WO2018009992A1 - Method for protecting transformers against inner faults - Google Patents

Method for protecting transformers against inner faults Download PDF

Info

Publication number
WO2018009992A1
WO2018009992A1 PCT/BR2017/000071 BR2017000071W WO2018009992A1 WO 2018009992 A1 WO2018009992 A1 WO 2018009992A1 BR 2017000071 W BR2017000071 W BR 2017000071W WO 2018009992 A1 WO2018009992 A1 WO 2018009992A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
fault
faults
internal
transformer
Prior art date
Application number
PCT/BR2017/000071
Other languages
French (fr)
Portuguese (pt)
Inventor
Fabiano Gustavo Silveira MAGRIN
Maria Cristina Dias Tavares
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2018009992A1 publication Critical patent/WO2018009992A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers

Definitions

  • the present invention fits into the field of fault detection methodologies for a power transformer, wherein said methodology is applied with high sensitivity for transformer internal faults, between turns and ground, enabling the removal of the power transformer. service power quickly and reliably.
  • the present invention can be applied to fault detection in other equipment such as motors, shunt bumpers, capacitor banks and transmission lines, with transformers being considered the most critical case.
  • transformers must be serviced frequently, but even so, they are subject to short circuits, which is considered serious as there is always a risk of fire.
  • damage to the equipment occurs that needs to be repaired. However, it is in reducing the extent of damage that protective equipment works. The faster the abnormality is detected, the less damage to the equipment.
  • Document CN101702512 presents a proposal directed only to generators. First a calculation of. minimum current of I.2 .. When it is above 10% of the load, the zero sequence impedance angle is compared to certain limits. If between Degrees and 90 degrees the fault is external, and if between -90 degrees and -180 degrees, the fault is internal.
  • the possibilities offered by this invention are only restricted to generators, unlike the present invention, which. extends its field of application through inventive and differentiated technology, which will be detailed below.
  • US5514978 is based on the negative sequence impedance calculation. The method makes several accounts, compares 22 with a limit, but. do inverse accounts, read 12, and, after multiplying by Z2, compare. With a threshold of V2 perpetratDo the opposite too, reads V2 ⁇ compares with a 12 after calculation with a standard impedance 22.
  • the technology disclosed in US5514978 is exclusively motor-related, while the present invention broadens its scope by of inventive and differentiated technology.
  • US781.2615 the operating principle distinguished from the present invention. It is mentioned that US7812615 technology can identify 23 ⁇ 4 faults between turns. However, some technical problems can be identified, such as: having a low current sensor. negative sequence; use a minimum negative sequence differential current and use the angle to discriminate the fault, it is not clear how to use the method for more than two currents. In this regard, it is noteworthy that, in a differential manner, the present invention has a very accurate sensitivity, less than 1% for faults between turns.
  • US517Q308 discloses a technology based on the calculation of parallel transformer admittance. It applies to the detection of internal faults during power-up, which is not proposed by the present invention.
  • Document CN10: 4991160 describes a technology for detecting transformer internal faults. For its operation, a capacitive coupling sensor must be installed. This equipment injects high frequency which is measured and treated for detection.
  • the present invention differs from CN1Q4991160 mainly in that it uses a different operating principle based on negative sequence impedances.
  • the CN104991I60 requires the installation of extra equipment in the transformer, unlike the present invention, which still has the advantage of using only existing equipment for measurement, characterizing its adaptability and portability.
  • the present invention allows to present greater and improved sensitivity in detecting internal faults in power transformers. Said invention is not subject to the transformer energizing current or even the over-excitation of the power transformer. State of the art methods based on negative sequence current apply a minimum current comparator for executing an algorithm and the present invention does not, contributing to the increased sensitivity of the element. Another differential is that in no other work is it mentioned that after an external fault is output, there is a transient in the negative sequence diagram and that this transient resembles an internal fault, requiring a block or appropriate desensitization of the algorithm. A further advantage of the present invention is still the ease of expansion of the method for equipment with more than two inputs / outputs.
  • the present invention relates to a transformer protection method for internal faults.
  • the method disclosed in the present invention aims to increase the sensitivity of detection of internal faults in equipment, mainly power transformers, but may also be employed in the detection of internal faults in other equipment such as motors, generators, shunt reactors, capacitor bank, transmission lines and even for the combination of more than one equipment in the protection zone.
  • the present method acts by increasing a. sensitivity to internal faults, thereby shortening operating times and promoting a reduction in equipment damage under the protection it provides.
  • FIGURE 1 shows the example power system.
  • FIGURE 2 graphically shows the negative sequence impedances seen by the delta side:
  • FIGURE 3 graphically shows the negative sequence impedances seen by the star side.
  • FIGURE 4 graphically shows the negative sequence impedances seen by the delta side.
  • FIGURE 5 graphically shows the negative sequence impedances seen by the star side.
  • FIGURE € graphically shows negative sequence impedances., Delta side,
  • FIGURE 7 graphically shows the negative sequence impedances, debut side.
  • FIGURE 8 shows the sequence diagram for single-phase fault in bar R.
  • FIGURE 9 presents a sequence diagram for single-phase fault in S-bar.
  • FIGURE 10 represents a. impedance view seen from both sides of the trafo.
  • FIGURE. 11 is a graphical presentation of the action plan referenced in the present invention.
  • FIGURE 12 is a graphical presentation of misconduct for external fault.
  • FIGURE 13 is a graphical presentation of the new plan of action.
  • FIGURE 1.4 is a sequence diagram for external two-phase fault.
  • FIGURE 15 shows the negative sequence impedance excursion.
  • the present invention relates to a transformer protection method for internal faults which comprises the following steps and substeps:
  • cl Calculates the derivatives of the voltages of each terminal in relation to the past (from 1 to 3 cycles); c2) Compare sub-step (cl) with threshold L1 (from 0.01 to 5);
  • c.6 Declares internal disturbance if one of the derivatives of sub-step (c.2) is true and sub-step (c.4) is false by time t2 (from 0 to 3 cycles); c7) Declare internal disturbance if more than one derivative of sub-step (c.3) is true and (c.4) is false by time t3 (from 0 to .3 cycles);
  • the method disclosed in the present invention aims to increase fault detection sensitivity internal equipment, mainly in power transformers, but can also be used to detect internal faults in other equipment such as motors, generators, shunt reactors, capacitor banks, transmission lines and even for the combination of more than one equipment. in the protection zone.
  • the present method is not intended to replace the transformer's main protection scheme, but to supplement it by increasing the sensitivity to internal faults, thereby reducing actuation times and promoting a reduction in damage to equipment under protection, particularly in the case of of transformers ..
  • This method measures all: currents entering or leaving the equipment under protection. Also measures all voltages around the protected equipment. These currents and voltages are filtered through analog and digital filters in order to extract the fundamental components. Having the fundamental component factors, negative sequence currents, voltages, and impedances are calculated. Negative sequence impedances are compared to an impedance plane to detect if the fault is internal to the transformer. When all impedances fall within the specified plane, the fault is internal. In case of external fault, and after its elimination, there is a transient in the negative sequence diagram that can cause negative sequence dependent elements to act. To avoid this kind of misconduct, this kind of phenomenon should be identified and the blocking or desensitization of the method execution should be promoted.
  • Fault analysis comprises the study and recognition of how electrical quantities behave for transformer internal faults. External faults are also analyzed to find out what differentiates them from internal faults, enabling the development of the method of the present invention which is disclosed herein.
  • Figures 4 and 5 show the negative sequence impedance behavior for inter-loop faults. It is observed that the behavior of impedances is the same as in the case of ground faults.
  • Figure 8 shows the sequence diagram for a single phase fault on the R bar, ie on the star side of the transformer. It can be observed that the positive sequence and negative sequence current of source S are the same transformer currents, both on the delta side and the star side, only with the reversal of direction. For zero sequence current, there is no current on the delta side and there is current on the transformer neutral and the star side.
  • the negative sequence impedance measured by the delta side for an external fault on the R bar will have the value of the source impedance S with a negative value.
  • the impedance measured by the star side for the same fault will have the value of the sum of the impedances of the source S and the transformer, with positive value.
  • Figure 10 summarizes the negative sequence impedance view for both sides. It turns out that only for. transformer internal faults both sides may see a negative impedance.
  • Impedances on both sides determine whether the sources are strong or weak, so these impedances can range from zero to infinity. Thus it is determined that zero and minus infinity are points of action and, consequently, the region of operation, as shown in Figure 11.
  • This element is referred to here as negative impedance for internal faults or negative impedance for internal fault, Z2IF.
  • FIG. 14 shows the sequence diagram for. the two-phase transformer external fault on the R-bar and rewriting the negative sequence impedance equations for each side of the transformer have:
  • Figure 15 shows the method response in the presence of an internal loop fault with 1% of the shorted star winding. It is possible to verify the negative sequence impedance excursion to the permanent state of the impedances when the fault is present.
  • Figure 16 complements the analysis showing the currents of. both sides of the transformer and the operation bit of the method described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Transformers (AREA)

Abstract

The present invention relates to a method for protecting transformers against inner faults. In short, the method disclosed in the present invention is aimed at increasing the detection sensitivity of inner faults in devices, mainly power transformers, but is also useful for detecting inner faults in other devices, such as motors, generators, shunt reactors, capacitor banks, transmission lines and even a combination of multiple devices in the protection zone. The present method increases the sensitivity to inner faults, thereby reducing operation times and damages to devices protected by this method.

Description

MÉTODO DE PROTEÇÃO DE TRANSFORMADOR PARA FALTAS INTERNAS CAMPO DA INVENÇÃO:  FIELD OF INTERNAL FAULT TRANSFORMER PROTECTION FIELD OF THE INVENTION:
1001 ] A presente invenção se insere no campo das metodologias de detecção de faltas a um transformador de potência, em que a referida metodologia é aplicada com alta sensibilidade para faltas internas ao transformador, entre espiras e espíra-terra, possibilitando a retirada do transformador de potência de serviço de forma rápida e confiável. Adicionalmente, a presente invenção pode ser aplicada para detecção de faltas em outros equipamentos como motores, reafores shunt, banco de capacitores e linhas de transmissão, sendo os transformadores o caso considerado mais critico.  1001] The present invention fits into the field of fault detection methodologies for a power transformer, wherein said methodology is applied with high sensitivity for transformer internal faults, between turns and ground, enabling the removal of the power transformer. service power quickly and reliably. In addition, the present invention can be applied to fault detection in other equipment such as motors, shunt bumpers, capacitor banks and transmission lines, with transformers being considered the most critical case.
FUNDAMENTOS DA INVENÇÃO;  BACKGROUND OF THE INVENTION;
[002) A referência de. qualidade de vida está diretamente ligada ao fornecimento de energia elétrica e a demanda de energia tende a aumentar constantemente, principalmente, em paises em desenvolvimento. Para atender a esta demanda crescente., há uma incessante busca por maior eficiência no sistema de geração, transmissão e distribuição de energia. Para o aumento desta eficiência energética ê necessário que o sistema elétrico seja seguro e confiável, levando â uma alta qualidade da energia elétrica.  The reference of. Quality of life is directly linked to the supply of electricity, and energy demand tends to increase steadily, especially in developing countries. To meet this growing demand, there is an unremitting pursuit of greater efficiency in the power generation, transmission and distribution system. To increase this energy efficiency it is necessary that the electrical system is safe and reliable, leading to a high quality of electric power.
[0.03] Usualmente, índices de qualidade de energia na distribuição e a qualidade da transmissão de energia são monitorados por normas avaliativas e comparativas com padrões desejáveis.  [0.03] Usually, power quality ratings in distribution and the quality of power transmission are monitored by evaluative and comparative standards to desirable standards.
[Q04] Um dos equipamentos que possui função primordial na. manutenção de altos níveis de qualidade de energia são os transformadores de potência. Eles são os principais equipamentos e, também os mais caros, de uma subestação de energia., SE, de transmissão ou de distribuição.. Na geração, os transformadores não são os mais caros, mas isto não reduz sua importância . [Q04] One of the equipment that has primary function in. Maintaining high levels of power quality are the power transformers. They are the main equipment, and also the most expensive, of a power substation. SE, transmission or distribution. In generation, transformers are not the most expensive, but this does not reduce their importance.
[005] Desta forma,, os transformadores devem sofrer manutenção frequente., mas mesmo assim, estão sujeitos a curtos- circuitos, fato que é considerado grave, pois há sempre o risco de fogo. Quando há a ocorrência de faltas internas ao transformador, diferentemente de linhas de transmissão aéreas, produz-se um dano no equipamento que precisará ser reparado. No entanto, é na redução da extensão do dano que os equipamentos de proteção trabalham. Quanto mais rápido for detectada a anormalidade, menor será o dano ao equipamento..  Thus, transformers must be serviced frequently, but even so, they are subject to short circuits, which is considered serious as there is always a risk of fire. When faults occur inside the transformer, unlike overhead transmission lines, damage to the equipment occurs that needs to be repaired. However, it is in reducing the extent of damage that protective equipment works. The faster the abnormality is detected, the less damage to the equipment.
[006] De acordo com o exposto em estudos na matéria desta invenção, 12% das faltas no sistema elétrico ocorrem em transformadores. Na literatura, apresentam-se estatísticas de falhas em transformadores e, apesar de percentualmente haver certa variação, em relação aos locais de falta, é possível verificar que a maioria das faltas ocorrem nos enrolamentos do transformador, seguido pelo comutador de taps e em terceiro lugar pelas buchas* According to studies in the field of this invention, 12% of electrical system faults occur in transformers. In the literature, transformer failure statistics are presented and, although there is a percentage variation in relation to the fault locations, it is possible to verify that most of the faults occur in the transformer windings, followed by the tap-changer and thirdly. by the bushings *
[007] Analisando as faltas nos enrolamentos, verifica-se que uma falta entre poucas espiras não provoca grande variação de corrente na entrada e saída do transformador, mas internamente a corrente de fuga, ou seja, de falta, é alta e provoca grande aquecimento local no transformador. Este aquecimento gera gases que são detectados, por exemplo, peio relê Buchholz. Este processo é demorado, aumentando o dano ao transformador.. Pode também ocorrer uma evolução da falta, sendo assim detectável pelo relê de proteção, mas novamente o: dano causado será alto. Analyzing the faults in the windings, it appears that a fault between few turns does not cause large variation of current at the input and output of the transformer, but internally the leakage current, ie, fault, is high and causes great heating. location on the transformer. This heating generates gases that are detected, for example, by the Buchholz relay. This process is time consuming, increasing the damage to the transformer. There may also be an evolution of the fault, thus being detectable by the protection relay, but again o : Damage dealt will be high.
[008] Faltas a terra no enrolamento delta de um transformador também podem passar desapercebidas pela proteção diferencial convencional e quanto maior for o dano ao transformador, maior pode ser o tempo de manutenção, levando à indisponibilidade de fornecimento de energia e ao aumento dos custos de reparo.  [008] Ground faults in a transformer's delta winding can also go unnoticed by conventional differential protection and the greater the damage to the transformer, the longer the maintenance time, leading to unavailability of power supply and increased power costs. repair.
Est&do da Técnica:  Technique Est:
[009] O documento CN101702512 apresenta uma proposta direcionada apenas para geradores. Primeiramente é realizado um cálculo de. corrente minima de I.2.. Quando este está acima de 10% da carga,, é comparado o ângulo, de impedância de sequência zero com certos limites. Se. entre Qgraus e 90graus a falta é externa, e se entre -90graus e -180graus, a falta è interna. Contudo, as possibilidades que esta invenção oferece estão unicamente restritas a geradores, diferentemente da presente invenção, que. amplia seu campo de aplicação por meio de uma tecnologia inventiva e diferenciada, que será a seguir detalhada.  [009] Document CN101702512 presents a proposal directed only to generators. First a calculation of. minimum current of I.2 .. When it is above 10% of the load, the zero sequence impedance angle is compared to certain limits. If between Degrees and 90 degrees the fault is external, and if between -90 degrees and -180 degrees, the fault is internal. However, the possibilities offered by this invention are only restricted to generators, unlike the present invention, which. extends its field of application through inventive and differentiated technology, which will be detailed below.
[010] O documento US5514978 baseia-se no cálculo de impedância de sequência negativa. O método faz diversas contas, compara 22 com um limité, mas. faz contas inversas,, lê 12 e, após multiplicar por Z2, compara. Com um limiar de V2„ Faz o contrário também, lê V2 θ compara com um 12 após cálculo com uma impedância padrão 22. Entretanto, a tecnologia revelada no US5514978 está exclusivamente ligada a motores, enquanto a presente invenção amplia seu campo de aplicação por meio de uma tecnologia inventiva e diferenciada.  [010] US5514978 is based on the negative sequence impedance calculation. The method makes several accounts, compares 22 with a limit, but. do inverse accounts, read 12, and, after multiplying by Z2, compare. With a threshold of V2 „Do the opposite too, reads V2 θ compares with a 12 after calculation with a standard impedance 22. However, the technology disclosed in US5514978 is exclusively motor-related, while the present invention broadens its scope by of inventive and differentiated technology.
[011] No documento US781.2615, o principio de operação distingue-se da presente invenção. É mencionado que a tecnologia do US7812615 consegue identificar 2¾ de falta entre espiras. Contudo, alguns problemas técnicos podem ser identificados, como: possuir um sensor de mínima corrente de. sequência negativa; usar um minimo de corrente diferencial de sequência negativa e usar o ângulo para descriminar a falta, não ficando claro como usar o método para mais de duas correntes. Neste sentido, cabe ressaltar que, de maneira diferencial, a presente invenção apresenta uma sensibilidade muito apurada, menor que 1% para faltas entre espiras. [011] In US781.2615, the operating principle distinguished from the present invention. It is mentioned that US7812615 technology can identify 2¾ faults between turns. However, some technical problems can be identified, such as: having a low current sensor. negative sequence; use a minimum negative sequence differential current and use the angle to discriminate the fault, it is not clear how to use the method for more than two currents. In this regard, it is noteworthy that, in a differential manner, the present invention has a very accurate sensitivity, less than 1% for faults between turns.
[012] No documento CN100550557, inicialmente já tem um principio de operação diferente da presente invenção, além de apresentar outras adicionais distinções como: fazer uso de um diferencial de corrente de sequência, negativa., apresentar como limitações um minimo valor de operação e o próprio diferencial que possui uma dessensibilização intrínseca ao método. Mais uma vez, a presente invenção, de maneira diferencial, propõe uma sensibilidade muito apurada, solucionando esta que era uma deficiência latente do estado da técnica . In the document CN100550557, it initially already has a different operating principle of the present invention, besides presenting other additional distinctions such as: making use of a negative sequence current differential, having as limitations a minimum operating value and the differential itself that has an intrinsic desensitization to the method. Again, the present invention, in a differential manner, proposes a very accurate sensitivity, which solves a latent deficiency of the state of the art.
[013] O documento US79O3381 trabalha de maneira muito similar em relação ao CN100550557, podendo ser verificadas as mesmas considerações .  [013] US79O3381 works very similarly to CN100550557, and the same considerations can be verified.
[014:] O documento US8823307 restringe sua especificação, apenas para geradores, sendo baseado na comparação de magnitude, e ângulo de várias grandezas como tensão e corrente de sequência (positiva, negativa e zero} . Enquanto sua aplicação é especifica para geradores e consideravelmente complexa, a presente invenção propõe simplicidade e aplicação ampla. £015] O documento CN1015050:S1, por sua vez, também é direcionado para geradores. Baseado na distribuição da tensão de sequência negativa no gerador., detecta se a falta é interna ou externa ao gerador com base no perfil de tensão de sequência negativa na salda do gerador e depois do Trafo elevador. Contudo, diferentemente da presente invenção, sua aplicação é exclusivamente restrita a geradores. [014:] US8823307 restricts its specification to generators only, being based on comparison of magnitude and angle of various quantities such as voltage and sequence current (positive, negative and zero}. While its application is specific to generators and considerably complex, the present invention proposes simplicity and broad application. £ 015] Document CN1015050: S1 is also intended for generators. Based on the negative sequence voltage distribution on the generator., It detects whether the fault is internal or external to the generator based on the negative sequence voltage profile on the generator output and after the elevator bus. However, unlike the present invention, its application is exclusively restricted to generators.
[016] O documento US517Q308 apresenta, uma tecnologia baseada no cálculo da admitância paralela do transformador. Aplica- se para a detecção de faltas internas durante a energizaçáo, o que não é proposta da presente invenção. [016] US517Q308 discloses a technology based on the calculation of parallel transformer admittance. It applies to the detection of internal faults during power-up, which is not proposed by the present invention.
Í017] No documento US4204237, é descrita uma tecnologia sobre relés de estado sólido, diferencial tradicional de transformador, A referida matéria atua na proteção principal do trafo, enquanto que de maneira diferencial, a presente invenção objetiva complementar a proteção principal. In US4204237, a traditional transformer differential solid state relay technology is described. Said subject matter acts on the main protection of the traffic, while in a differential manner, the present invention aims to complement the main protection.
[018] O documento BR8606027 revela um estudo sobre o diferencial tradicional de transformador. De maneira, similar ao documento US4204.237, sua matéria atua na proteção principal do trafo, enquanto que de maneira diferencial, a presente invenção objetiva complementar a. proteção principal .  [018] Document BR8606027 reveals a study of the traditional transformer differential. In a similar way to US4204.237, its subject matter acts in the main protection of the traffic, whereas in a different way, the present invention complements a. main protection.
[019]. Há também o artigo "Analysis on the. Negative Sequence Impedance Directional Protection for Stator Internai Fault of Turbo Generator" que è baseado na impedância de sequência negativa, porém não apresentando as mesmas impedâncias frente e atrás esperadas» A tecnologia de que trata o referido artigo, portanto, é restrita, diferentemente da presente invenção que não tem especificidade apenas para geradores e,, ainda, contempla a atuaçâo para equipamentos com mais de duas entradas/saídas. [019] . There is also the article "Analysis on the Negative Sequence Impedance Directional Protection for Internal Stator Fault of Turbo Generator" which is based on negative sequence impedance but does not have the same expected front and back impedances. It is therefore restricted, unlike the present invention, which has no specificity only for generators and also contemplates the performance of equipment with more than two inputs / outputs.
[020] O documento CN10:4991160, descreve uma tecnologia referente à detecção de faltas internas ao transformador. Para seu funcionamento., é preciso instalar um sensor de acoplamento capacitivo. Este equipamento inj.eta alta frequência que é medida e tratada para a detecção. A presente invenç¾o se diferencia do CN1Q4991160 principalmente pelo fato de utilizar um princípio de operação diferente, baseada nas impedâncias de sequência negativa. Além disso, o CN104991I60 necessita de instalação de equipamento extra no transformador, ao contrário da presente, invenção, que ainda tem a vantagem de utilizar para medição apenas os equipamentos já existentes, caracterizando sua adaptabilidade e portabilidade.  [020] Document CN10: 4991160 describes a technology for detecting transformer internal faults. For its operation, a capacitive coupling sensor must be installed. This equipment injects high frequency which is measured and treated for detection. The present invention differs from CN1Q4991160 mainly in that it uses a different operating principle based on negative sequence impedances. In addition, the CN104991I60 requires the installation of extra equipment in the transformer, unlike the present invention, which still has the advantage of using only existing equipment for measurement, characterizing its adaptability and portability.
[021] No documento B.R.200900722, a tecnologia descrita no documento refere-se â detecção de faltas internas ao transformador de potência. A referida tecnologia utiliza, o princípio diferencial de sequência negativa. Contudo, a invenção aqui revelada tem uma proposta que difere do BR2009007.22, principalmente pelo fato de utilizar um princípio de operação diferente, baseada nas impedâncias de sequência negativa. [021] In document BR . 200900722, the technology described in the document relates to detection of faults internal to the power transformer. Said technology uses the negative sequence differential principle. However, the invention disclosed herein has a proposal that differs from BR2009007.22, mainly in that it uses a different principle of operation based on negative sequence impedances.
Vantagens da Invenção;  Advantages of the Invention;
[022] A presente invenção permite apresentar maior e aprimorada sensibilidade na detecção de faltas internas nos transformadores de potência. A referida invenção não está sujeita á corrente de energização do transformador ou mesmo à sobre-excitaçâo do transformador de potência. Os métodos do estado da técnica baseados em corrente de sequência negativa aplicam um comparador de minima corrente para executar um algoritmo e a presente, invenção não o faz, contribuindo para o aumento da sensibilidade, do elemento. Outro diferencial é que em nenhum outro trabalho é mencionado σ fato que após a saida de uma falta externa, há um transiente no diagrama de sequência negativa e que este transiente se assemelha a uma falta interna, sendo necessário um bloqueio ou apropriada dessensibilização do algoritmo. Uma vantagem adicional, da presente invenção, ainda, é a facilidade de expansão do método para equipamento com mais de duas entradas/saidas . [022] The present invention allows to present greater and improved sensitivity in detecting internal faults in power transformers. Said invention is not subject to the transformer energizing current or even the over-excitation of the power transformer. State of the art methods based on negative sequence current apply a minimum current comparator for executing an algorithm and the present invention does not, contributing to the increased sensitivity of the element. Another differential is that in no other work is it mentioned that after an external fault is output, there is a transient in the negative sequence diagram and that this transient resembles an internal fault, requiring a block or appropriate desensitization of the algorithm. A further advantage of the present invention is still the ease of expansion of the method for equipment with more than two inputs / outputs.
BREVE DESCRIÇÃO DA INVENÇÃO;  BRIEF DESCRIPTION OF THE INVENTION;
[023] A presente invenção refere-se a um método de proteção de transformador para faltas internas. [023] The present invention relates to a transformer protection method for internal faults.
[024] Em suma, o método revelado na presente invenção se propõe a aumentar a sensibilidade de detecção de faltas internas em equipamentos, principalmente, transformadores de potência, mas podendo ser também empregado na detecção de faltas internas a outros equipamentos como motores, geradores, reatores shunt., banco de capacitores, linhas de transmissão e até mesma para a combinação de mais de um equipamento na zona de proteção.  In short, the method disclosed in the present invention aims to increase the sensitivity of detection of internal faults in equipment, mainly power transformers, but may also be employed in the detection of internal faults in other equipment such as motors, generators, shunt reactors, capacitor bank, transmission lines and even for the combination of more than one equipment in the protection zone.
[0251 O presente método atua aumentando a. sensibilidade para as faltas internas, diminuindo, assim, os tempos de atuação e promovendo uma redução no dano dos equipamentos sob a proteção que fornece.  The present method acts by increasing a. sensitivity to internal faults, thereby shortening operating times and promoting a reduction in equipment damage under the protection it provides.
BREVE DESCRIÇÃO DAS FIGURAS :  BRIEF DESCRIPTION OF THE FIGURES:
[026] Para obter total, e completa visualização do objeto desta invenção, são apresentadas as figuras as quais se faz referências, conforme se segue..  [026] To obtain full and complete visualization of the object of this invention, reference figures are given as follows.
[027] A FIGURA 1 apresenta o sistema de potência exemplo. [028] A FIGURA 2 apresenta graficamente as impedâncias de sequência negativa vistas pelo lado delta.: [027] FIGURE 1 shows the example power system. [028] FIGURE 2 graphically shows the negative sequence impedances seen by the delta side:
[029J A FIGURA 3 apresenta graficamente as impedâncias de sequência negativa vistas pelo lado estrela.  FIGURE 3 graphically shows the negative sequence impedances seen by the star side.
[030] A FIGURA 4 apresenta graficamente as impedâncias de sequência negativa vistas pelo lado delta.  FIGURE 4 graphically shows the negative sequence impedances seen by the delta side.
[031] A FIGURA 5. apresenta graficamente as impedâncias de sequência negativa vistas pelo lado estrela.  [031] FIGURE 5. graphically shows the negative sequence impedances seen by the star side.
[032] A FIGURA € apresenta graficamentê as impedâncias de sequência negativa., lado delta,  [032] FIGURE € graphically shows negative sequence impedances., Delta side,
[033] A FIGURA 7 apresenta graficamente as impedâncias de sequência negativa, lado estreia.  [033] FIGURE 7 graphically shows the negative sequence impedances, debut side.
[034] A FIGURA 8 apresenta o diagrama de sequência para falta monofásica na barra R.  FIGURE 8 shows the sequence diagram for single-phase fault in bar R.
[03.5] A FIGURA 9 apresenta um diagrama de sequência para falta monofásica na barra S.  [03.5] FIGURE 9 presents a sequence diagram for single-phase fault in S-bar.
[036] A FIGURA 10 representa a. visão da impedância vista por ambos os lados do trafo.  [036] FIGURE 10 represents a. impedance view seen from both sides of the trafo.
[037] A FIGURA. 11 é uma apresentação gráfica do plano de atuação referenciado na presente invenção.  [037] FIGURE. 11 is a graphical presentation of the action plan referenced in the present invention.
[038] A FIGURA 12 é uma apresentação gráfica da atuaçâo indevida para falta externa.  [038] FIGURE 12 is a graphical presentation of misconduct for external fault.
[039] A FIGURA 13 é uma apresentação gráfica do novo plano de atuaçâo.  [13] FIGURE 13 is a graphical presentation of the new plan of action.
[040] A FIGURA 1.4 é um diagrama de sequência para falta bifásica externa.  [040] FIGURE 1.4 is a sequence diagram for external two-phase fault.
[041] A FIGURA 15 mostra a excursão das impedâncias de sequência negativa .  [041] FIGURE 15 shows the negative sequence impedance excursion.
[042} A Figura 16 mostra as correntes e atuação do elemento durante falta interna ao transformador. DESCRIÇÃO DETALHADA DA INVENÇÃO: [042} Figure 16 shows the currents and actuation of the element during internal transformer fault. DETAILED DESCRIPTION OF THE INVENTION:
[043] A presente Invenção refere-se a um método de proteção de transformador para faltas internas, o qual compreende as seguintes etapas e subetapas:  [043] The present invention relates to a transformer protection method for internal faults which comprises the following steps and substeps:
a>Aquisição dos dados da rede;  a> Acquisition of network data;
a.l) Monitora todos os sinais de corrente e tensão do equipamento protegido (correntes e tensões trifásicas de cada terminal);  a.l) Monitors all current and voltage signals of the protected equipment (three-phase currents and voltages of each terminal);
a.2} Elimina a superposição de frequências; a.3) Converte todos os sinais de analógicos para digitais;  a.2} Eliminates frequency overlap; a.3) Converts all signals from analog to digital;
a.4} Extrai os fasores da componente fundamental; b} Tratamento do sinal;  a.4} Extracts the phasors of the fundamental component; b} Signal treatment;
b.1) Condiciona os sinais para valores por unidade, pu;  b.1) Conditions the signals to values per unit, pu;
b.2!í Calcula as correntes e tensões de sequência negativa de cada terminal;  Calculates the negative sequence currents and voltages of each terminal;
b.3) Calcula as impedâncias de sequência negativa de cada terminal;  b.3) Calculates the negative sequence impedances of each terminal;
c) Identificação da necessidade de desbloqueio;  c) Identification of the need for unlocking;
cl) Calcula as derivadas das tensões de cada terminai em relação ao passado (de 1 a 3 cicios) .; c2) Compara a sub-etapa (cl) com o limiar LI (de 0.01 a 5) ;  cl) Calculates the derivatives of the voltages of each terminal in relation to the past (from 1 to 3 cycles); c2) Compare sub-step (cl) with threshold L1 (from 0.01 to 5);
c 3) Compara a sub-etapa (cl) com o limiar L2 (de 0.5 a 10) ;  c 3) Compare sub-step (cl) with threshold L2 (from 0.5 to 10);
c.4) Compara a sub-etapa (cl) com o limiar L3 (de 10 a 120);  c.4) Compare sub-step (cl) with threshold L3 (from 10 to 120);
c.5) Declara distúrbio externo, não retira o bloqueio, se uma das derivadas da sub-etapa (c4) é verdadeira pelo tempo tl (de 0 a 3 ciclos) ; c.5) Declares external disturbance, does not remove blockage if one of the derivatives of sub-step (c4) is true for time tl (from 0 to 3 cycles);
c.6) Declara distúrbio, interno se uma das derivadas da sub-etapa (c.2) é verdadeira e a sub- etapa (c.4) é falsa pelo tempo t2 (de 0 a 3 ciclos); c7) Declara distúrbio interno se mais de uma derivada da sub-etapa (c.3) è verdadeira e (c.4) é falsa pelo tempo t3 (de 0 a. 3 ciclos) ;  c.6) Declares internal disturbance if one of the derivatives of sub-step (c.2) is true and sub-step (c.4) is false by time t2 (from 0 to 3 cycles); c7) Declare internal disturbance if more than one derivative of sub-step (c.3) is true and (c.4) is false by time t3 (from 0 to .3 cycles);
c, 8) Bloqueia novamente caso o desbloqueio permaneça pelo tempo t4 (de 100 a 500 ms) ; d) Identificação da falta;  c, 8) Locks again if the unlock remains for time t4 (from 100 to 500 ms); d) Identification of the fault;
d. l) Compara os resultados da sub-etapa (b.3) com a característica de atuação» (Nesta etapa pode haver diferentes tipos de. características, por exemplo, reta simples, reta dupla, circular entre outras); d.2) Declara falta interna caso a sub-etapa (d.l) seja verdadeira para todos os terminais;  d. (l) Compare the results of sub-step (b.3) with the acting characteristic '(In this step there may be different types of characteristics, eg single line, double line, circular among others); d.2) Declares internal fault if sub-step (d.l) is true for all terminals;
d.3). Declara falta externa caso um terminal da sub- etapa (d.l) seja. falso;  d.3). Declares external fault if a sub-step terminal (d.l) is. false;
e). Identificação de falta trifásica;  and). Three phase fault identification;
e. l) Calcula, as correntes de sequência positiva de cada. terminal;  and. l) Calculates the positive sequence currents of each. terminal;
e.2) Calcula as correntes de operação e diferencial;  e.2) Calculates operating and differential currents;
e.3) Calcula as variações das correntes da sub- etapa (e .2) ;  e.3) Calculates the variations of the sub-step currents (e .2);
e.4) Compara com o limiar L4. (de 0,5 a 2,0);  e.4) Compares against the L4 threshold. (from 0.5 to 2.0);
e.5) Declara bloqueio caso a sub-etapa (e.4) seja verdadeira .  e.5) Declare blocking if sub-step (e.4) is true.
(0441 Em suma, o método revelado na presente invenção se propõe a aumentar a sensibilidade de detecção de faltas internas em equipamentos,, principalmente em transformadores de potência, mas podendo ser também empregado na detecção de faltas internas em outros equipamentos como motores, geradores, reatores shunt, banco de capacitores, linhas de transmissão e até mesma para a combinação de mais de um equipamento na zona de proteção. (0441 In summary, the method disclosed in the present invention aims to increase fault detection sensitivity internal equipment, mainly in power transformers, but can also be used to detect internal faults in other equipment such as motors, generators, shunt reactors, capacitor banks, transmission lines and even for the combination of more than one equipment. in the protection zone.
[045] Em geral todos os trabalhos baseados em sequência negativa falham em mostrar como o método comporta-se quanto à sensibilidade com e sem carga., presença de fonte de somente um lado do transformador, mas principalmente em outras duas situações de suma importância: 1) Como o elemento se comporta durante desequilíbrios no sistema, de potência e 2 ) Como o elemento se comporta após uma falta externa ser extinta.  [045] In general all works based on negative sequence fail to show how the method behaves with regard to sensitivity with and without load, presence of source on only one side of the transformer, but mainly in two other situations of paramount importance: 1) How the element behaves during system imbalances of power and 2) How the element behaves after an external fault is extinguished.
[046] A presente invenção foi desenvolvida contemplando estas situações . [046] The present invention has been developed by contemplating these situations.
[047] O presente método não objetiva substituir o esquema principal de proteção do transformador, mas complementá-lo, aumentando a sensibilidade para as faltas internas, diminuindo assim os tempos de atuação e promovendo uma redução no dano dos equipamentos sob proteção, principalmente no caso de transformadores..  [047] The present method is not intended to replace the transformer's main protection scheme, but to supplement it by increasing the sensitivity to internal faults, thereby reducing actuation times and promoting a reduction in damage to equipment under protection, particularly in the case of of transformers ..
[048] O presente método mede, todas as: correntes que entram ou saem do equipamento sob proteção. Mede, também, todas as tensões ao redor do equipamento protegido. Estas correntes e tensões são filtradas através de filtros analógicos e digitais de forma a se extrair as componentes fundamentais. Com posse dos fatores das componentes fundamentais, as correntes,, tensões e impedâncias de sequência negativa são calculadas. As impedâncias de sequência negativa são comparadas com um plano de impedâncias de forma a se detectar se a falta é interna ao transformador. Quando todas as impedâncias caem dentro do plano especificado, significa que a falta é interna. Em caso de falta externa, e após a eliminação desta,, existe um transitório no diagrama de sequência negativa que pode provocar a atuação de elementos dependentes de sequência negativa. Para evitar este tipo de atuação indevida, este tipo de fenómeno deve ser identificado e o bloqueio ou dessensibilização da execução do método deve ser promovido. [048] This method measures all: currents entering or leaving the equipment under protection. Also measures all voltages around the protected equipment. These currents and voltages are filtered through analog and digital filters in order to extract the fundamental components. Having the fundamental component factors, negative sequence currents, voltages, and impedances are calculated. Negative sequence impedances are compared to an impedance plane to detect if the fault is internal to the transformer. When all impedances fall within the specified plane, the fault is internal. In case of external fault, and after its elimination, there is a transient in the negative sequence diagram that can cause negative sequence dependent elements to act. To avoid this kind of misconduct, this kind of phenomenon should be identified and the blocking or desensitization of the method execution should be promoted.
Estudo de Desenvolvimento do Método  Method Development Study
[049] A fundamentação do método, a apresentação dos termos e a realização dos testes de desenvolvimento são descritos abaixo, para melhor entendimento da invenção: [049] The rationale of the method, the presentation of the terms and the performance of the developmental tests are described below for a better understanding of the invention:
Análise de Faltas  Fault Analysis
[0501 A análise de faltas compreende o estudo e reconhecimento de como as grandezas elétricas se comportam para faltas internas ao transformador. Faltas externas também são analisadas para poder encontrar o que as diferenciam das faltas internas, possibilitando o desenvolvimento do método da presente invenção, que é aqui revelado. Fault analysis comprises the study and recognition of how electrical quantities behave for transformer internal faults. External faults are also analyzed to find out what differentiates them from internal faults, enabling the development of the method of the present invention which is disclosed herein.
[051] As análises discutidas a seguir r.eferem-se a um transformador. DY e com fonte apenas de um lado, lado delta, conforme apresentado na Figura 1.  The analyzes discussed below refer to a transformer. DY and source only on one side, delta side, as shown in Figure 1.
Faltas Internas Espira.-Terra  Spire-Ground Internal Faults
[052] É possível verificar que as impedâncias de sequência- neqativa possuem um comportamento bem definido para todas as faltas a frente do. TC do lado delta, conforme figura 2, e que. para a falta reversa o comportamento é bem diferente. O mesmo ocorre quando analisado as faltas do ponto de vista do lado estrela, conforme Figura 3. Para ambos os lados do transformador, a impedância de pré-falta de sequência, negativa apresenta aleatoriedade, pois a tensão e correntes são próximas de zero. [052] It is possible to verify that the sequence impedances have a well-defined behavior for all faults in front of. Delta CT, as shown in figure 2, and that. for reverse lack the behavior is quite different. The same occurs when analyzing faults from the point of view of star side, as shown in Figure 3. For both sides of the transformer, the negative pre-sequence impedance is random because the voltage and currents are close to zero.
Faltas Internas entre Espxzas  Internal Faults between Sponges
[053] As Figuras 4 e 5 mostram o comportamento da impedância de sequência negativa para as faltas entre espiras. Observa- se que o comportamento, das impedâncias é o mesmo do caso de faltas espira-terra. [053] Figures 4 and 5 show the negative sequence impedance behavior for inter-loop faults. It is observed that the behavior of impedances is the same as in the case of ground faults.
[054] Estas análises mostram que as componentes simétricas para faltas internas ao transformador possuem um comportamento bem definido mostrando que o elemento de sequência negativa é promissor para o desenvolvimento do método de proteção de transformadores aqui revelado.  [054] These analyzes show that the symmetrical components for transformer internal faults have a well-defined behavior showing that the negative sequence element is promising for the development of the transformer protection method disclosed herein.
(055] Fica claro nas análises que uma proteção efetiva do transformador não pode ocorrer somente com a análise de um dos lados do transformador, por isto, a função atual mais utilizada é o diferencial percentual. Já existe comercialmente diferenciais de sequência negativa, mas. ainda não conseguem ser altamente sensíveis, deixando parte do enrolamento descoberto» (055] It is clear from the analysis that effective transformer protection cannot occur only by analyzing one side of the transformer, so the current most commonly used function is the percent differential, but negative sequence differentials already exist commercially. still can't be highly sensitive, leaving part of the winding uncovered »
[056]. Portanto, é importante analisar as. situações anteriores em relação à. variação de carga, e de impedância interna da fonte. Desta forma, serão apresentadas abaixo algumas análises considerando a fonte infinita e a carga praticamente zero. [056] . Therefore, it is important to analyze the. previous situations in relation to . load variation, and source internal impedance. Thus, some analyzes will be presented below considering the infinite source and the practically zero load.
Fonte Forte e sem Carga  Strong Source and No Charge
Faltas Espira.-Terra  Spire-Ground Fouls
[057] Como as correntes tendem a crescer muito, as impedâncias tendem a origem conforme Figura 6. Já a Figura 7 mostra que a impedância de sequência negativa tende para um ponto específico,, que está relacionado com a impedância de pré-falta. [057] As currents tend to grow a lot, impedances tend to origin according to Figure 6. Figure 7 shows that the negative sequence impedance tends to a specific point which is related to the pre-fault impedance.
A Elaboração do Método  The Elaboration of the Method
[056] Os testes e conceitos acima justificam o desenvolvimento do método dè proteção de transformador para faltas internas, conforme revelado, na presente invenção. [056] The above tests and concepts justify the development of the transformer protection method for internal faults as disclosed in the present invention.
[059} Tendo em vista a conclusão de que as correntes e tensões de sequência negativa possuem um comportamento bem definido, apresenta-se aqui os diagramas de sequência para os tipos de falta às quais se aplica o método da presente invenção. In view of the conclusion that negative sequence currents and voltages have a well-defined behavior, the sequence diagrams for the fault types to which the method of the present invention applies is presented here.
Faltas Monofásicas  Single Phase Faults
[060] A Figura 8 mostra o diagrama, de sequência para uma falta monofásica na barra R, ou seja, do lado estrela do transformador. Pode-se observar que a corrente de sequência positiva: e negativa da fonte S são as mesmas correntes do transformador, tanto do lado delta quanto do lado estrela., apenas com a inversão de sentido. Já para a corrente de sequência zero náo há corrente no lado delta e há corrente no neutro do transformador e no lado estrela. [060] Figure 8 shows the sequence diagram for a single phase fault on the R bar, ie on the star side of the transformer. It can be observed that the positive sequence and negative sequence current of source S are the same transformer currents, both on the delta side and the star side, only with the reversal of direction. For zero sequence current, there is no current on the delta side and there is current on the transformer neutral and the star side.
[061] De acordo com a Figura 8, as impedâncias equivalentes de sequência são;  [061] According to Figure 8, the equivalent sequence impedances are;
Figure imgf000016_0001
Figure imgf000016_0001
[062] Sabe-se que:
Figure imgf000016_0002
Figure imgf000017_0001
[062] It is known that:
Figure imgf000016_0002
Figure imgf000017_0001
[063] Pelo divisor de corrente tera>-se:
Figure imgf000017_0002
[063] The current divider will have>:
Figure imgf000017_0002
1064} Consequentemente as correntes dos dois lados do transformador são:
Figure imgf000017_0003
1064} Consequently the currents on both sides of the transformer are:
Figure imgf000017_0003
[065] Escrevendo as equações de impedância de sequência negativa para cada lado do transformador têtn-se: [065] Writing the negative sequence impedance equations for each side of the transformer has:
Figure imgf000017_0004
Figure imgf000017_0004
[066] Como nâ.o é possivel medir, a corrente mas somente
Figure imgf000017_0006
[066] As it is not possible to measure, the current but only
Figure imgf000017_0006
a corrente 12s, a equação acima deve ser reescrita como:
Figure imgf000017_0005
current 12s, the above equation should be rewritten as:
Figure imgf000017_0005
[067] Qbserva-se que a impedância de sequência negativa medida pelo lado delta para uma falta externa na barra R terá o valor da impedância da fonte S com valor negativo. Já a impedância medida pelo lado estrela para a mesma falta terá o valor da soma das impedâncias da fonte S e do transformador, com valor positivo.  [067] Note that the negative sequence impedance measured by the delta side for an external fault on the R bar will have the value of the source impedance S with a negative value. The impedance measured by the star side for the same fault will have the value of the sum of the impedances of the source S and the transformer, with positive value.
[068] Uma análise mais detalhada pode ser feita e verifica- se que, para todas as faltas a direita do TC do lado delta, independentemente se a falta está interna ao transformador ou mesmo externa até dentro do sistema equivalente da fonte R, a impedância vista pelo lado delta do transformador sempre será a impedância da fonte S com valor negativo, equação (D · [068] A more detailed analysis can be done and it is found that for all delta right CT faults, regardless of whether the fault is internal to the transformer or even external even within the equivalent system of the source. R, the impedance seen by the transformer delta side will always be the impedance of the source S with negative value, equation (D ·
[069] A. mesma análise pode ser feita para o lado estrela, ou seja, para todas as faltas à direta do TC do lado estrela, a impedância medida sempre estará de acordo com (2) . A Figura 9 mostra o diagrama para uma falta também externa à seção de proteção.,, mas na. barra S. Não há circulação de corrente de sequência zero, mas ainda há circulação de corrente de sequência negativa, mas as. correntes medidas pelo lado delta ou estrela, são agora, a corrente proveniente do. equivalente R.  [069] A. The same analysis can be done for the star side, ie for all star side CT right faults, the measured impedance will always be in accordance with (2). Figure 9 shows the diagram for a fault also external to the protection section. S-bar There is no zero sequence current circulation, but there is still negative sequence current circulation, but as. currents measured by the delta or star side are now the current coming from the. equivalent R.
[070] Com isto podemos reescrever as equações de tensão por corrente de cada lado do transformador.  With this we can rewrite the voltage equations by current on each side of the transformer.
Figure imgf000018_0001
Figure imgf000018_0001
1071J Verifica-se que o comportamento se inverte em relação ao caso da barra R. O lado delta sempre verá uma impedância positiva conforme equação (3) , para todas as faltas a esquerda, do TC do lado delta. Já a impedância vista pelo lado estrela sempre estará de acordo com a equação (4) , para todas as faltas a esquerda do TC do lado estrela, mesmo para faltas internas.  1071J It is found that the behavior is reversed in relation to the case of the R-bar. The delta side will always see a positive impedance according to equation (3) for all delta left CT faults. The impedance seen by the star side will always be in accordance with equation (4) for all left faults of the star side CT, even for internal faults.
[072] Portanto a Figura 10 resume a visão de impedância de sequência negativa para ambos os lados. Verifica-se que somente para. faltas internas ao transformador ambos os lados podem ver uma impedância negativa. [072] Therefore Figure 10 summarizes the negative sequence impedance view for both sides. It turns out that only for. transformer internal faults both sides may see a negative impedance.
[073] As impedâncias de ambos os lados determinam se as fontes são fortes ou fracas., portanto estas impedâncias podem variar de zero a infinito. Com isto dete.rmína-se que o zero e o menos infinito são pontos de atuaçáo e, consequentemente, a região de operação, conforme Figura 11.  [073] Impedances on both sides determine whether the sources are strong or weak, so these impedances can range from zero to infinity. Thus it is determined that zero and minus infinity are points of action and, consequently, the region of operation, as shown in Figure 11.
[074] As análises acima já descartam a necessidade de uma análise de faltas internas à seção de proteção ou mesmo as faltas interna espira-terra...  [074] The above analyzes already rule out the need for an analysis of faults internal to the protection section or even the internal ground-faults ...
Falta Monofásica Externa com Carga  External Single Phase Fault with Load
[0.75] A situação de falta externa com fonte em apenas um lado, ou seja, sistema radial precisa ser analisado. [0.75] The external fault situation with source on one side only, ie radial system needs to be analyzed.
[076] Voltando a analisar as Figuras 2 e 3, è possível verificar que para uma falta na barra S, a impedância de sequência negativa vista pelo lado delta é igual a impedância de sequência positiva de pré-falta, ou seja, basicamente a impedância da carga. [076] Looking back at Figures 2 and 3, it can be seen that for a fault on S-bar, the negative sequence impedance seen by the delta side is equal to the positive pre-fault sequence impedance, ie basically the impedance. of cargo.
[077] Para. o lado estrela, a impedância de sequência negativa vista é justamente a impedância da carga, mas no quadrante oposto. Se estes pontos forem colocados no plano de atuação poderíamos ter uma atuação indevida do elemento de proteção para uma falta externa, conforme representado na Figura 12.  [077] To. On the star side, the negative sequence impedance seen is precisely the load impedance, but in the opposite quadrant. If these points are placed in the action plan we could have the protection element misbehaving for an external fault, as shown in Figure 12.
[078] Baseado neste problema, a região de atuação do elemento é modificada conforme Figura 13. [078] Based on this problem, the element's acting region is modified as shown in Figure 13.
[079] Este elemento é aqui referenciado como impedância negativa para faltas internas ou negative impedance for internai fault, Z2IF.  [079] This element is referred to here as negative impedance for internal faults or negative impedance for internal fault, Z2IF.
Faltas Blfáslcas  Blasphemous Fouls
[080] Nas seções anteriores foram analisadas as faltas monofásicas externas e internas ao transformador para sistemas em anel e radial. Nesta seção, é analisado se o cálculo da Z2IF também pode ser aplicado as faltas bifàsicas. [080] In the previous sections we analyzed the single-phase external and internal transformer faults for ring and radial systems. In this section, we analyze whether the Z2IF calculation can also be applied to biphasic faults.
[0811 A Figura.14 mostra o diagrama de sequência para. a falta bifásica externa ao transformador na barra R e reescrevendo as equações de impedância de sequência negativa para cada lado do transformador têm~se: [0811 Figure 14 shows the sequence diagram for. the two-phase transformer external fault on the R-bar and rewriting the negative sequence impedance equations for each side of the transformer have:
Figure imgf000020_0001
Figure imgf000020_0001
[082] Estas são exatamente as mesmas equações (1) e (2) para uma falta, monofásica na barra B.  [082] These are exactly the same equations (1) and (2) for a single-phase fault in bar B.
[083]. Se for aplicada uma falta na barra S, o resultado da impedância será o mesmo da. falta monofásica na barra R, A mesma análise pode ser feita para as faltas internas ao transformador, portanto,, conclui-se que o elemento possui o mesmo comportamento, independentemente do tipo de falta e excluindo a falta trifásica. [083] . If a fault is applied to the S bar, the impedance result will be the same as that. Single-phase fault on the R-bar. The same analysis can be made for transformer-internal faults, so it follows that the element behaves the same regardless of the type of fault and excluding the three-phase fault.
[084] De forma a demonstrar a operação do método aqui descrito, a Figura 15 mostra a resposta do método na presença de uma falta interna entre espiras com 1% do enrolamento, estrela curto-circuitado. É possível verificar a excursão das impedâncias de sequência negativa até o estado permanente das impedâncias quando há a presença da falta.  [084] In order to demonstrate the operation of the method described herein, Figure 15 shows the method response in the presence of an internal loop fault with 1% of the shorted star winding. It is possible to verify the negative sequence impedance excursion to the permanent state of the impedances when the fault is present.
[085] A Figura 16 complementa a análise mostrado as correntes de. ambos os lados do transformador e o bit de operação do método aqui descrito.  [085] Figure 16 complements the analysis showing the currents of. both sides of the transformer and the operation bit of the method described herein.

Claims

REIVINDICAÇÕES
1- Método de proteção de transformador para faltas internas, caracterizado pelo fato de compreender as etapas de:  1- Transformer protection method for internal faults, characterized by the following steps:
a) Aquisição dos dados da rede;  (a) acquisition of network data;
a.l) Monitora todos os sinais de corrente e tensão do equipamento protegido (correntes e tensões trifásicas de cada terminal) ;  a.l) Monitors all current and voltage signals of the protected equipment (three-phase currents and voltages of each terminal);
a.2) Elimina a superposição de frequências; a.3) Converte todos os sinais de analógicos para digitais;  a.2) Eliminates frequency overlap; a.3) Converts all signals from analog to digital;
a.4) JSxtrai os fasores da componente fundamental; b) Tratamento do sinal;  a.4) JSxtracts the phasors of the fundamental component; b) Signal treatment;
b. l) Condiciona os sinais para valores por unidade, pu;  B. l) Condition the signals to values per unit, pu;
b.2): Calcula as correntes e tensões de sequência negativa de cada terminal; b.2) : Calculates the negative sequence currents and voltages of each terminal;
b.3) Calcula as impedâncias de sequência negativa de cada terminal;  b.3) Calculates the negative sequence impedances of each terminal;
c) Identificação da necessidade de desbloqueio;  c) Identification of the need for unlocking;
c. l) Calcula as derivadas das tensões de cada terminal em relação ao passado (de 1 a 3 ciclos); c.2) Compara a sub-etapa (c.1) com o limiar LI (de 0.01 a 5) ;  ç. l) Calculates the derivatives of the voltages of each terminal in relation to the past (from 1 to 3 cycles); c.2) Compares sub-step (c.1) with threshold LI (from 0.01 to 5);
c.3) Compara a sub-etapa (c.l) com o limiar L2 (de 0.5 a 10) ;  c.3) Compares the sub-step (c.l) with the L2 threshold (from 0.5 to 10);
c.4) Compara a sub-etapa (cl) com o limiar L3 (de 10 a 120) ;  c.4) Compare sub-step (cl) with threshold L3 (from 10 to 120);
c.5) Declara distúrbio externo, não retira o bloqueio,, se uma das derivadas da sub-etapa (c.4) é verdadeira pelo tempo tl (de 0: a 3 ciclos) ; c.5) Declares external disturbance, does not remove block, if one of the derivatives of sub-step (c.4) is true for time tl (from 0: to 3 cycles);
c.6.) Declara distúrbio interno se uma das derivadas da sub-etapa (c.2) é verdadeira e a sub- etapa (c.4) é falsa pelo tempo t2 (de 0 a 3 ciclos); c.7) Declara distúrbio interno se mais de uma derivada da sub-etapa (c.3) é verdadeira e (c.4) é falsa pelo tempo t3 (de 0 a 3 ciclos) / c.6.) Declares internal disturbance if one of the derivatives of sub-step (c.2) is true and sub-step (c.4) is false by time t2 (from 0 to 3 cycles); c.7) Declare internal disturbance if more than one derivative of sub-step (c.3) is true and (c.4) is false by time t3 (0 to 3 cycles) /
0.8) Bloqueia novamente caso o desbloqueio permaneça pelo tempo t4 (de 100 a 500 ms);  0.8) Locks again if the unlock remains for time t4 (from 100 to 500 ms);
d) Identificação da falta; d) Identification of the fault;
d. l) Compara os resultados da sub-etapa (b.3) com a característica de atuação. (Nesta etapa pode haver diferentes tipos de características, por exemplo, reta simples, reta dupla, circular entre outras) ; d.2) Declara falta interna caso a sub-etapa (d.l) seja verdadeira para todos os. terminais;  d. l) Compare the results of sub-step (b.3) with the actuation characteristic. (In this step there may be different types of characteristics, for example, single line, double line, circular among others); d.2) Declares internal fault if sub-step (d.l) is true for all. terminals;
d.3) Declara falta externa caso um terminal da sub- etapa (d.l) seja falso;  d.3) Declares external fault if a sub-step terminal (d.l) is false;
e) Identificação de falta trifásica; e) Three-phase fault identification;
e. l) Calcula as correntes de sequência positiva de cada terminal;  and. l) Calculates the positive sequence currents of each terminal;
e.2) Calcula as correntes de operação e diferencial;  e.2) Calculates operating and differential currents;
e.3) Calcula as variações das correntes da sub- etapa (e.2);  e.3) Calculates the variations of the sub-step currents (e.2);
e.4) Compara com o limiar L4 (de. 0,5 a 2,0);  e.4) Compares against the L4 threshold (from 0.5 to 2.0);
e.5) Declara bloqueio caso a sub-etapa (e.4) seja verdadeira .  e.5) Declare blocking if sub-step (e.4) is true.
PCT/BR2017/000071 2016-07-12 2017-07-07 Method for protecting transformers against inner faults WO2018009992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020160161711 2016-07-12
BR102016016171-1A BR102016016171A2 (en) 2016-07-12 2016-07-12 INTERNAL FAULT TRANSFORMER PROTECTION METHOD

Publications (1)

Publication Number Publication Date
WO2018009992A1 true WO2018009992A1 (en) 2018-01-18

Family

ID=60952262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000071 WO2018009992A1 (en) 2016-07-12 2017-07-07 Method for protecting transformers against inner faults

Country Status (2)

Country Link
BR (1) BR102016016171A2 (en)
WO (1) WO2018009992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460104A (en) * 2019-09-20 2019-11-15 南京南瑞继保电气有限公司 A kind of equivalent positive and negative sequence fault impedance derivation method of photovoltaic DC-to-AC converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130179A1 (en) * 2003-12-31 2008-06-05 Abb Ab Method And Device For Fault Detection In Transformers Or Power Lines
US20090091867A1 (en) * 2007-10-09 2009-04-09 Armando Guzman-Casillas Transformer Through-Fault Current Monitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130179A1 (en) * 2003-12-31 2008-06-05 Abb Ab Method And Device For Fault Detection In Transformers Or Power Lines
US20090091867A1 (en) * 2007-10-09 2009-04-09 Armando Guzman-Casillas Transformer Through-Fault Current Monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460104A (en) * 2019-09-20 2019-11-15 南京南瑞继保电气有限公司 A kind of equivalent positive and negative sequence fault impedance derivation method of photovoltaic DC-to-AC converter

Also Published As

Publication number Publication date
BR102016016171A2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
US11435409B2 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
Roberts et al. Review of ground fault protection methods for grounded ungrounded and compensated distribution systems
JP6728225B2 (en) System and method for operating a transformer neutral cutoff system
BR112019025557B1 (en) SAFE METHOD OF OPERATION FOR SUPPRESSION OF THE VOLTAGE REDUCTION ARC OF THE GROUND FAULT PHASE OF THE NON-EFFECTIVE GROUNDING SYSTEM
Alencar et al. A method to identify inrush currents in power transformers protection based on the differential current gradient
Abdullah et al. Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions
KR102460706B1 (en) Apparatus and method detecting direction of fault current
CN105044543B (en) Reactor Fault method of discrimination after a kind of PT broken string
JP2007116893A (en) Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system
CN111480275B (en) Zero sequence current based differential protection for power transmission lines
BR112013010894B1 (en) method for monitoring an electrical power line and electrical protection device
BR102013025530A2 (en) IMPROVED SINGLE PHASE FAULT PROTECTION SYSTEM FOR MEDIUM VOLTAGE DISTRIBUTION NETWORKS
Zhou et al. An integrated cable condition diagnosis and fault localization system via sheath current monitoring
Zhao et al. Commutation failure prediction method based on characteristic of accumulated energy in inverter
WO2018009992A1 (en) Method for protecting transformers against inner faults
KR20140056964A (en) Method for deciding direction of recloser for distribution line
Hojatpanah et al. Reliable detection of high-impedance faults using mathematical morphology
US20230094978A1 (en) Detecting an electrical fault within a monitored zone of a power transmission line
BR102021009791A2 (en) METHOD AND PROTECTION SET TO PROTECT LINES
Ahmadzadeh-Shooshtari et al. A waveform-based approach for transformer differential protection under GIC conditions
US20100254056A1 (en) Efficient method for calculating the dot product in fault detection algorithms
WO2018009990A1 (en) High-sensitivity method for detecting internal faults
CN109188201B (en) Method for safely and quickly searching street lamp line fault
RU2510115C1 (en) Method to connect three-phase transmission line
Lavorin et al. Selecting directional elements for impedance-grounded distribution systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826700

Country of ref document: EP

Kind code of ref document: A1