Pla, and constitutes a second joint portion group. is doing. The translational line Plb is preferably a straight line with respect to the parallel line Pla.
図6に示す積層金属板接合体55bでは、接合部51c,51d,51eが規則的に配置している。すなわち、接合部51cは、複数の平行線Plc上に形成され、第一接合部群を構成し、接合部51dは、平行線Plcに対して一定の角度(図6に示す例では60°)を有する複数の平行線Pld上に形成され、第二接合部群を構成し、接合部51eは、平行線Plcに対して一定の角度(図6に示す例では120°)を有する複数の平行線Ple上に形成され、第二接合部群を構成している。また、別の見方をすれば、接合部51cは、複数の平行線Plc上に形成され、接合部51d,51eは、平行線Plcについて並進対称な線Pld,Ple上に形成され、それぞれ第二接合部群を構成している。この平行線Plcについて並進対称な線Pld,Pleは、直線であることが好ましい。
In the laminated metal plate assembly 55b shown in FIG. 6, the joint portions 51c, 51d, and 51e are regularly arranged. That is, the joint portion 51c is formed on a plurality of parallel lines Plc and constitutes a first joint portion group, and the joint portion 51d is at a certain angle with respect to the parallel lines Plc (60 ° in the example shown in FIG. 6). Are formed on a plurality of parallel lines Pld to form a second joint group, and the joint 51e has a plurality of parallels having a certain angle (120 ° in the example shown in FIG. 6) with respect to the parallel lines Plc. It is formed on the line Ple and constitutes the second joint group. From another viewpoint, the joint portion 51c is formed on a plurality of parallel lines Plc, and the joint portions 51d and 51e are formed on translational symmetry lines Pld and Ple with respect to the parallel line Plc, respectively. It constitutes a joint group. The translational symmetry lines Pld and Ple with respect to the parallel line Plc are preferably straight lines.
以下、図5および図6に示す積層金属板接合体55a、55bを、排ガス導通孔を備えるガスケットに用いる場合について説明する。図5の符号60、図6の符号61は、排ガス導通孔として打ち抜き加工が予定されている部位(排ガス導通孔予定部)であり、符号60a、符号61aは、ぞれぞれの排ガス導通孔の重心に対応する位置である。図5に示す例では、第一接合部群51aが形成された複数の平行線Plaと、第二接合部群51bが形成された複数の平行線Plbと交点が、排ガス導通孔予定部60の重心に対応する位置60aと一致するように配置されている。また、図6に示す例では、第一接合部群51cが形成された複数の平行線Plcと、第二接合部群51dが形成された複数の平行線Pldと交点および別の第二接合部群51eが形成された複数の平行線Pleと交点が、排ガス導通孔予定部61の重心に対応する位置61aと一致するように配置されている。なお、排ガス導通孔(排ガス導通孔予定部61)は、図5および図6に示すように、円形のもののほか、楕円形のものでもよく、その形状には限定がない。
Hereinafter, the case where the laminated metal plate assemblies 55a and 55b shown in FIGS. 5 and 6 are used in a gasket having exhaust gas conduction holes will be described. Reference numeral 60 in FIG. 5 and reference numeral 61 in FIG. 6 are portions (exhaust gas conduction hole planned portions) scheduled to be punched as exhaust gas conduction holes, and reference numerals 60 a and 61 a denote exhaust gas conduction holes, respectively. It is a position corresponding to the center of gravity. In the example shown in FIG. 5, the intersections of the plurality of parallel lines Pla formed with the first joint group 51 a and the plurality of parallel lines Plb formed with the second joint group 51 b are the exhaust gas conduction hole planned portions 60. It arrange | positions so that it may correspond with the position 60a corresponding to a gravity center. Further, in the example shown in FIG. 6, a plurality of parallel lines Plc formed with the first joint group 51c, a plurality of parallel lines Pld formed with the second joint group 51d, intersections and another second joint part. The plurality of parallel lines Ple and the intersections where the group 51e is formed are arranged so as to coincide with a position 61a corresponding to the center of gravity of the exhaust gas conduction hole planned portion 61. As shown in FIGS. 5 and 6, the exhaust gas conduction hole (exhaust gas conduction hole planned portion 61) may be circular or elliptical, and the shape is not limited.
接合部51aおよび接合部51b、ならびに、接合部51c、接合部51dおよび接合部51eは、それぞれガスケットに用いられたときに、それぞれ下記の放射線上に対応する位置に形成されていることが好ましい。後段で詳しく説明する。
(a)排ガス導通孔の重心に対応する位置を基点として、等角度間隔となる点を通る放射線
(b)排ガス導通孔の重心に対応する位置を基点として、排ガス導通孔の内周縁の長さを均等に分割した点を通る放射線
(c)排ガス導通孔を備える第一平面部と、ボルト挿通孔を備える第二平面部と、第一平面部と第二平面部との間に設けられたビードとを備えるガスケットにおいて、排ガス導通孔の重心に対応する位置を基点として、第一平面部に対応する位置とビードに対応する位置との境界線の長さを均等に分割した点を通る放射線 The joint 51a and the joint 51b, and the joint 51c, the joint 51d, and the joint 51e are preferably formed at positions corresponding to the following radiations when used in gaskets. This will be described in detail later.
(A) Radiation passing through a point that is equiangularly spaced from the position corresponding to the center of gravity of the exhaust gas conduction hole (b) The length of the inner peripheral edge of the exhaust gas conduction hole from the position corresponding to the center of gravity of the exhaust gas conduction hole Radiation (c) that passes through the points divided evenly The first plane part provided with the exhaust gas conduction hole, the second plane part provided with the bolt insertion hole, and provided between the first plane part and the second plane part Radiation that passes through points in a gasket provided with a bead that equally divides the length of the boundary line between the position corresponding to the first plane portion and the position corresponding to the bead, with the position corresponding to the center of gravity of the exhaust gas conduction hole as a base point
(a)排ガス導通孔の重心に対応する位置を基点として、等角度間隔となる点を通る放射線
(b)排ガス導通孔の重心に対応する位置を基点として、排ガス導通孔の内周縁の長さを均等に分割した点を通る放射線
(c)排ガス導通孔を備える第一平面部と、ボルト挿通孔を備える第二平面部と、第一平面部と第二平面部との間に設けられたビードとを備えるガスケットにおいて、排ガス導通孔の重心に対応する位置を基点として、第一平面部に対応する位置とビードに対応する位置との境界線の長さを均等に分割した点を通る放射線 The joint 51a and the joint 51b, and the joint 51c, the joint 51d, and the joint 51e are preferably formed at positions corresponding to the following radiations when used in gaskets. This will be described in detail later.
(A) Radiation passing through a point that is equiangularly spaced from the position corresponding to the center of gravity of the exhaust gas conduction hole (b) The length of the inner peripheral edge of the exhaust gas conduction hole from the position corresponding to the center of gravity of the exhaust gas conduction hole Radiation (c) that passes through the points divided evenly The first plane part provided with the exhaust gas conduction hole, the second plane part provided with the bolt insertion hole, and provided between the first plane part and the second plane part Radiation that passes through points in a gasket provided with a bead that equally divides the length of the boundary line between the position corresponding to the first plane portion and the position corresponding to the bead, with the position corresponding to the center of gravity of the exhaust gas conduction hole as a base point
第一金属板層50aとしてオーステナイト系ステンレス鋼を用いる場合には、より熱膨張率が高いものが望ましく、また、第二金属板層50bとしてフェライト系ステンレス鋼を用いる場合には、より熱膨張率が低いものが望ましい。オーステナイト系ステンレス鋼とフェライト系ステンレス鋼の化学組成は、特定の化学組成に限定されない。オーステナイト系ステンレス鋼としては、たとえば、JIS規格において規定されるSUS301、SUS301L、SUS304、SUS304LN、SUS316L、SUS310S、SUS201などが挙げられる。また、フェライト系ステンレス鋼としては、たとえば、SUS409L、SUS410L、SUS430、SUS444,SUS436J1L、SUS436L、SUS430JILなどが挙げられる。
When austenitic stainless steel is used as the first metal plate layer 50a, it is desirable that the coefficient of thermal expansion is higher, and when ferritic stainless steel is used as the second metal plate layer 50b, the coefficient of thermal expansion is higher. A low is desirable. The chemical composition of austenitic stainless steel and ferritic stainless steel is not limited to a specific chemical composition. Examples of the austenitic stainless steel include SUS301, SUS301L, SUS304, SUS304LN, SUS316L, SUS310S, and SUS201 defined in JIS standards. Examples of the ferritic stainless steel include SUS409L, SUS410L, SUS430, SUS444, SUS436J1L, SUS436L, and SUS430JIL.
ここで、加熱および冷却を含む熱履歴が付与された際に、冷却後にフェライト系ステンレス鋼板層側に凹反りが発生する構成であれば、積層金属板接合体の厚さ、オーステナイト系ステンレス鋼板層およびフェライト系ステンレス鋼板層の厚さのバランスなどには、制約がない。
Here, when a thermal history including heating and cooling is applied, if the structure is such that a concave warp occurs on the ferritic stainless steel plate layer side after cooling, the thickness of the laminated metal plate assembly, the austenitic stainless steel plate layer There is no restriction on the balance of the thickness of the ferritic stainless steel sheet layer.
このとき、全厚さに対する第一金属層50a(オーステナイト系ステンレス鋼層)の厚さの割合が大きすぎると、第二金属層50b(フェライト系ステンレス鋼層)との熱膨張差による反りを発生させることが難しくなる。一方、厚さの割合が小さすぎても、熱膨張差による反りを発生させることが難しくなる。そのため、全厚さに対する第一金属層5a(オーステナイト系ステンレス鋼層)の厚さの割合は20~80%とするのがよい。好ましい下限は30%であり、より好ましいのは45%である。一方、好ましい上限は70%であり、より好ましいのは55%である。
At this time, if the ratio of the thickness of the first metal layer 50a (austenitic stainless steel layer) to the total thickness is too large, warpage due to a difference in thermal expansion from the second metal layer 50b (ferritic stainless steel layer) occurs. It becomes difficult to let you. On the other hand, even if the thickness ratio is too small, it becomes difficult to generate warpage due to a difference in thermal expansion. Therefore, the ratio of the thickness of the first metal layer 5a (austenitic stainless steel layer) to the total thickness is preferably 20 to 80%. A preferred lower limit is 30%, and a more preferred value is 45%. On the other hand, the preferable upper limit is 70%, and more preferably 55%.
積層金属板接合体50は、製造コストの観点からは、二層構造が望ましいが、三層以上の金属板層を備えていてもよい。ただし、三層以上のクラッドであっても、第一金属板層50a(熱膨張率が大きい層)の板厚割合は、20%以上80%以下とする必要がある。
The laminated metal plate assembly 50 preferably has a two-layer structure from the viewpoint of manufacturing cost, but may include three or more metal plate layers. However, even if the clad has three or more layers, the thickness ratio of the first metal plate layer 50a (the layer having a high coefficient of thermal expansion) needs to be 20% or more and 80% or less.
以上、主として、一枚の積層金属板接合体で構成されるガスケットについて説明したが、二枚以上の積層金属板接合体で構成されるガスケットであってもよい。図11には、二枚以上の積層金属板接合体で構成されるガスケットの例を示す。
As mentioned above, although the gasket mainly constituted by one laminated metal plate assembly has been described, the gasket constituted by two or more laminated metal plate assemblies may be used. FIG. 11 shows an example of a gasket constituted by two or more laminated metal plate assemblies.
ガスケットの総厚さ(一枚の積層金属板接合体5で構成されるガスケットの場合、積層金属板接合体5の全厚さ)が小さい場合であっても、高温時にビードを立ち上げ形成した面8a側に反らせることが可能ではあるが、材料の組み合わせにもよるが、ガスケットの総厚さが、0.1mm未満となると反らせる力が小さくなり、排ガスのシール性が劣る。このため、ガスケットの総厚さは0.1mm以上とする。一方、ガスケットの総厚さが大きくなると、材料コストが高くなる。このため、ガスケットの総厚さは1.5mm以下とするのが好ましい。より好ましい上限は、1.0mmであり、より好ましい上限は0.7mmであり、更に好ましい上限は0.5mmである。ガスケットを構成する積層金属板接合体の全厚さは、1.0mm以下が好ましく、0.7mm以下、更には0.5mm以下が好ましい。積層金属板接合体の全厚さは薄くても良いが、好ましい下限は0.1mmである。
Even when the total thickness of the gasket (in the case of a gasket composed of a single laminated metal plate assembly 5, the total thickness of the laminated metal plate assembly 5) is small, the beads are raised and formed at high temperatures. Although it is possible to warp to the surface 8a side, depending on the combination of materials, when the total thickness of the gasket is less than 0.1 mm, the warping force is reduced, and the exhaust gas sealability is poor. For this reason, the total thickness of a gasket shall be 0.1 mm or more. On the other hand, as the total thickness of the gasket increases, the material cost increases. For this reason, the total thickness of the gasket is preferably 1.5 mm or less. A more preferred upper limit is 1.0 mm, a more preferred upper limit is 0.7 mm, and a still more preferred upper limit is 0.5 mm. The total thickness of the laminated metal plate assembly constituting the gasket is preferably 1.0 mm or less, preferably 0.7 mm or less, and more preferably 0.5 mm or less. The total thickness of the laminated metal plate assembly may be thin, but a preferred lower limit is 0.1 mm.
2.積層金属板接合体の製造方法
積層金属板接合体の製造方法としては、例えば、第一金属板50aおよび第二金属50bとなる金属板を積層した状態で、スポット溶接(抵抗溶接)、シーム溶接などの溶接や、カシメ接合などの公知の方法により接合するのがよい。 2. Manufacturing method of laminated metal plate assembly As a manufacturing method of the laminated metal plate assembly, for example, spot welding (resistance welding), seam welding in a state where metal plates to be thefirst metal plate 50a and the second metal 50b are laminated. It is good to join by well-known methods, such as welding, such as crimping, and crimping.
積層金属板接合体の製造方法としては、例えば、第一金属板50aおよび第二金属50bとなる金属板を積層した状態で、スポット溶接(抵抗溶接)、シーム溶接などの溶接や、カシメ接合などの公知の方法により接合するのがよい。 2. Manufacturing method of laminated metal plate assembly As a manufacturing method of the laminated metal plate assembly, for example, spot welding (resistance welding), seam welding in a state where metal plates to be the
3.積層金属板接合体を用いたガスケット
図7に示すように、本実施形態のガスケット1は、第一金属板層5aおよび第二金属板層5bを備える積層金属板接合体で構成されている。そして、このガスケット1には、排ガス導通孔6aを備える第一平面部6と、ボルト挿通孔7aを備える第二平面部7と、第一平面部6と第二平面部7との間に設けられたビード8とを備える。ビード8は、排ガス導通孔6aを囲繞する位置に積層金属板接合体の厚さ方向の一方に立ち上げ形成されている。排ガス導通孔6aは、流体を導通させるためのものである。図に示す例では、第一平面部6および第二平面部7は、接合部6b、7bを備えており、これらにより第一金属板層5aと第二金属板層5bとは接合されている。なお、図7に示すように、ビード8は、接合部8bを備えていてもよい。 3. Gasket Using Laminated Metal Plate Assembly As shown in FIG. 7, the gasket 1 of the present embodiment is composed of a laminated metal plate assembly including a firstmetal plate layer 5a and a second metal plate layer 5b. And this gasket 1 is provided between the 1st plane part 6 provided with the waste gas conduction hole 6a, the 2nd plane part 7 provided with the bolt insertion hole 7a, and the 1st plane part 6 and the 2nd plane part 7. Provided beads 8. The bead 8 is formed so as to rise to one side in the thickness direction of the laminated metal plate assembly at a position surrounding the exhaust gas conduction hole 6a. The exhaust gas conduction hole 6a is for conducting fluid. In the example shown to a figure, the 1st plane part 6 and the 2nd plane part 7 are provided with the junction parts 6b and 7b, and the 1st metal plate layer 5a and the 2nd metal plate layer 5b are joined by these. . In addition, as shown in FIG. 7, the bead 8 may be provided with the junction part 8b.
図7に示すように、本実施形態のガスケット1は、第一金属板層5aおよび第二金属板層5bを備える積層金属板接合体で構成されている。そして、このガスケット1には、排ガス導通孔6aを備える第一平面部6と、ボルト挿通孔7aを備える第二平面部7と、第一平面部6と第二平面部7との間に設けられたビード8とを備える。ビード8は、排ガス導通孔6aを囲繞する位置に積層金属板接合体の厚さ方向の一方に立ち上げ形成されている。排ガス導通孔6aは、流体を導通させるためのものである。図に示す例では、第一平面部6および第二平面部7は、接合部6b、7bを備えており、これらにより第一金属板層5aと第二金属板層5bとは接合されている。なお、図7に示すように、ビード8は、接合部8bを備えていてもよい。 3. Gasket Using Laminated Metal Plate Assembly As shown in FIG. 7, the gasket 1 of the present embodiment is composed of a laminated metal plate assembly including a first
本実施形態のガスケット1は、接合部6b、7bによって接合された第一金属板層5aと第二金属板層5bの高温での熱膨張率の差を活用したものである。即ち、第一金属板層5aとして熱膨張率が大きい材料(例えば、オーステナイト系ステンレス鋼)を用い、第二金属板層5bとして熱膨張率が小さい材料(例えば、フェライト系ステンレス鋼)を用いると、高温時に、ガスケット1のビード8は、第二金属板層5b側(ビードを立ち上げ形成した面8a側)に反ることになる。その結果、高温で長時間使用され、図3(c)に示すように、ビード8にヘタリが生じた場合であっても、ビード8を立ち上げ方向に反らせ、面圧を復元することができる。その結果、ガスケット1aとエキゾーストマニホールド10および排気管フランジ21aとの間の面圧を維持することができ、排気管20a内を流通する排気ガスの内圧(図中白抜き矢印)に耐えることができ、必要なシール性を達成できる。
The gasket 1 of the present embodiment utilizes a difference in thermal expansion coefficient at a high temperature between the first metal plate layer 5a and the second metal plate layer 5b joined by the joint portions 6b and 7b. That is, when a material having a high coefficient of thermal expansion (for example, austenitic stainless steel) is used as the first metal plate layer 5a, and a material having a low coefficient of thermal expansion (for example, ferritic stainless steel) is used as the second metal plate layer 5b. When the temperature is high, the bead 8 of the gasket 1 warps to the second metal plate layer 5b side (the surface 8a side where the beads are raised and formed). As a result, even if the bead 8 is used for a long time at high temperature and the bead 8 is set back as shown in FIG. 3C, the bead 8 can be warped in the rising direction to restore the surface pressure. . As a result, the surface pressure between the gasket 1a, the exhaust manifold 10 and the exhaust pipe flange 21a can be maintained, and the internal pressure of the exhaust gas flowing through the exhaust pipe 20a (the white arrow in the figure) can be withstood. The necessary sealing performance can be achieved.
なお、図3に示す例では、エキゾーストマニホールド10と排気管20aとの接続部30aに挟まれるガスケット1aを例にして説明しているが、本発明の効果は、このような例に限らない。排気管20aと排気管20bとの接続部30bに挟まれるガスケット1bなど、高温で使用される部位に用いられるガスケットであれば、上記と同様の効果が得られる。以下、ガスケットと対向するエキゾーストマニホールド10またはフランジとを併せて「フランジ等」と呼ぶこととする。
In the example shown in FIG. 3, the gasket 1a sandwiched between the connection portions 30a between the exhaust manifold 10 and the exhaust pipe 20a is described as an example, but the effect of the present invention is not limited to such an example. The same effects as described above can be obtained as long as the gasket is used in a portion used at a high temperature, such as the gasket 1b sandwiched between the connection portions 30b between the exhaust pipe 20a and the exhaust pipe 20b. Hereinafter, the exhaust manifold 10 or the flange facing the gasket is collectively referred to as a “flange or the like”.
以下、図8~図10を用いて、接合部を形成する位置について説明する。
Hereinafter, the positions where the joints are formed will be described with reference to FIGS.
図8に示すように、接合部6b、7bは、例えば、排ガス導通孔6aの重心6cを基点として、等角度間隔となる点(放射線La、Lbと内周縁6dとの交点)を通る放射線La、Lb上に形成されているのがよい。図8および図9に示す例では90°間隔となる点を通る二本の放射線La、Lbを示しているが、このような角度に限定されない。すなわち、接合部を、60°間隔となる点を通る三本の放射線上に形成しても良いし、また、45°間隔となる点を通る三本の放射線上に形成しても良く、それらより狭い角度で等角度間隔となる点を通る放射線上に形成されていてもよい。いずれにしても、このような所望の位置に接合部が配置するように、予め積層金属板接合体に接合部を形成しておくことが肝要である。
As shown in FIG. 8, the joints 6b and 7b are, for example, radiation La passing through points (intersections of the radiations La and Lb and the inner peripheral edge 6d) that are equiangularly spaced from the center of gravity 6c of the exhaust gas conduction hole 6a. , Lb may be formed. In the example shown in FIG. 8 and FIG. 9, two radiations La and Lb passing through a point having an interval of 90 ° are shown, but the angle is not limited to this. That is, the joint portion may be formed on three radiations that pass through points at intervals of 60 °, or may be formed on three radiations that pass through points at intervals of 45 °. It may be formed on radiation that passes through points that are equiangularly spaced at a narrower angle. In any case, it is important to form the joint in the laminated metal plate assembly in advance so that the joint is disposed at such a desired position.
接合部は、図8に示すように、少なくとも第一平面部6および第二平面部7に形成されておれば良い(図8中の6b、7b参照)、図9に示すように、第一平面部6および第二平面部7に加え、ビード8にも形成されていてもよい(図9中の8b参照)。これらの接合部6b、7b(またはさらに8b)により第一金属板層5aと第二金属板層5bとを接合することができる。
As shown in FIG. 8, it is sufficient that the joining portion is formed at least on the first plane portion 6 and the second plane portion 7 (see 6b and 7b in FIG. 8). As shown in FIG. In addition to the plane part 6 and the second plane part 7, it may be formed on the bead 8 (see 8b in FIG. 9). The first metal plate layer 5a and the second metal plate layer 5b can be bonded by these bonding portions 6b and 7b (or 8b).
図10に示すように、接合部6b、7b(またはさらに8b)は、排ガス導通孔6aの重心6cを基点として、内周縁6dの長さを均等に分割した点(放射線Lc~Leと内周縁6dとの交点)を通る放射線Lc~Le上に形成されていてもよい。この場合も、これらの接合部6b、7b(またはさらに8b)により第一金属板層5aと第二金属板層5bとを接合することができる。また、接合部6b、7b(またはさらに8b)は、排ガス導通孔6aの重心6cを基点として、第一平面部6とビード8との境界線6eの長さを均等に分割した点を通る放射線(図示省略)上に形成されていてもよい。この場合も、これらの接合部6b、7b(またはさらに8b)により第一金属板層5aと第二金属板層5bとを接合することができる。この場合も、このような所望の位置に接合部が配置するように、予め積層金属板接合体に接合部を形成しておくことが肝要である。
As shown in FIG. 10, the joints 6b and 7b (or 8b) are obtained by dividing the length of the inner peripheral edge 6d equally from the center of gravity 6c of the exhaust gas conduction hole 6a (radiations Lc to Le and the inner peripheral edge). It may be formed on the radiations Lc to Le passing through (intersection with 6d). Also in this case, the first metal plate layer 5a and the second metal plate layer 5b can be joined by the joint portions 6b and 7b (or 8b). In addition, the joints 6b and 7b (or 8b) pass through a point that equally divides the length of the boundary line 6e between the first plane part 6 and the bead 8 with the center of gravity 6c of the exhaust gas conduction hole 6a as a base point. It may be formed on (not shown). Also in this case, the first metal plate layer 5a and the second metal plate layer 5b can be joined by the joint portions 6b and 7b (or 8b). Also in this case, it is important to form the joint portion in the laminated metal plate assembly in advance so that the joint portion is disposed at such a desired position.
ビードの(断面)形状については、排ガス導通孔を囲繞する位置に基体の厚さ方向の一方に立ち上げ形成されたものであれば、特に制約がない。すなわち、断面形状は図7に示すように平板状の基体を部分的に盛り上がらせて形成したフルビード、台形ビードなどのビードであってもよいし、貫通孔の内周端から立ち上げ形成されるハーフビード、つまり、テーパで構成されるハーフビードであってもよい。ただし、本発明による効果が顕著となるのは、ハーフビードを備えるガスケットの場合である。
The bead (cross-sectional) shape is not particularly limited as long as it is formed to rise in one of the thickness directions of the substrate at a position surrounding the exhaust gas conduction hole. That is, the cross-sectional shape may be a bead such as a full bead or a trapezoidal bead formed by partially raising a flat substrate as shown in FIG. 7, or it may be formed upright from the inner peripheral end of the through hole. A half bead, that is, a half bead configured by a taper may be used. However, the effect of the present invention is remarkable in the case of a gasket having a half bead.
図11(a)に示す実施形態におけるガスケット100は、それぞれ積層金属板接合体で構成される二枚のガスケット材100a、100bを用いたものである。ガスケット材100a、100bは、それぞれ、第一平面部110a、110b(図7~10に示すように、実際には排ガス導通孔を備える。)、第二平面部130a、130b(図7~10に示すように、実際にはボルト挿通孔を備える。)、第一平面部110a、110bと第二平面部130a、130bとの間に設けられたビード120a、120bを備える。ガスケット100では、ガスケット材100aの第二平面部130aとガスケット材100bの第一平面部110bとが接合されている。このような構成により、ガスケット100に高温が付与された場合には、ガスケット材100a、100bが、それぞれの熱膨張率が小さい第二金属層側(図面上側)に反ることにより、一枚の積層金属板接合体で構成されるガスケットに比較して約二倍の反りの増加が期待され、フランジ等との面圧が上昇する。
The gasket 100 in the embodiment shown in FIG. 11 (a) uses two gasket materials 100a and 100b each composed of a laminated metal plate assembly. The gasket materials 100a and 100b are respectively provided with first flat portions 110a and 110b (actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10) and second flat portions 130a and 130b (shown in FIGS. 7 to 10). As shown, it is actually provided with bolt insertion holes.), And bead 120a, 120b provided between the first plane part 110a, 110b and the second plane part 130a, 130b. In the gasket 100, the second flat surface portion 130a of the gasket material 100a and the first flat surface portion 110b of the gasket material 100b are joined. With such a configuration, when a high temperature is applied to the gasket 100, the gasket materials 100a and 100b are warped to the second metal layer side (the upper side in the drawing) having a small coefficient of thermal expansion, whereby one sheet Compared to a gasket composed of a laminated metal plate assembly, the warpage is expected to increase by about twice, and the surface pressure with the flange or the like increases.
図11(b)に示す実施形態におけるガスケット200は、それぞれ積層金属板接合体で構成される二枚のガスケット材200a、200bを用いたものである。ガスケット材200a、200bは、それぞれ、第一平面部210a、210b(図7~10に示すように、実際には排ガス導通孔を備える。)、第二平面部230a、230b(図7~10に示すように、実際にはボルト挿通孔を備える。)、第一平面部210a、210bと第二平面部230a、230bとの間に設けられたビード220a、220bを備える。そして、各々の第二平面部230a、230b同士が接合されている。このような構成により、ガスケット200に高温が付与された場合には、それぞれの熱膨張率が小さい第二金属層側、すなわち、ガスケット材200aが図面上側、200bが図面下側に反ることにより、一枚の積層金属板接合体で構成されるガスケットに比較して約二倍の反りの増加が期待され、フランジ等との面圧が上昇する。
In the embodiment shown in FIG. 11B, the gasket 200 uses two gasket materials 200a and 200b each formed of a laminated metal plate assembly. The gasket materials 200a and 200b are respectively provided with first plane portions 210a and 210b (actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10) and second plane portions 230a and 230b (as shown in FIGS. 7 to 10). As shown, it is actually provided with bolt insertion holes.), And bead 220a, 220b provided between the first plane part 210a, 210b and the second plane part 230a, 230b. And each 2nd plane part 230a, 230b is joined. With such a configuration, when a high temperature is applied to the gasket 200, the second metal layer side having a small coefficient of thermal expansion, that is, the gasket material 200a warps on the upper side of the drawing and 200b warps on the lower side of the drawing. In comparison with a gasket composed of a single laminated metal plate assembly, the warpage is expected to increase by about twice, and the surface pressure with the flange or the like increases.
図11(c)に示す実施形態におけるガスケット300は、それぞれ積層金属板接合体で構成される三枚のガスケット材300a、300b、300cを用いたものである。ガスケット材300a、300b、300cは、それぞれ、第一平面部310a、310b、310c(図7~10に示すように、実際には排ガス導通孔を備える。)、第二平面部330a、330b、330c(図7~10に示すように、実際にはボルト挿通孔を備える。)、第一平面部310a、310b、310cと第二平面部330a、330b、330cとの間に設けられたビード320a、320b、320cを備える。そして、ガスケット300では、ガスケット材300aと300bの第一平面部310a、310b同士が接合され、ガスケット材300bと300cの第二平面部330b、330c同士が接合されている。このような構成により、ガスケット300に高温が付与された場合には、一枚の積層金属板接合体で構成されるガスケットに比較して約三倍の反りの増加が期待され、フランジ等との面圧が上昇する。
The gasket 300 in the embodiment shown in FIG. 11 (c) uses three gasket materials 300a, 300b, and 300c each formed of a laminated metal plate assembly. The gasket materials 300a, 300b, and 300c are respectively provided with first flat portions 310a, 310b, and 310c (actually provided with exhaust gas conduction holes as shown in FIGS. 7 to 10) and second flat portions 330a, 330b, and 330c, respectively. (As shown in FIGS. 7 to 10, the bolts are actually provided with bolt insertion holes.), The beads 320a provided between the first flat portions 310a, 310b, 310c and the second flat portions 330a, 330b, 330c, 320b and 320c are provided. In the gasket 300, the first flat portions 310a and 310b of the gasket materials 300a and 300b are joined together, and the second flat portions 330b and 330c of the gasket materials 300b and 300c are joined together. With such a configuration, when a high temperature is applied to the gasket 300, an increase in warpage is expected to be about three times that of a gasket composed of a single laminated metal plate assembly. Surface pressure increases.
なお、ガスケットの総厚さとは、一枚の積層金属板接合体で構成されるガスケットの場合には、積層金属板接合体の全厚さと同義である。また、例えば、二枚以上の積層金属板接合体で構成されるガスケットの場合には、全ての積層金属板接合体の合計厚さを意味する。二枚以上の積層金属板接合体で構成されるガスケットの場合には、それぞれの積層金属板接合体の全厚さを合計した厚さをガスケットの総厚さとする。
Note that the total thickness of the gasket is synonymous with the total thickness of the laminated metal plate assembly in the case of a gasket composed of a single laminated metal plate assembly. For example, in the case of a gasket composed of two or more laminated metal plate assemblies, it means the total thickness of all laminated metal plate assemblies. In the case of a gasket composed of two or more laminated metal plate assemblies, the total thickness of the respective laminated metal plate assemblies is taken as the total thickness of the gasket.
4.ガスケットの製造方法
ガスケットは、上記の積層金属板接合体を使用して、プレス成形などの手法で製造することができる。具体的には、ブランキング(打抜き)、プレス成形によって所定形状のビードを有するガスケットを製造することができる。また、それらの積層金属板接合体を重ね合わせて、2枚積層、3枚積層等の複数枚積層として使用することも可能である。この場合、それぞれの積層金属板接合体同士は、ビス等、または、スポット溶接により固定すればよい。このとき、周囲の一部を溶接するか、全体を溶接して、固定することも可能である。 4). Gasket Manufacturing Method A gasket can be manufactured by a technique such as press molding using the above laminated metal plate assembly. Specifically, a gasket having a bead of a predetermined shape can be manufactured by blanking (punching) or press molding. Moreover, it is also possible to overlap these laminated metal plate assemblies and use them as a multi-layer stack such as a two-layer stack or a three-layer stack. In this case, the laminated metal plate assemblies may be fixed by screws or the like or spot welding. At this time, it is also possible to fix by welding a part of the periphery or by welding the whole.
ガスケットは、上記の積層金属板接合体を使用して、プレス成形などの手法で製造することができる。具体的には、ブランキング(打抜き)、プレス成形によって所定形状のビードを有するガスケットを製造することができる。また、それらの積層金属板接合体を重ね合わせて、2枚積層、3枚積層等の複数枚積層として使用することも可能である。この場合、それぞれの積層金属板接合体同士は、ビス等、または、スポット溶接により固定すればよい。このとき、周囲の一部を溶接するか、全体を溶接して、固定することも可能である。 4). Gasket Manufacturing Method A gasket can be manufactured by a technique such as press molding using the above laminated metal plate assembly. Specifically, a gasket having a bead of a predetermined shape can be manufactured by blanking (punching) or press molding. Moreover, it is also possible to overlap these laminated metal plate assemblies and use them as a multi-layer stack such as a two-layer stack or a three-layer stack. In this case, the laminated metal plate assemblies may be fixed by screws or the like or spot welding. At this time, it is also possible to fix by welding a part of the periphery or by welding the whole.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例1)
表1に示す化学組成を有するオーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を積層した状態で、スポット溶接した後、ブランキング(打抜き)、プレス成形により主に図12のようなガスケットを製造した。一部は、図13のように第一平面部と第二平面部の間のビードにもスポット溶接、図14のようにスポット溶接数を増加したガスケットを製造した。スポット溶接は、4mmφにて実施した。各部の寸法は、図12に代表して記載し、図13、14についても同様とした。図12(a)の上面図のようにブランキングは、長径が116mm、短径が86mmであり、それらの交点を中心として直径が40mmφの孔も同時に打ち抜いた。ついで、ハーフビードのガスケットを模擬した形状にプレスした。 Example 1
After spot welding in a state where an austenitic stainless steel plate having a chemical composition shown in Table 1 and a ferritic stainless steel plate were laminated, a gasket as shown in FIG. 12 was mainly produced by blanking (punching) and press molding. Some manufactured spot gaskets also on the beads between the first plane part and the second plane part as shown in FIG. 13, and the number of spot welds increased as shown in FIG. Spot welding was performed at 4 mmφ. The dimensions of each part are shown as a representative in FIG. 12, and the same applies to FIGS. As shown in the top view of FIG. 12A, the blanking has a major axis of 116 mm and a minor axis of 86 mm, and a hole having a diameter of 40 mm around the intersection is also punched out simultaneously. Next, it was pressed into a shape simulating a half-bead gasket.
表1に示す化学組成を有するオーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を積層した状態で、スポット溶接した後、ブランキング(打抜き)、プレス成形により主に図12のようなガスケットを製造した。一部は、図13のように第一平面部と第二平面部の間のビードにもスポット溶接、図14のようにスポット溶接数を増加したガスケットを製造した。スポット溶接は、4mmφにて実施した。各部の寸法は、図12に代表して記載し、図13、14についても同様とした。図12(a)の上面図のようにブランキングは、長径が116mm、短径が86mmであり、それらの交点を中心として直径が40mmφの孔も同時に打ち抜いた。ついで、ハーフビードのガスケットを模擬した形状にプレスした。 Example 1
After spot welding in a state where an austenitic stainless steel plate having a chemical composition shown in Table 1 and a ferritic stainless steel plate were laminated, a gasket as shown in FIG. 12 was mainly produced by blanking (punching) and press molding. Some manufactured spot gaskets also on the beads between the first plane part and the second plane part as shown in FIG. 13, and the number of spot welds increased as shown in FIG. Spot welding was performed at 4 mmφ. The dimensions of each part are shown as a representative in FIG. 12, and the same applies to FIGS. As shown in the top view of FIG. 12A, the blanking has a major axis of 116 mm and a minor axis of 86 mm, and a hole having a diameter of 40 mm around the intersection is also punched out simultaneously. Next, it was pressed into a shape simulating a half-bead gasket.
図12(b)の断面図のように初期ビード高さ(底面側の板厚中心から上面側の板厚中心)は1.0mmとし、高温(700℃)での反りを測定した。また、実機条件を模擬した耐久試験を実施し、シール性を、◎(最適)、○(達成)、△(未達、ただし、従来材より良い。)で評価した。結果を表2に示す。表2の上板とは、図12(b)に示すガスケットとした場合における、紙面の上側の一方の板である。
As shown in the cross-sectional view of FIG. 12B, the initial bead height (from the thickness center on the bottom surface side to the thickness center on the top surface side) was 1.0 mm, and the warpage at high temperature (700 ° C.) was measured. In addition, an endurance test simulating actual machine conditions was conducted, and the sealability was evaluated with ◎ (optimum), ○ (achieved), and △ (not achieved, but better than conventional materials). The results are shown in Table 2. The upper plate in Table 2 is one plate on the upper side of the paper surface when the gasket shown in FIG.
表2において、No.1~53は、高温時に一定の反りが発生し、シール性に優れている。スポット溶接の影響については、図12のような平面部のみに実施したNo.14、22、28に比べて、図13のようにビードにもスポット溶接したNo.15、23、29、図14のようにスポット溶接を増加したNo.16、24の反りが何れも大きい。No.43,44は、フェライト系ステンレス鋼同士のクラッドであり、熱膨張率の差が小さい。また、No.45,46は、オーステナイト系ステンレス鋼同士のクラッドであり、熱膨張率の差が小さい。このため、高温での反りが小さく、No.1~40に比べてシール性が劣る。
In Table 2, No. Nos. 1 to 53 exhibit a certain warp at high temperatures and are excellent in sealing properties. Regarding the effect of spot welding, No. 1 was performed only on the flat surface as shown in FIG. Compared with Nos. 14, 22, and 28, No. 14 was spot welded to the beads as shown in FIG. 15, 23, 29, No. 1 with increased spot welding as shown in FIG. The warpages 16 and 24 are both large. No. 43 and 44 are clads between ferritic stainless steels, and the difference in coefficient of thermal expansion is small. No. 45 and 46 are clads between austenitic stainless steels, and the difference in coefficient of thermal expansion is small. For this reason, warpage at high temperature is small. Sealability is inferior compared to 1-40.
No.47,50は、総板厚が薄いため、高温時の反りが大きいが、フランジ部等を押し付ける力が弱く、No.1~40に比べてシール性が劣る。
No. Nos. 47 and 50 have a large total plate thickness, and thus warp at a high temperature is large, but the force for pressing the flange portion is weak. Sealability is inferior compared to 1-40.
No.41、42、48,49,51~53は、オーステナイト系ステンレス鋼の板厚割合が極めて高いか、極めて低いため、高温での反りが小さく、No.1~40に比べてシール性が劣る。
No. Nos. 41, 42, 48, 49, and 51 to 53 have a very high or very low plate thickness ratio of austenitic stainless steel, so the warpage at high temperature is small. Sealability is inferior compared to 1-40.
(実施例2)
表1に示す化学組成を有するオーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を積層した状態でスポット溶接することで三層または四層のクラッドとした後、ブランキング、プレス成形により図12のようなガスケット(ビードの接合部無し)を製造した。各クラッドの構成および特性を表3に示す。 (Example 2)
As shown in FIG. 12, after austenitic stainless steel sheet having the chemical composition shown in Table 1 and a ferritic stainless steel sheet are spot welded in a laminated state to form a three-layer or four-layer clad, blanking and press forming are performed. A gasket (without bead joints) was produced. Table 3 shows the configuration and characteristics of each cladding.
表1に示す化学組成を有するオーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を積層した状態でスポット溶接することで三層または四層のクラッドとした後、ブランキング、プレス成形により図12のようなガスケット(ビードの接合部無し)を製造した。各クラッドの構成および特性を表3に示す。 (Example 2)
As shown in FIG. 12, after austenitic stainless steel sheet having the chemical composition shown in Table 1 and a ferritic stainless steel sheet are spot welded in a laminated state to form a three-layer or four-layer clad, blanking and press forming are performed. A gasket (without bead joints) was produced. Table 3 shows the configuration and characteristics of each cladding.
なお、図12(b)に示すガスケットとした場合において、積層金属板接合体は、ビードが立ち上げ形成された側(紙面の最も上側)から順に、第一板、第二板、第三板および第四板として、表3に示した。表3において、No.54~61は、本発明の規定を満たし、高温でフランジ等との隙間を埋める方向に反り、シール性に優れている。
In addition, when it is set as the gasket shown in FIG.12 (b), a laminated metal plate assembly is a 1st board, a 2nd board, and a 3rd board in an order from the side (uppermost side of a paper surface) in which the bead was raised and formed. The results are shown in Table 3 as the fourth plate. In Table 3, no. Nos. 54 to 61 satisfy the requirements of the present invention, warp in a direction to fill a gap with a flange or the like at high temperature, and have excellent sealing properties.
(実施例3)
表1に示す化学組成を有するオーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を積層した状態でスポット溶接することで二層または三層のクラッドとした後、ブランキング、プレス成形により図12のようなガスケット材(ビードの接合部無し)とした。次いで、スポット溶接により、図11の(a)~(c)のような断面構造にした。各クラッドの構成および特性を表4に示す。 (Example 3)
As shown in FIG. 12, after austenitic stainless steel plate having the chemical composition shown in Table 1 and a ferritic stainless steel plate are spot welded to form a two-layer or three-layer clad, blanking and press forming are performed. A gasket material (without a bead joint) was used. Next, a cross-sectional structure as shown in FIGS. 11A to 11C was formed by spot welding. Table 4 shows the configuration and characteristics of each cladding.
表1に示す化学組成を有するオーステナイト系ステンレス鋼板と、フェライト系ステンレス鋼板を積層した状態でスポット溶接することで二層または三層のクラッドとした後、ブランキング、プレス成形により図12のようなガスケット材(ビードの接合部無し)とした。次いで、スポット溶接により、図11の(a)~(c)のような断面構造にした。各クラッドの構成および特性を表4に示す。 (Example 3)
As shown in FIG. 12, after austenitic stainless steel plate having the chemical composition shown in Table 1 and a ferritic stainless steel plate are spot welded to form a two-layer or three-layer clad, blanking and press forming are performed. A gasket material (without a bead joint) was used. Next, a cross-sectional structure as shown in FIGS. 11A to 11C was formed by spot welding. Table 4 shows the configuration and characteristics of each cladding.
なお、図12(b)に示すガスケットとした場合において、個々の積層金属板接合体は、ビードが立ち上げ形成された側(紙面の最も上側)から順に、第一板、第二板および第三板として、表4に示した。表4において、発明例62~67は、本発明の規定を満たし、高温でフランジとの隙間を埋める方向に反り、シール性に優れている。
In the case of the gasket shown in FIG. 12 (b), each laminated metal plate assembly includes the first plate, the second plate, and the first plate in order from the side where the beads are raised and formed (the uppermost side of the paper). The three plates are shown in Table 4. In Table 4, Invention Examples 62 to 67 satisfy the provisions of the present invention, warp in the direction of filling the gap with the flange at high temperature, and have excellent sealing properties.
本発明の積層金属板接合体を用いれば、ビードのヘタリが生じた場合でも、面圧の低下を補うことができ、高温環境で長時間使用されてもシール性を維持することができるガスケットを提供することができる。よって、本発明は、機械部品製造産業において利用可能性が高いものである。
When the laminated metal plate assembly of the present invention is used, a gasket that can compensate for a decrease in surface pressure even when the beads are set loose and can maintain a sealing property even when used for a long time in a high temperature environment. Can be provided. Therefore, the present invention has high applicability in the machine component manufacturing industry.
1、1a、1b ガスケット
5a 第一金属板
5b 第二金属板
6 第一平面部
6a 排ガス導通孔
6b 接合部
6c 排ガス導通孔の重心(中心)
6d 排ガス導通孔の内周縁
7 第二平面部
7a ボルト挿通孔
7b 接合部
8 ビード
8a ビードを立ち上げ形成した面
8b 接合部
10 エキゾーストマニホールド
20a、20b 排気管
21a、21b フランジ
30a、30b 接続部
40a、40b ボルト
50、55a、55b 積層金属板接合体
50a 第一金属板
50b 第二金属板
51、51a、51b、51c、51d、51e 接合部(接合部群)
60、61 排ガス導通孔予定部
60a、61a 排ガス導通孔の重心に対応する位置
100、200、300 二枚以上の積層金属板接合体で構成されるガスケット
100a、100b ガスケット材
110a、110b 第一平面部
120a、120b ビード部
130a、130b 第二平面部
200a、200b ガスケット材
210a、210b 第一平面部
220a、220b ビード部
230a、230b 第二平面部
300a、300b、300c ガスケット材
310a、310b、310c 第一平面部
320a、320b、320c ビード部
330a、330b、330c 第二平面部
La、Lb、Lc、Ld、Le 放射線 1, 1a,1b Gasket 5a 1st metal plate 5b 2nd metal plate 6 1st plane part 6a Exhaust gas conduction hole 6b Joint part 6c Center of gravity (center) of exhaust gas conduction hole
6d Inner peripheral edge of exhaustgas conduction hole 7 Second plane portion 7a Bolt insertion hole 7b Joint portion 8 Bead 8a Surface where beads are raised and formed 8b Joint portion 10 Exhaust manifold 20a, 20b Exhaust pipe 21a, 21b Flange 30a, 30b Connection portion 40a , 40b Bolt 50, 55a, 55b Laminated metal plate assembly 50a First metal plate 50b Second metal plate 51, 51a, 51b, 51c, 51d, 51e Joint (joint group)
60, 61 Exhaust gas conduction hole planned portion 60a, 61a Position corresponding to the center of gravity of the exhaust gas conduction hole 100, 200, 300 Gasket 100a, 100b Gasket material 110a, 110b composed of two or more laminated metal plate assemblies First plane Part 120a, 120b Bead part 130a, 130b Second plane part 200a, 200b Gasket material 210a, 210b First plane part 220a, 220b Bead part 230a, 230b Second plane part 300a, 300b, 300c Gasket material 310a, 310b, 310c First One plane part 320a, 320b, 320c Bead part 330a, 330b, 330c Second plane part La, Lb, Lc, Ld, Le Radiation
5a 第一金属板
5b 第二金属板
6 第一平面部
6a 排ガス導通孔
6b 接合部
6c 排ガス導通孔の重心(中心)
6d 排ガス導通孔の内周縁
7 第二平面部
7a ボルト挿通孔
7b 接合部
8 ビード
8a ビードを立ち上げ形成した面
8b 接合部
10 エキゾーストマニホールド
20a、20b 排気管
21a、21b フランジ
30a、30b 接続部
40a、40b ボルト
50、55a、55b 積層金属板接合体
50a 第一金属板
50b 第二金属板
51、51a、51b、51c、51d、51e 接合部(接合部群)
60、61 排ガス導通孔予定部
60a、61a 排ガス導通孔の重心に対応する位置
100、200、300 二枚以上の積層金属板接合体で構成されるガスケット
100a、100b ガスケット材
110a、110b 第一平面部
120a、120b ビード部
130a、130b 第二平面部
200a、200b ガスケット材
210a、210b 第一平面部
220a、220b ビード部
230a、230b 第二平面部
300a、300b、300c ガスケット材
310a、310b、310c 第一平面部
320a、320b、320c ビード部
330a、330b、330c 第二平面部
La、Lb、Lc、Ld、Le 放射線 1, 1a,
6d Inner peripheral edge of exhaust
60, 61 Exhaust gas conduction hole planned
Claims (10)
- 複層の金属板と、
前記複層の金属板同士を接合した接合部とを備え、
前記接合部が、点または線を規則的に配置した、積層金属板接合体。 A multilayer metal plate,
It comprises a joint part that joins the metal plates of the multilayer,
A laminated metal plate assembly in which the joint portion regularly arranges points or lines. - 前記接合部が、複数の平行線上に形成された第一接合部群と、前記平行線に対して一定の角度を有する複数の平行線上に形成された第二接合部群とを備える、請求項1に記載の積層金属板接合体。 The joint portion includes a first joint portion group formed on a plurality of parallel lines and a second joint portion group formed on a plurality of parallel lines having a certain angle with respect to the parallel lines. 1. The laminated metal plate assembly according to 1.
- 前記接合部が、複数の平行線上に形成された第一接合部群と、前記平行線について並進対称な複数の線上に形成された第二接合部群とを備える、請求項1に記載の積層金属板接合体。 The laminate according to claim 1, wherein the joint includes a first joint group formed on a plurality of parallel lines and a second joint group formed on a plurality of translationally symmetric lines with respect to the parallel lines. Metal plate assembly.
- 排ガス導通孔を備えるガスケットに用いられる積層金属板接合体であって、
前記第一接合部群が形成された複数の平行線と、前記第二接合部群が形成された複数の平行線と交点が、前記排ガス導通孔の重心に対応する位置となるように配置されている、
請求項1から3までのいずれかに記載の積層金属板接合体。 A laminated metal plate assembly used in a gasket having exhaust gas conduction holes,
The plurality of parallel lines in which the first joint group is formed, and the plurality of parallel lines in which the second joint group is formed and intersections are arranged so as to be at positions corresponding to the center of gravity of the exhaust gas conduction hole. ing,
The laminated metal plate assembly according to any one of claims 1 to 3. - 前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、等角度間隔となる点を通る放射線上に形成された、請求項4に記載の積層金属板接合体。 The laminated metal plate assembly according to claim 4, wherein the joining portion is formed on radiation passing through a point that is equiangularly spaced from a position corresponding to the center of gravity of the exhaust gas conduction hole.
- 前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、前記排ガス導通孔の内周縁の長さを均等に分割した点を通る放射線上に形成された、請求項4に記載の積層金属板接合体。 The said junction part was formed on the radiation which passes along the point which divided | segmented the length of the inner periphery of the said exhaust gas conduction hole equally on the basis of the position corresponding to the gravity center of the said exhaust gas conduction hole. Laminated metal plate assembly.
- 前記排ガス導通孔を備える第一平面部と、ボルト挿通孔を備える第二平面部と、前記第一平面部と前記第二平面部との間に設けられたビードとを備えるガスケットに用いられる積層金属板接合体であって、
前記接合部が、前記排ガス導通孔の重心に対応する位置を基点として、前記第一平面部に対応する位置と前記ビードに対応する位置との境界線の長さを均等に分割した点を通る放射線上に形成された、請求項4に記載の積層金属板接合体。 Lamination used for a gasket provided with a first plane part provided with the exhaust gas conduction hole, a second plane part provided with a bolt insertion hole, and a bead provided between the first plane part and the second plane part. A metal plate assembly,
The joint passes through a point where the length of the boundary line between the position corresponding to the first plane portion and the position corresponding to the bead is equally divided with the position corresponding to the center of gravity of the exhaust gas conduction hole as a base point. The laminated metal plate assembly according to claim 4, which is formed on radiation. - 前記並進対称な線が、直線である、請求項3に記載の積層金属板接合体。 The laminated metal plate assembly according to claim 3, wherein the translationally symmetric line is a straight line.
- 前記複層の金属板のうち少なくとも一方が、金属帯である、請求項1から8までのいずれかに記載の積層金属板接合体。 The laminated metal plate assembly according to any one of claims 1 to 8, wherein at least one of the multilayer metal plates is a metal strip.
- 前記金属板が、オーステナイト系ステンレス鋼板およびフェライト系ステンレス鋼板である、請求項1から9までのいずれかに記載の積層金属板接合体。 The laminated metal plate assembly according to any one of claims 1 to 9, wherein the metal plate is an austenitic stainless steel plate or a ferritic stainless steel plate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018527326A JP6566138B2 (en) | 2016-07-14 | 2016-07-14 | Laminated metal plate assembly |
PCT/JP2016/070777 WO2018011933A1 (en) | 2016-07-14 | 2016-07-14 | Bonded stacked metal sheet body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/070777 WO2018011933A1 (en) | 2016-07-14 | 2016-07-14 | Bonded stacked metal sheet body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018011933A1 true WO2018011933A1 (en) | 2018-01-18 |
Family
ID=60952853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070777 WO2018011933A1 (en) | 2016-07-14 | 2016-07-14 | Bonded stacked metal sheet body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6566138B2 (en) |
WO (1) | WO2018011933A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06109136A (en) * | 1992-09-28 | 1994-04-19 | Toyota Motor Corp | Metallic gasket |
JPH07332500A (en) * | 1994-05-31 | 1995-12-22 | Japan Metal Gasket Co Ltd | Metallic gasket and manufacture thereof |
JPH081856A (en) * | 1994-06-15 | 1996-01-09 | Sumitomo Metal Ind Ltd | Composite damping metallic sheet |
JPH1047486A (en) * | 1996-07-31 | 1998-02-20 | Taiho Kogyo Co Ltd | Cylinder head gasket |
JP2002091222A (en) * | 2000-09-11 | 2002-03-27 | Ntn Corp | Release member |
US20020093142A1 (en) * | 1999-07-24 | 2002-07-18 | Klaus Schmitt | Cylinder head gasket having a welded-on overlay |
JP2005249165A (en) * | 2004-03-08 | 2005-09-15 | Ishikawa Gasket Co Ltd | Gasket |
JP2014047900A (en) * | 2012-09-04 | 2014-03-17 | Nippon Leakless Corp | Metal gasket |
WO2014200995A1 (en) * | 2013-06-10 | 2014-12-18 | Federal-Mogul Corporation | Static gasket and method of construction thereof |
JP5911163B1 (en) * | 2015-05-10 | 2016-04-27 | 有限会社 東進車輌工業 | Metal gasket for exhaust pipe |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7334800B2 (en) * | 2004-10-29 | 2008-02-26 | Power Systems Mfg., Llc | Seal for a gas turbine engine having improved flexibility |
-
2016
- 2016-07-14 JP JP2018527326A patent/JP6566138B2/en active Active
- 2016-07-14 WO PCT/JP2016/070777 patent/WO2018011933A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06109136A (en) * | 1992-09-28 | 1994-04-19 | Toyota Motor Corp | Metallic gasket |
JPH07332500A (en) * | 1994-05-31 | 1995-12-22 | Japan Metal Gasket Co Ltd | Metallic gasket and manufacture thereof |
JPH081856A (en) * | 1994-06-15 | 1996-01-09 | Sumitomo Metal Ind Ltd | Composite damping metallic sheet |
JPH1047486A (en) * | 1996-07-31 | 1998-02-20 | Taiho Kogyo Co Ltd | Cylinder head gasket |
US20020093142A1 (en) * | 1999-07-24 | 2002-07-18 | Klaus Schmitt | Cylinder head gasket having a welded-on overlay |
JP2002091222A (en) * | 2000-09-11 | 2002-03-27 | Ntn Corp | Release member |
JP2005249165A (en) * | 2004-03-08 | 2005-09-15 | Ishikawa Gasket Co Ltd | Gasket |
JP2014047900A (en) * | 2012-09-04 | 2014-03-17 | Nippon Leakless Corp | Metal gasket |
WO2014200995A1 (en) * | 2013-06-10 | 2014-12-18 | Federal-Mogul Corporation | Static gasket and method of construction thereof |
JP5911163B1 (en) * | 2015-05-10 | 2016-04-27 | 有限会社 東進車輌工業 | Metal gasket for exhaust pipe |
Also Published As
Publication number | Publication date |
---|---|
JP6566138B2 (en) | 2019-08-28 |
JPWO2018011933A1 (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4536765B2 (en) | Metal gasket | |
EP2188554B1 (en) | Metallic cylinder head gasket | |
JP6246797B2 (en) | Metal gasket | |
JP2006506569A (en) | Biased wear-resistant turbine seal assembly | |
KR20020036699A (en) | Head gasket | |
KR102299274B1 (en) | Plate heat exchanger and method for manufacturing a plate heat exchanger | |
KR100950000B1 (en) | Cylinder head gasket | |
WO2012160751A1 (en) | Metal gasket | |
JP3946218B2 (en) | Metal gasket | |
JP5077436B2 (en) | Cylinder head gasket | |
JP6566138B2 (en) | Laminated metal plate assembly | |
JP6677301B2 (en) | gasket | |
JP5911163B1 (en) | Metal gasket for exhaust pipe | |
JP4794643B2 (en) | Metal laminated gasket | |
JP6665934B2 (en) | Manufacturing method of heat-resistant gasket | |
JP4237081B2 (en) | Gasket for multi-cylinder engine | |
JP6617477B2 (en) | Stainless steel clad for gasket | |
JPH01182563A (en) | Metal gasket | |
JP4708895B2 (en) | Brazing member and manufacturing method thereof | |
WO2014132832A1 (en) | Heat-resistant gasket | |
JP4155357B2 (en) | Cylinder head gasket | |
JP2020034035A (en) | gasket | |
JP4298335B2 (en) | Metal gasket for cylinder head | |
JPH04307178A (en) | Metal gasket | |
JP5023102B2 (en) | Metal gasket and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018527326 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908835 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16908835 Country of ref document: EP Kind code of ref document: A1 |