WO2018011714A1 - Preparation of cereal products suitable for celiac patients by the creation of supramolecular structures between proteins and chitosan - Google Patents

Preparation of cereal products suitable for celiac patients by the creation of supramolecular structures between proteins and chitosan Download PDF

Info

Publication number
WO2018011714A1
WO2018011714A1 PCT/IB2017/054181 IB2017054181W WO2018011714A1 WO 2018011714 A1 WO2018011714 A1 WO 2018011714A1 IB 2017054181 W IB2017054181 W IB 2017054181W WO 2018011714 A1 WO2018011714 A1 WO 2018011714A1
Authority
WO
WIPO (PCT)
Prior art keywords
gluten
flour
cereal
products
chitosan
Prior art date
Application number
PCT/IB2017/054181
Other languages
French (fr)
Portuguese (pt)
Inventor
Fernando Hermínio FERREIRA MILHEIRO NUNES
Gilberto IGREJAS
José Miguel SILVA FERREIRA RIBEIRO
Original Assignee
Universidade De Trás-Os-Montes E Alto Douro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Trás-Os-Montes E Alto Douro filed Critical Universidade De Trás-Os-Montes E Alto Douro
Publication of WO2018011714A1 publication Critical patent/WO2018011714A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/28Substances of animal origin, e.g. gelatin or collagen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/18Vegetable proteins from wheat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/12Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from cereals, wheat, bran, or molasses
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/275Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of animal origin, e.g. chitin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a detoxification process of wheat flour (Triticum spp.) And gluten through the formation of supramolecular structures with chitosan and their detoxified flour and gluten in which patient-toxic epitope reduction values are obtained. 65 and 88% when compared with unmodified or original flour and gluten, respectively.
  • Celiac disease is an autoimmune disease that translates into an enteropathy that occurs after contact with gluten in genetically susceptible individuals (1, 2).
  • the disease causes villous atrophy of the small intestine mucosa, causing impaired nutrient absorption, the most common symptoms being diarrhea, growth retardation, anemia and fatigue (1). Additionally, other symptoms such as neurological complications, hormonal dysregulation and primary biliary cirrhosis have been described (3-5).
  • This disease is more common in western populations than previously thought, having a prevalence in these populations of approximately 1% (2) and being underdiagnosed in Portugal (1).
  • the only effective treatment is a strictly gluten-free diet, with no drugs to prevent damage or the body's autoimmune response (6). Given the relevance of this problem, research on the allergenicity of wheat and other cereal proteins is particularly important (7).
  • Wheat Triticum spp.
  • the annual world production of this cereal is around 715 million tons, providing approximately 20% of calories.
  • Wheat has the largest global area of production (-220 million ha) and the largest international transaction volume of a simple agronomic crop (-150 million tonnes), meaning about $ 50 billion (8).
  • It contains a protein complex, gluten, which is primarily responsible for the unique rheological behavior of its flours (9) and makes it a cereal of choice in its diverse uses: traditional bakery and confectionery products such as bread , cookies, biscuits, pizza bases, pasta and pasta, cakes of various kinds, among others.
  • the main protein components of gluten are gliadin and glutenins which confer mass extensibility and elasticity, respectively (10).
  • a key step in the pathogenesis of celiac disease occurs when certain gluten peptides, namely Gliadin derivatives (rich in glutamine residues) are deactivated by tissue transglutaminase (TG2), increasing their affinity for human leukocyte antigen (HLA) -DQ2 or -DQ8, thereby enhancing the autoimmune reaction (11, 12).
  • TG2 tissue transglutaminase
  • HLA human leukocyte antigen
  • Alphagliadin epitopes are considered to be of greater clinical relevance for both the adaptive and innate responses that lead to celiac disease (13-18).
  • Some amino acid sequences have been reported to have strong immunogenic potential. All peptides that were active in celiac disease contained the Gln-Gln-Gln-Pro and Pro-Ser-Gln-Gln sequences.
  • inactive peptides contained none of these sequences. Therefore, these sequences are considered of high importance for the development of the disease (19, 20).
  • the immunological activity of these amino acid sequences in celiac disease has been confirmed by other investigators (21, 22).
  • a 33-residue peptide resistant to intestinal proteases and containing three of the most immunogenic epitopes was identified as a major stimulant of the inflammatory gluten response (15, 23).
  • gluten intolerant patients there is no pharmacological treatment for gluten intolerant patients and the only effective route is the strictly gluten-free continuous diet, which sometimes results in social problems (6).
  • the development of new effective therapies to control the symptoms and reversal of inflammation and organ damage becomes extremely important.
  • some promising strategies have been conducted, both therapeutically and with a view to gluten modification to reverse this scenario.
  • gluten and its peptides may be hydrolyzed by prolylendopeptidases and / or other glutenases allowing the production of safe products for celiac patients (24).
  • Enzymes can also be ingested as a prophylactic measure, in which dietary gluten is hydrolyzed by co-ingested peptidases, thus avoiding the specific immunological reactions of celiac disease in the small intestine (25).
  • the use of these enzymes to detoxify gluten or even its co-administration in the diet has led to several patent applications (26-30).
  • peptidases for gluten modification has some limitations, namely the loss of technological quality of gluten and pasta because they are hydrolysed products without the protein structure necessary to maintain elasticity and extensibility properties.
  • the main limitations are that they are rapidly hydrolyzed by gastric pepsin (31, 32), making oral administration difficult and also inactivated by trypsin and chymotrypsin in the presence of salts. bile ducts (33).
  • Glycine-type 2 polypeptide demonstrated significant repair activity of the small and large intestine mucosal epithelium, increasing the intestine's ability to digest and absorb nutrients. Its use for the treatment of gastrointestinal disorders and disorders has been described (48, 49). Also, the use of antibodies with specific activity against gluten or gluten-derived peptides that may inhibit gluten deactivation or its peptides derived by tissue tranglutaminase is a potential strategy for reducing gluten toxicity (50).
  • the treatment of celiac disease or its control by a pharmacological approach will have the counterpart of the treatment targeting the endogenous effectors of the disease and in this sense, the modification of gluten (exogenous effector) aiming at its detoxification becomes a very attractive strategy compared to pharmacological treatment.
  • Prior evaluation of the overall toxicity of the products is a crucial advantage as the heterogeneity of celiac disease is well known (18). It is now known that not only gliadin, but all gluten proteins can be toxic to at least one celiac patient. (51).
  • RNAi Ribonucleic Acid Interference
  • RNAi the heterogeneity of the disease, the genetic stability of the lines over the generations and the fact that the end product is a genetically modified organism (GMO) and all the various or potential issues arising therefrom are pointed out. as the biggest limitations of this approach
  • the present invention describes a novel process of detoxification of intact wheat flour and its gluten through the formation of supramolecular structures between proteins and chitosan natural polysaccharide, resulting in products intended for consumption by celiac patients and having a number of advantages. and differences with respect to the processes described above, namely:
  • Chitosan is a non-toxic polysaccharide, is hypoallergenic, biocompatible and biodegradable;
  • Chitosan is a cheaper product than products previously used for detoxification of flour and gluten such as L-lysine, methyl and ethyl esters of lysine;
  • the present invention further relates to the use of the process in other cereals and their products, namely barley (Hordeum spp.), Rye (Secale spp.), Triticale (x Triticosecale Wittmack) and oats (Avena spp. ), as well as their germinated products, as some proteins of these cereals have similar immunological reactivity to wheat gluten for celiac patients (2).
  • the present invention relates to a detoxification process of wheat flour (Triticum spp.) And gluten by forming supramolecular structures with chitosan and their flour and gluten in which toxic epitope reduction values are obtained for celiac patients. about 65 and 88% compared to unmodified or original flour and gluten.
  • it concerns the use of the process in other cereals and their products, namely barley (Hordeum spp.), Rye (Secale spp.), Triticale (x Triticosecale) and oats (Avena spp.) And sprouted products.
  • chitosan may originate from crustaceans or fungi.
  • the detoxification process involves the use of amino sugars.
  • the protein: chitosan ratio ranges from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1.
  • glutathione is used as reducing agent in a concentration between 0.1 mM to 500 mM, preferably 20 mM.
  • the flour and proteins may originate from oats, rye, barley and triticale or their germinated products, such as malt.
  • the present invention further describes the process for obtaining wheat, oat, barley or triticale flour and their detoxified proteins for consumption by celiac patients described above, comprising the following steps:
  • dispersion of the flour in the buffered solution containing chitosan in a protein chitosan ratio ranging from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1;
  • the reducing agent used may be glutathione or dithioerythritol (DTE) or dithiothitrol (DTT) or tris 2-carboxyethyl phosphine (TCEP), preferably glutathione; incubating the mixture at a temperature between 4 to 80 ° C, preferably 40 ° C;
  • the present invention also describes the process for obtaining detoxified wheat gluten for consumption by celiac patients described above comprising the following steps:
  • the reducing agent used may be glutathione or dithioerythritol (DTE) or dithiothitrol (DTT) or tris 2-carboxyethyl phosphine (TCEP), preferably glutathione;
  • Figure 1 Nature of the association between gliadin and chitosan in a 1: 1 (w / w) ratio at different pHs and under reducing and non-reducing conditions.
  • Detoxified wheat flour and gluten for consumption by celiac patients objects of the present invention, are different from products made for the same purpose in that they contain supramolecular structures produced between gluten proteins and chitosan, which is a safe polysaccharide. for human consumption. These supramolecular structures result from the non-covalent interaction by hydrogen bridges between gluten proteins, namely gliadin, and chitosan, under reducing conditions ( Figure 1). In addition, the re-oxidation of disulfide bridges results in mechanical entrapment and consequent stabilization of these structures. Analysis of the formation of high molecular weight complexes and the nature of the protein-chitosan association was conducted by molecular exclusion chromatography.
  • a column (30cm x 7.8mm, particles 8 ⁇ ) was used TSK-Gel G4000 SW XL (TOSOH Bioscience, Japan) at 50 ° C and a solution of 0.2mol / L acetic acid / 0.15 mol / L ammonium acetate (pH 4.5) as eluent.
  • a flow rate of 0.5 mL / min and a photodiode detector (Dionex PDA-100) were used. Detection was performed at 280 nm. The sample volume used was about 50 ⁇ l.
  • the analytical column was previously calibrated with blue dextran (-2000 kDa), urease (-545 kDa), bovine serum albumin (-66 kDa), cytochrome c (-12 kDa), insulin (-6 KDa) and tyrosine (-181 Da).
  • X-ray diffraction Figure 2
  • infrared spectroscopy Table 1
  • X-ray diffraction analysis was performed using the PANalytical X'Pert Pro X-ray diffractometer equipped with the X'Celerator detector. Measurements were conducted using Cu- ⁇ radiation (40kV; 30mA) in Bragg-Bentane geometry (7-60 ° angular range 2 ⁇ ).
  • Infrared spectroscopy was performed on a Bruker Alpha with Platinum ATR module in the range 4000 to 600 cr 1 at a resolution of 4 cm -1 . Spectra resulted from the addition of 32 scans.
  • the deconvolution of the second derivative of the amide I band was performed using the PeakFIT software (Systat).
  • the competitive RIDASCREEN® Gliadin commercial product was used for the quantification of toxic epitopes in flour and gluten, controls and associated with chitosan.
  • This product is based on the competitive Enzyme-Linked Immunosorbent Assay (ELISA) and monoclonal antibody R5, which is recommended by Codex Alimentarius and recognizes among others the potentially toxic sequence QQPFP, which occurs repeatedly in flour proteins. and gluten.
  • ELISA Enzyme-Linked Immunosorbent Assay
  • R5 monoclonal antibody
  • the competitive format of this assay has the advantage of detecting individual peptide fragments compared to the sandwich ELISA format.
  • the limit of detection is 1.36 ppm gliadin and the limit of quantitation is 5 ppm gliadin.
  • Digestibility was determined by quantifying peptides resulting from peptide-tryptic hydrolysis by molecular exclusion chromatography as described above. Tissue transglutaminase deamidation analysis was conducted according to van de Wal et al. (80) and using the commercial Ammonia assay kit (Megazyme, Bray, Ireland).
  • Chitosan used for the detoxification of the mentioned cereal flours including wheat (Triticum spp.) And gluten, may have a molecular weight ranging from 2 glucosamine units to over 1 million glucosamine units. Other amino sugars may also be used for this process.
  • the chitosan used for the detoxification of the mentioned cereal flours, including wheat (Triticum spp.) And gluten may still be naturally partially acetylated, with an acetylation degree of up to 60%.
  • the chitosan used for detoxification of the mentioned cereal flours including wheat (Triticum spp.) And gluten can be obtained from the exoskeleton of crustaceans such as crab or shrimp, or obtained from the cell walls of fungi such as Agaricus bisporus or Aspergillus niger.
  • Chitosan is previously dissolved in an acid solution to promote its solubility, for example using dilute acetic acid solutions, typically with a concentration of 1%.
  • the detoxification reaction of flour or gluten with chitosan occurs at a temperature ranging from 4 ° C to 80 ° C, preferably at 40 ° C, for thirty minutes to seventy-two hours, preferably twenty-four hours.
  • the flour or gluten is separated from the reaction mixture by centrifugation or filtration, with successive washes with water to remove the reducing agent and the unreacted chitosan.
  • Detoxified flour or gluten and after its recovery are dried by lyophilization or oven drying or vacuum drying or spray drying.
  • Flour or gluten containing the supramolecular structures retains or improves the recognized organoleptic, viscoelastic and mechanical characteristics of similarly treated wheat and gluten flours ( Figure 4) and can be transformed into traditional bakery and pastry products, such as bread, cookies, biscuits, pizza bases, pasta and pasta, cakes of a different nature, among others.
  • the Kieffer micro-extensograph (81) was used.
  • the masses were obtained by mixing water calculated according to AACC procedure 54-40.02 (82), and allowed to stand 20 min at 30 ° C under water saturated atmosphere conditions. After this time the masses were pressed in a preheated Teflon mold at 30 ° C and allowed to stand for a further 40 min at 30 ° C in a water saturated atmosphere.
  • the teflon mold and mass measuring system were the SMS / Kieffer Dough and Gluten Extensibility Rig with the Stable Micro Systems TA-XT2 texturometer.
  • chitosan obtained from the crab exoskeleton with a 66% deacetylation degree and a molecular weight of 580 kDa were initially dissolved in an acetic acid solution. at 0.05 mol / l.
  • the pH of the solution is adjusted and buffered to pH 6 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL.
  • THE Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the gluten is dialyzed and freeze dried.
  • chitosan obtained from the cell wall of Agaricus bisporus was initially dissolved with a deacetylation degree of 78% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. %.
  • the pH of the solution is adjusted and buffered to pH 5.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL.
  • the flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
  • chitosan obtained from the cell wall of Agaricus bisporus was initially dissolved with a degree of deacetylation of 78% and a molecular weight of 60-120 kDa. 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 7.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL.
  • Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). THE The mixture is kept at 50 ° C for twelve hours. After this detoxification period the gluten is separated from the reaction mixture by centrifugation, washed successively with water and dried in a vacuum oven.
  • chitosan obtained from the Aspergillus niger cell wall was initially dissolved with a deacetylation degree of 83% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. %. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the flour is separated from the reaction mixture by centrifugation, washed successively with water and dried by lyophilization.
  • chitosan obtained from the Aspergillus niger cell wall was initially dissolved with a deacetylation degree of 83% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL.
  • Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the gluten is separated from the reaction mixture by centrifugation, washed successively with water and dried by lyophilization.
  • rye flour For detoxification of rye flour (Secale spp.) 1g of chitosan obtained from the cell walls of Agaricus bisporus was initially dissolved with a deacetylation degree of 78% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. %. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for forty eight hours. After this detoxification period the flour is separated from the mixture. reaction mixture, washed successively with water and dried in a vacuum oven.
  • chitosan obtained from the cell walls of Agaricus bisporus was initially dissolved with a deacetylation degree of 78% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. .
  • the pH of the solution is adjusted and buffered to pH 5.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL.
  • the flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
  • chitosan obtained from the cell walls of Agaricus bisporus was initially dissolved with a 78% deacetylation degree and a molecular weight of 60-120 kDa in a 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL.
  • the flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
  • Siegel M & Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacology & therapeutics 115 (2): 232-245.
  • Siegel M, Xia J, & Khosla C (2007) Structure-based design of alpha-starch aldehyde containing gluten peptide analogues to modulators of HLA-DQ2 and transglutaminase 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pediatric Medicine (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a method for detoxifying wheat flour (Triticum spp.) and gluten by forming supramolecular structures with chitosan. The invention also relates to the corresponding detoxified flour and gluten having toxic epitope values reduced by 65 and 88%, respectively, for patients with celiac disease, when compared with non-modified or original flour and gluten. In addition, the invention relates to the use of the detoxifying method for other cereals and their respective products, in particular other Gramineae (Poaceae), subfamily Pooideae, especially the species of the Triticeae tribe, such as barley (Hordeum spp.), rye (Secale spp.), Triticale (x Triticosecale), and of the Aveneae tribe, such as oats (Avena spp.), and their germination products.

Description

DESCRIÇÃO  DESCRIPTION
"PROCESSO DE DESTOXIFICAÇÃO DE FARINHA DE TRIGO E GLÚTEN ATRAVÉS DA FORMAÇÃO DE ESTRUTURAS SUPRAMOLECULARES COM A QUITOSANA E RESPECTIVA FARINHA DE TRIGO E GLÚTEN DESTOXIFICADOS PARA CONSUMO POR DOENTES CELÍACOS"  "DETOXIFICATION PROCESS OF WHEAT AND GLUTEN FLOUR THROUGH FORMATION OF SUPRAMOLECULAR STRUCTURES WITH CHITOSANA AND RESPECTIVE FLOUR OF WHEAT AND GLUTEN DETOXIFIED FOR CONSUMPTION BY CELL DISEASES
Domínio técnico Technical Domain
A presente invenção diz respeito a um processo de destoxificação da farinha de trigo (Triticum spp . ) e glúten através da formação de estruturas supramoleculares com a quitosana e à respetiva farinha e glúten destoxifiçados em que são obtidos valores de redução de epitopos tóxicos para os doentes celíacos de 65 e 88% quando comparados com a farinha e glúten não modificados ou originais, respetivamente . Adicionalmente diz ainda respeito à utilização do processo de destoxificação noutros cereais e respetivos produtos, nomeadamente em outras gramíneas (Poaceae), subfamília Pooideae, principalmente das espécies da tribo Triticeae como a cevada (Hordeum spp. ) , o centeio (Secale spp . ) , o triticale (x Triticosecale) e da tribo Aveneae como a aveia (Avena spp . ) , bem como os seus produtos germinados.  The present invention relates to a detoxification process of wheat flour (Triticum spp.) And gluten through the formation of supramolecular structures with chitosan and their detoxified flour and gluten in which patient-toxic epitope reduction values are obtained. 65 and 88% when compared with unmodified or original flour and gluten, respectively. It also concerns the use of the detoxification process in other cereals and their products, in particular in other grasses (Poaceae), subfamily Pooideae, mainly of Triticeae species such as barley (Hordeum spp.), Rye (Secale spp.), triticale (x Triticosecale) and the Aveneae tribe as oats (Avena spp.), as well as their germinated products.
Antecedentes Background
A doença celíaca é uma doença autoimune que se traduz por uma enteropatia que ocorre após contacto com o glúten em indivíduos geneticamente suscetíveis (1, 2) . A doença causa atrofia das vilosidades da mucosa do intestino delgado, causando prejuízo na absorção dos nutrientes, sendo os sintomas mais comuns a diarreia, atraso no crescimento, anemia e fadiga (1) . Adicionalmente, outros sintomas como complicações neurológicas, desregulação hormonal e cirrose biliar primária foram descritos (3-5) . Esta doença é mais comum em populações ocidentais do que se pensava anteriormente, tendo uma prevalência, nestas populações, de aproximadamente 1% (2) e sendo sub-diagnostiçada em Portugal (1) . 0 único tratamento efetivo é uma dieta estritamente sem glúten, não existindo medicamentos que previnam os danos, nem a resposta autoimune do corpo (6) . Considerando a relevância deste problema, a investigação relativa à alergenicidade das proteínas do trigo e de proteínas de outros cereais é particularmente importante (7) . Celiac disease is an autoimmune disease that translates into an enteropathy that occurs after contact with gluten in genetically susceptible individuals (1, 2). The disease causes villous atrophy of the small intestine mucosa, causing impaired nutrient absorption, the most common symptoms being diarrhea, growth retardation, anemia and fatigue (1). Additionally, other symptoms such as neurological complications, hormonal dysregulation and primary biliary cirrhosis have been described (3-5). This disease is more common in western populations than previously thought, having a prevalence in these populations of approximately 1% (2) and being underdiagnosed in Portugal (1). The only effective treatment is a strictly gluten-free diet, with no drugs to prevent damage or the body's autoimmune response (6). Given the relevance of this problem, research on the allergenicity of wheat and other cereal proteins is particularly important (7).
0 trigo (Triticum spp . ) é um dos principais cereais cultivados pelo Homem e o seu grão constitui a maior fonte de proteínas na dieta humana. A produção mundial anual deste cereal ronda os 715 milhões de toneladas, fornecendo aproximadamente 20% das calorias. 0 trigo possui a maior área global de produção (-220 milhões ha) e o maior volume de transações internacionais de uma cultura agronómica simples (-150 milhões de toneladas), significando cerca de 50 mil milhões de dólares (8) . Contém um complexo proteico, o glúten, que é o principal responsável pelo comportamento reológico único das suas farinhas (9) e que o tornam um cereal de eleição na sua diversidade de utilizações: produtos de panificação e de pastelaria tradicionais, como por exemplo, pão, bolachas, biscoitos, bases de pizza, massas alimentícias e pastas, bolos de natureza diversa, entre outros. Os principais componentes proteicos do glúten são as gliadinas e as gluteninas que conferem extensibilidade e elasticidade à massa, respet ivamente (10) . Wheat (Triticum spp.) Is one of the main cereals grown by man and its grain is the major source of protein in the human diet. The annual world production of this cereal is around 715 million tons, providing approximately 20% of calories. Wheat has the largest global area of production (-220 million ha) and the largest international transaction volume of a simple agronomic crop (-150 million tonnes), meaning about $ 50 billion (8). It contains a protein complex, gluten, which is primarily responsible for the unique rheological behavior of its flours (9) and makes it a cereal of choice in its diverse uses: traditional bakery and confectionery products such as bread , cookies, biscuits, pizza bases, pasta and pasta, cakes of various kinds, among others. The main protein components of gluten are gliadin and glutenins which confer mass extensibility and elasticity, respectively (10).
Um passo chave na patogénese da doença celíaca ocorre quando determinados peptídeos do glúten, nomeadamente derivados das gliadinas (ricas em resíduos de glutamina) , são desamidados pela transglutaminase tecidular (TG2), aumentando a sua afinidade para o antigénio leucocitário humano (HLA)-DQ2 ou -DQ8, potenciando desta forma a reação autoimune (11, 12) . Os epítopos provenientes das alfa- gliadinas são considerados os de maior relevância clínica visando tanto a resposta adaptativa como inata que conduzem à doença celíaca (13-18) . Algumas sequências de aminoácidos têm sido referidas como tendo um forte potencial imunogénico. Todos os peptídeos que se apresentaram ativos na doença celíaca continham as sequências Gln-Gln-Gln-Pro e Pro-Ser-Gln-Gln . Contrariamente, os peptídeos inativos não continham nenhuma destas sequências. Portanto, estas sequências são consideradas de elevada importância para o desenvolvimento da doença (19, 20) . A atividade imunológica destas sequências de aminoácidos na doença celíaca foi confirmada por outros investigadores (21, 22) . Além disso, foi identificado um peptídeo de 33 resíduos resistente às proteases intestinais e contendo três dos epítopos mais imunogénicos como um dos principais estimuladores da resposta inflamatória ao glúten (15, 23) . A key step in the pathogenesis of celiac disease occurs when certain gluten peptides, namely Gliadin derivatives (rich in glutamine residues) are deactivated by tissue transglutaminase (TG2), increasing their affinity for human leukocyte antigen (HLA) -DQ2 or -DQ8, thereby enhancing the autoimmune reaction (11, 12). Alphagliadin epitopes are considered to be of greater clinical relevance for both the adaptive and innate responses that lead to celiac disease (13-18). Some amino acid sequences have been reported to have strong immunogenic potential. All peptides that were active in celiac disease contained the Gln-Gln-Gln-Pro and Pro-Ser-Gln-Gln sequences. In contrast, inactive peptides contained none of these sequences. Therefore, these sequences are considered of high importance for the development of the disease (19, 20). The immunological activity of these amino acid sequences in celiac disease has been confirmed by other investigators (21, 22). In addition, a 33-residue peptide resistant to intestinal proteases and containing three of the most immunogenic epitopes was identified as a major stimulant of the inflammatory gluten response (15, 23).
Até à data, não existe nenhum tratamento farmacológico para os doentes intolerantes ao glúten sendo a única via eficaz a dieta contínua estritamente sem glúten, o que resulta, por vezes, em problemas de índole social (6) . Dada a resposta incompleta de muitos doentes à dieta sem glúten, bem como a dificuldade de adesão à dieta a longo prazo, o desenvolvimento de novas terapias eficazes para o controlo da sintomatologia e reversão da inflamação e dos danos causados nos órgãos torna-se extremamente importante. Neste sentido, algumas estratégias promissoras têm sido conduzidas, tanto terapêuticas como tendo em vista a modificação do glúten, para reverter este cenário. Por exemplo, o glúten e os seus peptideos podem ser hidrolisados por prolilendopeptidases e/ou outras glutenases permitindo a produção de produtos seguros para os doentes celíacos (24) . As enzimas podem, também, ser ingeridas como medida profiláctica, em que o glúten na dieta é hidrolisado pelas peptidases co-ingeridas , evitando, assim, as reações imunológicas específicas da doença celíaca no intestino delgado (25) . 0 uso destas enzimas para destoxificar o glúten ou mesmo a sua co- administração na dieta têm conduzido a diversos pedidos de patente ( 26-30 ) . To date, there is no pharmacological treatment for gluten intolerant patients and the only effective route is the strictly gluten-free continuous diet, which sometimes results in social problems (6). Given the incomplete response of many patients to the gluten-free diet as well as the difficulty of long-term dietary adherence, the development of new effective therapies to control the symptoms and reversal of inflammation and organ damage becomes extremely important. . In this sense, some promising strategies have been conducted, both therapeutically and with a view to gluten modification to reverse this scenario. For example, gluten and its peptides may be hydrolyzed by prolylendopeptidases and / or other glutenases allowing the production of safe products for celiac patients (24). Enzymes can also be ingested as a prophylactic measure, in which dietary gluten is hydrolyzed by co-ingested peptidases, thus avoiding the specific immunological reactions of celiac disease in the small intestine (25). The use of these enzymes to detoxify gluten or even its co-administration in the diet has led to several patent applications (26-30).
Todavia, o uso de peptidases para a modificação do glúten apresenta algumas limitações, nomeadamente a perda de qualidade tecnológica do glúten e das massas pois são produtos hidrolisados sem a estrutura proteica necessária para manter as propriedades de elasticidade e extensibilidade. Já em relação à co-ingestão das peptidases, as principais limitações prendem-se com o facto de estas serem rapidamente hidrolisadas pela pepsina gástrica (31, 32), dificultando a administração oral e também por serem inativadas pela tripsina e quimiotripsina na presença de sais biliares intestinais (33) . However, the use of peptidases for gluten modification has some limitations, namely the loss of technological quality of gluten and pasta because they are hydrolysed products without the protein structure necessary to maintain elasticity and extensibility properties. Regarding the co-ingestion of peptidases, the main limitations are that they are rapidly hydrolyzed by gastric pepsin (31, 32), making oral administration difficult and also inactivated by trypsin and chymotrypsin in the presence of salts. bile ducts (33).
Destacam-se, ainda, outras aproximações farmacológicas, nomeadamente o uso de ligantes poliméricos (copolímeros aleatórios de hidroxietil metacrilato (HEMA) e 4-estireno sulfonato de sódio (SS)) que através da ligação não- covalente às gliadinas impedem a sua digestão e suprimem desta forma a toxicidade induzida pelas gliadinas no epitélio intestinal (34), moduladores de permeabilidade paracelular (35), inibidores da transglutaminase-2 tecidular (36-41), vacinação peptidica (42-44), estimuladores da regeneração intestinal (45) e bloqueadores do recetor NKG2D das células exterminadoras naturais (natural killer) e proteína ligante MICA (46, 47) . Além disso, o polipeptídeo Glicagina-tipo 2 (GLP-2) demonstrou uma significativa atividade reparadora do epitélio da mucosa do intestino delgado e grosso, aumentando a capacidade do intestino para digerir e absorver os nutrientes. 0 seu uso para o tratamento de doenças e distúrbios gastrointestinais foi descrito (48, 49) . Também, o uso de anticorpos com atividade específica contra o glúten ou peptídeos derivados do glúten que pode inibir a desamidação do glúten ou dos seus peptídeos derivados pela tranglutaminase tecidular se apresenta como uma estratégia potencial de diminuição da toxicidade do glúten (50) . Other pharmacological approaches are highlighted, namely the use of polymeric binders (random hydroxyethyl methacrylate (HEMA) and sodium 4-styrene sulfonate (SS) copolymers) which through non-covalent binding to gliadins prevent their digestion and thus suppress gliadin-induced toxicity in the intestinal epithelium (34), paracellular permeability modulators (35), transglutaminase-2 inhibitors (36-41), peptide vaccination (42-44), intestinal regeneration enhancers (45) and natural killer NKG2D receptor blockers and MICA ligand protein (46, 47). In addition, the Glycine-type 2 polypeptide (GLP-2) demonstrated significant repair activity of the small and large intestine mucosal epithelium, increasing the intestine's ability to digest and absorb nutrients. Its use for the treatment of gastrointestinal disorders and disorders has been described (48, 49). Also, the use of antibodies with specific activity against gluten or gluten-derived peptides that may inhibit gluten deactivation or its peptides derived by tissue tranglutaminase is a potential strategy for reducing gluten toxicity (50).
De qualquer forma, o tratamento da doença celíaca ou o seu controlo através de uma aproximação farmacológica terá a contrapartida do tratamento ter como alvo os efectores endógenos da doença e neste sentido, a modificação do glúten (efector exógeno) visando a sua destoxificação torna-se uma estratégia muito atrativa quando comparada com o tratamento farmacológico. A avaliação prévia da toxicidade global dos produtos é uma vantagem crucial pois é bem conhecida a heterogeneidade da doença celíaca (18), sabendo-se agora que não apenas as gliadinas, mas todas as proteínas do glúten podem ser tóxicas para pelo menos um doente celíaco (51) . In any case, the treatment of celiac disease or its control by a pharmacological approach will have the counterpart of the treatment targeting the endogenous effectors of the disease and in this sense, the modification of gluten (exogenous effector) aiming at its detoxification becomes a very attractive strategy compared to pharmacological treatment. Prior evaluation of the overall toxicity of the products is a crucial advantage as the heterogeneity of celiac disease is well known (18). It is now known that not only gliadin, but all gluten proteins can be toxic to at least one celiac patient. (51).
Um método de redução da alergenicidade de produtos alimentares utilizando dióxido de carbono supercrítico ou azoto líquido foi descrito (52) . Também a tecnologia do Ácido Ribonucleico de Interferência (RNAi) foi usada para reduzir a expressão das gliadinas em linhas de trigo que foram posteriormente avaliadas como tendo um baixo nível de toxicidade para os doentes celíacos (53) . Investigações recentes mostraram que a alteração da expressão das gama- gliadinas em diferentes backgrounds genéticos não tem um efeito direto na qualidade tecnológica das massas de trigoA method of reducing food allergenicity using supercritical carbon dioxide or liquid nitrogen has been described (52). Also Ribonucleic Acid Interference (RNAi) technology was used to reduce gliadin expression in wheat lines which were subsequently evaluated as having a low level of toxicity for celiac patients (53). Recent research has shown that altering gamma-gliadin expression in different genetic backgrounds has no direct effect on the technological quality of wheat masses.
(54) . Relativamente à tecnologia RNAi , a heterogeneidade da doença, a estabilidade genética das linhas ao longo das gerações e o facto de o produto final constituir um organismo geneticamente modificado (OGM) e todas as questões de naturezas várias que daí advêm ou podem advir, são apontadas como as maiores limitações desta aproximação(54). With regard to RNAi technology, the heterogeneity of the disease, the genetic stability of the lines over the generations and the fact that the end product is a genetically modified organism (GMO) and all the various or potential issues arising therefrom are pointed out. as the biggest limitations of this approach
(55) . (55).
Outras aproximações têm sido conduzidas no sentido de modificar os resíduos de glutamina como por exemplo o tratamento da farinha de trigo com a transglutaminase microbiana para a produção de farinhas hipoalergénicas (56) ou a modificação da farinha de trigo visando interferir com a desamidação dos resíduos de glutamina através de uma prévia desamidação química ou enzimática seguida de derivatização enzimática do grupo carboxílico formado que conduziu a um pedido de patente (57) . Além disso, a capacidade de conjugação de peptídeos pela transglutaminase foi descrita (58, 59) e a sua utilização para o desenvolvimento de produtos e melhoramento de determinadas características como a textura através do entrecruzamento proteico, colmatar a deficiência em lisina de determinados alimentos, entre outras, conduziu a diversos pedidos de patente (60-69) . A utilização da transglutaminase microbiana em combinação com um dador amina para destoxificar o glúten para doentes celíacos foi recentemente descrita (70, 71) . Através da modificação seletiva dos resíduos de glutamina presentes nos epítopos tóxicos pela transglutaminase microbiana ( transamidação ) utilizando a lisina ou ésteres metílicos ou etílicos de lisina impede-se o processo de desamidação conduzido pela transglutaminase tecidular presente no corpo humano, que é um passo fundamental para o desenvolvimento da resposta imunológica em doentes celíacos (72) . Other approaches have been conducted to modify glutamine residues such as the treatment of wheat flour with microbial transglutaminase for the production of hypoallergenic flours (56) or the modification of wheat flour to interfere with the deamidation of wheat residues. glutamine by prior chemical or enzymatic deamidation followed by enzymatic derivatization of the formed carboxylic group leading to a patent application (57). In addition, the ability of peptide conjugation by transglutaminase has been described (58, 59) and its use for product development and enhancement of certain characteristics such as texture through protein cross-linking, bridging the lysine deficiency of certain foods, among others. others led to several patent applications (60-69). The use of microbial transglutaminase in combination with an amine donor to detoxify gluten for celiac patients has recently been described (70, 71). Through modification Selective screening of glutamine residues present on toxic epitopes by microbial transglutaminase (transamidation) using lysine or methyl or ethyl esters of lysine prevents the process of deamidation driven by tissue transglutaminase in the human body, which is a key step in the development of immune response in celiac patients (72).
Vários estudos foram posteriormente conduzidos utilizando a ação da transglutaminase microbiana e o éster metílico de lisina como substrato em farinha de trigo intacta (73), o éster etílico de lisina como substrato em farinhas de trigo previamente desprovidas das albuminas e globulinas (proteínas do endosperma) (74, 75), ou a L-lisina como substrato em glúten previamente hidrolisado pela pepsina seguida por tripsina (76) . Em todos estes estudos constatou-se uma forte diminuição da toxicidade para os doentes celíacos dos produtos modificados. A grande desvantagem da aplicação a nível industrial prende-se com o elevado custo do substrato utilizado. Além disso, todos os trabalhos citados anteriormente e que envolvem a utilização da lisina ou dos ésteres metílicos ou etílicos de lisina como dadores do grupo amina para a transglutaminase, carecem de uma avaliação da qualidade reológica/tecnológica final dos produtos modificados. Mais recentemente foi publicado um estudo utilizando a ação da transglutaminase microbiana e a n-butilamina como substrato em farinha de trigo e respetivo glúten, em que a extensão da reação de transamidação é francamente aumentada através do uso de condições redutoras. Além disso, o aumento de hidrofobicidade das proteínas tratadas resultou em melhores propriedades de panificação da farinha tratada quando comparada com a farinha original (77) . A presente invenção descreve um novo processo de destoxificação da farinha de trigo intacta e respetivo glúten através da formação de estruturas supramoleculares entre as proteínas e o polissacarídeo natural quitosana, traduz indo-se em produtos destinados ao consumo por doentes celíacos e apresentando uma série de vantagens e diferenças relativamente aos processos anteriormente descritos, nomeadamente : Several studies were subsequently conducted using the action of microbial transglutaminase and lysine methyl ester as substrate in intact wheat flour (73), lysine ethyl ester as substrate in wheat flour previously devoid of albumin and globulin (endosperm proteins). (74, 75), or L-lysine as a gluten substrate previously hydrolyzed by pepsin followed by trypsin (76). In all of these studies a marked decrease in celiac patients' toxicity of modified products was found. The major disadvantage of industrial application is the high cost of the substrate used. In addition, all work cited above involving the use of lysine or lysine methyl or ethyl esters as amino group donors for transglutaminase requires an assessment of the final rheological / technological quality of the modified products. More recently, a study using the action of microbial transglutaminase and n-butylamine as a substrate in wheat flour and its gluten has been published, in which the extent of the transamidation reaction is greatly increased through the use of reducing conditions. In addition, the increased hydrophobicity of the treated proteins resulted in better baking properties of the treated flour compared to the original flour (77). The present invention describes a novel process of detoxification of intact wheat flour and its gluten through the formation of supramolecular structures between proteins and chitosan natural polysaccharide, resulting in products intended for consumption by celiac patients and having a number of advantages. and differences with respect to the processes described above, namely:
• A quitosana é um polissacarídeo não tóxico, é hipoalergénico , biocompatível e biodegradável;  • Chitosan is a non-toxic polysaccharide, is hypoallergenic, biocompatible and biodegradable;
• A quitosana é um produto mais barato que os produtos anteriormente utilizados para a destoxificação da farinha e do glúten como por exemplo a L-lisina, os ésteres metílicos e etílicos de lisina;  • Chitosan is a cheaper product than products previously used for detoxification of flour and gluten such as L-lysine, methyl and ethyl esters of lysine;
• Os produtos derivados são compatíveis com a doença celíaca;  • Derived products are compatible with celiac disease;
• A facilidade de produção, isto é, produção rápida, sem recurso a temperaturas elevadas e sem ocorrência de produtos laterais tóxicos;  • Ease of production, ie fast production without high temperatures and no toxic side products;
• A obtenção de produtos sensorialmente, viscoelasticamente e mecanicamente semelhantes aos produtos clássicos.  • Obtaining products sensorially, viscoelastically and mechanically similar to classic products.
Adicionalmente, a presente invenção diz ainda respeito à utilização do processo noutros cereais e os respetivos produtos, designadamente a cevada (Hordeum spp . ) , o centeio (Secale spp.), o triticale (x Triticosecale Wittmack) e a aveia (Avena spp.), bem como os seus produtos germinados, pois algumas proteínas destes cereais apresentam reatividade imunológica similar ao glúten do trigo para os doentes celíacos (2) . Sumário In addition, the present invention further relates to the use of the process in other cereals and their products, namely barley (Hordeum spp.), Rye (Secale spp.), Triticale (x Triticosecale Wittmack) and oats (Avena spp. ), as well as their germinated products, as some proteins of these cereals have similar immunological reactivity to wheat gluten for celiac patients (2). summary
A presente invenção diz respeito a um processo de destoxificação de farinha de trigo (Triticum spp . ) e glúten através da formação de estruturas supramoleculares com a quitosana e à respetiva farinha e glúten em que são obtidos valores de redução de epitopos tóxicos para os doentes celíacos de cerca de 65 e 88% quando comparados com a farinha e glúten não modificados ou originais. Adicionalmente diz ainda respeito à utilização do processo noutros cereais e os respetivos produtos, nomeadamente a cevada (Hordeum spp.), o centeio (Secale spp.), o triticale (x Triticosecale) e a aveia (Avena spp.) e produtos germinados .  The present invention relates to a detoxification process of wheat flour (Triticum spp.) And gluten by forming supramolecular structures with chitosan and their flour and gluten in which toxic epitope reduction values are obtained for celiac patients. about 65 and 88% compared to unmodified or original flour and gluten. In addition, it concerns the use of the process in other cereals and their products, namely barley (Hordeum spp.), Rye (Secale spp.), Triticale (x Triticosecale) and oats (Avena spp.) And sprouted products.
Numa forma de realização preferencial, a quitosana pode ter origem em crustáceos ou em fungos. In a preferred embodiment, chitosan may originate from crustaceans or fungi.
Numa forma de realização preferencial, o processo de destoxificação envolve a utilização de quitosanas com diferentes graus de polimerização (DP = 2 a DP > 1.000.000) e graus de acetilação (0 a 60%) . In a preferred embodiment, the detoxification process involves the use of chitosans with different degrees of polymerization (SD = 2 to SD> 1,000,000) and acetylation degrees (0 to 60%).
Numa forma de realização preferencial, o processo de destoxificação envolve a utilização de açucares aminados. Ainda numa outra forma de realização preferencial a razão proteína : quitosana varia entre 0,5:1 a 10:1 (p/p), preferencialmente 1,9:1. In a preferred embodiment, the detoxification process involves the use of amino sugars. In yet another preferred embodiment the protein: chitosan ratio ranges from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1.
Numa forma de realização preferencial, o processo de destoxificação envolve a utilização de açucares com diferentes graus de polimerização (DP = 2 a DP > 1.000.000) . Numa outra forma de realização preferencial, o processo de destoxificação envolve a reação a um valor de pH entre 1 a 9, preferencialmente a pH 6. In a preferred embodiment, the detoxification process involves the use of sugars with different degrees of polymerization (SD = 2 to SD> 1,000,000). In another preferred embodiment, the detoxification process involves the reaction at a pH value from 1 to 9, preferably at pH 6.
Numa forma de realização preferencial utiliza-se a glutationa como agente redutor numa concentração entre 0,1 mM a 500 mM, preferencialmente 20 mM. In a preferred embodiment glutathione is used as reducing agent in a concentration between 0.1 mM to 500 mM, preferably 20 mM.
Numa outra forma de realização preferencial, a farinha e as proteínas podem ter origem na aveia, centeio, cevada e triticale ou nos respetivos produtos germinados, como por exemplo o malte. In another preferred embodiment, the flour and proteins may originate from oats, rye, barley and triticale or their germinated products, such as malt.
A presente invenção descreve, ainda, o processo para obtenção de farinhas de trigo, aveia, cevada ou triticale e respetivas proteínas destoxifiçadas para o consumo por doentes celíacos descrito anteriormente, que compreende os seguintes passos: The present invention further describes the process for obtaining wheat, oat, barley or triticale flour and their detoxified proteins for consumption by celiac patients described above, comprising the following steps:
- dispersão da quitosana em ácido acético (0.05 mol/L) numa razão proteína : quitosana que varia entre 0,5:1 a 10:1 (p/p), preferencialmente 1,9:1 seguido do ajuste do pH entre 4 a 9 utilizando um sistema tampão, preferencialmente a 6 ; - dispersion of chitosan in acetic acid (0.05 mol / L) in a protein: chitosan ratio ranging from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1 followed by pH adjustment between 4 to 9 using a buffer system, preferably 6;
- dispersão das farinhas na solução tamponizada contendo a quitosana numa razão proteína : quitosana que varia entre 0,5:1 a 10:1 (p/p), preferencialmente 1,9:1;  dispersion of the flour in the buffered solution containing chitosan in a protein: chitosan ratio ranging from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1;
- adição de um agente redutor numa concentração final de 0,1 a 500 mM, preferencialmente 20 mM. O agente redutor utilizado pode ser a glutationa ou ditioeritritol (DTE) ou ditioteitrol (DTT) ou tris 2-carboxietil fosfina (TCEP), preferencialmente a glutationa; - incubação da mistura a uma temperatura entre 4 a 80 °C, preferencialmente 40°C; adding a reducing agent at a final concentration of 0.1 to 500 mM, preferably 20 mM. The reducing agent used may be glutathione or dithioerythritol (DTE) or dithiothitrol (DTT) or tris 2-carboxyethyl phosphine (TCEP), preferably glutathione; incubating the mixture at a temperature between 4 to 80 ° C, preferably 40 ° C;
- incubação com uma duração entre 30 minutos a 72 horas, preferencialmente 24 horas;  - incubation lasting 30 minutes to 72 hours, preferably 24 hours;
- separação da farinha da solução por centrifugação ou filtração, com lavagens com água;  - separating the flour from the solution by centrifugation or filtration with water washes;
- recuperação da farinha e secagem por liofilização, secagem em estufa, secagem em estufa de vácuo, atomização.  - flour recovery and freeze drying, oven drying, vacuum oven drying, atomization.
A presente invenção descreve, também, o processo para obtenção de glúten de trigo destoxifiçado para o consumo por doentes celíacos descrito anteriormente, que compreende os seguintes passos: The present invention also describes the process for obtaining detoxified wheat gluten for consumption by celiac patients described above comprising the following steps:
- dispersão da quitosana em ácido acético (0.05 mol/L) numa razão proteína : quitosana que varia entre 0,5:1 a 10:1 (p/p), preferencialmente 1,9:1 seguido do ajuste do pH entre 4 a 9 utilizando um sistema tampão, preferencialmente a 6 ;  - dispersion of chitosan in acetic acid (0.05 mol / L) in a protein: chitosan ratio ranging from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1 followed by pH adjustment between 4 to 9 using a buffer system, preferably 6;
- dispersão do glúten obtido a partir da lavagem aquosa da massa produzida da farinha de trigo com a adição de 1% de NaCl, na solução tamponizada contendo a quitosana numa razão proteína : quitosana que varia entre 0,5:1 a 10:1 (p/p), preferencialmente 1,9:1;  - dispersion of gluten obtained from the aqueous washing of the produced dough of wheat flour with the addition of 1% NaCl in the buffered solution containing chitosan in a protein: chitosan ratio ranging from 0,5: 1 to 10: 1 ( w / w), preferably 1.9: 1;
- adição de um agente redutor numa concentração final de 0,1 a 500 mM, preferencialmente 20 mM. 0 agente redutor utilizado pode ser a glutationa ou ditioeritritol (DTE) ou ditioteitrol (DTT) ou tris 2-carboxietil fosfina (TCEP), preferencialmente a glutationa;  adding a reducing agent at a final concentration of 0.1 to 500 mM, preferably 20 mM. The reducing agent used may be glutathione or dithioerythritol (DTE) or dithiothitrol (DTT) or tris 2-carboxyethyl phosphine (TCEP), preferably glutathione;
- incubação da mistura a uma temperatura entre 4 a 80 °C, preferencialmente 40°C;  incubating the mixture at a temperature between 4 to 80 ° C, preferably 40 ° C;
- incubação com uma duração entre 30 minutos a 72 horas, preferencialmente 24 horas; - separação do glúten da solução por centrifugação ou filtração, com lavagens com água; - incubation lasting 30 minutes to 72 hours, preferably 24 hours; - separating gluten from solution by centrifugation or filtration with water washes;
- recuperação do glúten e posterior secagem por liofilização, secagem em estufa, secagem em estufa de vácuo, atomização.  - Gluten recovery and subsequent freeze drying, oven drying, vacuum oven drying, atomization.
Breve descrição das figuras Brief Description of the Figures
Para uma mais fácil compreensão do presente pedido juntam- se em anexo figuras, as quais, representam realizações preferenciais que, contudo, não pretendem limitar a técnica aqui divulgada.  For an easier understanding of the present application, attached are figures which represent preferred embodiments which, however, are not intended to limit the art disclosed herein.
Figura 1. Natureza da associação entre as gliadinas e a quitosana numa proporção de 1:1 (p/p), a diferentes pHs e em condições redutoras e não redutoras. Figure 1. Nature of the association between gliadin and chitosan in a 1: 1 (w / w) ratio at different pHs and under reducing and non-reducing conditions.
Figura 2. Espectro de raio-x do glúten contendo estruturas supramoleculares com a quitosana (¾¾¾¾) e a quitosana tratada em condições similares ( ) . Figure 2. Gluten x-ray spectrum containing supramolecular structures with chitosan (¾¾¾¾) and chitosan treated under similar conditions ().
Figura 3. Caracterização do efeito da presença de estruturas supramoleculares na farinha e no glúten em relação à à libertação de epitopos tóxicos medidos pelo anticorpo R5 (A) , à digestibilidade (B) e à atividade de desamidação pela transglutaminase tecidular (C) . * p<0,05, ** p<0,01, *** p< 0,001 e **** p<0,0001; n=3. Figure 3. Characterization of the effect of the presence of supramolecular structures on flour and gluten in relation to the release of toxic epitopes measured by antibody R5 (A), digestibility (B), and tissue transglutaminase (C) deamidation activity. * p <0.05, ** p <0.01, *** p <0.001 and **** p <0.0001; n = 3.
Figura 4. Curvas de extensão de microextensografo de Kieffer da massa produzida através da farinha contendo estruturas supramoleculares com a quitosana ( *»»» ) e a farinha controlo, i.e. tratada em condições similares Figura 5. Processo de obtenção de obtenção de estruturas supramoleculares glúten-chitosana em farinhas de diversas origens e glúten isolado a partir da farinha de trigo. Figure 4. Kieffer microextension extension curves of dough produced by flour containing supramolecular structures with chitosan (* »» ») and control flour, ie treated under similar conditions Figure 5. Process for obtaining gluten-chitosan supramolecular structures in flour of various origins and gluten isolated from wheat flour.
Descrição de formas de realização Description of embodiments
Fazendo referência às figuras, algumas formas de realização são agora descritas de forma mais pormenorizada, as quais não pretendem, contudo, limitar o âmbito do presente pedido .  Referring to the figures, some embodiments are now described in more detail, which are not, however, intended to limit the scope of the present application.
A farinha de trigo e glúten destoxifiçados para o consumo por doentes celíacos, objetos da presente invenção, são diferentes dos produtos elaborados com a mesma finalidade pelo facto de conterem estruturas supramoleculares produzidas entre as proteínas do glúten e a quitosana, a qual é um polissacarídeo seguro para consumo humano. Estas estruturas supramoleculares resultam da interação não- covalente por pontes de hidrogénio entre as proteínas do glúten, nomeadamente as gliadinas, e a quitosana, em condições redutoras (Figura 1) . Além disso, a re-oxidação das pontes disulfeto resulta num encarceramento mecânico e consequente estabilização destas estruturas. A análise da formação de complexos de alto peso molecular e a natureza da associação entre proteínas e quitosana foi conduzida através de cromatografia de exclusão molecular. Para tal, foi utilizada uma coluna (30cm x 7.8mm, partículas 8μπι) TSK-Gel G4000 SWXL (TOSOH Bioscience, Japão) a 50°C e uma solução de 0,2mol/L ácido acético / 0,15 mol/L acetato de amónio (pH 4,5) como eluente. Foi utilizado um fluxo de 0,5 mL/min e um detetor de fotodiodo (Dionex PDA-100) . A deteção foi realizada a 280 nm. 0 volume de amostra utilizado foi de cerca de 50 iL . A coluna analítica foi previamente calibrada com dextrana azul (-2000 kDa) , urease (-545 kDa), albumina do soro bovino (-66 kDa), citocromo c (-12 kDa), insulina (-6 KDa) e tirosina (-181 Da). Detoxified wheat flour and gluten for consumption by celiac patients, objects of the present invention, are different from products made for the same purpose in that they contain supramolecular structures produced between gluten proteins and chitosan, which is a safe polysaccharide. for human consumption. These supramolecular structures result from the non-covalent interaction by hydrogen bridges between gluten proteins, namely gliadin, and chitosan, under reducing conditions (Figure 1). In addition, the re-oxidation of disulfide bridges results in mechanical entrapment and consequent stabilization of these structures. Analysis of the formation of high molecular weight complexes and the nature of the protein-chitosan association was conducted by molecular exclusion chromatography. For this, a column (30cm x 7.8mm, particles 8μπι) was used TSK-Gel G4000 SW XL (TOSOH Bioscience, Japan) at 50 ° C and a solution of 0.2mol / L acetic acid / 0.15 mol / L ammonium acetate (pH 4.5) as eluent. A flow rate of 0.5 mL / min and a photodiode detector (Dionex PDA-100) were used. Detection was performed at 280 nm. The sample volume used was about 50 µl. The analytical column was previously calibrated with blue dextran (-2000 kDa), urease (-545 kDa), bovine serum albumin (-66 kDa), cytochrome c (-12 kDa), insulin (-6 KDa) and tyrosine (-181 Da).
A difração de raio-x (Figura 2) e a espectroscopia de infravermelho (Tabela 1) mostram a alteração profunda que a associação entre as proteínas e as quitosanas, e a formação de estruturas supramoleculares, têm no glúten. A análise de difração de raio-x foi realizada usando o difractómetro PANalytical X'Pert Pro X-ray equipado com o detetor X'Celerator. As medições foram conduzidas utilizando uma radiação Cu-Κ (40kV; 30mA) em geometria Bragg-Bentano (7- 60° de intervalo angular 2Θ) . Em relação à espectroscopia de infra-vermelho , esta foi realizada num Bruker Alpha com o módulo Platinum ATR no intervalo 4000 a 600 cr1 a uma resolução de 4 cm-1 . Os espectros resultaram da co-adição de 32 scans. A desconvolução da segunda derivada da banda correspondente à amida I foi feita com o programa informático PeakFIT (Systat) . X-ray diffraction (Figure 2) and infrared spectroscopy (Table 1) show the profound change that the association between proteins and chitosans, and the formation of supramolecular structures, have on gluten. X-ray diffraction analysis was performed using the PANalytical X'Pert Pro X-ray diffractometer equipped with the X'Celerator detector. Measurements were conducted using Cu-Κ radiation (40kV; 30mA) in Bragg-Bentane geometry (7-60 ° angular range 2Θ). Infrared spectroscopy was performed on a Bruker Alpha with Platinum ATR module in the range 4000 to 600 cr 1 at a resolution of 4 cm -1 . Spectra resulted from the addition of 32 scans. The deconvolution of the second derivative of the amide I band was performed using the PeakFIT software (Systat).
Tabela 1. Espectroscopia de infra-vermelho e atribuição estruturas proteicas secundárias do glúten controlo contendo estruturas supramoleculares. Table 1. Infrared spectroscopy and assignment of secondary protein structures of control gluten containing supramolecular structures.
Figure imgf000015_0001
1681 Volta β 6, 03±0, 02 5, 76±0, 08 Ρ=0, 0048
Figure imgf000015_0001
1681 Round β6.03 ± 0.02 5.76 ± 0.08 Ρ = 0.0048
1689 Folha β 3, 37±0, 02 2, 73±0, 05 Ρ<0, 00011689 Sheet β3.37 ± 0.02 2.73 ± 0.05 Ρ <0.0001
1696 Folha β 1, 89±0, 07 1, 49±0, 06 Ρ=0, 00171696 Sheet β1.89 ± 0.07 1.49 ± 0.06 Ρ = 0.0017
∑ Folha β 52, 48 51, 92 (-1,07%) ∑ Sheet β 52, 48 51, 92 (-1.07%)
∑ Hélice 25, 08 26,28 (+4,78%)  ∑ Propeller 25, 08 26.28 (+ 4.78%)
∑ Volta β 22, 44 21,80 (-2,85%)  ∑ Round β 22, 44 21.80 (-2.85%)
O resultado em termos de aplicação à produção de produtos toleráveis por doentes celíacos é uma clara diminuição da digestibilidade das proteínas do glúten, nomeadamente as gliadinas, resultando consequentemente num produto em que mais de 65% dos epítopos tóxicos para os doentes celíacos são eliminados e o processo de desamidação conduzido pela transglutaminase tecidular, um passo chave na patogénese da doença celíaca (11, 12), inibido (Figura 3). The result in terms of application to the production of tolerable products for celiac patients is a clear decrease in the digestibility of gluten proteins, namely gliadins, resulting in a product in which more than 65% of celiac patients' toxic epitopes are eliminated. damsidation process conducted by tissue transglutaminase, a key step in the pathogenesis of celiac disease (11, 12), inhibited (Figure 3).
Para a quantificação dos epítopos tóxicos na farinha e glúten, controlos e associados com quitosana, foi utilizado o produto comercial RIDASCREEN® Gliadin competitive. Este produto baseia-se no ensaio imunosorbente ligado a enzima (ELISA, Enzyme-Linked Immunosorbent Assay) competitivo e no anticorpo monoclonal R5, que é recomendado pelo Codex Alimentarius e reconhece entre outras a sequência potencialmente tóxica QQPFP, que ocorre repetidamente nas proteínas da farinha e do glúten. O formato competitivo deste teste tem a vantagem de detetar fragmentos peptídicos individuais comparativamente ao formato sandwich ELISA. O limite de deteção é de 1,36 ppm de gliadina e o limite de quantificação é de 5 ppm de gliadina. Todas as instruções do produto RIDASCREEN® Gliadin competitive foram seguidas rigorosamente e a preparação do material foi feita de acordo com o descrito por Gessendorfer e colaboradores (78), também uma recomendação do teste utilizado. Resumidamente, a farinha e o glúten, originais e destoxifiçados , foram dispersos em água destilada numa proporção de 5%, e o pH foi ajustado a 1,8 com recurso a uma solução de HC1 a 1 M (79) . Seguidamente foram adicionados 2,5 mg de pepsina que ficaram a reagir durante quatro horas sob agitação e a 37°C. Posteriormente o pH foi ajustado a 7,8 com uma solução de NaOH a 1 M e 2,5 mg de tripsina foram adicionadas à mistura que ficou a reagir por mais quatro horas sob agitação a 37°C. Finalmente, o pH foi ajustado a 4,5 com uma solução de HC1 a 1 M, e os digeridos pépticos-tripticos foram centrifugados a 4000 x g durante vinte minutos à temperatura ambiente. 0 sobrenadante foi decantado, congelado e liofilizado. Os resíduos secos obtidos correspondem aos digeridos pépticos-tripticos (PT) da farinha e do glúten, controlos e associados com quitosana. Este protocolo de digestão da farinha e do glúten com proteases semelhantes às presentes no sistema digestivo humano permite mimetizar o processo de digestão. For the quantification of toxic epitopes in flour and gluten, controls and associated with chitosan, the competitive RIDASCREEN® Gliadin commercial product was used. This product is based on the competitive Enzyme-Linked Immunosorbent Assay (ELISA) and monoclonal antibody R5, which is recommended by Codex Alimentarius and recognizes among others the potentially toxic sequence QQPFP, which occurs repeatedly in flour proteins. and gluten. The competitive format of this assay has the advantage of detecting individual peptide fragments compared to the sandwich ELISA format. The limit of detection is 1.36 ppm gliadin and the limit of quantitation is 5 ppm gliadin. All RIDASCREEN® Gliadin competitive product instructions were strictly followed and material preparation was done as described by Gessendorfer et al. (78), also a recommendation of the test used. Briefly, the original and detoxified flour and gluten were dispersed in 5% distilled water and the pH adjusted to 1.8 using 1 M HCl solution (79). Then 2.5 mg pepsin was added and reacted for four hours while stirring at 37 ° C. Thereafter the pH was adjusted to 7.8 with 1 M NaOH solution and 2.5 mg trypsin was added to the reaction mixture for an additional four hours while stirring at 37 ° C. Finally, the pH was adjusted to 4.5 with a 1 M HCl solution, and the tryptic digest were centrifuged at 4000 xg for twenty minutes at room temperature. The supernatant was decanted, frozen and lyophilized. The dried residues obtained correspond to the tryptic-peptide (PT) digestions of flour and gluten, controls and associated with chitosan. This protocol for digestion of flour and gluten with proteases similar to those present in the human digestive system allows to mimic the digestion process.
A digestibilidade foi determinada pela quantificação dos peptídeos resultantes da hidrólise péptica-tríptica por cromatografia de exclusão molecular como descrito anteriormente. A análise de desamidação pela transglutaminase tecidular foi conduzida de acordo com van de Wal e colaboradores (80) e utilizando o kit comercial Ammonia assay (Megazyme, Bray, Ireland) . Digestibility was determined by quantifying peptides resulting from peptide-tryptic hydrolysis by molecular exclusion chromatography as described above. Tissue transglutaminase deamidation analysis was conducted according to van de Wal et al. (80) and using the commercial Ammonia assay kit (Megazyme, Bray, Ireland).
A quitosana utilizada para a destoxificação das farinhas dos cereais mencionados, entre os quais o trigo (Triticum spp . ) e do glúten, pode apresentar um peso molecular que varia entre 2 unidades de glucosamina até mais de um milhão de unidades de glucosamina. Para este processo podem também ser utilizados outros açúcares aminados. A quitosana utilizada para a destoxificação das farinhas dos cereais mencionados, entre os quais o trigo (Triticum spp . ) e do glúten pode ainda ser naturalmente parcialmente acetilada, com um grau de acetilação até 60%. Chitosan used for the detoxification of the mentioned cereal flours, including wheat (Triticum spp.) And gluten, may have a molecular weight ranging from 2 glucosamine units to over 1 million glucosamine units. Other amino sugars may also be used for this process. The chitosan used for the detoxification of the mentioned cereal flours, including wheat (Triticum spp.) And gluten may still be naturally partially acetylated, with an acetylation degree of up to 60%.
Ainda a quitosana utilizada para a destoxificação das farinhas dos cereais mencionados, entre os quais o trigo (Triticum spp.) e do glúten pode ser obtida a partir do exoesqueleto de crustáceos como o caranguejo ou o camarão, ou obtido a partir das paredes celulares de fungos como o Agaricus bisporus ou o Aspergillus niger . Also the chitosan used for detoxification of the mentioned cereal flours, including wheat (Triticum spp.) And gluten can be obtained from the exoskeleton of crustaceans such as crab or shrimp, or obtained from the cell walls of fungi such as Agaricus bisporus or Aspergillus niger.
A quitosana é previamente dissolvida numa solução ácida para promover a sua solubilidade, por exemplo utilizando soluções diluídas de ácido acético, tipicamente com uma concentração de 1%. Chitosan is previously dissolved in an acid solution to promote its solubility, for example using dilute acetic acid solutions, typically with a concentration of 1%.
A reação de destoxificação da farinha ou do glúten com a quitosana ocorre a uma temperatura que pode variar entre 4°C e 80°C, preferencialmente a 40°C, durante trinta minutos até setenta e duas horas, preferencialmente vinte e quatro horas . The detoxification reaction of flour or gluten with chitosan occurs at a temperature ranging from 4 ° C to 80 ° C, preferably at 40 ° C, for thirty minutes to seventy-two hours, preferably twenty-four hours.
Depois deste período de destoxificação a farinha ou o glúten são separados da mistura reacional por centrifugação ou filtração, com lavagens sucessivas com água de forma a remover o agente redutor e a quitosana que permaneceu por reagir . After this detoxification period the flour or gluten is separated from the reaction mixture by centrifugation or filtration, with successive washes with water to remove the reducing agent and the unreacted chitosan.
A farinha ou o glúten destoxifiçados e após a sua recuperação são secos por liofilização ou secagem em estufa ou secagem em estufa de vácuo ou atomização. A farinha ou o glúten contendo as estruturas supramoleculares conservam ou melhoram as características organolépticas , viscoelásticas e mecânicas reconhecidas das farinhas de trigo e glúten tratados de forma semelhante (Figura 4), sendo ingredientes passíveis de serem transformados em produtos de panificação e de pastelaria tradicionais, como por exemplo, pão, bolachas, biscoitos, bases de pizza, massas alimentícias e pastas, bolos de natureza diversa, entre outros. Detoxified flour or gluten and after its recovery are dried by lyophilization or oven drying or vacuum drying or spray drying. Flour or gluten containing the supramolecular structures retains or improves the recognized organoleptic, viscoelastic and mechanical characteristics of similarly treated wheat and gluten flours (Figure 4) and can be transformed into traditional bakery and pastry products, such as bread, cookies, biscuits, pizza bases, pasta and pasta, cakes of a different nature, among others.
Para a determinação da extensibilidade e resistência à extensão da farinha contendo estruturas supramoleculares e a sua comparação com a farinha controlo, foi utilizado o micro-extensógrafo de Kieffer (81) . Em síntese, as massas foram obtidas por mistura de água calculada de acordo com o procedimento AACC 54-40.02 (82), foram deixadas a repousar 20 min a 30°C em condições de atmosfera saturada com água. Após este período as massas foram prensadas num molde de teflon pré-aquecido a 30°C e deixado a repousar durante mais 40 min a 30°C numa atmosfera saturada com água. O molde de teflon e o sistema de medição para a massa foram o SMS/Kieffer Dough and Glúten Extensibility Rig com o texturómetro TA-XT2 da Stable Micro Systems. For the determination of the extensibility and extension resistance of flour containing supramolecular structures and its comparison with control flour, the Kieffer micro-extensograph (81) was used. In short, the masses were obtained by mixing water calculated according to AACC procedure 54-40.02 (82), and allowed to stand 20 min at 30 ° C under water saturated atmosphere conditions. After this time the masses were pressed in a preheated Teflon mold at 30 ° C and allowed to stand for a further 40 min at 30 ° C in a water saturated atmosphere. The teflon mold and mass measuring system were the SMS / Kieffer Dough and Gluten Extensibility Rig with the Stable Micro Systems TA-XT2 texturometer.
Resumindo, através da utilização da quitosana na presença de um agente redutor (Figura 5), é possível alterar as propriedades alergénicas das proteínas do glúten, eliminando a toxicidade em mais de 65% dos epítopos reativos na doença celíaca, sem perda das características organolépticas , viscoelásticas e mecânicas reconhecidas das farinhas de trigo e glúten, sendo ingredientes passíveis de serem transformados em produtos de panificação e de pastelaria tradicionais, como por exemplo, pão, bolachas, biscoitos, bases de pizza, massas alimentícias e pastas, bolos de natureza diversa, entre outros, constituindo a farinha e o glúten destoxifiçados um produto único e diferente de todos os produtos descritos ou existentes no mercado . In summary, by using chitosan in the presence of a reducing agent (Figure 5), it is possible to alter the allergenic properties of gluten proteins, eliminating toxicity in more than 65% of reactive epitopes in celiac disease without loss of organoleptic characteristics, viscoelastic and mechanical components of wheat and gluten flours and can be made into bakery traditional pastries such as bread, crackers, biscuits, pizza crusts, pasta and pasta, cakes of a different nature, among others, the detoxified flour and gluten being a unique and different product from all products described or existing in market .
Exemplos de aplicação Application Examples
Exemplo 1 Example 1
Para a destoxificação da farinha de trigo (Triticum spp . ) dissolveram-se inicialmente 437 mg de quitosana obtida do exoesqueleto do caranguejo com um grau de desacetilação de 66% e um peso molecular de 580 kDa numa solução de ácido acético a 0.05 mol/L. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (6,14 g/L) . A mistura é mantida a 40°C durante vinte e quatro horas. Depois deste período de destoxificação a farinha é dialisada e seca por liofilização .  For the detoxification of wheat flour (Triticum spp.) 437 mg of chitosan obtained from the crab exoskeleton with a 66% deacetylation degree and a molecular weight of 580 kDa were initially dissolved in a 0.05 mol / L acetic acid solution. . After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the flour is dialyzed and dried by lyophilization.
Exemplo 2 Example 2
Para a destoxificação do glúten isolado a partir da farinha de trigo (Triticum spp.) dissolveram-se inicialmente 437 mg de quitosana obtida do exoesqueleto do caranguejo com um grau de desacetilação de 66% e um peso molecular de 580 kDa numa solução de ácido acético a 0,05 mol/L. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . O glúten (20 g/L) é disperso na solução anterior por agitação, seguida da adição de glutationa (6,14 g/L) . A mistura é mantida a 40°C durante vinte e quatro horas. Depois deste período de destoxificação o glúten é dialisado e seco por liofilização . For detoxification of gluten isolated from wheat flour (Triticum spp.), 437 mg of chitosan obtained from the crab exoskeleton with a 66% deacetylation degree and a molecular weight of 580 kDa were initially dissolved in an acetic acid solution. at 0.05 mol / l. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. THE Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the gluten is dialyzed and freeze dried.
Exemplo 3 Example 3
Para a destoxificação da farinha de trigo (Triticum spp . ) dissolveram-se inicialmente lg de quitosana obtida da parede celular do Agaricus bisporus com um grau de desacetilação de 78% e um peso molecular de 60-120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 5,0 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (3,07 g/L) . A mistura é mantida a 30°C durante quarenta e oito horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por filtração, lavada sucessivamente com água e seca em estufa de vácuo.  For detoxification of wheat flour (Triticum spp.) 1g of chitosan obtained from the cell wall of Agaricus bisporus was initially dissolved with a deacetylation degree of 78% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. %. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 5.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
Exemplo 4 Example 4
Para a destoxificação do glúten isolado a partir da farinha de trigo {Triticum spp.) dissolveram-se inicialmente 1 g de quitosana obtida da parede celular do Agaricus bisporus com um grau de desacetilação de 78% e um peso molecular de 60- 120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 7,5 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . O glúten (20 g/L) é disperso na solução anterior por agitação, seguida da adição de glutationa (6,14 g/L) . A mistura é mantida a 50°C durante doze horas. Depois deste período de destoxificação o glúten é separado da mistura reacional por centrifugação, lavado sucessivamente com água e seco em estufa de vácuo. For detoxification of gluten isolated from wheat flour (Triticum spp.), 1 g of chitosan obtained from the cell wall of Agaricus bisporus was initially dissolved with a degree of deacetylation of 78% and a molecular weight of 60-120 kDa. 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 7.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). THE The mixture is kept at 50 ° C for twelve hours. After this detoxification period the gluten is separated from the reaction mixture by centrifugation, washed successively with water and dried in a vacuum oven.
Exemplo 5 Example 5
Para a destoxificação da farinha de trigo (Triticum spp . ) dissolveram-se inicialmente lg de quitosana obtida da parede celular do Aspergillus niger com um grau de desacetilação de 83% e um peso molecular de 60-120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,5 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (6,14 g/L) . A mistura é mantida a 40 °C durante vinte e quatro horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por centrifugação, lavada sucessivamente com água e seca por liofilização .  For detoxification of wheat flour (Triticum spp.), 1 g of chitosan obtained from the Aspergillus niger cell wall was initially dissolved with a deacetylation degree of 83% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. %. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the flour is separated from the reaction mixture by centrifugation, washed successively with water and dried by lyophilization.
Exemplo 6 Example 6
Para a destoxificação do glúten isolado a partir da farinha de trigo (Triticum spp.) dissolveram-se inicialmente 1 g de quitosana obtida da parede celular do Aspergillus niger com um grau de desacetilação de 83% e um peso molecular de 60- 120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,5 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . O glúten (20 g/L) é disperso na solução anterior por agitação, seguida da adição de glutationa (6,14 g/L) . A mistura é mantida a 40°C durante vinte e quatro horas. Depois deste período de destoxificação o glúten é separado da mistura reacional por centrifugação, lavado sucessivamente com água e seco por liofilização . For detoxification of gluten isolated from wheat flour (Triticum spp.), 1 g of chitosan obtained from the Aspergillus niger cell wall was initially dissolved with a deacetylation degree of 83% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period the gluten is separated from the reaction mixture by centrifugation, washed successively with water and dried by lyophilization.
Exemplo 7 Example 7
Para a destoxificação da farinha de trigo (Triticum spp . ) dissolveram-se inicialmente lg de quitosana obtida do exoesqueleto do caranguejo com um grau de desacetilação de 80% e um peso molecular de 900 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,5 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256, 8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (10 g/L) e dez unidades de biocatalizador por grama de proteína. A mistura é mantida a 40°C durante vinte e quatro horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por centrifugação, lavada sucessivamente com água e seca por liofilização .  For detoxification of wheat flour (Triticum spp.) Initially 1g of chitosan obtained from the crab exoskeleton with a degree of 80% deacetylation and a molecular weight of 900 kDa was dissolved in a 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (10 g / l) and ten biocatalyst units per gram of protein. The mixture is kept at 40 ° C for 24 hours. After this detoxification period the flour is separated from the reaction mixture by centrifugation, washed successively with water and dried by lyophilization.
Exemplo 8 Example 8
Para a destoxificação do glúten isolado a partir da farinha de trigo (Triticum spp.) dissolveram-se inicialmente 1 g de quitosana obtida do exoesqueleto do caranguejo com um grau de desacetilação de 80% e um peso molecular de 900 kDa. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,5 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . O glúten (20 g/L) é disperso na solução anterior por agitação, seguida da adição de glutationa (10 g/L) . A mistura é mantida a 40°C durante vinte e quatro horas. Depois deste período de destoxificação o glúten é separado da mistura reacional por centrifugação, lavado sucessivamente com água e seco por liofilização . For detoxification of gluten isolated from wheat flour (Triticum spp.), 1 g of chitosan obtained from the crab exoskeleton with a degree of deacetylation of 80% and a molecular weight of 900 kDa was initially dissolved. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. Gluten (20 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (10 g / l). The mixture is kept at 40 ° C for 24 hours. After this detoxification period gluten is separated the reaction mixture by centrifugation, washed successively with water and dried by lyophilization.
Exemplo 9 Example 9
Para a destoxificação da farinha de cevada (Hordeum spp . ) dissolveram-se inicialmente lg de quitosana obtida do exoesqueleto do caranguejo com um grau de desacetilação de 66% e um peso molecular de 580 kDa numa solução de ácido acético a 0,05 mol/L. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (3,07 g/L) . A mistura é mantida a 30°C durante quarenta e oito horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por filtração, lavada sucessivamente com água e seca em estufa de vácuo.  For detoxification of barley flour (Hordeum spp.), 1 g of chitosan obtained from the crab exoskeleton was initially dissolved with a 66% deacetylation degree and a molecular weight of 580 kDa in a 0.05 mol / acetic acid solution. L. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
Exemplo 10 Example 10
Para a destoxificação da farinha de centeio (Secale spp.) dissolveram-se inicialmente lg de quitosana obtida das paredes celulares do Agaricus bisporus com um grau de desacetilação de 78% e um peso molecular de 60-120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,0 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (6,14 g/L) . A mistura é mantida a 40°C durante quarenta e oito horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por filtração, lavada sucessivamente com água e seca em estufa de vácuo. For detoxification of rye flour (Secale spp.) 1g of chitosan obtained from the cell walls of Agaricus bisporus was initially dissolved with a deacetylation degree of 78% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. %. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (6.14 g / l). The mixture is kept at 40 ° C for forty eight hours. After this detoxification period the flour is separated from the mixture. reaction mixture, washed successively with water and dried in a vacuum oven.
Exemplo 11 Example 11
Para a destoxificação da farinha de triticale (x Triticosecale) dissolveram-se inicialmente lg de quitosana obtida das paredes celulares do Agaricus bisporus com um grau de desacetilação de 78% e um peso molecular de 60-120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 5,0 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (3,07 g/L) . A mistura é mantida a 30°C durante quarenta e oito horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por filtração, lavada sucessivamente com água e seca em estufa de vácuo.  For detoxification of triticale flour (x Triticosecale) 1g of chitosan obtained from the cell walls of Agaricus bisporus was initially dissolved with a deacetylation degree of 78% and a molecular weight of 60-120 kDa in a 1% acetic acid solution. . After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 5.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
Exemplo 12 Example 12
Para a destoxificação da farinha de aveia (Avena spp . ) dissolveram-se inicialmente lg de quitosana obtida do exoesqueleto do caranguejo com um grau de desacetilação de 98% e um peso molecular de 220-300 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,5 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256, 8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (3,07 g/L) . A mistura é mantida a 35°C durante vinte e quatro horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por filtração, lavada sucessivamente com água e seca em estufa de vácuo. For detoxification of oatmeal (Avena spp.) Initially 1g of chitosan obtained from the crab exoskeleton with a 98% deacetylation degree and a molecular weight of 220-300 kDa was dissolved in a 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.5 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 35 ° C for 24 hours. After this detoxification period the flour is separated from the reaction mixture. by filtration, washed successively with water and dried in a vacuum oven.
Exemplo 13 Example 13
Para a destoxificação do malte produzido a partir da cevada dissolveram-se inicialmente lg de quitosana obtida das paredes celulares do Agaricus bisporus com um grau de desacetilação de 78% e um peso molecular de 60-120 kDa numa solução de ácido acético a 1%. Após agitação e completa dissolução da quitosana, o pH da solução é ajustado e tamponizado a pH 6,0 com uma solução tampão de fosfato de sódio a 0,5 mol/L e o volume ajustado a 50 mL . A farinha (256,8 g/L) é dispersa na solução anterior por agitação, seguida da adição de glutationa (3,07 g/L) . A mistura é mantida a 30°C durante quarenta e oito horas. Depois deste período de destoxificação a farinha é separada da mistura reacional por filtração, lavada sucessivamente com água e seca em estufa de vácuo.  For detoxification of malt produced from barley, 1g of chitosan obtained from the cell walls of Agaricus bisporus was initially dissolved with a 78% deacetylation degree and a molecular weight of 60-120 kDa in a 1% acetic acid solution. After stirring and complete dissolution of the chitosan, the pH of the solution is adjusted and buffered to pH 6.0 with a 0.5 mol / L sodium phosphate buffer solution and the volume adjusted to 50 mL. The flour (256.8 g / l) is dispersed in the above solution by stirring, followed by the addition of glutathione (3.07 g / l). The mixture is kept at 30 ° C for forty eight hours. After this detoxification period the flour is separated from the reaction mixture by filtration, washed successively with water and dried in a vacuum oven.
A presente descrição não é, naturalmente, de modo algum restrita às realizações apresentadas neste documento e uma pessoa com conhecimentos médios da área poderá prever muitas possibilidades de modificação da mesma sem se afastar da ideia geral, tal como definido nas reivindicações. As realizações preferenciais acima descritas são obviamente combináveis entre si. As seguintes reivindicações definem adicionalmente realizações preferenciais . The present description is, of course, by no means restricted to the embodiments set forth herein and a person of ordinary skill in the art may foresee many possibilities for modification thereof without departing from the general idea as defined in the claims. The preferred embodiments described above are obviously combinable with each other. The following claims further define preferred embodiments.
Bibliografia Antunes H, et al . (2006) Primeira determinação de prevalência de doença celíaca numa população portuguesa. Acta Med. Port . 19:115-120. Bibliography Antunes H, et al. (2006) First determination of celiac disease prevalence in a Portuguese population. Minutes Port. 19: 115-120.
van Heel DA & West J (2006) Recent advances in coeliac disease. Gut 55 ( 7 ) : 1037-1046. van Heel DA & West J (2006) Recent advances in coeliac disease. Gut 55 (7): 1037-1046.
Pengiran Tengah DSNA, Wills AJ, & Holmes GKT (2002) Neurological complications of coeliac disease. Postgraduate Medicai Journal 78 ( 921 ) : 393-398. Pengiran Tengah DSNA, AJ Wills, & Holmes GKT (2002) Neurological complications of celiac disease. Postgraduate Medical Journal 78 (921): 393-398.
Collin P, Kaukinen K, Vãlimãki M, & Salmi J (2002) Endocrinological Disorders and Celiac Disease. Endocrine Reviews 23 ( 4 ) : 464-483. Collin P, Kaukinen K, Vanlimki M, & Salmi J (2002) Endocrinological Disorders and Celiac Disease. Endocrine Reviews 23 (4): 464-483.
Kingham JG & Parker DR (1998) The association between primary biliary cirrhosis and coeliac disease: a study of relative prevalences. Gut 42(1) :120-122. Kingham JG & Parker DR (1998) The association between primary biliary cirrhosis and celiac disease: a study of relative prevalences. Gut 42 (1): 120-122.
Kupper C (2005) Dietary guidelines and implementation for celiac disease. Gastroenterology 128(4 Suppl 1) : S121-127. Kupper C (2005) Dietary guidelines and implementation for celiac disease. Gastroenterology 128 (4 Suppl 1): S121-127.
Ribeiro M, Poeta P, & Igrejas G (2014) The Genetic Variability of Wheat Can Ensure Safe Products for Celiac Disease Patients? International Journal of Celiac Disease 2(1) :24-26. Ribeiro M, Poet P, & Churches G (2014) The Genetic Variability of Wheat Can Ensure Safe Products for Celiac Disease Patients? International Journal of Celiac Disease 2 (1): 24-26.
FAOSTAT (2015) (http://faostat.fao.org/). FAOSTAT (2015) (http://faostat.fao.org/).
Payne PI, Holt LM, Jackson EA, Law CN, & Damania AB (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil. Trans. R. Soe. B 304 ( 1120 ): 359-371. Payne PI, Holt LM, Jackson EA, Law CN, & Damania AB (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil Trans R. Soc. B 304 (1120): 359-371.
MacRitchie F (1992) Physicochemical properties of wheat proteins in relation to functionality . Adv. Food Nutr. Res . , ed John EK (Academic Press), Vol 36, pp 1- 87. MacRitchie F (1992) Physicochemical properties of wheat proteins in relation to functionality. Adv. Food Nutr. Res. , ed John EK (Academic Press), Vol 36, pp 1- 87.
Di Sabatino A, et al . (2012) The function of tissue transglutaminase in celiac disease. Autoimmun. Rev. 11(10) : 746-753. Schuppan D, Junker Y, & Barisani D (2009) Celiac Disease: From Pathogenesis to Novel Therapies. Gastroenterology 137(6) .1912-1933. Di Sabatino A, et al. (2012) The function of tissue transglutaminase in celiac disease. Autoimmune Rev. 11 (10): 746-753. Schuppan D, Junker Y, & Barisani D (2009) Celiac Disease: From Pathogenesis to Novel Therapies. Gastroenterology 137 (6) .1912-1933.
Arent z-Hansen EH, McAdam SN, Molberg O, Kristiansen C, & Sollid LM (2000) Production of a panei of recombinant gliadins for the characterisation of T cell reactivity in coeliac disease. Gut 46(1) :46-51. Arentz-Hansen H, et al . (2000) The Intestinal T Cell Response to -Gliadin in Adult Celiac Disease Is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase . J. Exp. Med. 191 ( 4 ) : 603-612. Arentz-Hansen H, et al . (2002) Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123(3) :803- 809. Arentz-Hansen EH, McAdam SN, Molberg O, Kristiansen C, & Sollid LM (2000) Production of a panel of recombinant gliadins for the characterization of T cell reactivity in celiac disease. Gut 46 (1): 46-51. Arentz-Hansen H, et al. (2000) The Intestinal T Cell Response to -Gliadin in Adult Celiac Disease is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase. J. Exp. Med. 191 (4): 603-612. Arentz-Hansen H, et al. (2002) Celiac lesion T cells recognize epitopes that cluster in regions of gliadin rich in proline residues. Gastroenterology 123 (3): 803-809.
Anderson RP, Degano P, Godkin AJ, Jewell DP, & Hill AVS (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 6 (3) :337-342. Anderson RP, Degano P, AJ Godkin, Jewell DP, & AVS Hill (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 6 (3): 337-342.
Maiuri L, et al. (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362(9377) :30-37. Maiuri L, et al. (2003) Association between innate response to gliadin and activation of pathogenic T cells in celiac disease. Lancet 362 (9377): 30-37.
Camarca A, et al . (2009) Intestinal T cell responses to glúten peptides are largely heterogeneous : implications for a peptide-based therapy in celiac disease. J Immunol 182 ( 7) : 4158-4166. Camarca A, et al. (2009) Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. J Immunol 182 (7): 4158-4166.
de Ritis G, et al . (1988) In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94(1) : 41-49. from Ritis G, et al. (1988) In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94 (1): 41-49.
Marsh MN (1992) Glúten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of glúten sensitivity ('celiac sprue ' ) . Gastroenterology 102 (1) :330-354. Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity ('celiac sprue'). Gastroenterology 102 (1): 330-354.
Wieser H (1996) Relation between gliadin structure and coeliac toxicity. Acta Paediatr 85(s412) :3-9. Wieser H (1996) Relationship between gliadin structure and coeliac toxicity. Acta Paediatr 85 (s412): 3-9.
Maruyama N, et al . (1998) Identification of major wheat allergens by means of the Escherichia coli expression system. European journal of biochemistry / FEBS 255(3) : 739-745. Maruyama N, et al. (1998) Identification of major wheat allergens by means of the Escherichia coli expression system. European journal of biochemistry / FEBS 255 (3): 739-745.
Shan L, et al . (2005) Identification and analysis of multivalent proteolytically resistant peptides from glúten: implications for celiac sprue. J. Proteome Res. 4(5) : 1732-1741. Shan L, et al. (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J. Proteome Res. 4 (5): 1732-1741.
Pyle GG, et al . (2005) Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue . Clin Gastroenterol Hepatol 3 (7) :687-694. Pyle GG, et al. (2005) Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue. Clin Gastroenterol Hepatol 3 (7): 687-694.
Bethune MT & Khosla C (2012) Oral enzyme therapy for celiac sprue. Methods in enzymology 502:241-271. Bethune MT & Khosla C (2012) Oral enzyme therapy for celiac sprue. Methods in enzymology 502: 241-271.
Shan L , Bethune M, Khosla C, & Gass J (2013). Shan L, Bethune M, Khosla C, & Gass J (2013).
Kumar P (2013) . Kumar P (2013).
Hausch F, Gray G, Shan L , & Khosla C (2007). Hausch F, Gray G, Shan L, & Khosla C (2007).
Shan L, et al . (2008) . Shan L, et al. (2008).
Marti T, Oyvind M, & Sollid LM (2009). Marti T, Oyvind M, & Sollid LM (2009).
Shan L , Marti T, Sollid LM, Gray GM, & Khosla C (2004) Comparative biochemical analysis of three bacterial prolyl endopeptidases : implications for coeliac sprue. Biochem J 383(Pt 2) :311-318. Shan L, Marti T, Sollid LM, Gray GM, & Khosla C (2004) Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 383 (Pt 2): 311-318.
Stepniak D, et al . (2006) Highly efficient gluten degradation with a newly identified prolyl endoprotease : implications for celiac disease. American journal of physiology . Gastrointestinal and liver physiology 291(4) :G621-629. Gass J, Vora H, Hofmann AF , Gray GM, & Khosla C (2007) Enhancement of dietary protein digestion by conjugated bile acids . Gastroenterology 133 ( 1 ): 16-23. Stepniak D, et al. (2006) Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. American journal of physiology. Gastrointestinal and liver physiology 291 (4): G621-629. Gass J, Vora H, Hofmann AF, Gray GM, & Khosla C (2007) Enhancement of dietary protein digestion by conjugated bile acids. Gastroenterology 133 (1): 16-23.
Pinier M, et al. (2009) Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 136 ( 1 ): 288-298. Pinier M, et al. (2009) Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 136 (1): 288-298.
Kelly CP, et al . (2009) Safety, Tolerability and Effects On Intestinal Permeability of Larazotide Acetate in Celiac Disease: Results of a Phase IIB 6- Week Gluten-Challenge Clinicai Trial. Gastroenterology 136 (5) :A-474. Kelly CP, et al. (2009) Safety, Tolerability and Effects On Intestinal Permeability of Larazotide Acetate in Celiac Disease: Results of a Phase IIB 6- Week Gluten-Challenge Clinical Trial. Gastroenterology 136 (5): A-474.
Siegel M & Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacology & therapeutics 115(2) : 232-245. Siegel M, Xia J, & Khosla C (2007) Structure-based design of alpha-amido aldehyde containing glúten peptide analogues as modulators of HLA-DQ2 and transglutaminase 2. Bioorganic & medicinal chemistry 15(18) .6253-6261. Siegel M & Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacology & therapeutics 115 (2): 232-245. Siegel M, Xia J, & Khosla C (2007) Structure-based design of alpha-starch aldehyde containing gluten peptide analogues to modulators of HLA-DQ2 and transglutaminase 2. Bioorganic & medicinal chemistry 15 (18) .6253-6261.
Xia J, Siegel M, Bergseng E, Sollid LM, & Khosla C (2006) Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33- residue peptide from alpha2-gliadin . Journal of the American Chemical Society 128 ( 6 ) : 1859-1867. Xia J, Siegel M, Bergseng E, Sollid LM, & Khosla C (2006) Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin. Journal of the American Chemical Society 128 (6): 1859-1867.
Ozaki S, et al. (2010) Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorganic & medicinal chemistry letters 20 ( 3 ) : 1141-1144. Ozaki S, et al. (2010) Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorganic & medicinal chemistry letters 20 (3): 1141-1144.
Ozaki S, et al. (2011) Potent transglutaminase inhibitors, dithio beta-aminoethyl ketones. Bioorganic & medicinal chemistry letters 21(1) :377-379. Ozaki S, et al. (2011) Potent transglutaminase inhibitors, dithio beta-aminoethyl ketones. Bioorganic & medicinal chemistry letters 21 (1): 377-379.
Khosla C & Choi K (2007). Khosla C & Choi K (2007).
Keech CL, Dromey J, Chen Z, Anderson RP, & McCluskey J (2009) Immune Tolerance Induced By Peptide Immunotherapy in An HLA Dq2-Dependent Mouse Model of Glúten Immunity. Gastroenterology 136(5) :A-57. Keech CL, Dromey J, Chen Z, Anderson RP, & McCluskey J (2009) Immune Tolerance Induced By Peptide Immunotherapy in An HLA Dq2-Dependent Mouse Model of Gluten Immunity. Gastroenterology 136 (5): A-57.
Anderson RP, Stewart JA, Dromey JA, & Tye-Din JA (2011) . Anderson RP, Stewart JA, Dromey JA, & Tye-Din JA (2011).
Anderson RP, Hill AVS, & Jewell DP (2006). Anderson RP, Hill AVS, & Jewell DP (2006).
Zhao J, et al . (2007) R-spondinl, a novel intestinotrophic mitogen, ameliorates experimental colitis in mice. Gastroenterology 132(4) :1331-1343. Tang F, et al . (2009) Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J Exp Med 206 ( 3 ) : 707-719. Zhao J, et al. (2007) R-spondinl, novel novel intestinotrophic mitogen, ameliorates experimental colitis in mice. Gastroenterology 132 (4): 1331-1343. Tang F, et al. (2009) Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J Exp Med 206 (3): 707-719.
Kjellev S, et al . (2007) Inhibition of NKG2D receptor function by antibody therapy attenuates transfer- induced colitis in SCID mice. European journal of immunology 37 ( 5) : 1397-1406. Kjellev S, et al. (2007) Inhibition of NKG2D receptor function by antibody therapy attenuates transfer-induced colitis in SCID mice. European journal of immunology 37 (5): 1397-1406.
Bridon DP, et al . (2006). Bridon DP, et al. (2006).
Drucker DJ (1998) . Drucker DJ (1998).
Fox BS (2007) . Fox BS (2007).
Tye-Din JA, et al . (2010) Comprehensive, quantitative mapping of T cell epitopes in glúten in celiac disease. Sei . Transi. Med. 2 ( 41 ) : 41ra51. Tye-Din JA, et al. (2010) Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Know . Transi Med. 2 (41): 41ra51.
Girsh LS (2001) . Girsh LS (2001).
Gil-Humanes J, Piston F, Tollefsen S, Sollid LM, & Barro F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference . Proceedings of the National Academy of Sciences of the United States of America 107(39) : 17023-17028. Gil-Humans J, Piston F, Tollefsen S, Sollid LM, & Clay F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Sciences of the United States of America 107 (39): 17023-17028.
Gil-Humanes J, Piston F, Gimenez MJ, Martin A, & Barro F (2012) The introgression of RNAi silencing of gamma- gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough . PloS one 7(9) :e45937. 55. Laursen L (2016) Will Europe toast GM wheat for glúten sufferers? Nature biotechnology 34 ( 4) : 369-371. Gil-Humanes J, Piston F, Gimenez MJ, Martin A, & Barro F (2012) The introgression of RNAi silencing of gamma gliadins in commercial lines of bread changes in the mixing and technological properties of the dough. PloS one 7 (9): e45937. 55. Laursen L (2016) Will Europe toast GM wheat for gluten sufferers? Nature biotechnology 34 (4): 369-371.
56. Watanabe M, Suzuki T, Ikezawa Z, & Arai S (1994) Controlled Enzymatic Treatment of Wheat Proteins for Production of Hypoallergenic Flour. Biosci. Biotech. Bioch. 58(2) :388-390.  56. Watanabe M, Suzuki T, Ikezawa Z, & Arai S (1994) Controlled Enzymatic Treatment of Wheat Proteins for Production of Hypoallergenic Flour. Biosci Biotech Bioch. 58 (2): 388-390.
57. Sjoestroem H & Noren 0 (1999).  57. Sjoestroem H & Noren 0 (1999).
58. Johansen NL , Zundel M, & Dõrwald FZ (2007).  58. Johansen NL, Zundel M, & Dorwald FZ (2007).
59. Johansen NL , Zundel M, & Dõrwald FZ (2009).  59. Johansen NL, Zundel M, & Dorwald FZ (2009).
60. Costes C & Frouin A (1991).  60. Costes C & Frouin A (1991).
61. Yamazaki K & Soeda T (2002).  61. Yamazaki K & Soeda T (2002).
62. Kuraishi C, Sato K, & Tanaka H (1999).  62. Kuraishi C, Sato K, & Tanaka H (1999).
63. Schuhmann F (2002).  63. Schuhmann F (2002).
64. Mallee L, Franciscus M, & Bronts M (2001).  64. Mallee L, Franciscus M, & Bronts M (2001).
65. Boumans L & Wijngaards G (2001) .  65. Boumans L & Wijngaards G (2001).
66. Yajima M & Katahira R (1995).  66. Yajima M & Katahira R (1995).
67. Gang D (2005) .  67. Gang D (2005).
68. Piemonte W (2004) .  68. Piedmont W (2004).
69. Yamazaki K & Nishimura Υ (2002).  69. Yamazaki K & Nishimura Υ (2002).
70. Gianfrani C, et al . (2007) Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology 133(3) :780- 789.  70. Gianfrani C, et al. (2007) Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology 133 (3): 780-789.
71. Rossi M, Gianfrani C, & Siciliano RA (2008).  71. Rossi M, Gianfrani C, & Sicilian RA (2008).
72. Green PHR & Cellier C (2007) Celiac Disease. New England Journal of Medicine 357 ( 17 ) : 1731-1743.  72. Green PHR & Cellier C (2007) Celiac Disease. New England Journal of Medicine 357 (17): 1731-1743.
73. Mazzarella G, et al . (2012) Reintroduction of glúten following flour transamidation in adult celiac patients: a randomized, controlled clinicai study. Clin. Dev. Immunol . 2012:329150.  73. Mazzarella G, et al. (2012) Reintroduction of gluten following flour transamidation in adult celiac patients: a randomized, controlled clinical study. Clin. Dev. Immunol. 2012: 329150.
74. Mazzeo MF, et al . (2013) Biochemical modifications of gliadins induced by microbial transglutaminase on wheat flour. Biochim. Biophys . Acta 1830(11) :5166- 5174. 74. Mazzeo MF, et al. (2013) Biochemical modifications of gliadins induced by microbial transglutaminase on wheat flour. Biochim. Biophys. Minutes 1830 (11): 5166-5174.
75. Lombardi E, et al . (2013) Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase . J. Leukoc. Biol. 93 ( 4 ) : 479-488.  75. Lombardi E, et al. (2013) Selective inhibition of gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase. J. Leukoc. Biol. 93 (4): 479-488.
76. Elli L, et al . (2012) Immunological effects of transglutaminase-treated gluten in coeliac disease. Hum. Immunol. 73 ( 10 ): 992-997.  76. Elli L, et al. (2012) Immunological effects of transglutaminase-treated gluten in coeliac disease. Hmm. Immunol. 73 (10): 992-997.
77. Ribeiro M, et al. (2015) Efficient chemo-enzymatic gluten detoxification : reducing toxic epitopes for celiac patients improving functional properties. Scientific reports 5:18041.  77. Ribeiro M, et al. (2015) Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties. Scientific reports 5: 18041.
78. Gessendorfer B, Koehler P, & Wieser H (2009) Preparation and characterization of enzymatically hydrolyzed prolamins from wheat, rye, and barley as references for the immunochemical quantitation of partially hydrolyzed gluten. Anal. Bioanal . Chem. 395 (6) : 1721-1728.  78. Gessendorfer B, Koehler P, & Wieser H (2009) Preparation and characterization of enzymatically hydrolyzed prolamins from wheat, rye, and barley as references for the immunochemical quantitation of partially hydrolyzed gluten. Anal. Bioanal. Chem. 395 (6): 1721-1728.
79. Kasarda DD, Woodard KM, & Adalsteins AE (1998) Resolution of High Molecular Weight Glutenin Subunits by a New SDS-PAGE System Incorporating a Neutral pH Buffer. Cereal Chemistry Journal 75(1) : 70-71.  79. Kasarda DD, Woodard KM, & Adalsteins AE (1998) Resolution of High Molecular Weight Glutenin Subunits by a New SDS-PAGE System Incorporating a Neutral pH Buffer. Cereal Chemistry Journal 75 (1): 70-71.
80. van de Wal Y, et al . (1998) Cutting Edge : Selective Deamidation by Tissue Transglutaminase Strongly Enhances Gliadin-Specific T Celi Reactivity. The Journal of Immunology 161(4) : 1585-1588.  80. van de Wal Y, et al. (1998) Cutting Edge: Selective Deamidation by Tissue Transglutaminase Strongly Enhances Gliadin-Specific T Celi Reactivity. The Journal of Immunology 161 (4): 1585-1588.
81. Kieffer R, Wieser H, Henderson MH, & Graveland A (1998) Correlations of the Breadmaking Performance of Wheat Flour with Rheological Measurements on a Micro- scale. J. Cereal Sei. 27(l):53-60.  81. Kieffer R, Wieser H, Henderson MH, & Graveland A (1998) Correlations of the Breadmaking Performance of Wheat Flour with Rheological Measurements on a Microscale. J. Cereal I know. 27 (1): 53-60.
82. AACC (Final approval November 8, 1995; Reapproval November 3, 1999.) Approved Methods of Analysis, llth Ed. Method 54-40.02. Mixograph Method. (St. Paul, MN U. S . A. ) . 82. AACC (Final approval November 8, 1995; Reapproval November 3, 1999.) Approved Methods of Analysis, 11th Ed Method 54-40.02. Mixograph Method. (St. Paul, MN U.S.A.).
AACC (1983) AACCI Method 10-10.03. Optimized Straight Dough Bread-Making Method.  AACC (1983) AACCI Method 10-10.03. Optimized Straight Dough Bread-Making Method.

Claims

REIVINDICAÇÕES
1. Um método para destoxificar eficientemente produtos cerealíferos, produtos germinados derivados dos mesmos, e frações proteicas derivadas dos mesmos, para os doentes celíacos através da associação supramolecular entre as proteínas potencialmente tóxicas e polissacarídeos aminados. 1. A method for efficiently detoxifying cereal products, germinated products derived therefrom, and protein fractions derived therefrom, for celiac patients through the supramolecular association between potentially toxic proteins and amino polysaccharides.
2. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste na farinha trigo (Triticum spp . ) . A method according to claim 1 wherein the cereal product is wheat flour (Triticum spp.).
3. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste na farinha de cevada (Hordeum spp.) . A method according to claim 1 wherein the cereal product is barley flour (Hordeum spp.).
4. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste na farinha de centeio ( Secale spp . ) . A method according to claim 1 wherein the cereal product is rye flour (Secale spp.).
5. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste na farinha de triticale (x Triticosecale) . A method according to claim 1 wherein the cereal product is triticale flour (x Triticosecale).
6. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste no produto germinado de trigo (Triticum spp.) . A method according to claim 1 wherein the cereal product is the wheat germinated product (Triticum spp.).
7. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste no produto germinado de cevada (Hordeum spp.) . A method according to claim 1 wherein the cereal product is the germinated barley product (Hordeum spp.).
8. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste no produto germinado de centeio (Secale spp . ) . A method according to claim 1 wherein the cereal product is the germinated rye product (Secale spp.).
9. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste no produto germinado de triticale (x Triticosecale) . A method according to claim 1 wherein the cereal product is the germinated triticale (x Triticosecale) product.
10. Um método de acordo com a reivindicação 1 em que o produto cerealífero consiste no glúten isolado a partir do trigo (Triticum spp.) . A method according to claim 1 wherein the cereal product is gluten isolated from wheat (Triticum spp.).
11. Farinhas de cereais, produtos germinados de cereais e glúten que de acordo com as reivindicações anteriores, apresentam uma concentração de epítopos tóxicos para os doentes celíacos inferior quando comparados com as farinhas, produtos germinados e glúten não modificados ou originais. Cereal flour, germinated cereal and gluten products which according to the preceding claims have a lower concentration of toxic epitopes for celiac patients as compared to unmodified or original flour, germinated products and gluten.
12. Processo de obtenção de farinhas de cereais, produtos germinados e glúten descritos nas reivindicações 1-11, caracterizado por compreender os seguintes passos: Process for obtaining cereal flour, germinated products and gluten as described in claims 1-11, characterized in that it comprises the following steps:
- dispersão dos polissacarídeos aminados em ácido acético (0.05 mol/L) numa razão proteína : polissacarídeo que pode variar entre 0,5:1 a 10:1 (p/p), preferencialmente 1,9:1 seguido do ajuste do pH entre 4 a 9 utilizando um sistema tampão, preferencialmente a 6 ;  - dispersion of amino polysaccharides in acetic acid (0.05 mol / L) in a protein: polysaccharide ratio which may range from 0.5: 1 to 10: 1 (w / w), preferably 1.9: 1 followed by pH adjustment between 4 to 9 using a buffer system, preferably 6;
- dispersão das farinhas de cereais, produtos germinados ou glúten na solução tamponizada contendo os polissacarídeos aminados numa razão proteína : polissacarídeos que varia entre 0,5:1 a 10:1 (g/g), preferencialmente 1,9:1; - adição de um agente reductor numa concentração final de 0,1 a 500 mM, preferencialmente 20 mM; - Dispersing cereal flour, germinated products or gluten in the buffered solution containing the amino polysaccharides in a protein: polysaccharide ratio ranging from 0.5: 1 to 10: 1 (g / g), preferably 1.9: 1; adding a reducing agent at a final concentration of 0.1 to 500 mM, preferably 20 mM;
- incubação da mistura a uma temperatura entre 4 a 80 °C, preferencialmente 40°C;  incubating the mixture at a temperature between 4 to 80 ° C, preferably 40 ° C;
- incubação com uma duração entre 30 minutos a 72 horas, preferencialmente 24 horas;  - incubation lasting 30 minutes to 72 hours, preferably 24 hours;
- separação da farinha da solução por centrifugação ou filtração, com lavagens com água;  - separating the flour from the solution by centrifugation or filtration with water washes;
- recuperação da farinha e secagem por liofilização, secagem em estufa, secagem em estufa de vácuo, atomização.  - flour recovery and freeze drying, oven drying, vacuum oven drying, atomization.
13. Processo de acordo com a reivindicação anterior, caracterizado por o polissacarideo aminado destoxificante ser a quitosana com um grau de polimerização entre 2 unidades de monossacarideos e até mais de um milhão de unidades de monossacrideos e graus de acetilação dos grupos amina entre 0% e 60%. A process according to the preceding claim, characterized in that the detoxifying amino polysaccharide is chitosan with a degree of polymerization between 2 monosaccharide units and up to one million units of monosaccharides and degree of acetylation of the amino groups between 0% and 60%.
14. Processo de acordo com a reivindicação 13, caracterizado por a quitosana ter origem no exoesqueleto de crustáceos ou das paredes celulares de fungos . Process according to Claim 13, characterized in that the chitosan originates from the crustacean exoskeleton or fungal cell walls.
15. Farinhas de cereais e glúten de acordo com as reivindicações anteriores, caracterizados por serem produtos viscoelasticamente superiores aos produtos não-modifiçados ou originais. Cereal and gluten flours according to the preceding claims, characterized in that they are viscoelastically superior to unmodified or original products.
16. Farinhas de cereais e glúten de acordo com as reivindicações anteriores, caracterizados por serem produtos sensorialmente semelhantes aos produtos clássicos . Cereal and gluten flours according to the preceding claims, characterized in that they are sensory products similar to those of classical products.
17. Processo de acordo com as reivindicações anteriores em que se utiliza um agente redutor anteriormente à modificação das farinhas de cereais, produtos germinados e glúten. A process according to any preceding claim wherein a reducing agent is used prior to modification of cereal flour, germinated products and gluten.
18. Processo de acordo com as reivindicações 12-14, caracterizado por o agente redutor poder ser a glutationa, ditioeritritol (DTE), ditioteitrol (DTT) e tris 2-carboxietil fosfina (TCEP) . Process according to Claims 12-14, characterized in that the reducing agent may be glutathione, dithioerythritol (DTE), dithiothitrol (DTT) and tris 2-carboxyethyl phosphine (TCEP).
19. Alimento ou produto dietético preparado com as farinhas de cereais, produtos germinados dos cereais e glúten destoxifiçados pelos polissacarideos aminados de acordo com as reivindicações anteriores. Food or dietary product prepared with cereal flour, germinated cereal products and gluten detoxified by the amino polysaccharides according to the preceding claims.
PCT/IB2017/054181 2016-07-11 2017-07-11 Preparation of cereal products suitable for celiac patients by the creation of supramolecular structures between proteins and chitosan WO2018011714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT109524 2016-07-11
PT109524A PT109524B (en) 2016-07-11 2016-07-11 DETOXIFICATION PROCESS OF WHEAT FLOUR AND GLUTEN THROUGH THE FORMATION OF SUPRAMOLECULAR STRUCTURES WITH CHITOSAN AND RESPECTIVE WHEAT FLOUR AND GLUTEN FOR CONSUMPTION BY CELIAC PATIENTS

Publications (1)

Publication Number Publication Date
WO2018011714A1 true WO2018011714A1 (en) 2018-01-18

Family

ID=59762003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/054181 WO2018011714A1 (en) 2016-07-11 2017-07-11 Preparation of cereal products suitable for celiac patients by the creation of supramolecular structures between proteins and chitosan

Country Status (2)

Country Link
PT (1) PT109524B (en)
WO (1) WO2018011714A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054450A1 (en) * 2000-09-06 2002-03-28 Guillermo Pasch Alonso Modification of cereal products, such as flour to make them more suitable for a wide range of foods and animal feeds, is by interaction with chitosan
US20100034947A1 (en) * 2005-02-03 2010-02-11 Umberto Cornelli Bakery and pasta products comprising acidified chitosan
BRPI0804406A2 (en) * 2008-10-16 2010-07-13 Padetec - Parque De Desenvolvimento Tecnológico S/c Gluten free bread with 2% chitosan added
EP2327711A1 (en) * 2008-08-07 2011-06-01 Universitat Rovira I Virgili Methods for removing prolamins from wheat that are toxic to those suffering from coeliac disease
WO2017089961A1 (en) * 2015-11-24 2017-06-01 Universidade De Trás-Os-Montes E Alto Douro Process for preparing cereal flours enriched with l-theanine and corresponding products

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20120468A1 (en) * 2012-10-02 2014-04-03 Uni Degli Studi Di Foggia METHOD FOR DETOXIFICATION OF GLUTEN PROTEINS FROM CEREALS GRAIN

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054450A1 (en) * 2000-09-06 2002-03-28 Guillermo Pasch Alonso Modification of cereal products, such as flour to make them more suitable for a wide range of foods and animal feeds, is by interaction with chitosan
US20100034947A1 (en) * 2005-02-03 2010-02-11 Umberto Cornelli Bakery and pasta products comprising acidified chitosan
EP2327711A1 (en) * 2008-08-07 2011-06-01 Universitat Rovira I Virgili Methods for removing prolamins from wheat that are toxic to those suffering from coeliac disease
BRPI0804406A2 (en) * 2008-10-16 2010-07-13 Padetec - Parque De Desenvolvimento Tecnológico S/c Gluten free bread with 2% chitosan added
WO2017089961A1 (en) * 2015-11-24 2017-06-01 Universidade De Trás-Os-Montes E Alto Douro Process for preparing cereal flours enriched with l-theanine and corresponding products

Non-Patent Citations (58)

* Cited by examiner, † Cited by third party
Title
"AACCI Method 10-10.03", 1983, AACC, article "Optimized Straight-Dough Bread-Making Method"
"Approved Methods of Analysis", 3 November 1999, AACC, article "Method 54-40.02. Mixograph Method"
ANDERSON RP; DEGANO P; GODKIN AJ; JEWELL DP; HILL AVS: "In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope", NAT MED, vol. 6, no. 3, 2000, pages 337 - 342, XP000982628, DOI: doi:10.1038/73200
ANTUNES H ET AL.: "Primeira determinagáo de prevaléncia de doenga celíaca numa populagáo portuguesa", ACTA MED. PORT., vol. 19, 2006, pages 115 - 120
ARENTZ-HANSEN EH; MCADAM SN; MOLBERG O; KRISTIANSEN C; SOLLID LM: "Production of a panel of recombinant gliadins for the characterisation of T cell reactivity in coeliac disease", GUT, vol. 46, no. 1, 2000, pages 46 - 51, XP001021337, DOI: doi:10.1136/gut.46.1.46
ARENTZ-HANSEN H ET AL.: "Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues", GASTROENTEROLOGY, vol. 123, no. 3, 2002, pages 803 - 809, XP009024146, DOI: doi:10.1053/gast.2002.35381
ARENTZ-HANSEN H ET AL.: "The Intestinal T Cell Response to a-Gliadin in Adult Celiac Disease Is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase", J. EXP. MED., vol. 191, no. 4, 2000, pages 603 - 612, XP000986723, DOI: doi:10.1084/jem.191.4.603
BETHUNE MT; KHOSLA C: "Oral enzyme therapy for celiac sprue", METHODS IN ENZYMOLOGY, vol. 502, 2012, pages 241 - 271
CAMARCA A ET AL.: "Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease", J IMMUNOL, vol. 182, no. 7, 2009, pages 4158 - 4166, XP055070215, DOI: doi:10.4049/jimmunol.0803181
COLLIN P; KAUKINEN K; VÁLIMÁKI M; SALMI J: "Endocrinological Disorders and Celiac Disease", ENDOCRINE REVIEWS, vol. 23, no. 4, 2002, pages 464 - 483
DE RITIS G ET AL.: "In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease", GASTROENTEROLOGY, vol. 94, no. 1, 1988, pages 41 - 49, XP002072053
DE VINCENZI M ET AL: "Separation of coeliac-active peptides from bread wheat with the aid of methylpyrrolidinone chitosan", CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS, LTD. BARKING, GB, vol. 21, no. 4, 1 January 1993 (1993-01-01), pages 295 - 298, XP024147191, ISSN: 0144-8617, [retrieved on 19930101], DOI: 10.1016/0144-8617(93)90062-9 *
DI SABATINO A ET AL.: "The function of tissue transglutaminase in celiac disease", AUTOIMMUN. REV., vol. 11, no. 10, 2012, pages 746 - 753
ELLI L ET AL.: "Immunological effects of transglutaminase-treated gluten in coeliac disease", HUM. IMMUNOL., vol. 73, no. 10, 2012, pages 992 - 997
GASS J; VORA H; HOFMANN AF; GRAY GM; KHOSLA C: "Enhancement of dietary protein digestion by conjugated bile acids", GASTROENTEROLOGY, vol. 133, no. 1, 2007, pages 16 - 23, XP022135950, DOI: doi:10.1053/j.gastro.2007.04.008
GESSENDORFER B; KOEHLER P; WIESER H: "Preparation and characterization of enzymatically hydrolyzed prolamins from wheat, rye, and barley as references for the immunochemical quantitation of partially hydrolyzed gluten", ANAL. BIOANAL. CHEM., vol. 395, no. 6, 2009, pages 1721 - 1728, XP019756643, DOI: doi:10.1007/s00216-009-3080-6
GIANFRANI C ET AL.: "Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease", GASTROENTEROLOGY, vol. 133, no. 3, 2007, pages 780 - 789, XP022246624, DOI: doi:10.1053/j.gastro.2007.06.023
GIL-HUMANES J; PISTON F; GIMENEZ MJ; MARTIN A; BARRO F: "The introgression of RNAi silencing of gamma-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough", PLOS ONE, vol. 7, no. 9, 2012, pages e45937
GIL-HUMANES J; PISTON F; TOLLEFSEN S; SOLLID LM; BARRO F: "Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 107, no. 39, 2010, pages 17023 - 17028
GREEN PHR; CELLIER C: "Celiac Disease", NEW ENGLAND JOURNAL OF MEDICINE, vol. 357, no. 17, 2007, pages 1731 - 1743
KASARDA DD; WOODARD KM; ADALSTEINS AE: "Resolution of High Molecular Weight Glutenin Subunits by a New SDS-PAGE System Incorporating a Neutral pH Buffer", CEREAL CHEMISTRY JOURNAL, vol. 75, no. 1, 1998, pages 70 - 71, XP008102226, DOI: doi:10.1094/CCHEM.1998.75.1.70
KEECH CL; DROMEY J; CHEN Z; ANDERSON RP; MCCLUSKEY J: "Immune Tolerance Induced By Peptide Immunotherapy in An HLA Dq2-Dependent Mouse Model of Gluten Immunity", GASTROENTEROLOGY, vol. 136, no. 5, 2009, pages A-57, XP026110805, DOI: doi:10.1016/S0016-5085(09)60258-4
KELLY CP ET AL.: "Safety, Tolerability and Effects On Intestinal Permeability of Larazotide Acetate in Celiac Disease: Results of a Phase IIB 6-Week Gluten-Challenge Clinical Trial", GASTROENTEROLOGY, vol. 136, no. 5, 2009, pages A-474, XP026112729, DOI: doi:10.1016/S0016-5085(09)62182-X
KIEFFER R; WIESER H; HENDERSON MH; GRAVELAND A: "Correlations of the Breadmaking Performance of Wheat Flour with Rheological Measurements on a Micro-scale", J. CEREAL SCI., vol. 27, no. 1, 1998, pages 53 - 60
KINGHAM JG; PARKER DR: "The association between primary biliary cirrhosis and coeliac disease: a study of relative prevalences", GUT, vol. 42, no. 1, 1998, pages 120 - 122
KJELLEV S ET AL.: "Inhibition of NKG2D receptor function by antibody therapy attenuates transfer-induced colitis in SCID mice", EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 37, no. 5, 2007, pages 1397 - 1406
KUPPER C: "Dietary guidelines and implementation for celiac disease", GASTROENTEROLOGY, vol. 128, no. 1, 2005, pages 121 - 127
LAURSEN L: "Will Europe toast GM wheat for gluten sufferers?", NATURE BIOTECHNOLOGY, vol. 34, no. 4, 2016, pages 369 - 371
LOMBARDI E ET AL.: "Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase", J. LEUKOC. BIOL., vol. 93, no. 4, 2013, pages 479 - 488
MACRITCHIE F: "Adv. Food Nutr. Res.", vol. 36, 1992, ACADEMIC PRESS, article "Physicochemical properties of wheat proteins in relation to functionality", pages: 1 - 87
MAIURI L ET AL.: "Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease", LANCET, vol. 362, no. 9377, 2003, pages 30 - 37, XP004783535, DOI: doi:10.1016/S0140-6736(03)13803-2
MARSH MN: "Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity ('celiac sprue", GASTROENTEROLOGY, vol. 102, no. 1, 1992, pages 330 - 354
MARUYAMA N ET AL.: "Identification of major wheat allergens by means of the Escherichia coli expression system", EUROPEAN JOURNAL OF BIOCHEMISTRY / FEBS, vol. 255, no. 3, 1998, pages 739 - 745, XP002188677, DOI: doi:10.1046/j.1432-1327.1998.2550739.x
MAZZARELLA G ET AL.: "Reintroduction of gluten following flour transamidation in adult celiac patients: a randomized, controlled clinical study", CLIN. DEV. IMMUNOL., vol. 2012, 2012, pages 329150
MAZZEO MF ET AL.: "Biochemical modifications of gliadins induced by microbial transglutaminase on wheat flour", BIOCHIM. BIOPHYS. ACTA, vol. 1830, no. 11, 2013, pages 5166 - 5174, XP055075842, DOI: doi:10.1016/j.bbagen.2013.07.021
OZAKI S ET AL.: "Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 20, no. 3, 2010, pages 1141 - 1144, XP026861886
OZAKI S ET AL.: "Potent transglutaminase inhibitors, dithio beta-aminoethyl ketones", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 21, no. 1, 2011, pages 377 - 379, XP027566665
PAYNE PI; HOLT LM; JACKSON EA; LAW CN; DAMANIA AB: "Wheat storage proteins: their genetics and their potential for manipulation by plant breeding", PHIL. TRANS. R. SOC. B, vol. 304, no. 1120, 1984, pages 359 - 371
PENGIRAN TENGAH DSNA; WILLS AJ; HOLMES GKT: "Neurological complications of coeliac disease", POSTGRADUATE MEDICAL JOURNAL, vol. 78, no. 921, 2002, pages 393 - 398
PINIER M ET AL.: "Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium", GASTROENTEROLOGY, vol. 136, no. 1, 2009, pages 288 - 298, XP025999664, DOI: doi:10.1053/j.gastro.2008.09.016
PYLE GG ET AL.: "Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue", CLIN GASTROENTEROL HEPATOL, vol. 3, no. 7, 2005, pages 687 - 694, XP005120800, DOI: doi:10.1016/S1542-3565(05)00366-6
RIBEIRO M ET AL.: "Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties", SCIENTIFIC REPORTS, vol. 5, 2015, pages 18041
RIBEIRO M; POETA P; IGREJAS G: "The Genetic Variability of Wheat Can Ensure Safe Products for Celiac Disease Patients?", INTERNATIONAL JOURNAL OF CELIAC DISEASE, vol. 2, no. 1, 2014, pages 24 - 26
SAMIL KÖK M ET AL: "Can dietary fibre help provide safer food products for sufferers of gluten intolerance? A well-established biophysical probe may help towards providing an answer", BMC BIOPHYSICS, BIOMED CENTRAL LTD, LONDON, UK, vol. 5, no. 1, 17 May 2012 (2012-05-17), pages 10, XP021123098, ISSN: 2046-1682, DOI: 10.1186/2046-1682-5-10 *
SCHUPPAN D; JUNKER Y; BARISANI D: "Celiac Disease: From Pathogenesis to Novel Therapies", GASTROENTEROLOGY, vol. 137, no. 6, 2009, pages 1912 - 1933, XP026927293, DOI: doi:10.1053/j.gastro.2009.09.008
SHAN L ET AL.: "Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue", J. PROTEOME RES., vol. 4, no. 5, 2005, pages 1732 - 1741, XP055133351, DOI: doi:10.1021/pr050173t
SHAN L; MARTI T; SOLLID LM; GRAY GM; KHOSLA C: "Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue", BIOCHEM J, vol. 383, 2004, pages 311 - 318, XP002540063, DOI: doi:10.1042/BJ20040907
SIEGEL M; KHOSLA C: "Transglutaminase 2 inhibitors and their therapeutic role in disease states", PHARMACOLOGY & THERAPEUTICS, vol. 115, no. 2, 2007, pages 232 - 245, XP022152216, DOI: doi:10.1016/j.pharmthera.2007.05.003
SIEGEL M; XIA J; KHOSLA C: "Structure-based design of alpha-amido aldehyde containing gluten peptide analogues as modulators of HLA-DQ2 and transglutaminase 2", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 15, no. 18, 2007, pages 6253 - 6261, XP022169172, DOI: doi:10.1016/j.bmc.2007.06.020
STEPNIAK D ET AL.: "Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease", AMERICAN JOURNAL OF PHYSIOLOGY. GASTROINTESTINAL AND LIVER PHYSIOLOGY, vol. 291, no. 4, 2006, pages G621 - G629, XP002741636, DOI: doi:10.1152/ajpgi.00034.2006
TANG F ET AL.: "Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15", J EXP MED, vol. 206, no. 3, 2009, pages 707 - 719
TYE-DIN JA ET AL.: "Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease", SCI. TRANSL. MED., vol. 2, no. 41, 2010, pages 41ra51, XP055291368, DOI: doi:10.1126/scitranslmed.3001012
VAN DE WAL Y ET AL.: "Cutting Edge: Selective Deamidation by Tissue Transglutaminase Strongly Enhances Gliadin-Specific T Cell Reactivity", THE JOURNAL OF IMMUNOLOGY, vol. 161, no. 4, 1998, pages 1585 - 1588
VAN HEEL DA; WEST J: "Recent advances in coeliac disease", GUT, vol. 55, no. 7, 2006, pages 1037 - 1046
WATANABE M; SUZUKI T; IKEZAWA Z; ARAI S: "Controlled Enzymatic Treatment of Wheat Proteins for Production of Hypoallergenic Flour", BIOSCI. BIOTECH. BIOCH., vol. 58, no. 2, 1994, pages 388 - 390, XP000435777
WIESER H: "Relation between gliadin structure and coeliac toxicity", ACTA PAEDIATR, vol. 85, no. s412, 1996, pages 3 - 9
XIA J; SIEGEL M; BERGSENG E; SOLLID LM; KHOSLA C: "Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 6, 2006, pages 1859 - 1867, XP055233187, DOI: doi:10.1021/ja056423o
ZHAO J ET AL.: "R-spondinl, a novel intestinotrophic mitogen, ameliorates experimental colitis in mice", GASTROENTEROLOGY, vol. 132, no. 4, 2007, pages 1331 - 1343, XP022046097, DOI: doi:10.1053/j.gastro.2007.02.001

Also Published As

Publication number Publication date
PT109524A (en) 2018-01-11
PT109524B (en) 2021-11-15

Similar Documents

Publication Publication Date Title
Rai et al. Gluten-free products for celiac susceptible people
Naqash et al. Gluten-free baking: Combating the challenges-A review
Wang et al. Recent developments in gluten-free bread baking approaches: A review
Kawamura-Konishi et al. Improvement in gluten-free rice bread quality by protease treatment
Watanabe et al. Novel method for producing hypoallergenic wheat flour by enzymatic fragmentation of the constituent allergens and its application to food processing
De Mesa‐Stonestreet et al. Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins
Renzetti et al. Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background
Pérez-Quirce et al. Effect of β-glucan molecular weight on rice flour dough rheology, quality parameters of breads and in vitro starch digestibility
Schober Manufacture of gluten‐free specialty breads and confectionery products
Lerner et al. Food industrial microbial transglutaminase in celiac disease: treat or trick
JPH05504068A (en) Soluble dietary fiber composition and method for producing the same
Fardet Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?
Kumar et al. Targeted degradation of gluten proteins in wheat flour by prolyl endoprotease and its utilization in low immunogenic pasta for gluten sensitivity population
Badiu et al. Trends in the development of gluten-free bakery products.
Cabrera-Chávez et al. Modification of gluten by methionine binding to prepare wheat bread with reduced reactivity to serum IgA of celiac disease patients
WO2018011714A1 (en) Preparation of cereal products suitable for celiac patients by the creation of supramolecular structures between proteins and chitosan
CN110055295B (en) Method for preparing hypoallergenic wheat alcohol soluble protein by phosphorylation-enzymolysis method
Sharma et al. Flour modification for the development of gluten free bread
Preichardt et al. Gluten formation: Its sources, composition and health effects
Goesaert et al. Use of enzymes in the production of cereal-based functional foods and food ingredients
de la Barca et al. Detoxification of wheat proteins by enzymatic technology
Calderón de la Barca et al. Enzymatic Modification of Proteins and Starches for Gluten‐Free and Low‐Glycaemic‐Index Foods for Special Dietary Uses
TANABE et al. Production of hypoallergenic wheat flour
Yazici et al. Celiac Disease: Myth or Reality
Zhang et al. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17761316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17761316

Country of ref document: EP

Kind code of ref document: A1