WO2018011899A1 - Membrane separation device - Google Patents

Membrane separation device Download PDF

Info

Publication number
WO2018011899A1
WO2018011899A1 PCT/JP2016/070595 JP2016070595W WO2018011899A1 WO 2018011899 A1 WO2018011899 A1 WO 2018011899A1 JP 2016070595 W JP2016070595 W JP 2016070595W WO 2018011899 A1 WO2018011899 A1 WO 2018011899A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
membrane
filtration membrane
supply
flow path
Prior art date
Application number
PCT/JP2016/070595
Other languages
French (fr)
Japanese (ja)
Inventor
龍 上戸
櫻井 秀明
鵜飼 展行
英夫 鈴木
裕 中小路
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2016/070595 priority Critical patent/WO2018011899A1/en
Publication of WO2018011899A1 publication Critical patent/WO2018011899A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules

Definitions

  • the present invention relates to the structure of a membrane separation device for filtering a liquid.
  • Patent Document 1 there is disclosed a test apparatus for filtering a fluid using a planar filter membrane disposed between two upper and lower cells.
  • an object of the present invention is to provide a structure of a membrane separation device that suppresses the occurrence of crushing and scratching of a filtration membrane.
  • a membrane separation apparatus for filtering a liquid is a membrane separation apparatus for filtering a liquid, and a supply liquid in which a supply liquid to be filtered flows
  • a primary side main body having a flow path, a secondary side main body having a permeate flow path through which the filtered permeate flows, and a flat filtration membrane positioned between the primary side main body and the secondary side main body
  • the primary side main body has an inner surface facing the secondary side main body, and the inner surface is a primary side concave surface defining the supply liquid flow path with the filtration membrane
  • a primary convex surface surrounding the primary concave surface, the secondary body has an inner surface facing the primary body, and the inner surface is the filtration membrane and the
  • the secondary concave surface defining the permeate flow path and the secondary surrounding the secondary concave surface A convex surface, and further, a sealing material located between the primary convex surface of the primary body and the filtration membrane, and located between the sealing
  • the supply liquid channel may be longer than the permeate channel.
  • the boundary between the primary concave surface and the primary convex surface, and the boundary between the secondary concave surface and the secondary convex surface are at different positions. It will be in contact with the filtration membrane.
  • the lengths of the supply liquid channel and the permeate channel may be the same.
  • the membrane separation apparatus for filtering a liquid is a membrane separation apparatus for filtering a liquid as another aspect, and has a supply liquid channel through which a supply liquid to be filtered flows.
  • the primary side body has an inner surface facing the secondary side body, and the inner surface defines a primary side recess surface defining the supply liquid flow path with the filtration membrane, and the primary side recess.
  • a primary convex surface surrounding the surface, and the secondary main body has an inner surface facing the primary main body, and the inner surface connects the permeate flow path with the filtration membrane.
  • the secondary side concave surface to define, and the secondary side convex surface surrounding the secondary side concave surface,
  • the primary side main body is located between the primary convex surface and the filtration membrane, and at least the primary concave surface and the primary convex surface of the primary main body on the surface of the filtration membrane. And an adhesive extending over a portion including the boundary.
  • the membrane separation apparatus for filtering a liquid is a membrane separation apparatus for filtering a liquid as another aspect, and a first supply liquid flow path through which a supply liquid to be filtered flows
  • a first recess surface defining a first supply liquid flow path with a first filtration membrane located on a first main body side of the two filtration membranes.
  • a first convex surface surrounding the first concave surface, and the second main body is opposed to the first main body.
  • a second recess surface defining a second permeate flow path with a second filtration membrane located on the second main body side of the two filtration membranes And a second convex surface surrounding the second concave surface, and a second convex surface located between the first convex surface of the first main body and the first filtration membrane.
  • the first concave surface of the first main body and the first convex portion from at least a portion in contact with the first sealing material on the surface of the first filtration membrane, which is located between the first membrane and the membrane.
  • a flat first protective member extending up to the boundary with the surface, located between the second sealing material and the second filtration membrane,
  • a flat first surface extending from at least a portion in contact with the second sealing material to a boundary between the surface of the second concave portion and the surface of the second convex portion of the second main body.
  • Two protective members a first adhesive positioned between the first protective member and the first filtration membrane, and a position between the second protective member and the second filtration membrane. And a second adhesive.
  • the first supply liquid flow path and the second supply liquid flow path have sizes corresponding to the sizes of the first supply liquid flow path and the second supply liquid flow path ( For example, supply spacers of approximately the same size) may be arranged.
  • the membrane separation apparatus for filtering a liquid is a membrane separation apparatus for filtering a liquid as another aspect, and a first supply liquid flow path through which a supply liquid to be filtered flows A first main body having a second main body having a second supply liquid flow path through which a supply liquid to be filtered flows, and two sheets positioned between the first main body and the second main body And a flat and permeable spacer positioned between the two flat filtration membranes, the first main body facing the second main body And a first filtration membrane that defines the first supply liquid flow path with the first filtration membrane located on the first main body side of the two filtration membranes.
  • a second recess having an inner surface, the inner surface defining the second permeate channel with the second filtration membrane located on the second main body side of the two filtration membranes
  • a first adhesive having a surface and a second convex surface surrounding the second concave surface, and located between the first main body and the first filtration membrane, and the second And a second adhesive positioned between the main body and the second filtration membrane.
  • the first supply liquid flow path and the second supply liquid flow path have sizes corresponding to the sizes of the first supply liquid flow path and the second supply liquid flow path, respectively.
  • a supply spacer may be arranged.
  • the supply spacer may be made of a mesh-like material that allows a supply liquid to pass through.
  • a mesh-like material for the supply liquid flow path, it is possible to give an appropriate resistance to the liquid flowing inside. Therefore, the pressure of the supply liquid flowing inside the supply spacer can be appropriately increased.
  • a permeation spacer having a size corresponding to the size of the permeate channel may be arranged.
  • the transmission spacer may have a structure in which a plurality of holes communicating with each other are provided.
  • the adhesive positioned between the first filtration membrane and the first main body further includes the filtration membrane of the first filtration membrane and the first membrane. It can also be located so that the peripheral part of the main body may adhere
  • the adhesive positioned between the second filtration membrane and the second main body further includes the filtration membrane of the second filtration membrane and the second membrane. It can also be located so that the peripheral part of the main body may adhere
  • the present invention provides, as another aspect, a membrane separation unit for filtering a liquid, which is a first flat and permeable first flow of supply liquid to be filtered.
  • Two flat members positioned between the second protective member surrounding the periphery, the first supply spacer and the first protective member, and the second supply spacer and the second protective member.
  • a filtration membrane and a flat permeation spacer located between the two flat filtration membranes, and a first located between the first protective member and the first filtration membrane. Adhesive, the second protective member and the second filtration membrane And a second adhesive located.
  • the membrane separation unit for filtering a liquid according to the present invention includes a size of an inner peripheral portion of the first protective member that is in contact with an outer peripheral portion of the first supply spacer, and the second protective member.
  • the size of the inner peripheral part in contact with the outer peripheral part of the second supply spacer may be different. In this way, by changing the size of the inner peripheral portion of each protection member, the load is applied to the filtration membrane by the first protection member, and the load is applied to the filtration membrane by the second protection member. Since the position shifts, the stress applied to the filtration membrane can be dispersed. As a result, generation
  • a permeate discharge channel into which the filtered permeate flows is formed in a part of the peripheral portion of the permeation spacer,
  • the first protective member and the second protective member are integrally formed by extending from a part of the peripheral portion, and among the peripheral portions of the permeation spacer, The portion where the permeate discharge channel is not installed can be blocked with an adhesive.
  • FIG. 1 is an exploded view showing each component of the membrane separation apparatus according to the first embodiment.
  • a membrane separation apparatus 10 according to the present embodiment includes a shim ring 9, an outer seal material 5, a supply spacer 3, an inner seal material 4, and a protective member with a primary side main body 1 and a secondary side main body 2. 6, the filter membrane 7 and the permeation spacer 8 are sandwiched.
  • Each member is fixed by receiving a compression force by being sandwiched between the primary side main body 1 and the secondary side main body 2. Further, the primary side main body 1 and the secondary side main body 2 are fixed by bolts 19.
  • FIG. 2 is a cross-sectional view of the membrane separation apparatus according to the first embodiment.
  • the position of the cross section corresponds to the AA cross section in FIG.
  • the upper end surface of the primary side main body 1 in the figure has a primary side concave surface 11 located in the center and a primary side convex surface 12 surrounding the primary side concave surface 11.
  • the depth of the primary concave surface 11 and the depth of the concave with respect to the primary convex 12 correspond to (for example, substantially the same) the width and thickness of the supply spacer 3 disposed here. Therefore, as shown in FIG. 2, the supply spacer 3 can be accommodated in the recess formed by the primary recess surface 1 with almost no gap.
  • the region surrounded by the primary concave surface 11 and the filtration membrane 7 region where the supply spacer 3 is arranged is a supply liquid flow path so that the liquid to be filtered flows. It has become.
  • a supply port 13 and a concentrated water discharge port 14 are provided at both ends of the primary recess surface 11 of the primary body 1.
  • Each of the supply port 13 and the concentrated water discharge port 14 has a hole shape that is inserted vertically in the figure.
  • the shape of these holes is an oval shape (or substantially rectangular shape) when viewed from the opening end direction of the holes.
  • the supply port 13 and the concentrated water discharge port 14 are distinguished for convenience of explanation, these structures are the same (symmetric in the figure). Therefore, the role (and name) can be switched when the apparatus is used.
  • each of the inner sealing material 4 and the outer ring 5 has a single ring shape.
  • a positioning pin 15 is provided between the inner ring groove 16 and the outer seal material groove 17 on the primary convex surface 12.
  • the positioning pin 15 has a cylindrical shape protruding upward, and has a shape corresponding to a positioning hole 25 provided at a corresponding position of the secondary side main body 2. As shown in FIG. 2, the positioning pin 15 is inserted into the positioning hole 25 when the primary side main body 1 and the secondary side main body 2 are assembled.
  • a bolt hole 18 is provided on the outer side of the groove for the outer sealing material on the primary convex surface 12 in the drawing.
  • a bolt hole 28 is provided at a location corresponding to the bolt hole 18 in the secondary side main body 2.
  • a permeate discharge passage 23 penetrating in the vertical direction is provided at the center of the secondary side main body 2.
  • the width of the permeate discharge channel 23 is narrower than the widths of the supply port 13 and the concentrated water discharge port 14 provided in the primary side main body 1. This is because the flow rate of the liquid passing through the permeate discharge channel 23 is often smaller than the flow rate of the liquid passing through the supply port 13 and the concentrated water discharge port 14.
  • the shape which looked at the permeate discharge flow path 23 from the opening end side is an oval (or a substantially rectangular shape).
  • the portion corresponding to the primary concave surface 11 in the primary side main body 1 is a secondary side that is recessed one step upward in the figure from the surroundings.
  • a concave surface 21 is provided.
  • a transmissive spacer 8 corresponding to the size of the recess is disposed on the secondary recess surface 21.
  • the permeable spacer 8 has a plurality of holes communicating with the inside, so that the liquid can pass through the inside.
  • the region surrounded by the secondary concave surface 21 and the filtration membrane 7 (the region where the permeation spacer 8 is disposed) is a permeate channel, and the liquid that has passed through the filtration membrane 7 It is a flowing channel.
  • the periphery of the secondary concave surface 21 is a secondary convex surface 22, which protrudes downward in FIG. 2 from the secondary concave surface 21.
  • the secondary recess surface 21 has a positioning hole 25 that is recessed leftward and rightward symmetrically from the center in the figure toward the outside (both left and right sides), and a bolt hole 28 that penetrates in the vertical direction in the figure. Are provided.
  • a filtration membrane 7 is disposed between the primary side main body 1 and the secondary side main body 2.
  • the filtration membrane 7 can be a filtration membrane having micropores such as a reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • the lengths of the filtration membrane 7 in the width direction and the depth direction in FIG. 2 are at least longer than the widths and depths of the primary-side concave surface 11 and the secondary-side concave surface 21, and the width of the inner sealing material groove 16 and It is longer than the depth.
  • a protective member 6 is provided between the primary side main body 1 and the filtration membrane 7.
  • the protective member 6 extends at least from the portion in contact with the inner sealing material 4 to the boundary between the primary convex surface 12 and the primary concave surface 11 of the primary body 1.
  • the protective member 6 has a rectangular frame shape in the first embodiment, and is disposed so as to surround the four sides of the primary-side concave surface 11 in the same manner. .
  • FIG. 3 is a schematic diagram created for the purpose of assisting understanding of the positional relationship of each component.
  • FIG. 3 shows an arrangement relationship of some components from the viewpoint from above in FIG.
  • the filtration membrane 7 extends over a wider range than the protective member 6.
  • the inner sealing material 4 is arranged so as to overlap the protective member 6 as a whole.
  • a cylindrical shim ring 9 is inserted into the positioning pin 15.
  • the shim ring 9 plays a role of ensuring a constant gap between the primary side main body 1 and the secondary side main body 2.
  • the height of the shim ring 9 corresponds to the sum of the heights of the filtration membrane 7 and the protective member 6 (for example, substantially equal).
  • an adhesive (not shown) is interposed between the protective member 6 and the filtration membrane 7, and the protective member 6 and the filtration membrane 7 are bonded by this adhesive.
  • a liquid to be filtered is injected into the supply port 13 at a predetermined pressure. Then, the injected liquid flows from the right side to the left side in the drawing in the supply spacer 3 that is the supply liquid flow path, and is discharged from the concentrated water discharge port 14.
  • the liquid flowing inside the supply spacer 3 receives resistance by the mesh structure, so that the pressure of the liquid is maintained in the supply liquid flow path or the pressure is increased. By applying pressure in this manner, the liquid to be filtered is filtered by the filtration membrane 7.
  • the liquid that has passed through the filtration membrane 7 flows into the permeate channel (permeation spacer 8) located on the upper side in FIG. 2 and is discharged from the permeate drain channel 23.
  • the concentrated supply water is discharged from the concentrated water discharge port 14.
  • a predetermined pressure is applied to the supply liquid inside the membrane separation layer apparatus 10 as described above. This pressure may cause the supplied liquid to leak from between the filtration membrane 7 and the primary body 1. Therefore, an inner sealing material 4 is provided between the filtration membrane 7 and the primary side main body 1.
  • the inner sealing material 4 is compressed by the primary side main body 1 located on the lower side in FIG. 2 and the protective member 6 located on the upper side, and is appropriately deformed. Thereby, the inner side sealing material 4 plays the role of a buffering agent, and plays the role which prevents the liquid used as filtration object from leaking from the clearance gap between upper and lower components (protective member 6 and the primary side main body 1). .
  • the membrane separation apparatus 10 has an undesirable problem when a fine scratch or dent is generated in the filtration membrane 7. Specifically, the liquid supplied from the gaps caused by scratches and dents leaks, thereby reducing the filtration performance. Moreover, when the liquid flows out from such a gap, the pressure applied to the liquid being filtered is reduced, and the filtration efficiency is significantly reduced.
  • the boundary between the primary convex surface and the primary concave surface of the primary body is exceeded from the position between the filtration membrane 7 and the inner sealing material 4.
  • the protective member 6 is arranged up to the position. Therefore, generation
  • the outer sealing material 5 is compressed and deformed by the primary side main body 1 located on the middle lower side and the secondary side main body 2 located on the upper side, like the inner sealing material 4, and the gap between these parts Therefore, the liquid to be filtered is prevented from leaking and also serves as a buffer for the upper and lower members.
  • the protective member 6 and the filtration membrane 7 are bonded by an adhesive. Therefore, it is possible to effectively prevent the liquid to be filtered from leaking from the gap between the protective member 6 and the filtration membrane 7.
  • the portion fixed by the adhesive is only between the protective member 6 and the filtration membrane 7. In this way, only the protective member 6 and the filtration membrane 7 that are relatively frequently replaced can be easily replaced by being not adhered to other parts.
  • a material having chemical resistance and high durability such as stainless steel such as SUS316L or an alloy such as Hastelloy can be used for the primary side main body 1 and the secondary side main body 2.
  • a RO membrane or the like having a communication hole and made of a polyamide material or the like can be used for the protective member 6, a material having chemical resistance and high durability and a resin material such as PVC (polyvinyl chloride) can be used.
  • a porous sintered metal made of SUS304 or the like having a thickness of about 1.0 mm can be used, or a mesh-like material that allows liquid to pass through the inside can also be used.
  • a mesh-like material having a thickness of about 0.5 mm to about 1.5 mm can be used.
  • materials such as fluorine rubber, nitrile butyl rubber, hydrogenated nitrile rubber, and perfluoroelastomer having a diameter of about 3.0 mm to 4.0 mm can be used.
  • a material of the adhesive a two-component curable urethane-based adhesive using a mixture of polyol and polyisocyanate can be used.
  • the inner sealing material 4 the inner sealing material groove 16, the protective member 6, the positioning pin 15, and the positioning.
  • the hole 25 and the shim ring 9 are omitted.
  • the filtration membrane 7 and the contact part of the primary side main body 1 are adhered by an adhesive. By setting it as such a structure, the liquid leak by the performance deterioration of a sealing material can be eliminated.
  • the size of the primary concave surface 11 is smaller than the size of the secondary concave surface 21 from the front view in FIG. Thereby, the position of the boundary between the primary concave surface 11 and the primary convex surface 12 is shifted from the boundary position between the secondary concave surface 21 and the secondary convex surface 22. As a result, the position of the force applied to the filtration membrane 7 is different in the vertical direction, and scratches and dents generated in the filtration membrane 7 can be suppressed.
  • size of the primary side recessed part surface 11 and the secondary side recessed part surface 21 can also be made into a different magnitude
  • the primary side concave surface 11 can be made larger than the secondary side concave surface 21.
  • a membrane separation unit according to the third embodiment will be described with reference to FIG. Note that the third embodiment is a modification of the first embodiment (FIGS. 1 to 3), and therefore, redundant description will be omitted and differences will be described in detail.
  • FIG. 5 is a diagram showing a membrane separation unit 310 according to the third embodiment.
  • description of portions corresponding to the primary side main body 1 and the secondary side main body 2 (see FIG. 2) described in the first embodiment is omitted for the purpose of assisting understanding of the description. Yes.
  • FIG. 5 shows a laminated structure of five layers.
  • a frame-shaped protective member 106 is disposed on the uppermost layer in FIG.
  • a supply spacer 103 having a large thickness (for example, substantially the same thickness) corresponding to the protection member 106 is disposed inside the protection member 106.
  • the filtration membrane 107 is arrange
  • a transmissive spacer 108 is disposed in the lower layer.
  • the same members are arranged on the upper and lower objects with the transmission spacer 108 as the center. That is, the filtration membrane 107 is disposed below the permeation spacer 108, and further, a layer composed of the supply spacer 103 and the protective member 106 surrounding the supply spacer 103 is disposed below the filtration membrane 107.
  • the adhesive used in the first embodiment can be used.
  • all the five stacked layers are fixed with an adhesive.
  • the fixing method is not limited to this, and only the protective member 106 and the filtration membrane 107 may be bonded with an adhesive, and other components may be fixed with bolts or the like.
  • the protective member 106 may be fixed by applying an adhesive to the entire surface in contact with the filtration membrane 107.
  • the filtration membrane 107 and the permeation spacer 108 are fixed with an adhesive, only the vicinity of the peripheral portion is adhered to avoid the center portion in order to ensure the filtration performance and permeation performance of the liquid.
  • the permeated water that has permeated through the filtration membrane 107 flows into the permeation spacer 108 by flowing the liquid to be filtered from the vertical direction in the figure. Then, the permeated water is discharged from the end of the permeable spacer 108.
  • the membrane separation unit 310 since the liquid to be filtered can be made to flow simultaneously from the vertical direction in the figure, the filtration efficiency is improved. Moreover, since pressure can be applied uniformly from above and below, deformation due to the pressure of each layer can be suppressed. For this reason, damage to the filtration membrane 107 can be suppressed, and as a result, the useful life of the membrane separation unit 310 can be extended.
  • the permeable spacer 8 in the third embodiment employs a mesh-like material that allows liquid to pass through the inside.
  • a sintered metal having a plurality of holes communicating with each other as employed in the first embodiment and the second embodiment.
  • FIG. 6 shows a cross-sectional view of a membrane separation unit 410 according to the fourth embodiment.
  • the uppermost protective member 106b in the membrane separation unit 410 is annular (or ring-shaped) at the right end in the figure, and is connected to and integrated with the lowermost protective member 106b.
  • the cavity inside the annular portion is a permeate discharge channel 123 through which permeate flows.
  • the permeation spacer 8 has a portion (left end, back end, front end) 411 (hereinafter referred to as a sealing portion) other than the right end in FIG. It can be closed by applying or impregnating an adhesive. As a result, all of the liquid flowing into the permeation spacer 8 flows out to the permeate discharge channel 123 at the right end in the figure.
  • the end of the transmissive spacer 8 is replaced with another member (for example, the primary side main body as shown in the first to third embodiments) on the outer periphery of the sealing portion 411 instead of the method of closing with the adhesive. 1 and the secondary side main body 2 etc. can be installed to allow permeate to flow into a predetermined flow path.
  • FIG. 7 is a top view of the membrane separation unit 410 according to the fourth embodiment.
  • the permeate discharge channel 123 has a closed end on the lower side in the drawing and an open end on the upper side in the drawing. Therefore, the liquid flowing in from the opening of the protective member 106b is filtered by the filter membrane 107, flows through the permeation spacer 108, and then flows into the permeate discharge channel 123, and the direction of the arrow shown on the upper side in FIG. Will be discharged.
  • one end of the permeate discharge channel is a closed end, but both sides may be open ends. Further, the permeate discharge channel 123 can be provided at both the left and right ends in the figure. Further, the permeation spacer 108 and the filtration membrane 107 may have a structure in which the end face is closed in order to prevent liquid from leaking from the end face.
  • FIG. 8 shows a cross-sectional view of a membrane separation apparatus 510 using the membrane separation unit 410 according to the fourth embodiment.
  • FIG. 9 shows a perspective view of a membrane separation apparatus 510 using the membrane separation unit 410 according to the fourth embodiment.
  • the membrane separation apparatus 510 has a first main body 401 and a second main body 402 arranged above and below the membrane separation unit 410.
  • a sealing material 403 is disposed between the protective member 106 b and the second main body 402 and between the protective member 106 b and the first main body 401.
  • the protective member 106b and the second main body 402 and the protective member 106b and the first main body 401 can be directly bonded by an adhesive.
  • the upper and lower first main bodies 401 and the second main body 402 are fixed with bolts (not shown).
  • the first main body 401 is provided with a first supply port 413 and a first concentrated water discharge port 414 extending in the vertical direction in the figure, and the supply liquid therebetween
  • a supply spacer 430 is installed in the flow path.
  • the second main body 402 is also provided with a second supply port 423 and a second concentrated water discharge port 424, and a supply spacer 440 is installed in the supply liquid channel therebetween.
  • a mesh-like material that allows liquid to pass through is used for the transmissive spacer 8 in the fourth embodiment.
  • a sintered metal having a plurality of holes communicating with each other as employed in the first embodiment and the second embodiment.
  • the fourth embodiment may be modified as in the second embodiment. That is, the first main body and the second main body may be directly bonded to the membrane separation unit 410 except for the protective member and the seal member.
  • the sizes of the supply liquid channel and the permeate channel do not have to be the same.
  • the width and depth of the supply liquid channel (the front in FIGS. 2, 4, and 8). May be larger than the width and depth of the permeate channel.
  • the metal is used for a primary side main body and a secondary side main body (or 1st main body and 2nd main body)
  • a resin material can also be used.
  • bolts are used for fixing, they can be fixed by other fixing methods such as fitting and welding.
  • the filtration membrane used in the present embodiment may be a laminate of a plurality of filtration membranes.

Abstract

Provided is an osmosis membrane device equipped with: a sealant located between the primary-side protrusion surface of a primary-side main body and a filter membrane; a flat protective member located between the sealant and the filter membrane and extending on a surface of the filter membrane at least from a portion thereof which is in contact with the sealant to the boundary between the primary-side recess surface of the primary-side main body and the primary-side protrusion surface; and an adhesive located between the protective member and the filter membrane.

Description

膜分離装置Membrane separator
 本発明は、液体を濾過するための膜分離装置の構造に関するものである。 The present invention relates to the structure of a membrane separation device for filtering a liquid.
 近年、水を浄化する方法や、海水又は不純物を含んだ水などから淡水を製造方法として、様々な水処理システムが提案されている。その一方式として、膜分離という方法が提案されている。この方法によれば、微細な孔を有する浸透膜に、濾過の対象となる液体を、所定の圧力をもって透過させることで、この膜を透過する水と透過しない不純物とに分離することができる。 In recent years, various water treatment systems have been proposed as a method for purifying water and a method for producing fresh water from seawater or water containing impurities. As one of the methods, a method called membrane separation has been proposed. According to this method, by allowing a liquid to be filtered to permeate through an osmotic membrane having fine pores with a predetermined pressure, it is possible to separate into water that permeates the membrane and impurities that do not permeate.
 例えば、特許文献1によれば、上下2枚のセルの間に配した平面状の濾過膜を用い、流体を濾過する試験装置が開示されている。 For example, according to Patent Document 1, there is disclosed a test apparatus for filtering a fluid using a planar filter membrane disposed between two upper and lower cells.
米国特許4846970号公報U.S. Pat. No. 4,846,970
 上下2枚のセルの間に配した平面状の濾過膜を用い、流体を濾過する方法においては、濾過時に液体に所定の圧力を加える必要がある。そのため、この圧力に耐えられるように、上下2枚のセルによって、濾過膜を強固に固定する必要がある。このような構造においては、濾過膜に上下のセルから荷重がかかることで、微細な潰れや傷が生じることがある。この微細な潰れや傷は、水漏れや濾過膜の性能の低下の原因となる場合がある。 In a method of filtering a fluid using a planar filtration membrane disposed between two upper and lower cells, it is necessary to apply a predetermined pressure to the liquid during filtration. Therefore, it is necessary to firmly fix the filtration membrane by two upper and lower cells so as to withstand this pressure. In such a structure, a fine crushing and a flaw may occur when a load is applied to the filtration membrane from the upper and lower cells. This fine crushing or scratching may cause water leakage or deterioration of the performance of the filtration membrane.
 以上のような事情に対して、本発明の目的は、濾過膜の潰れや傷の発生を抑制した膜分離装置の構造を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a structure of a membrane separation device that suppresses the occurrence of crushing and scratching of a filtration membrane.
 前記目的を達成するため、本発明に係る液体を濾過するための膜分離装置は、その一態様として、液体を濾過するための膜分離装置であって、濾過対象である供給液が流れる供給液流路を有する一次側本体と、濾過された透過液が流れる透過液流路を有する二次側本体と、前記一次側本体と前記二次側本体との間に位置する平状の濾過膜と、を備えており、前記一次側本体が、その前記二次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記供給液流路を規定する一次側凹部表面と、この一次側凹部表面を囲む一次側凸部表面とを有し、前記二次側本体が、その前記一次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記透過液流路を規定する二次側凹部表面と、この二次側凹部表面を囲む二次側凸部表面とを有し、更に、前記一次側本体の前記一次側凸部表面と前記濾過膜との間に位置するシール材と、前記シール材と前記濾過膜との間に位置し、前記濾過膜の表面において、少なくとも前記シール材と接する部分から、前記一次側本体の前記一次側凹部表面と前記一次側凸部表面との境界までにわたって延在する平状の保護部材と、前記保護部材と前記濾過膜との間に位置する接着剤とを備える。 In order to achieve the above object, a membrane separation apparatus for filtering a liquid according to the present invention, as one aspect thereof, is a membrane separation apparatus for filtering a liquid, and a supply liquid in which a supply liquid to be filtered flows A primary side main body having a flow path, a secondary side main body having a permeate flow path through which the filtered permeate flows, and a flat filtration membrane positioned between the primary side main body and the secondary side main body; The primary side main body has an inner surface facing the secondary side main body, and the inner surface is a primary side concave surface defining the supply liquid flow path with the filtration membrane; A primary convex surface surrounding the primary concave surface, the secondary body has an inner surface facing the primary body, and the inner surface is the filtration membrane and the The secondary concave surface defining the permeate flow path and the secondary surrounding the secondary concave surface A convex surface, and further, a sealing material located between the primary convex surface of the primary body and the filtration membrane, and located between the sealing material and the filtration membrane, A flat protective member extending from at least a portion in contact with the sealing material to a boundary between the primary concave surface and the primary convex surface of the primary body on the surface of the filtration membrane, and the protective member And an adhesive positioned between the filter membrane and the filter membrane.
 また、本発明に係る液体を濾過するための膜分離装置は、さらに、前記供給液流路が、前記透過液流路よりも長さが長いものであってもよい。このようにすることで、前記一次側凹部表面と前記一次側凸部表面との境界と、及び、前記二次側凹部表面と前記二次側凸部表面との境界とが、異なる位置で前記濾過膜と接することとなる。この結果、前記濾過膜の応力集中箇所を分散させることができるため、前記濾過膜に生じる傷や凹みの発生を抑制することができる。なお、供給液流路と透過液流路の長さは同じでも良い。 Further, in the membrane separation apparatus for filtering a liquid according to the present invention, the supply liquid channel may be longer than the permeate channel. By doing in this way, the boundary between the primary concave surface and the primary convex surface, and the boundary between the secondary concave surface and the secondary convex surface are at different positions. It will be in contact with the filtration membrane. As a result, since the stress concentration location of the filtration membrane can be dispersed, the generation of scratches and dents in the filtration membrane can be suppressed. The lengths of the supply liquid channel and the permeate channel may be the same.
 また、本発明に係る液体を濾過するための膜分離装置は、別の態様として、液体を濾過するための膜分離装置であって、濾過対象である供給液が流れる供給液流路を有する一次側本体と、濾過された透過液が流れる透過液流路を有する二次側本体と、前記一次側本体と前記二次側本体との間に位置する平状の濾過膜と、を備えており、前記一次側本体が、その前記二次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記供給液流路を規定する一次側凹部表面と、この一次側凹部表面を囲む一次側凸部表面とを有し、前記二次側本体が、その前記一次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記透過液流路を規定する二次側凹部表面と、この二次側凹部表面を囲む二次側凸部表面とを有し、更に、前記一次側本体の前記一次側凸部表面と前記濾過膜との間に位置し、前記濾過膜の表面において、少なくとも前記一次側本体の前記一次側凹部表面と前記一次側凸部表面との境界を含む部分にわたって延在する接着剤とを備える。 Moreover, the membrane separation apparatus for filtering a liquid according to the present invention is a membrane separation apparatus for filtering a liquid as another aspect, and has a supply liquid channel through which a supply liquid to be filtered flows. A side main body, a secondary side main body having a permeate flow path through which the filtered permeate flows, and a flat filtration membrane positioned between the primary side main body and the secondary side main body. The primary side body has an inner surface facing the secondary side body, and the inner surface defines a primary side recess surface defining the supply liquid flow path with the filtration membrane, and the primary side recess. A primary convex surface surrounding the surface, and the secondary main body has an inner surface facing the primary main body, and the inner surface connects the permeate flow path with the filtration membrane. The secondary side concave surface to define, and the secondary side convex surface surrounding the secondary side concave surface, The primary side main body is located between the primary convex surface and the filtration membrane, and at least the primary concave surface and the primary convex surface of the primary main body on the surface of the filtration membrane. And an adhesive extending over a portion including the boundary.
 また、本発明に係る液体を濾過するための膜分離装置は、別の態様として、液体を濾過するための膜分離装置であって、濾過対象である供給液が流れる第一の供給液流路を有する第一の本体と、濾過対象である供給液が流れる第二の供給液流路を有する第二の本体と、前記第一の本体と前記第二の本体との間に位置する2枚の平状の濾過膜と、前記2枚の平状の濾過膜の間に位置する平状の透過スペーサーとを備えており、前記第一の本体が、その前記第二の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第一の本体側に位置する第一の濾過膜とで前記第一の供給液流路を規定する第一の凹部表面と、この第一の凹部表面を囲む第一の凸部表面とを有し、前記第二の本体が、その前記第一の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第二の本体側に位置する第二の濾過膜とで前記第二の透過液流路を規定する第二の凹部表面と、この第二の凹部表面を囲む第二の凸部表面とを有し、更に、前記第一の本体の前記第一の凸部表面と前記第一の濾過膜との間に位置する第一のシール材と、前記第二の本体の前記第二の凸部表面と前記第二の濾過膜との間に位置する第二のシール材と、前記第一のシール材と前記第一の濾過膜との間に位置し、前記第一の濾過膜の表面において、少なくとも前記第一のシール材と接する部分から、前記第一の本体の前記第一の凹部表面と前記第一の凸部表面との境界までにわたって延在する平状の第一の保護部材と、前記第二のシール材と前記第二の濾過膜との間に位置し、前記第二の濾過膜の表面において、少なくとも前記第二のシール材と接する部分から、前記第二の本体の前記第二の凹部表面と前記第二の凸部表面との境界までにわたって延在する平状の第二の保護部材と、前記第一の保護部材と前記第一の濾過膜との間に位置する第一の接着剤と、前記第二の保護部材と前記第二の濾過膜との間に位置する第二の接着剤とを備える。 Moreover, the membrane separation apparatus for filtering a liquid according to the present invention is a membrane separation apparatus for filtering a liquid as another aspect, and a first supply liquid flow path through which a supply liquid to be filtered flows A first main body having a second main body having a second supply liquid flow path through which a supply liquid to be filtered flows, and two sheets positioned between the first main body and the second main body A flat filtration membrane and a flat permeation spacer positioned between the two flat filtration membranes, wherein the first main body is located on the inner side facing the second main body. A first recess surface defining a first supply liquid flow path with a first filtration membrane located on a first main body side of the two filtration membranes. And a first convex surface surrounding the first concave surface, and the second main body is opposed to the first main body. A second recess surface defining a second permeate flow path with a second filtration membrane located on the second main body side of the two filtration membranes And a second convex surface surrounding the second concave surface, and a second convex surface located between the first convex surface of the first main body and the first filtration membrane. One sealing material, a second sealing material positioned between the second convex surface of the second main body and the second filtration membrane, the first sealing material, and the first sealing material. The first concave surface of the first main body and the first convex portion from at least a portion in contact with the first sealing material on the surface of the first filtration membrane, which is located between the first membrane and the membrane. A flat first protective member extending up to the boundary with the surface, located between the second sealing material and the second filtration membrane, A flat first surface extending from at least a portion in contact with the second sealing material to a boundary between the surface of the second concave portion and the surface of the second convex portion of the second main body. Two protective members, a first adhesive positioned between the first protective member and the first filtration membrane, and a position between the second protective member and the second filtration membrane. And a second adhesive.
 また、前記第一の供給液流路及び前記第二の供給液流路には、前記第一の供給液流路及び前記第二の供給液流路の大きさに、それぞれ対応する大きさ(例えば、ほぼ同じ大きさ)の供給スペーサーが配置されていてもよい。 The first supply liquid flow path and the second supply liquid flow path have sizes corresponding to the sizes of the first supply liquid flow path and the second supply liquid flow path ( For example, supply spacers of approximately the same size) may be arranged.
 また、本発明に係る液体を濾過するための膜分離装置は、別の態様として、液体を濾過するための膜分離装置であって、濾過対象である供給液が流れる第一の供給液流路を有する第一の本体と、濾過対象である供給液が流れる第二の供給液流路を有する第二の本体と、前記第一の本体と前記第二の本体との間に位置する2枚の平状の濾過膜と、前記2枚の平状の濾過膜の間に位置する平状で透過性のスペーサーとを備えており、前記第一の本体が、その前記第二の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第一の本体側に位置する第一の濾過膜とで前記第一の供給液流路を規定する第一の凹部表面と、この第一の凹部表面を囲む第一の凸部表面とを有し、前記第二の本体が、その前記第一の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第二の本体側に位置する第二の濾過膜とで前記第二の透過液流路を規定する第二の凹部表面と、この第二の凹部表面を囲む第二の凸部表面とを有し、前記第一の本体と前記第一の濾過膜との間に位置する第一の接着剤と、前記第二の本体と前記第二の濾過膜との間に位置する第二の接着剤とを備える。 Moreover, the membrane separation apparatus for filtering a liquid according to the present invention is a membrane separation apparatus for filtering a liquid as another aspect, and a first supply liquid flow path through which a supply liquid to be filtered flows A first main body having a second main body having a second supply liquid flow path through which a supply liquid to be filtered flows, and two sheets positioned between the first main body and the second main body And a flat and permeable spacer positioned between the two flat filtration membranes, the first main body facing the second main body And a first filtration membrane that defines the first supply liquid flow path with the first filtration membrane located on the first main body side of the two filtration membranes. It has a concave surface and a first convex surface surrounding the first concave surface, and the second main body faces the first main body. A second recess having an inner surface, the inner surface defining the second permeate channel with the second filtration membrane located on the second main body side of the two filtration membranes A first adhesive having a surface and a second convex surface surrounding the second concave surface, and located between the first main body and the first filtration membrane, and the second And a second adhesive positioned between the main body and the second filtration membrane.
 また、前記第一の供給液流路及び前記第二の供給液流路には、前記第一の供給液流路及び前記第二の供給液流路の大きさに、それぞれ対応する大きさの供給スペーサーが配置されていてもよい。 The first supply liquid flow path and the second supply liquid flow path have sizes corresponding to the sizes of the first supply liquid flow path and the second supply liquid flow path, respectively. A supply spacer may be arranged.
 さらに、前記供給スペーサーは、メッシュ状で、供給用の液体が内部を通過することができるような素材でできていてもよい。このように、メッシュ状の素材を前記供給液流路に用いることで、内部を流れる液体に適度な抵抗を与えることができる。そのため、前記供給スペーサーの内部を流れる供給用の液体の圧力を、適度に高めることができる。 Furthermore, the supply spacer may be made of a mesh-like material that allows a supply liquid to pass through. Thus, by using a mesh-like material for the supply liquid flow path, it is possible to give an appropriate resistance to the liquid flowing inside. Therefore, the pressure of the supply liquid flowing inside the supply spacer can be appropriately increased.
 また、前記透過液流路には、前記透過液流路の大きさに対応する大きさの、透過スペーサーが配置されていてもよい。 In the permeate channel, a permeation spacer having a size corresponding to the size of the permeate channel may be arranged.
 さらに、前記透過スペーサーは、内部に連通した孔を複数設ける構造であってもよい。このような構造の素材を透過スペーサーに用いることで、前記濾過膜を透過した透過後の液体が、安定的に透過液流路を流れることができる。 Furthermore, the transmission spacer may have a structure in which a plurality of holes communicating with each other are provided. By using a material having such a structure for the permeation spacer, the liquid after permeation that has permeated the filtration membrane can stably flow through the permeate passage.
 また、本発明に係る液体を濾過するための膜分離装置は、さらに、第一の濾過膜と第一の本体との間に位置する接着剤が、第一の濾過膜の濾過膜及び第一の本体の周縁部を接着するように位置しているものとすることもできる。このようにすることで、第一の濾過膜による、液体の濾過効率を下げることなく、第一の濾過膜と第一の本体とを固定することができる。 Further, in the membrane separation device for filtering a liquid according to the present invention, the adhesive positioned between the first filtration membrane and the first main body further includes the filtration membrane of the first filtration membrane and the first membrane. It can also be located so that the peripheral part of the main body may adhere | attach. By doing in this way, the 1st filtration membrane and the 1st main part can be fixed, without reducing the filtration efficiency of the liquid by the 1st filtration membrane.
 また、本発明に係る液体を濾過するための膜分離装置は、さらに、第二の濾過膜と第二の本体との間に位置する接着剤が、第二の濾過膜の濾過膜及び第二の本体の周縁部を接着するように位置しているものとすることもできる。このようにすることで、第二の濾過膜による、液体の濾過効率を下げることなく、第二の濾過膜と第二の本体とを固定することができる。 Further, in the membrane separation device for filtering a liquid according to the present invention, the adhesive positioned between the second filtration membrane and the second main body further includes the filtration membrane of the second filtration membrane and the second membrane. It can also be located so that the peripheral part of the main body may adhere | attach. By doing in this way, the 2nd filtration membrane and the 2nd main part can be fixed, without reducing the filtration efficiency of the liquid by the 2nd filtration membrane.
 また、前記目的を達成するため、本発明は、別の態様として、液体を濾過するための膜分離ユニットであって、内部を濾過対象である供給液が流れる平状で透過性の第一の供給スペーサーと、前記第一の供給スペーサーの周囲を囲む第一の保護部材と、内部を濾過対象である供給液が流れる平状で透過性の第二の供給スペーサーと、前記第二の供給スペーサーの周囲を囲む第二の保護部材と、前記第一の供給スペーサー及び前記第一の保護部材と前記第二の供給スペーサー及び前記第二の保護部材との間に位置する2枚の平状の濾過膜と、前記2枚の平状の濾過膜の間に位置する平状の透過スペーサーとを備えており、前記第一の保護部材と前記第一の濾過膜との間に位置する第一の接着剤と、前記第二の保護部材と前記第二の濾過膜との間に位置する第二の接着剤とを備える。 In order to achieve the above object, the present invention provides, as another aspect, a membrane separation unit for filtering a liquid, which is a first flat and permeable first flow of supply liquid to be filtered. A supply spacer; a first protection member surrounding the first supply spacer; a flat and permeable second supply spacer through which a supply liquid to be filtered flows; and the second supply spacer Two flat members positioned between the second protective member surrounding the periphery, the first supply spacer and the first protective member, and the second supply spacer and the second protective member. A filtration membrane and a flat permeation spacer located between the two flat filtration membranes, and a first located between the first protective member and the first filtration membrane. Adhesive, the second protective member and the second filtration membrane And a second adhesive located.
 また、本発明に係る液体を濾過するための膜分離ユニットは、前記第一の保護部材の前記第一の供給スペーサーの外周部と接する内周部の大きさと、前記第二の保護部材の前記第二の供給スペーサーの外周部と接する内周部の大きさとを、異なるものとすることもできる。このように、各保護部材の内周部の大きさを変えることで、前記第一の保護部材によって前記濾過膜に荷重がかかる位置と、前記第二の保護部材によって前記濾過膜に荷重がかかる位置とがずれるため、前記濾過膜にかかる応力を分散させることができる。この結果、前記濾過膜への傷や凹みの発生を抑制することができる。 The membrane separation unit for filtering a liquid according to the present invention includes a size of an inner peripheral portion of the first protective member that is in contact with an outer peripheral portion of the first supply spacer, and the second protective member. The size of the inner peripheral part in contact with the outer peripheral part of the second supply spacer may be different. In this way, by changing the size of the inner peripheral portion of each protection member, the load is applied to the filtration membrane by the first protection member, and the load is applied to the filtration membrane by the second protection member. Since the position shifts, the stress applied to the filtration membrane can be dispersed. As a result, generation | occurrence | production of the damage | wound and dent to the said filtration membrane can be suppressed.
 また、本発明に係る液体を濾過するための膜分離ユニットは、さらに、前記透過スペーサーの周縁部の一部には、濾過された透過液が流れ込む透過液排出流路が形成されており、前記透過液排出流路は、前記第一の保護部材と前記第二の保護部材とが、それぞれ周縁部の一部から延びて一体となって形成されており、前記透過スペーサーの周縁部のうち、前記透過液排出流路が設置されていない部分は接着剤により塞がれているものとすることができる。 In the membrane separation unit for filtering a liquid according to the present invention, a permeate discharge channel into which the filtered permeate flows is formed in a part of the peripheral portion of the permeation spacer, In the permeated liquid discharge channel, the first protective member and the second protective member are integrally formed by extending from a part of the peripheral portion, and among the peripheral portions of the permeation spacer, The portion where the permeate discharge channel is not installed can be blocked with an adhesive.
 本発明によれば、濾過膜の潰れや傷の発生を抑制した膜分離装置の構造を提供することができる。 According to the present invention, it is possible to provide a structure of a membrane separation device that suppresses the occurrence of crushing and scratching of the filtration membrane.
第1の実施形態に係る膜分離装置の、各構成部品を示す組み立て図である。It is an assembly drawing which shows each component of the membrane separator which concerns on 1st Embodiment. 第1の実施形態に係る膜分離装置の断面図である。It is sectional drawing of the membrane separator which concerns on 1st Embodiment. 第1の実施形態に係る膜分離装置の、各部品の位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of each component of the membrane separator which concerns on 1st Embodiment. 第2の実施形態に係る膜分離装置の断面図である。It is sectional drawing of the membrane separator which concerns on 2nd Embodiment. 第3の実施形態に係る膜分離ユニットの斜視図である。It is a perspective view of the membrane separation unit which concerns on 3rd Embodiment. 第4の実施形態に係る膜分離ユニットの断面図である。It is sectional drawing of the membrane separation unit which concerns on 4th Embodiment. 第4の実施形態に係る膜分離ユニットの上面図である。It is a top view of the membrane separation unit which concerns on 4th Embodiment. 第4の実施形態に係る膜分離装置の概略を示す断面図である。It is sectional drawing which shows the outline of the membrane separator which concerns on 4th Embodiment. 第4の実施形態に係る膜分離装置の概略を示す斜視図である。It is a perspective view which shows the outline of the membrane separator which concerns on 4th Embodiment.
 以下、図面に基づいて本発明の実施形態を詳細かつ具体的に説明する。 Hereinafter, embodiments of the present invention will be described in detail and specifically based on the drawings.
[第1の実施形態]
 まず図1を用いて、第1の実施形態に係る膜分離装置の構成の概略について説明する。図1は、第1の実施形態に係る膜分離装置の、各構成部品を示す分解図である。図1に示すように、本実施形態に係る膜分離装置10は、一次側本体1と二次側本体2とで、シムリング9、外側シール材5、供給スペーサー3、内側シール材4、保護部材6、濾過膜7、透過スペーサー8を挟んだ構造となっている。また、各部材は、一次側本体1と二次側本体2とによって挟まれることで、圧縮力を受け、固定されている。さらに、一次側本体1と二次側本体2とは、ボルト19によって固定されている。
[First Embodiment]
First, the outline of the configuration of the membrane separation apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is an exploded view showing each component of the membrane separation apparatus according to the first embodiment. As shown in FIG. 1, a membrane separation apparatus 10 according to the present embodiment includes a shim ring 9, an outer seal material 5, a supply spacer 3, an inner seal material 4, and a protective member with a primary side main body 1 and a secondary side main body 2. 6, the filter membrane 7 and the permeation spacer 8 are sandwiched. Each member is fixed by receiving a compression force by being sandwiched between the primary side main body 1 and the secondary side main body 2. Further, the primary side main body 1 and the secondary side main body 2 are fixed by bolts 19.
 次に、図1及び図2を用いて、第1の実施形態に係る膜分離装置の詳細な構造を説明する。図2は、本第1の実施形態に係る膜分離装置の断面図である。断面の位置は、図1中のA-A断面に対応している。 Next, the detailed structure of the membrane separation apparatus according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 2 is a cross-sectional view of the membrane separation apparatus according to the first embodiment. The position of the cross section corresponds to the AA cross section in FIG.
 図2に示すように、一次側本体1の図中上端面は、中央に位置する一次側凹部表面11と、これを囲む一次側凸部表面12とを有している。一次側凹部表面11の深さ、及び、一次側凸部12に対する凹みの深さは、ここに配置される供給スペーサー3の幅及び厚さと対応(例えば、ほぼ同一)している。したがって、図2に示すように、供給スペーサー3は、一次側凹部表面1の形成する凹みにほぼ隙間なく収まるようになっている。ここで、一次側凹部表面11と濾過膜7とで囲まれている領域(供給スペーサー3が配置されている領域)は、供給液流路となっており、濾過対象となる液体が流れるようになっている。 As shown in FIG. 2, the upper end surface of the primary side main body 1 in the figure has a primary side concave surface 11 located in the center and a primary side convex surface 12 surrounding the primary side concave surface 11. The depth of the primary concave surface 11 and the depth of the concave with respect to the primary convex 12 correspond to (for example, substantially the same) the width and thickness of the supply spacer 3 disposed here. Therefore, as shown in FIG. 2, the supply spacer 3 can be accommodated in the recess formed by the primary recess surface 1 with almost no gap. Here, the region surrounded by the primary concave surface 11 and the filtration membrane 7 (region where the supply spacer 3 is arranged) is a supply liquid flow path so that the liquid to be filtered flows. It has become.
 図2に示すように、一次側本体1の一次側凹部表面11の両端部には、供給口13及び濃縮水排出口14が設けてある。この供給口13と濃縮水排出口14とは、それぞれ図中上下方向に挿通する孔状となっている。尚、図1に示すように、これらの孔の形状は、孔の開口端方向から見ると、長円形(又は略長方形)となっている。ここで、供給口13と濃縮水排出口14とは、説明の便宜上区別しているが、これらの構造は同一(図中では左右対称)である。そのため、本装置の使用時に、その役割(及び名称)を入れ替えることが可能である。 As shown in FIG. 2, a supply port 13 and a concentrated water discharge port 14 are provided at both ends of the primary recess surface 11 of the primary body 1. Each of the supply port 13 and the concentrated water discharge port 14 has a hole shape that is inserted vertically in the figure. In addition, as shown in FIG. 1, the shape of these holes is an oval shape (or substantially rectangular shape) when viewed from the opening end direction of the holes. Here, although the supply port 13 and the concentrated water discharge port 14 are distinguished for convenience of explanation, these structures are the same (symmetric in the figure). Therefore, the role (and name) can be switched when the apparatus is used.
 また、図2に示すように、一次側凸部表面12の図中上端面には、図中中心側から外側(左右両端側)に向かって、それぞれ内側シール材用溝16、位置決めピン15、外側シール材用溝17、ボルト穴18が設けてある。 Further, as shown in FIG. 2, on the upper end surface in the figure of the primary convex surface 12, the inner sealing material groove 16, the positioning pins 15, An outer seal material groove 17 and a bolt hole 18 are provided.
 また、図2に示すように、内側シール材用溝16には、内側シール材4が、又、外側シール材用溝17には外側シール材5が、それぞれ配置されている。ここで、図1に示すように、内側シール材4及び外側リング5は、それぞれ一本の輪状になっている。 Further, as shown in FIG. 2, the inner sealing material 4 is disposed in the inner sealing material groove 16, and the outer sealing material 5 is disposed in the outer sealing material groove 17, respectively. Here, as shown in FIG. 1, each of the inner sealing material 4 and the outer ring 5 has a single ring shape.
 さらに、一次側凸部表面12における、内側リング用溝16と外側シール材用溝17との間には、位置決めピン15が設けてある。この位置決めピン15は、上方に突出した円柱状となっており、二次側本体2の対応する箇所に設けた位置決め穴25に対応した形状となっている。尚、図2に示すように、一次側本体1及び二次側本体2の組み立て時には、位置決めピン15は位置決め穴25に挿入されるようになっている。 Furthermore, a positioning pin 15 is provided between the inner ring groove 16 and the outer seal material groove 17 on the primary convex surface 12. The positioning pin 15 has a cylindrical shape protruding upward, and has a shape corresponding to a positioning hole 25 provided at a corresponding position of the secondary side main body 2. As shown in FIG. 2, the positioning pin 15 is inserted into the positioning hole 25 when the primary side main body 1 and the secondary side main body 2 are assembled.
 また、一次側凸部表面12における、外側シール材用溝の図中外側には、ボルト穴18が設けられている。さらに、二次側本体2における、ボルト穴18に対応する箇所には、ボルト穴28が設けられている。これにより、図2におけるボルト穴28の上部から、ボルト19を挿通することで、ボルト穴18にもボルト19が挿通し、一次側本体1と二次側本体2とを固定することが可能となっている。 Further, a bolt hole 18 is provided on the outer side of the groove for the outer sealing material on the primary convex surface 12 in the drawing. Further, a bolt hole 28 is provided at a location corresponding to the bolt hole 18 in the secondary side main body 2. Thereby, by inserting the bolt 19 from the upper part of the bolt hole 28 in FIG. 2, the bolt 19 can be inserted into the bolt hole 18 and the primary side main body 1 and the secondary side main body 2 can be fixed. It has become.
 一方、図2に示すように、二次側本体2の中央部には、上下方向に貫通する透過液排出流路23が設けられている。この透過液排出流路23の幅は、一次側本体1に設けてある供給口13及び濃縮水排出口14の幅と比較して狭くなっている。これは、透過液排出流路23を通過する液体の流量が、供給口13及び濃縮水排出口14を通過する液体の流量と比較して少量となる場合が多いためである。尚、図1に示すように、透過液排出流路23を開口端側から見た形状は、長円形(又は略長方形)となっている。 On the other hand, as shown in FIG. 2, a permeate discharge passage 23 penetrating in the vertical direction is provided at the center of the secondary side main body 2. The width of the permeate discharge channel 23 is narrower than the widths of the supply port 13 and the concentrated water discharge port 14 provided in the primary side main body 1. This is because the flow rate of the liquid passing through the permeate discharge channel 23 is often smaller than the flow rate of the liquid passing through the supply port 13 and the concentrated water discharge port 14. In addition, as shown in FIG. 1, the shape which looked at the permeate discharge flow path 23 from the opening end side is an oval (or a substantially rectangular shape).
 図2に示すように、二次側本体2の下端面のうち、一次側本体1における一次側凹部表面11に対応する箇所は、周囲よりも、図中の上方向へ一段凹んだ二次側凹部表面21が設けられている。また、この二次側凹部表面21には、この凹みの大きさに対応した透過スペーサー8が配置されている。尚、本実施の形態では、透過スペーサー8は、内部に連通した複数の孔を有すことで、内部を液体が通過できるようになっている。またここで、二次側凹部表面21と濾過膜7とで囲まれた領域(透過スペーサー8が配置されている領域)は、透過液流路となっており、濾過膜7を透過した液体が流れる流路となっている。 As shown in FIG. 2, in the lower end surface of the secondary side main body 2, the portion corresponding to the primary concave surface 11 in the primary side main body 1 is a secondary side that is recessed one step upward in the figure from the surroundings. A concave surface 21 is provided. In addition, a transmissive spacer 8 corresponding to the size of the recess is disposed on the secondary recess surface 21. In the present embodiment, the permeable spacer 8 has a plurality of holes communicating with the inside, so that the liquid can pass through the inside. Here, the region surrounded by the secondary concave surface 21 and the filtration membrane 7 (the region where the permeation spacer 8 is disposed) is a permeate channel, and the liquid that has passed through the filtration membrane 7 It is a flowing channel.
 また、二次側凹部表面21の周囲は、二次側凸部表面22となっており、二次側凹部表面21よりも図2中の下方向へ突出している。この二次側凹部表面21には、図中中央から外側(左右両端側)に向かって左右対称に、それぞれ図中上方向に凹んだ位置決め穴25と、図中上下方向に貫通したボルト穴28とが設けてある。 Further, the periphery of the secondary concave surface 21 is a secondary convex surface 22, which protrudes downward in FIG. 2 from the secondary concave surface 21. The secondary recess surface 21 has a positioning hole 25 that is recessed leftward and rightward symmetrically from the center in the figure toward the outside (both left and right sides), and a bolt hole 28 that penetrates in the vertical direction in the figure. Are provided.
 図2に示すように、一次側本体1と二次側本体2との間には、濾過膜7が配置されている。この濾過膜7には、逆浸透膜(RO膜)等の、微小孔を有する濾過膜を用いることができる。この濾過膜7の図2における幅方向及び奥行き方向の長さは、少なくとも一次側凹部表面11及び二次側凹部表面21の幅及び奥行きよりも長く、かつ、内側シール材用溝16の幅及び奥行きよりも長くなっている。 As shown in FIG. 2, a filtration membrane 7 is disposed between the primary side main body 1 and the secondary side main body 2. The filtration membrane 7 can be a filtration membrane having micropores such as a reverse osmosis membrane (RO membrane). The lengths of the filtration membrane 7 in the width direction and the depth direction in FIG. 2 are at least longer than the widths and depths of the primary-side concave surface 11 and the secondary-side concave surface 21, and the width of the inner sealing material groove 16 and It is longer than the depth.
 さらに、一次側本体1と濾過膜7との間には、保護部材6が設けられている。この保護部材6は、少なくとも、内側シール材4と接する部分から、一次側本体1の一次側凸部表面12と一次側凹部表面11との境界までにわたって延在している。尚、図1に示すように、この保護部材6は、本第1の実施形態においては、矩形の枠形状となっており、一次側凹部表面11の四方を同様に囲うように配置されている。 Furthermore, a protective member 6 is provided between the primary side main body 1 and the filtration membrane 7. The protective member 6 extends at least from the portion in contact with the inner sealing material 4 to the boundary between the primary convex surface 12 and the primary concave surface 11 of the primary body 1. As shown in FIG. 1, the protective member 6 has a rectangular frame shape in the first embodiment, and is disposed so as to surround the four sides of the primary-side concave surface 11 in the same manner. .
 なお、図3は、各部品の位置関係の理解を補助する目的で作成した概略図である。図3は、図2における上方からの視点で、一部の部品の配置関係を示している。図3に示すように、濾過膜7は保護部材6よりも広い範囲に延在している。また、内側シール材4は、全体が保護部材6と重なるように配置されている。 Note that FIG. 3 is a schematic diagram created for the purpose of assisting understanding of the positional relationship of each component. FIG. 3 shows an arrangement relationship of some components from the viewpoint from above in FIG. As shown in FIG. 3, the filtration membrane 7 extends over a wider range than the protective member 6. Further, the inner sealing material 4 is arranged so as to overlap the protective member 6 as a whole.
 また、図2に示すように、位置決めピン15には、円柱状のシムリング9が挿通されている。このシムリング9は、一次側本体1及び二次側本体2の隙間を一定に確保する役割を担っている。尚、このシムリング9の高さは、濾過膜7及び保護部材6の高さの和と対応(例えば、ほぼ同等)している。 Further, as shown in FIG. 2, a cylindrical shim ring 9 is inserted into the positioning pin 15. The shim ring 9 plays a role of ensuring a constant gap between the primary side main body 1 and the secondary side main body 2. The height of the shim ring 9 corresponds to the sum of the heights of the filtration membrane 7 and the protective member 6 (for example, substantially equal).
 さらに、保護部材6と濾過膜7との間には、接着剤(図示せず)が介在しており、この接着剤によって保護部材6と濾過膜7とが接着されている。 Furthermore, an adhesive (not shown) is interposed between the protective member 6 and the filtration membrane 7, and the protective member 6 and the filtration membrane 7 are bonded by this adhesive.
 次に、図2を用いて、本第1の実施形態に係る膜分離装置10による液体の濾過方法について説明する。まず、供給口13に、濾過対象となる液体を、所定の圧力で注入する。すると、注入された液体は、供給液流路である供給スペーサー3の内部を、図中右側方向から左側方向へと流れ、濃縮水排出口14から排出される。ここで、供給スペーサー3の内部を流れる液体は、メッシュ構造によって抵抗を受けることで、供給液流路内で液体の圧力が保持され、あるいは圧力が高められる。このように圧力がかかることにより、濾過対象となる液体が、濾過膜7によって濾過される。そして、濾過膜7を透過した液体が、図2中の上側に位置する透過液流路(透過スペーサー8)へと流れ込み、透過液排出流路23から排出される。一方、濃縮水排出口14からは、濃縮された供給水が排出される。 Next, a liquid filtering method by the membrane separation apparatus 10 according to the first embodiment will be described with reference to FIG. First, a liquid to be filtered is injected into the supply port 13 at a predetermined pressure. Then, the injected liquid flows from the right side to the left side in the drawing in the supply spacer 3 that is the supply liquid flow path, and is discharged from the concentrated water discharge port 14. Here, the liquid flowing inside the supply spacer 3 receives resistance by the mesh structure, so that the pressure of the liquid is maintained in the supply liquid flow path or the pressure is increased. By applying pressure in this manner, the liquid to be filtered is filtered by the filtration membrane 7. Then, the liquid that has passed through the filtration membrane 7 flows into the permeate channel (permeation spacer 8) located on the upper side in FIG. 2 and is discharged from the permeate drain channel 23. On the other hand, the concentrated supply water is discharged from the concentrated water discharge port 14.
 一方、この濾過方法においては、上述したように膜分離層装置10の内部で供給液に所定の圧力がかけられる。この圧力によって、濾過膜7と一次側本体1との間から、供給された液体が漏えいする可能性がある。そこで、濾過膜7と一次側本体1との間には、内側シール材4が設けられている。 On the other hand, in this filtration method, a predetermined pressure is applied to the supply liquid inside the membrane separation layer apparatus 10 as described above. This pressure may cause the supplied liquid to leak from between the filtration membrane 7 and the primary body 1. Therefore, an inner sealing material 4 is provided between the filtration membrane 7 and the primary side main body 1.
 内側シール材4は、図2中における下側に位置する一次側本体1と、上側に位置する保護部材6とによって圧縮され、適宜変形する。これにより、内側シール材4は、緩衝剤の役目を果たすとともに、上下の部品(保護部材6及び一次側本体1)の隙間から、濾過対象となる液体が漏えいすることを防ぐ役割を担っている。 The inner sealing material 4 is compressed by the primary side main body 1 located on the lower side in FIG. 2 and the protective member 6 located on the upper side, and is appropriately deformed. Thereby, the inner side sealing material 4 plays the role of a buffering agent, and plays the role which prevents the liquid used as filtration object from leaking from the clearance gap between upper and lower components (protective member 6 and the primary side main body 1). .
 ここで、本第1の実施形態に係る膜分離装置10は、濾過膜7に微細な傷や凹みが生じた場合、好ましくない問題が生じる。具体的には、傷や凹みによって生じた隙間から供給された液体が漏れてしまい、これにより濾過性能が低下する。また、このような隙間から液体が流出することで、濾過中の液体にかかる圧力が低下し、濾過効率が著しく低下してしまう。 Here, the membrane separation apparatus 10 according to the first embodiment has an undesirable problem when a fine scratch or dent is generated in the filtration membrane 7. Specifically, the liquid supplied from the gaps caused by scratches and dents leaks, thereby reducing the filtration performance. Moreover, when the liquid flows out from such a gap, the pressure applied to the liquid being filtered is reduced, and the filtration efficiency is significantly reduced.
 ところで、濾過膜7にこのような微細な傷や凹みが生じてしまう原因は、詳細には判明していない。しかしながら、本第1の実施形態における膜分離装置10に構造の近い膜分離装置においては、内側シール材4付近、及び、一次側本体における一次側凸部表面と一次側凹部表面との境界付近において頻繁に生じやすい傾向にあることが、発明者らの研究により判明しつつあった。 By the way, the reason why such fine scratches and dents are generated in the filtration membrane 7 has not been clarified in detail. However, in the membrane separator close to the membrane separator 10 in the first embodiment, in the vicinity of the inner seal material 4 and in the vicinity of the boundary between the primary convex surface and the primary concave surface in the primary body. It has been found by the inventors' research that they tend to occur frequently.
 一方、本第1の実施形態における膜分離装置10においては、濾過膜7と内側シール材4との間の位置から、一次側本体における一次側凸部表面と一次側凹部表面との境界を超える位置まで、保護部材6が配置してある。そのため、濾過膜7への微細な傷や凹みの発生を、抑制することができる。 On the other hand, in the membrane separation apparatus 10 according to the first embodiment, the boundary between the primary convex surface and the primary concave surface of the primary body is exceeded from the position between the filtration membrane 7 and the inner sealing material 4. The protective member 6 is arranged up to the position. Therefore, generation | occurrence | production of the fine damage | wound and dent to the filtration membrane 7 can be suppressed.
 尚、外側シール材5は、内側シール材4と同様に、中下側に位置する一次側本体1と、上側に位置する二次側本体2とによって圧縮され、変形し、これらの部品の隙間から、濾過対象となる液体が漏えいすることを防ぐとともに上下の部材の緩衝剤としての役割も担っている。 The outer sealing material 5 is compressed and deformed by the primary side main body 1 located on the middle lower side and the secondary side main body 2 located on the upper side, like the inner sealing material 4, and the gap between these parts Therefore, the liquid to be filtered is prevented from leaking and also serves as a buffer for the upper and lower members.
 ここで、保護部材6と濾過膜7とは、接着剤によって接着されている。そのため、保護部材6と濾過膜7との隙間から、濾過対象の液体が漏れることを効果的に防ぐことができる。 Here, the protective member 6 and the filtration membrane 7 are bonded by an adhesive. Therefore, it is possible to effectively prevent the liquid to be filtered from leaking from the gap between the protective member 6 and the filtration membrane 7.
 尚、本第1の実施形態において、接着剤によって固定する箇所は、保護部材6と濾過膜7との間のみとしている。このように、その他の部品とは接着しないでおくことで、比較的交換頻度の高い保護部材6及び濾過膜7のみを容易に交換できるようにしている。 In the first embodiment, the portion fixed by the adhesive is only between the protective member 6 and the filtration membrane 7. In this way, only the protective member 6 and the filtration membrane 7 that are relatively frequently replaced can be easily replaced by being not adhered to other parts.
 本第1の実施形態に用いる部品には、様々な種類の部材を用いることができる。例えば、一次側本体1及び二次側本体2には、SUS316L等のステンレス鋼や、ハステロイ等の合金といった、耐薬品性や高耐久性を有する材料を用いることができる。濾過膜7には、連通孔を有し、ポリアミド材等でできたRO膜等を用いることができる。保護部材6には、耐薬品性、高耐久性を有する材料やPVC(ポリ塩化ビニール)などの樹脂材料を用いることができる。透過スペーサー8には、SUS304製等の、厚さ約1.0mm程度の多孔質の焼結金属を用いることができるし、内部を液体が通過できるようなメッシュ状等の材料を用いることもできる。供給スペーサー3には、厚さ約0.5mm~約1.5mm程度の、メッシュ状等の材料を用いることができる。内側シール材4及び外側シール材5には、直径3.0mm~4.0mm程度の、フッ素ゴム、ニトリルブチルゴム、水素化ニトリルゴム、パーフルオロエラストマー等の材料を用いることができる。また、接着剤の材料としては、ポリオールとポリイソシアネートを混合して用いる2液硬化型ウレタン系接着剤等を用いることができる。 Various kinds of members can be used for the parts used in the first embodiment. For example, a material having chemical resistance and high durability such as stainless steel such as SUS316L or an alloy such as Hastelloy can be used for the primary side main body 1 and the secondary side main body 2. As the filtration membrane 7, a RO membrane or the like having a communication hole and made of a polyamide material or the like can be used. For the protective member 6, a material having chemical resistance and high durability and a resin material such as PVC (polyvinyl chloride) can be used. For the transmissive spacer 8, a porous sintered metal made of SUS304 or the like having a thickness of about 1.0 mm can be used, or a mesh-like material that allows liquid to pass through the inside can also be used. . For the supply spacer 3, a mesh-like material having a thickness of about 0.5 mm to about 1.5 mm can be used. For the inner sealing material 4 and the outer sealing material 5, materials such as fluorine rubber, nitrile butyl rubber, hydrogenated nitrile rubber, and perfluoroelastomer having a diameter of about 3.0 mm to 4.0 mm can be used. Moreover, as a material of the adhesive, a two-component curable urethane-based adhesive using a mixture of polyol and polyisocyanate can be used.
[第2の実施形態]
 図4を用いて、第2の実施形態に係る膜分離装置について説明する。尚、本第2の実施形態は、第1の実施形態(図1~3)の変形例であるため、図面における同一部分については同一番号を付して重複する説明を省略し、相違点について詳細に説明する。
[Second Embodiment]
A membrane separation apparatus according to the second embodiment will be described with reference to FIG. Since the second embodiment is a modification of the first embodiment (FIGS. 1 to 3), the same parts in the drawings are denoted by the same reference numerals and redundant description is omitted, and the differences are omitted. This will be described in detail.
 本第2の実施形態における膜分離装置210においては、第1の実施形態で示した膜分離装置10のうち、内側シール材4、内側シール材用溝16、保護部材6、位置決めピン15、位置決め穴25、シムリング9を省略した形状となっている。さらに、濾過膜7と、一次側本体1との接触部分とが、接着剤によって接着されている。このような構造とすることによって、シール材の性能劣化による液漏れを解消することができる。 In the membrane separation apparatus 210 in the second embodiment, among the membrane separation apparatus 10 shown in the first embodiment, the inner sealing material 4, the inner sealing material groove 16, the protective member 6, the positioning pin 15, and the positioning. The hole 25 and the shim ring 9 are omitted. Furthermore, the filtration membrane 7 and the contact part of the primary side main body 1 are adhered by an adhesive. By setting it as such a structure, the liquid leak by the performance deterioration of a sealing material can be eliminated.
 尚、本実施例においては、図4における正面からの視点において、一次側凹部表面11の大きさは、二次側凹部表面21の大きさよりも小さくなっている。これにより、一次側凹部表面11と一次側凸部表面12との境界の位置が、二次側凹部表面21と二次側凸部表面22との境界の位置に対してずれることとなる。この結果、濾過膜7に加わる力の位置が、上下で異なる態様となり、濾過膜7に発生する傷や凹みを抑制することができる。 In the present embodiment, the size of the primary concave surface 11 is smaller than the size of the secondary concave surface 21 from the front view in FIG. Thereby, the position of the boundary between the primary concave surface 11 and the primary convex surface 12 is shifted from the boundary position between the secondary concave surface 21 and the secondary convex surface 22. As a result, the position of the force applied to the filtration membrane 7 is different in the vertical direction, and scratches and dents generated in the filtration membrane 7 can be suppressed.
 尚、一次側凹部表面11と二次側凹部表面21との大きさは、図4における奥行き方向についても同様に異なる大きさとすることができる。さらに、一次側凹部表面11を、二次側凹部表面21よりも大きくすることもできる。この様な、一次側と二次側の大きさを異にする変形例は、第一の実施形態にも採用することができる。 In addition, the magnitude | size of the primary side recessed part surface 11 and the secondary side recessed part surface 21 can also be made into a different magnitude | size similarly about the depth direction in FIG. Furthermore, the primary side concave surface 11 can be made larger than the secondary side concave surface 21. Such a modification in which the sizes of the primary side and the secondary side are different can also be adopted in the first embodiment.
[第3の実施形態]
 図5を用いて、第3の実施形態に係る膜分離ユニットについて説明する。尚、本第3の実施形態は、第1の実施形態(図1~3)の変形例であるため、重複する説明を省略し、相違点について詳細に説明する。
[Third Embodiment]
A membrane separation unit according to the third embodiment will be described with reference to FIG. Note that the third embodiment is a modification of the first embodiment (FIGS. 1 to 3), and therefore, redundant description will be omitted and differences will be described in detail.
 図5は、第3の実施形態にかかる膜分離ユニット310を示す図である。尚、図5においては、第1の実施形態において説明した一次側本体1及び二次側本体2(図2を参照)に相当する部分の記載を、説明の理解を補助する目的で省略している。 FIG. 5 is a diagram showing a membrane separation unit 310 according to the third embodiment. In FIG. 5, description of portions corresponding to the primary side main body 1 and the secondary side main body 2 (see FIG. 2) described in the first embodiment is omitted for the purpose of assisting understanding of the description. Yes.
 図5には、5層の積層構造を示している。図5中の最上層には、枠状の保護部材106が配置されている。また、この保護部材106の内部には、保護部材106に対応する大厚さ(例えばほぼ同じ厚さ)を有する供給スペーサー103が配置されている。そして、この下の層には、濾過膜107が配置されている。さらに、その下の層には、透過スペーサー108が配置されている。図5に示す積層構造は、この透過スペーサー108を中心に、上下の対象に同じ部材が配置されている。つまり、この透過スペーサー108の下層には、濾過膜107が配置され、さらに、その下層には、供給スペーサー103と、これを囲む保護部材106で構成される層が配置されている。 FIG. 5 shows a laminated structure of five layers. A frame-shaped protective member 106 is disposed on the uppermost layer in FIG. A supply spacer 103 having a large thickness (for example, substantially the same thickness) corresponding to the protection member 106 is disposed inside the protection member 106. And in this lower layer, the filtration membrane 107 is arrange | positioned. Further, a transmissive spacer 108 is disposed in the lower layer. In the laminated structure shown in FIG. 5, the same members are arranged on the upper and lower objects with the transmission spacer 108 as the center. That is, the filtration membrane 107 is disposed below the permeation spacer 108, and further, a layer composed of the supply spacer 103 and the protective member 106 surrounding the supply spacer 103 is disposed below the filtration membrane 107.
 各層の固定には、例えば、第1の実施形態で用いた接着剤を用いることができる。本実施の形態においては、積層した5層すべてを接着剤で固定している。ただし、固定の方法はこれに限られるものではなく、保護部材106と濾過膜107とのみを接着材で接着し、その他の部品をボルト等で固定しても良い。また、接着の方法としては、保護部材106の、濾過膜107と接する面の全体に接着剤を塗ることで固定しても良い。また、濾過膜107と透過スペーサー108とを接着剤によって固定する場合は、液体の濾過性能や透過性能を確保するために、中心部を避けて周縁部付近のみを接着する。 For fixing each layer, for example, the adhesive used in the first embodiment can be used. In the present embodiment, all the five stacked layers are fixed with an adhesive. However, the fixing method is not limited to this, and only the protective member 106 and the filtration membrane 107 may be bonded with an adhesive, and other components may be fixed with bolts or the like. Further, as a bonding method, the protective member 106 may be fixed by applying an adhesive to the entire surface in contact with the filtration membrane 107. In addition, when the filtration membrane 107 and the permeation spacer 108 are fixed with an adhesive, only the vicinity of the peripheral portion is adhered to avoid the center portion in order to ensure the filtration performance and permeation performance of the liquid.
 本第3の実施形態に係る膜分離ユニット310においては、図中上下方向から濾過対象となる液体を流入させることで、濾過膜107を透過した透過水が、透過スペーサー108へと流入する。そして、透過スペーサー108の端部から透過水が排出される。 In the membrane separation unit 310 according to the third embodiment, the permeated water that has permeated through the filtration membrane 107 flows into the permeation spacer 108 by flowing the liquid to be filtered from the vertical direction in the figure. Then, the permeated water is discharged from the end of the permeable spacer 108.
 本第3の実施形態に係る膜分離ユニット310においては、図中上下方向から同時に濾過対象となる液体を流入させることができるため、濾過効率が向上する。また、上下から均等に圧力をかけることができるため、各層の圧力による変形を抑制することができる。このため、濾過膜107の損傷を抑制し、結果として膜分離ユニット310の耐用期間を延ばすことができる。 In the membrane separation unit 310 according to the third embodiment, since the liquid to be filtered can be made to flow simultaneously from the vertical direction in the figure, the filtration efficiency is improved. Moreover, since pressure can be applied uniformly from above and below, deformation due to the pressure of each layer can be suppressed. For this reason, damage to the filtration membrane 107 can be suppressed, and as a result, the useful life of the membrane separation unit 310 can be extended.
 尚、本第3の実施形態における透過スペーサー8には、内部を液体が通過することができるような、メッシュ状等の材料を採用している。しかし、第1の実施形態及び第2の実施形態において採用したような、内部に連通した複数の孔を有する焼結金属等を用いることもできる。 Note that the permeable spacer 8 in the third embodiment employs a mesh-like material that allows liquid to pass through the inside. However, it is also possible to use a sintered metal having a plurality of holes communicating with each other as employed in the first embodiment and the second embodiment.
[第4の実施形態]
 図6~図9を用いて、第4の実施形態に係る膜分離ユニット及び膜分離装置について説明する。尚、本第4の実施形態は、第3の実施形態(図5)の変形例であるため、重複する説明を省略し、相違点について詳細に説明する。
[Fourth Embodiment]
A membrane separation unit and a membrane separation apparatus according to the fourth embodiment will be described with reference to FIGS. Note that the fourth embodiment is a modification of the third embodiment (FIG. 5), and therefore, redundant description will be omitted and differences will be described in detail.
 図6は、第4の実施形態に係る膜分離ユニット410の断面図を示している。図6に示すように、膜分離ユニット410における最上層の保護部材106bは、図中右端で環状(又は輪状)になり、最下層の保護部材106bと繋がって一体になっている。さらに、この環状部の内部の空洞は、透過水が流れるための、透過液排出流路123となっている。 FIG. 6 shows a cross-sectional view of a membrane separation unit 410 according to the fourth embodiment. As shown in FIG. 6, the uppermost protective member 106b in the membrane separation unit 410 is annular (or ring-shaped) at the right end in the figure, and is connected to and integrated with the lowermost protective member 106b. Furthermore, the cavity inside the annular portion is a permeate discharge channel 123 through which permeate flows.
 ここで、透過スペーサー8は、その周縁部のうち、透過液排出流路123につながる図6中の右端以外の部分(左端、奥側端部、手前側端部)411(以下、封止部という)に、接着剤を塗布、含浸するなどによって、塞ぐことができる。これにより、透過スペーサー8に流入した液体は全て図中右端の透過液排出流路123へと流れ出ることとなる。尚、透過スペーサー8の端部は、このように接着剤によって塞ぐ方法に替えて、封止部411の外周に別の部材(例えば、第1~3の実施形態で示したような一次側本体1及び二次側本体2等)を設置することによって透過水を所定の流路へ流すこともできる。 Here, the permeation spacer 8 has a portion (left end, back end, front end) 411 (hereinafter referred to as a sealing portion) other than the right end in FIG. It can be closed by applying or impregnating an adhesive. As a result, all of the liquid flowing into the permeation spacer 8 flows out to the permeate discharge channel 123 at the right end in the figure. The end of the transmissive spacer 8 is replaced with another member (for example, the primary side main body as shown in the first to third embodiments) on the outer periphery of the sealing portion 411 instead of the method of closing with the adhesive. 1 and the secondary side main body 2 etc. can be installed to allow permeate to flow into a predetermined flow path.
 図7は、第4の実施形態に係る膜分離ユニット410の上面図である。図7に示すように、透過液排出流路123は、図中下側を閉鎖端、図中上側を開放端としている。したがって、保護部材106bの開口から流入した液体が、濾過膜107によって濾過され、透過スペーサー108内を流れたのち、透過液排出流路123に流れ込んで、図7中の上側に示した矢印の向きに排出されることとなる。 FIG. 7 is a top view of the membrane separation unit 410 according to the fourth embodiment. As shown in FIG. 7, the permeate discharge channel 123 has a closed end on the lower side in the drawing and an open end on the upper side in the drawing. Therefore, the liquid flowing in from the opening of the protective member 106b is filtered by the filter membrane 107, flows through the permeation spacer 108, and then flows into the permeate discharge channel 123, and the direction of the arrow shown on the upper side in FIG. Will be discharged.
 なお、本実施形態においては、透過液排出流路の一端を閉鎖端としているが、両側を開放端とすることもできる。また、透過液排出流路123は、図中の左右両端に設けることもできる。さらに、透過スペーサー108及び濾過膜107は、端面から液体が漏れることを防ぐために、端面を塞いだ構造とすることもできる。 In this embodiment, one end of the permeate discharge channel is a closed end, but both sides may be open ends. Further, the permeate discharge channel 123 can be provided at both the left and right ends in the figure. Further, the permeation spacer 108 and the filtration membrane 107 may have a structure in which the end face is closed in order to prevent liquid from leaking from the end face.
 図8には、第4の実施形態に係る膜分離ユニット410を使用した、膜分離装置510の断面図を示している。また、図9には、第4の実施形態に係る膜分離ユニット410を使用した、膜分離装置510の斜視図を示している。図8に示すように、膜分離装置510は、膜分離ユニット410の上下に、第一の本体401及び第二の本体402を配置している。更に、保護部材106bと第二の本体402との間、及び保護部材106bと第一の本体401との間に、シール材403を配置している。尚、シール材403を用いずに、保護部材106bと第二の本体402との間、及び保護部材106bと第一の本体401との間を、それぞれ直接接着剤によって接着することもできる。また、上下の第一の本体401と第二の本体402とは、図示しないボルトで固定している。 FIG. 8 shows a cross-sectional view of a membrane separation apparatus 510 using the membrane separation unit 410 according to the fourth embodiment. FIG. 9 shows a perspective view of a membrane separation apparatus 510 using the membrane separation unit 410 according to the fourth embodiment. As shown in FIG. 8, the membrane separation apparatus 510 has a first main body 401 and a second main body 402 arranged above and below the membrane separation unit 410. Further, a sealing material 403 is disposed between the protective member 106 b and the second main body 402 and between the protective member 106 b and the first main body 401. In addition, without using the sealing material 403, the protective member 106b and the second main body 402 and the protective member 106b and the first main body 401 can be directly bonded by an adhesive. The upper and lower first main bodies 401 and the second main body 402 are fixed with bolts (not shown).
 尚、図8及び図9に示すように、第一の本体401には、図中上下方向に延びる第一の供給口413及び第一の濃縮水排出口414が設けてあり、その間の供給液流路には、供給スペーサー430が設置されている。また、第二の本体402にも同様に、第二の供給口423及び第二の濃縮水排出口424が設けてあり、その間の供給液流路には、供給スペーサー440が設置されている。 As shown in FIGS. 8 and 9, the first main body 401 is provided with a first supply port 413 and a first concentrated water discharge port 414 extending in the vertical direction in the figure, and the supply liquid therebetween A supply spacer 430 is installed in the flow path. Similarly, the second main body 402 is also provided with a second supply port 423 and a second concentrated water discharge port 424, and a supply spacer 440 is installed in the supply liquid channel therebetween.
 以上のような構造により、上下の供給口413及び423から、濾過対象となる液体が供給されると、膜分離ユニット410に設けた透過液排出流路123(図9における奥手側矢印の方向)から、透過水が排出される。また、供給された液体のうち、濾過されずに濃縮された濃縮水は、上下の濃縮水排出口414及び424から排出される。 With the structure as described above, when liquid to be filtered is supplied from the upper and lower supply ports 413 and 423, the permeate discharge channel 123 provided in the membrane separation unit 410 (the direction of the arrow on the back side in FIG. 9). Permeated water is discharged from. Further, of the supplied liquid, the concentrated water that has been concentrated without being filtered is discharged from the upper and lower concentrated water discharge ports 414 and 424.
 尚、本第4の実施形態における透過スペーサー8には、第3の実施形態と同様に、内部を液体が通過することができるような、メッシュ状等の材料を採用している。しかし、第1の実施形態及び第2の実施形態において採用したような、内部に連通した複数の孔を有する焼結金属等を用いることもできる。また、本第4の実施形態は、第2の実施形態のように変形してもよい。すなわち、保護部材とシール部材を除いて、第一の本体及び第二の本体を、直接、膜分離ユニット410と接着しても良い。 Note that, as in the third embodiment, a mesh-like material that allows liquid to pass through is used for the transmissive spacer 8 in the fourth embodiment. However, it is also possible to use a sintered metal having a plurality of holes communicating with each other as employed in the first embodiment and the second embodiment. Further, the fourth embodiment may be modified as in the second embodiment. That is, the first main body and the second main body may be directly bonded to the membrane separation unit 410 except for the protective member and the seal member.
[その他の態様]
 前述した実施形態の説明は、本発明に係る膜分離装置及び膜分離ユニットの製造方法及び装置を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は前述した実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
[Other aspects]
The description of the above-described embodiment is an example for explaining the membrane separation apparatus and the method and apparatus for manufacturing the membrane separation unit according to the present invention, and does not limit the invention described in the claims. Moreover, each part structure of this invention is not restricted to embodiment mentioned above, A various deformation | transformation is possible within the technical scope as described in a claim.
 例えば、上記の実施形態において、供給液流路と透過液流路との大きさは同一でなくてもよく、例えば供給液流路の幅、奥行き、(図2、図4、図8における正面方向からの視点で説明)は、透過液流路の幅、奥行き、よりも大きいものであってもよい。また、上記の実施形態においては、一次側本体及び二次側本体(又は、第一の本体及び第二の本体)には、金属を用いているが、樹脂材料を用いることもできる。さらに、固定には、ボルトを用いている箇所があるが、嵌めあいや溶接等、その他の固定方法によって固定することもできる。さらに、本実施例において用いた濾過膜は、複数の濾過膜を積層させたものを用いることもできる。 For example, in the above embodiment, the sizes of the supply liquid channel and the permeate channel do not have to be the same. For example, the width and depth of the supply liquid channel (the front in FIGS. 2, 4, and 8). May be larger than the width and depth of the permeate channel. Moreover, in said embodiment, although the metal is used for a primary side main body and a secondary side main body (or 1st main body and 2nd main body), a resin material can also be used. Further, although there are places where bolts are used for fixing, they can be fixed by other fixing methods such as fitting and welding. Furthermore, the filtration membrane used in the present embodiment may be a laminate of a plurality of filtration membranes.
1    一次側本体
2    二次側本体
3    供給スペーサー
4    内側シール材
5    外側シール材
6    保護部材
7    濾過膜
8    透過スペーサー
9    シムリング
10   膜分離装置
11   一次側凹部表面
12   一次側凸部表面
13   供給口
14   濃縮水排出口
15   位置決めピン
16   内側シール材用溝
17   外側シール材用溝
18   ボルト穴
19   ボルト
21   二次側凹部表面
22   二次側凸部表面
23   透過液排出流路
25   位置決め穴
28   ボルト穴
103  供給スペーサー
106  保護部材
106b 保護部材
107  濾過膜
108  透過スペーサー
123  透過液排出流路
310  膜分離ユニット
401  第一の本体
402  第二の本体
403  シール材
411  封止部
413  第一の供給口
414  第一の濃縮水排出口
410  膜分離ユニット
423  第二の供給口
424  第二の濃縮水排出口
430  供給スペーサー
440  供給スペーサー
510  膜分離装置
DESCRIPTION OF SYMBOLS 1 Primary side main body 2 Secondary side main body 3 Supply spacer 4 Inner sealing material 5 Outer sealing material 6 Protective member 7 Filtration membrane 8 Permeation spacer 9 Shim ring 10 Membrane separator 11 Primary side concave surface 12 Primary side convex surface 13 Supply port 14 Concentrated water outlet 15 Positioning pin 16 Inner seal material groove 17 Outer seal material groove 18 Bolt hole 19 Bolt 21 Secondary side concave surface 22 Secondary side convex surface 23 Permeate discharge channel 25 Positioning hole 28 Bolt hole 103 Supply spacer 106 Protective member 106b Protective member 107 Filtration membrane 108 Permeation spacer 123 Permeate discharge channel 310 Membrane separation unit 401 First main body 402 Second main body 403 Sealing material 411 Sealing portion 413 First supply port 414 First Concentrated water discharge port 410 Membrane separation unit 42 The second supply port 424 second concentrated water discharge port 430 feed spacer 440 feed spacer 510 membrane separation unit

Claims (16)

  1.  液体を濾過するための膜分離装置であって、
     濾過対象である供給液が流れる供給液流路を有する一次側本体と、
     濾過された透過液が流れる透過液流路を有する二次側本体と、
     前記一次側本体と前記二次側本体との間に位置する平状の濾過膜と、
     を備えており、
     前記一次側本体が、その前記二次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記供給液流路を規定する一次側凹部表面と、この一次側凹部表面を囲む一次側凸部表面とを有し、
     前記二次側本体が、その前記一次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記透過液流路を規定する二次側凹部表面と、この二次側凹部表面を囲む二次側凸部表面とを有し、
     更に、前記一次側本体の前記一次側凸部表面と前記濾過膜との間に位置するシール材と、
     前記シール材と前記濾過膜との間に位置し、前記濾過膜の表面において、少なくとも前記シール材と接する部分から、前記一次側本体の前記一次側凹部表面と前記一次側凸部表面との境界までにわたって延在する平状の保護部材と、
     前記保護部材と前記濾過膜との間に位置する接着剤と
     を備える膜分離装置。
    A membrane separation device for filtering liquid,
    A primary body having a supply liquid flow path through which a supply liquid to be filtered flows;
    A secondary body having a permeate channel through which the filtered permeate flows;
    A flat filtration membrane positioned between the primary body and the secondary body;
    With
    The primary body has an inner surface that faces the secondary body, and the inner surface defines a primary recess surface that defines the supply liquid flow path with the filtration membrane, and the primary recess surface. And a primary convex surface surrounding
    The secondary side body has an inner surface facing the primary side body, and the inner side surface is a secondary side concave surface defining the permeate flow path with the filtration membrane, and the secondary side. A secondary convex surface surrounding the concave surface,
    Further, a sealing material located between the primary side convex surface of the primary side main body and the filtration membrane,
    A boundary between the surface of the primary side concave portion of the primary side main body and the surface of the primary side convex portion from at least a portion of the surface of the filtration membrane that is located between the sealing material and the filtration membrane and is in contact with the sealing material. A flat protective member extending up to,
    A membrane separation apparatus comprising: an adhesive positioned between the protective member and the filtration membrane.
  2.  前記供給液流路には、前記供給液流路の大きさに対応する大きさの供給スペーサーが配置されている、請求項1に記載の膜分離装置。 The membrane separator according to claim 1, wherein a supply spacer having a size corresponding to the size of the supply liquid channel is arranged in the supply liquid channel.
  3.  前記供給スペーサーは、メッシュ状の素材でできている、請求項1に記載の膜分離装置。 The membrane separator according to claim 1, wherein the supply spacer is made of a mesh material.
  4.  前記透過液流路には、前記透過液流路の大きさに対応する大きさの、透過スペーサーが配置されている、請求項1に記載の膜分離装置。 The membrane separation device according to claim 1, wherein a permeation spacer having a size corresponding to the size of the permeate flow channel is disposed in the permeate flow channel.
  5.  前記透過スペーサーは、内部に連通した孔を複数設けた構造である、請求項1に記載の膜分離装置。 The membrane separator according to claim 1, wherein the permeation spacer has a structure in which a plurality of holes communicating with each other are provided.
  6.  液体を濾過するための膜分離装置であって、
     濾過対象である供給液が流れる供給液流路を有する一次側本体と、
     濾過された透過液が流れる透過液流路を有する二次側本体と、
     前記一次側本体と前記二次側本体との間に位置する平状の濾過膜と、
     を備えており、
     前記一次側本体が、その前記二次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記供給液流路を規定する一次側凹部表面と、この一次側凹部表面を囲む一次側凸部表面とを有し、
     前記二次側本体が、その前記一次側本体に対向する内側表面を有し、この内側表面が、前記濾過膜とで前記透過液流路を規定する二次側凹部表面と、この二次側凹部表面を囲む二次側凸部表面とを有し、
     更に、前記一次側本体の前記一次側凸部表面と前記濾過膜との間に位置し、前記濾過膜の表面において、少なくとも前記一次側本体の前記一次側凹部表面と前記一次側凸部表面との境界を含む部分にわたって延在する接着剤と
     を備える膜分離装置。
    A membrane separation device for filtering liquid,
    A primary body having a supply liquid flow path through which a supply liquid to be filtered flows;
    A secondary body having a permeate channel through which the filtered permeate flows;
    A flat filtration membrane positioned between the primary body and the secondary body;
    With
    The primary body has an inner surface that faces the secondary body, and the inner surface defines a primary recess surface that defines the supply liquid flow path with the filtration membrane, and the primary recess surface. And a primary convex surface surrounding
    The secondary side body has an inner surface facing the primary side body, and the inner side surface is a secondary side concave surface defining the permeate flow path with the filtration membrane, and the secondary side. A secondary convex surface surrounding the concave surface,
    Furthermore, it is located between the primary side convex part surface of the primary side main body and the filtration membrane, and on the surface of the filtration membrane, at least the primary side concave part surface of the primary side main body and the primary side convex part surface A membrane separation device comprising: an adhesive extending over a portion including the boundary.
  7.  前記供給液流路には、前記供給液流路の大きさに対応する大きさの供給スペーサーが配置されている、請求項6に記載の膜分離装置。 The membrane separator according to claim 6, wherein a supply spacer having a size corresponding to the size of the supply liquid channel is arranged in the supply liquid channel.
  8.  前記供給スペーサーは、メッシュ状の素材でできている、請求項6に記載の膜分離装置。 The membrane separator according to claim 6, wherein the supply spacer is made of a mesh material.
  9.  前記透過液流路には、前記透過液流路の大きさに対応する大きさの、透過スペーサーが配置されている、請求項6に記載の膜分離装置。 The membrane separation device according to claim 6, wherein a permeation spacer having a size corresponding to the size of the permeate flow channel is disposed in the permeate flow channel.
  10.  前記透過スペーサーは、内部に連通した孔を複数設けた構造である、請求項6に記載の膜分離装置。 The membrane separator according to claim 6, wherein the permeation spacer has a structure in which a plurality of holes communicating with each other are provided.
  11.  液体を濾過するための膜分離装置であって、
     濾過対象である供給液が流れる第一の供給液流路を有する第一の本体と、
     濾過対象である供給液が流れる第二の供給液流路を有する第二の本体と、
     前記第一の本体と前記第二の本体との間に位置する2枚の平状の濾過膜と、
     前記2枚の平状の濾過膜の間に位置する平状の透過スペーサーと
     を備えており、
     前記第一の本体が、その前記第二の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第一の本体側に位置する第一の濾過膜とで前記第一の供給液流路を規定する第一の凹部表面と、この第一の凹部表面を囲む第一の凸部表面とを有し、
     前記第二の本体が、その前記第一の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第二の本体側に位置する第二の濾過膜とで前記第二の透過液流路を規定する第二の凹部表面と、この第二の凹部表面を囲む第二の凸部表面とを有し、
     更に、前記第一の本体の前記第一の凸部表面と前記第一の濾過膜との間に位置する第一のシール材と、
     前記第二の本体の前記第二の凸部表面と前記第二の濾過膜との間に位置する第二のシール材と、
     前記第一のシール材と前記第一の濾過膜との間に位置し、前記第一の濾過膜の表面において、少なくとも前記第一のシール材と接する部分から、前記第一の本体の前記第一の凹部表面と前記第一の凸部表面との境界までにわたって延在する平状の第一の保護部材と、
     前記第二のシール材と前記第二の濾過膜との間に位置し、前記第二の濾過膜の表面において、少なくとも前記第二のシール材と接する部分から、前記第二の本体の前記第二の凹部表面と前記第二の凸部表面との境界までにわたって延在する平状の第二の保護部材と、
     前記第一の保護部材と前記第一の濾過膜との間に位置する第一の接着剤と、
     前記第二の保護部材と前記第二の濾過膜との間に位置する第二の接着剤と
     を備える膜分離装置。
    A membrane separation device for filtering liquid,
    A first body having a first supply liquid flow path through which a supply liquid to be filtered flows;
    A second body having a second supply liquid flow path through which the supply liquid to be filtered flows;
    Two flat filtration membranes positioned between the first body and the second body;
    A flat permeation spacer located between the two flat filtration membranes,
    The first main body has an inner surface facing the second main body, and the inner surface is a first filtration membrane located on the first main body side of the two filtration membranes; A first concave surface defining the first supply liquid flow path, and a first convex surface surrounding the first concave surface,
    The second main body has an inner surface facing the first main body, and the inner surface is a second filtration membrane located on the second main body side of the two filtration membranes; A second concave surface defining the second permeate flow path, and a second convex surface surrounding the second concave surface,
    Furthermore, a first sealing material located between the first convex surface of the first main body and the first filtration membrane,
    A second sealing material positioned between the second convex surface of the second main body and the second filtration membrane;
    The first main body is located between the first sealing material and the first filtration membrane, and at least from the portion in contact with the first sealing material on the surface of the first filtration membrane. A flat first protective member extending to the boundary between one concave surface and the first convex surface;
    The second main body is located between the second sealing material and the second filtration membrane, and at least from the portion in contact with the second sealing material on the surface of the second filtration membrane. A flat second protective member extending over the boundary between the second concave surface and the second convex surface;
    A first adhesive located between the first protective member and the first filtration membrane;
    A membrane separation device comprising: a second adhesive positioned between the second protective member and the second filtration membrane.
  12.  前記第一の供給液流路及び前記第二の供給液流路には、前記第一の供給液流路及び前記第二の供給液流路の大きさに、それぞれ対応する大きさの供給スペーサーが配置されている、請求項11に記載の膜分離装置。 The first supply liquid flow path and the second supply liquid flow path have supply spacers having sizes corresponding to the sizes of the first supply liquid flow path and the second supply liquid flow path, respectively. The membrane separation apparatus according to claim 11, wherein
  13.  液体を濾過するための膜分離装置であって、
     濾過対象である供給液が流れる第一の供給液流路を有する第一の本体と、
     濾過対象である供給液が流れる第二の供給液流路を有する第二の本体と、
     前記第一の本体と前記第二の本体との間に位置する2枚の平状の濾過膜と、
     前記2枚の平状の濾過膜の間に位置する平状で透過性のスペーサーと
     を備えており、
     前記第一の本体が、その前記第二の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第一の本体側に位置する第一の濾過膜とで前記第一の供給液流路を規定する第一の凹部表面と、この第一の凹部表面を囲む第一の凸部表面とを有し、
     前記第二の本体が、その前記第一の本体に対向する内側表面を有し、この内側表面が、前記2枚の濾過膜のうちの第二の本体側に位置する第二の濾過膜とで前記第二の透過液流路を規定する第二の凹部表面と、この第二の凹部表面を囲む第二の凸部表面とを有し、
     前記第一の本体と前記第一の濾過膜との間に位置する第一の接着剤と、
     前記第二の本体と前記第二の濾過膜との間に位置する第二の接着剤と
     を備える膜分離装置。
    A membrane separation device for filtering liquid,
    A first body having a first supply liquid flow path through which a supply liquid to be filtered flows;
    A second body having a second supply liquid flow path through which the supply liquid to be filtered flows;
    Two flat filtration membranes positioned between the first body and the second body;
    A flat and permeable spacer located between the two flat filtration membranes,
    The first main body has an inner surface facing the second main body, and the inner surface is a first filtration membrane located on the first main body side of the two filtration membranes; A first concave surface defining the first supply liquid flow path, and a first convex surface surrounding the first concave surface,
    The second main body has an inner surface facing the first main body, and the inner surface is a second filtration membrane located on the second main body side of the two filtration membranes; A second concave surface defining the second permeate flow path, and a second convex surface surrounding the second concave surface,
    A first adhesive located between the first body and the first filtration membrane;
    A membrane separation device comprising: a second adhesive positioned between the second main body and the second filtration membrane.
  14.  前記第一の供給液流路及び前記第二の供給液流路には、前記第一の供給液流路及び前記第二の供給液流路の大きさに、それぞれ対応する大きさの供給スペーサーが配置されている、請求項13に記載の膜分離装置。 The first supply liquid flow path and the second supply liquid flow path have supply spacers having sizes corresponding to the sizes of the first supply liquid flow path and the second supply liquid flow path, respectively. The membrane separation apparatus according to claim 13, wherein
  15.  液体を濾過するための膜分離ユニットであって、
     内部を濾過対象である供給液が流れる平状で透過性の第一の供給スペーサーと、
     前記第一の供給スペーサーの周囲を囲む第一の保護部材と、
     内部を濾過対象である供給液が流れる平状で透過性の第二の供給スペーサーと、
     前記第二の供給スペーサーの周囲を囲む第二の保護部材と、
     前記第一の供給スペーサー及び前記第一の保護部材と前記第二の供給スペーサー及び前記第二の保護部材との間に位置する2枚の平状の濾過膜と、
     前記2枚の平状の濾過膜の間に位置する平状の透過スペーサーと
     を備えており、
     前記第一の保護部材と前記第一の濾過膜との間に位置する第一の接着剤と、
     前記第二の保護部材と前記第二の濾過膜との間に位置する第二の接着剤と
     を備える膜分離ユニット。
    A membrane separation unit for filtering liquid,
    A flat and permeable first supply spacer through which the supply liquid to be filtered flows;
    A first protective member surrounding the first supply spacer;
    A flat and permeable second supply spacer through which the supply liquid to be filtered flows;
    A second protective member surrounding the second supply spacer;
    Two flat filtration membranes positioned between the first supply spacer and the first protective member and the second supply spacer and the second protective member;
    A flat permeation spacer located between the two flat filtration membranes,
    A first adhesive located between the first protective member and the first filtration membrane;
    A membrane separation unit comprising: a second adhesive positioned between the second protective member and the second filtration membrane.
  16.  前記透過スペーサーの周縁部の一部には、濾過された透過液が流れ込む透過液排出流路が形成されており、
     前記透過液排出流路は、前記第一の保護部材と前記第二の保護部材とが、ぞれぞれ周縁部の一部から延びて一体となって形成されており、
     前記透過スペーサーの周縁部のうち、前記透過液排出流路が設置されていない部分は接着剤により塞がれている、請求項15に記載の膜分離ユニット。
    A part of the peripheral edge of the permeation spacer is formed with a permeate discharge channel into which the filtered permeate flows.
    The permeate discharge channel is formed integrally with the first protection member and the second protection member, each extending from a part of the peripheral edge,
    The membrane separation unit according to claim 15, wherein a portion of the peripheral portion of the permeation spacer where the permeate discharge channel is not installed is closed with an adhesive.
PCT/JP2016/070595 2016-07-12 2016-07-12 Membrane separation device WO2018011899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070595 WO2018011899A1 (en) 2016-07-12 2016-07-12 Membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070595 WO2018011899A1 (en) 2016-07-12 2016-07-12 Membrane separation device

Publications (1)

Publication Number Publication Date
WO2018011899A1 true WO2018011899A1 (en) 2018-01-18

Family

ID=60951752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070595 WO2018011899A1 (en) 2016-07-12 2016-07-12 Membrane separation device

Country Status (1)

Country Link
WO (1) WO2018011899A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190640A (en) * 1983-04-13 1984-10-29 Daicel Chem Ind Ltd Flat film tester
JPS63199053U (en) * 1987-06-13 1988-12-21
JPH07227526A (en) * 1994-02-18 1995-08-29 Nitto Denko Corp Separating treatment of water suspension
JPH11290658A (en) * 1998-04-14 1999-10-26 Nitto Denko Corp Membrane module and concentration device with membrane module
JP2007125497A (en) * 2005-11-04 2007-05-24 Matsushita Electric Ind Co Ltd Filter cartridge
JP2008513334A (en) * 2004-09-20 2008-05-01 アイダテック, エル.エル.シー. HYDROGEN PURIFICATION DEVICE AND COMPONENT AND FUEL TREATMENT SYSTEM COMPRISING THE SAME
JP2008199994A (en) * 2007-02-22 2008-09-04 Toray Ind Inc Flat membrane element for filtering culture liquid
JP2010082616A (en) * 2008-09-05 2010-04-15 Toshiba Corp Filter module and manufacturing method therefor
JP2011101866A (en) * 2009-11-11 2011-05-26 Nitto Denko Corp Separation membrane unit, and separation membrane element equipped therewith

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190640A (en) * 1983-04-13 1984-10-29 Daicel Chem Ind Ltd Flat film tester
JPS63199053U (en) * 1987-06-13 1988-12-21
JPH07227526A (en) * 1994-02-18 1995-08-29 Nitto Denko Corp Separating treatment of water suspension
JPH11290658A (en) * 1998-04-14 1999-10-26 Nitto Denko Corp Membrane module and concentration device with membrane module
JP2008513334A (en) * 2004-09-20 2008-05-01 アイダテック, エル.エル.シー. HYDROGEN PURIFICATION DEVICE AND COMPONENT AND FUEL TREATMENT SYSTEM COMPRISING THE SAME
JP2007125497A (en) * 2005-11-04 2007-05-24 Matsushita Electric Ind Co Ltd Filter cartridge
JP2008199994A (en) * 2007-02-22 2008-09-04 Toray Ind Inc Flat membrane element for filtering culture liquid
JP2010082616A (en) * 2008-09-05 2010-04-15 Toshiba Corp Filter module and manufacturing method therefor
JP2011101866A (en) * 2009-11-11 2011-05-26 Nitto Denko Corp Separation membrane unit, and separation membrane element equipped therewith

Similar Documents

Publication Publication Date Title
EP2835174B1 (en) Hollow-fiber membrane module, and hollow-fiber membrane unit equipped with hollow-fiber membrane module
ES2574081T3 (en) Filtration systems with radially divided ring seal
JP3436026B2 (en) Hollow fiber membrane module
US10651495B2 (en) Fuel cell stack
CA2133632C (en) Fluid fractionating stacked permeable membrane assembly
JP2014036953A (en) Fluid treatment assembly, fluid treatment segment and method for manufacturing fluid treatment system
KR20180017039A (en) Electrochemical device and method for manufacturing electrochemical unit for electrochemical device
CN105854615A (en) Membrane filtration assembly and membrane core pre-tightening structure thereof
KR101930619B1 (en) Flow channel structure
JP2007200751A (en) Separator for fuel cell
KR101421911B1 (en) Separation membrane module
WO2018011899A1 (en) Membrane separation device
AU2017298986B2 (en) Ceramic membrane filtration assembly with sealing device and related methods
ES2691741T3 (en) Separation membrane module and replacement method for separation membrane element
KR20200004834A (en) Multi Bead Air Filter Seal
JP2005243292A (en) Solid polymer electrolyte membrane and separator for fuel cell
JP4285263B2 (en) Method for producing hollow fiber membrane module
CN113164875A (en) Disposable sterile tangential flow filtration systems and methods
WO2016157360A1 (en) Membrane separation apparatus
JP2006198495A (en) Hollow fiber membrane module
JP2006142176A (en) Separating apparatus and seal
JP2565164Y2 (en) Seal structure in laminated filter module
CN220495814U (en) Filtering component
CN109985524B (en) Filter and method for manufacturing the same
CN110975533B (en) Purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP