WO2018009016A2 - Method for preparing metallocene catalyst for preparing polyolefin - Google Patents

Method for preparing metallocene catalyst for preparing polyolefin Download PDF

Info

Publication number
WO2018009016A2
WO2018009016A2 PCT/KR2017/007280 KR2017007280W WO2018009016A2 WO 2018009016 A2 WO2018009016 A2 WO 2018009016A2 KR 2017007280 W KR2017007280 W KR 2017007280W WO 2018009016 A2 WO2018009016 A2 WO 2018009016A2
Authority
WO
WIPO (PCT)
Prior art keywords
metallocene catalyst
compound
lithium chloride
solvent
alkyl
Prior art date
Application number
PCT/KR2017/007280
Other languages
French (fr)
Korean (ko)
Other versions
WO2018009016A3 (en
Inventor
박희광
이혜경
김병석
정재엽
전상진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170085739A external-priority patent/KR102064412B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004055.1A priority Critical patent/CN108290973B/en
Priority to US15/774,448 priority patent/US11077434B2/en
Priority to EP17824572.6A priority patent/EP3357938B1/en
Publication of WO2018009016A2 publication Critical patent/WO2018009016A2/en
Publication of WO2018009016A3 publication Critical patent/WO2018009016A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/658Pretreating with metals or metal-containing compounds with metals or metal-containing compounds, not provided for in a single group of groups C08F4/653 - C08F4/657

Definitions

  • the present invention relates to a method for effectively preparing a high purity metallocene catalyst capable of high activity in preparing high molecular weight polyolefin.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50's, but are characterized by a wide molecular weight distribution of polymers because they are multi- active catalysts with multiple active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution of the monomer is not uniform.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of an organic metal compound composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst, which is a single-site catalyst.
  • the polymer According to the characteristics of single active site, the polymer has narrow molecular weight distribution and homogeneous comonomer composition distribution, and the stereoregularity of copolymer, copolymerization characteristic, molecular weight, crystallinity according to ligand structure modification and change of polymerization conditions of catalyst It has the property to change the back. '
  • ansa-metallocene compound is an organometallic compound including two ligands connected to each other by a bridging group, and the rotation of the ligand is prevented by the bridging group. Center of Activity and structure are determined.
  • ansa-metallocene compounds have been used as catalysts in the preparation of ellepin-based homopolymers or copolymers.
  • ansa-metallocene compounds comprising cyclopentadienyl (eye 1 opent adienyl; f luoreny 1) ligands can produce high molecular weight polyethylene, thereby controlling the microstructure of polypropylene.
  • the ansa-metallocene compound containing an indenyl ligand can produce a polyolefin having excellent activity and improved stereoregularity.
  • the present inventors have disclosed an ansa-metallocene compound of a novel structure capable of providing various selectivity and activity to a polyolefin copolymer in Korean Patent Publication No. 10-2013-0125311.
  • racemate debris-symmetric meso diastereomers mirror -symmetric meso di astereomer
  • Racemates are preferred because they produce isotact ic polymers with high crystallinity, high melting point, high specific gravity and mechanical strength, while mirror-symmetric meso diastereomers are preferred for atactic ic. It is a catalyst that should be avoided because it manufactures polymer).
  • racemates and the mirror-symmetric meso diastereomers are prepared simultaneously in the process of preparing the ansa-metallocene catalyst, the structure of the ansa-metallocene catalyst that can generate excessive amounts of the racemates is important. Should be considered. There is also a need for an ansa-metallocene catalyst that can produce higher molecular weight polyolefins.
  • the existing metallocene catalyst is one of the by-products generated during synthesis
  • the present invention is to provide a high purity metallocene catalyst capable of producing high molecular weight polyolefin with high activity.
  • the present invention comprises the steps of reacting a ligand compound and a zirconium compound represented by Formula 1 to form a metallocene compound; Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And adding a solvent for extracting a lithium chloride complex to a reaction product including the lithium chloride complex and the metallocene compound, and filtering the same.
  • 3 ⁇ 4 is a C 6 alkyl substituted with CWQ - A 20 aryl
  • R 3 are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, d-20-alkyl silyl, alkyl silyl d- 20, d-20 alkoxysilyl, d- 20 ether, silyl ether, d- 20 alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 Arylalkyl,
  • A is carbon, silicon or germanium
  • 3 ⁇ 4 is C-20 alkyl substituted with C0 alkoxy
  • R 6 is hydrogen, d- 20 alkyl or C 2 - 20 alkenyl is.
  • the present invention also provides a metallocene catalyst prepared by the method as described above.
  • a metallocene compound by reacting a ligand compound and a zirconium compound represented by Formula 1 below; Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And adding a solvent for extracting a lithium chloride complex to the reaction product including the lithium chloride complex and the metallocene compound, and filtering the metallocene.
  • Ri is a C 6 alkyl substituted with CQ-20, and aryl,
  • R 3 and R 4 are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, CHO alkylsilyl, C 20 alkyl silyl group, alkoxysilyl group, d-20 ether, silyl ether, CO alkoxy, C 6 - 20, and arylalkyl, - 20 aryl, C 7 - 20 alkylaryl, or C 7
  • A is carbon, silicon or germanium
  • R 5 is alkyl substituted with Cwo alkoxy
  • 3 ⁇ 4 is hydrogen, d-20 alkyl or C 2 - 20 alkenyl is.
  • the present invention provides a ring structure including a solvent capable of forming a lithium chloride complex, for example, two or more oxygen atoms so as to effectively remove LiCl produced as a by-product in the reaction of the ligand compound and the transition metal compound.
  • a specific solvent having it is characterized by using a specific aprotic solvent that can selectively extract the organometallic compound and the lithium chloride complex.
  • the ligand compound includes an indene compound as shown in Chemical Formula 1.
  • the method for preparing a metallocene catalyst of the present invention includes the steps of preparing a ligand compound represented by the following Chemical Formula 1 by reacting the indene compound represented by the following Chemical Formula 2 and the compound represented by the following Chemical Formula 3; Forming a metallocene compound by reacting a ligand compound and a zirconium compound represented by Formula 1 below; Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And adding a solvent for extracting the lithium chloride complex compound to the reaction product including the lithium chloride complex and the metallocene compound, and filtering.
  • a ligand compound represented by the following Chemical Formula 1 by reacting the indene compound represented by the following Chemical Formula 2 and the compound represented by the following Chemical Formula 3
  • Forming a metallocene compound by reacting a ligand compound and a zirconium compound represented by Formula 1 below
  • Forming a lithium chloride complex compound by adding a solvent
  • Ri is an optionally substituted C 6 to C o alkyl-aryl and 20,
  • A is carbon, silicon or germanium
  • 3 ⁇ 4 is d-20 alkyl substituted with CWQ alkoxy
  • 3 ⁇ 4 is hydrogen, d-20 alkyl or C 2 - 20 alkenyl, and,
  • Ri is - a C 6 alkyl substituted with 20 - 20 aryl
  • , 3 ⁇ 4 and are each independently hydrogen, halogen, alkyl, C 2 - 20 alkenyl, d- 20 alkylsilyl, d-20 alkyl silyl group, alkoxysilyl 20 d-, d- 20 ether, silyl ether 20 d-, CO and 20 arylalkyl, alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7
  • A is carbon, silicon or germanium
  • R 5 is d-20 alkyl substituted with CQ alkoxy
  • R 6 is hydrogen, alkyl, CHO, or C 2 - 20 alkenyl, and,
  • X is the same or different halogen from each other.
  • the present invention provides a method for producing a metallocene catalyst for minimizing reaction by-products and producing a metallocene compound with high purity as an olefin catalyst.
  • the metallocene catalyst may include, in particular, a metallocene compound of Formula 5 below.
  • X is the same or different halogen from each other
  • 3 ⁇ 4 is substituted with a C 6 Cuo alkyl-aryl and 20,
  • R 2, R 3 and R4 are each independently hydrogen, halogen, d-20 alkyl, C 2 - 20 alkenyl, CHO alkylsilyl, silyl Cwo alkyl, d-20 alkoxysilyl, d- 20 ether, silyl ether, alkoxy and 20 alkylaryl, or C 20 aryl that, -, C 6 - 20 aryl, C 7
  • A is carbon, silicon or germanium
  • 3 ⁇ 4 is d-20 alkyl substituted with CHO alkoxy
  • R 6 is hydrogen, alkyl or C 2 - 20 alkenyl is.
  • the compound of Formula 5 has an ansa-metallocene structure and includes two indenyl groups as ligands.
  • the ligand The bridge group (br idge group) to link with the oxygen-donor (oxygen-donor) is substituted with a functional group that can act as a Lewis base has the advantage of maximizing the activity as a catalyst.
  • a bulky group such as C6-20 aryl (R1) substituted with C1-20 alkyl in the indenyl group is substituted, steric hindrance is imparted to suppress mesoform formation.
  • indene compound represented by Chemical Formula 1 when used on its own or in a carrier to be used as a catalyst for the production of polyolefins, polyolefins having desired physical properties can be more easily prepared.
  • zirconium (Hf) as a metal atom enhances the activity of the catalyst and enables polymerization of higher molecular weight polyolefins.
  • Ri is phenyl substituted with tert-butyl. More preferably, it is Rr 4- (t-butyl) -phenyl.
  • 3 ⁇ 4 and 3 ⁇ 4 are hydrogen.
  • A is silicon
  • 3 ⁇ 4 is 3- (t-buroxy) -propyl and R 6 is methyl.
  • the method for producing a metallocene catalyst according to the present invention may be carried out in one embodiment, such as the following reaction.
  • Step 1 is a step of preparing a ligand compound represented by Formula 3 by reacting the indene compound represented by Formula 1 and the compound represented by Formula 2. It is preferable to use alkyllilium (eg, ⁇ -butyllithium) in the reaction, and the reaction temperature is -200 to 0 ° C., more preferably -150 to 0 ° C. As the solvent, toluene, tetrahydrofuran (THF: tetrahydrofuran) and the like can be used. At this time, after separating the organic layer from the product, the step of vacuum drying the separated organic layer and removing the excess reactant may be further performed.
  • alkyllilium eg, ⁇ -butyllithium
  • THF tetrahydrofuran
  • Step 2 is a step of preparing a compound represented by Chemical Formula 5 by reacting the ligand compound represented by Chemical Formula 3 with the zirconium compound represented by Chemical Formula 4.
  • Is 78 to 0 ° c - is preferred to use an alkyllithium (e.g., n- butyl lithium) to the reaction, and banung temperature is from -20 to 0 ° C, more preferably.
  • the solvent for the reaction at least one selected from the group consisting of diethyl ether, nucleic acid, toluene, and 1,4-dioxane can be used.
  • the reaction product is removed after the reaction and the reaction product including the obtained metallocene compound is added to form a lithium chloride complex by adding a solvent for forming a lithium chloride complex.
  • the solvent for forming a lithium chloride complex has a property of dissolving both the produced lithium chloride complex and the metallocene compound while being able to react with lithium chloride to form a complex.
  • Li atoms in the members of LiCl have a high oxygen affinity (oxophi lic), and thus LiCl can easily form a complex with oxygen atoms included in the solvent. but, Included together as impurities in a reaction product comprising a metallocene compound
  • an organic solvent containing two or more oxygen atoms and having a cyclic structure For more effective complex formation with LiCl, it is preferable to use an organic solvent containing two or more oxygen atoms and having a cyclic structure.
  • the organic solvent containing more than two oxygen atoms increases the reaction properties with LiCl according to the high oxygen affinity (oxophilicity), the shielding effect of the oxygen atoms by the surrounding carbon atoms in the case of having a cyclic structure (Shielding Due to its low effect, it is possible to form complexes with LiCl with high oxygen affinity (oxophi 1 ici ty).
  • the solvent for forming the lithium chloride complex compound may be at least one selected from the group consisting of 1,4-dioxane and 1,3-dioxolane (1,3-Dioxolane).
  • the lithium chloride complex forming solvent is added in an amount of about 3 to 20 times, preferably about 5 to 15 times, most preferably about 8 to 12 times, based on the weight of the indene compound of Formula 2, and about 1 hour
  • the above can be stirred.
  • the lithium chloride complex thus produced may be LiCl / dioxane 1: 1 complex as lithium chloride-1,4-dioxane complex.
  • the lithium chloride complex forming solvent may be removed by distillation under reduced pressure under the conditions of pressure 0.5 to 2.0 mbar and temperature 30 to 45 ° C.
  • the reaction product obtained by adding and stirring the lithium chloride complex ' forming solvent and then removing the solvent for forming a lithium chloride complex such as 1,4' dioxane includes a lithium chloride complex and a metallocene compound.
  • the reaction product containing the lithium chloride complex and the metallocene compound may be added with a solvent for extracting the lithium chloride complex and filtered.
  • the solvent for extracting the lithium chloride complex is to dissolve only the lithium chloride complex in the reaction product, so that only the solid metallocene compound can be obtained through the filtration process.
  • the solvent for extracting the lithium chloride complex compound may be an aprotic solvent containing no oxygen atom.
  • the metallocene compound which is a product
  • solvent proton solvents such as alcohols
  • problems may occur that decompose the metallocene compound as a product.
  • the solvent for extracting the lithium chloride complex compound is selected from the group consisting of dichloromethane, chloroform, carbon tetrachl or ide, benzene, and toluene. The above is mentioned.
  • the solvent for extracting the lithium chloride complex compound is added in an amount of about 3 to 20 times, preferably about 4 to 15 times, and most preferably about 5 to 12 times, based on the weight of the indene compound of Chemical Formula 2, and about 1 hour.
  • the above can be stirred.
  • the method for producing a metallocene catalyst according to the present invention is the addition of such an extraction solvent, and the solvent removed from the filtrate obtained after the filtration, and preferably may be prepared by reduced pressure distillation, adding performed in the recrystallization, phase .
  • one or more solvents selected from the group consisting of dichloromethane and nucleic acid may be used.
  • the metallocene catalyst prepared according to the present invention may exhibit high purity by removing LiCl, which is a reaction impurity, as much as possible.
  • the content of LiCl included in the prepared metallocene catalyst may be 200 ppm or less and 150 ppm. Or less, 100 ppm or less, or 75 ppm or less.
  • the compound represented by Chemical Formula 5 may be used as a catalyst for olefin polymerization by itself or with a promoter as a catalyst precursor.
  • the metallocene catalyst may be a catalyst supported on a carrier.
  • the carrier is not particularly limited since the conventional one can be used in the art to which the present invention pertains.
  • one or more carriers selected from the group consisting of silica, silica-alumina and silica-magnesia may be used.
  • silica carrier and the functional group of the compound represented by Chemical Formula 1 are supported by chemical bonding, there are almost no catalysts liberated from the surface in the olefin polymerization process. There is no fouling on the wall or the polymer particles that get entangled in the process.
  • the polyolefin prepared in the presence of a catalyst comprising such a silica carrier is excellent in the particle shape and apparent density of the polymer can be suitably used in conventional slurry or gas phase polymerization process. Therefore, it is preferable to use a carrier having a high banung siloxane group on the surface by drying at a high temperature.
  • silica, silica-alumina and the like dried at a high temperature may be used, and they may typically contain oxides, carbonates, sulfates, nitrates, such as Na 2 O, K 2 CO 3, BaS0 4 , and Mg (N0 3 ) 2 . have.
  • the metallocene catalyst may further include a promoter composed of alkylaluminoxane.
  • a promoter composed of alkylaluminoxane.
  • X bonded to the metal element (Hf) of the compound represented by Chemical Formula 5 may be used as a catalyst in a form substituted with an alkyl group, such as CHO alkyl.
  • the promoter is not particularly limited as it may be used in the art to which the present invention pertains.
  • one or more promoters selected from the group consisting of silica, silica-alumina, and organoaluminum compounds may be used.
  • a polymer polymerization method using the metallocene catalyst in particular, in the presence of the metallocene catalyst, there is provided a process for producing a polyolefin comprising the step of polymerizing at least one olefin monomer.
  • the olefin monomers are ethylene, propylene, 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pente, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-nuxadecene It may be one or more selected from the group consisting of, 1-octadecene, 1-eicosene and combinations thereof.
  • the polymerization of the polyolefin may be performed by reacting for 1 to 24 hours under a silver degree of 25 to 500 ° C and a pressure of 1 to 100 kgf / cuf.
  • the polymerization reaction temperature is preferably 25 to 200 ° C., more preferably 50 to 100 ° C.
  • the polymerization banung pressure of 1 to 70 kgf / cuf is preferable, more preferably 5 to 40 kgf / cin 2.
  • the polymerization reaction time is preferably 1 to 5 hours.
  • the polymerization process can control the molecular weight range of the resulting polymer product in accordance with hydrogenation or no addition conditions.
  • hydrogen Under the conditions without addition, high molecular weight polyolefin can be produced, and if hydrogen is added, a low molecular weight polyolefin can be produced even with a small amount of hydrogen.
  • the hydrogen content added to the polymerization process is in the range of 0.07 L to 4 L under 1 atmosphere of semi-aqueous conditions, or is supplied at a pressure of 1 bar to 40 bar or 168 ppm to 8,000 ppm in the range of molar hydrogen content relative to the olefin monomer. Can be supplied.
  • the activity of the catalyst is determined based on the weight of the polymer produced per unit weight content (g) of catalyst based on unit time (h) ( kg), 8.0 kg / gCat. hr or more or 8.0 to 30 kg / dl ol. hr, preferably 10.0 kg / mmol.hr or more, and more preferably 12.0 kg / dol.hr or more.
  • Polyolefin prepared using the compound of Formula 5 as a catalyst according to the present invention may have a higher molecular weight than when using a conventional metallocene catalyst.
  • the melt index (MFR, 2.16 kg) measured according to the method of ASTM D 1238 for the polyolefin is 25 g / 10 min or less, preferably 18 g / 10 min or less, most preferably 15 It can be significantly lowered to g / 10 min or less, thereby securing a polylefin having a high molecular weight.
  • the present invention is characterized by producing a catalyst of higher purity by adding a step of distillation under reduced pressure after dissolving in a solvent for forming a lithium chloride complex such as 1,4-dioxane in the existing catalyst production process.
  • the present invention is very effective in removing by-products such as LiCl, and it is possible to achieve the effect of increasing the filtration efficiency due to the increase in particle size.
  • the polyolefin prepared using the metallocene catalyst prepared according to the present invention may have an average particle diameter of 500 i or more or 500 to 1200, preferably 600 m or more, and more preferably 700 im or more.
  • the high purity metallocene catalyst which effectively removes LiCl, which is a by-product of catalyst synthesis, has a higher activity as a catalyst in olefin polymerization reaction than the conventional metallocene compound, and a high molecular weight when preparing polyolefin using the same Polyolefins having properties can be easily produced.
  • Example 1 is a photograph showing the particle size and distribution produced after the polymerization process according to Example 1 and Comparative Example 1 of the present invention.
  • reaction mixture was cooled to -20 ° C, and then 82 g of (3-t-butoxypropyl) dichloromethylsilane and 512 mg of CuCN were slowly added dropwise.
  • the reaction mixture was warmed to room temperature, stirred for about 15 hours, and 500 mL of water was added. Thereafter, the organic layer was separated, dehydrated with MgSO 4 and filtered. The filtrate was distilled under reduced pressure to give a yellow oil.
  • the reaction solution was raised to room temperature, stirred for about 15 hours, and the solvent was removed under reduced pressure.
  • the reaction mixture was distilled under reduced pressure, and 1,4-dioxane (1,4-dioxane) was about 750, which was about 5 times based on the weight of 2-methyl-4- (4_t-butylphenyl) -indene.
  • g was added and stirred for about 1 hour, and the solvent was removed under reduced pressure to obtain a solid mixture of the lithium chloride-1,4-dioxane complex and the organometallic compound.
  • About 1 L of dichloromethane was added to the reaction container containing the solid mixture thus obtained, and the insoluble inorganic salts were filtered out.
  • silica 3 g was pre-weighed in a shrink flask, and 10 ml of methylaluminoxane (MA0) was added thereto and reacted at 90 ° C. for about 24 hours. After precipitation, the upper layer was removed and washed once with toluene.
  • Ansa-metallocene compound synthesized in step 2 rac-[(3-t-butoxypropylmethylsilanediyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)] zirconium After dissolving 60 yi l of dichloride in toluene, it was reacted at about 70 ° C. for about 5 hours.
  • 1,4-dioxane (1,4-dioxane) is about based on the weight of 2-methyl-4- (4_t_butylphenyl) -indene.
  • Metallocene catalyst rac-[(3-t_butoxypropylmethylsilanediyl) -bis (2-methyl in the same manner as in Example 1, except that about 2,250 g, which is about 15 times as much content was added. -4- (4-t_
  • Step 1) Preparation of (3-t-butoxypropyl) (methyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)) silane.
  • Example 1 except that about 1,500 g of (Et 2 0) was added in an amount of about 10 times by weight of 2-methyl-4- (4-t-butylphenyl) -indene In the same manner as the metallocene catalyst was prepared and the LiCl content was measured. At this time, the content of LiCl measured for the produced metallocene catalyst was found to be 1,850 ppm, indicating that the impurities were contained in a high content. Comparative Example 5
  • Butylphenyl) indenyl)] zirconium dichloride 5 g was prepared (yield 2.0%) and the LiCl content was measured.
  • Butylphenyl) -Metallocene catalyst was prepared in the same manner as in Comparative Example 1 except that about 2,250 g of about 15 times by weight of indene was added. All were dissolved to obtain an organometallic compound (yield 0%), and the content detection of LiCl could not be performed.
  • the main process conditions and the LiCl content contained in the resulting catalyst were measured as shown in Table 1 below. .
  • Catalyst activity calculated as the ratio of the weight of polymer produced (kg PP) per catalyst content ( ⁇ ol and g of catalyst) used, based on unit time (h).
  • FIG. 1 a scanning electron microscope (SEM) photograph of the particle size and distribution generated after the polymerization process according to Example 1 and Comparative Example 1 of the present invention is shown in FIG. 1. As shown in Figure 1 it can be seen that by increasing the particle size of the polymer produced by about 25% to suppress the generation of fine particles to ensure process stability.
  • the metallocene compound according to the present invention produced Examples 1 to 3 used as supported catalysts showed a high activity increasing effect in the production of polypropylene.
  • Preparation Examples 1 to 3 had a catalytic activity of 15.3 to 15.9 k ' g / g. very good in hr.
  • no extraction drying step with the addition of a separate LiCl complex solvent is carried out according to existing methods or using conventional ether solvents.
  • Comparative Preparation Examples 1 to 4 have a catalytic activity of 0.9 to 2.5 kg / g at random polymerization. It can be seen that the hr falls markedly.
  • Preparation Examples 1 to 3 of the present invention significantly improved the purity of the metallocene catalyst produced as compared to the conventional method, thereby improving the polymerization activity by about 17 times compared to Comparative Preparation Example 1 according to the conventional method. It can be seen that.
  • the catalyst input should be increased in order to control the slurry densi ty of the polymerization process, but when the activity is low, it is difficult to commercially produce the limit.
  • the activity is high, as in Preparation Examples 1 to 3 according to the present invention, it is advantageous in commercial production because it can be controlled by a small amount of catalyst.
  • the average particle diameter of the produced polypropylene particles is about three times that of Comparative Preparation Examples 1 to 6, in particular, Comparative Preparation Example Since it is about 4.5 times larger than 1, it has the advantage of being able to stably produce long-term without fouling in a continuous process produced industrially.
  • the average particle diameter of the produced polyolefin is significantly small, as in Comparative Preparation Examples 1, 3, 4, etc., the possibility of fine powder is increased, or a sheet is generated in the process to generate fouling to increase the overall process efficiency. Can be reduced.
  • the MFR value is significantly low, which can be seen that the molecular weight of the polypropylene prepared by using the metallocene compound according to the present invention as a supported catalyst. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a method for preparing a high-purity metallocene catalyst capable of providing varying selectivity and high activity to a polyolefin copolymer and, particularly, can prepare a high-purity metallocene catalyst by adding, after forming a metallocene compound by reacting a ligand compound and a zirconium compound, a step of converting lithium chloride, which is contained as a reaction by-product in the metallocene compound, into a complex form, thereby effectively removing the same in the next step of extracting a catalyst.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
폴리올레핀 제조용 메탈로센 촉매의 제조방법  Method for preparing metallocene catalyst for polyolefin production
【기술분야】 Technical Field
관련 출원들과의 상호 인용  Cross Citation with Related Applications
본 출원은 2016년 7월 7일자 한국 특허 출원 제 10-2016-0086256호 및 2017년 7월 6일자 한국 특허 출원 제 10-2017— 0085739호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0086256 filed on July 7, 2016 and Korean Patent Application No. 10-2017—0085739 filed on July 6, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 고분자량 폴리올레핀을 제조시 높은 활성을 구현할 수 있는 고순도의 메탈로센 촉매를 효과적으로 제조하는 방법에 관한 것이다.  The present invention relates to a method for effectively preparing a high purity metallocene catalyst capable of high activity in preparing high molecular weight polyolefin.
【배경기술】 Background Art
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러개 흔재하는 다활성점 촉매 (mul t i-s i te catalyst )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.  Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics. Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50's, but are characterized by a wide molecular weight distribution of polymers because they are multi- active catalysts with multiple active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution of the monomer is not uniform.
메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single s i te catalyst )이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다. ' The metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of an organic metal compound composed mainly of aluminum. Such a catalyst is a homogeneous complex catalyst, which is a single-site catalyst. , According to the characteristics of single active site, the polymer has narrow molecular weight distribution and homogeneous comonomer composition distribution, and the stereoregularity of copolymer, copolymerization characteristic, molecular weight, crystallinity according to ligand structure modification and change of polymerization conditions of catalyst It has the property to change the back. '
한편, 안사-메탈로센 (ansa-metal locene) 화합물은 브릿지 그룹에 의해 서로 연결된 두 개의 리간드를 포함하는 유기금속 화합물로서, 상기 브릿지 그룹 (br idge group)에 의해 리간드의 회전이 방지되고, 메탈 센터의 활성 및 구조가 결정된다. Meanwhile, ansa-metallocene compound is an organometallic compound including two ligands connected to each other by a bridging group, and the rotation of the ligand is prevented by the bridging group. Center of Activity and structure are determined.
이와 같은 안사-메탈로센 화합물은 을레핀계 호모폴리머 또는 코폴리머의 제조에 촉매로 사용되고 있다. 특히 사이클로펜타디에닐 (eye 1 opent adienyl;卜플루오레닐 ( f luoreny 1 ) 리간드를 포함하는 안사-메탈로센 화합물은 고분자량의 폴리에틸렌을 제조할 수 있으며, 이를 통해 폴리프로필렌의 미세 구조를 제어할 수 있음이 알려져 있다ᅳ 또한, 인데닐 ( indenyl ) 리간드를 포함하는 안사-메탈로센 화합물은 활성이 우수하고, 입체 규칙성이 향상된 폴리올레핀을 제조할 수 있는 것으로 알려져 있다.  Such ansa-metallocene compounds have been used as catalysts in the preparation of ellepin-based homopolymers or copolymers. In particular, ansa-metallocene compounds comprising cyclopentadienyl (eye 1 opent adienyl; f luoreny 1) ligands can produce high molecular weight polyethylene, thereby controlling the microstructure of polypropylene. It is also known that the ansa-metallocene compound containing an indenyl ligand can produce a polyolefin having excellent activity and improved stereoregularity.
본 발명자들은 한국특허 공개번호 제 10-2013-0125311호에 폴리을레핀 공중합체에 대하여 다양한 선택성과 활성을 제공할 수 있는 새로운 구조의 안사-메탈로센 화합물을 개시한 바 있다.  The present inventors have disclosed an ansa-metallocene compound of a novel structure capable of providing various selectivity and activity to a polyolefin copolymer in Korean Patent Publication No. 10-2013-0125311.
한편, 안사-메탈로센 촉매 중 비스 -인데닐-리간드를 가지는 경우에는, 두 리간드의 입체적 배치에 따라 두 가지의 형태, 즉 라세미체 (racemate)파 거을-대칭성 메소 부분입체이성질체 (mi rror-symmetr i c meso di astereomer )가 형성될 수 있다. 라세미체의 경우에는 결정성 및 녹는점이 높고 비중 및 기계적 강도가 큰 아이소택틱 중합체 ( i sotact i c polymer )를 제조하기 때문에 선호되는 반면, 거울-대칭성 메소 부분입체이성질체는 어택틱 중합체 (atact i c polymer )를 제조하기 때문에 사용을 피해야 하는 촉매이다. 그러나, 안사-메탈로센 촉매를 제조하는 과정에서 라세미체와 거울-대칭성 메소 부분입체이성질체가 동시에 제조되기 때문에, 라세미체가 과량으로 생성될 수 있는 안사-메탈로센 촉매의 구조가 중요하게 고려되어야 한다. 또한, 보다 높은 고분자량의 폴리올레핀을 제조할 수 있는 안사-메탈로센 촉매가 필요하다.  On the other hand, in the case of bis-indenyl-ligand in the ansa-metallocene catalyst, according to the three-dimensional arrangement of the two ligands, there are two forms, namely racemate debris-symmetric meso diastereomers (mirror -symmetric meso di astereomer) can be formed. Racemates are preferred because they produce isotact ic polymers with high crystallinity, high melting point, high specific gravity and mechanical strength, while mirror-symmetric meso diastereomers are preferred for atactic ic. It is a catalyst that should be avoided because it manufactures polymer). However, since the racemates and the mirror-symmetric meso diastereomers are prepared simultaneously in the process of preparing the ansa-metallocene catalyst, the structure of the ansa-metallocene catalyst that can generate excessive amounts of the racemates is important. Should be considered. There is also a need for an ansa-metallocene catalyst that can produce higher molecular weight polyolefins.
특히, 기존의 메탈로센 촉매는 합성시 생성되는 부산물 중의 하나인 In particular, the existing metallocene catalyst is one of the by-products generated during synthesis
LiCl를 제거하는 여과 과정에서 제거가 되지 않고 통과되어 메탈로센 촉매와 함께 존재함으로써 순도를 떨어뜨리게 되며, 고분자 중합시 활성을 저해하는 문제가 있다. In the filtration process to remove LiCl is passed without being removed to exist with the metallocene catalyst to reduce the purity, there is a problem that inhibits the activity during polymer polymerization.
따라서, 고분자량 폴리올레핀을 높은 활성으로 제조할 수 있는 안사- 메탈로센 화합물을 제조하는 공정 개발에 대한 연구가 필요하다. 【발명의 내용】 Therefore, there is a need for a process development for producing an ansa-metallocene compound capable of producing high molecular weight polyolefin with high activity. [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 고분자량의 폴리을레핀을 높은 활성으로 제조할 수 있는 고순도의 메탈로센 촉매를 제공하고자 한다.  The present invention is to provide a high purity metallocene catalyst capable of producing high molecular weight polyolefin with high activity.
【과제의 해결 수단】 [Measures of problem]
본 발명은 하기 화학식 1로 표시되는 리간드 화합물과 지르코늄 화합물을 반웅시켜 메탈로센 화합물을 형성하는 단계; 상기 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 형성용 용매를 첨가하여 염화리튬 착화합물을 형성하는 단계; 및 상기 염화리륨 착화합물과 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 추출용 용매를 첨가하고 여과하는 단계;를 포함하는 메탈로센 촉매의 제조 방법을 제공한다.  The present invention comprises the steps of reacting a ligand compound and a zirconium compound represented by Formula 1 to form a metallocene compound; Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And adding a solvent for extracting a lithium chloride complex to a reaction product including the lithium chloride complex and the metallocene compound, and filtering the same.
Figure imgf000005_0001
상기 화학식 1에서,
Figure imgf000005_0001
In Chemical Formula 1,
¾은 CWQ 알킬로 치환된 C6-20 아릴이고, ¾ is a C 6 alkyl substituted with CWQ - A 20 aryl,
, R3 및 는 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, d-20 알킬실릴, d-20 실릴알킬, d-20 알콕시실릴, d-20 에테르, 실릴에테르, d-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고, , And R 3 are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, d-20-alkyl silyl, alkyl silyl d- 20, d-20 alkoxysilyl, d- 20 ether, silyl ether, d- 20 alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 Arylalkyl,
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
¾는 C O 알콕시로 치환된 C -20 알킬이고,  ¾ is C-20 alkyl substituted with C0 alkoxy,
R6는 수소, d-20 알킬 또는 C2-20 알케닐이다. R 6 is hydrogen, d- 20 alkyl or C 2 - 20 alkenyl is.
본 발명은 또한, 상술한 바와 같은 방법으로 제조된 메탈로센 촉매를 제공한다.  The present invention also provides a metallocene catalyst prepared by the method as described above.
이하에서는 본 발명의 바람직한 일 구현예에 따른 메탈로센 촉매의 제조 방법 및 이로부터 제조된 메탈로센 촉매에 관하여 보다 구체적으로 설명하기로 한다.  Hereinafter, a method of preparing a metallocene catalyst and a metallocene catalyst prepared therefrom according to an exemplary embodiment of the present invention will be described in more detail.
본 발명에서, 제 1, 게 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.  In the present invention, the terms first, crab, etc. are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다 ", "구비하다1' 또는 "가지다1' 등의 용어는 실시된 특징, 슷자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫지", 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In addition, the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise 1 " or "have 1 " and the like are intended to indicate that there are features, features, steps, components, or a combination thereof that are implemented, one or more other It should be understood that it does not exclude in advance the possibility of the presence or addition of features or figures ", steps, components, or combinations thereof.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 리간드 화합물과 지르코늄 화합물을 반웅시켜 메탈로센 화합물을 형성하는 단계; 상기 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 형성용 용매를 첨가하여 염화리튬 착화합물을 형성하는 단계; 및 상기 염화리튬 착화합물과 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 추출용 용매를 첨가하고 여과하는 단계;를 포함하는 메탈로센 According to an embodiment of the present invention, forming a metallocene compound by reacting a ligand compound and a zirconium compound represented by Formula 1 below; Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And adding a solvent for extracting a lithium chloride complex to the reaction product including the lithium chloride complex and the metallocene compound, and filtering the metallocene.
Figure imgf000007_0001
상기 화학식 1에서,
Figure imgf000007_0001
In Chemical Formula 1,
Ri은 C Q 알킬로 치환된 C6-20 아릴이고, Ri is a C 6 alkyl substituted with CQ-20, and aryl,
, R3 및 R4는 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, CHO 알킬실릴, C 20 실릴알킬, 알콕시실릴, d-20 에테르, 실릴에테르, C O 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고, , R 3 and R 4 are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, CHO alkylsilyl, C 20 alkyl silyl group, alkoxysilyl group, d-20 ether, silyl ether, CO alkoxy, C 6 - 20, and arylalkyl, - 20 aryl, C 7 - 20 alkylaryl, or C 7
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
R5는 Cwo 알콕시로 치환된 알킬이고, R 5 is alkyl substituted with Cwo alkoxy,
¾는 수소, d-20 알킬 또는 C2-20 알케닐이다. ¾ is hydrogen, d-20 alkyl or C 2 - 20 alkenyl is.
특히, 본 발명은 리간드 화합물과 전이금속 화합물의 반웅시에 부산물로 생성되는 LiCl를 효과적으로 제거할 수 있도록, 염화리튬 착화합물을 형성할 수 있는 용매, 예컨대, 2개 이상의 산소 원자롤 포함하는 고리 구조를 갖는 특정 용매와 반응시키는 단계를 추가하고, 유기금속화합물과 염화리튬 착화합물을 선택적으로 추출할 수 있는 특정의 비양자성 용매를 사용하는 것을 특징으로 한다. 즉, LiCl를 제거하기 위한 비용매로 작용하는 것으로 1, 4-다이옥산 등의 2개 이상의 산소 원자를 포함하는 고리 구조의 용매를 염화리튬 착화합물 형성용 용매로 사용하여 궁극적으로는 고순도의 유기금속 화합물을 제조하고, 고활성으로 폴리프로필렌을 제조하는 것을 특징으로 한다. In particular, the present invention provides a ring structure including a solvent capable of forming a lithium chloride complex, for example, two or more oxygen atoms so as to effectively remove LiCl produced as a by-product in the reaction of the ligand compound and the transition metal compound. In addition to the step of reacting with a specific solvent having, it is characterized by using a specific aprotic solvent that can selectively extract the organometallic compound and the lithium chloride complex. That is, it acts as a non-solvent for removing LiCl, by using a solvent having a ring structure containing two or more oxygen atoms such as 1,4-dioxane as a solvent for forming a lithium chloride complex Ultimately, a high purity organometallic compound is prepared, and polypropylene is produced with high activity.
본 발명에서 상기 리간드 화합물은 상기 화학식 1에 나타낸 바와 같이 인덴 화합물을 포함한다.  In the present invention, the ligand compound includes an indene compound as shown in Chemical Formula 1.
특히, 본 발명의 메탈로센 촉매의 제조 방법은 하기 화학식 2로 표시되는 인덴 화합물과 하기 화학식 3으로 표시되는 화합물을 반웅시켜, 하기 화학식 1로 표시되는 리간드 화합물을 제조하는 단계 ; 하기 화학식 1로 표시되는 리간드 화합물과 지르코늄 화합물을 반웅시켜 메탈로센 화합물을 형성하는 단계; 상기 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 형성용 용매를 첨가하여 염화리튬 착화합물을 형성하는 단계; 및 상기 염화리튬 착화합물과 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 추출용 용매를 첨가하고 여과하는 단계;를 포함할 수 있다.  In particular, the method for preparing a metallocene catalyst of the present invention includes the steps of preparing a ligand compound represented by the following Chemical Formula 1 by reacting the indene compound represented by the following Chemical Formula 2 and the compound represented by the following Chemical Formula 3; Forming a metallocene compound by reacting a ligand compound and a zirconium compound represented by Formula 1 below; Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And adding a solvent for extracting the lithium chloride complex compound to the reaction product including the lithium chloride complex and the metallocene compound, and filtering.
Figure imgf000008_0001
상기 화학식 1에서,
Figure imgf000008_0001
In Chemical Formula 1,
Ri은 C o 알킬로 치환된 C6-20 아릴이고, Ri is an optionally substituted C 6 to C o alkyl-aryl and 20,
¾, ¾ 및 는 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, (^-20 알킬실릴, d-20 실릴알킬, d— 20 알콕시실릴, d— 20 에테르, 실릴에테르, d-20 알콕시, C6-20 아릴, C720 알킬아릴, 또는 C7-20 아릴알킬이고, ¾, ¾, and are each independently hydrogen, halogen, d-20 alkyl, C 2 - 20 alkenyl, (^ -20 alkylsilyl, d- 20 alkyl silyl group, alkoxysilyl 20 d-, d- 20 ether, a silyl ether , d- 20 alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 Arylalkyl,
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
¾는 CWQ 알콕시로 치환된 d-20 알킬이고,  ¾ is d-20 alkyl substituted with CWQ alkoxy,
¾는 수소, d-20 알킬 또는 C2-20 알케닐이고, ¾ is hydrogen, d-20 alkyl or C 2 - 20 alkenyl, and,
[화학식 2]  [Formula 2]
Figure imgf000009_0001
상기 화학식 2에서,
Figure imgf000009_0001
In Chemical Formula 2,
Ri은 -20 알킬로 치환된 C6-20 아릴이고 Ri is - a C 6 alkyl substituted with 20 - 20 aryl
, ¾ 및 는 각각 독립적으로 수소, 할로겐, 알킬, C2-20 알케닐, d-20 알킬실릴, d-20 실릴알킬, d-20 알콕시실릴, d-20 에테르, d-20 실릴에테르, C O 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고, , ¾ and are each independently hydrogen, halogen, alkyl, C 2 - 20 alkenyl, d- 20 alkylsilyl, d-20 alkyl silyl group, alkoxysilyl 20 d-, d- 20 ether, silyl ether 20 d-, CO and 20 arylalkyl, alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7
[화학식 3]
Figure imgf000009_0002
상기 화학식 3에서,
[Formula 3]
Figure imgf000009_0002
In Chemical Formula 3,
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
R5는 C Q 알콕시로 치환된 d-20 알킬이고, R 5 is d-20 alkyl substituted with CQ alkoxy,
R6는 수소, CHO 알킬 또는 C2-20 알케닐이고, R 6 is hydrogen, alkyl, CHO, or C 2 - 20 alkenyl, and,
X '는 서로 동일하거나 상이한 할로겐이고,  X 'is the same or different halogen from each other,
[화학식 4]  [Formula 4]
ZrX4 ZrX 4
상기 화학식 4에서, X는 서로 동일하거나 상이한 할로겐이다. In Chemical Formula 4, X is the same or different halogen from each other.
또한, 본 발명은 올레핀 증합용 촉매로서 반웅 부산물을 최소화하고 메탈로센 화합물을 높은 순도로 제조하는 메탈로센 촉매의 제조 방법을 제공한다. 상기 메탈로센 촉매는 특히, 하기 화학식 5의 메탈로센 화합물을 포함할 수 있다.  In addition, the present invention provides a method for producing a metallocene catalyst for minimizing reaction by-products and producing a metallocene compound with high purity as an olefin catalyst. The metallocene catalyst may include, in particular, a metallocene compound of Formula 5 below.
[화학식 5]  [Formula 5]
Figure imgf000010_0001
상기 화학식 5에서,
Figure imgf000010_0001
In Chemical Formula 5,
X는 서로 동일하거나 상이한 할로겐이고,  X is the same or different halogen from each other,
¾은 Cuo 알킬로 치환된 C6-20 아릴이고, ¾ is substituted with a C 6 Cuo alkyl-aryl and 20,
R2 , R3 및 R4는 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, CHO 알킬실릴, Cwo 실릴알킬, d-20 알콕시실릴, d-20 에테르, 실릴에테르, 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C그 20 아릴알킬이고, R 2, R 3 and R4 are each independently hydrogen, halogen, d-20 alkyl, C 2 - 20 alkenyl, CHO alkylsilyl, silyl Cwo alkyl, d-20 alkoxysilyl, d- 20 ether, silyl ether, alkoxy and 20 alkylaryl, or C 20 aryl that, -, C 6 - 20 aryl, C 7
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
¾는 CHO 알콕시로 치환된 d-20 알킬이고,  ¾ is d-20 alkyl substituted with CHO alkoxy,
R6는 수소, 알킬 또는 C2-20 알케닐이다. R 6 is hydrogen, alkyl or C 2 - 20 alkenyl is.
상기 화학식 5의 화합물은 안사-메탈로센 구조를 가지며, 리간드로 두 개의 인데닐기 ( indenyl group)를 포함한다. 특히, 상기 리간드를 연결하는 브릿지 그룹 (br idge group)에 · 산소 -주게 (oxygen—donor )로써 루이스 염기의 역할을 할 수 있는 작용기가 치환되어 있어 촉매로서의 활성을 극대화할 수 있는 장점이 있다. 또한, 인데닐기에 C1-20 알킬로 치환된 C6-20 아릴 (R1)과 같은 bulky group이 치환되어 있기 때문에, 입체 장애를 부여하여 메조 형태의 형성을 억제한다. 그에 따라 상기 화학식 1로 표시되는 인덴 화합물을 그 자체 또는 담체에 담지하여 폴리올레핀의 제조에 촉매로써 사용할 경우 원하는 물성을 갖는 폴리을레핀을 보다 용이하게 제조할 수 있다. 또한, 금속 원자로 지르코늄 (Hf )을 포함함으로써 촉매의 활성을 높이고 보다 높은 분자량의 폴리올레핀의 중합이 가능하다. 바람직하게는, Ri은 t-부틸 ( tert-butyl )로 치환된 페닐이다. 보다 바람직하게는, Rr 4-(t-부틸) -페닐이다. The compound of Formula 5 has an ansa-metallocene structure and includes two indenyl groups as ligands. In particular, the ligand The bridge group (br idge group) to link with the oxygen-donor (oxygen-donor) is substituted with a functional group that can act as a Lewis base has the advantage of maximizing the activity as a catalyst. In addition, since a bulky group such as C6-20 aryl (R1) substituted with C1-20 alkyl in the indenyl group is substituted, steric hindrance is imparted to suppress mesoform formation. Accordingly, when the indene compound represented by Chemical Formula 1 is used on its own or in a carrier to be used as a catalyst for the production of polyolefins, polyolefins having desired physical properties can be more easily prepared. In addition, the inclusion of zirconium (Hf) as a metal atom enhances the activity of the catalyst and enables polymerization of higher molecular weight polyolefins. Preferably, Ri is phenyl substituted with tert-butyl. More preferably, it is Rr 4- (t-butyl) -phenyl.
또한 바람직하게는, , ¾ 및 ¾는 수소이다.  Also preferably, ¾ and ¾ are hydrogen.
또한 바람직하게는, A는 실리콘이다.  Also preferably, A is silicon.
또한 바람직하게는, ¾는 3-(t-부록시) -프로필이고, R6는 메틸이다. Also preferably, ¾ is 3- (t-buroxy) -propyl and R 6 is methyl.
5로 표시되는 화합물의 대표적인 예는 다음과 같다:  Representative examples of compounds represented by 5 are as follows:
Figure imgf000011_0001
특히, 본 발명에 따른 메탈로센 촉매의 제조 방법은 하기의 반웅식 같은 일구현예로 수행될 수 있다.
Figure imgf000011_0001
In particular, the method for producing a metallocene catalyst according to the present invention may be carried out in one embodiment, such as the following reaction.
[반웅식 1] [Banungsik 1]
Figure imgf000012_0001
상기 단계 1은 상기 화학식 1로 표시되는 인덴 화합물과 상기 화학식 2로 표시되는 화합물을 반웅시켜 상기 화학식 3으로 표시되는 리간드 화합물을 제조하는 단계이다. 상기 반응에 알킬리륨 (예를 들어, η- 부틸리튬)을 사용하는 것이 바람직하고, 반응 온도는 -200 내지 0 °C , 보다 바람직하게는 -150 내지 0 °C이다. 용매로는 를루엔, 테트라하이드로퓨란 (THF : tetrahydrofuran) 등을 사용할 수 있다. 이때 생성물에서 유기층을 분리한 후, 분리된 유기층을 진공 건조하고 과량의 반응물을 제거하는 단계를 더욱 수행할 수 있다.
Figure imgf000012_0001
Step 1 is a step of preparing a ligand compound represented by Formula 3 by reacting the indene compound represented by Formula 1 and the compound represented by Formula 2. It is preferable to use alkyllilium (eg, η-butyllithium) in the reaction, and the reaction temperature is -200 to 0 ° C., more preferably -150 to 0 ° C. As the solvent, toluene, tetrahydrofuran (THF: tetrahydrofuran) and the like can be used. At this time, after separating the organic layer from the product, the step of vacuum drying the separated organic layer and removing the excess reactant may be further performed.
상기 단계 2는, 상기 화학싀 3으로 표시되는 리간드 화합물을 상기 화학식 4로 표시되는 지르코늄 화합물과 반응시켜 상기 화학식 5로 표시되는 화합물을 제조하는 단계이다. 상기 반응에 알킬리튬 (예를 들어, n-부틸리튬)을 사용하는 것이 바람직하고, 반웅 온도는 -20 내지 0 °C , 보다 바람직하게는 -78 내지 0 °c이다. 상기 반옹의 용매로는 디에틸에테르 , 핵산, 를루엔, 및 1 , 4-다이옥산으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. Step 2 is a step of preparing a compound represented by Chemical Formula 5 by reacting the ligand compound represented by Chemical Formula 3 with the zirconium compound represented by Chemical Formula 4. Is 78 to 0 ° c - is preferred to use an alkyllithium (e.g., n- butyl lithium) to the reaction, and banung temperature is from -20 to 0 ° C, more preferably. As the solvent for the reaction, at least one selected from the group consisting of diethyl ether, nucleic acid, toluene, and 1,4-dioxane can be used.
특히, 본 발명에 따르면, 상기 반웅 후에 반웅 용매를 제거하고, 얻어진 메탈로센 화합물을 포함하는 반웅 생성물은 염화리튬 착화합물 형성용 용매를 첨가하여 염화리튬 착화합물을 형성하는 단계를 수행한다. 여기서, 염화리튬 착화합물 형성용 용매는 염화리튬과 반응하여 착화합물을 형성할 수 있으면서도 생성된 염화리튬 착화합물과 메탈로센 화합물을 모두 용해시키는 특성을 갖는다. 일반적으로 LiCl의 구성원소 중에서 Li 원자는 산소 친화도가 높은 특성 (oxophi l i c)이 있으며, 이에 따라 LiCl는 용매에 포함되어 있는 산소원자와 착화합물 (complex)를 쉽게 형성할 수 있다. 다만, 메탈로센 화합물을 포함하는 반응 생성물에서 불순물로 함께 포함된In particular, according to the present invention, the reaction product is removed after the reaction and the reaction product including the obtained metallocene compound is added to form a lithium chloride complex by adding a solvent for forming a lithium chloride complex. Here, the solvent for forming a lithium chloride complex has a property of dissolving both the produced lithium chloride complex and the metallocene compound while being able to react with lithium chloride to form a complex. In general, Li atoms in the members of LiCl have a high oxygen affinity (oxophi lic), and thus LiCl can easily form a complex with oxygen atoms included in the solvent. but, Included together as impurities in a reaction product comprising a metallocene compound
LiCl과의 좀더 효과적인 착화합물 형성을 위해서는, 산소 원자를 2개 이상 포함하며 고리형 구조를 갖는 유기 용매를 사용하는 것이 바람직하다. 특히, 산소 원자가 2개 이상으로 많이 포함하는 유기 용매일수록 높은 산소친화도 (oxophilicity)에 따라 LiCl과의 반웅성이 증가하고, 고리형 구조를 갖는 경우에 산소 원자가 주변 탄소 원자에 의한 가리움 효과 (Shielding effect)가 적어 높은 산소친화도 (oxophi 1 ici ty)로 LiCl과 착화합물 형성이 효과적으로 이뤄질 수 있다. 이러한 염화리튬 착화합물 형성용 용매로는 1,4-다이옥산 및 1,3-다이옥솔란 (1,3-Dioxolane)으로 이루어진 군에서 선택된 1종 이상을 들 수 있다. For more effective complex formation with LiCl, it is preferable to use an organic solvent containing two or more oxygen atoms and having a cyclic structure. In particular, the organic solvent containing more than two oxygen atoms increases the reaction properties with LiCl according to the high oxygen affinity (oxophilicity), the shielding effect of the oxygen atoms by the surrounding carbon atoms in the case of having a cyclic structure (Shielding Due to its low effect, it is possible to form complexes with LiCl with high oxygen affinity (oxophi 1 ici ty). The solvent for forming the lithium chloride complex compound may be at least one selected from the group consisting of 1,4-dioxane and 1,3-dioxolane (1,3-Dioxolane).
상기 염화리튬 착화합물 형성용 용매는 화학식 2의 인덴 화합물 중량 기준으로 약 3 내지 20 배, 바람직하게는 약 5 내지 15 배, 가장 바람직하게는 약 8 내지 12 배 정도의 함량으로 첨가하고, 약 1 시간 이상 동안 교반할 수 있다.  The lithium chloride complex forming solvent is added in an amount of about 3 to 20 times, preferably about 5 to 15 times, most preferably about 8 to 12 times, based on the weight of the indene compound of Formula 2, and about 1 hour The above can be stirred.
이렇게 생성된 염화리튬 착화합물은 염화리튬 -1, 4-다이옥산 착화합물로서 LiCl/dioxane 1:1 complex 등이 될 수 있다.  The lithium chloride complex thus produced may be LiCl / dioxane 1: 1 complex as lithium chloride-1,4-dioxane complex.
상기 염화리튬 착화합물 형성용 용매는 압력 0.5 내지 2.0 mbar 및 온도 30 내지 45 °C의 조건 하에서 감압 증류하여 제거할 수 있다. The lithium chloride complex forming solvent may be removed by distillation under reduced pressure under the conditions of pressure 0.5 to 2.0 mbar and temperature 30 to 45 ° C.
또한, 이러한 염화리튬 착화합물' 형성용 용매를 첨가하여 교반한 후에 1,4ᅳ다이옥산 등의 염화리튬 착화합물 형성용 용매를 제거하고 얻어진 반응 생성물에는 염화리튬 착화합물과 메탈로센 화합물을 포함한다. 이러한 염화리튬 착화합물과 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 추출용 용매를 첨가하고 여과하는 단계를 수행할 수 있다. 여기서, 염화리륨 착화합물 추출용 용매는 상기 반웅 생성물 중에서 염화리튬 착화합물만 용해시켜, 고체 상태의 메탈로센 화합물만을 여과 공정을 통해 수득할 수 있도록 하는 것입니다. 이러한 염화리튬 착화합물 추출용 용매는 산소 원자를 포함하지 않는 비양자성 용매 (aprotic solvent)가 될 수 있다. 특히, 이러한 염화리튬 착화합물과 메탈로센 화합물을 포함하는 반웅 생성물에, 산소 완자를 포함하는 유기 용매를 사용하는 경우에는 생성물인 메탈로센 화합물이 함께 용해되는 문제가 발생할 수 있으며, 극성 용매 (polar solvent) 중쎄서 알코올류 등의 양자성 용매 (protic solvent)를 사용하는 경우에는 생성물인 메탈로센 화합물을 분해 (decompose)시키는 문제가 발생할 수 있습니다. 예컨대, 상기 염화리튬 착화합물 추출용 용매로는 디클로로메탄 (di chl oromethane) , 클로로포름 (chloroform), 사염화탄소 (carbon tetrachl or ide) , 벤젠 (benzene) , 및 를루엔 ( toluene)으로 이루어진 군에서 선택된 1종 이상을 들 수 있다. In addition, the reaction product obtained by adding and stirring the lithium chloride complex ' forming solvent and then removing the solvent for forming a lithium chloride complex such as 1,4' dioxane includes a lithium chloride complex and a metallocene compound. The reaction product containing the lithium chloride complex and the metallocene compound may be added with a solvent for extracting the lithium chloride complex and filtered. Here, the solvent for extracting the lithium chloride complex is to dissolve only the lithium chloride complex in the reaction product, so that only the solid metallocene compound can be obtained through the filtration process. The solvent for extracting the lithium chloride complex compound may be an aprotic solvent containing no oxygen atom. In particular, when an organic solvent containing oxygen balls is used in the reaction product containing the lithium chloride complex and the metallocene compound, a problem may occur in that the metallocene compound, which is a product, is dissolved together. solvent) proton solvents such as alcohols If used, problems may occur that decompose the metallocene compound as a product. For example, the solvent for extracting the lithium chloride complex compound is selected from the group consisting of dichloromethane, chloroform, carbon tetrachl or ide, benzene, and toluene. The above is mentioned.
상기 염화리륨 착화합물 추출용 용매는화학식 2의 인덴 화합물 중량 기준으로 약 3 내지 20 배, 바람직하게는 약 4 내지 15 배, 가장 바람직하게는 약 5 내지 12 배 정도의 함량으로 첨가하고, 약 1 시간 이상 동안 교반할 수 있다.  The solvent for extracting the lithium chloride complex compound is added in an amount of about 3 to 20 times, preferably about 4 to 15 times, and most preferably about 5 to 12 times, based on the weight of the indene compound of Chemical Formula 2, and about 1 hour. The above can be stirred.
본 발명에 따라 메탈로센 촉매를 제조하는 방법에서는, 이러한 추출 용매를 첨가하고 여과한 후에 얻어진 여액으로부터 용매를 제거하고, 바람직하게는 감압 증류하여 제조하고, 재결정' 단계를 추가로 수행할 수 있다. 상기 재결정 단계에서는 디클로로메탄 및 핵산으로 이루어진 군에서 선택된 1종 이상의 용매를 사용할 수 있다. In the method for producing a metallocene catalyst according to the present invention, it is the addition of such an extraction solvent, and the solvent removed from the filtrate obtained after the filtration, and preferably may be prepared by reduced pressure distillation, adding performed in the recrystallization, phase . In the recrystallization step, one or more solvents selected from the group consisting of dichloromethane and nucleic acid may be used.
한편, 발명의 다른 구현예에 따르면, 상술한 바와 같은 방법으로 제조된 메탈로센 촉매가 제공된다. 특히, 본 발명에 따라 제조된 메탈로센 촉매는 반응 불순물인 LiCl 등을 최대한 제거하여 높은 순도를 나타낼 수 있으며, 특히, 제조된 메탈로센 촉매에 포함된 LiCl의 함량은 200 ppm 이하, 150 ppm 이하, 100 ppm 이하, 또는 75 ppm 이하가 될 수 있다.  On the other hand, according to another embodiment of the invention, there is provided a metallocene catalyst prepared by the method as described above. In particular, the metallocene catalyst prepared according to the present invention may exhibit high purity by removing LiCl, which is a reaction impurity, as much as possible. In particular, the content of LiCl included in the prepared metallocene catalyst may be 200 ppm or less and 150 ppm. Or less, 100 ppm or less, or 75 ppm or less.
본 발명의 메탈로센 촉매에서 상기 화학식 5로 표시되는 화합물은 그 자체로 또는 촉매 전구체로 조촉매와 함께, 올레핀 중합용 촉매로 사용될 수 있다.  In the metallocene catalyst of the present invention, the compound represented by Chemical Formula 5 may be used as a catalyst for olefin polymerization by itself or with a promoter as a catalyst precursor.
상기 메탈로센 촉매는 담체에 담지된 촉매일 수 있다. 상기 담체는 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 실리카, 실리카-알루미나 및 실리카- 마그네시아로 이루어진 군에서 선택되는 1종 이상의 담체가 사용될 수 있다. 한편, 실리카와 같은 담체에 담지될 때에는 실리카 담체와 상기 화학식 1로 표시되는 화합물의 작용기가 화학적으로 결합하여 담지되므로, 올레핀 중합공정에서 표면으로부터 유리되어 나오는 촉매가 거의 없어서 슬러리 또는 기상 중합으로 폴리올레핀을 제조할 때 반웅기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링이 없다. 또한, 이와 같은 실리카 담체를 포함하는 촉매의 존재 하에 제조되는 폴리올레핀은 폴리머의 입자 형태 및 겉보기 밀도가 우수하여 종래의 슬러리 또는 기상 중합 공정에 적합하게 사용 가능하다. 따라서, 바람직하게는 고온에서 건조되어 표면에 반웅성이 큰 실록산기를 가지고 있는 담체를 사용할 수 있다. The metallocene catalyst may be a catalyst supported on a carrier. The carrier is not particularly limited since the conventional one can be used in the art to which the present invention pertains. Preferably, one or more carriers selected from the group consisting of silica, silica-alumina and silica-magnesia may be used. On the other hand, when supported on a carrier such as silica, since the silica carrier and the functional group of the compound represented by Chemical Formula 1 are supported by chemical bonding, there are almost no catalysts liberated from the surface in the olefin polymerization process. There is no fouling on the wall or the polymer particles that get entangled in the process. In addition, the polyolefin prepared in the presence of a catalyst comprising such a silica carrier is excellent in the particle shape and apparent density of the polymer can be suitably used in conventional slurry or gas phase polymerization process. Therefore, it is preferable to use a carrier having a high banung siloxane group on the surface by drying at a high temperature.
구체적으로는 고온에서 건조된 실리카, 실리카-알루미나 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2CO3 , BaS04, Mg(N03)2 등의 산화물, 탄산염, 황산염, 질산염 성분이 함유될 수 있다. Specifically, silica, silica-alumina and the like dried at a high temperature may be used, and they may typically contain oxides, carbonates, sulfates, nitrates, such as Na 2 O, K 2 CO 3, BaS0 4 , and Mg (N0 3 ) 2 . have.
또한, 상기 메탈로센 촉매에는 알킬알루미녹산으로 구성된 조촉매를 더욱 포함할 수 있다. 이러한 조촉매를 사용할 경우에, 상기 화학식 5로 표시되는 화합물의 금속 원소 (Hf )에 결합된 X가 알킬기, 예컨대 CHO 알킬로 치환된 형태의 촉매로 사용될 수 있다.  In addition, the metallocene catalyst may further include a promoter composed of alkylaluminoxane. In the case of using such a promoter, X bonded to the metal element (Hf) of the compound represented by Chemical Formula 5 may be used as a catalyst in a form substituted with an alkyl group, such as CHO alkyl.
상기 조촉매 또한 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 실리카, 실리카 -알루미나, 유기알루미늄 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매가사용될 수 있다.  The promoter is not particularly limited as it may be used in the art to which the present invention pertains. Preferably, one or more promoters selected from the group consisting of silica, silica-alumina, and organoaluminum compounds may be used.
한편, 발명의 또다른 구현예에 따르면, 상기 메탈로센 촉매를 사용한 폴리머 중합 방법이 제공된다. 특히, 상기 메탈로센 촉매의 존재 하에, 적어도 1종 이상의 올레핀 단량체를 중합시키는 단계를 포함하는 폴리올레핀의 제조방법이 제공된다. 상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-핵센, 4-메틸 -1-펜테, 1ᅳ옥텐, 1-데센, 1- 도데센, 1-테트라데센, 1-핵사데센, 1-옥타데센, 1-에이코센 및 이들의 흔합물로 이루어진 군에서 선택되는 1종 이상일 수 있다.  On the other hand, according to another embodiment of the invention, there is provided a polymer polymerization method using the metallocene catalyst. In particular, in the presence of the metallocene catalyst, there is provided a process for producing a polyolefin comprising the step of polymerizing at least one olefin monomer. The olefin monomers are ethylene, propylene, 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pente, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-nuxadecene It may be one or more selected from the group consisting of, 1-octadecene, 1-eicosene and combinations thereof.
여기서, 상기 폴리올레핀의 중합은 25 내지 500 °C의 은도 및 1 내지 100 kgf/cuf의 압력 하에서 1 내지 24시간 동안 반웅시켜 수행될 수 있다. 이때, 상기 중합 반웅 온도는 25 내지 200 °C가 바람직하고, 50 내지 100 °C가 보다 바람직하다. 또한, 상기 중합 반웅 압력은 1 내지 70 kgf/cuf가 바람직하고, 5 내지 40 kgf/cin2가 보다 바람직하다. 상기 중합 반웅 시간은 1 내지 5시간이 바람직하다. Here, the polymerization of the polyolefin may be performed by reacting for 1 to 24 hours under a silver degree of 25 to 500 ° C and a pressure of 1 to 100 kgf / cuf. At this time, the polymerization reaction temperature is preferably 25 to 200 ° C., more preferably 50 to 100 ° C. Further, the polymerization banung pressure of 1 to 70 kgf / cuf is preferable, more preferably 5 to 40 kgf / cin 2. The polymerization reaction time is preferably 1 to 5 hours.
상기 중합 공정은 수소 첨가 또는 미첨가 조건에 따라 최종적으로 생성되는 폴리머 제품의 분자량 범위를 조절할 수 있다. 특히, 수소를 첨가하지 않은 조건 하에서는 고분자량의 폴리올레핀을 제조할 수 있으며, 수소를 첨가하면 적은 양의 수소 첨가로도 저분자량의 폴리올레핀을 제조할 수 있다. 이때, 상기 중합 공정에 첨가되는 수소 함량은 반웅기 조건 1 기압 하에서 0.07 L 내지 4 L 범위이거나, 또는 1 bar 내지 40 bar의 압력으로 공급되거나 올레핀 단량체 대비 수소 몰 함량 범위로 168 ppm 내지 8,000 ppm으로 공급될 수 있다. The polymerization process can control the molecular weight range of the resulting polymer product in accordance with hydrogenation or no addition conditions. In particular, hydrogen Under the conditions without addition, high molecular weight polyolefin can be produced, and if hydrogen is added, a low molecular weight polyolefin can be produced even with a small amount of hydrogen. At this time, the hydrogen content added to the polymerization process is in the range of 0.07 L to 4 L under 1 atmosphere of semi-aqueous conditions, or is supplied at a pressure of 1 bar to 40 bar or 168 ppm to 8,000 ppm in the range of molar hydrogen content relative to the olefin monomer. Can be supplied.
이렇게 본 발명에 따라 제조되는 메탈로센 촉매를 사용하여 폴리올레핀을 제조하는 공정에서, 상기 촉매의 활성은 단위 시간 (h)을 기준으로 사용된 촉매 단위 중량 함량 (g)당 생성된 중합체의 중량 (kg)의 비로 계산하였을 때, 8.0 kg/gCat . hr 이상 또는 8.0 내지 30 kg/隱 ol . hr, 바람직하게는 10.0 kg/mmol · hr 이상, 좀더 바람직하게는 12.0 kg/誦 ol · hr 이상이 될 수 있다.  In the process for preparing polyolefin using the metallocene catalyst prepared according to the present invention, the activity of the catalyst is determined based on the weight of the polymer produced per unit weight content (g) of catalyst based on unit time (h) ( kg), 8.0 kg / gCat. hr or more or 8.0 to 30 kg / dl ol. hr, preferably 10.0 kg / mmol.hr or more, and more preferably 12.0 kg / dol.hr or more.
본 발명에 따른 상기 화학식 5의 화합물을 촉매로 사용하여 제조되는 폴리올레핀은, 기존의 메탈로센 촉매를 사용하였을 경우에 비하여 높은 분자량을 가질 수 있다. 예컨대, 상기 폴리올레핀에 대하여 미국재료시험협회 ASTM D 1238의 방법에 따라 측정한 용융지수 (MFR, 2.16 kg)는 25 g/10 min 이하, 바람직하게는 18 g/10 min 이하, 가장 바람직하게는 15 g/10 min 이하로 현저히 낮출 수 있으며, 이로써 높은 분자량을 갖는 폴리을레핀을 확보할 수 있다.  Polyolefin prepared using the compound of Formula 5 as a catalyst according to the present invention, may have a higher molecular weight than when using a conventional metallocene catalyst. For example, the melt index (MFR, 2.16 kg) measured according to the method of ASTM D 1238 for the polyolefin is 25 g / 10 min or less, preferably 18 g / 10 min or less, most preferably 15 It can be significantly lowered to g / 10 min or less, thereby securing a polylefin having a high molecular weight.
특히, 본 발명은 기존의 촉매 제조 공정 중에 1,4-다이옥산 등의 염화리튬 착화물물 형성용 용매에 용해 후 감압 증류하는 단계를 추가함으로쎄 보다 고순도의 촉매를 제조하는 것을 특징을 한다. 더욱이, 본 발명은 LiCl 등의 부산물 제거에 매우 효과적이며, 입자 사이즈 증가로 인한 여과 효율 상승 효과를 달성할 수 있다. 예컨대, 본 발명에 따라 제조된 메탈로센 촉매를 사용하여 제조되는 폴리올레핀은 평균입경이 500 i 이상 또는 500 내지 1200 , 바람직하게는 600 m 이상, 좀더 바람직하게는 700 im 이상이 될 수 있다.  In particular, the present invention is characterized by producing a catalyst of higher purity by adding a step of distillation under reduced pressure after dissolving in a solvent for forming a lithium chloride complex such as 1,4-dioxane in the existing catalyst production process. Moreover, the present invention is very effective in removing by-products such as LiCl, and it is possible to achieve the effect of increasing the filtration efficiency due to the increase in particle size. For example, the polyolefin prepared using the metallocene catalyst prepared according to the present invention may have an average particle diameter of 500 i or more or 500 to 1200, preferably 600 m or more, and more preferably 700 im or more.
또한, 필름과 같은 목적으로 사용되었을 경우 잔류 무기물에 의한 gel이 많아지므로, 본 발명에 따라 제조된 메탈로센 촉매를 적용할 경우에 고순도의 폴리머를 제조할 수 있고, 필름 용도로 사용될 경우 gel이 적어 가공성을 현저히 향상시킬 수 있다. 【발명의 효과】 In addition, when used for the same purpose as the film, since the gel due to the residual inorganic material increases, when applying the metallocene catalyst prepared according to the present invention can produce a high-purity polymer, when used in film applications It is possible to significantly improve workability. 【Effects of the Invention】
본 발명에 따라, 촉매 합성 반웅시 부산물인 LiCl 등을 효과적으로 제거한 고순도의 메탈로센 촉매는 올레핀 중합 반옹에서 촉매로서의 활성이 기존 메탈로센 화합물 대비 우수하고, 이를 사용하여 폴리올레핀을 제조할 경우 고분자량 특성을 갖는 폴리올레핀을 용이하게 제조할수 있다.  According to the present invention, the high purity metallocene catalyst which effectively removes LiCl, which is a by-product of catalyst synthesis, has a higher activity as a catalyst in olefin polymerization reaction than the conventional metallocene compound, and a high molecular weight when preparing polyolefin using the same Polyolefins having properties can be easily produced.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명의 실시예 1 및 비교예 1에 따라 중합 공정을 수행한 후에 생성된 입자 크기 및 분포를 나타낸 사진이다.  1 is a photograph showing the particle size and distribution produced after the polymerization process according to Example 1 and Comparative Example 1 of the present invention.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.  Hereinafter, preferred embodiments of the present invention are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.
Figure imgf000017_0001
단계 1) (3-t—부톡시프로필) (메틸) -비스 (2-메틸 -4-(4-t- 부틸페닐)인데닐) )실란의 제조
Figure imgf000017_0001
Step 1) Preparation of (3-t-butoxypropyl) (methyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)) silane
15 대체용지 (규칙 저 126조) 3 L의 쉬링크 플라스크 (schlenk flask)에 2-메틸ᅳ 4-(4-t-부틸페닐) - 인덴 150 g을 넣고, 를루엔 /THF(5:1, 715 mL) 용액을 넣어 상온에서 용해시켰다. 상기 용액을 -20 °C로 넁각시킨 후에 n-부틸리튬 용액 (n-BuLi, 2.5 M in hexane) 240 mL을 서서히 적가하고 상온에서 약 15 시간 동안 교반하였다. 그 후에, 반웅액을 -20 °C로 냉각시킨 다음, (3-t- 부특시프로필)디클로로메틸실란 82 g과 CuCN 512 mg을 서서히 적가하였다. 반웅액을 상온으로 승은시킨 후, 약 15 시간 동안 교반하고, 물 500 mL를 첨가하였다. 그 후에, 유기층을 분리하고, MgS04로 탈수 및 여과 처리하였다. 여액을 감압 증류하여 노란색 오일 형태로 얻었다. 15 Alternative Paper (Article 126 of the Rules) 150 g of 2-methyl 쉬 4- (4-t-butylphenyl) -indene was added to a 3 L Schlenk flask, and a solution of toluene / THF (5: 1, 715 mL) was added and dissolved at room temperature. I was. After the solution was cooled to -20 ° C, 240 mL of n-butyllithium solution (n-BuLi, 2.5 M in hexane) was slowly added dropwise and stirred at room temperature for about 15 hours. Thereafter, the reaction mixture was cooled to -20 ° C, and then 82 g of (3-t-butoxypropyl) dichloromethylsilane and 512 mg of CuCN were slowly added dropwise. The reaction mixture was warmed to room temperature, stirred for about 15 hours, and 500 mL of water was added. Thereafter, the organic layer was separated, dehydrated with MgSO 4 and filtered. The filtrate was distilled under reduced pressure to give a yellow oil.
¾ NMR (500 MHz, CDC13, 7.26 ppm): -0.09 - -0.05 (3H, m), 0.40 -¾ NMR (500 MHz, CDC1 3 , 7.26 ppm): -0.09--0.05 (3H, m), 0.40-
0.60 (2H, m), 0.80 - 1.51 (26H, m) , 2.12 - 2.36 (6H, m) , 3.20-3.28 (2H, m), 3.67 - 3.76 (2H, m), 6.81 - 6.83 (2H, m) , 7.10 - 7.51 (14H, m) 단계 2) rac_[(3-t-부톡시프로필메틸실란디일)—비스 (2-메틸 -4-(4— t- 부틸페닐)인데닐)]지르코늄 디클로라이드의 제조 0.60 (2H, m), 0.80-1.51 (26H, m), 2.12-2.36 (6H, m), 3.20-3.28 (2H, m), 3.67-3.76 (2H, m), 6.81-6.83 (2H, m ), 7.10-7.51 (14H, m) step 2) rac _ [(3-t-butoxypropylmethylsilanediyl) —bis (2-methyl-4- (4—t-butylphenyl) indenyl)] zirconium Preparation of Dichloride
3 L의 쉬링크 플라스크 (schlenk flask)에 앞서 제조한 (3-t- 부특시프로필) (메틸)비스 (2—메틸 -4-(4-t_부틸페닐))인데닐실란을 넣고, 를루엔 /디에틸에테르 (부피비, 10:1) 1 L를 넣어 상온에서 용해시켰다. 상기 용액을 -20 °C로 넁각시킨 후, n-부틸리튬 용액 (n— BuLi, 2.5 M in hexane) 240 mL를 서서히 적가하고 상온에서 약 3 시간 동안 교반하였다. 그 후에, 반웅액을 -20 °C로 넁각시킨 다음, 지르코늄 클로라이드 92 g을 넣었다. 반웅 용액을 상온으로 승온시킨 후 약 15 시간 동안 교반하고, 용매를 감압 하에서 제거하였다. 이렇게 반웅 용매를 모두 감압 증류하고 1,4- 다이옥산 (1,4-dioxane)을 2-메틸 -4-(4_t-부틸페닐) -인덴의 중량을 기준으로 약 5 배 정도의 함량이 되는 약 750 g을 첨가하여 약 1 시간 동안 교반하고, 용매를 감압 하에서 제거하여 염화리튬 -1,4—다이옥산 착화합물과 유기 금속 화합물의 고체 흔합물을 얻었다. 이렇게 얻어진 고체 흔합물을 담은 반웅 용기에 디클로로메탄 약 1 L를 넣은 다음, 녹지 않은 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 300 mL를 넣고 결정을 석출시켰다. 석출된 결정을 여과 및 건조하여 rac_[(3-t- 부록시프로필메틸실란디일) -비스 (2-메틸 -4-(4-t-부틸페닐)인데닐)]지르코늄 디클로라이드 80 g을 얻었다 (yield 31.7%, racmeso = 50:1). Into a 3 L schlenk flask was prepared (3-t-butoxypropyl) (methyl) bis (2-methyl-4- (4-t_butylphenyl)) indenylsilane, prepared previously. 1 L of luene / diethyl ether (volume ratio, 10: 1) was added and dissolved at room temperature. After the solution was cooled down to -20 ° C., 240 mL of n-butyllithium solution (n—BuLi, 2.5 M in hexane) was slowly added dropwise and stirred at room temperature for about 3 hours. After that, the reaction solution was cooled to -20 ° C, and then 92 g of zirconium chloride was added thereto. The reaction solution was raised to room temperature, stirred for about 15 hours, and the solvent was removed under reduced pressure. The reaction mixture was distilled under reduced pressure, and 1,4-dioxane (1,4-dioxane) was about 750, which was about 5 times based on the weight of 2-methyl-4- (4_t-butylphenyl) -indene. g was added and stirred for about 1 hour, and the solvent was removed under reduced pressure to obtain a solid mixture of the lithium chloride-1,4-dioxane complex and the organometallic compound. About 1 L of dichloromethane was added to the reaction container containing the solid mixture thus obtained, and the insoluble inorganic salts were filtered out. The filtrate was dried under reduced pressure, and 300 mL of dichloromethane was added again to precipitate crystals. The precipitated crystals were filtered and dried to rac _ [(3-t- appendoxypropylmethylsilanediyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)] zirconium 80 g of dichloride were obtained (yield 31.7%, racmeso = 50: 1).
¾證 (500 MHz, CDCls, 7.26 ppm): 1.19 - 1.78 (37H, m) , 2.33 (3H, s), 2.34 (3H, s), 3.37 (2H, t), 6.91 (2H, s), 7.05 - 7.71 (14H, m)  ¾ 證 (500 MHz, CDCls, 7.26 ppm): 1.19-1.78 (37H, m), 2.33 (3H, s), 2.34 (3H, s), 3.37 (2H, t), 6.91 (2H, s), 7.05 7.71 (14 H, m)
이렇게 얻어진 메탈로센 촉매에 대하여 고주파 유도 결합 플라즈마 (ICP, Inductively Coupled Plasma) 분석을 수행하여 반웅 불순물인 LiCl의 함량을 측정한 결과, 75 ppm으로 매우 높은 순도로 블순물이 제거된 메탈로센 촉매를 제조하였음을 확인하였다. 단계 3) 담지된 촉매의 제조  The metallocene catalyst obtained by performing high frequency inductively coupled plasma (ICP) analysis on the obtained metallocene catalyst was measured to have a high purity of 75 ppm. It was confirmed that was prepared. Step 3) Preparation of Supported Catalyst
실리카 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산 (MA0) 10 隱 을 넣어 90 °C에서 약 24 시간 동안 반웅시켰다. 침전 후 상층부는 제거하고 를루엔으로 1회에 걸쳐 세척하였다. 상기 단계 2에서 합성한 안사-메탈로센 화합물 rac-[(3-t- 부톡시프로필메틸실란디일) -비스 (2—메틸 -4-(4-t-부틸페닐)인데닐)]지르코늄 디클로라이드 60 yi l을 를루엔에 녹인 후, 약 70 °C에서 약 5 시간 동안 반웅시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 세척하였다. 다음날 보레이트 (AB)를 48 un l을 를루엔에 녹인 후, 약 70 °C에서 약 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 세척하였다. 헥산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다. 실시예 2 3 g of silica was pre-weighed in a shrink flask, and 10 ml of methylaluminoxane (MA0) was added thereto and reacted at 90 ° C. for about 24 hours. After precipitation, the upper layer was removed and washed once with toluene. Ansa-metallocene compound synthesized in step 2 rac-[(3-t-butoxypropylmethylsilanediyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)] zirconium After dissolving 60 yi l of dichloride in toluene, it was reacted at about 70 ° C. for about 5 hours. After the completion of the reaction, when the precipitation was completed, the supernatant solution was removed and the remaining reaction product was washed with toluene. The next day, borate (AB) was dissolved 48 un l in toluene, and then reacted at about 70 ° C for about 5 hours. After the completion of the reaction, when the precipitation was completed, the supernatant solution was removed and the remaining reaction product was washed with toluene. After washing with hexane again and dried under vacuum to obtain 5 g of a silica supported metallocene catalyst in the form of solid particles. Example 2
지르코늄 클로라이드를 첨가하여 반응시킨 후에 반응 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산(1,4-^0 31 )을 2-메틸— 4-(4-t- 부틸페닐) -인덴의 중량을 기준으로 약 10 배 정도의 함량이 되는 약 1,500 g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 메탈로센 촉매 rac-[(3-t—부톡시프로필메틸실란디일) -비스 (2-메틸 -4-(4-t- 부틸페닐)인데닐)]지르코늄 디클로라이드 78 g을 제조하고 (yield 30.9%, rac:meso = 50:1) LiCl 함량을 측정하였다.  After the reaction by adding zirconium chloride, all the reaction solvents are removed by distillation under reduced pressure, and 1,4-dioxane (1,4- ^ 0 31) is removed from 2-methyl- (4- (4-t-butylphenyl) -indene. Metallocene catalyst rac-[(3-t-butoxypropylmethylsilanediyl)-in the same manner as in Example 1, except that about 1,500 g, which was about 10 times by weight, was added. 78 g of bis (2-methyl-4- (4-t-butylphenyl) indenyl)] zirconium dichloride were prepared (yield 30.9%, rac: meso = 50: 1) and the LiCl content was measured.
이때, 생성된 메탈로센 촉매에 대하여 측정한 LiCl의 함량은 30 ppm으로 매우 높은 순도로 불순물이 제거된 메탈로센 촉매를 제조하였음을 확인하였다. 실시예 3 At this time, the content of LiCl measured for the produced metallocene catalyst is 30 It was confirmed that a metallocene catalyst was prepared in which impurities were removed with a very high purity. Example 3
지르코늄 클로라이드를 첨가하여 반응시킨 후에 반응 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산 (1,4-dioxane)을 2-메틸 -4-(4_t_ 부틸페닐) -인덴의 중량을 기준으로 약 15 배 정도의 함량이 되는 약 2,250 g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 메탈로센 촉매 rac-[(3-t_부특시프로필메틸실란디일) -비스 (2-메틸 -4-(4-t_  After the reaction by adding zirconium chloride, all reaction solvents are removed by distillation under reduced pressure, and 1,4-dioxane (1,4-dioxane) is about based on the weight of 2-methyl-4- (4_t_butylphenyl) -indene. Metallocene catalyst rac-[(3-t_butoxypropylmethylsilanediyl) -bis (2-methyl in the same manner as in Example 1, except that about 2,250 g, which is about 15 times as much content was added. -4- (4-t_
부틸페닐)인데닐)]지르코늄 디클로라이드 80 g을 제조하고 (yield 31.7%, rac:meso = 50:1) LiCl 함량을 측정하였다. Butylphenyl) indenyl)] zirconium dichloride 80 g was prepared (yield 31.7%, rac: meso = 50: 1) and the LiCl content was measured.
이때, 생성된 메탈로센 촉매에 대하여 측정한 LiCl의 함량은 50 ppm으로 매우 높은 순도로 불순물이 제거된 메탈로센 촉매를 제조하였음을 확인하였다. 비교예 1  At this time, the content of LiCl measured for the produced metallocene catalyst was 50 ppm to confirm that the metallocene catalyst from which impurities were removed with high purity was prepared. Comparative Example 1
단계 1) (3-t-부톡시프로필) (메틸) -비스 (2-메틸 -4-(4-t- 부틸페닐)인데닐))실란의 제조.  Step 1) Preparation of (3-t-butoxypropyl) (methyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)) silane.
3 L의 쉬링크 플라스크 (schlenk flask)에 2-메틸 -4-(4-t-부틸페닐) - 인덴 150 g을 넣고, 를루엔 /THF(5:1, 715 mL) 용액을 넣어 상온에서 용해시켰다. 상기 용액을 -20 °C로 넁각시킨 후에 n-부틸리튬 용액 (n-BuLi, 2.5 M in hexane) 240 mL을 서서히 적가하고 상온에서 약 3 시간 동안 교반하였다. 그 후에, 반웅액을 -20 °C로 넁각시킨 다음, (3-t- 부특시프로필)디클로로메틸실란 82 g과 CuCN 512 mg을 서서히 적가하였다. 반웅액을 상온으로 승온시킨 후, 약 15 시간 동안 교반하고, 물 500 mL를 첨가하였다. 그 후에, 유기층을 분리하고, MgS04로 탈수 및 여과 처리하였다. 여액을 감압 증류하여 노란색 오일 형태로 얻었다. 150 g of 2-methyl-4- (4-t-butylphenyl) -indene was added to a 3 L Schlenk flask and the solution of toluene / THF (5: 1, 715 mL) was dissolved at room temperature. I was. After the solution was cooled to -20 ° C, 240 mL of n-butyllithium solution (n-BuLi, 2.5 M in hexane) was slowly added dropwise and stirred at room temperature for about 3 hours. Thereafter, the reaction solution was stirred at -20 ° C, and then 82 g of (3-t-butoxypropyl) dichloromethylsilane and 512 mg of CuCN were slowly added dropwise. The reaction liquid was raised to room temperature, stirred for about 15 hours, and 500 mL of water was added. Thereafter, the organic layer was separated, dehydrated with MgSO 4 and filtered. The filtrate was distilled under reduced pressure to give a yellow oil.
¾匪 R (500 MHz, CDC13, 7.26 ppm): -0.09 - -0.05 (3H, m), 0.40 - 0.60 (2H, m), 0.80 - 1.51 (26H, m), 2.12 - 2.36 (6H, m), 3.20-3.28 (2H, m), 3.67 - 3.76 (2H, m), 6.81 - 6.83 (2H, m), 7.10 - 7.51 (14H, m) 단계 2) rac-[(3-t—부톡시프로필메틸실란디일) -비스 (2ᅳ메틸 -4-(4-t- 부틸페닐)인데닐)]지르코늄 디클로라이드의 제조 ¾ 匪 R (500 MHz, CDC1 3 , 7.26 ppm): -0.09--0.05 (3H, m), 0.40-0.60 (2H, m), 0.80-1.51 (26H, m), 2.12-2.36 (6H, m ), 3.20-3.28 (2H, m), 3.67-3.76 (2H, m), 6.81-6.83 (2H, m), 7.10-7.51 (14H, m) Step 2) Preparation of rac-[(3-t-butoxypropylmethylsilanediyl) -bis (2 ᅳ methyl-4- (4-t-butylphenyl) indenyl)] zirconium dichloride
3 L의 쉬링크 플라스크 (schlenk. flask)에 앞서 제조한 (3_t- 부록시프로필) (메틸)비스 (2-메틸 -4-(4-tᅳ부틸페닐))인데닐실란을 넣고, 를루엔 /디에틸에테르 (10:1) 1 L를 넣어 상온에서 용해시켰다. 상기 용액을 -20 °C로 넁각시킨 후, n-부틸리튬 용액 (n— BuLi, 2.5 M in hexane) 240 mL를 서서히 적가하고 상온에서 약 3 시간 동안 교반하였다. 그 후에, 반웅액을 -20 °C로 넁각시킨 다음, 지르코늄 클로라이드 92 g을 넣었다. 반웅 용액을 상온으로 승온시킨 후 약 15 시간 동안 교반하고, 반웅 용매를 감압 하에서 제거하였다. 별도의 염화리튬 착화합물 형성용 용매 처리 없이, 디클로로메탄 약 1 L를 넣은 다음, 녹지 않은 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 300 mL를 넣고 결정을 석출시켰다. 석출된 결정을 여과 및 건조하여 rac-[(3-t- 부록시프로필메틸실란디일) -비스 (2-메틸 -4-(4-t_부틸페닐)인데닐)]지르코늄 디클로라이드 80 g을 얻었다 (yield 31.7%, rac:meso = 50:1). 3 L of shrink flask manufactured prior to (schlenk. Flask) (Appendix 3_t- during propyl) (methyl) inde-bis (2-methyl -4- (4-t-butylphenyl eu)) into a carbonyl silane, a toluene 1 L of diethyl ether (10: 1) was added and dissolved at room temperature. After the solution was cooled down to -20 ° C., 240 mL of n-butyllithium solution (n—BuLi, 2.5 M in hexane) was slowly added dropwise and stirred at room temperature for about 3 hours. After that, the reaction mixture was cooled to -20 ° C, and then 92 g of zirconium chloride was added thereto. The reaction mixture was raised to room temperature, stirred for about 15 hours, and the reaction solvent was removed under reduced pressure. About 1 L of dichloromethane was added without treating a solvent for forming a lithium chloride complex, and then an insoluble inorganic salt was filtered off. The filtrate was dried under reduced pressure, and 300 mL of dichloromethane was added again to precipitate crystals. The precipitated crystals were filtered and dried to obtain 80 g of rac-[(3-t- appendoxypropylmethylsilanediyl) -bis (2-methyl-4- (4-t_butylphenyl) indenyl)] zirconium dichloride (Yield 31.7%, rac: meso = 50: 1).
¾ NMR(500 MHz, CDC13, 7.26 ppm): 1.19 - 1.78 (37H, m), 2.33 (3H, s), 2.34 (3H, s), 3.37 (2H, t), 6.91 (2H, s), 7.05 - 7.71 (14H, m) ¾ NMR (500 MHz, CDC1 3 , 7.26 ppm): 1.19-1.78 (37H, m), 2.33 (3H, s), 2.34 (3H, s), 3.37 (2H, t), 6.91 (2H, s), 7.05-7.71 (14H, m)
이렇게 얻어진 메탈로센 촉매에 대하여 고주파 유도 결합 플라즈마 (ICP, Inductively Coupled Plasma) 분석을 수행하여 반웅 불순물인 LiCl의 함량을 측정한 결과, 2110 ppm으로 나타나 블순물이 높은 함량으로 포함되어 있음을 확인하였다. 단계 3) 담지된 촉매의 제조  The high frequency inductively coupled plasma (ICP) analysis of the metallocene catalyst thus obtained was carried out to measure the content of LiCl, which is a reaction impurity, and was found to be 2110 ppm. . Step 3) Preparation of Supported Catalyst
실리카 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산 (MA0) 10 隱이을 넣어 90 °C에서 약 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 를루엔으로 1회에 걸쳐 세척하였다. 상기 단계 2에서 합성한 안사-메탈로센 화합물 rac-[(3-t- 부록시프로필메틸실란디일) -비스 (2-메틸 -4-(4-t-부틸페닐)인데닐)]지르코늄 디클로라이드 60 ymol을 를루엔에 녹인 후, 약 70 °C에서 약 5 시간 동안 반웅시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 세척하였다. 다음날 보레이트 (AB)를 48 umol을 를루엔에 녹인 후, 약 70 °C에서 약 5 시간 동안 반웅시켰다. 반웅 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 세척하였다. 핵산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다. 비교예 2 3 g of silica was previously weighed into a shrink flask, and 10 ml of methylaluminoxane (MA0) was added thereto, followed by reaction at 90 ° C. for about 24 hours. After precipitation, the upper layer was removed and washed once with toluene. Ansa-metallocene compound synthesized in step 2 rac-[(3-t- appendoxypropylmethylsilanediyl) -bis (2-methyl-4- (4-t-butylphenyl) indenyl)] zirconium 60 ymol of dichloride was dissolved in toluene and reacted at about 70 ° C. for about 5 hours. After the completion of the reaction, when the precipitation was completed, the supernatant solution was removed and the remaining reaction product was washed with toluene. Next day borate (AB) 48 umol After dissolving in toluene, it was reacted for about 5 hours at about 70 ° C. After the reaction was completed, the precipitate was finished, the supernatant solution was removed, and the remaining reaction product was washed with toluene. After washing with nucleic acid again and dried under vacuum to obtain 5 g of a silica supported metallocene catalyst in the form of solid particles. Comparative Example 2
지르코늄 클로라이드를 첨가하여 반웅시킨 후에 반응 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산 (1,4-dioxane) 대신에 테트라하이드로퓨란 (THF: tetrahydrofuran)을 2-메틸 -4_(4-t_부틸페닐) - 인덴의 중량을 기준으로 약 10 배 정도의 함량이 되는 약 1,500 g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 메탈로센 촉매를 제조하고 LiCl 함량을 측정하였다.  After reaction by adding zirconium chloride, all reaction solvents were removed by distillation under reduced pressure, and tetrahydrofuran (THF: tetrahydrofuran) was substituted with 2-methyl-4_ (4-t instead of 1,4-dioxane). _Butylphenyl)-A metallocene catalyst was prepared in the same manner as in Example 1 except that about 1,500 g of about 10 times by weight of indene was added, and the LiCl content was measured.
이때, 생성된 메탈로센 촉매에 대하여 측정한 LiCl의 함량은 450 ppm으로 나타나 불순물이 높은 함량으로 포함되어 있음올 확인하였다. 비교예 3  At this time, the content of LiCl measured for the produced metallocene catalyst was found to be 450 ppm to confirm that the impurities contained in a high content. Comparative Example 3
지르코늄 클로라이드를 첨가하여 반웅시킨 후에 반웅 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산 (1,4-dioxane) 대신에 메틸 t- 부틸에테르 (methyl tertiary butyl ether)을 2-메틸 -4-(4_t_부틸페닐) - 인덴의 중량을 기준으로 약 10 배 정도의 함량이 되는 약 1,500 g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 메탈로센 촉매를 제조하고 LiCl 함량을 측정하였다.  After reaction by adding zirconium chloride, all the reaction solvents were removed by distillation under reduced pressure, and methyl tertiary butyl ether was substituted with 2-methyl-4- instead of 1,4-dioxane. (4_t_Butylphenyl)-A metallocene catalyst was prepared in the same manner as in Example 1 except that about 1,500 g of about 10 times by weight of indene was added, and the LiCl content was increased. Measured.
이때, 생성된 메탈로센 촉매에 대하여 측정한 LiCl의 함량은 1,730 ppm으로 나타나 불순물이 높은 함량으로 포함되어 있음을 확인하였다. 비교예 4  At this time, the content of LiCl measured for the produced metallocene catalyst was found to be 1,730 ppm, indicating that the impurities were contained in a high content. Comparative Example 4
지르코늄 클로라이드를 첨가하여 반웅시킨 후에 반웅 용매를 모두 감압 증류하여 제거하고, 1 ,4-다이옥산 ( 1,4-dioxane) 대신에 디에틸에테르 After reaction by adding zirconium chloride, the reaction mixture was removed by distillation under reduced pressure, and diethyl ether was used instead of 1,4-dioxane.
(Et20)을 2-메틸 -4-(4-t-부틸페닐) -인덴의 중량을 기준으로 약 10 배 정도의 함량이 되는 약 1,500 g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 메탈로센 촉매를 제조하고 LiCl 함량을 측정하였다. 이때, 생성된 메탈로센 촉매에 대하여 측정한 LiCl의 함량은 1,850 ppm으로 나타나 불순물이 높은 함량으로 포함되어 있음을 확인하였다. 비교예 5 Example 1, except that about 1,500 g of (Et 2 0) was added in an amount of about 10 times by weight of 2-methyl-4- (4-t-butylphenyl) -indene In the same manner as the metallocene catalyst was prepared and the LiCl content was measured. At this time, the content of LiCl measured for the produced metallocene catalyst was found to be 1,850 ppm, indicating that the impurities were contained in a high content. Comparative Example 5
지르코늄 클로라이드를 첨가하여 반웅시킨 후에 반웅 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산(1,4-0110 31 )을 2-메틸 -4-(4-t- 부틸페닐) -인덴의 중량을 기준으로 약 5 배 정도의 함량이 되는 약 750 g을 첨가한 다음, 녹지 않은 고체를 여과 및 건조하여 rac_[(3-t- 부특시프로필메틸실란디일) -비스 (2-메틸 -4-(4-t-부틸페닐)인데닐)]지르코늄 디클로라이드 8 g을 얻었다 (yield 3.2%).  After reaction by adding zirconium chloride, all the reaction solvents were removed by distillation under reduced pressure, and the weight of 1,4-dioxane (1,4-0110 31) was 2-methyl-4- (4-t-butylphenyl) -indene About 750 g of about 5 times the amount was added, and then the undissolved solids were filtered and dried to obtain rac _ [(3-t-subspecificpropylmethylsilanediyl) -bis (2-methyl-4). 8 g of-(4-t-butylphenyl) indenyl)] zirconium dichloride was obtained (yield 3.2%).
이랗게 얻어진 메탈로센 촉매에 대하여 고주파 유도 결합 플라즈마 (ICP, Inductively Coupled Plasma) 분석을 수행하여 반웅 불순물인 LiCl의 함량을 측정한 결과, 1080 ppm으로 나타나 불순물이 높은 함량으로 포함되어 있으며, 3.2%의 낮은 수율로 산업적으로 이용하기 어려움을 확인하였다. 비교예 6  A high-frequency inductively coupled plasma (ICP) analysis was performed on the obtained metallocene catalyst to measure the content of LiCl, which is a reaction impurity, and was found to be 1080 ppm, which contained a high content of impurities, 3.2% It was found that the low yield of the product made it difficult to use industrially. Comparative Example 6
지르코늄 클로라이드를 첨가하여 반웅시킨 후에 반응 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산(1,4-( 0 31 )을 2-메틸— 4-(4— t- 부틸페닐) -인덴의 중량을 기준으로 약 10 배 정도의 함량이 되는 약 1,500 g을 첨가한 것을 제외하고는 비교예 5와 동일한 방법으로 메탈로센 촉매 rac-[ (3-t-부특시프로필메틸실란디일 ) -비스 (2-메틸 -4-(4_t—  After reaction by adding zirconium chloride, all reaction solvents were removed by distillation under reduced pressure, and 1,4-dioxane (1,4- (0 31) was removed from 2-methyl- (4- (t-butylphenyl) -indene). Metallocene catalyst rac- [(3-t-butoxypropylmethylsilanediyl) in the same manner as in Comparative Example 5 except that about 1,500 g of about 10 times by weight was added. ) -Bis (2-methyl-4- (4_t—
부틸페닐)인데닐)]지르코늄 디클로라이드 5 g을 제조하고 (yield 2.0%) LiCl 함량을 측정하였다. Butylphenyl) indenyl)] zirconium dichloride 5 g was prepared (yield 2.0%) and the LiCl content was measured.
이때, 생성된 메탈로센 촉매에 대하여 측정한 C1의 함량은 1415 ppm으로 나타나 불순물이 높은 함량으로 포함되어 있으며, 3.2%의 낮은 수율로 산업적으로 이용하기 어려움을 확인하였다. 비교예 7  At this time, the content of C1 measured for the produced metallocene catalyst was found to be 1415 ppm, which contained a high content of impurities, and it was confirmed that it was difficult to use industrially with a low yield of 3.2%. Comparative Example 7
지르코늄 클로라이드를 첨가하여 반웅시킨 후에 반웅 용매를 모두 감압 증류하여 제거하고, 1,4-다이옥산 (1,4-dioxane)을 2-메틸 -4-(4_t_ 부틸페닐) -인덴의 중량을 기준으로 약 15 배 정도의 함량이 되는 약 2,250 g을 첨가한 것을 제외하고는 비교예 1과 동일한 방법으로 메탈로센 촉매를 제조 공정을 수행하였으나, 생성물이 모두 용해되어 유기 금속 화합물을 얻지 못하였으며 (yield 0%), LiCl의 함량 검측을 수행할 수도 없었다. 실시예 1 내지 3 및 비교예 1 내지 7에 따른 촉매 제조시 지르코늄 클로라이드를 첨가하여 반웅시킨 후에 주요 공정 조건 및 이에 따라 생성된 촉매에 포함된 LiCl 함량을 측정한 결과는 하기 표 1에 나타낸 바와 같다. After reaction by adding zirconium chloride, all the reaction solvents were removed by distillation under reduced pressure, and 1,4-dioxane (1,4-dioxane) was 2-methyl-4- (4_t_). Butylphenyl) -Metallocene catalyst was prepared in the same manner as in Comparative Example 1 except that about 2,250 g of about 15 times by weight of indene was added. All were dissolved to obtain an organometallic compound (yield 0%), and the content detection of LiCl could not be performed. In the preparation of the catalysts according to Examples 1 to 3 and Comparative Examples 1 to 7, after the reaction by the addition of zirconium chloride, the main process conditions and the LiCl content contained in the resulting catalyst were measured as shown in Table 1 below. .
[표 1] TABLE 1
Figure imgf000024_0001
실험예
Figure imgf000024_0001
Experimental Example
1) 프로필렌의 호모중합  1) Homopolymerization of propylene
2 L 스테인레스 반웅기를 65 °C에서 진공건조한 후 넁각하고 실온에서 트리에틸알루미늄 3.0 瞧 을 넣고, 수소를 약 2 bar 넣고, 약 770 g의 프로필렌을 순차적으로 투입하였다. Vacuum dry 2 L stainless reactor at 65 ° C Triethylaluminum 3.0 Pa was added at room temperature, about 2 bar of hydrogen was added, and about 770 g of propylene was sequentially added.
이후 약 10 분 동안 교반한 후, 상기 실시예 1 내지 3 및 비교예 1 내지 6에서 제조한 각각의 담지 메탈로센 촉매 0.060 g을 TMA 처방된 핵산 20 mL에 녹여 질소 압력으로 반웅기에 투입하였다. 이후 반웅기 온도를 약 70 °C까지 서서히 승온한 후 약 1 시간 동안 중합하였다. 반웅 종료후 미반응된 프로필렌은 벤트하였다. Thereafter, after stirring for about 10 minutes, 0.060 g of each of the supported metallocene catalysts prepared in Examples 1 to 3 and Comparative Examples 1 to 6 was dissolved in 20 mL of TMA-prescribed nucleic acid, and added to the reactor under nitrogen pressure. . After the reaction temperature was slowly raised to about 70 ° C. and then polymerized for about 1 hour. After reaction, unreacted propylene was vented.
2) 중합체의 물성 측정 방법 2) measuring properties of polymers
(1) 촉매 활성: 단위 시간 (h)을 기준으로 사용된 촉매 함량 (촉매의 隱 ol 및 g)당 생성된 중합체의 무게 (kg PP)의 비로 계산하였다.  (1) Catalyst activity: calculated as the ratio of the weight of polymer produced (kg PP) per catalyst content (함량 ol and g of catalyst) used, based on unit time (h).
(2) 중합체의 녹는점 (Tm) : 시차주사열량계 (Di fferent ial Scanning Calor imeter , DSC, 장치명: DSC 2920 , 제조사: TA instrument )를 이용하여 중합체의 녹는점을 측정하였다. 구체적으로 중합체를 220 °C까지 가열한 후 5분 동안 그 온도를 유지하였고, 다시' 20 °C까지 내린 후 다시 온도를 증가시켰으며, 이때 온도의 상승속도와 하강속도는 각각 10 °C /min으로 조절하였다. (3) 중합체의 결정화 은도 (Tc) : DSC를 이용하여 용융점과 같은 조건에서 온도를 감소시키면서 나타나는 곡선으로부터 결정화 은도로 하였다. (2) Melting point (Tm) of the polymer: The melting point of the polymer was measured using a differential scanning calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). After heating to the particular polymer to 220 ° C was maintained at that temperature for 5 minutes, again, was increased the temperature again lowered to 20 ° C, wherein the rising speed and the descending speed of the temperature of each of 10 ° C / min Adjusted to. (3) Silver crystallization degree of polymer (Tc): It was crystallization silver content from the curve which shows temperature decreasing on the conditions similar to melting | fusing point using DSC.
(4) 용융지수 (MFR, 2.16 kg) : ASTM D1238에 따라 230 °C에서 2.16 kg 하중으로 측정하였으며, 10 분 동안 용융되어 나온 중합체의 무게 (g)로 나타내었다. (4) Melt index (MFR, 2.16 kg): measured at 2.16 kg load at 230 ° C according to ASTM D1238 and expressed as weight (g) of polymer melted for 10 minutes.
3) 중합체의 물성 측정 결과 3) Measurement results of the physical properties of the polymer
실시예 1 내지 3 및 비교예 1 내지 6에서 제조한 각각의 메탈로센 담지 촉매를 사용한 제조예 1 내지 3 및 비교제조예 1 내지 6의 호모 중합 공정 :건 및 생성된 폴리프로필렌의 물성 측정 결과를 하기 표 2(호모 중합)에 나타내었다. Homopolymerization process of Preparation Examples 1 to 3 and Comparative Preparation Examples 1 to 6 using the respective metallocene supported catalysts prepared in Examples 1 to 3 and Comparative Examples 1 to 6: Measurement results of the properties of the dry and the resulting polypropylene Table 2 (Homo Polymerization).
[표 2]  TABLE 2
Figure imgf000026_0001
또한, 본 발명의 실시예 1 및 비교예 1에 따라 중합 공정을 수행한 후에 생성된 입자 크기 및 분포를 찍은 주사 전자현미경 (SEM, Scanning Electron Microscope) 사진을 도 1에 나타내었다. 도 1에 나타난 바와 같이 생성된 폴리머의 입자 크기를 약 25% 증대시켜 미분 발생을 억제하여 공정 안정성을 확보할 수 있음을 알 수 있다.
Figure imgf000026_0001
In addition, a scanning electron microscope (SEM) photograph of the particle size and distribution generated after the polymerization process according to Example 1 and Comparative Example 1 of the present invention is shown in FIG. 1. As shown in Figure 1 it can be seen that by increasing the particle size of the polymer produced by about 25% to suppress the generation of fine particles to ensure process stability.
상기 표 2에 나타난 바와 같이, 본 발명에 따른 메탈로센 화합물을 담지 촉매로 사용한 제조예 1 내지 3은, 폴리프로필렌 제조시 높은 활성 증대 효과를 나타내었다. 특히, 제조예 1 내지 3은 촉매 활성이 호모 중합시 15.3 내지 15.9 k'g/g . hr로 매우 우수하였다. 반면에, 기존의 방법에 따라 별도의 LiCl 착화합물 용매를 첨가한 추출 건조 단계를 수행하지 않거나 통상의 에테르계 용매를 사용한. 비교제조예 1 내지 4는 촉매 활성이 랜덤 중합시 0.9 내지 2.5 kg/g . hr로 현저히 떨어지는 것을 알 수 있다. 특히, 본 발명의 제조예 1 내지 3은 기존 방법에 비해 생성된 메탈로센 촉매의 순도를 현저히 향상시켜 중합 반웅시 촉매 활성을 기존의 방법에 따른 비교제조예 1에 대비하여 약 17 배 이상 개선시킬 수 있음을 알 수 있다. 비교제조예 1과 같이 활성이 낮은 경우에는 중합 공정의 s lurry densi ty를 조절하기 위해 촉매 투입량이 증대되어야 하는데, 활성이 낮은 경우에는 그 한계치에 도달하여 상업적으로 생산하는 데 어려움이 있다. 이에 반해, 본 발명에 따른 제조예 1 내지 3과 같이 활성이 높은 경우에는 소량의 촉매로 조절이 가능하기에 상업적 생산에 용이한 장점이 있다. As shown in Table 2, the metallocene compound according to the present invention Production Examples 1 to 3 used as supported catalysts showed a high activity increasing effect in the production of polypropylene. In particular, Preparation Examples 1 to 3 had a catalytic activity of 15.3 to 15.9 k ' g / g. very good in hr. On the other hand, no extraction drying step with the addition of a separate LiCl complex solvent is carried out according to existing methods or using conventional ether solvents. Comparative Preparation Examples 1 to 4 have a catalytic activity of 0.9 to 2.5 kg / g at random polymerization. It can be seen that the hr falls markedly. In particular, Preparation Examples 1 to 3 of the present invention significantly improved the purity of the metallocene catalyst produced as compared to the conventional method, thereby improving the polymerization activity by about 17 times compared to Comparative Preparation Example 1 according to the conventional method. It can be seen that. When the activity is low as in Comparative Preparation Example 1, the catalyst input should be increased in order to control the slurry densi ty of the polymerization process, but when the activity is low, it is difficult to commercially produce the limit. On the contrary, when the activity is high, as in Preparation Examples 1 to 3 according to the present invention, it is advantageous in commercial production because it can be controlled by a small amount of catalyst.
더욱이, 본 발명에 따른 고순도의 메탈로센 촉매를 사용한 제조예 1 내지 3의 경우에, 생성된 폴리프로필렌 입자의 평균 입경이 비교제조예 1- 6에 대비해 약 3 배 가량, 특히, 비교제조예 1 대비 약 4.5 배 이상이 크기 때문에 산업적으로 생산되는 연속 공정에서 파울링 없이 안정적으로 장기 생산할 수 있는 장점이 있다. 특히, 비교 제조예 1, 3 , 4 등에서와 같이 생성된 폴리올레핀의 평균 입경이 현저히 작은 경우에는 미분 발생 가능성을 증대시키거나, 공정상 시트 (sheet )를 생성시켜 파울링을 발생시켜 전체 공정 효율을 저하시킬 수 있다.  Furthermore, in the case of Preparation Examples 1 to 3 using the high purity metallocene catalyst according to the present invention, the average particle diameter of the produced polypropylene particles is about three times that of Comparative Preparation Examples 1 to 6, in particular, Comparative Preparation Example Since it is about 4.5 times larger than 1, it has the advantage of being able to stably produce long-term without fouling in a continuous process produced industrially. In particular, when the average particle diameter of the produced polyolefin is significantly small, as in Comparative Preparation Examples 1, 3, 4, etc., the possibility of fine powder is increased, or a sheet is generated in the process to generate fouling to increase the overall process efficiency. Can be reduced.
또한, 본 발명에 따른 실시예의 경우에는, MFR 값이 현저히 낮음을 확언할 수 있었으며, 이는 본 발명에 따른 메탈로센 화합물을 담지 촉매로 사용하여 제조한 폴리프로필렌의 분자량이 매우 높음을 알 수 있다.  In addition, in the case of the embodiment according to the present invention, it was confirmed that the MFR value is significantly low, which can be seen that the molecular weight of the polypropylene prepared by using the metallocene compound according to the present invention as a supported catalyst. .

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
하기 화학식 1로 표시되는 리간드 화합물과 지르코늄 화합물을 반응시켜 메탈로센 화합물을 형성하는 단계 ;  Reacting a zirconium compound with a ligand compound represented by Formula 1 to form a metallocene compound;
상기 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 형성용 용매를 첨가하여 염화리튬 착화합물을 형성하는 단계; 및  Forming a lithium chloride complex compound by adding a solvent for forming a lithium chloride complex compound to the reaction product including the metallocene compound; And
상기 염화리튬 착화합물과 메탈로센 화합물을 포함하는 반웅 생성물에, 염화리튬 착화합물 추출용 용매를 첨가하고 여과하는 단계;  Adding a solvent for extracting a lithium chloride complex to a reaction product including the lithium chloride complex and a metallocene compound, and filtering the result;
를 포함하는 메탈로센 촉매의 제조 방법 .  Method for producing a metallocene catalyst comprising a.
Figure imgf000028_0001
상기 화학식 1에서,
Figure imgf000028_0001
In Chemical Formula 1,
¾은 0,-20 알킬로 치환된 Ce-20 아릴이고,  ¾ is Ce-20 aryl substituted with 0, -20 alkyl,
, ¾ 및 ¾는 각각 독립적으로 수소, 할로겐, ( 20 알킬, C2-20 알케닐, C -20 알킬실릴, d-20 실릴알킬, d-20 알콕시실릴, d-20 에테르, d-20 실릴에테르, d-20 알콕시 C6-20 아릴 , C7-20 알킬아릴 또는 C7-20 아릴알킬이고, , ¾ and ¾ are each independently hydrogen, halogen, (20 alkyl, C 2 - 20 alkenyl, C - 20 alkylsilyl, d-20 silyl-alkyl, d-20, alkoxysilyl, d-20 ether, d-20 silyl ether, d- 20 alkoxy C 6 - 20 aryl, C 7 - 20 aryl and the alkyl, - 20 alkylaryl or C 7
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
R5는 d-20 알콕시로 치환된 d— 20 알킬이고, R 5 is a d- 20 alkyl substituted with d-20-alkoxy,
R6는 수소, C o 알킬 또는 C2-20 알케닐이다. R 6 is hydrogen, C o alkyl, C 2 - 20 alkenyl is.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
하기 화학식 2로 표시되는 인덴 화합물과 하기 화학식 3로 표시되는 화합물을 반응시켜, 상기 화학식 1로 표시되는 리간드 화합물을 제조하는 단계;  Reacting an indene compound represented by Chemical Formula 2 with a compound represented by Chemical Formula 3 to prepare a ligand compound represented by Chemical Formula 1;
를 추가로 포함하는 것인 메탈로센 촉매의 제조 방법:  Method for producing a metallocene catalyst further comprising:
Figure imgf000029_0001
Figure imgf000029_0001
상기 화학식 2에서, In Chemical Formula 2,
¾은 C O 알킬로 치환된 C6 20 아릴이고, ¾ is C 6 20 aryl substituted with CO alkyl,
, R3 및 는 각각 독립적으로 수소, 할로겐, 알킬, C2-20 알케닐, ( 20 알킬실릴, d-20 실릴알킬, d-20 알콕시실릴, 에테르, d-20 실릴에테르, d-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고, , And R 3 are each independently hydrogen, halogen, alkyl, C 2 - 20 alkenyl, (20 alkylsilyl, d- 20 silyl-alkyl, d-2 0 alkoxysilyl, ether, d-20 silyl ether, d- 20 and 20 arylalkyl, alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7
[화학식 3]
Figure imgf000029_0002
상기 화학식 3에서
[Formula 3]
Figure imgf000029_0002
In Chemical Formula 3
탄소, 실리콘 또는 게르마늄이고  Carbon, silicon or germanium
¾는 ( 20 알콕시로 치환된 d-20 알킬이고, ¾ is d- 20 alkyl substituted with 20 alkoxy,
R6는 수소, d-20 알킬 또는 C2-20 알케닐이고, R 6 is hydrogen, d- 20 alkyl or C 2 - 20 alkenyl, and,
X'는 서로 동일하거나 상이한 할로겐이다. 【청구항 3] X 'is the same or different halogen from each other. [Claim 3]
거 U항에 있어서, In U,
상기 지르코늄 화합물은 하기 화학식 4로 표시되는 것인 메탈로센 촉매의 제조 방법 :  The zirconium compound is a method for producing a metallocene catalyst represented by the following formula (4):
[화학식 4]  [Formula 4]
Zr  Zr
상기 화학식 4에서,  In Chemical Formula 4,
X는 서로 동일하거나 상이한 할로겐임.  X is the same or different halogen from each other.
【청구항 4] [Claim 4]
제 1항 또는 제 2항에 있어서,  The method according to claim 1 or 2,
¾은 t-부틸로 치환된 페닐인 메탈로센 촉매의 제조 방법 .  ¾ is a method for preparing a metallocene catalyst wherein phenyl is substituted with t-butyl.
【청구항 5】 [Claim 5]
게 1항 또는 제 2항에 있어서,  According to claim 1 or 2,
¾은 4-(t-부틸) -페닐인 메탈로센 촉매의 제조 방법 .  ¾ is a 4- (t-butyl) -phenyl process for producing a metallocene catalyst.
【청구항 6】 [Claim 6]
제 1항 또는 제 2항에 있어서,  The method according to claim 1 or 2,
R2 , Rs 및 ¾는 수소인 메탈로센 촉매의 제조 방법 . R 2 , Rs and ¾ are hydrogen.
【청구항 7】 [Claim 7]
제 1항 또는 제 2항에 있어서,  The method according to claim 1 or 2,
A는 실리콘인 메탈로센 촉매의 제조 방법.  A is a method for producing a metallocene catalyst, which is silicon.
【청구항 8】 [Claim 8]
거 U항 또는 제 2항에 있어서,  According to claim 5 or 2,
¾는 3-(t-부특시) -프로필이고, R6는 메틸인 메탈로센 촉매의 제조 방법 . ¾ is 3- (t-subsidiary) -propyl and R 6 is methyl.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 염화리튬 착화합물 형성용 용매는 1 , 4-다이옥산 및 1,3_ 다이옥솔란 ( 1 , 3-Dioxolane)으로 이루어진 군에서 선택된 1종 이상인 메탈로센 촉매의 제조 방법 .  The solvent for forming the lithium chloride complex is 1, 4-dioxane and 1,3_ dioxolane (1, 3-Dioxolane) A method for producing a metallocene catalyst selected from the group consisting of.
【청구항 10] [Claim 10]
제 2항에 있어서,  The method of claim 2,
상기 화학식 2의 화합물 중량 기준으로 3 내지 20 배의 함량으로 염화리튬 착화합물 형성용 용매를 첨가하는 메탈로센 촉매의 제조 방법 .  Method for producing a metallocene catalyst to add a solvent for forming a lithium chloride complex compound in an amount of 3 to 20 times based on the weight of the compound of Formula 2.
【청구항 11】 [Claim 11]
제 1항에 있어서,  The method of claim 1,
상기 염화리튬 착화합물 형성용 용매를 첨가하고 1 시간 이상 동안 교반하는 메탈로센 촉매의 제조 방법 .  Method for producing a metallocene catalyst to which the lithium chloride complex forming solvent is added and stirred for at least 1 hour.
【청구항 12】 [Claim 12]
제 1항에 있어서,  The method of claim 1,
상기 염화리튬 착화합물 형성용 용매를 압력 0.5 내지 2.0 mbar 및 온도 30 내지 45 °C의 조건 하에서 감압 증류하여 제거하는 메탈로센 촉매의 제조 방법 . Method for producing a metallocene catalyst to remove the lithium chloride complex formation solvent by distillation under reduced pressure under the conditions of pressure 0.5 to 2.0 mbar and temperature 30 to 45 ° C.
【청구항 13] [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 염화리튬 착화합물 추출용 용매는 디클로로쩨탄, 클로로포름, 사염화탄소, 벤젠, 및 를루엔으로 이루어진 군에서 선택된 1종 이상인 메탈로센 촉매의 제조 방법 .  The solvent for extracting the lithium chloride complex is dichloropentane, chloroform, carbon tetrachloride, benzene, toluene and a method for producing a metallocene catalyst selected from the group consisting of.
【청구항 14】 [Claim 14]
게 2항에 있어서,  According to claim 2,
상기 화학식 2의 화합물 중량 기준으로 3 내지 20 배의 함량으로 염화리튬 착화합물 추출용 용매를 첨가하는 메탈로센 촉매의 제조 방법. In an amount of 3 to 20 times based on the weight of the compound of Formula 2 A method for producing a metallocene catalyst comprising adding a solvent for extracting a lithium chloride complex.
【청구항 15] [Claim 15]
제 1항에 있어서,  The method of claim 1,
상기 염화리튬 착화합물 추출 용매를 첨가하고 여과한 후에 얻어진 여액으로부터 용매를 제거하고, 디클로로메탄 및 핵산으로 이루어진 군에서 선택된 1종 이상의 용매를 사용하여 재결정하는 단계를 추가로 포함하는 메탈로센 촉매의 제조 방법 .  Preparation of the metallocene catalyst further comprising the step of removing the solvent from the filtrate obtained by adding and filtering the lithium chloride complex extraction solvent and recrystallization using at least one solvent selected from the group consisting of dichloromethane and nucleic acid. Way .
【청구항 16】 [Claim 16]
거 U항 또는 제 2항에 따른 방법으로 제조된 메탈로센 촉매 .  Metallocene catalyst prepared by the process according to claim U or 2.
【청구항 17】 [Claim 17]
제 16항에 있어서,  The method of claim 16,
상기 촉매내에 포함된 염화리튬의 함량은 200 ppm 이하인 메탈로센 촉매.  The content of lithium chloride contained in the catalyst is 200 ppm or less metallocene catalyst.
PCT/KR2017/007280 2016-07-07 2017-07-07 Method for preparing metallocene catalyst for preparing polyolefin WO2018009016A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780004055.1A CN108290973B (en) 2016-07-07 2017-07-07 Method for preparing metallocene catalyst for preparing polyolefin
US15/774,448 US11077434B2 (en) 2016-07-07 2017-07-07 Method of preparing metallocene catalyst for polyolefin preparation
EP17824572.6A EP3357938B1 (en) 2016-07-07 2017-07-07 Method of preparing metallocene catalyst for polyolefin preparation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160086256 2016-07-07
KR10-2016-0086256 2016-07-07
KR1020170085739A KR102064412B1 (en) 2016-07-07 2017-07-06 Preparation method of metallocene catalyst for preparing polyolefin
KR10-2017-0085739 2017-07-06

Publications (2)

Publication Number Publication Date
WO2018009016A2 true WO2018009016A2 (en) 2018-01-11
WO2018009016A3 WO2018009016A3 (en) 2018-03-01

Family

ID=60912244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007280 WO2018009016A2 (en) 2016-07-07 2017-07-07 Method for preparing metallocene catalyst for preparing polyolefin

Country Status (1)

Country Link
WO (1) WO2018009016A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130125311A (en) 2012-05-08 2013-11-18 주식회사 엘지화학 Ansa-metallocene catalyst and preparation method of supported catalyst by using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239300B1 (en) * 1999-02-17 2001-05-29 Phillips Petroleum Company Metallocene production process
DE102004032277A1 (en) * 2004-07-02 2006-01-19 Basell Polyolefine Gmbh New ansa-metallocene complex, useful as intermediate for preparation of another ansa-metallocene complex and as constituent of catalyst systems for the polymerization of olefinically unsaturated compounds
US7169864B2 (en) * 2004-12-01 2007-01-30 Novolen Technology Holdings, C.V. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
KR101653356B1 (en) * 2014-10-17 2016-09-01 주식회사 엘지화학 Metallocene catalyst for preparing polyolefin with high molecular weight

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130125311A (en) 2012-05-08 2013-11-18 주식회사 엘지화학 Ansa-metallocene catalyst and preparation method of supported catalyst by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3357938A4

Also Published As

Publication number Publication date
WO2018009016A3 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
KR101549206B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using the same
JP5956595B2 (en) Non-supported heterogeneous polyolefin polymerization catalyst composition and process for producing the same
KR101653356B1 (en) Metallocene catalyst for preparing polyolefin with high molecular weight
CN113508123B (en) Transition metal compound and catalyst composition comprising the same
KR102219312B1 (en) Polyethylene and its chlorinated polyethylene
WO2015047030A1 (en) Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer obtained thereby
KR101665076B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using it
KR102080640B1 (en) Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR102064412B1 (en) Preparation method of metallocene catalyst for preparing polyolefin
CN113316583B (en) Transition metal compound, catalyst composition, and method for preparing polypropylene using same
KR102431269B1 (en) Novel transition metal compound and method for preparing polypropylene with the same
KR101734427B1 (en) Supported catalyst and method for preparing of olefin based polymer using the same
KR101653357B1 (en) Metallocene catalyst for preparing polyolefin with high molecular weight
KR102022686B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
WO2018009016A2 (en) Method for preparing metallocene catalyst for preparing polyolefin
KR102035310B1 (en) Catalyst system and process for preparing polyolefins
KR102086059B1 (en) Metallocene compound and method for preparing polyolefin using the same
CN113614119A (en) Hybrid supported metallocene catalyst and method for preparing polypropylene using the same
WO2020091177A1 (en) Novel transition metal compound and method for preparaing polypropylene using same
WO2017159994A1 (en) Polypropylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824572

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE