WO2018008737A1 - Dihydroxy compound or salt thereof, and therapeutic or prophylactic drug for parkinson's disease - Google Patents
Dihydroxy compound or salt thereof, and therapeutic or prophylactic drug for parkinson's disease Download PDFInfo
- Publication number
- WO2018008737A1 WO2018008737A1 PCT/JP2017/024921 JP2017024921W WO2018008737A1 WO 2018008737 A1 WO2018008737 A1 WO 2018008737A1 JP 2017024921 W JP2017024921 W JP 2017024921W WO 2018008737 A1 WO2018008737 A1 WO 2018008737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- compound
- substituent
- monovalent
- Prior art date
Links
- 0 Cc1c(*)c(*)c(*)c(*)c1* Chemical compound Cc1c(*)c(*)c(*)c(*)c1* 0.000 description 3
- UICOQEMTCPJOCW-DDYHOKDCSA-N CO[C@@H]([C@@H]1OC2(CCCCC2)O[C@@H]1[C@H]([C@@H]1O)O)[C@H]1O Chemical compound CO[C@@H]([C@@H]1OC2(CCCCC2)O[C@@H]1[C@H]([C@@H]1O)O)[C@H]1O UICOQEMTCPJOCW-DDYHOKDCSA-N 0.000 description 1
- XBOCTKJBDSXBDN-RUBPDXDRSA-N COc(cccc1)c1C(O[C@H]([C@H]1OC2(CCCCC2)O[C@H]1[C@@H]([C@H]1OC(c(cccc2)c2OC)=O)OC(c(cccc2)c2OC)=O)[C@@H]1OC(c1ccccc1OC)=O)=O Chemical compound COc(cccc1)c1C(O[C@H]([C@H]1OC2(CCCCC2)O[C@H]1[C@@H]([C@H]1OC(c(cccc2)c2OC)=O)OC(c(cccc2)c2OC)=O)[C@@H]1OC(c1ccccc1OC)=O)=O XBOCTKJBDSXBDN-RUBPDXDRSA-N 0.000 description 1
- FVRBNTCYFOVWGL-ZXINYEGQSA-N O=C(c(cc1F)ccc1F)O[C@H]([C@H]1OC2(CCCCC2)O[C@H]1[C@@H]([C@H]1OC(c(cc2)cc(F)c2F)=O)OC(c(cc2)cc(F)c2F)=O)[C@@H]1OC(c(cc1F)ccc1F)=O Chemical compound O=C(c(cc1F)ccc1F)O[C@H]([C@H]1OC2(CCCCC2)O[C@H]1[C@@H]([C@H]1OC(c(cc2)cc(F)c2F)=O)OC(c(cc2)cc(F)c2F)=O)[C@@H]1OC(c(cc1F)ccc1F)=O FVRBNTCYFOVWGL-ZXINYEGQSA-N 0.000 description 1
- IMAKPCWICJTDEI-ZXINYEGQSA-N O=C(c1ccccc1)O[C@H]([C@H]1OC2(CCCCC2)O[C@H]1[C@@H]([C@H]1OC(c2ccccc2)=O)OC(c2ccccc2)=O)[C@@H]1OC(c1ccccc1)=O Chemical compound O=C(c1ccccc1)O[C@H]([C@H]1OC2(CCCCC2)O[C@H]1[C@@H]([C@H]1OC(c2ccccc2)=O)OC(c2ccccc2)=O)[C@@H]1OC(c1ccccc1)=O IMAKPCWICJTDEI-ZXINYEGQSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/216—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/341—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/381—Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/49—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
- C07C205/57—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/63—Esters of sulfonic acids
- C07C309/72—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/73—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/013—Esters of alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/78—Benzoic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/84—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
- C07C69/92—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/68—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/26—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D333/38—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
Definitions
- the present invention relates to a dihydroxy compound or a salt thereof, and a therapeutic or prophylactic agent for Parkinson's disease.
- Parkinson's disease is a disease that develops mainly due to degeneration and cell death of dopamine-secreting cells in the midbrain substantia nigra. Degeneration or cell death of dopamine-secreting cells results in a decrease in dopamine production, and exhibits symptoms such as resting tremor, rigidity, immobility, and postural reflex disorder. In the present age of an aging society, the number of patients with Parkinson's disease is expected to increase more and more, so an effective treatment for Parkinson's disease is desired.
- Non-Patent Document 1 As such Parkinson's disease therapeutic agents, currently, as disclosed in Non-Patent Document 1, dopamine supplements, dopamine receptor stimulants, dopamine release promoters, and dopamine degradation inhibitors are mainly used.
- any of the above-mentioned drugs for treating Parkinson's disease is intended to treat Parkinson's disease by supplementing the deficient amount of dopamine, and such treatment is merely symptomatic treatment.
- the present invention has been made in view of the above circumstances, and a compound that acts on the pathogenesis of Parkinson's disease by suppressing degeneration and cell death of dopamine secreting cells, and a therapeutic or preventive agent for Parkinson's disease.
- the purpose is to provide.
- the present inventors have induced cell death by treating neurons with 1-methyl-4-phenylpyridinium (MPP +) and formed spots in the cells, and It was found that the spots were aggregates of ⁇ -synuclein. Furthermore, the present inventors have found a compound capable of suppressing the spots, and have completed the present invention.
- the present invention provides the following.
- R 1 to R 4 are each independently a group represented by the following formula (I) or (II), or Three of R 1 to R 4 are groups represented by the formula (I) or the formula (II), and the remaining one is a hydrogen atom or a substituent,
- R 5 may have a monovalent branched chain hydrocarbon group having 3 or more carbon atoms, which may have a substituent, or a substituent.
- X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent
- R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond.
- R 5 in the formula (I) or the formula (II) may have an aryl group which may have a substituent, a cyclohexyl group which may have a substituent, or a substituent.
- the aryl group is a phenyl group, and in the phenyl group, at least the ortho position with respect to the carbon atom to which X 1 in the formula (I) or the formula (II) is bonded is substituted. Or a salt thereof.
- [4] The monovalent branched chain hydrocarbon group having 3 or more carbon atoms, the 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or the 3- to 10-membered
- a therapeutic or prophylactic agent for Parkinson's disease containing a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof.
- R 1 to R 4 are each independently a group represented by the following formula (I) or (II), or Three of R 1 to R 4 are groups represented by the formula (I) or the formula (II), and the remaining one is a hydrogen atom or a substituent
- R 6 to R 9 are each independently a group represented by the following formula (III) or formula (IV), or Three of R 6 to R 9 are groups represented by the formula (III) or the formula (IV), and the remaining one is a hydrogen atom or a substituent
- R 5 is a branched monovalent chain formula having 3 or more carbon atoms which may have a substituent.
- Hydrocarbon group 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group which may have a substituent, or 3- to 10-membered monocyclic which may have a substituent Is a tricyclic monovalent heterocyclic group
- X 1 is a C 1-10 divalent hydrocarbon group which may have a single bond or a substituent
- R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond.
- the present invention it is possible to act on the onset mechanism of Parkinson's disease by suppressing degeneration and cell death of dopamine secreting cells.
- FIG. 3 is an image showing that spots composed of ⁇ -synuclein aggregates formed in MPP + treated cells were suppressed by compound (1-1).
- FIG. It is an image of a confocal microscope after staining with thioflavin S when compound (1-1) or rapamycin is added to spots consisting of ⁇ -synuclein aggregates formed in MPP + treated cells.
- 3 is a graph showing the area of aggregates / the area of whole cells, calculated by analyzing the image of FIG. 2. It is a figure which shows the measurement result of the cell number when a compound (1-1) is added with respect to a MPP + treatment cell.
- the present invention is a compound represented by the following formula (1) or a salt thereof.
- R 1 to R 4 are each independently a group represented by the following formula (I) or formula (II), or three of R 1 to R 4 are , A group represented by the following formula (I) or formula (II), and the remaining one is a hydrogen atom or a substituent.
- R 1 to R 4 are groups represented by the formula (I) or the formula (II), that is, the compound of the present invention has at least the formula (I) or It has three R 5 in the formula (II).
- R 5 in R 1 to R 4 is actually rotated at the bonding portion with X 1 , so that the steric structure is difficult to stabilize, but “branched chain hydrocarbon group”, “carbocycle”
- the “group” and the “heterocyclic group” are three-dimensionally bulky structures. When these are adjacent to each other and the structure is in a dense state, these structures become a steric hindrance to the rotation described above. , Rotation is suppressed, and its three-dimensional structure becomes stable.
- the compounds of the present invention are considered to have excellent dopamine-secreting cell degeneration and cell death inhibitory effects.
- R 1 ⁇ R 4 are all even four, or a group represented by the above formula (I) or the formula (II), or three of the R 1 ⁇ R 4 is the following formula (I) Or it is group represented by Formula (II), and the remaining one is a hydrogen atom or a substituent.
- all four of R 1 to R 4 are represented by the above formula (I) or the above formula (II) because the compound has a more excellent dopamine secreting cell degeneration and cell death suppressing action. It is preferably a group.
- R 5 may have a monovalent branched chain hydrocarbon group having 3 or more carbon atoms, which may have a substituent, or a substituent. 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or 3- to 10-membered monocyclic to tricyclic monovalent heterocyclic group which may have a substituent And X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent.
- R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. When R 6 is a hydrogen atom, the dotted line is absence of a bond, and when R 6 is an oxo group, the dotted line is a bond.
- the monovalent branched chain hydrocarbon group in the above formula (I) or the above formula (II) is not particularly limited, but is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, etc. Those having a branched structure may be mentioned.
- the chain hydrocarbon group may be a saturated chain hydrocarbon group or an unsaturated chain hydrocarbon group, and has one or more unsaturated bonds in the molecule and / or at the end (for example, 1 to 5).
- the carbon number of the monovalent branched chain hydrocarbon group may be, for example, in the range of 3 to 50, but preferably 3 to 45. Is more preferably from 30 to 30, still more preferably from 3 to 20, and particularly preferably from 3 to 10.
- monovalent branched chain hydrocarbon group examples include groups represented by the following formulas (V) and (IV).
- equation (V) and (VI) may be substituted.
- the substituent that the monovalent branched chain hydrocarbon group may have is not particularly limited, but a halogen atom, a hydroxy group, an oxo group, a carboxyl group, an amino group (—NH 2 ), an azide group, a nitro group, Group, thiol group, sulfo group, carbamyl group, alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group, aryl group, heterocyclic group, acyl group, alkoxy group, alkenyloxy group, Alkynyloxy group, alkoxycarbonyl group, acyloxy group, aryloxy group, alkylthio group, alkenylthio group, alkynylthio group, alkylsulfonyl group, alkenylsulfonyl group, alkynylsulfonyl group, alkyl
- an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom) , A carboxyl group, an acyl group, a carbamoyl group, etc.), but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable. It will have a more excellent effect of suppressing the degeneration and cell death of dopamine secreting cells. Accordingly, the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups.
- the alkoxy group is, for example, a straight chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a tert-butoxy group, or the like. Or a branched alkoxy group is mentioned.
- the substituent that the monovalent branched chain hydrocarbon group may have is particularly preferably a methoxy group among the alkoxy groups.
- the electron donating group is a chemical review, 1991, Vol. 91, p.
- the value of ⁇ defined by the Hammett formula described in 165-195 means a negative substituent.
- the alkyl group is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a sec-butyl group.
- examples of the alkenyl group include linear or branched alkenyl groups such as a vinyl group, a propenyl group, a butenyl group, and a pentenyl group.
- examples of the alkynyl group include linear or branched alkynyl groups such as ethynyl group, propargyl group, butynyl group, and pentynyl group.
- the cycloalkyl group includes, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and the like. Is mentioned.
- the cycloalkenyl group includes, for example, a 1-cyclobutenyl group, 1-cyclopentenyl group, 3-cyclopentenyl group, 1-cyclohexenyl group, 3 -Cyclohexenyl group, 3-cycloheptenyl group, 4-cyclooctenyl group can be mentioned.
- the cycloalkynyl group includes, for example, a 1-cyclobutynyl group, a 1-cyclopentynyl group, a 3-cyclopentynyl group, and a 1-cyclohexynyl group. , 3-cyclohexynyl group, 3-cycloheptynyl group, 4-cyclooctynyl group and the like.
- the aryl group is a monocyclic to tricyclic aromatic group (phenyl group, naphthyl group, naphthoyl group, phenalenyl group, anthryl group, phenanthryl group). Etc.).
- the aryl group is particularly preferably a phenyl group.
- hetero atom contained in the heterocyclic group examples include an oxygen atom, a sulfur atom, and a nitrogen atom.
- the heterocyclic group refers to a group derived from, for example, a 3-membered to 10-membered heterocycle, and may be an unsaturated ring or a saturated ring. Further, the heterocyclic group may be a single ring or a condensed ring (for example, a condensed ring of 2 to 8 rings).
- heterocyclic group examples include, for example, epoxy group, thienyl group, benzothienyl group, furyl group, benzofuranyl group, isobenzofuranyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrrolyl group, pyridyl group, pyrazinyl group.
- the acyl group is, for example, formyl group, alkyl (or cycloalkyl) -carbonyl group (for example, acetyl group, propionyl group, butyryl group, isobutyryl group).
- valeryl group valeryl group, pivaloyl group, hexanoyl group, etc.
- alkenyl (or cycloalkenyl) -carbonyl group for example, acryloyl group, methacryloyl group, etc.
- aryl for example, monocyclic to tricyclic aromatic group (phenyl group, Naphthyl group, naphthoyl group, phenalenyl group, anthryl group, phenanthryl group, biphenyl group, etc.))-Carbonyl group and the like.
- the alkyl-carbonyl group may be, for example, linear or branched having 1 to 12 carbon atoms, and the cycloalkyl-carbonyl group may be, for example, 3 to 10 carbon atoms.
- the alkenyl-carbonyl group may be linear or branched having 2 to 12 carbon atoms, for example, and the cycloalkenyl-carbonyl group may be 3 to 10 carbon atoms, for example.
- the aryl-carbonyl group may have, for example, 6 to 14 carbon atoms.
- alkoxy in the alkoxycarbonyl group can exemplify the above alkoxy group.
- the acyl in the acyloxy group can be exemplified by the above acyl group.
- the aryl in the aryloxy group can exemplify the above aryl group.
- the alkyl in the alkylthio group, the alkylsulfonyl group, the alkylsulfinyl group, and the mono- or di-alkylamino group can exemplify the above alkyl group.
- the alkenyl in the alkenylthio group, alkenylsulfonyl group and alkenylsulfinyl group can exemplify the above alkenyl group.
- alkynyl in the alkynylthio group, alkynylsulfonyl group, and alkynylsulfinyl group can exemplify the above alkynyl group.
- the total carbon number of the substituent having a carbon atom is preferably 1 to 50, more preferably 1 to 30, and still more preferably. Is 1 to 20, particularly preferably 1 to 10.
- the total number of carbons contained in the monovalent branched chain hydrocarbon group and the substituent is, for example, 3 to 50. However, it is preferably 3 to 40, more preferably 3 to 30, still more preferably 3 to 20, and particularly preferably 3 to 10.
- alkynylsulfinyl group, mono- or di-alkylamino group, and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron
- the monovalent carbocyclic group for R 5 is not particularly limited as long as it is a 5- to 10-membered monocyclic to tricyclic group, but is a substituted or unsubstituted aryl group, cycloalkyl group, cycloalkenyl group. And cycloalkynyl group.
- the monovalent carbocyclic group may be a saturated carbocyclic group or an unsaturated carbocyclic group, and one or more unsaturated bonds may be present in the molecule and / or at the end (for example, 1 to 5).
- the monovalent carbocyclic group is particularly preferably an aryl group, a cyclohexyl group, or an adamantyl group.
- a phenyl group, a naphthyl group, a naphthoyl group, a phenalenyl group, an anthryl group, and a phenanthryl group are preferable.
- the aryl group is particularly preferably a phenyl group.
- the carbon number of the monovalent carbocyclic group (excluding the carbon number of the substituent) may be, for example, in the range of 3 to 50, preferably 3 to 45, and 3 to 30. More preferably, it is more preferably 3 to 20, and particularly preferably 3 to 10.
- the substituent that the monovalent carbocyclic group may have is not particularly limited, and examples thereof include the same substituents as those of the monovalent branched chain hydrocarbon group.
- an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group).
- An acyl group, a carbamoyl group, etc. but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death.
- the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups.
- the alkoxy group is, for example, a linear or branched chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, or a tert-butoxy group.
- the substituent which the monovalent carbocyclic group may have is particularly preferably a methoxy group among the alkoxy groups.
- the total carbon number of the substituent having a carbon atom is preferably 1 to 50, more preferably 1 to 30, and further preferably 1 to 20 And particularly preferably 1-10.
- the total number of carbon atoms contained in the monovalent carbocyclic group and the substituent may be in the range of 3 to 50, for example. Is preferably 3 to 40, more preferably 3 to 30, still more preferably 3 to 20, and particularly preferably 3 to 10.
- alkyl group alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group, aryl group, heteroaryl group, acyl group, alkoxy group, alkenyl Oxy, alkynyloxy, alkoxycarbonyl, acyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, alkylsulfinyl, alkenylsulfinyl, alkynyl
- the sulfinyl group, mono- or di-alkylamino group and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron-donating group (hydroxy group, amino group, Mono- or gear Kir
- the monovalent carbocyclic group include a group (phenyl group) represented by the following formula (VII).
- R 7 to R 11 are each independently a hydrogen atom or a substituent, and examples of the substituent include the same substituents as the monovalent branched chain hydrocarbon group described above. Is done.
- the monovalent carbocyclic group is preferably a phenyl group, but may not be a phenyl group.
- the monovalent heterocyclic group for R 5 is not particularly limited as long as it is a 3- to 10-membered monocyclic to tricyclic group, and is a substituted or unsubstituted heterocyclic group.
- the monovalent heterocyclic group may be a saturated heterocyclic group or an unsaturated heterocyclic group, and one or more unsaturated bonds may be present in the molecule and / or at the end (for example, 1 to 5).
- the hetero atom contained in the monovalent heterocyclic group may be an oxygen atom, a sulfur atom, a nitrogen atom or the like.
- the monovalent heterocyclic group include, for example, epoxy group, thienyl group, benzothienyl group, furyl group, benzofuranyl group, isobenzofuranyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrrolyl group, pyridyl group.
- the carbon number of the monovalent heterocyclic group (excluding the carbon number of the substituent) may be, for example, in the range of 1 to 50, preferably 2 to 45, and 3 to 30. More preferably, it is more preferably 3 to 20, and particularly preferably 3 to 10.
- the substituent that the monovalent heterocyclic group may have is not particularly limited, and examples thereof include the same substituents as those of the above monovalent branched chain hydrocarbon group.
- an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group).
- An acyl group, a carbamoyl group, etc. but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death.
- the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups.
- the alkoxy group is, for example, a linear or branched chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, or a tert-butoxy group.
- the substituent that the monovalent heterocyclic group may have is particularly preferably a methoxy group among the alkoxy groups.
- the total number of carbon atoms of the substituent having a carbon atom is preferably 1 to 50, more preferably 1 to 30, and further preferably 1 to 20 And particularly preferably 1-10.
- the total number of carbon atoms contained in the monovalent heterocyclic group and the substituent may be in the range of 3 to 50, for example. Is preferably 3 to 40, more preferably 3 to 30, still more preferably 3 to 20, and particularly preferably 3 to 10.
- the sulfinyl group, mono- or di-alkylamino group and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron-donating group (hydroxy group, amino group, Mono- or gear Kiru)
- R 1 to R 4 are groups represented by the above formula (I) or the above formula (II), and the remaining one is a hydrogen atom or a substituent (excluding a hydrogen atom).
- the substituent (provided that the substituent is different from the above formula (I) or the above formula (II)) is not particularly limited, but the substituent of the above monovalent branched chain hydrocarbon group and The same thing can be illustrated.
- an electron donating group hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.
- an electron withdrawing group halogen atom, carboxyl group).
- the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death. Therefore, the remaining one substituent is preferably an electron donating group, particularly preferably an alkoxy group among the electron donating groups, and particularly preferably a methoxy group among the alkoxy groups.
- X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent.
- the structure is denser and sterically stable, and the compound is superior in dopamine-secreting cells. It is preferable that it is a single bond, since it has the action of suppressing the degeneration of and cell death.
- the divalent hydrocarbon group having 1 to 10 carbon atoms in X 1 may be a substituted or unsubstituted divalent aliphatic group or a divalent aromatic group, and may be a saturated hydrocarbon. Group may be an unsaturated hydrocarbon group.
- the divalent hydrocarbon group may be any of linear, branched, and cyclic forms, and may be a combination of these structures, but the divalent hydrocarbon group is The chain is preferably branched (branched).
- the divalent hydrocarbon group having 1 to 10 carbon atoms preferably has a smaller number of carbon atoms.
- the carbon number is preferably 9 or less, 7 or less, more preferably 6 or less, even more preferably 5 or less, even more preferably 4 or less, and 3 or less. It is more preferable that the number of carbon atoms is 2 or less, and it is particularly preferable that the number of carbon atoms is 2 or less.
- the substituent that the divalent hydrocarbon group having 1 to 10 carbon atoms may have is not particularly limited, and examples thereof are the same as the substituents of the above monovalent branched chain hydrocarbon group.
- an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group).
- An acyl group, a carbamoyl group, etc. but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death.
- the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups.
- the alkoxy group is, for example, a linear or branched chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, or a tert-butoxy group.
- the substituent that the divalent hydrocarbon group may have is particularly preferably a methoxy group among the alkoxy groups.
- the total carbon number of the substituent having a carbon atom is preferably 1 to 6, more preferably 1 to 5, and further preferably 1 to 4. And particularly preferably 1 to 3.
- the total number of carbon atoms contained in the monovalent heterocyclic group and the substituent may be, for example, in the range of 2 to 15. Is preferably 2 to 10, more preferably 2 to 6, still more preferably 2 to 5, and particularly preferably 2 to 4.
- the group, mono- or di-alkylamino group and carbonylamino group may be substituted or unsubstituted
- R 1 to R 4 and each carbon atom to which the OH group is bonded will be described with reference to a to f.
- a to d are asymmetric carbon atoms among a to f carbon atoms
- either S configuration or R configuration may be used.
- E and f are asymmetric carbon atoms, and may be either S configuration or R configuration.
- the compound of the present invention may or may not contain the compounds represented by the following formulas (1-1) to (1 to 5), but it is preferable not to include them. .
- the salt of the compound represented by the above formula (1) is not particularly limited, but is preferably a pharmacologically acceptable salt, for example, an inorganic acid (hydrochloric acid, hydrobromic acid, hydrogen iodide). Salts with acids, sulfuric acid, nitric acid, phosphoric acid, etc., organic acids (formic acid, acetic acid, propionic acid, citric acid, tartaric acid, fumaric acid, butyric acid, oxalic acid, succinic acid, malonic acid, maleic acid, lactic acid, malic acid Salts with carbonic acid, glutamic acid, aspartic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, etc., salts with alkali metals (sodium, potassium, etc.), alkaline earth metals (calcium, magnesium, etc.) And salts with metals (iron, zinc, etc.). These may be used alone or in combination of two or
- the compound represented by the above formula (1) or a salt thereof may be in the form of a hydrate or a solvate.
- R 1 to R 4 are groups represented by the formula (I), and R 6 is an oxo group.
- An example of a production method for the compound (compound represented by the formula (1-a)) is shown.
- the compound represented by the formula (1-a) can be produced through the following steps (a) and (b).
- the step (a) is not particularly limited as long as it is a step of dehydrating and condensing the compound represented by the formula (3) and the compound represented by the formula (4) to obtain the compound represented by the formula (5).
- a known dehydration condensing agent carbodiimide dehydration condensing agent or the like
- the catalyst a known catalyst (for example, a strong base such as N, N-dimethyl-4-aminopyridine) can be used.
- Step (b) is a step of obtaining the compound represented by the formula (1-a) from the compound represented by the formula (5).
- Step (b) can be generally performed by an acetal decomposition reaction with an acid, for example, a heating reflux reaction using an 80% aqueous acetic acid solution.
- steps (a) and (b) are examples in the case where R 1 to R 4 are a group represented by the formula (I) in the formula (1) and R 6 is an oxo group.
- R 6 is a hydrogen atom
- the compound represented by the formula (7) described later instead of the step (a) using the compound represented by the formula (4)
- a sulfonyl chloride group such as p-toluenesulfonyl chloride is used instead of the compound represented by the formula (4).
- the above formula (3) It can be produced by using one in which one of the hydroxy groups in the compound represented by the formula is a hydrogen atom or a substituent (excluding R 1 to R 4 ).
- the present invention includes a therapeutic or prophylactic agent for Parkinson's disease.
- the therapeutic or preventive drug for Parkinson's disease in the present invention contains a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof as an active ingredient.
- R 6 to R 9 are each independently a group represented by the following formula (III) or the following formula (IV), or of R 6 to R 9 Three are groups represented by the following formula (III) or the following formula (IV), and the remaining one is a hydrogen atom or a substituent.
- the following formula (III) and R 5 in the above formula (IV) can be exemplified by the same as R 5 in the above formula (I) or Formula (II).
- the following formula (III) and X 1 in the formula (IV) may be exemplified the same ones as the X 1 in the above formula (I) or Formula (II).
- the compound represented by the formula (2) of the present invention a compound in which R 6 to R 9 are derived as necessary from a compound having a sugar skeleton such as glucose can be used.
- the compound represented by the formula (2) is a derivative from ⁇ -D-glucose
- the compound represented by the formula (2) can be a compound of the following formula (2-a).
- Step (c) is a step of obtaining the compound represented by formula (8) by reacting the compound represented by formula (6) with the compound represented by formula (7).
- the reaction of step (c) can be performed using a base (NaH, NaOH, KOH, etc.).
- a 1 represents a leaving group (halogen atom (chlorine atom, bromine atom, etc.), —OTs (p-toluenesulfonyl group), —OMs (methanesulfonyl group), etc.).
- the solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction.
- DMF N, N-dimethylformamide
- the compound of formula (6) can be obtained from ⁇ -D-glucose using hydrogen chloride methanol.
- Step (d) is a step of obtaining a compound represented by the formula (2-a) by reacting a compound represented by the formula (8) with acetic acid.
- the reaction in the step (d) can be performed using, for example, an acid (sulfuric acid, HCl / SrCl 2 or the like).
- the reactions (c) and (d) are examples of the case where the compound represented by the formula (2) is a derivative of ⁇ -D-glucose, and ⁇ -D-glucose, ⁇ -L-glucose In the case of a derivative of ⁇ -L-glucose or a derivative of galactose, the same reaction can be performed.
- the reactions (c) and (d) above are examples in which R 6 to R 9 are groups represented by the formula (III) in the formula (2), and R 6 to R 9 are represented by the formulas
- the compound represented by the above formula (4) is used instead of the step (c) using the compound represented by the formula (7) It can be obtained by performing a).
- the Parkinson's disease therapeutic agent or prophylactic agent of the present invention may be formulated.
- the dosage form is not particularly limited, and includes, for example, injections (intravenous injections (including infusion), intramuscular injections, intraperitoneal injections, subcutaneous injections, etc.), tablets, capsules, liquids, suppositories, It may be formulated into an ointment or the like, and in the case of an injectable preparation, it may be provided in the form of a unit dose ampoule or a multi-dose container.
- compositions of the present invention may have components other than the compound represented by the above formula (1) or (2) or a pharmacologically acceptable salt thereof for the purpose of formulation. , You do not have to.
- the administration method of the therapeutic agent or prophylactic agent of the present invention is not particularly limited, and may be oral administration or parenteral administration, and can be appropriately selected according to the dosage form.
- EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
- DMAP 4-dimethylaminopyridine
- PTLC preparative thin layer chromatography
- EtOAc ethyl acetate
- AcOH acetic acid
- OMe methoxy group
- Bn benzyl group
- Bz Benzoyl group
- BzCl Benzoyl chloride
- the compound (1-4) was synthesized with reference to “Tetsuo SUAMI et al., BULLETIN OF CHEMICAL SOCIETY OF JAPAN, VOL. 44, 835-841 (1971)”.
- the compound (2-1) was prepared according to “Andreas M. Doepner, et al,“ 2′-Deoxy-2 ′, 2′-difluorourine analogues for radiolapping with fluorinet 18 ”. 3293-3297 (2015) ".
- Compound (2-2) is “Peng Wei, et al,“ Iodine Monochloride (ICl) as a Highly Efficient, Green Oxidant for the Coordination of Alcohols to CoL. 2015) ”and synthesized.
- Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells. Then 10 ⁇ g / mL of the compound of the present invention (1-1) or 10 ⁇ g / mL SO82 (control compound) was added. Predetermined staining was performed 8 hours after the addition, and the cells were observed. The results of cell observation are shown in FIG.
- phase-contrast is the result of observation of cells before staining with a phase contrast microscope.
- ProteoStat dye is a result of staining the aggresome with ProteoStat Aggresome Detection Kit (manufactured by Enzo) and observing with a confocal microscope.
- ⁇ -synuclein is the result of immunostaining with anti- ⁇ -synuclein antibody and observation with a confocal microscope.
- Colocalization is the result of merging the aggresome detected by ProteoStat Aggresome Detection Kit with the ⁇ -synuclein antibody detected by the anti- ⁇ -synuclein antibody.
- Control indicates an untreated cell.
- Compound (1-1) indicates a cell to which only compound (1-1) was added without being treated with MPP + .
- MPP + indicates a cell that has been treated only with MPP + .
- MPP + + compound (1-1) and “MPP + + SO82” indicate cells to which compound (1-1) or SO82 was added after MPP + treatment, respectively.
- the chemical formula of SO82, which is a reference compound, is shown below.
- spots were formed in the cells by MPP + treatment, but these spots were reduced by administration of the compound (1-1) of the present invention, and spot clearance was observed.
- ⁇ Study-2 using MPP + treated cells Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells. Subsequently, 10 ⁇ g / mL of the compound (1-1) of the present invention or 10 ⁇ M rapamycin (autophagy inducer) was added. 8 hours after the addition, the cells were stained with Thioflavin S and the cells were observed with a confocal microscope. Thioflavin S stains aggregated proteins. The portion stained with Thioflavin S was considered to be an aggregate of protein containing ⁇ -synuclein. The results of cell observation are shown in FIG. Further, from the image shown in FIG. 2, image analysis was performed using Image J, and the area of the aggregate was calculated.
- FIG. 3 shows a graph relating to the area of the aggregate / the area of the whole cell (ratio where MPP + is 1 ), which is derived from the calculation result. 2 and 3, “NT” indicates untreated cells. “MPP + ” indicates cells treated with MPP + alone. “MPP + + compound (1-1)” and “MPP + + rapamycin” indicate cells to which the compound (1-1) or rapamycin of the present invention was added after MPP + treatment, respectively.
- spots are formed on the cells by treatment with MPP + ( “MPP +”).
- the spots were decreased by administration of the compound (1-1) of the present invention, and the clearance of the spots was observed (“MPP + + compound (1-1)”).
- the clearance effect was equivalent to or better than rapamycin.
- “Ctrl” indicates an untreated cell.
- “MPP + ” indicates cells treated with MPP + alone.
- “MPP + + compound (1-1)” indicates a cell to which compound (1-1) 1 or 10 ⁇ g / mL of the present invention was added simultaneously with MPP + .
- F represents the number of cells in the subG1 phase
- E represents the G1 phase
- D represents the S phase
- C represents the G2 / M phase.
- the horizontal axis is the fluorescence intensity
- the vertical axis is the number of cells.
- the numbers (unit:%) in FIG. 4 indicate the ratio of the number of cells in the subG1 phase to the total number of cells.
- the compound of the present invention can be used as a new therapeutic agent for Parkinson's disease that can suppress degeneration and cell death of dopamine secreting cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Psychology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention addresses the problem of providing a compound which exerts its effect on the onset mechanism of Parkinson's disease by inhibiting the degeneration and cell death of dopamine-secreting cells, and a therapeutic or prophylactic drug for Parkinson's disease. The present invention provides a compound represented by formula (1) or a salt thereof. (In formula (1), R1-R4 each independently represent a group represented by formula (I) or formula (II), or three among R1-R4 represent a group represented by formula (I) or formula (II), and the remaining one represents a hydrogen atom or a substituent, and in formula (I) and formula (II), R5 represents an optionally substituted monovalent branched chain hydrocarbon group having 3 or more carbon atoms, an optionally substituted 5-10 membered mono- to tri-cyclic monovalent carbocyclic group, or an optionally substituted 3-10 membered mono- to tri-cyclic monovalent heterocyclic group, and X1 represents a single bond or an optionally substituted divalent hydrocarbon group having 1-10 carbon atoms.)
Description
本発明は、ジヒドロキシ化合物又はその塩、及びパーキンソン病治療薬又は予防薬に関する。
The present invention relates to a dihydroxy compound or a salt thereof, and a therapeutic or prophylactic agent for Parkinson's disease.
パーキンソン病は、中脳黒質緻密質のドーパミン分泌細胞の変性や細胞死を主な病因として発症する疾患である。ドーパミン分泌細胞の変性や細胞死は、ドーパミン産生量の低下をもたらし、安静時振戦、固縮、無動、姿勢反射障害等の症状を呈する。高齢化社会が進んでいる現代において、パーキンソン病の患者はますます増えることが予想されているため、有効なパーキンソン病治療薬が望まれている。
Parkinson's disease is a disease that develops mainly due to degeneration and cell death of dopamine-secreting cells in the midbrain substantia nigra. Degeneration or cell death of dopamine-secreting cells results in a decrease in dopamine production, and exhibits symptoms such as resting tremor, rigidity, immobility, and postural reflex disorder. In the present age of an aging society, the number of patients with Parkinson's disease is expected to increase more and more, so an effective treatment for Parkinson's disease is desired.
このようなパーキンソン病治療薬としては、現在、非特許文献1に開示されるようにドーパミン補充薬、ドーパミン受容体刺激薬、ドーパミン放出促進薬、ドーパミン分解阻害薬が主に用いられている。
As such Parkinson's disease therapeutic agents, currently, as disclosed in Non-Patent Document 1, dopamine supplements, dopamine receptor stimulants, dopamine release promoters, and dopamine degradation inhibitors are mainly used.
しかしながら、上述のパーキンソン病治療薬はいずれも、不足したドーパミン量を補ってパーキンソン病を治療しようとするものであり、このような治療は対症療法に過ぎない。
However, any of the above-mentioned drugs for treating Parkinson's disease is intended to treat Parkinson's disease by supplementing the deficient amount of dopamine, and such treatment is merely symptomatic treatment.
そのため、ドーパミン分泌細胞の変性や細胞死を抑制することで、パーキンソン病の発症機序に作用し、パーキンソン病の根本的な治療が期待できる治療薬が求められていたが、未だそのようなパーキンソン病治療薬は存在しなかった。
For this reason, there has been a demand for a therapeutic agent that acts on the pathogenesis of Parkinson's disease by suppressing the degeneration and cell death of dopamine-secreting cells, and is expected to be a fundamental treatment for Parkinson's disease. There was no disease treatment.
本発明は以上の実情に鑑みてなされたものであり、ドーパミン分泌細胞の変性や細胞死を抑制することによりパーキンソン病の発症機序に作用する化合物、及び、パーキンソン病の治療薬又は予防薬を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a compound that acts on the pathogenesis of Parkinson's disease by suppressing degeneration and cell death of dopamine secreting cells, and a therapeutic or preventive agent for Parkinson's disease. The purpose is to provide.
本発明者らは、培養細胞系においては、神経細胞を1-メチル-4-フェニルピリジニウム(MPP+)で処理することで細胞死が誘導されるとともに細胞内に斑点が形成されること、及び該斑点がα-シヌクレインの凝集体であることを見出した。さらに、本発明者らは、該斑点を抑制できる化合物を見出し、本発明を完成するに至った。本発明は、以下のようなものを提供する。
In the cultured cell system, the present inventors have induced cell death by treating neurons with 1-methyl-4-phenylpyridinium (MPP +) and formed spots in the cells, and It was found that the spots were aggregates of α-synuclein. Furthermore, the present inventors have found a compound capable of suppressing the spots, and have completed the present invention. The present invention provides the following.
[1] 以下の式(1)で表される化合物又はその塩。
(式(1)中、R1~R4は、それぞれ独立に、以下の式(I)又は式(II)で表される基であるか、又は、
R1~R4のうちの3つは、前記式(I)又は前記式(II)で表される基であり、かつ、残りの1つは水素原子又は置換基であり、
前記式(I)及び前記式(II)中、R5は、置換基を有してもよい炭素数3以上の1価の枝分かれ状の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であり、
前記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。) [1] A compound represented by the following formula (1) or a salt thereof.
(In the formula (1), R 1 to R 4 are each independently a group represented by the following formula (I) or (II), or
Three of R 1 to R 4 are groups represented by the formula (I) or the formula (II), and the remaining one is a hydrogen atom or a substituent,
In the formula (I) and the formula (II), R 5 may have a monovalent branched chain hydrocarbon group having 3 or more carbon atoms, which may have a substituent, or a substituent. 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or 3- to 10-membered monocyclic to tricyclic monovalent heterocyclic group which may have a substituent X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent,
In the formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. )
前記式(I)及び前記式(II)中、R5は、置換基を有してもよい炭素数3以上の1価の枝分かれ状の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であり、
前記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。) [1] A compound represented by the following formula (1) or a salt thereof.
In the formula (I) and the formula (II), R 5 may have a monovalent branched chain hydrocarbon group having 3 or more carbon atoms, which may have a substituent, or a substituent. 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or 3- to 10-membered monocyclic to tricyclic monovalent heterocyclic group which may have a substituent X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent,
In the formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. )
[2] 前記式(I)又は前記式(II)におけるR5が、置換基を有してもよいアリール基、置換基を有してもよいシクロヘキシル基、又は置換基を有してもよいアダマンチル基である、[1]に記載の化合物又はその塩。
[2] R 5 in the formula (I) or the formula (II) may have an aryl group which may have a substituent, a cyclohexyl group which may have a substituent, or a substituent. The compound or a salt thereof according to [1], which is an adamantyl group.
[3] 前記アリール基がフェニル基であり、該フェニル基における、前記式(I)又は前記式(II)におけるX1が結合する炭素原子に対するオルト位が少なくとも置換されている、[2]に記載の化合物又はその塩。
[3] The aryl group is a phenyl group, and in the phenyl group, at least the ortho position with respect to the carbon atom to which X 1 in the formula (I) or the formula (II) is bonded is substituted. Or a salt thereof.
[4] 前記炭素数3以上の1価の枝分かれ状の鎖式炭化水素基、前記5~10員の単環式~3環式の1価の炭素環式基、又は前記3~10員の単環式~3環式の1価の複素環式基が、電子供与性基により置換されている、[1]から[3]のいずれかに記載の化合物又はその塩。
[4] The monovalent branched chain hydrocarbon group having 3 or more carbon atoms, the 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or the 3- to 10-membered The compound or salt thereof according to any one of [1] to [3], wherein the monocyclic to tricyclic monovalent heterocyclic group is substituted with an electron donating group.
[5] 以下の式(1)又は式(2)で表される化合物又はその薬理学的に許容される塩を含有する、パーキンソン病治療薬又は予防薬。
(式(1)中、R1~R4は、それぞれ独立に、以下の式(I)又は式(II)で表される基であるか、又は、
R1~R4のうちの3つは、前記式(I)又は前記式(II)で表される基であり、かつ、残りの1つは水素原子又は置換基であり、
式(2)中、R6~R9は、それぞれ独立に、以下の式(III)又は式(IV)で表される基であるか、又は、
R6~R9のうちの3つは、前記式(III)又は前記式(IV)で表される基であり、かつ、残りの1つは水素原子又は置換基であり、
前記式(I)、前記式(II)、前記式(III)及び前記式(IV)中、R5は、置換基を有してもよい炭素数3以上の枝分かれ状の1価の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であり、
前記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。) [5] A therapeutic or prophylactic agent for Parkinson's disease containing a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof.
(In the formula (1), R 1 to R 4 are each independently a group represented by the following formula (I) or (II), or
Three of R 1 to R 4 are groups represented by the formula (I) or the formula (II), and the remaining one is a hydrogen atom or a substituent,
In formula (2), R 6 to R 9 are each independently a group represented by the following formula (III) or formula (IV), or
Three of R 6 to R 9 are groups represented by the formula (III) or the formula (IV), and the remaining one is a hydrogen atom or a substituent,
In the formula (I), the formula (II), the formula (III) and the formula (IV), R 5 is a branched monovalent chain formula having 3 or more carbon atoms which may have a substituent. Hydrocarbon group, 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group which may have a substituent, or 3- to 10-membered monocyclic which may have a substituent Is a tricyclic monovalent heterocyclic group, and X 1 is a C 1-10 divalent hydrocarbon group which may have a single bond or a substituent,
In the formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. )
式(2)中、R6~R9は、それぞれ独立に、以下の式(III)又は式(IV)で表される基であるか、又は、
前記式(I)、前記式(II)、前記式(III)及び前記式(IV)中、R5は、置換基を有してもよい炭素数3以上の枝分かれ状の1価の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であり、
前記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。) [5] A therapeutic or prophylactic agent for Parkinson's disease containing a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof.
In formula (2), R 6 to R 9 are each independently a group represented by the following formula (III) or formula (IV), or
In the formula (I), the formula (II), the formula (III) and the formula (IV), R 5 is a branched monovalent chain formula having 3 or more carbon atoms which may have a substituent. Hydrocarbon group, 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group which may have a substituent, or 3- to 10-membered monocyclic which may have a substituent Is a tricyclic monovalent heterocyclic group, and X 1 is a C 1-10 divalent hydrocarbon group which may have a single bond or a substituent,
In the formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. )
本発明によれば、ドーパミン分泌細胞の変性や細胞死を抑制することで、パーキンソン病の発症機序に作用することができる。
According to the present invention, it is possible to act on the onset mechanism of Parkinson's disease by suppressing degeneration and cell death of dopamine secreting cells.
以下、本発明の実施形態について説明するが、本発明はこれに限定されず、適宜変更可能である。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto and can be appropriately changed.
<化合物>
本発明は、以下の式(1)で表される化合物又はその塩である。
<Compound>
The present invention is a compound represented by the following formula (1) or a salt thereof.
本発明は、以下の式(1)で表される化合物又はその塩である。
The present invention is a compound represented by the following formula (1) or a salt thereof.
式(1)中、R1~R4は、それぞれ独立に、以下の式(I)又は式(II)で表される基であるか、又は、R1~R4のうちの3つは、以下の式(I)又は式(II)で表される基であり、かつ、残りの1つは水素原子又は置換基である。
In formula (1), R 1 to R 4 are each independently a group represented by the following formula (I) or formula (II), or three of R 1 to R 4 are , A group represented by the following formula (I) or formula (II), and the remaining one is a hydrogen atom or a substituent.
本発明の化合物は、R1~R4のうちの少なくとも3つは、式(I)又は式(II)で表される基であり、すなわち、本発明の化合物は、少なくとも式(I)又は式(II)におけるR5を3つ有するものである。ここで、R1~R4におけるR5は、実際はX1との結合部で回転しているため、立体的構造が安定しにくいが、「枝分かれ状の鎖式炭化水素基」、「炭素環式基」、「複素環式基」はそれぞれ立体的に嵩張った構造であり、これらが互いに隣接して構造が密な状態になると、これらの構造が上述した回転に対して立体的障害となり、回転が抑制され、その立体的構造が安定になる。立体的構造が安定になると、パーキンソン病の発症機序においてタンパク等に作用した際に、高い活性を得やすくなる。このような理由により、本発明の化合物は、優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有するものと考えられる。
In the compound of the present invention, at least three of R 1 to R 4 are groups represented by the formula (I) or the formula (II), that is, the compound of the present invention has at least the formula (I) or It has three R 5 in the formula (II). Here, R 5 in R 1 to R 4 is actually rotated at the bonding portion with X 1 , so that the steric structure is difficult to stabilize, but “branched chain hydrocarbon group”, “carbocycle” The “group” and the “heterocyclic group” are three-dimensionally bulky structures. When these are adjacent to each other and the structure is in a dense state, these structures become a steric hindrance to the rotation described above. , Rotation is suppressed, and its three-dimensional structure becomes stable. When the three-dimensional structure is stabilized, high activity is easily obtained when acting on proteins and the like in the pathogenesis of Parkinson's disease. For these reasons, the compounds of the present invention are considered to have excellent dopamine-secreting cell degeneration and cell death inhibitory effects.
R1~R4は、4つとも全て、上記式(I)又は上記式(II)で表される基であるか、又は、R1~R4のうちの3つが以下の式(I)又は式(II)で表される基であり、かつ、残りの1つは水素原子又は置換基である。これらのうち、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することから、R1~R4は4つとも全て上記式(I)又は上記式(II)で表される基であることが好ましい。
R 1 ~ R 4 are all even four, or a group represented by the above formula (I) or the formula (II), or three of the R 1 ~ R 4 is the following formula (I) Or it is group represented by Formula (II), and the remaining one is a hydrogen atom or a substituent. Of these, all four of R 1 to R 4 are represented by the above formula (I) or the above formula (II) because the compound has a more excellent dopamine secreting cell degeneration and cell death suppressing action. It is preferably a group.
上記式(I)又は上記式(II)中、R5は、置換基を有してもよい炭素数3以上の1価の枝分かれ状の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基である。また、上記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。なお、R6が水素原子である場合、点線は結合の非存在であり、R6がオキソ基である場合、点線は結合である。
In the above formula (I) or the above formula (II), R 5 may have a monovalent branched chain hydrocarbon group having 3 or more carbon atoms, which may have a substituent, or a substituent. 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or 3- to 10-membered monocyclic to tricyclic monovalent heterocyclic group which may have a substituent And X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent. In the above formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. When R 6 is a hydrogen atom, the dotted line is absence of a bond, and when R 6 is an oxo group, the dotted line is a bond.
上記式(I)又は上記式(II)中の1価の枝分かれ状の鎖式炭化水素基は、特に限定されないが、置換又は非置換の、アルキル基、アルケニル基、アルキニル基等であって、枝分かれ構造を有するものが挙げられる。また、鎖式炭化水素基は飽和鎖式炭化水素基であってもよく、不飽和鎖式炭化水素基であってもよく、不飽和結合を分子内、及び/又は末端に1つ以上(例えば、1~5)有していてもよい。
The monovalent branched chain hydrocarbon group in the above formula (I) or the above formula (II) is not particularly limited, but is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, etc. Those having a branched structure may be mentioned. The chain hydrocarbon group may be a saturated chain hydrocarbon group or an unsaturated chain hydrocarbon group, and has one or more unsaturated bonds in the molecule and / or at the end (for example, 1 to 5).
1価の枝分かれ状の鎖式炭化水素基の炭素数(置換基の炭素数を除く)は、例えば、3~50での範囲内であってよいが、3~45であることが好ましく、3~30であることがより好ましく、3~20であることがさらに好ましく、3~10であることが特に好ましい。
The carbon number of the monovalent branched chain hydrocarbon group (excluding the carbon number of the substituent) may be, for example, in the range of 3 to 50, but preferably 3 to 45. Is more preferably from 30 to 30, still more preferably from 3 to 20, and particularly preferably from 3 to 10.
1価の枝分かれ状の鎖式炭化水素基の具体例としては、例えば、以下の式(V)、(IV)で表される基が挙げられる。なお、以下の式(V)、(VI)で表される基における炭素原子に結合する水素原子は、置換されていてもよい。
Specific examples of the monovalent branched chain hydrocarbon group include groups represented by the following formulas (V) and (IV). In addition, the hydrogen atom couple | bonded with the carbon atom in the group represented by the following formula | equation (V) and (VI) may be substituted.
1価の枝分かれ状の鎖式炭化水素基が有してもよい置換基は、特に限定されないが、ハロゲン原子、ヒドロキシ基、オキソ基、カルボキシル基、アミノ基(-NH2)、アジド基、ニトロ基、チオール基、スルホ基、カルバミル基、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロ環式基、アシル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アルキルスルホニル基、アルケニルスルホニル基、アルキニルスルホニル基、アルキルスルフィニル基、アルケニルスルフィニル基、アルキニルスルフィニル基、モノ-又はジ-アルキルアミノ基、カルボニルアミノ基等が挙げられる。また、上記置換基のうち、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)を選択してもよく、電子吸引性基(ハロゲン原子、カルボキシル基、アシル基、カルバモイル基等)を選択してもよいが、電子供与性基の方が、R1~R4の構造が電子的に密になり、立体的に安定となり、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することになる。このことから、置換基は、電子供与性基が好ましく、特に、電子供与性基のうち、アルコキシ基が好ましい。上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tert-ブトキシ基等の直鎖状又は分岐鎖状のアルコキシ基が挙げられる。1価の枝分かれ状の鎖式炭化水素基が有してもよい置換基は、アルコキシ基のうち、特にメトキシ基が好ましい。なお、電子供与性基とは、ケミカル レビュー(Chemical Review)、1991年、第91巻、p.165-195に記載されているHammett式で定義されるσの値が負の置換基を意味する。
The substituent that the monovalent branched chain hydrocarbon group may have is not particularly limited, but a halogen atom, a hydroxy group, an oxo group, a carboxyl group, an amino group (—NH 2 ), an azide group, a nitro group, Group, thiol group, sulfo group, carbamyl group, alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group, aryl group, heterocyclic group, acyl group, alkoxy group, alkenyloxy group, Alkynyloxy group, alkoxycarbonyl group, acyloxy group, aryloxy group, alkylthio group, alkenylthio group, alkynylthio group, alkylsulfonyl group, alkenylsulfonyl group, alkynylsulfonyl group, alkylsulfinyl group, alkenylsulfinyl group, alkynylsulfinyl group, Mono or di Alkylamino group, carbonylamino group, and the like. Further, among the above substituents, an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom) , A carboxyl group, an acyl group, a carbamoyl group, etc.), but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable. It will have a more excellent effect of suppressing the degeneration and cell death of dopamine secreting cells. Accordingly, the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups. Among the substituents of the above monovalent branched chain hydrocarbon group, the alkoxy group is, for example, a straight chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a tert-butoxy group, or the like. Or a branched alkoxy group is mentioned. The substituent that the monovalent branched chain hydrocarbon group may have is particularly preferably a methoxy group among the alkoxy groups. The electron donating group is a chemical review, 1991, Vol. 91, p. The value of σ defined by the Hammett formula described in 165-195 means a negative substituent.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、アルキル基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基等の直鎖状又は分岐鎖状のアルキル基が挙げられる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アルケニル基は、例えば、ビニル基、プロペニル基、ブテニル基、ペンテニル基等の直鎖状又は分岐鎖状のアルケニル基が挙げられる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アルキニル基は、例えば、エチニル基、プロパルギル基、ブチニル基、ペンチニル基等の直鎖状又は分岐鎖状のアルキニル基が挙げられる。上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、シクロアルキル基は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基等が挙げられる。上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、シクロアルケニル基は、例えば、1-シクロブテニル基、1-シクロペンテニル基、3-シクロペンテニル基、1-シクロヘキセニル基、3-シクロヘキセニル基、3-シクロヘプテニル基、4-シクロオクテニル基が挙げられる。上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、シクロアルキニル基は、例えば、1-シクロブチニル基、1-シクロペンチニル基、3-シクロペンチニル基、1-シクロヘキシニル基、3-シクロヘキシニル基、3-シクロヘプチニル基、4-シクロオクチニル基等が挙げられる。
Of the substituents of the monovalent branched chain hydrocarbon group, the alkyl group is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a sec-butyl group. Group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, cyclopentyl And a linear or branched alkyl group such as a cyclohexyl group. Among the monovalent branched chain hydrocarbon groups, examples of the alkenyl group include linear or branched alkenyl groups such as a vinyl group, a propenyl group, a butenyl group, and a pentenyl group. Among the monovalent branched chain hydrocarbon groups, examples of the alkynyl group include linear or branched alkynyl groups such as ethynyl group, propargyl group, butynyl group, and pentynyl group. Among the substituents of the monovalent branched chain hydrocarbon group, the cycloalkyl group includes, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and the like. Is mentioned. Of the substituents of the above monovalent branched chain hydrocarbon group, the cycloalkenyl group includes, for example, a 1-cyclobutenyl group, 1-cyclopentenyl group, 3-cyclopentenyl group, 1-cyclohexenyl group, 3 -Cyclohexenyl group, 3-cycloheptenyl group, 4-cyclooctenyl group can be mentioned. Of the substituents of the monovalent branched chain hydrocarbon group, the cycloalkynyl group includes, for example, a 1-cyclobutynyl group, a 1-cyclopentynyl group, a 3-cyclopentynyl group, and a 1-cyclohexynyl group. , 3-cyclohexynyl group, 3-cycloheptynyl group, 4-cyclooctynyl group and the like.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、アリール基は、単環~3環式芳香族基(フェニル基、ナフチル基、ナフトイル基、フェナレニル基、アントリル基、フェナントリル基等)であることが好ましい。アリール基は、特に、フェニル基であることが好ましい。
Among the substituents of the monovalent branched chain hydrocarbon group, the aryl group is a monocyclic to tricyclic aromatic group (phenyl group, naphthyl group, naphthoyl group, phenalenyl group, anthryl group, phenanthryl group). Etc.). The aryl group is particularly preferably a phenyl group.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、ヘテロ環式基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。ヘテロ環式基は、例えば3員環~十員環のヘテロ環から誘導される基を指し、不飽和環であってもよく、飽和環状であってもよい。また、ヘテロ環式基は、単環であっても縮合環(例えば、2~8環が縮合したもの)であってもよい。ヘテロ環式基の具体例としては、例えば、エポキシ基、チエニル基、ベンゾチエニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、ピロリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、イソインドール基、キノリル基、キノキサリル基、イソキノリル基、イソキサゾリル基、テトラゾリル基、フタラジル基、イミダゾピリジル基、ナフチリジル基、キナゾリル基、アクリジニル基等が挙げられる。
Among the substituents of the above monovalent branched chain hydrocarbon group, examples of the hetero atom contained in the heterocyclic group include an oxygen atom, a sulfur atom, and a nitrogen atom. The heterocyclic group refers to a group derived from, for example, a 3-membered to 10-membered heterocycle, and may be an unsaturated ring or a saturated ring. Further, the heterocyclic group may be a single ring or a condensed ring (for example, a condensed ring of 2 to 8 rings). Specific examples of the heterocyclic group include, for example, epoxy group, thienyl group, benzothienyl group, furyl group, benzofuranyl group, isobenzofuranyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrrolyl group, pyridyl group, pyrazinyl group. Group, pyrimidinyl group, pyridazinyl group, indolyl group, isoindole group, quinolyl group, quinoxalyl group, isoquinolyl group, isoxazolyl group, tetrazolyl group, phthalazyl group, imidazopyridyl group, naphthyridyl group, quinazolyl group, acridinyl group and the like.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、アシル基は、例えば、ホルミル基、アルキル(又はシクロアルキル)-カルボニル基(例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基等)、アルケニル(又はシクロアルケニル)-カルボニル基(例えば、アクリロイル基、メタクリロイル基等)、アリール(例えば、単環~3環式芳香族基(フェニル基、ナフチル基、ナフトイル基、フェナレニル基、アントリル基、フェナントリル基、ビフェニル基等))-カルボニル基等を指す。アルキル-カルボニル基は、例えば、炭素数1~12の直鎖又は分岐状であってよく、シクロアルキル-カルボニル基の炭素数は、例えば3~10であってよい。アルケニル-カルボニル基は、例えば、炭素数2~12の直鎖又は分岐状であってよく、シクロアルケニル-カルボニル基は、例えば、炭素数3~10であってよい。アリール-カルボニル基は、例えば炭素数6~14であってよい。
Among the substituents of the above monovalent branched chain hydrocarbon group, the acyl group is, for example, formyl group, alkyl (or cycloalkyl) -carbonyl group (for example, acetyl group, propionyl group, butyryl group, isobutyryl group). Group, valeryl group, pivaloyl group, hexanoyl group, etc.), alkenyl (or cycloalkenyl) -carbonyl group (for example, acryloyl group, methacryloyl group, etc.), aryl (for example, monocyclic to tricyclic aromatic group (phenyl group, Naphthyl group, naphthoyl group, phenalenyl group, anthryl group, phenanthryl group, biphenyl group, etc.))-Carbonyl group and the like. The alkyl-carbonyl group may be, for example, linear or branched having 1 to 12 carbon atoms, and the cycloalkyl-carbonyl group may be, for example, 3 to 10 carbon atoms. The alkenyl-carbonyl group may be linear or branched having 2 to 12 carbon atoms, for example, and the cycloalkenyl-carbonyl group may be 3 to 10 carbon atoms, for example. The aryl-carbonyl group may have, for example, 6 to 14 carbon atoms.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、アルコキシカルボニル基におけるアルコキシは、上記のアルコキシ基を例示することができる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アシルオキシ基におけるアシルは、上記のアシル基を例示することができる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アリールオキシ基におけるアリールは、上記のアリール基を例示することができる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アルキルチオ基、アルキルスルホニル基、アルキルスルフィニル基及びモノ-又はジ-アルキルアミノ基におけるアルキルは、上記のアルキル基を例示することができる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アルケニルチオ基、アルケニルスルホニル基及びアルケニルスルフィニル基におけるアルケニルは、上記のアルケニル基を例示することができる。上記の1価の枝分かれ状の鎖式炭化水素基のうち、アルキニルチオ基、アルキニルスルホニル基及びアルキニルスルフィニル基におけるアルキニルは、上記のアルキニル基を例示することができる。
Among the substituents of the monovalent branched chain hydrocarbon group, alkoxy in the alkoxycarbonyl group can exemplify the above alkoxy group. Of the monovalent branched chain hydrocarbon groups, the acyl in the acyloxy group can be exemplified by the above acyl group. Of the monovalent branched chain hydrocarbon groups, the aryl in the aryloxy group can exemplify the above aryl group. Among the monovalent branched chain hydrocarbon groups, the alkyl in the alkylthio group, the alkylsulfonyl group, the alkylsulfinyl group, and the mono- or di-alkylamino group can exemplify the above alkyl group. Among the monovalent branched chain hydrocarbon groups, the alkenyl in the alkenylthio group, alkenylsulfonyl group and alkenylsulfinyl group can exemplify the above alkenyl group. Among the monovalent branched chain hydrocarbon groups, alkynyl in the alkynylthio group, alkynylsulfonyl group, and alkynylsulfinyl group can exemplify the above alkynyl group.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、炭素原子を有する置換基の合計炭素数は、好ましくは1~50であり、より好ましくは1~30であり、さらに好ましくは1~20であり、特に好ましくは、1~10である。また、1価の枝分かれ状の鎖式炭化水素基が置換基を有する場合における、1価の枝分かれ状の鎖式炭化水素基とその置換基とに含まれる合計炭素数は、例えば、3~50での範囲内であってよいが、3~40であることが好ましく、3~30であることがより好ましく、3~20であることがさらに好ましく、3~10であることが特に好ましい。
Of the substituents of the monovalent branched chain hydrocarbon group, the total carbon number of the substituent having a carbon atom is preferably 1 to 50, more preferably 1 to 30, and still more preferably. Is 1 to 20, particularly preferably 1 to 10. When the monovalent branched chain hydrocarbon group has a substituent, the total number of carbons contained in the monovalent branched chain hydrocarbon group and the substituent is, for example, 3 to 50. However, it is preferably 3 to 40, more preferably 3 to 30, still more preferably 3 to 20, and particularly preferably 3 to 10.
上記の1価の枝分かれ状の鎖式炭化水素基の置換基のうち、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アルキルスルホニル基、アルケニルスルホニル基、アルキニルスルホニル基、アルキルスルフィニル基、アルケニルスルフィニル基、アルキニルスルフィニル基、モノ-又はジ-アルキルアミノ基、カルボニルアミノ基は、置換されていてもよく、置換されていなくてもよいが、置換されている場合、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)により置換されていることが好ましく、電子供与性基のうち、アルコキシ基により置換されていることがより好ましく、アルコキシ基のうち、メトキシ基が特に好ましい。
Among the substituents of the monovalent branched chain hydrocarbon group, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group, an acyl group, Alkoxy, alkenyloxy, alkynyloxy, alkoxycarbonyl, acyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, alkylsulfinyl, alkenyl The sulfinyl group, alkynylsulfinyl group, mono- or di-alkylamino group, and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron donating group (hydroxy group) , Amino group, A non- or di-alkylamino group, an alkoxy group, an aryloxy group, etc.), more preferably an electron-donating group, more preferably an alkoxy group, and among the alkoxy groups, A methoxy group is particularly preferred.
R5における1価の炭素環式基は、5~10員の単環式~3環式のものであれば特に限定されないが、置換又は非置換の、アリール基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等が挙げられる。また、1価の炭素環式基は飽和炭素環式基であってもよく、不飽和炭素環式基であってもよく、不飽和結合を分子内、及び/又は末端に1つ以上(例えば、1~5)有していてもよい。
The monovalent carbocyclic group for R 5 is not particularly limited as long as it is a 5- to 10-membered monocyclic to tricyclic group, but is a substituted or unsubstituted aryl group, cycloalkyl group, cycloalkenyl group. And cycloalkynyl group. The monovalent carbocyclic group may be a saturated carbocyclic group or an unsaturated carbocyclic group, and one or more unsaturated bonds may be present in the molecule and / or at the end (for example, 1 to 5).
1価の炭素環式基は、特に、アリール基、シクロヘキシル基、アダマンチル基であることが好ましい。アリール基としては、フェニル基、ナフチル基、ナフトイル基、フェナレニル基、アントリル基、フェナントリル基が好ましい。アリール基は、特に、フェニル基であることが好ましい。
The monovalent carbocyclic group is particularly preferably an aryl group, a cyclohexyl group, or an adamantyl group. As the aryl group, a phenyl group, a naphthyl group, a naphthoyl group, a phenalenyl group, an anthryl group, and a phenanthryl group are preferable. The aryl group is particularly preferably a phenyl group.
1価の炭素環式基の炭素数(置換基の炭素数を除く)は、例えば、3~50での範囲内であってよいが、3~45であることが好ましく、3~30であることがより好ましく、3~20であることがさらに好ましく、3~10であることが特に好ましい。
The carbon number of the monovalent carbocyclic group (excluding the carbon number of the substituent) may be, for example, in the range of 3 to 50, preferably 3 to 45, and 3 to 30. More preferably, it is more preferably 3 to 20, and particularly preferably 3 to 10.
1価の炭素環式基が有してもよい置換基は、特に限定されないが、上記の1価の枝分かれ状の鎖式炭化水素基の置換基と同様のものが例示される。置換基のうち、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)を選択してもよく、電子吸引性基(ハロゲン原子、カルボキシル基、アシル基、カルバモイル基等)を選択してもよいが、電子供与性基の方が、R1~R4の構造が電子的に密になり、立体的に安定となり、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することになる。このことから、置換基は、電子供与性基が好ましく、特に、電子供与性基のうち、アルコキシ基が好ましい。上記の1価の炭素環式基の置換基のうち、アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tert-ブトキシ基等の直鎖状又は分岐鎖状のアルコキシ基が挙げられる。1価の炭素環式基が有してもよい置換基は、アルコキシ基のうち、特にメトキシ基が好ましい。
The substituent that the monovalent carbocyclic group may have is not particularly limited, and examples thereof include the same substituents as those of the monovalent branched chain hydrocarbon group. Among the substituents, an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group). , An acyl group, a carbamoyl group, etc.), but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death. Accordingly, the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups. Among the substituents of the monovalent carbocyclic group, the alkoxy group is, for example, a linear or branched chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, or a tert-butoxy group. Of the alkoxy group. The substituent which the monovalent carbocyclic group may have is particularly preferably a methoxy group among the alkoxy groups.
上記の1価の炭素環式基の置換基のうち、炭素原子を有する置換基の合計炭素数は、好ましくは1~50であり、より好ましくは1~30であり、さらに好ましくは1~20であり、特に好ましくは、1~10である。また、1価の炭素環式基が置換基を有する場合における、1価の炭素環式基とその置換基とに含まれる合計炭素数は、例えば、3~50での範囲内であってよいが、3~40であることが好ましく、3~30であることがより好ましく、3~20であることがさらに好ましく、3~10であることが特に好ましい。
Of the substituents of the monovalent carbocyclic group, the total carbon number of the substituent having a carbon atom is preferably 1 to 50, more preferably 1 to 30, and further preferably 1 to 20 And particularly preferably 1-10. In the case where the monovalent carbocyclic group has a substituent, the total number of carbon atoms contained in the monovalent carbocyclic group and the substituent may be in the range of 3 to 50, for example. Is preferably 3 to 40, more preferably 3 to 30, still more preferably 3 to 20, and particularly preferably 3 to 10.
上記の1価の炭素環式基の置換基のうち、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アルキルスルホニル基、アルケニルスルホニル基、アルキニルスルホニル基、アルキルスルフィニル基、アルケニルスルフィニル基、アルキニルスルフィニル基、モノ-又はジ-アルキルアミノ基、カルボニルアミノ基は、置換されていてもよく、置換されていなくてもよいが、置換されている場合、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)により置換されていることが好ましく、電子供与性基のうち、アルコキシ基により置換されていることがより好ましく、アルコキシ基のうち、メトキシ基が特に好ましい。
Among the substituents of the above monovalent carbocyclic group, alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group, aryl group, heteroaryl group, acyl group, alkoxy group, alkenyl Oxy, alkynyloxy, alkoxycarbonyl, acyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, alkylsulfinyl, alkenylsulfinyl, alkynyl The sulfinyl group, mono- or di-alkylamino group and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron-donating group (hydroxy group, amino group, Mono- or gear Kiruamino group, an alkoxy group, that is substituted by an aryl group and the like) Preferably, among the electron-donating group, more preferably substituted by an alkoxy group, among the alkoxy groups, a methoxy group is particularly preferred.
1価の炭素環式基の特に好ましい例としては、例えば、以下の式(VII)で表される基(フェニル基)が挙げられる。式(VII)中、R7~R11は、それぞれ独立に、水素原子又は置換基であり、該置換基は、上記の1価の枝分かれ状の鎖式炭化水素基と同様の置換基が例示される。なお、1価の炭素環式基はフェニル基は好ましいが、フェニル基でなくてもよい。
Particularly preferred examples of the monovalent carbocyclic group include a group (phenyl group) represented by the following formula (VII). In formula (VII), R 7 to R 11 are each independently a hydrogen atom or a substituent, and examples of the substituent include the same substituents as the monovalent branched chain hydrocarbon group described above. Is done. The monovalent carbocyclic group is preferably a phenyl group, but may not be a phenyl group.
上記式(VII)で表される基は、式(I)又は式(II)におけるX1が結合する炭素原子に対するオルト位が少なくとも置換されていることが好ましく、つまり、上記式(VII)中、R7又はR11の少なくともいずれか一方が置換されていることが好ましい。
In the group represented by the formula (VII), it is preferable that at least the ortho position with respect to the carbon atom to which X 1 is bonded in the formula (I) or the formula (II) is substituted, that is, in the formula (VII) , R 7 or R 11 is preferably substituted.
R5における1価の複素環式基は、3~10員の単環式~3環式のものであれば特に限定されず、置換又は非置換の、ヘテロ環式基である。また、1価の複素環式基は飽和複素環式基であってもよく、不飽和複素環式基であってもよく、不飽和結合を分子内、及び/又は末端に1つ以上(例えば、1~5)有していてもよい。1価の複素環式基に含まれるヘテロ原子は、酸素原子、硫黄原子、窒素原子等であってよい。
The monovalent heterocyclic group for R 5 is not particularly limited as long as it is a 3- to 10-membered monocyclic to tricyclic group, and is a substituted or unsubstituted heterocyclic group. The monovalent heterocyclic group may be a saturated heterocyclic group or an unsaturated heterocyclic group, and one or more unsaturated bonds may be present in the molecule and / or at the end (for example, 1 to 5). The hetero atom contained in the monovalent heterocyclic group may be an oxygen atom, a sulfur atom, a nitrogen atom or the like.
1価の複素環式基の具体例としては、例えば、エポキシ基、チエニル基、ベンゾチエニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、ピロリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、イソインドール基、キノリル基、キノキサリル基、イソキノリル基、イソキサゾリル基、テトラゾリル基、フタラジル基、イミダゾピリジル基、ナフチリジル基、キナゾリル基、アクリジニル基等が挙げられる。
Specific examples of the monovalent heterocyclic group include, for example, epoxy group, thienyl group, benzothienyl group, furyl group, benzofuranyl group, isobenzofuranyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrrolyl group, pyridyl group. Group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, indolyl group, isoindole group, quinolyl group, quinoxalyl group, isoquinolyl group, isoxazolyl group, tetrazolyl group, phthalazyl group, imidazopyridyl group, naphthyridyl group, quinazolyl group, acridinyl group, etc. Can be mentioned.
1価の複素環式基の炭素数(置換基の炭素数を除く)は、例えば、1~50での範囲内であってよいが、2~45であることが好ましく、3~30であることがより好ましく、3~20であることがさらに好ましく、3~10であることが特に好ましい。
The carbon number of the monovalent heterocyclic group (excluding the carbon number of the substituent) may be, for example, in the range of 1 to 50, preferably 2 to 45, and 3 to 30. More preferably, it is more preferably 3 to 20, and particularly preferably 3 to 10.
1価の複素環式基が有してもよい置換基は、特に限定されないが、上記の1価の枝分かれ状の鎖式炭化水素基の置換基と同様のものが例示される。置換基のうち、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)を選択してもよく、電子吸引性基(ハロゲン原子、カルボキシル基、アシル基、カルバモイル基等)を選択してもよいが、電子供与性基の方が、R1~R4の構造が電子的に密になり、立体的に安定となり、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することになる。このことから、置換基は、電子供与性基が好ましく、特に、電子供与性基のうち、アルコキシ基が好ましい。上記の1価の複素環式基の置換基のうち、アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tert-ブトキシ基等の直鎖状又は分岐鎖状のアルコキシ基が挙げられる。1価の複素環式基が有してもよい置換基は、アルコキシ基のうち、特にメトキシ基が好ましい。
The substituent that the monovalent heterocyclic group may have is not particularly limited, and examples thereof include the same substituents as those of the above monovalent branched chain hydrocarbon group. Among the substituents, an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group). , An acyl group, a carbamoyl group, etc.), but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death. Accordingly, the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups. Among the substituents of the above monovalent heterocyclic group, the alkoxy group is, for example, a linear or branched chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, or a tert-butoxy group. Of the alkoxy group. The substituent that the monovalent heterocyclic group may have is particularly preferably a methoxy group among the alkoxy groups.
上記の1価の複素環式基の置換基のうち、炭素原子を有する置換基の合計炭素数は、好ましくは1~50であり、より好ましくは1~30であり、さらに好ましくは1~20であり、特に好ましくは、1~10である。また、1価の複素環式基が置換基を有する場合における、1価の複素環式基とその置換基とに含まれる合計炭素数は、例えば、3~50での範囲内であってよいが、3~40であることが好ましく、3~30であることがより好ましく、3~20であることがさらに好ましく、3~10であることが特に好ましい。
Among the substituents of the above monovalent heterocyclic group, the total number of carbon atoms of the substituent having a carbon atom is preferably 1 to 50, more preferably 1 to 30, and further preferably 1 to 20 And particularly preferably 1-10. In the case where the monovalent heterocyclic group has a substituent, the total number of carbon atoms contained in the monovalent heterocyclic group and the substituent may be in the range of 3 to 50, for example. Is preferably 3 to 40, more preferably 3 to 30, still more preferably 3 to 20, and particularly preferably 3 to 10.
上記の1価の複素環式基の置換基のうち、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アルキルスルホニル基、アルケニルスルホニル基、アルキニルスルホニル基、アルキルスルフィニル基、アルケニルスルフィニル基、アルキニルスルフィニル基、モノ-又はジ-アルキルアミノ基、カルボニルアミノ基は、置換されていてもよく、置換されていなくてもよいが、置換されている場合、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)により置換されていることが好ましく、電子供与性基のうち、アルコキシ基により置換されていることがより好ましく、アルコキシ基のうち、メトキシ基が特に好ましい。
Among the substituents of the above monovalent heterocyclic group, alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group, aryl group, heteroaryl group, acyl group, alkoxy group, alkenyl Oxy, alkynyloxy, alkoxycarbonyl, acyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, alkylsulfinyl, alkenylsulfinyl, alkynyl The sulfinyl group, mono- or di-alkylamino group and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron-donating group (hydroxy group, amino group, Mono- or gear Kiruamino group, an alkoxy group, that is substituted by an aryl group and the like) Preferably, among the electron-donating group, more preferably substituted by an alkoxy group, among the alkoxy groups, a methoxy group is particularly preferred.
R1~R4のうちの3つは、上記式(I)又は上記式(II)で表される基であり、かつ、残りの1つは水素原子又は置換基(水素原子を除く)である場合、該置換基(ただし、上記式(I)又は上記式(II)とは異なる置換基)は、特に限定されないが、上記の1価の枝分かれ状の鎖式炭化水素基の置換基と同様のものを例示することができる。置換基のうち、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)を選択してもよく、電子吸引性基(ハロゲン原子、カルボキシル基、アシル基、カルバモイル基等)を選択してもよいが、電子供与性基の方が、R1~R4の構造が電子的に密になり、立体的に安定となり、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することになる。このことから、残りの1つ置換基は、電子供与性基が好ましく、特に、電子供与性基のうち、アルコキシ基が好ましく、アルコキシ基のうち、特にメトキシ基が好ましい。
Three of R 1 to R 4 are groups represented by the above formula (I) or the above formula (II), and the remaining one is a hydrogen atom or a substituent (excluding a hydrogen atom). In some cases, the substituent (provided that the substituent is different from the above formula (I) or the above formula (II)) is not particularly limited, but the substituent of the above monovalent branched chain hydrocarbon group and The same thing can be illustrated. Among the substituents, an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group). , An acyl group, a carbamoyl group, etc.), but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death. Therefore, the remaining one substituent is preferably an electron donating group, particularly preferably an alkoxy group among the electron donating groups, and particularly preferably a methoxy group among the alkoxy groups.
X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であるが、より構造が密になり立体的に安定し、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することから、単結合であることが好ましい。
X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent. However, the structure is denser and sterically stable, and the compound is superior in dopamine-secreting cells. It is preferable that it is a single bond, since it has the action of suppressing the degeneration of and cell death.
X1における炭素数1~10の2価の炭化水素基は、置換又は非置換の、2価の脂肪族基であってもよく、2価の芳香族基であってもよく、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。また、2価の炭化水素基は、直鎖状、分鎖状、環状のいずれの形態であってもよく、これらの構造を組み合わせた形態であってもよいが、2価の炭化水素基は、分鎖状(枝分かれ状)であることが好ましい。
The divalent hydrocarbon group having 1 to 10 carbon atoms in X 1 may be a substituted or unsubstituted divalent aliphatic group or a divalent aromatic group, and may be a saturated hydrocarbon. Group may be an unsaturated hydrocarbon group. In addition, the divalent hydrocarbon group may be any of linear, branched, and cyclic forms, and may be a combination of these structures, but the divalent hydrocarbon group is The chain is preferably branched (branched).
炭素数1~10の2価の炭化水素基は(置換基の炭素数を除く)は、炭素数が少ない方が好ましく、具体的には炭素数が9以下であることが好ましく、炭素数が7以下であることがより好ましく、炭素数が6以下であることさらに好ましく、炭素数が5以下であることがより一層好ましく、炭素数が4以下であることがさらに一層好ましく、炭素数が3以下であることがなお好ましく、炭素数が2以下であることが特に好ましい。
The divalent hydrocarbon group having 1 to 10 carbon atoms (excluding the carbon number of the substituent) preferably has a smaller number of carbon atoms. Specifically, the carbon number is preferably 9 or less, 7 or less, more preferably 6 or less, even more preferably 5 or less, even more preferably 4 or less, and 3 or less. It is more preferable that the number of carbon atoms is 2 or less, and it is particularly preferable that the number of carbon atoms is 2 or less.
炭素数1~10の2価の炭化水素基が有してもよい置換基は、特に限定されないが、上記の1価の枝分かれ状の鎖式炭化水素基の置換基と同様のものが例示される。置換基のうち、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)を選択してもよく、電子吸引性基(ハロゲン原子、カルボキシル基、アシル基、カルバモイル基等)を選択してもよいが、電子供与性基の方が、R1~R4の構造が電子的に密になり、立体的に安定となり、化合物がより優れたドーパミン分泌細胞の変性及び細胞死の抑制作用を有することになる。このことから、置換基は、電子供与性基が好ましく、特に、電子供与性基のうち、アルコキシ基が好ましい。上記の1価の複素環式基の置換基のうち、アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tert-ブトキシ基等の直鎖状又は分岐鎖状のアルコキシ基が挙げられる。2価の炭化水素基が有してもよい置換基は、アルコキシ基のうち、特にメトキシ基が好ましい。
The substituent that the divalent hydrocarbon group having 1 to 10 carbon atoms may have is not particularly limited, and examples thereof are the same as the substituents of the above monovalent branched chain hydrocarbon group. The Among the substituents, an electron donating group (hydroxy group, amino group, mono- or di-alkylamino group, alkoxy group, aryloxy group, etc.) may be selected, and an electron withdrawing group (halogen atom, carboxyl group). , An acyl group, a carbamoyl group, etc.), but the electron donating group has a structure in which R 1 to R 4 are electronically dense and sterically stable, and the compound is superior. It will have the effect of inhibiting degeneration of dopamine secreting cells and cell death. Accordingly, the substituent is preferably an electron donating group, and particularly preferably an alkoxy group among the electron donating groups. Among the substituents of the above monovalent heterocyclic group, the alkoxy group is, for example, a linear or branched chain such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, or a tert-butoxy group. Of the alkoxy group. The substituent that the divalent hydrocarbon group may have is particularly preferably a methoxy group among the alkoxy groups.
上記の2価の炭化水素基の置換基のうち、炭素原子を有する置換基の合計炭素数は、好ましくは1~6であり、より好ましくは1~5であり、さらに好ましくは1~4であり、特に好ましくは、1~3である。また、1価の複素環式基が置換基を有する場合における、1価の複素環式基とその置換基とに含まれる合計炭素数は、例えば、2~15での範囲内であってよいが、2~10であることが好ましく、2~6であることがより好ましく、2~5であることがさらに好ましく、2~4であることが特に好ましい。
Among the substituents of the above divalent hydrocarbon group, the total carbon number of the substituent having a carbon atom is preferably 1 to 6, more preferably 1 to 5, and further preferably 1 to 4. And particularly preferably 1 to 3. In the case where the monovalent heterocyclic group has a substituent, the total number of carbon atoms contained in the monovalent heterocyclic group and the substituent may be, for example, in the range of 2 to 15. Is preferably 2 to 10, more preferably 2 to 6, still more preferably 2 to 5, and particularly preferably 2 to 4.
上記の2価の炭化水素基の置換基のうち、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アルキルスルホニル基、アルケニルスルホニル基、アルキニルスルホニル基、アルキルスルフィニル基、アルケニルスルフィニル基、アルキニルスルフィニル基、モノ-又はジ-アルキルアミノ基、カルボニルアミノ基は、置換されていてもよく、置換されていなくてもよいが、置換されている場合、電子供与性基(ヒドロキシ基、アミノ基、モノ-又はジ-アルキルアミノ基、アルコキシ基、アリールオキシ基等)により置換されていることが好ましく、電子供与性基のうち、アルコキシ基により置換されていることがより好ましく、アルコキシ基のうち、メトキシ基が特に好ましい。
Among the substituents of the above divalent hydrocarbon group, alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group, aryl group, heteroaryl group, acyl group, alkoxy group, alkenyloxy Group, alkynyloxy group, alkoxycarbonyl group, acyloxy group, aryloxy group, alkylthio group, alkenylthio group, alkynylthio group, alkylsulfonyl group, alkenylsulfonyl group, alkynylsulfonyl group, alkylsulfinyl group, alkenylsulfinyl group, alkynylsulfinyl group The group, mono- or di-alkylamino group and carbonylamino group may be substituted or unsubstituted, but when substituted, an electron donating group (hydroxy group, amino group, mono group) -Or gear Kiruamino group, an alkoxy group, that is substituted by an aryl group and the like) Preferably, among the electron-donating group, more preferably substituted by an alkoxy group, among the alkoxy groups, a methoxy group is particularly preferred.
以下の式(1)におけるR1~R4、OH基が結合する各炭素原子について、a~fと符号を付して説明する。
In the following formula (1), R 1 to R 4 and each carbon atom to which the OH group is bonded will be described with reference to a to f.
a~fの炭素原子のうち、a~dが不斉炭素原子である場合、S配置又はR配置のいずれであってもよい。また、e及びfは不斉炭素原子であり、S配置又はR配置のいずれであってもよい。
When a to d are asymmetric carbon atoms among a to f carbon atoms, either S configuration or R configuration may be used. E and f are asymmetric carbon atoms, and may be either S configuration or R configuration.
本発明の化合物には、以下の式(1-1)~(1~5)で表される化合物が含まれていてもよく、含まれていなくてもよいが、含まれていない方が好ましい。
The compound of the present invention may or may not contain the compounds represented by the following formulas (1-1) to (1 to 5), but it is preferable not to include them. .
上述の式(1)で表される化合物の塩としては、特に限定されないが、薬理学的に許容される塩であることが好ましく、例えば、無機酸(塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等)との塩、有機酸(ギ酸、酢酸、プロピオン酸、クエン酸、酒石酸、フマル酸、酪酸、シュウ酸、コハク酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラギン酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等)との塩、アルカリ金属(ナトリウム、カリウム等)との塩、アルカリ土類金属(カルシウム、マグネシウム等)との塩、金属(鉄、亜鉛等)との塩等が挙げられる。これらは、1種単独であってもよく、2種以上を併用してもよい。これらの薬理学的に許容しうる塩は、常法に従って調製することができる。
The salt of the compound represented by the above formula (1) is not particularly limited, but is preferably a pharmacologically acceptable salt, for example, an inorganic acid (hydrochloric acid, hydrobromic acid, hydrogen iodide). Salts with acids, sulfuric acid, nitric acid, phosphoric acid, etc., organic acids (formic acid, acetic acid, propionic acid, citric acid, tartaric acid, fumaric acid, butyric acid, oxalic acid, succinic acid, malonic acid, maleic acid, lactic acid, malic acid Salts with carbonic acid, glutamic acid, aspartic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, etc., salts with alkali metals (sodium, potassium, etc.), alkaline earth metals (calcium, magnesium, etc.) And salts with metals (iron, zinc, etc.). These may be used alone or in combination of two or more. These pharmacologically acceptable salts can be prepared according to a conventional method.
本発明において、上述の式(1)で表される化合物又はその塩は、水和物又は溶媒和物の形態であってもよい。
In the present invention, the compound represented by the above formula (1) or a salt thereof may be in the form of a hydrate or a solvate.
<化合物の製造方法>
上記で述べた式(1)で表される化合物の製造方法の一例について、以下に説明するが、本発明の化合物の製造方法はこれに限定されず、適宜変更することができる。具体的には、以下には、式(1)で表される化合物のうち、R1~R4が式(I)で表される基であり、かつ、R6がオキソ基である場合の化合物(式(1-a)で表される化合物)についての製造方法の一例を示す。例えば、式(1-a)で表される化合物は、以下の工程(a)と工程(b)とを経て製造することができる。 <Method for producing compound>
An example of the method for producing the compound represented by the formula (1) described above will be described below, but the method for producing the compound of the present invention is not limited to this and can be appropriately changed. Specifically, in the following, among the compounds represented by the formula (1), R 1 to R 4 are groups represented by the formula (I), and R 6 is an oxo group. An example of a production method for the compound (compound represented by the formula (1-a)) is shown. For example, the compound represented by the formula (1-a) can be produced through the following steps (a) and (b).
上記で述べた式(1)で表される化合物の製造方法の一例について、以下に説明するが、本発明の化合物の製造方法はこれに限定されず、適宜変更することができる。具体的には、以下には、式(1)で表される化合物のうち、R1~R4が式(I)で表される基であり、かつ、R6がオキソ基である場合の化合物(式(1-a)で表される化合物)についての製造方法の一例を示す。例えば、式(1-a)で表される化合物は、以下の工程(a)と工程(b)とを経て製造することができる。 <Method for producing compound>
An example of the method for producing the compound represented by the formula (1) described above will be described below, but the method for producing the compound of the present invention is not limited to this and can be appropriately changed. Specifically, in the following, among the compounds represented by the formula (1), R 1 to R 4 are groups represented by the formula (I), and R 6 is an oxo group. An example of a production method for the compound (compound represented by the formula (1-a)) is shown. For example, the compound represented by the formula (1-a) can be produced through the following steps (a) and (b).
工程(a)は、式(3)で表される化合物と式(4)で表される化合物との脱水縮合し、式(5)で表される化合物を得る工程であれば特に限定されないが、例えば、公知の脱水縮合剤(カルボジイミド系脱水縮合剤等)を用いることができる。また、触媒も公知の触媒(例えば、N,N-ジメチル-4-アミノピリジン等の強塩基)を用いることができる。
The step (a) is not particularly limited as long as it is a step of dehydrating and condensing the compound represented by the formula (3) and the compound represented by the formula (4) to obtain the compound represented by the formula (5). For example, a known dehydration condensing agent (carbodiimide dehydration condensing agent or the like) can be used. As the catalyst, a known catalyst (for example, a strong base such as N, N-dimethyl-4-aminopyridine) can be used.
工程(b)は、式(5)で表される化合物から式(1-a)で表される化合物を得る工程である。工程(b)は、一般的には酸によるアセタールの分解反応、例えば、80%酢酸水溶液を用いた加熱還流反応により行うことができる。
Step (b) is a step of obtaining the compound represented by the formula (1-a) from the compound represented by the formula (5). Step (b) can be generally performed by an acetal decomposition reaction with an acid, for example, a heating reflux reaction using an 80% aqueous acetic acid solution.
上記の工程(a)、工程(b)が、式(1)中、R1~R4が式(I)で表される基であり、かつ、R6がオキソ基である場合の例示であるが、例えば、R6が水素原子である場合の例示である場合は、式(4)で表される化合物を用いた工程(a)の代わりに後述する式(7)で表される化合物を用いた工程(c)を用いることにより得ることができる。また、式(1)中、R1~R4が式(II)で表される基である場合は、式(4)で表される化合物の代わりに塩化パラトルエンスルホニルのような塩化スルホニル基を用いることにより得ることができる。
The above steps (a) and (b) are examples in the case where R 1 to R 4 are a group represented by the formula (I) in the formula (1) and R 6 is an oxo group. For example, in the case where R 6 is a hydrogen atom, for example, the compound represented by the formula (7) described later instead of the step (a) using the compound represented by the formula (4) It can be obtained by using the step (c) using In the formula (1), when R 1 to R 4 are a group represented by the formula (II), a sulfonyl chloride group such as p-toluenesulfonyl chloride is used instead of the compound represented by the formula (4). Can be obtained.
式(1)で表される化合物が、式(1)中、R1~R4のうち、1つが水素原子又は置換基(R1~R4を除く)である場合、上記式(3)で表される化合物におけるヒドロキシ基のうち1つが水素原子又は置換基(R1~R4を除く)であるものを用いることで、製造することができる。
When the compound represented by the formula (1) is a hydrogen atom or a substituent (excluding R 1 to R 4 ) out of R 1 to R 4 in the formula (1), the above formula (3) It can be produced by using one in which one of the hydroxy groups in the compound represented by the formula is a hydrogen atom or a substituent (excluding R 1 to R 4 ).
<パーキンソン病治療薬又は予防薬>
本発明は、パーキンソン病治療薬又は予防薬を包含する。本発明におけるパーキンソン病治療薬又は予防薬は、有効成分として、以下の式(1)又は式(2)で表される化合物又はその薬理学的に許容される塩を含有する。 <Parkinson's disease treatment or prevention agent>
The present invention includes a therapeutic or prophylactic agent for Parkinson's disease. The therapeutic or preventive drug for Parkinson's disease in the present invention contains a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof as an active ingredient.
本発明は、パーキンソン病治療薬又は予防薬を包含する。本発明におけるパーキンソン病治療薬又は予防薬は、有効成分として、以下の式(1)又は式(2)で表される化合物又はその薬理学的に許容される塩を含有する。 <Parkinson's disease treatment or prevention agent>
The present invention includes a therapeutic or prophylactic agent for Parkinson's disease. The therapeutic or preventive drug for Parkinson's disease in the present invention contains a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof as an active ingredient.
上記式(1)で表される化合物は、上記の本発明の化合物と同様のものを用いることができる。
As the compound represented by the above formula (1), the same compounds as those of the present invention can be used.
上記式(2)中、R6~R9は、それぞれ独立に、以下の式(III)又は以下の式(IV)で表される基であるか、又は、R6~R9のうちの3つは、以下の式(III)又は以下の式(IV)で表される基であり、かつ、残りの1つは水素原子又は置換基である。以下の式(III)及び上記式(IV)中のR5は、上記の式(I)又は式(II)におけるR5と同様のものを例示できる。以下の式(III)及び上記式(IV)中のX1は、上記の式(I)又は式(II)におけるX1と同様のものを例示できる。
In the above formula (2), R 6 to R 9 are each independently a group represented by the following formula (III) or the following formula (IV), or of R 6 to R 9 Three are groups represented by the following formula (III) or the following formula (IV), and the remaining one is a hydrogen atom or a substituent. The following formula (III) and R 5 in the above formula (IV) can be exemplified by the same as R 5 in the above formula (I) or Formula (II). The following formula (III) and X 1 in the formula (IV) may be exemplified the same ones as the X 1 in the above formula (I) or Formula (II).
本発明の式(2)で表される化合物は、グルコース等の糖骨格を有する化合物からR6~R9を必要に応じて誘導したものを用いることができる。例えば、式(2)で表される化合物がβ-D-グルコースからの誘導体である場合、式(2)で表される化合物は以下の式(2-a)の化合物とすることができる。
As the compound represented by the formula (2) of the present invention, a compound in which R 6 to R 9 are derived as necessary from a compound having a sugar skeleton such as glucose can be used. For example, when the compound represented by the formula (2) is a derivative from β-D-glucose, the compound represented by the formula (2) can be a compound of the following formula (2-a).
β-D-グルコースからの上記式(2-a)の化合物の合成は、公知の方法により行うことができる。例えば、上記式(2-a)において、R6~R9が式(III)で表される基である場合、以下の工程(c)、工程(d)の方法で合成することができる。
Synthesis of the compound of the above formula (2-a) from β-D-glucose can be performed by a known method. For example, in the above formula (2-a), when R 6 to R 9 are groups represented by the formula (III), they can be synthesized by the following steps (c) and (d).
工程(c)は、式(6)で表される化合物と、式(7)で表される化合物とを反応させて、式(8)で表される化合物を得る工程である。工程(c)の反応は、塩基(NaH、NaOH、KOH等)を用いて行うことができる。式(7)中、A1は脱離基(ハロゲン原子(塩素原子、臭素原子等)、-OTs(p-トルエンスルホニル基)、-OMs(メタンスルホニル基)等)を示す。反応に用いる溶媒は、反応を阻害しないようなものであれば特に限定されず、例えば、DMF(N,N-ジメチルホルムアミド)を用いることができる。なお、式(6)の化合物は、β-D-グルコースから塩化水素メタノールを用いて得ることができる。
Step (c) is a step of obtaining the compound represented by formula (8) by reacting the compound represented by formula (6) with the compound represented by formula (7). The reaction of step (c) can be performed using a base (NaH, NaOH, KOH, etc.). In formula (7), A 1 represents a leaving group (halogen atom (chlorine atom, bromine atom, etc.), —OTs (p-toluenesulfonyl group), —OMs (methanesulfonyl group), etc.). The solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction. For example, DMF (N, N-dimethylformamide) can be used. The compound of formula (6) can be obtained from β-D-glucose using hydrogen chloride methanol.
工程(d)は、式(8)で表される化合物と酢酸とを反応させて、式(2-a)で表される化合物を得る工程である。工程(d)における反応は、例えば、酸(硫酸、HCl/SrCl2等)を用いて行うことができる。
Step (d) is a step of obtaining a compound represented by the formula (2-a) by reacting a compound represented by the formula (8) with acetic acid. The reaction in the step (d) can be performed using, for example, an acid (sulfuric acid, HCl / SrCl 2 or the like).
なお、上記(c)、(d)の反応は、式(2)で表される化合物がβ-D-グルコースの誘導体の場合の一例であって、α-D-グルコース、β-L-グルコース、α-L-グルコースの誘導体場合、あるいはガラクトースの誘導体の場合も同様の反応により行うことができる。また、上記(c)、(d)の反応は、式(2)中、R6~R9が式(III)で表される基である場合の一例であり、R6~R9が式(IV)で表される基である場合の化合物は、式(7)で表される化合物を用いた工程(c)の代わりに上記式(4)で表される化合物を用いた上記工程(a)を行うことにより得ることができる。
The reactions (c) and (d) are examples of the case where the compound represented by the formula (2) is a derivative of β-D-glucose, and α-D-glucose, β-L-glucose In the case of a derivative of α-L-glucose or a derivative of galactose, the same reaction can be performed. In addition, the reactions (c) and (d) above are examples in which R 6 to R 9 are groups represented by the formula (III) in the formula (2), and R 6 to R 9 are represented by the formulas In the case of the group represented by (IV), the compound represented by the above formula (4) is used instead of the step (c) using the compound represented by the formula (7) It can be obtained by performing a).
本発明のパーキンソン病治療薬又は予防薬は、製剤化されていてもよい。剤形は、特に限定されず、例えば、注射剤(静脈内注射剤(点滴を含む)、筋肉内注射剤、腹腔内注射剤、皮下注射剤等)、錠剤、カプセル剤、液剤、坐剤、軟膏剤等に製剤化し、注射用製剤の場合は単位投与量アンプル又は多投与量容器の状態で提供されてよい。
The Parkinson's disease therapeutic agent or prophylactic agent of the present invention may be formulated. The dosage form is not particularly limited, and includes, for example, injections (intravenous injections (including infusion), intramuscular injections, intraperitoneal injections, subcutaneous injections, etc.), tablets, capsules, liquids, suppositories, It may be formulated into an ointment or the like, and in the case of an injectable preparation, it may be provided in the form of a unit dose ampoule or a multi-dose container.
これらの各種製剤は、製剤上通常用いられる賦形剤、増量剤、結合剤、湿潤剤、崩壊剤、潤滑剤、界面活性剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、無痛化剤、安定化剤、等張化剤等を適宜用い、常法により製造することができる。本発明の医薬組成物は、上記製剤化を目的として、上述の式(1)又は(2)で表される化合物又はその薬理学的に許容される塩以外の成分を有してもよいが、有さなくてもよい。
These various preparations include excipients, extenders, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers, preservatives, It can be produced by a conventional method using a flavoring agent, a soothing agent, a stabilizer, a tonicity agent and the like as appropriate. The pharmaceutical composition of the present invention may have components other than the compound represented by the above formula (1) or (2) or a pharmacologically acceptable salt thereof for the purpose of formulation. , You do not have to.
本発明の治療薬又は予防薬の投与方法は、特に限定されず、経口投与又は非経口投与であってもよく、その剤形に応じて適宜選択できる。
The administration method of the therapeutic agent or prophylactic agent of the present invention is not particularly limited, and may be oral administration or parenteral administration, and can be appropriately selected according to the dosage form.
(略号)
EDC:1-エチル-3-(3-ジメチルアミノプロピル) カルボジイミド塩酸塩
DMAP:4-ジメチルアミノピリジン
PTLC:分取薄層クロマトグラフィー
EtOAc:酢酸エチル
AcOH:酢酸
OMe:メトキシ基
Bn:ベンジル基
Bz:ベンゾイル基
BzCl:塩化ベンゾイル (Abbreviation)
EDC: 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride DMAP: 4-dimethylaminopyridine PTLC: preparative thin layer chromatography EtOAc: ethyl acetate AcOH: acetic acid OMe: methoxy group Bn: benzyl group Bz: Benzoyl group BzCl: Benzoyl chloride
EDC:1-エチル-3-(3-ジメチルアミノプロピル) カルボジイミド塩酸塩
DMAP:4-ジメチルアミノピリジン
PTLC:分取薄層クロマトグラフィー
EtOAc:酢酸エチル
AcOH:酢酸
OMe:メトキシ基
Bn:ベンジル基
Bz:ベンゾイル基
BzCl:塩化ベンゾイル (Abbreviation)
EDC: 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride DMAP: 4-dimethylaminopyridine PTLC: preparative thin layer chromatography EtOAc: ethyl acetate AcOH: acetic acid OMe: methoxy group Bn: benzyl group Bz: Benzoyl group BzCl: Benzoyl chloride
<合成例1>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-ブロモ安息香酸)の合成]
化合物(3-2)(3.05g、11.72mmol)、塩化パラトルエンスルホニル(2.70g、14.16mmol)及びピリジン(30mL)の混合物を室温で3.5時間撹拌した。有機層を合わせ、水で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物(化合物(9))を、無水炭酸カリウム(4g、36.23mmol)及び80% 2-メトキシ-エタノール水溶液(200mL)の混合物を3.5時間還流し、次いで蒸発させて乾燥した。残留物をエタノールにより再結晶を行い、無水ベンゼンとの共蒸留によって乾燥し、化合物(3-1)を得た。4-ブロモ安息香酸(化合物(4-1))(167.7mg、0.83mmol)及びEDC(159.4mg、0.83mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.7mg、83.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で5時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-1)(40.7mg、49%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.92(1H、t、J=2.0Hz)、7.90(1H、t、J=2.0Hz)、7.82(1H、t、J=2.0Hz)、7.80(1H、t、J=2.0Hz)、7.60(1H、t、J=2.0Hz)、7.59(1H、t、J=2.0Hz)、7.54(1H、t、J=2.0Hz)、7.52(1H、t、J=2.0Hz)、6.02(1H、dd、J=3.5、6.5Hz)、5.76(1H、dd、J=2.5、9.0Hz)、4.53(1H、dd、J=4.0、8.5Hz)、2.02-1.43(6H、m). <Synthesis Example 1>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-bromobenzoic acid)]
A mixture of compound (3-2) (3.05 g, 11.72 mmol), paratoluenesulfonyl chloride (2.70 g, 14.16 mmol) and pyridine (30 mL) was stirred at room temperature for 3.5 hours. The organic layers were combined, washed with water, dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue (compound (9)) was dried by refluxing a mixture of anhydrous potassium carbonate (4 g, 36.23 mmol) and 80% aqueous 2-methoxy-ethanol (200 mL) for 3.5 hours and then evaporated. The residue was recrystallized from ethanol and dried by co-distillation with anhydrous benzene to obtain compound (3-1). To a stirred solution of 4-bromobenzoic acid (compound (4-1)) (167.7 mg, 0.83 mmol) and EDC (159.4 mg, 0.83 mmol) was added compound (3 in CH 2 Cl 2 (7 mL)). -1) (21.7 mg, 83.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 5 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-1) (40.7 mg, 49%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.92 (1H, t, J = 2.0 Hz), 7.90 (1H, t, J = 2.0 Hz), 7.82 (1H, t, J = 2. 0 Hz), 7.80 (1 H, t, J = 2.0 Hz), 7.60 (1 H, t, J = 2.0 Hz), 7.59 (1 H, t, J = 2.0 Hz), 7. 54 (1H, t, J = 2.0 Hz), 7.52 (1H, t, J = 2.0 Hz), 6.02 (1H, dd, J = 3.5, 6.5 Hz), 5.76 (1H, dd, J = 2.5, 9.0 Hz), 4.53 (1H, dd, J = 4.0, 8.5 Hz), 2.02-1.43 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-ブロモ安息香酸)の合成]
化合物(3-2)(3.05g、11.72mmol)、塩化パラトルエンスルホニル(2.70g、14.16mmol)及びピリジン(30mL)の混合物を室温で3.5時間撹拌した。有機層を合わせ、水で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物(化合物(9))を、無水炭酸カリウム(4g、36.23mmol)及び80% 2-メトキシ-エタノール水溶液(200mL)の混合物を3.5時間還流し、次いで蒸発させて乾燥した。残留物をエタノールにより再結晶を行い、無水ベンゼンとの共蒸留によって乾燥し、化合物(3-1)を得た。4-ブロモ安息香酸(化合物(4-1))(167.7mg、0.83mmol)及びEDC(159.4mg、0.83mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.7mg、83.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で5時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-1)(40.7mg、49%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.92(1H、t、J=2.0Hz)、7.90(1H、t、J=2.0Hz)、7.82(1H、t、J=2.0Hz)、7.80(1H、t、J=2.0Hz)、7.60(1H、t、J=2.0Hz)、7.59(1H、t、J=2.0Hz)、7.54(1H、t、J=2.0Hz)、7.52(1H、t、J=2.0Hz)、6.02(1H、dd、J=3.5、6.5Hz)、5.76(1H、dd、J=2.5、9.0Hz)、4.53(1H、dd、J=4.0、8.5Hz)、2.02-1.43(6H、m). <Synthesis Example 1>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-bromobenzoic acid)]
A mixture of compound (3-2) (3.05 g, 11.72 mmol), paratoluenesulfonyl chloride (2.70 g, 14.16 mmol) and pyridine (30 mL) was stirred at room temperature for 3.5 hours. The organic layers were combined, washed with water, dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue (compound (9)) was dried by refluxing a mixture of anhydrous potassium carbonate (4 g, 36.23 mmol) and 80% aqueous 2-methoxy-ethanol (200 mL) for 3.5 hours and then evaporated. The residue was recrystallized from ethanol and dried by co-distillation with anhydrous benzene to obtain compound (3-1). To a stirred solution of 4-bromobenzoic acid (compound (4-1)) (167.7 mg, 0.83 mmol) and EDC (159.4 mg, 0.83 mmol) was added compound (3 in CH 2 Cl 2 (7 mL)). -1) (21.7 mg, 83.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 5 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-1) (40.7 mg, 49%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.92 (1H, t, J = 2.0 Hz), 7.90 (1H, t, J = 2.0 Hz), 7.82 (1H, t, J = 2. 0 Hz), 7.80 (1 H, t, J = 2.0 Hz), 7.60 (1 H, t, J = 2.0 Hz), 7.59 (1 H, t, J = 2.0 Hz), 7. 54 (1H, t, J = 2.0 Hz), 7.52 (1H, t, J = 2.0 Hz), 6.02 (1H, dd, J = 3.5, 6.5 Hz), 5.76 (1H, dd, J = 2.5, 9.0 Hz), 4.53 (1H, dd, J = 4.0, 8.5 Hz), 2.02-1.43 (6H, m).
80% AcOH(7mL)中の化合物(5-1)(20.9mg、21.1μmol)の撹拌溶液を120℃で5時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(1-6)(7.3mg、28%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CD3OD) δ 7.89(2H、d、J=9.0Hz)、7.79(2H、d、J=8.5Hz)、7.59(2H、d、J=8.5Hz)、7.52(2H、d、J=9.0Hz)、5.86-5.82(2H、m)、4.32(1H、d、J=4.5Hz). A stirred solution of compound (5-1) (20.9 mg, 21.1 μmol) in 80% AcOH (7 mL) was heated at 120 ° C. for 5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (1-6) (7.3 mg, 28%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CD 3 OD) δ 7.89 (2H, d, J = 9.0 Hz), 7.79 (2H, d, J = 8.5 Hz), 7.59 (2H, d, J = 8) .5 Hz), 7.52 (2H, d, J = 9.0 Hz), 5.86-5.82 (2H, m), 4.32 (1H, d, J = 4.5 Hz).
1H NMR(CD3OD) δ 7.89(2H、d、J=9.0Hz)、7.79(2H、d、J=8.5Hz)、7.59(2H、d、J=8.5Hz)、7.52(2H、d、J=9.0Hz)、5.86-5.82(2H、m)、4.32(1H、d、J=4.5Hz). A stirred solution of compound (5-1) (20.9 mg, 21.1 μmol) in 80% AcOH (7 mL) was heated at 120 ° C. for 5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (1-6) (7.3 mg, 28%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CD 3 OD) δ 7.89 (2H, d, J = 9.0 Hz), 7.79 (2H, d, J = 8.5 Hz), 7.59 (2H, d, J = 8) .5 Hz), 7.52 (2H, d, J = 9.0 Hz), 5.86-5.82 (2H, m), 4.32 (1H, d, J = 4.5 Hz).
<合成例2>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-クロロ安息香酸)の合成]
4-クロロ安息香酸(136.5mg、0.87mmol)及びEDC(166.7mg、0.87mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.7mg、87.2μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で5時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-2)(21.3mg、34%)を白色粉末として得た。以下にNMMスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.00(1H、t、J=2.0Hz)、7.98(1H、t、J=2.0Hz)、7.90(1H、t、J=2.0Hz)、7.88(1H、t、J=2.0Hz)、7.44(1H、t、J=2.0Hz)、7.42(1H、t、J=2.0Hz)、7.37(1H、t、J=2.0Hz)、7.35(1H、t、J=2.0Hz)、6.02(1H、dd、J=3.5、6.0Hz)、5.77(1H、dd、J=2.0、8.5Hz)、4.53(1H、dd、J=4.5、8.5Hz)、1.70-1.42(6H、m). <Synthesis Example 2>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-chlorobenzoic acid)]
To a stirred solution of 4-chlorobenzoic acid (136.5 mg, 0.87 mmol) and EDC (166.7 mg, 0.87 mmol) was added compound (3-1) (22.7 mg, CH 2 Cl 2 (7 mL). 87.2 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 5 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-2) (21.3 mg, 34%) as a white powder. The results of the NMM spectrum and the reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.00 (1H, t, J = 2.0 Hz), 7.98 (1H, t, J = 2.0 Hz), 7.90 (1H, t, J = 2. 0 Hz), 7.88 (1 H, t, J = 2.0 Hz), 7.44 (1 H, t, J = 2.0 Hz), 7.42 (1 H, t, J = 2.0 Hz), 7. 37 (1H, t, J = 2.0 Hz), 7.35 (1H, t, J = 2.0 Hz), 6.02 (1H, dd, J = 3.5, 6.0 Hz), 5.77 (1H, dd, J = 2.0, 8.5 Hz), 4.53 (1H, dd, J = 4.5, 8.5 Hz), 1.70-1.42 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-クロロ安息香酸)の合成]
4-クロロ安息香酸(136.5mg、0.87mmol)及びEDC(166.7mg、0.87mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.7mg、87.2μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で5時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-2)(21.3mg、34%)を白色粉末として得た。以下にNMMスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.00(1H、t、J=2.0Hz)、7.98(1H、t、J=2.0Hz)、7.90(1H、t、J=2.0Hz)、7.88(1H、t、J=2.0Hz)、7.44(1H、t、J=2.0Hz)、7.42(1H、t、J=2.0Hz)、7.37(1H、t、J=2.0Hz)、7.35(1H、t、J=2.0Hz)、6.02(1H、dd、J=3.5、6.0Hz)、5.77(1H、dd、J=2.0、8.5Hz)、4.53(1H、dd、J=4.5、8.5Hz)、1.70-1.42(6H、m). <Synthesis Example 2>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-chlorobenzoic acid)]
To a stirred solution of 4-chlorobenzoic acid (136.5 mg, 0.87 mmol) and EDC (166.7 mg, 0.87 mmol) was added compound (3-1) (22.7 mg, CH 2 Cl 2 (7 mL). 87.2 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 5 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-2) (21.3 mg, 34%) as a white powder. The results of the NMM spectrum and the reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.00 (1H, t, J = 2.0 Hz), 7.98 (1H, t, J = 2.0 Hz), 7.90 (1H, t, J = 2. 0 Hz), 7.88 (1 H, t, J = 2.0 Hz), 7.44 (1 H, t, J = 2.0 Hz), 7.42 (1 H, t, J = 2.0 Hz), 7. 37 (1H, t, J = 2.0 Hz), 7.35 (1H, t, J = 2.0 Hz), 6.02 (1H, dd, J = 3.5, 6.0 Hz), 5.77 (1H, dd, J = 2.0, 8.5 Hz), 4.53 (1H, dd, J = 4.5, 8.5 Hz), 1.70-1.42 (6H, m).
80% AcOH(3mL)中の化合物(5-2)(7.3mg、89.0μmol)の撹拌溶液を120℃で8時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(1-7)(4.4mg、67%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.96(2H、d、J=8.5Hz)、7.87(2H、d、J=8.5Hz)、7.42(2H、d、J=8.5Hz)、7.35(1H、d、J=8.5Hz)、5.88-5.83(2H、m)、4.33(1H、d、J=5.0Hz). A stirred solution of compound (5-2) (7.3 mg, 89.0 μmol) in 80% AcOH (3 mL) was heated at 120 ° C. for 8 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (1-7) (4.4 mg, 67%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.96 (2H, d, J = 8.5 Hz), 7.87 (2H, d, J = 8.5 Hz), 7.42 (2H, d, J = 8. 5 Hz), 7.35 (1H, d, J = 8.5 Hz), 5.88-5.83 (2H, m), 4.33 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 7.96(2H、d、J=8.5Hz)、7.87(2H、d、J=8.5Hz)、7.42(2H、d、J=8.5Hz)、7.35(1H、d、J=8.5Hz)、5.88-5.83(2H、m)、4.33(1H、d、J=5.0Hz). A stirred solution of compound (5-2) (7.3 mg, 89.0 μmol) in 80% AcOH (3 mL) was heated at 120 ° C. for 8 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (1-7) (4.4 mg, 67%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.96 (2H, d, J = 8.5 Hz), 7.87 (2H, d, J = 8.5 Hz), 7.42 (2H, d, J = 8. 5 Hz), 7.35 (1H, d, J = 8.5 Hz), 5.88-5.83 (2H, m), 4.33 (1H, d, J = 5.0 Hz).
<合成例3>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-フルオロ安息香酸)の合成]
4-フルオロ安息香酸(280.2mg、1.94mmol)及びEDC(383.4mg、1.94mmol)の撹拌溶液に、CH2Cl2(6mL)中の化合物(3-1)(50.6mg、0.19μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-3)(47.3mg、31%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
H NMR(CDCl3) δ 8.09-8.07(2H、m)、8.00-7.97(2H、m)、7.12(2H、t、J=8.5Hz)、7.05(1H、t、J=8.5Hz)、6.04(1H、dd、J=3.5、6.0Hz)、5.79(1H、dd、J=2.5、8.5Hz)、4.55(1H、dd、J=4.0、8.0Hz)、2.03-1.42(6H、m). <Synthesis Example 3>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-fluorobenzoic acid)]
To a stirred solution of 4-fluorobenzoic acid (280.2 mg, 1.94 mmol) and EDC (383.4 mg, 1.94 mmol) was added compound (3-1) (50.6 mg, CH 2 Cl 2 (6 mL). 0.19 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-3) (47.3 mg, 31%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
H NMR (CDCl 3 ) δ 8.09-8.07 (2H, m), 8.00-7.97 (2H, m), 7.12 (2H, t, J = 8.5 Hz), 7. 05 (1H, t, J = 8.5 Hz), 6.04 (1H, dd, J = 3.5, 6.0 Hz), 5.79 (1H, dd, J = 2.5, 8.5 Hz) 4.55 (1H, dd, J = 4.0, 8.0 Hz), 2.03-1.42 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-フルオロ安息香酸)の合成]
4-フルオロ安息香酸(280.2mg、1.94mmol)及びEDC(383.4mg、1.94mmol)の撹拌溶液に、CH2Cl2(6mL)中の化合物(3-1)(50.6mg、0.19μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-3)(47.3mg、31%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
H NMR(CDCl3) δ 8.09-8.07(2H、m)、8.00-7.97(2H、m)、7.12(2H、t、J=8.5Hz)、7.05(1H、t、J=8.5Hz)、6.04(1H、dd、J=3.5、6.0Hz)、5.79(1H、dd、J=2.5、8.5Hz)、4.55(1H、dd、J=4.0、8.0Hz)、2.03-1.42(6H、m). <Synthesis Example 3>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-fluorobenzoic acid)]
To a stirred solution of 4-fluorobenzoic acid (280.2 mg, 1.94 mmol) and EDC (383.4 mg, 1.94 mmol) was added compound (3-1) (50.6 mg, CH 2 Cl 2 (6 mL). 0.19 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-3) (47.3 mg, 31%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
H NMR (CDCl 3 ) δ 8.09-8.07 (2H, m), 8.00-7.97 (2H, m), 7.12 (2H, t, J = 8.5 Hz), 7. 05 (1H, t, J = 8.5 Hz), 6.04 (1H, dd, J = 3.5, 6.0 Hz), 5.79 (1H, dd, J = 2.5, 8.5 Hz) 4.55 (1H, dd, J = 4.0, 8.0 Hz), 2.03-1.42 (6H, m).
80% AcOH(7mL)中の化合物(5-3)(76.9mg、102.7μmol)の撹拌溶液を120℃で12時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-8)(19.3mg、28%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CD3OD) δ 8.27(2H、dd、J=5.5、9.0Hz)、8.13(2H、t、J=7.0Hz)、7.40(2H、t、J=9.0Hz)、7.34(1H、t、J=9.0Hz)、6.06(1H、s)、5.96(1H、dd、J=3.0、8.5Hz)、4.56(1H、dd、J=3.0、8.0Hz). A stirred solution of compound (5-3) (76.9 mg, 102.7 μmol) in 80% AcOH (7 mL) was heated at 120 ° C. for 12 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-8) (19.3 mg, 28%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CD 3 OD) δ 8.27 (2H, dd, J = 5.5, 9.0 Hz), 8.13 (2H, t, J = 7.0 Hz), 7.40 (2H, t , J = 9.0 Hz), 7.34 (1H, t, J = 9.0 Hz), 6.06 (1H, s), 5.96 (1H, dd, J = 3.0, 8.5 Hz) 4.56 (1H, dd, J = 3.0, 8.0 Hz).
1H NMR(CD3OD) δ 8.27(2H、dd、J=5.5、9.0Hz)、8.13(2H、t、J=7.0Hz)、7.40(2H、t、J=9.0Hz)、7.34(1H、t、J=9.0Hz)、6.06(1H、s)、5.96(1H、dd、J=3.0、8.5Hz)、4.56(1H、dd、J=3.0、8.0Hz). A stirred solution of compound (5-3) (76.9 mg, 102.7 μmol) in 80% AcOH (7 mL) was heated at 120 ° C. for 12 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-8) (19.3 mg, 28%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CD 3 OD) δ 8.27 (2H, dd, J = 5.5, 9.0 Hz), 8.13 (2H, t, J = 7.0 Hz), 7.40 (2H, t , J = 9.0 Hz), 7.34 (1H, t, J = 9.0 Hz), 6.06 (1H, s), 5.96 (1H, dd, J = 3.0, 8.5 Hz) 4.56 (1H, dd, J = 3.0, 8.0 Hz).
<合成例4>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-ヨード安息香酸)の合成]
4-ヨード安息香酸(227.7mg、0.92mmol)及びEDC(176.0mg、0.92mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(23.9mg、91.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で27時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-4)(45.5mg、42%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.83(1H、t、J=2.0Hz)、7.81(1H、t、J=2.0Hz)、7.75(2H、dd、J=2.0、8.5Hz)、7.73(2H、dd、J=2.0、8.5Hz)、7.65(1H、t、J=2.0Hz)、7.63(1H、t、J=2.0Hz)、6.00(1H、dd、J=3.5、6.0Hz)、5.74(1H、dd、J=3.5、8.5Hz)、4.52(1H、dd、J=4.5、8.5Hz)、1.69-1.41(6H、m). <Synthesis Example 4>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-iodobenzoic acid)]
To a stirred solution of 4-iodobenzoic acid (227.7 mg, 0.92 mmol) and EDC (176.0 mg, 0.92 mmol) was added compound (3-1) (23.9 mg, CH 2 Cl 2 (7 mL)). 91.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 27 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-4) (45.5 mg, 42%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.83 (1H, t, J = 2.0 Hz), 7.81 (1H, t, J = 2.0 Hz), 7.75 (2H, dd, J = 2. 0, 8.5 Hz), 7.73 (2H, dd, J = 2.0, 8.5 Hz), 7.65 (1H, t, J = 2.0 Hz), 7.63 (1H, t, J = 2.0 Hz), 6.00 (1H, dd, J = 3.5, 6.0 Hz), 5.74 (1H, dd, J = 3.5, 8.5 Hz), 4.52 (1H, dd, J = 4.5, 8.5 Hz), 1.69-1.41 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-ヨード安息香酸)の合成]
4-ヨード安息香酸(227.7mg、0.92mmol)及びEDC(176.0mg、0.92mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(23.9mg、91.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で27時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-4)(45.5mg、42%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.83(1H、t、J=2.0Hz)、7.81(1H、t、J=2.0Hz)、7.75(2H、dd、J=2.0、8.5Hz)、7.73(2H、dd、J=2.0、8.5Hz)、7.65(1H、t、J=2.0Hz)、7.63(1H、t、J=2.0Hz)、6.00(1H、dd、J=3.5、6.0Hz)、5.74(1H、dd、J=3.5、8.5Hz)、4.52(1H、dd、J=4.5、8.5Hz)、1.69-1.41(6H、m). <Synthesis Example 4>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-iodobenzoic acid)]
To a stirred solution of 4-iodobenzoic acid (227.7 mg, 0.92 mmol) and EDC (176.0 mg, 0.92 mmol) was added compound (3-1) (23.9 mg, CH 2 Cl 2 (7 mL)). 91.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 27 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-4) (45.5 mg, 42%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.83 (1H, t, J = 2.0 Hz), 7.81 (1H, t, J = 2.0 Hz), 7.75 (2H, dd, J = 2. 0, 8.5 Hz), 7.73 (2H, dd, J = 2.0, 8.5 Hz), 7.65 (1H, t, J = 2.0 Hz), 7.63 (1H, t, J = 2.0 Hz), 6.00 (1H, dd, J = 3.5, 6.0 Hz), 5.74 (1H, dd, J = 3.5, 8.5 Hz), 4.52 (1H, dd, J = 4.5, 8.5 Hz), 1.69-1.41 (6H, m).
80% AcOH(5mL)中の化合物(5-4)(11.8mg、11.0μmol)の撹拌溶液を120℃で4時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-9)(2.5mg、22%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.84(1H、s、J=2.0Hz)、7.82(1H、t、J=2.0Hz)、7.77(1H、t、J=2.0Hz)、7.75(2H、dd、J=2.0、5.0Hz)、7.73(1H、t、J=2.0Hz)、7.65(1H、s)、7.63(1H、s)、5.85-5.81(2H、m)、4.31(1H、d、J=5.0Hz). A stirred solution of compound (5-4) (11.8 mg, 11.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 4 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-9) (2.5 mg, 22%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.84 (1H, s, J = 2.0 Hz), 7.82 (1H, t, J = 2.0 Hz), 7.77 (1H, t, J = 2. 0 Hz), 7.75 (2H, dd, J = 2.0, 5.0 Hz), 7.73 (1H, t, J = 2.0 Hz), 7.65 (1H, s), 7.63 ( 1H, s), 5.85-5.81 (2H, m), 4.31 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 7.84(1H、s、J=2.0Hz)、7.82(1H、t、J=2.0Hz)、7.77(1H、t、J=2.0Hz)、7.75(2H、dd、J=2.0、5.0Hz)、7.73(1H、t、J=2.0Hz)、7.65(1H、s)、7.63(1H、s)、5.85-5.81(2H、m)、4.31(1H、d、J=5.0Hz). A stirred solution of compound (5-4) (11.8 mg, 11.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 4 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-9) (2.5 mg, 22%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.84 (1H, s, J = 2.0 Hz), 7.82 (1H, t, J = 2.0 Hz), 7.77 (1H, t, J = 2. 0 Hz), 7.75 (2H, dd, J = 2.0, 5.0 Hz), 7.73 (1H, t, J = 2.0 Hz), 7.65 (1H, s), 7.63 ( 1H, s), 5.85-5.81 (2H, m), 4.31 (1H, d, J = 5.0 Hz).
<合成例5>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-フルオロ安息香酸)の合成]
2-フルオロ安息香酸(110.5mg、0.79mmol)及びEDC(151.3mg、0.79mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.9mg、78.9μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で6時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-5)(44.5mg、75%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.92-8.00(2H、m)、7.56-7.48(2H、m)、7.24-7.21(1H、m)、7.17-7.01(3H、m)、6.11(1H、dd、J=3.5、5.5Hz)、4.55(1H、dd、J=2.0、8.5Hz)、4.53(1H、dd、J=4.0、8.0Hz)、1.37-1.61(6H、m). <Synthesis Example 5>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-fluorobenzoic acid)]
To a stirred solution of 2-fluorobenzoic acid (110.5 mg, 0.79 mmol) and EDC (151.3 mg, 0.79 mmol) was added compound (3-1) (22.9 mg, CH 2 Cl 2 (7 mL). 78.9 μmol) and DMAP (5.0 mg). The resulting mixture was stirred at room temperature for 6 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-5) (44.5 mg, 75%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.92-8.00 (2H, m), 7.56-7.48 (2H, m), 7.24-7.21 (1H, m), 7.17 −7.01 (3H, m), 6.11 (1H, dd, J = 3.5, 5.5 Hz), 4.55 (1H, dd, J = 2.0, 8.5 Hz); 53 (1H, dd, J = 4.0, 8.0 Hz), 1.37-1.61 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-フルオロ安息香酸)の合成]
2-フルオロ安息香酸(110.5mg、0.79mmol)及びEDC(151.3mg、0.79mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.9mg、78.9μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で6時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-5)(44.5mg、75%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.92-8.00(2H、m)、7.56-7.48(2H、m)、7.24-7.21(1H、m)、7.17-7.01(3H、m)、6.11(1H、dd、J=3.5、5.5Hz)、4.55(1H、dd、J=2.0、8.5Hz)、4.53(1H、dd、J=4.0、8.0Hz)、1.37-1.61(6H、m). <Synthesis Example 5>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-fluorobenzoic acid)]
To a stirred solution of 2-fluorobenzoic acid (110.5 mg, 0.79 mmol) and EDC (151.3 mg, 0.79 mmol) was added compound (3-1) (22.9 mg, CH 2 Cl 2 (7 mL). 78.9 μmol) and DMAP (5.0 mg). The resulting mixture was stirred at room temperature for 6 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-5) (44.5 mg, 75%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.92-8.00 (2H, m), 7.56-7.48 (2H, m), 7.24-7.21 (1H, m), 7.17 −7.01 (3H, m), 6.11 (1H, dd, J = 3.5, 5.5 Hz), 4.55 (1H, dd, J = 2.0, 8.5 Hz); 53 (1H, dd, J = 4.0, 8.0 Hz), 1.37-1.61 (6H, m).
80% AcOH(5mL)中の化合物(5-5)(26.3mg、35.1μmol)の撹拌溶液を120℃で22時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-10)(4.6mg、20%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.98-7.94(1H、m)、7.89-7.85(2H、m)、7.56-7.49(2H、m)、7.22(1H、t、J=2.5Hz)、7.15(1H、d、J=7.0Hz)、5.95(1H、d、J=6.0Hz)、5.92-5.89(1H、m)、4.31(1H、m). A stirred solution of compound (5-5) (26.3 mg, 35.1 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 22 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-10) (4.6 mg, 20%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.98-7.94 (1H, m), 7.89-7.85 (2H, m), 7.56-7.49 (2H, m), 7.22 (1H, t, J = 2.5 Hz), 7.15 (1H, d, J = 7.0 Hz), 5.95 (1H, d, J = 6.0 Hz), 5.92-5.89 ( 1H, m), 4.31 (1H, m).
1H NMR(CDCl3) δ 7.98-7.94(1H、m)、7.89-7.85(2H、m)、7.56-7.49(2H、m)、7.22(1H、t、J=2.5Hz)、7.15(1H、d、J=7.0Hz)、5.95(1H、d、J=6.0Hz)、5.92-5.89(1H、m)、4.31(1H、m). A stirred solution of compound (5-5) (26.3 mg, 35.1 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 22 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-10) (4.6 mg, 20%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.98-7.94 (1H, m), 7.89-7.85 (2H, m), 7.56-7.49 (2H, m), 7.22 (1H, t, J = 2.5 Hz), 7.15 (1H, d, J = 7.0 Hz), 5.95 (1H, d, J = 6.0 Hz), 5.92-5.89 ( 1H, m), 4.31 (1H, m).
<合成例6>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3,4-ジフルオロ安息香酸)の合成]
3,4-ジフルオロ安息香酸(121.7mg、0.77mmol)及びEDC(147.6mg、0.77mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.1mg、77.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で19時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-6)(24.7mg、39%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.90-7.85(2H、m)、7.80-7.73(2H、m)、7.29-7.25(1H、m)、7.23-7.16(1H、m)、5.98(1H、dd、J=3.5、6.0Hz)、5.74(1H、dd、J=2.5、8.5Hz)、4.54(1H、dd、J=4.5、8.5Hz)、2.02-1.44(6H、m). <Synthesis Example 6>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3,4-difluorobenzoic acid)]
To a stirred solution of 3,4-difluorobenzoic acid (121.7 mg, 0.77 mmol) and EDC (147.6 mg, 0.77 mmol) was added compound (3-1) (20.) in CH 2 Cl 2 (7 mL). 1 mg, 77.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 19 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-6) (24.7 mg, 39%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.90-7.85 (2H, m), 7.80-7.73 (2H, m), 7.29-7.25 (1H, m), 7.23 −7.16 (1H, m), 5.98 (1H, dd, J = 3.5, 6.0 Hz), 5.74 (1H, dd, J = 2.5, 8.5 Hz), 4. 54 (1H, dd, J = 4.5, 8.5 Hz), 2.02-1.44 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3,4-ジフルオロ安息香酸)の合成]
3,4-ジフルオロ安息香酸(121.7mg、0.77mmol)及びEDC(147.6mg、0.77mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.1mg、77.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で19時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-6)(24.7mg、39%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.90-7.85(2H、m)、7.80-7.73(2H、m)、7.29-7.25(1H、m)、7.23-7.16(1H、m)、5.98(1H、dd、J=3.5、6.0Hz)、5.74(1H、dd、J=2.5、8.5Hz)、4.54(1H、dd、J=4.5、8.5Hz)、2.02-1.44(6H、m). <Synthesis Example 6>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3,4-difluorobenzoic acid)]
To a stirred solution of 3,4-difluorobenzoic acid (121.7 mg, 0.77 mmol) and EDC (147.6 mg, 0.77 mmol) was added compound (3-1) (20.) in CH 2 Cl 2 (7 mL). 1 mg, 77.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 19 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-6) (24.7 mg, 39%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.90-7.85 (2H, m), 7.80-7.73 (2H, m), 7.29-7.25 (1H, m), 7.23 −7.16 (1H, m), 5.98 (1H, dd, J = 3.5, 6.0 Hz), 5.74 (1H, dd, J = 2.5, 8.5 Hz), 4. 54 (1H, dd, J = 4.5, 8.5 Hz), 2.02-1.44 (6H, m).
80% AcOH(5mL)中の化合物(5-6)(13.8mg、16.8μmol)の撹拌溶液を120℃で7時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(1-11)(7.9mg、64%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.89-7.83(2H、m)、7.79-7.73(2H、m)、7.29-7.27(1H、m)、7.22-7.17(1H、m)、5.84(1H、t、J=5.5Hz)、5.79(1H、dd、J=2.5、8.5Hz)、4.33(1H、s). A stirred solution of compound (5-6) (13.8 mg, 16.8 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (1-11) (7.9 mg, 64%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.89-7.83 (2H, m), 7.79-7.73 (2H, m), 7.29-7.27 (1H, m), 7.22 −7.17 (1H, m), 5.84 (1H, t, J = 5.5 Hz), 5.79 (1H, dd, J = 2.5, 8.5 Hz), 4.33 (1H, s).
1H NMR(CDCl3) δ 7.89-7.83(2H、m)、7.79-7.73(2H、m)、7.29-7.27(1H、m)、7.22-7.17(1H、m)、5.84(1H、t、J=5.5Hz)、5.79(1H、dd、J=2.5、8.5Hz)、4.33(1H、s). A stirred solution of compound (5-6) (13.8 mg, 16.8 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (1-11) (7.9 mg, 64%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.89-7.83 (2H, m), 7.79-7.73 (2H, m), 7.29-7.27 (1H, m), 7.22 −7.17 (1H, m), 5.84 (1H, t, J = 5.5 Hz), 5.79 (1H, dd, J = 2.5, 8.5 Hz), 4.33 (1H, s).
<合成例7>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3,4,5-トリフルオロ安息香酸)の合成]
3,4,5-トリフルオロ安息香酸(143.3mg、0.81mmol)及びEDC(156.0mg、0.81mmol)の撹拌溶液に、CH2Cl2(10mL)中の化合物(3-1)(21.2mg、81.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で48時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-7)(24.8mg、34%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.72(2H、t、J=7.0Hz)、7.59(2H、t、J=7.0Hz)、5.92(1H、dd、J=3.5、5.5Hz)、5.70(1H、m、J=3.5、5.5Hz)、4.54(1H、m、J=6.0、8.0Hz)、2.00-1.45(6H、m). <Synthesis Example 7>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3,4,5-trifluorobenzoic acid)]
To a stirred solution of 3,4,5-trifluorobenzoic acid (143.3 mg, 0.81 mmol) and EDC (156.0 mg, 0.81 mmol) was added compound (3-1) in CH 2 Cl 2 (10 mL). (21.2 mg, 81.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 48 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-7) (24.8 mg, 34%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.72 (2H, t, J = 7.0 Hz), 7.59 (2H, t, J = 7.0 Hz), 5.92 (1H, dd, J = 3. 5, 5.5 Hz), 5.70 (1H, m, J = 3.5, 5.5 Hz), 4.54 (1H, m, J = 6.0, 8.0 Hz), 2.00-1 .45 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3,4,5-トリフルオロ安息香酸)の合成]
3,4,5-トリフルオロ安息香酸(143.3mg、0.81mmol)及びEDC(156.0mg、0.81mmol)の撹拌溶液に、CH2Cl2(10mL)中の化合物(3-1)(21.2mg、81.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で48時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-7)(24.8mg、34%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.72(2H、t、J=7.0Hz)、7.59(2H、t、J=7.0Hz)、5.92(1H、dd、J=3.5、5.5Hz)、5.70(1H、m、J=3.5、5.5Hz)、4.54(1H、m、J=6.0、8.0Hz)、2.00-1.45(6H、m). <Synthesis Example 7>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3,4,5-trifluorobenzoic acid)]
To a stirred solution of 3,4,5-trifluorobenzoic acid (143.3 mg, 0.81 mmol) and EDC (156.0 mg, 0.81 mmol) was added compound (3-1) in CH 2 Cl 2 (10 mL). (21.2 mg, 81.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 48 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-7) (24.8 mg, 34%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.72 (2H, t, J = 7.0 Hz), 7.59 (2H, t, J = 7.0 Hz), 5.92 (1H, dd, J = 3. 5, 5.5 Hz), 5.70 (1H, m, J = 3.5, 5.5 Hz), 4.54 (1H, m, J = 6.0, 8.0 Hz), 2.00-1 .45 (6H, m).
80% AcOH(5mL)中の化合物(5-7)(9.4mg、10.5μmol)の撹拌溶液を120℃で5時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/10)に供して化合物(1-12)(5.1mg、59%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.70(2H、t、J=7.0Hz)、7.60(2H、t、J=7.0Hz)、5.81(1H、t、J=6.0Hz)、5.75(1H、dd、J=3.0、8.5Hz)、4.33(1H、d、J=5.0Hz). A stirred solution of compound (5-7) (9.4 mg, 10.5 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/10) to give compound (1-12) (5.1 mg, 59%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.70 (2H, t, J = 7.0 Hz), 7.60 (2H, t, J = 7.0 Hz), 5.81 (1H, t, J = 6. 0 Hz), 5.75 (1H, dd, J = 3.0, 8.5 Hz), 4.33 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 7.70(2H、t、J=7.0Hz)、7.60(2H、t、J=7.0Hz)、5.81(1H、t、J=6.0Hz)、5.75(1H、dd、J=3.0、8.5Hz)、4.33(1H、d、J=5.0Hz). A stirred solution of compound (5-7) (9.4 mg, 10.5 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/10) to give compound (1-12) (5.1 mg, 59%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.70 (2H, t, J = 7.0 Hz), 7.60 (2H, t, J = 7.0 Hz), 5.81 (1H, t, J = 6. 0 Hz), 5.75 (1H, dd, J = 3.0, 8.5 Hz), 4.33 (1H, d, J = 5.0 Hz).
<合成例8>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-(トリフルオロメチル)安息香酸)の合成]
4-(トリフルオロメチル)安息香酸(149.1mg、0.78mmol)及びEDC(149.9mg、0.78mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.4mg、78.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物(5-8)(31.0mg、40%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.18(2H、d、J=8.0Hz)、8.07(2H、d、J=8.0Hz)、7.73(2H、d、J=8.0Hz)、7.66(2H、d、J=8.5Hz)、6.08(1H、dd、J=3.5、5.5Hz)、5.84(1H、dd、J=2.0、8.5Hz)、4.59(1H、dd、J=4.5、8.5Hz)、1.72-1.43(6H、m). <Synthesis Example 8>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4- (trifluoromethyl) benzoic acid)]
To a stirred solution of 4- (trifluoromethyl) benzoic acid (149.1 mg, 0.78 mmol) and EDC (149.9 mg, 0.78 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.4 mg, 78.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (5-8) (31.0 mg, 40%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.18 (2H, d, J = 8.0 Hz), 8.07 (2H, d, J = 8.0 Hz), 7.73 (2H, d, J = 8. 0 Hz), 7.66 (2H, d, J = 8.5 Hz), 6.08 (1H, dd, J = 3.5, 5.5 Hz), 5.84 (1H, dd, J = 2.0) 8.5 Hz), 4.59 (1H, dd, J = 4.5, 8.5 Hz), 1.72-1.43 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-(トリフルオロメチル)安息香酸)の合成]
4-(トリフルオロメチル)安息香酸(149.1mg、0.78mmol)及びEDC(149.9mg、0.78mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.4mg、78.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物(5-8)(31.0mg、40%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.18(2H、d、J=8.0Hz)、8.07(2H、d、J=8.0Hz)、7.73(2H、d、J=8.0Hz)、7.66(2H、d、J=8.5Hz)、6.08(1H、dd、J=3.5、5.5Hz)、5.84(1H、dd、J=2.0、8.5Hz)、4.59(1H、dd、J=4.5、8.5Hz)、1.72-1.43(6H、m). <Synthesis Example 8>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4- (trifluoromethyl) benzoic acid)]
To a stirred solution of 4- (trifluoromethyl) benzoic acid (149.1 mg, 0.78 mmol) and EDC (149.9 mg, 0.78 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.4 mg, 78.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (5-8) (31.0 mg, 40%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.18 (2H, d, J = 8.0 Hz), 8.07 (2H, d, J = 8.0 Hz), 7.73 (2H, d, J = 8. 0 Hz), 7.66 (2H, d, J = 8.5 Hz), 6.08 (1H, dd, J = 3.5, 5.5 Hz), 5.84 (1H, dd, J = 2.0) 8.5 Hz), 4.59 (1H, dd, J = 4.5, 8.5 Hz), 1.72-1.43 (6H, m).
80% AcOH(5mL)中の化合物(5-8)(13.3mg、15.5μmol)の撹拌溶液を120℃で7時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物(1-13)(4.5mg、37%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.17(2H、d、J=8.0Hz)、8.07(2H、d、J=8.0Hz)、7.73(2H、d、J=8.3Hz)、7.66(2H、d、J=8.0Hz)、5.95(1H、t、J=5.2Hz)、5.91(1H、d、J=6.0Hz)、4.39(1H、d、J=5.2Hz). A stirred solution of compound (5-8) (13.3 mg, 15.5 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (1-13) (4.5 mg, 37%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.17 (2H, d, J = 8.0 Hz), 8.07 (2H, d, J = 8.0 Hz), 7.73 (2H, d, J = 8. 3 Hz), 7.66 (2H, d, J = 8.0 Hz), 5.95 (1H, t, J = 5.2 Hz), 5.91 (1H, d, J = 6.0 Hz), 4. 39 (1H, d, J = 5.2 Hz).
1H NMR(CDCl3) δ 8.17(2H、d、J=8.0Hz)、8.07(2H、d、J=8.0Hz)、7.73(2H、d、J=8.3Hz)、7.66(2H、d、J=8.0Hz)、5.95(1H、t、J=5.2Hz)、5.91(1H、d、J=6.0Hz)、4.39(1H、d、J=5.2Hz). A stirred solution of compound (5-8) (13.3 mg, 15.5 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (1-13) (4.5 mg, 37%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.17 (2H, d, J = 8.0 Hz), 8.07 (2H, d, J = 8.0 Hz), 7.73 (2H, d, J = 8. 3 Hz), 7.66 (2H, d, J = 8.0 Hz), 5.95 (1H, t, J = 5.2 Hz), 5.91 (1H, d, J = 6.0 Hz), 4. 39 (1H, d, J = 5.2 Hz).
<合成例9>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3-(トリフルオロメチル)安息香酸)の合成]
3-(トリフルオロメチル)安息香酸(155.5mg、0.81mmol)及びEDC(156.8mg、0.81mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.4mg、78.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物(5-9)(31.5mg、45%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.32(1H、s)、8.26(1H、d、J=8.0Hz)、8.21(1H、s)、8.13(1H、d、J=8.0Hz)、7.85(1H、d、J=7.7Hz)、7.83(1H、d、J=7.7Hz)、7.62(1H、t、J=7.7Hz)、7.54(1H、t、J=8.0Hz)、6.06(1H、dd、J=3.5、6.0Hz)、5.84(1H、dd、J=2.3、8.6Hz)、4.62(1H、dd、J=4.0、8.6Hz)、1.72-1.43(6H、m). <Synthesis Example 9>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3- (trifluoromethyl) benzoic acid)]
To a stirred solution of 3- (trifluoromethyl) benzoic acid (155.5 mg, 0.81 mmol) and EDC (156.8 mg, 0.81 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.4 mg, 78.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (5-9) (31.5 mg, 45%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.32 (1H, s), 8.26 (1H, d, J = 8.0 Hz), 8.21 (1H, s), 8.13 (1H, d, J = 8.0 Hz), 7.85 (1H, d, J = 7.7 Hz), 7.83 (1H, d, J = 7.7 Hz), 7.62 (1H, t, J = 7.7 Hz) 7.54 (1H, t, J = 8.0 Hz), 6.06 (1H, dd, J = 3.5, 6.0 Hz), 5.84 (1H, dd, J = 2.3, 8) .6 Hz), 4.62 (1H, dd, J = 4.0, 8.6 Hz), 1.72-1.43 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3-(トリフルオロメチル)安息香酸)の合成]
3-(トリフルオロメチル)安息香酸(155.5mg、0.81mmol)及びEDC(156.8mg、0.81mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.4mg、78.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物(5-9)(31.5mg、45%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.32(1H、s)、8.26(1H、d、J=8.0Hz)、8.21(1H、s)、8.13(1H、d、J=8.0Hz)、7.85(1H、d、J=7.7Hz)、7.83(1H、d、J=7.7Hz)、7.62(1H、t、J=7.7Hz)、7.54(1H、t、J=8.0Hz)、6.06(1H、dd、J=3.5、6.0Hz)、5.84(1H、dd、J=2.3、8.6Hz)、4.62(1H、dd、J=4.0、8.6Hz)、1.72-1.43(6H、m). <Synthesis Example 9>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3- (trifluoromethyl) benzoic acid)]
To a stirred solution of 3- (trifluoromethyl) benzoic acid (155.5 mg, 0.81 mmol) and EDC (156.8 mg, 0.81 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.4 mg, 78.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (5-9) (31.5 mg, 45%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.32 (1H, s), 8.26 (1H, d, J = 8.0 Hz), 8.21 (1H, s), 8.13 (1H, d, J = 8.0 Hz), 7.85 (1H, d, J = 7.7 Hz), 7.83 (1H, d, J = 7.7 Hz), 7.62 (1H, t, J = 7.7 Hz) 7.54 (1H, t, J = 8.0 Hz), 6.06 (1H, dd, J = 3.5, 6.0 Hz), 5.84 (1H, dd, J = 2.3, 8) .6 Hz), 4.62 (1H, dd, J = 4.0, 8.6 Hz), 1.72-1.43 (6H, m).
80% AcOH(5mL)中の化合物(5-9)(17.5mg、18.4μmol)の撹拌溶液を120℃で7時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物1-14)(8.7mg、54%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.30(1H、s)、8.24(1H、d、J=7.5Hz)、8.20(1H、s)、8.15(1H、d、J=8.0Hz)、7.85(1H、d、J=8.0Hz)、7.80(1H、d、J=7.5Hz)、7.62(1H、t、J=7.5Hz)、7.55(1H、d、J=7.5Hz)、5.93(2H、s)、4.42(1H、d、J=5.0Hz). A stirred solution of compound (5-9) (17.5 mg, 18.4 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound 1-14) (8.7 mg, 54%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.30 (1H, s), 8.24 (1H, d, J = 7.5 Hz), 8.20 (1H, s), 8.15 (1H, d, J = 8.0 Hz), 7.85 (1H, d, J = 8.0 Hz), 7.80 (1H, d, J = 7.5 Hz), 7.62 (1H, t, J = 7.5 Hz) 7.55 (1H, d, J = 7.5 Hz), 5.93 (2H, s), 4.42 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 8.30(1H、s)、8.24(1H、d、J=7.5Hz)、8.20(1H、s)、8.15(1H、d、J=8.0Hz)、7.85(1H、d、J=8.0Hz)、7.80(1H、d、J=7.5Hz)、7.62(1H、t、J=7.5Hz)、7.55(1H、d、J=7.5Hz)、5.93(2H、s)、4.42(1H、d、J=5.0Hz). A stirred solution of compound (5-9) (17.5 mg, 18.4 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound 1-14) (8.7 mg, 54%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.30 (1H, s), 8.24 (1H, d, J = 7.5 Hz), 8.20 (1H, s), 8.15 (1H, d, J = 8.0 Hz), 7.85 (1H, d, J = 8.0 Hz), 7.80 (1H, d, J = 7.5 Hz), 7.62 (1H, t, J = 7.5 Hz) 7.55 (1H, d, J = 7.5 Hz), 5.93 (2H, s), 4.42 (1H, d, J = 5.0 Hz).
<合成例10>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-(トリフルオロメチル)安息香酸)の合成]
2-(トリフルオロメチル)安息香酸(147.5mg、0.78mmol)及びEDC(148.8mg、0.78mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.2mg、77.6μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で18時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/6)に供して化合物(5-10)(15.8mg、22%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.94(1H、dd、J=1.5、7.5Hz)、7.86(1H、dd、J=3.5、5.5Hz)、7.77(1H、dd、J=3.0、5.0Hz)、7.74(1H、dd、J=1.5、8.0Hz)、7.64(2H、dd、J=3.5、6.0Hz)、7.61(1H、dd、J=1.0、7.5Hz)、7.61(1H、dd、J=1.5、7.5Hz)、5.99(1H、dd、J=3.5、6.0Hz)、5.79(1H、dd、J=2.0、9.0Hz)、4.51(1H、d、J=4.0Hz)、1.64-1.56(6H、m). <Synthesis Example 10>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2- (trifluoromethyl) benzoic acid)]
To a stirred solution of 2- (trifluoromethyl) benzoic acid (147.5 mg, 0.78 mmol) and EDC (148.8 mg, 0.78 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.2 mg, 77.6 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 18 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/6) to give compound (5-10) (15.8 mg, 22%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.94 (1H, dd, J = 1.5, 7.5 Hz), 7.86 (1H, dd, J = 3.5, 5.5 Hz), 7.77 ( 1H, dd, J = 3.0, 5.0 Hz), 7.74 (1H, dd, J = 1.5, 8.0 Hz), 7.64 (2H, dd, J = 3.5, 6. 0 Hz), 7.61 (1H, dd, J = 1.0, 7.5 Hz), 7.61 (1H, dd, J = 1.5, 7.5 Hz), 5.99 (1H, dd, J = 3.5, 6.0 Hz), 5.79 (1H, dd, J = 2.0, 9.0 Hz), 4.51 (1H, d, J = 4.0 Hz), 1.64-1. 56 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-(トリフルオロメチル)安息香酸)の合成]
2-(トリフルオロメチル)安息香酸(147.5mg、0.78mmol)及びEDC(148.8mg、0.78mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.2mg、77.6μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で18時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/6)に供して化合物(5-10)(15.8mg、22%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.94(1H、dd、J=1.5、7.5Hz)、7.86(1H、dd、J=3.5、5.5Hz)、7.77(1H、dd、J=3.0、5.0Hz)、7.74(1H、dd、J=1.5、8.0Hz)、7.64(2H、dd、J=3.5、6.0Hz)、7.61(1H、dd、J=1.0、7.5Hz)、7.61(1H、dd、J=1.5、7.5Hz)、5.99(1H、dd、J=3.5、6.0Hz)、5.79(1H、dd、J=2.0、9.0Hz)、4.51(1H、d、J=4.0Hz)、1.64-1.56(6H、m). <Synthesis Example 10>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2- (trifluoromethyl) benzoic acid)]
To a stirred solution of 2- (trifluoromethyl) benzoic acid (147.5 mg, 0.78 mmol) and EDC (148.8 mg, 0.78 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.2 mg, 77.6 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 18 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/6) to give compound (5-10) (15.8 mg, 22%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.94 (1H, dd, J = 1.5, 7.5 Hz), 7.86 (1H, dd, J = 3.5, 5.5 Hz), 7.77 ( 1H, dd, J = 3.0, 5.0 Hz), 7.74 (1H, dd, J = 1.5, 8.0 Hz), 7.64 (2H, dd, J = 3.5, 6. 0 Hz), 7.61 (1H, dd, J = 1.0, 7.5 Hz), 7.61 (1H, dd, J = 1.5, 7.5 Hz), 5.99 (1H, dd, J = 3.5, 6.0 Hz), 5.79 (1H, dd, J = 2.0, 9.0 Hz), 4.51 (1H, d, J = 4.0 Hz), 1.64-1. 56 (6H, m).
80% AcOH(5mL)中の化合物(5-10)(12.5mg、13.2μmol)の撹拌溶液を120℃で3時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/1)に供して化合物(1-15)(8.2mg、72%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.88(1H、d、J=6.5Hz)、7.86-7.84(1H、m)、7.79-7.77(1H、m)、7.72(1H、d、J=7.5Hz)、7.66-7.63(2H、m)、7.61-7.58(2H、m)、5.88(1H、t、J=5.5Hz)、5.82(1H、dd、J=2.5、8.5Hz)、4.31(1H、d、J=5.0Hz). A stirred solution of compound (5-10) (12.5 mg, 13.2 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 3 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-15) (8.2 mg, 72%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.88 (1H, d, J = 6.5 Hz), 7.86-7.84 (1H, m), 7.79-7.77 (1H, m), 7 .72 (1H, d, J = 7.5 Hz), 7.66-7.63 (2H, m), 7.61-7.58 (2H, m), 5.88 (1H, t, J = 5.5 Hz), 5.82 (1H, dd, J = 2.5, 8.5 Hz), 4.31 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 7.88(1H、d、J=6.5Hz)、7.86-7.84(1H、m)、7.79-7.77(1H、m)、7.72(1H、d、J=7.5Hz)、7.66-7.63(2H、m)、7.61-7.58(2H、m)、5.88(1H、t、J=5.5Hz)、5.82(1H、dd、J=2.5、8.5Hz)、4.31(1H、d、J=5.0Hz). A stirred solution of compound (5-10) (12.5 mg, 13.2 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 3 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-15) (8.2 mg, 72%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.88 (1H, d, J = 6.5 Hz), 7.86-7.84 (1H, m), 7.79-7.77 (1H, m), 7 .72 (1H, d, J = 7.5 Hz), 7.66-7.63 (2H, m), 7.61-7.58 (2H, m), 5.88 (1H, t, J = 5.5 Hz), 5.82 (1H, dd, J = 2.5, 8.5 Hz), 4.31 (1H, d, J = 5.0 Hz).
<合成例11>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-ニトロ安息香酸)の合成]
4-ニトロ安息香酸(145.0mg、0.87mmol)及びEDC(166.4mg、0.87mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.6mg、86.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で60時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-11)(21.8mg、36%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.34(1H、t、J=2.0Hz)、8.32(1H、t、J=2.0Hz)、8.27-8.24(4H、m)、6.09(1H、dd、J=3.5、5.5Hz)、5.85(1H、dd、J=3.5、2.5Hz)、4.63(1H、dd、J=4.0、8.5Hz)、1.67-1.40(6H、m). <Synthesis Example 11>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-nitrobenzoic acid)]
To a stirred solution of 4-nitrobenzoic acid (145.0 mg, 0.87 mmol) and EDC (166.4 mg, 0.87 mmol) was added compound (3-1) (22.6 mg, CH 2 Cl 2 (7 mL). 86.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 60 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-11) (21.8 mg, 36%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.34 (1H, t, J = 2.0 Hz), 8.32 (1H, t, J = 2.0 Hz), 8.27-8.24 (4H, m) 6.09 (1H, dd, J = 3.5, 5.5 Hz), 5.85 (1H, dd, J = 3.5, 2.5 Hz), 4.63 (1H, dd, J = 4) 0.0, 8.5 Hz), 1.67-1.40 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-ニトロ安息香酸)の合成]
4-ニトロ安息香酸(145.0mg、0.87mmol)及びEDC(166.4mg、0.87mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.6mg、86.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で60時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-11)(21.8mg、36%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.34(1H、t、J=2.0Hz)、8.32(1H、t、J=2.0Hz)、8.27-8.24(4H、m)、6.09(1H、dd、J=3.5、5.5Hz)、5.85(1H、dd、J=3.5、2.5Hz)、4.63(1H、dd、J=4.0、8.5Hz)、1.67-1.40(6H、m). <Synthesis Example 11>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-nitrobenzoic acid)]
To a stirred solution of 4-nitrobenzoic acid (145.0 mg, 0.87 mmol) and EDC (166.4 mg, 0.87 mmol) was added compound (3-1) (22.6 mg, CH 2 Cl 2 (7 mL). 86.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 60 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-11) (21.8 mg, 36%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.34 (1H, t, J = 2.0 Hz), 8.32 (1H, t, J = 2.0 Hz), 8.27-8.24 (4H, m) 6.09 (1H, dd, J = 3.5, 5.5 Hz), 5.85 (1H, dd, J = 3.5, 2.5 Hz), 4.63 (1H, dd, J = 4) 0.0, 8.5 Hz), 1.67-1.40 (6H, m).
80% AcOH(5mL)中の化合物(5-11)(13.3mg、15.5μmol)の撹拌溶液を120℃で4時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-16)(4.5mg、37%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.32(3H、t、J=9.5Hz)、8.29(1H、s)、8.25(2H、d、J=3.0Hz)、8.22(2H、d、J=2.0Hz)、6.00-5.96(1H、m)、5.90(1H、t、J=6.0Hz)、4.43(1H、d、J=5.0Hz). A stirred solution of compound (5-11) (13.3 mg, 15.5 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 4 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-16) (4.5 mg, 37%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.32 (3H, t, J = 9.5 Hz), 8.29 (1H, s), 8.25 (2H, d, J = 3.0 Hz), 8.22 (2H, d, J = 2.0 Hz), 6.00-5.96 (1H, m), 5.90 (1H, t, J = 6.0 Hz), 4.43 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 8.32(3H、t、J=9.5Hz)、8.29(1H、s)、8.25(2H、d、J=3.0Hz)、8.22(2H、d、J=2.0Hz)、6.00-5.96(1H、m)、5.90(1H、t、J=6.0Hz)、4.43(1H、d、J=5.0Hz). A stirred solution of compound (5-11) (13.3 mg, 15.5 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 4 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-16) (4.5 mg, 37%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.32 (3H, t, J = 9.5 Hz), 8.29 (1H, s), 8.25 (2H, d, J = 3.0 Hz), 8.22 (2H, d, J = 2.0 Hz), 6.00-5.96 (1H, m), 5.90 (1H, t, J = 6.0 Hz), 4.43 (1H, d, J = 5.0 Hz).
<合成例12>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(フラン-2-カルボン酸)の合成]
2-フランカルボン酸(94.3mg、0.84mmol)及びEDC(161.2mg、0.84mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.9mg、84.1μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で18時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-12)(25.4mg、47%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.57(1H、q、J=0.5Hz)、7.53(1H、q、J=1.0Hz)、7.24(1H、d、1.0Hz)、7.12(1H、dd、J=1.0、3.5Hz)、6.49(1H、dd、J=2.0、3.5Hz)、6.44(1H、dd、J=1.5、3.5Hz)、5.93(1H、dd、J=3.5、6.0Hz)、5.67(1H、dd、J=2.0、3.5Hz)、4.46(1H、dd、J=4.5、8.5Hz)、1.22-1.65(6H、m). <Synthesis Example 12>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (furan-2-carboxylic acid)]
To a stirred solution of 2-furancarboxylic acid (94.3 mg, 0.84 mmol) and EDC (161.2 mg, 0.84 mmol) was added compound (3-1) (21.9 mg, CH 2 Cl 2 (7 mL). 84.1 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 18 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-12) (25.4 mg, 47%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.57 (1H, q, J = 0.5 Hz), 7.53 (1H, q, J = 1.0 Hz), 7.24 (1H, d, 1.0 Hz) 7.12 (1H, dd, J = 1.0, 3.5 Hz), 6.49 (1H, dd, J = 2.0, 3.5 Hz), 6.44 (1H, dd, J = 1) .5, 3.5 Hz), 5.93 (1H, dd, J = 3.5, 6.0 Hz), 5.67 (1H, dd, J = 2.0, 3.5 Hz), 4.46 ( 1H, dd, J = 4.5, 8.5 Hz), 1.22-1.65 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(フラン-2-カルボン酸)の合成]
2-フランカルボン酸(94.3mg、0.84mmol)及びEDC(161.2mg、0.84mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.9mg、84.1μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で18時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-12)(25.4mg、47%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.57(1H、q、J=0.5Hz)、7.53(1H、q、J=1.0Hz)、7.24(1H、d、1.0Hz)、7.12(1H、dd、J=1.0、3.5Hz)、6.49(1H、dd、J=2.0、3.5Hz)、6.44(1H、dd、J=1.5、3.5Hz)、5.93(1H、dd、J=3.5、6.0Hz)、5.67(1H、dd、J=2.0、3.5Hz)、4.46(1H、dd、J=4.5、8.5Hz)、1.22-1.65(6H、m). <Synthesis Example 12>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (furan-2-carboxylic acid)]
To a stirred solution of 2-furancarboxylic acid (94.3 mg, 0.84 mmol) and EDC (161.2 mg, 0.84 mmol) was added compound (3-1) (21.9 mg, CH 2 Cl 2 (7 mL). 84.1 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 18 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-12) (25.4 mg, 47%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.57 (1H, q, J = 0.5 Hz), 7.53 (1H, q, J = 1.0 Hz), 7.24 (1H, d, 1.0 Hz) 7.12 (1H, dd, J = 1.0, 3.5 Hz), 6.49 (1H, dd, J = 2.0, 3.5 Hz), 6.44 (1H, dd, J = 1) .5, 3.5 Hz), 5.93 (1H, dd, J = 3.5, 6.0 Hz), 5.67 (1H, dd, J = 2.0, 3.5 Hz), 4.46 ( 1H, dd, J = 4.5, 8.5 Hz), 1.22-1.65 (6H, m).
80% AcOH(5mL)中の化合物(5-12)(17,3mg、26.3μmol)の撹拌溶液を120℃で12時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/1)に供して化合物(1-17)(9.4mg、64%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CD3OD) δ 7.78(1H、dd、J=1.0、2.0Hz)、7.73(1H、dd、J=1.0、2.0Hz)、7.35(1H、d、J=3.5Hz)、7.23-7.20(1H、m)、6.62(1H、dd、J=2.0、3.5Hz)、6.57(1H、dd、J=1.5、3.5Hz)、5.81-5.73(1H、m)、5.63(1H、dd、J=3.0、8.5Hz)、4.19(1H、dd、J=3.0、8.5Hz). A stirred solution of compound (5-12) (17.3 mg, 26.3 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 12 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-17) (9.4 mg, 64%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CD 3 OD) δ 7.78 (1H, dd, J = 1.0, 2.0 Hz), 7.73 (1H, dd, J = 1.0, 2.0 Hz), 7.35 (1H, d, J = 3.5 Hz), 7.23-7.20 (1H, m), 6.62 (1H, dd, J = 2.0, 3.5 Hz), 6.57 (1H, dd, J = 1.5, 3.5 Hz), 5.81-5.73 (1H, m), 5.63 (1H, dd, J = 3.0, 8.5 Hz), 4.19 (1H , Dd, J = 3.0, 8.5 Hz).
1H NMR(CD3OD) δ 7.78(1H、dd、J=1.0、2.0Hz)、7.73(1H、dd、J=1.0、2.0Hz)、7.35(1H、d、J=3.5Hz)、7.23-7.20(1H、m)、6.62(1H、dd、J=2.0、3.5Hz)、6.57(1H、dd、J=1.5、3.5Hz)、5.81-5.73(1H、m)、5.63(1H、dd、J=3.0、8.5Hz)、4.19(1H、dd、J=3.0、8.5Hz). A stirred solution of compound (5-12) (17.3 mg, 26.3 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 12 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-17) (9.4 mg, 64%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CD 3 OD) δ 7.78 (1H, dd, J = 1.0, 2.0 Hz), 7.73 (1H, dd, J = 1.0, 2.0 Hz), 7.35 (1H, d, J = 3.5 Hz), 7.23-7.20 (1H, m), 6.62 (1H, dd, J = 2.0, 3.5 Hz), 6.57 (1H, dd, J = 1.5, 3.5 Hz), 5.81-5.73 (1H, m), 5.63 (1H, dd, J = 3.0, 8.5 Hz), 4.19 (1H , Dd, J = 3.0, 8.5 Hz).
<合成例13>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(チオフェン-2-カルボン酸)の合成]
2-チオフェンカルボン酸(104.3mg、0.81mmol)及びEDC(156.0mg、0.81mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.2mg、81.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で3時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-13)(28.3mg、50%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.86(1H、dd、J=1.5、4.0Hz)、7.76(1H、dd、J=1.5、4.0Hz)、7.59(1H、dd、J=1.5、5.0Hz)、7.54(1H、dd、J=1.0、5.0Hz)、7.10(1H、dd、J=1.0、5.0Hz)、7.04(1H、dd、J=4.0、5.0Hz)、5.99(1H、dd、J=3.5、6.0Hz)、5.70(1H、dd、J=2.5、9.0Hz)、4.50(1H、dd、J=3.5、8.0Hz)、1.67-1.56(6H、m). <Synthesis Example 13>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (thiophene-2-carboxylic acid)]
To a stirred solution of 2-thiophenecarboxylic acid (104.3 mg, 0.81 mmol) and EDC (156.0 mg, 0.81 mmol) was added compound (3-1) (21.2 mg, 2 mL in CH 2 Cl 2 (7 mL). 81.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 3 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-13) (28.3 mg, 50%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.86 (1H, dd, J = 1.5, 4.0 Hz), 7.76 (1H, dd, J = 1.5, 4.0 Hz), 7.59 ( 1H, dd, J = 1.5, 5.0 Hz), 7.54 (1H, dd, J = 1.0, 5.0 Hz), 7.10 (1H, dd, J = 1.0, 5. 0 Hz), 7.04 (1H, dd, J = 4.0, 5.0 Hz), 5.99 (1H, dd, J = 3.5, 6.0 Hz), 5.70 (1H, dd, J = 2.5, 9.0 Hz), 4.50 (1H, dd, J = 3.5, 8.0 Hz), 1.67-1.56 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(チオフェン-2-カルボン酸)の合成]
2-チオフェンカルボン酸(104.3mg、0.81mmol)及びEDC(156.0mg、0.81mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.2mg、81.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で3時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-13)(28.3mg、50%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.86(1H、dd、J=1.5、4.0Hz)、7.76(1H、dd、J=1.5、4.0Hz)、7.59(1H、dd、J=1.5、5.0Hz)、7.54(1H、dd、J=1.0、5.0Hz)、7.10(1H、dd、J=1.0、5.0Hz)、7.04(1H、dd、J=4.0、5.0Hz)、5.99(1H、dd、J=3.5、6.0Hz)、5.70(1H、dd、J=2.5、9.0Hz)、4.50(1H、dd、J=3.5、8.0Hz)、1.67-1.56(6H、m). <Synthesis Example 13>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (thiophene-2-carboxylic acid)]
To a stirred solution of 2-thiophenecarboxylic acid (104.3 mg, 0.81 mmol) and EDC (156.0 mg, 0.81 mmol) was added compound (3-1) (21.2 mg, 2 mL in CH 2 Cl 2 (7 mL). 81.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 3 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-13) (28.3 mg, 50%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.86 (1H, dd, J = 1.5, 4.0 Hz), 7.76 (1H, dd, J = 1.5, 4.0 Hz), 7.59 ( 1H, dd, J = 1.5, 5.0 Hz), 7.54 (1H, dd, J = 1.0, 5.0 Hz), 7.10 (1H, dd, J = 1.0, 5. 0 Hz), 7.04 (1H, dd, J = 4.0, 5.0 Hz), 5.99 (1H, dd, J = 3.5, 6.0 Hz), 5.70 (1H, dd, J = 2.5, 9.0 Hz), 4.50 (1H, dd, J = 3.5, 8.0 Hz), 1.67-1.56 (6H, m).
80% AcOH(5mL)中の化合物(5-13)(16.0mg、23.0μmol)の撹拌溶液を120℃で5時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(1-18)(5.0mg、35%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.86(1H、dd、J=1.0、4.0Hz)、7.77(1H、dd、J=1.5、4.0Hz)、7.61(1H、dd、J=1.0、5.0Hz)、7.55(1H、dd、J=1.0、5.0Hz)、7.11(1H、dd、J=4.0、5.0Hz)、7.05(1H、dd、J=3.5、5.0Hz)、5.81-5.77(2H、m)、4.30(1H、s、J=4.5Hz). A stirred solution of compound (5-13) (16.0 mg, 23.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (1-18) (5.0 mg, 35%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.86 (1H, dd, J = 1.0, 4.0 Hz), 7.77 (1H, dd, J = 1.5, 4.0 Hz), 7.61 ( 1H, dd, J = 1.0, 5.0 Hz), 7.55 (1H, dd, J = 1.0, 5.0 Hz), 7.11 (1H, dd, J = 4.0, 5. 0 Hz), 7.05 (1H, dd, J = 3.5, 5.0 Hz), 5.81-5.77 (2H, m), 4.30 (1H, s, J = 4.5 Hz).
1H NMR(CDCl3) δ 7.86(1H、dd、J=1.0、4.0Hz)、7.77(1H、dd、J=1.5、4.0Hz)、7.61(1H、dd、J=1.0、5.0Hz)、7.55(1H、dd、J=1.0、5.0Hz)、7.11(1H、dd、J=4.0、5.0Hz)、7.05(1H、dd、J=3.5、5.0Hz)、5.81-5.77(2H、m)、4.30(1H、s、J=4.5Hz). A stirred solution of compound (5-13) (16.0 mg, 23.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (1-18) (5.0 mg, 35%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.86 (1H, dd, J = 1.0, 4.0 Hz), 7.77 (1H, dd, J = 1.5, 4.0 Hz), 7.61 ( 1H, dd, J = 1.0, 5.0 Hz), 7.55 (1H, dd, J = 1.0, 5.0 Hz), 7.11 (1H, dd, J = 4.0, 5. 0 Hz), 7.05 (1H, dd, J = 3.5, 5.0 Hz), 5.81-5.77 (2H, m), 4.30 (1H, s, J = 4.5 Hz).
<合成例14>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-ブロモ安息香酸)の合成]
2-ブロモ安息香酸(151.3mg、0.75mmol)及びEDC(144.4mg、0.75mmol)の撹拌溶液に、CH2Cl2(6mL)中の化合物(3-1)(19.6mg、75.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-14)(42.1mg、57%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.93-7.95(1H、m)、7.84(1H、dd、J=1.5、7.5Hz)、7.65(1H、dd、J=1.5、7.5Hz)、7.64-7.62(1H、m)、7.40-7.34(2H、m)、7.32(2H、t、J=4.0Hz)、6.04(1H、dd、J=3.5、6.0Hz)、5.90(1H、dd、J=1.5、9.5Hz)、4.55(1H、dd、J=4.5、8.5Hz)、1.94-1.39(6H、m). <Synthesis Example 14>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-bromobenzoic acid)]
To a stirred solution of 2-bromobenzoic acid (151.3 mg, 0.75 mmol) and EDC (144.4 mg, 0.75 mmol) was added compound (3-1) (19.6 mg, CH 2 Cl 2 (6 mL). 75.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-14) (42.1 mg, 57%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.93-7.95 (1H, m), 7.84 (1H, dd, J = 1.5, 7.5 Hz), 7.65 (1H, dd, J = 1.5, 7.5 Hz), 7.64-7.62 (1H, m), 7.40-7.34 (2H, m), 7.32 (2H, t, J = 4.0 Hz), 6.04 (1H, dd, J = 3.5, 6.0 Hz), 5.90 (1H, dd, J = 1.5, 9.5 Hz), 4.55 (1H, dd, J = 4. 5, 8.5 Hz), 1.94-1.39 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-ブロモ安息香酸)の合成]
2-ブロモ安息香酸(151.3mg、0.75mmol)及びEDC(144.4mg、0.75mmol)の撹拌溶液に、CH2Cl2(6mL)中の化合物(3-1)(19.6mg、75.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-14)(42.1mg、57%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.93-7.95(1H、m)、7.84(1H、dd、J=1.5、7.5Hz)、7.65(1H、dd、J=1.5、7.5Hz)、7.64-7.62(1H、m)、7.40-7.34(2H、m)、7.32(2H、t、J=4.0Hz)、6.04(1H、dd、J=3.5、6.0Hz)、5.90(1H、dd、J=1.5、9.5Hz)、4.55(1H、dd、J=4.5、8.5Hz)、1.94-1.39(6H、m). <Synthesis Example 14>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-bromobenzoic acid)]
To a stirred solution of 2-bromobenzoic acid (151.3 mg, 0.75 mmol) and EDC (144.4 mg, 0.75 mmol) was added compound (3-1) (19.6 mg, CH 2 Cl 2 (6 mL). 75.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-14) (42.1 mg, 57%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.93-7.95 (1H, m), 7.84 (1H, dd, J = 1.5, 7.5 Hz), 7.65 (1H, dd, J = 1.5, 7.5 Hz), 7.64-7.62 (1H, m), 7.40-7.34 (2H, m), 7.32 (2H, t, J = 4.0 Hz), 6.04 (1H, dd, J = 3.5, 6.0 Hz), 5.90 (1H, dd, J = 1.5, 9.5 Hz), 4.55 (1H, dd, J = 4. 5, 8.5 Hz), 1.94-1.39 (6H, m).
80% AcOH(5mL)中の化合物(5-14)(17.1mg、17.2μmol)の撹拌溶液を120℃で7時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-19)(14.8mg、94%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.88(1H、dd、J=2.5、7.5Hz)、7.83(1H、dd、J=2.0、7.5Hz)、7.68-7.65(1H、m)、7.63-7.61(1H、m)、7.39-7.36(2H、m)、7.34-7.31(2H、m)、5.96-5.92(2H、m)、4.37(1H、d、J=5.0Hz). A stirred solution of compound (5-14) (17.1 mg, 17.2 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-19) (14.8 mg, 94%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.88 (1H, dd, J = 2.5, 7.5 Hz), 7.83 (1H, dd, J = 2.0, 7.5 Hz), 7.68− 7.65 (1H, m), 7.63-7.61 (1H, m), 7.39-7.36 (2H, m), 7.34-7.31 (2H, m), 5. 96-5.92 (2H, m), 4.37 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 7.88(1H、dd、J=2.5、7.5Hz)、7.83(1H、dd、J=2.0、7.5Hz)、7.68-7.65(1H、m)、7.63-7.61(1H、m)、7.39-7.36(2H、m)、7.34-7.31(2H、m)、5.96-5.92(2H、m)、4.37(1H、d、J=5.0Hz). A stirred solution of compound (5-14) (17.1 mg, 17.2 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-19) (14.8 mg, 94%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.88 (1H, dd, J = 2.5, 7.5 Hz), 7.83 (1H, dd, J = 2.0, 7.5 Hz), 7.68− 7.65 (1H, m), 7.63-7.61 (1H, m), 7.39-7.36 (2H, m), 7.34-7.31 (2H, m), 5. 96-5.92 (2H, m), 4.37 (1H, d, J = 5.0 Hz).
<合成例15>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-クロロ安息香酸)の合成]
2-クロロ安息香酸(126.3mg、0.81mmol)及びEDC(161.0mg、0.81mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.2mg、81.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で5時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-15)(25.2mg、38%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.93(2H、dd、J=8.5、16.5Hz)、7.48-7.42(4H、m)、7.37-7.34(1H、m)、7.31-7.28(1H、m)、6.07(1H、dd、J=3.0、5.5Hz)、5.90(1H、dd、J=2.0、8.5Hz)、4.55(1H、dd、J=1.5、9.5Hz)、1.40-1.86(6H、m). <Synthesis Example 15>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-chlorobenzoic acid)]
To a stirred solution of 2-chlorobenzoic acid (126.3 mg, 0.81 mmol) and EDC (161.0 mg, 0.81 mmol) was added compound (3-1) (21.2 mg, CH 2 Cl 2 (7 mL). 81.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 5 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-15) (25.2 mg, 38%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.93 (2H, dd, J = 8.5, 16.5 Hz), 7.48-7.42 (4H, m), 7.37-7.34 (1H, m), 7.31-7.28 (1H, m), 6.07 (1H, dd, J = 3.0, 5.5 Hz), 5.90 (1H, dd, J = 2.0, 8 .5 Hz), 4.55 (1H, dd, J = 1.5, 9.5 Hz), 1.40-1.86 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-クロロ安息香酸)の合成]
2-クロロ安息香酸(126.3mg、0.81mmol)及びEDC(161.0mg、0.81mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.2mg、81.4μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で5時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-15)(25.2mg、38%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.93(2H、dd、J=8.5、16.5Hz)、7.48-7.42(4H、m)、7.37-7.34(1H、m)、7.31-7.28(1H、m)、6.07(1H、dd、J=3.0、5.5Hz)、5.90(1H、dd、J=2.0、8.5Hz)、4.55(1H、dd、J=1.5、9.5Hz)、1.40-1.86(6H、m). <Synthesis Example 15>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-chlorobenzoic acid)]
To a stirred solution of 2-chlorobenzoic acid (126.3 mg, 0.81 mmol) and EDC (161.0 mg, 0.81 mmol) was added compound (3-1) (21.2 mg, CH 2 Cl 2 (7 mL). 81.4 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 5 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to obtain compound (5-15) (25.2 mg, 38%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.93 (2H, dd, J = 8.5, 16.5 Hz), 7.48-7.42 (4H, m), 7.37-7.34 (1H, m), 7.31-7.28 (1H, m), 6.07 (1H, dd, J = 3.0, 5.5 Hz), 5.90 (1H, dd, J = 2.0, 8 .5 Hz), 4.55 (1H, dd, J = 1.5, 9.5 Hz), 1.40-1.86 (6H, m).
80% AcOH(5mL)中の化合物(5-15)(17.8mg、22.0μmol)の撹拌溶液を120℃で6時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/5)に供して化合物(1-20)(7.7mg、48%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.88(2H、t、J=7.5Hz)、7.64-7.54(2H、m)、7.41(2H、d、J=3.5Hz)、7.36-7.32(1H、m)、7.30-7.27(1H、m)、5.95-5.92(1H、m)、4.34(1H、d、J=5.0Hz). A stirred solution of compound (5-15) (17.8 mg, 22.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 6 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (1-20) (7.7 mg, 48%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.88 (2H, t, J = 7.5 Hz), 7.64-7.54 (2H, m), 7.41 (2H, d, J = 3.5 Hz) 7.36-7.32 (1H, m), 7.30-7.27 (1H, m), 5.95-5.92 (1H, m), 4.34 (1H, d, J = 5.0 Hz).
1H NMR(CDCl3) δ 7.88(2H、t、J=7.5Hz)、7.64-7.54(2H、m)、7.41(2H、d、J=3.5Hz)、7.36-7.32(1H、m)、7.30-7.27(1H、m)、5.95-5.92(1H、m)、4.34(1H、d、J=5.0Hz). A stirred solution of compound (5-15) (17.8 mg, 22.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 6 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/5) to give compound (1-20) (7.7 mg, 48%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.88 (2H, t, J = 7.5 Hz), 7.64-7.54 (2H, m), 7.41 (2H, d, J = 3.5 Hz) 7.36-7.32 (1H, m), 7.30-7.27 (1H, m), 5.95-5.92 (1H, m), 4.34 (1H, d, J = 5.0 Hz).
<合成例16>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3-ブロモチオフェン-2-カルボン酸)の合成]
3-ブロモチオフェン-2-カルボン酸(161.5mg、0.78mmol)及びEDC(149.5mg、0.78mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.4mg、78.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で18時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-16)(49.1mg、62%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.51(1H、d、J=5.0Hz)、7.46(1H、d、J=5.5Hz)、7.09(1H、d、J=5.0Hz)、7.04(1H、d、J=5.0Hz)、6.03(1H、dd、J=3.5、5.5Hz)、5.75(1H、dd、J=2.0、8.5Hz)、4.49(1H、dd、J=4.5、8.5Hz)、2.05-1.37(6H、m). <Synthesis Example 16>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3-bromothiophene-2-carboxylic acid)]
To a stirred solution of 3-bromothiophene-2-carboxylic acid (161.5 mg, 0.78 mmol) and EDC (149.5 mg, 0.78 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.4 mg, 78.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 18 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-16) (49.1 mg, 62%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.51 (1H, d, J = 5.0 Hz), 7.46 (1H, d, J = 5.5 Hz), 7.09 (1H, d, J = 5. 0 Hz), 7.04 (1H, d, J = 5.0 Hz), 6.03 (1H, dd, J = 3.5, 5.5 Hz), 5.75 (1H, dd, J = 2.0) 8.5 Hz), 4.49 (1H, dd, J = 4.5, 8.5 Hz), 2.05-1.37 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3-ブロモチオフェン-2-カルボン酸)の合成]
3-ブロモチオフェン-2-カルボン酸(161.5mg、0.78mmol)及びEDC(149.5mg、0.78mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(20.4mg、78.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で18時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-16)(49.1mg、62%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.51(1H、d、J=5.0Hz)、7.46(1H、d、J=5.5Hz)、7.09(1H、d、J=5.0Hz)、7.04(1H、d、J=5.0Hz)、6.03(1H、dd、J=3.5、5.5Hz)、5.75(1H、dd、J=2.0、8.5Hz)、4.49(1H、dd、J=4.5、8.5Hz)、2.05-1.37(6H、m). <Synthesis Example 16>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3-bromothiophene-2-carboxylic acid)]
To a stirred solution of 3-bromothiophene-2-carboxylic acid (161.5 mg, 0.78 mmol) and EDC (149.5 mg, 0.78 mmol) was added compound (3-1) in CH 2 Cl 2 (7 mL) ( 20.4 mg, 78.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 18 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-16) (49.1 mg, 62%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.51 (1H, d, J = 5.0 Hz), 7.46 (1H, d, J = 5.5 Hz), 7.09 (1H, d, J = 5. 0 Hz), 7.04 (1H, d, J = 5.0 Hz), 6.03 (1H, dd, J = 3.5, 5.5 Hz), 5.75 (1H, dd, J = 2.0) 8.5 Hz), 4.49 (1H, dd, J = 4.5, 8.5 Hz), 2.05-1.37 (6H, m).
80% AcOH(5mL)中の化合物(5-16)(8.7mg、8.60μmol)の撹拌溶液を120℃で8時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-21)(6.3mg、78%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.52(1H、d、J=5.5Hz)、7.46(1H、d、J=5.0Hz)、7.11(1H、d、J=5.0Hz)、7.05(1H、d、J=5.5Hz)、5.90-5.85(2H、m)、4.32(1H、d、J=5.5Hz). A stirred solution of compound (5-16) (8.7 mg, 8.60 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 8 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-21) (6.3 mg, 78%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.52 (1H, d, J = 5.5 Hz), 7.46 (1H, d, J = 5.0 Hz), 7.11 (1H, d, J = 5. 0 Hz), 7.05 (1H, d, J = 5.5 Hz), 5.90-5.85 (2H, m), 4.32 (1H, d, J = 5.5 Hz).
1H NMR(CDCl3) δ 7.52(1H、d、J=5.5Hz)、7.46(1H、d、J=5.0Hz)、7.11(1H、d、J=5.0Hz)、7.05(1H、d、J=5.5Hz)、5.90-5.85(2H、m)、4.32(1H、d、J=5.5Hz). A stirred solution of compound (5-16) (8.7 mg, 8.60 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 8 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-21) (6.3 mg, 78%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.52 (1H, d, J = 5.5 Hz), 7.46 (1H, d, J = 5.0 Hz), 7.11 (1H, d, J = 5. 0 Hz), 7.05 (1H, d, J = 5.5 Hz), 5.90-5.85 (2H, m), 4.32 (1H, d, J = 5.5 Hz).
<合成例17>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-メトキシ安息香酸)の合成]
p-アニス酸(128.6mg、0.84mmol)及びEDC(162.0mg、0.84mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.0mg、84.5μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で26時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-17)(36.2mg、54%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.98(1H、d、J=8.5Hz)、7.77(1H、d、J=9.0Hz)、7.03(1H、d、J=9.0Hz)、6.96(1H、d、J=9.0Hz)、5.83(1H、dd、J=3.0、5.0Hz)、5.63(1H、d、J=6.0Hz)、4.67(1H、d、J=3.0Hz)、3.80(3H、s)、3.77(3H、s)、1.91-1.33(6H、m). <Synthesis Example 17>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-methoxybenzoic acid)]
To a stirred solution of p-anisic acid (128.6 mg, 0.84 mmol) and EDC (162.0 mg, 0.84 mmol) was added compound (3-1) (22.0 mg, 84 in CH 2 Cl 2 (7 mL). 0.5 μmol) and DMAP (5.0 mg). The resulting mixture was stirred at room temperature for 26 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-17) (36.2 mg, 54%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.98 (1H, d, J = 8.5 Hz), 7.77 (1H, d, J = 9.0 Hz), 7.03 (1H, d, J = 9. 0 Hz), 6.96 (1H, d, J = 9.0 Hz), 5.83 (1H, dd, J = 3.0, 5.0 Hz), 5.63 (1H, d, J = 6.0 Hz) ), 4.67 (1H, d, J = 3.0 Hz), 3.80 (3H, s), 3.77 (3H, s), 1.91-1.33 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(4-メトキシ安息香酸)の合成]
p-アニス酸(128.6mg、0.84mmol)及びEDC(162.0mg、0.84mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(22.0mg、84.5μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で26時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-17)(36.2mg、54%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.98(1H、d、J=8.5Hz)、7.77(1H、d、J=9.0Hz)、7.03(1H、d、J=9.0Hz)、6.96(1H、d、J=9.0Hz)、5.83(1H、dd、J=3.0、5.0Hz)、5.63(1H、d、J=6.0Hz)、4.67(1H、d、J=3.0Hz)、3.80(3H、s)、3.77(3H、s)、1.91-1.33(6H、m). <Synthesis Example 17>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (4-methoxybenzoic acid)]
To a stirred solution of p-anisic acid (128.6 mg, 0.84 mmol) and EDC (162.0 mg, 0.84 mmol) was added compound (3-1) (22.0 mg, 84 in CH 2 Cl 2 (7 mL). 0.5 μmol) and DMAP (5.0 mg). The resulting mixture was stirred at room temperature for 26 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-17) (36.2 mg, 54%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.98 (1H, d, J = 8.5 Hz), 7.77 (1H, d, J = 9.0 Hz), 7.03 (1H, d, J = 9. 0 Hz), 6.96 (1H, d, J = 9.0 Hz), 5.83 (1H, dd, J = 3.0, 5.0 Hz), 5.63 (1H, d, J = 6.0 Hz) ), 4.67 (1H, d, J = 3.0 Hz), 3.80 (3H, s), 3.77 (3H, s), 1.91-1.33 (6H, m).
80% AcOH(3mL)中の化合物(5-17)(5.7mg、7.20μmol)の撹拌溶液を120℃で10時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/1)に供して化合物(1-22)(3.8mg、65%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.02-7.99(2H、m)、7.92(2H、d、J=9.0Hz)、6.91(2H、dd、J=2.0、7.0Hz)、6.84(2H、dd、J=2.0、7.0Hz)、5.87-5.83(2H、m)、4.31(1H、d、J=5.0Hz)、3.86(3H、s)、3.82(3H、s). A stirred solution of compound (5-17) (5.7 mg, 7.20 μmol) in 80% AcOH (3 mL) was heated at 120 ° C. for 10 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-22) (3.8 mg, 65%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.02-7.99 (2H, m), 7.92 (2H, d, J = 9.0 Hz), 6.91 (2H, dd, J = 2.0, 7.0 Hz), 6.84 (2H, dd, J = 2.0, 7.0 Hz), 5.87-5.83 (2H, m), 4.31 (1H, d, J = 5.0 Hz) ), 3.86 (3H, s), 3.82 (3H, s).
1H NMR(CDCl3) δ 8.02-7.99(2H、m)、7.92(2H、d、J=9.0Hz)、6.91(2H、dd、J=2.0、7.0Hz)、6.84(2H、dd、J=2.0、7.0Hz)、5.87-5.83(2H、m)、4.31(1H、d、J=5.0Hz)、3.86(3H、s)、3.82(3H、s). A stirred solution of compound (5-17) (5.7 mg, 7.20 μmol) in 80% AcOH (3 mL) was heated at 120 ° C. for 10 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-22) (3.8 mg, 65%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.02-7.99 (2H, m), 7.92 (2H, d, J = 9.0 Hz), 6.91 (2H, dd, J = 2.0, 7.0 Hz), 6.84 (2H, dd, J = 2.0, 7.0 Hz), 5.87-5.83 (2H, m), 4.31 (1H, d, J = 5.0 Hz) ), 3.86 (3H, s), 3.82 (3H, s).
<合成例18>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-メトキシ安息香酸)の合成]
2-メトキシ安息香酸(124.7mg、0.82mmol)及びEDC(157.2mg、0.82mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.3mg、82.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-18)(37.6mg、58%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.91(1H、dd、J=2.0、8.0Hz)、7.85(1H、dd、J=2.0、8.0Hz)、7.48-7.45(1H、m)、7.44-7.40(1H、m)、6.99-6.93(2H、m)、6.92-6.89(2H、m)、6.06(1H、dd、J=3.5、5.5Hz)、5.85(1H、dd、J=2.0、3.5Hz)、4.47(1H、dd、J=4.5、8.5Hz)、1.97-1.35(6H、m). <Synthesis Example 18>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-methoxybenzoic acid)]
To a stirred solution of 2-methoxybenzoic acid (124.7 mg, 0.82 mmol) and EDC (157.2 mg, 0.82 mmol), compound (3-1) (21.3 mg, 21.3 mg, in CH 2 Cl 2 (7 mL) was added. 82.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-18) (37.6 mg, 58%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.91 (1H, dd, J = 2.0, 8.0 Hz), 7.85 (1H, dd, J = 2.0, 8.0 Hz), 7.48- 7.45 (1H, m), 7.44-7.40 (1H, m), 6.99-6.93 (2H, m), 6.92-6.89 (2H, m), 6. 06 (1H, dd, J = 3.5, 5.5 Hz), 5.85 (1H, dd, J = 2.0, 3.5 Hz), 4.47 (1H, dd, J = 4.5, 8.5 Hz), 1.97-1.35 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2-メトキシ安息香酸)の合成]
2-メトキシ安息香酸(124.7mg、0.82mmol)及びEDC(157.2mg、0.82mmol)の撹拌溶液に、CH2Cl2(7mL)中の化合物(3-1)(21.3mg、82.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(5-18)(37.6mg、58%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.91(1H、dd、J=2.0、8.0Hz)、7.85(1H、dd、J=2.0、8.0Hz)、7.48-7.45(1H、m)、7.44-7.40(1H、m)、6.99-6.93(2H、m)、6.92-6.89(2H、m)、6.06(1H、dd、J=3.5、5.5Hz)、5.85(1H、dd、J=2.0、3.5Hz)、4.47(1H、dd、J=4.5、8.5Hz)、1.97-1.35(6H、m). <Synthesis Example 18>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2-methoxybenzoic acid)]
To a stirred solution of 2-methoxybenzoic acid (124.7 mg, 0.82 mmol) and EDC (157.2 mg, 0.82 mmol), compound (3-1) (21.3 mg, 21.3 mg, in CH 2 Cl 2 (7 mL) was added. 82.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (5-18) (37.6 mg, 58%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.91 (1H, dd, J = 2.0, 8.0 Hz), 7.85 (1H, dd, J = 2.0, 8.0 Hz), 7.48- 7.45 (1H, m), 7.44-7.40 (1H, m), 6.99-6.93 (2H, m), 6.92-6.89 (2H, m), 6. 06 (1H, dd, J = 3.5, 5.5 Hz), 5.85 (1H, dd, J = 2.0, 3.5 Hz), 4.47 (1H, dd, J = 4.5, 8.5 Hz), 1.97-1.35 (6H, m).
80% AcOH(5mL)中の化合物(5-18)(15.9mg、20.0μmol)の撹拌溶液を120℃で3時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/2)に供して化合物(1-23)(11.2mg、78%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.83(1H、dd、J=1.5、7.5Hz)、7.77(1H、d、J=7.5Hz)、7.46(2H、t、J=8.5、17.0Hz)、6.99-6.89(4H、m)、5.99(1H、d、J=6.0Hz)、5.83(1H、s)、4.25(1H、s)、3.87(6H、d、J=12.5Hz). A stirred solution of compound (5-18) (15.9 mg, 20.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 3 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-23) (11.2 mg, 78%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.83 (1H, dd, J = 1.5, 7.5 Hz), 7.77 (1H, d, J = 7.5 Hz), 7.46 (2H, t, J = 8.5, 17.0 Hz), 6.99-6.89 (4H, m), 5.99 (1H, d, J = 6.0 Hz), 5.83 (1H, s), 4. 25 (1H, s), 3.87 (6H, d, J = 12.5 Hz).
1H NMR(CDCl3) δ 7.83(1H、dd、J=1.5、7.5Hz)、7.77(1H、d、J=7.5Hz)、7.46(2H、t、J=8.5、17.0Hz)、6.99-6.89(4H、m)、5.99(1H、d、J=6.0Hz)、5.83(1H、s)、4.25(1H、s)、3.87(6H、d、J=12.5Hz). A stirred solution of compound (5-18) (15.9 mg, 20.0 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 3 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/2) to give compound (1-23) (11.2 mg, 78%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.83 (1H, dd, J = 1.5, 7.5 Hz), 7.77 (1H, d, J = 7.5 Hz), 7.46 (2H, t, J = 8.5, 17.0 Hz), 6.99-6.89 (4H, m), 5.99 (1H, d, J = 6.0 Hz), 5.83 (1H, s), 4. 25 (1H, s), 3.87 (6H, d, J = 12.5 Hz).
<合成例19>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2,4-ジメトキシ安息香酸)の合成]
2,4-ジメトキシ安息香酸(87.4mg、0.48mmol)及びEDC(92.0mg、0.48mmol)の撹拌溶液に、CH2Cl2(5mL)中の化合物(3-1)(12.4mg、48.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で62時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(MeOH/クロロホルム、1/20)に供して化合物(5-19)(20.6mg、47%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.90(2H、dd、J=9.0、17.0Hz)、6.48(1H、dd、J=2.0、8.5Hz)、6.43(1H、d、J=2.5Hz)、6.39(2H、d、J=8.5Hz)、6.01(1H、dd、J=3.5、6.0Hz)、5.77(1H、d、J=6.5Hz)、4.43(1H、dd、J=4.5、8.5Hz)、3.85(6H、d、J=12.5Hz)、3.80(1H、d、J=7.5Hz)、1.60-1.55(6H、m). <Synthesis Example 19>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2,4-dimethoxybenzoic acid)]
To a stirred solution of 2,4-dimethoxybenzoic acid (87.4 mg, 0.48 mmol) and EDC (92.0 mg, 0.48 mmol) was added compound (3-1) (12.12) in CH 2 Cl 2 (5 mL). 4 mg, 48.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 62 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (MeOH / chloroform, 1/20) to give compound (5-19) (20.6 mg, 47%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.90 (2H, dd, J = 9.0, 17.0 Hz), 6.48 (1H, dd, J = 2.0, 8.5 Hz), 6.43 ( 1H, d, J = 2.5 Hz), 6.39 (2H, d, J = 8.5 Hz), 6.01 (1H, dd, J = 3.5, 6.0 Hz), 5.77 (1H , D, J = 6.5 Hz), 4.43 (1H, dd, J = 4.5, 8.5 Hz), 3.85 (6H, d, J = 12.5 Hz), 3.80 (1H, d, J = 7.5 Hz), 1.60-1.55 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(2,4-ジメトキシ安息香酸)の合成]
2,4-ジメトキシ安息香酸(87.4mg、0.48mmol)及びEDC(92.0mg、0.48mmol)の撹拌溶液に、CH2Cl2(5mL)中の化合物(3-1)(12.4mg、48.0μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で62時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(MeOH/クロロホルム、1/20)に供して化合物(5-19)(20.6mg、47%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.90(2H、dd、J=9.0、17.0Hz)、6.48(1H、dd、J=2.0、8.5Hz)、6.43(1H、d、J=2.5Hz)、6.39(2H、d、J=8.5Hz)、6.01(1H、dd、J=3.5、6.0Hz)、5.77(1H、d、J=6.5Hz)、4.43(1H、dd、J=4.5、8.5Hz)、3.85(6H、d、J=12.5Hz)、3.80(1H、d、J=7.5Hz)、1.60-1.55(6H、m). <Synthesis Example 19>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (2,4-dimethoxybenzoic acid)]
To a stirred solution of 2,4-dimethoxybenzoic acid (87.4 mg, 0.48 mmol) and EDC (92.0 mg, 0.48 mmol) was added compound (3-1) (12.12) in CH 2 Cl 2 (5 mL). 4 mg, 48.0 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 62 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (MeOH / chloroform, 1/20) to give compound (5-19) (20.6 mg, 47%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.90 (2H, dd, J = 9.0, 17.0 Hz), 6.48 (1H, dd, J = 2.0, 8.5 Hz), 6.43 ( 1H, d, J = 2.5 Hz), 6.39 (2H, d, J = 8.5 Hz), 6.01 (1H, dd, J = 3.5, 6.0 Hz), 5.77 (1H , D, J = 6.5 Hz), 4.43 (1H, dd, J = 4.5, 8.5 Hz), 3.85 (6H, d, J = 12.5 Hz), 3.80 (1H, d, J = 7.5 Hz), 1.60-1.55 (6H, m).
80% AcOH(5mL)中の化合物(5-19)(12.3mg、13.4μmol)の撹拌溶液を120℃で7時間加熱し、真空内で濃縮した。残留物をPTLC(MeOH/クロロホルム、1/20)に供して化合物(1-24)(8.4mg、75%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.87(1H、d、J=8.5Hz)、7.76(1H、s)、6.54-6.40(4H、m)、5.94(1H、d、J=6.0Hz)、5.78(1H、s)、4.22-4.19(1H、m)、3.88-3.82(12H、m). A stirred solution of compound (5-19) (12.3 mg, 13.4 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (MeOH / chloroform, 1/20) to obtain compound (1-24) (8.4 mg, 75%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.87 (1H, d, J = 8.5 Hz), 7.76 (1H, s), 6.54-6.40 (4H, m), 5.94 (1H , D, J = 6.0 Hz), 5.78 (1H, s), 4.22-4.19 (1H, m), 3.88-3.82 (12H, m).
1H NMR(CDCl3) δ 7.87(1H、d、J=8.5Hz)、7.76(1H、s)、6.54-6.40(4H、m)、5.94(1H、d、J=6.0Hz)、5.78(1H、s)、4.22-4.19(1H、m)、3.88-3.82(12H、m). A stirred solution of compound (5-19) (12.3 mg, 13.4 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 7 hours and concentrated in vacuo. The residue was subjected to PTLC (MeOH / chloroform, 1/20) to obtain compound (1-24) (8.4 mg, 75%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.87 (1H, d, J = 8.5 Hz), 7.76 (1H, s), 6.54-6.40 (4H, m), 5.94 (1H , D, J = 6.0 Hz), 5.78 (1H, s), 4.22-4.19 (1H, m), 3.88-3.82 (12H, m).
<合成例20>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3-フェニルプロパン酸)の合成]
3-フェニルプロピオン酸(500.3mg、3.33mmol)及びEDC(620.1mg、3.23mmol)の撹拌溶液に、CH2Cl2(3mL)中の化合物(3-1)(40.1mg、153.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で20時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-20)(51.7mg、43%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.38(5H、m)、7.27(5H、m)、5.59(1H、dd、J=3.5、5.7Hz)、5.25(1H、dd、J=2.0、8.6Hz)、4.03(1H、dd、J=4.6、8.3Hz)、3.01(2H、t、J=7.7Hz)、2.98(2H、t、J=7.7Hz)、2.74(6H、m)、1.60-1.55(6H、m). <Synthesis Example 20>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3-phenylpropanoic acid)]
To a stirred solution of 3-phenylpropionic acid (500.3 mg, 3.33 mmol) and EDC (620.1 mg, 3.23 mmol) was added compound (3-1) (40.1 mg, 4 mL in CH 2 Cl 2 (3 mL). 153.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 20 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-20) (51.7 mg, 43%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.38 (5H, m), 7.27 (5H, m), 5.59 (1H, dd, J = 3.5, 5.7 Hz), 5.25 (1H , Dd, J = 2.0, 8.6 Hz), 4.03 (1H, dd, J = 4.6, 8.3 Hz), 3.01 (2H, t, J = 7.7 Hz), 2. 98 (2H, t, J = 7.7 Hz), 2.74 (6H, m), 1.60-1.55 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(3-フェニルプロパン酸)の合成]
3-フェニルプロピオン酸(500.3mg、3.33mmol)及びEDC(620.1mg、3.23mmol)の撹拌溶液に、CH2Cl2(3mL)中の化合物(3-1)(40.1mg、153.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で20時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-20)(51.7mg、43%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.38(5H、m)、7.27(5H、m)、5.59(1H、dd、J=3.5、5.7Hz)、5.25(1H、dd、J=2.0、8.6Hz)、4.03(1H、dd、J=4.6、8.3Hz)、3.01(2H、t、J=7.7Hz)、2.98(2H、t、J=7.7Hz)、2.74(6H、m)、1.60-1.55(6H、m). <Synthesis Example 20>
[Synthesis of (1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (3-phenylpropanoic acid)]
To a stirred solution of 3-phenylpropionic acid (500.3 mg, 3.33 mmol) and EDC (620.1 mg, 3.23 mmol) was added compound (3-1) (40.1 mg, 4 mL in CH 2 Cl 2 (3 mL). 153.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 20 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-20) (51.7 mg, 43%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.38 (5H, m), 7.27 (5H, m), 5.59 (1H, dd, J = 3.5, 5.7 Hz), 5.25 (1H , Dd, J = 2.0, 8.6 Hz), 4.03 (1H, dd, J = 4.6, 8.3 Hz), 3.01 (2H, t, J = 7.7 Hz), 2. 98 (2H, t, J = 7.7 Hz), 2.74 (6H, m), 1.60-1.55 (6H, m).
80% AcOH(5mL)中の化合物(5-20)(24.9mg、35.1μmol)の撹拌溶液を120℃で3時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/1)に供して化合物(1-25)(12.1mg、49%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.36(5H、m)、7.24(5H、m)、5.48(1H、dd、J=3.5、5.7Hz)、5.15(1H、dd、J=2.0、8.6Hz)、4.01(1H、dd、J=4.6、8.3Hz)、2.90(2H、t、J=7.7Hz)、2.88(2H、t、J=7.7Hz)、2.54(6H、m). A stirred solution of compound (5-20) (24.9 mg, 35.1 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 3 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-25) (12.1 mg, 49%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.36 (5H, m), 7.24 (5H, m), 5.48 (1H, dd, J = 3.5, 5.7 Hz), 5.15 (1H , Dd, J = 2.0, 8.6 Hz), 4.01 (1H, dd, J = 4.6, 8.3 Hz), 2.90 (2H, t, J = 7.7 Hz), 2. 88 (2H, t, J = 7.7 Hz), 2.54 (6H, m).
1H NMR(CDCl3) δ 7.36(5H、m)、7.24(5H、m)、5.48(1H、dd、J=3.5、5.7Hz)、5.15(1H、dd、J=2.0、8.6Hz)、4.01(1H、dd、J=4.6、8.3Hz)、2.90(2H、t、J=7.7Hz)、2.88(2H、t、J=7.7Hz)、2.54(6H、m). A stirred solution of compound (5-20) (24.9 mg, 35.1 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 3 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-25) (12.1 mg, 49%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.36 (5H, m), 7.24 (5H, m), 5.48 (1H, dd, J = 3.5, 5.7 Hz), 5.15 (1H , Dd, J = 2.0, 8.6 Hz), 4.01 (1H, dd, J = 4.6, 8.3 Hz), 2.90 (2H, t, J = 7.7 Hz), 2. 88 (2H, t, J = 7.7 Hz), 2.54 (6H, m).
<合成例21>
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル(2E,2’E,2’’E,2’’’E)-テトラキス(3-アクリル酸フェニル)の合成]
トランス-ケイ皮酸(456.3mg、3.08mmol)及びEDC(560.0mg、2.92mmol)の撹拌溶液に、CH2Cl2(3mL)中の化合物(3-1)(40.1mg、153.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で20時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-21)(89.6mg、74%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.76(1H、d、J=16.0Hz)、7.72(1H、d、J=16.0Hz)、7.53(2H、m)、7.49(2H、m)、7.36(6H、m)、6.49(1H、d、J=16.0Hz)、6.42(1H、d、J=16.0Hz)、5.87(1H、dd、J=3.5、5.7Hz)、5.87(1H、dd、J=2.0、8.6Hz)、4.43(1H、dd、J=4.6、8.3Hz)、1.60-1.55(6H、m). <Synthesis Example 21>
[(1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl (2E, 2′E, 2 ″ E, 2 ′ ″ E)- Synthesis of tetrakis (3-acrylic acid phenyl)]
To a stirred solution of trans-cinnamic acid (456.3 mg, 3.08 mmol) and EDC (560.0 mg, 2.92 mmol) was added compound (3-1) (40.1 mg, 4 mL in CH 2 Cl 2 (3 mL). 153.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 20 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-21) (89.6 mg, 74%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.76 (1H, d, J = 16.0 Hz), 7.72 (1H, d, J = 16.0 Hz), 7.53 (2H, m), 7.49 (2H, m), 7.36 (6H, m), 6.49 (1H, d, J = 16.0 Hz), 6.42 (1H, d, J = 16.0 Hz), 5.87 (1H , Dd, J = 3.5, 5.7 Hz), 5.87 (1H, dd, J = 2.0, 8.6 Hz), 4.43 (1H, dd, J = 4.6, 8.3 Hz) ), 1.60-1.55 (6H, m).
[(1R,2S,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル(2E,2’E,2’’E,2’’’E)-テトラキス(3-アクリル酸フェニル)の合成]
トランス-ケイ皮酸(456.3mg、3.08mmol)及びEDC(560.0mg、2.92mmol)の撹拌溶液に、CH2Cl2(3mL)中の化合物(3-1)(40.1mg、153.8μmol)及びDMAP(5.0mg)を加えた。得られた混合物を室温で20時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/4)に供して化合物(5-21)(89.6mg、74%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.76(1H、d、J=16.0Hz)、7.72(1H、d、J=16.0Hz)、7.53(2H、m)、7.49(2H、m)、7.36(6H、m)、6.49(1H、d、J=16.0Hz)、6.42(1H、d、J=16.0Hz)、5.87(1H、dd、J=3.5、5.7Hz)、5.87(1H、dd、J=2.0、8.6Hz)、4.43(1H、dd、J=4.6、8.3Hz)、1.60-1.55(6H、m). <Synthesis Example 21>
[(1R, 2S, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl (2E, 2′E, 2 ″ E, 2 ′ ″ E)- Synthesis of tetrakis (3-acrylic acid phenyl)]
To a stirred solution of trans-cinnamic acid (456.3 mg, 3.08 mmol) and EDC (560.0 mg, 2.92 mmol) was added compound (3-1) (40.1 mg, 4 mL in CH 2 Cl 2 (3 mL). 153.8 μmol) and DMAP (5.0 mg) were added. The resulting mixture was stirred at room temperature for 20 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/4) to give compound (5-21) (89.6 mg, 74%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.76 (1H, d, J = 16.0 Hz), 7.72 (1H, d, J = 16.0 Hz), 7.53 (2H, m), 7.49 (2H, m), 7.36 (6H, m), 6.49 (1H, d, J = 16.0 Hz), 6.42 (1H, d, J = 16.0 Hz), 5.87 (1H , Dd, J = 3.5, 5.7 Hz), 5.87 (1H, dd, J = 2.0, 8.6 Hz), 4.43 (1H, dd, J = 4.6, 8.3 Hz) ), 1.60-1.55 (6H, m).
80% AcOH(5mL)中の化合物(5-21)(21.8mg、27.9μmol)の撹拌溶液をを120℃で4時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/1)に供して化合物(1-26)(10.4mg、53%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
7.73(1H、d、J=16.0Hz)、7.69(1H、d、J=16.0Hz)、7.51(2H、m)、7.49(2H、m)、7.33(6H、m)、6.49(1H、d、J=16.0Hz)、6.39(1H、d、J=16.0Hz)、5.69(2H、m)、4.21(1H、d、J=8.3Hz) A stirred solution of compound (5-21) (21.8 mg, 27.9 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 4 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to give compound (1-26) (10.4 mg, 53%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
7.73 (1H, d, J = 16.0 Hz), 7.69 (1H, d, J = 16.0 Hz), 7.51 (2H, m), 7.49 (2H, m), 7. 33 (6H, m), 6.49 (1H, d, J = 16.0 Hz), 6.39 (1H, d, J = 16.0 Hz), 5.69 (2H, m), 4.21 ( 1H, d, J = 8.3Hz)
7.73(1H、d、J=16.0Hz)、7.69(1H、d、J=16.0Hz)、7.51(2H、m)、7.49(2H、m)、7.33(6H、m)、6.49(1H、d、J=16.0Hz)、6.39(1H、d、J=16.0Hz)、5.69(2H、m)、4.21(1H、d、J=8.3Hz) A stirred solution of compound (5-21) (21.8 mg, 27.9 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 4 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to give compound (1-26) (10.4 mg, 53%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
7.73 (1H, d, J = 16.0 Hz), 7.69 (1H, d, J = 16.0 Hz), 7.51 (2H, m), 7.49 (2H, m), 7. 33 (6H, m), 6.49 (1H, d, J = 16.0 Hz), 6.39 (1H, d, J = 16.0 Hz), 5.69 (2H, m), 4.21 ( 1H, d, J = 8.3Hz)
<合成例22>
[(1R,2R,4R,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,4-トリイル トリ安息香酸の合成]
N,N-ジメチルホルムアミド(50mL)中の(+)-proto-クエルシトール(1.2g、7.31mmol)の撹拌溶液に、1,1-ジメトキシシクロヘキサン(50mL)及びp-トルエンスルホン酸(0.1g)を加えた。得られた混合物を80℃で3時間加熱した。反応混合物を冷やし、冷却したEtOH(100mL)に加えた。得られた沈殿物をろ過し、冷却したEtOHで洗浄し、化合物(10)を白色粉末として得た。ピリジン(20mL)中のBzCl(3.0mL、30.1mmol)の撹拌溶液に、CH2Cl2(3mL)中の得られた白色粉末である化合物(10)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をシリカゲルカラムクロマトグラフィー(EtOAc/ヘキサン=1/3)に供して化合物(5-22)(1.2g、30%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.01(2H、d、J=7.5Hz)、7.98(dH、d、J=7.5Hz)、7.90(4H、t、J=7.5Hz)、7.55(2H、t、J=7.6Hz)、7.46-7.40(6H、m)、7.34-7.30(5H、m)、6.42(1H、t、J=9.8Hz)、5.95(1H、t、J=9.3Hz)、5.87(1H、t、J=9.8Hz)、5.50(1H、dd、J=2.5、9.3Hz)、4.18(1H、t、J=8.0Hz)、3.35(1H、d、J=8.0Hz)、3.18(1H、d、J=2.3Hz)、1.60-1.55(6H、m). <Synthesis Example 22>
[Synthesis of (1R, 2R, 4R, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,4-triyl tribenzoic acid]
To a stirred solution of (+)-proto-quercitol (1.2 g, 7.31 mmol) in N, N-dimethylformamide (50 mL) was added 1,1-dimethoxycyclohexane (50 mL) and p-toluenesulfonic acid (0. 1 g) was added. The resulting mixture was heated at 80 ° C. for 3 hours. The reaction mixture was cooled and added to cooled EtOH (100 mL). The resulting precipitate was filtered and washed with cooled EtOH to obtain compound (10) as a white powder. To a stirred solution of BzCl (3.0 mL, 30.1 mmol) in pyridine (20 mL) was added the resulting white powder compound (10) and DMAP (5.0 mg) in CH 2 Cl 2 (3 mL). It was. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to silica gel column chromatography (EtOAc / hexane = 1/3) to give compound (5-22) (1.2 g, 30%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.01 (2H, d, J = 7.5 Hz), 7.98 (dH, d, J = 7.5 Hz), 7.90 (4H, t, J = 7. 5Hz), 7.55 (2H, t, J = 7.6 Hz), 7.46-7.40 (6H, m), 7.34-7.30 (5H, m), 6.42 (1H, t, J = 9.8 Hz), 5.95 (1H, t, J = 9.3 Hz), 5.87 (1H, t, J = 9.8 Hz), 5.50 (1H, dd, J = 2) .5, 9.3 Hz), 4.18 (1H, t, J = 8.0 Hz), 3.35 (1H, d, J = 8.0 Hz), 3.18 (1H, d, J = 2. 3Hz), 1.60-1.55 (6H, m).
[(1R,2R,4R,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,4-トリイル トリ安息香酸の合成]
N,N-ジメチルホルムアミド(50mL)中の(+)-proto-クエルシトール(1.2g、7.31mmol)の撹拌溶液に、1,1-ジメトキシシクロヘキサン(50mL)及びp-トルエンスルホン酸(0.1g)を加えた。得られた混合物を80℃で3時間加熱した。反応混合物を冷やし、冷却したEtOH(100mL)に加えた。得られた沈殿物をろ過し、冷却したEtOHで洗浄し、化合物(10)を白色粉末として得た。ピリジン(20mL)中のBzCl(3.0mL、30.1mmol)の撹拌溶液に、CH2Cl2(3mL)中の得られた白色粉末である化合物(10)及びDMAP(5.0mg)を加えた。得られた混合物を室温で24時間撹拌した。有機層を合わせ、水及び飽和NaHCO3水溶液で洗浄し、無水Na2SO4で乾燥し、真空内で濃縮した。残留物をシリカゲルカラムクロマトグラフィー(EtOAc/ヘキサン=1/3)に供して化合物(5-22)(1.2g、30%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.01(2H、d、J=7.5Hz)、7.98(dH、d、J=7.5Hz)、7.90(4H、t、J=7.5Hz)、7.55(2H、t、J=7.6Hz)、7.46-7.40(6H、m)、7.34-7.30(5H、m)、6.42(1H、t、J=9.8Hz)、5.95(1H、t、J=9.3Hz)、5.87(1H、t、J=9.8Hz)、5.50(1H、dd、J=2.5、9.3Hz)、4.18(1H、t、J=8.0Hz)、3.35(1H、d、J=8.0Hz)、3.18(1H、d、J=2.3Hz)、1.60-1.55(6H、m). <Synthesis Example 22>
[Synthesis of (1R, 2R, 4R, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,4-triyl tribenzoic acid]
To a stirred solution of (+)-proto-quercitol (1.2 g, 7.31 mmol) in N, N-dimethylformamide (50 mL) was added 1,1-dimethoxycyclohexane (50 mL) and p-toluenesulfonic acid (0. 1 g) was added. The resulting mixture was heated at 80 ° C. for 3 hours. The reaction mixture was cooled and added to cooled EtOH (100 mL). The resulting precipitate was filtered and washed with cooled EtOH to obtain compound (10) as a white powder. To a stirred solution of BzCl (3.0 mL, 30.1 mmol) in pyridine (20 mL) was added the resulting white powder compound (10) and DMAP (5.0 mg) in CH 2 Cl 2 (3 mL). It was. The resulting mixture was stirred at room temperature for 24 hours. The organic layers were combined, washed with water and saturated aqueous NaHCO 3 , dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was subjected to silica gel column chromatography (EtOAc / hexane = 1/3) to give compound (5-22) (1.2 g, 30%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.01 (2H, d, J = 7.5 Hz), 7.98 (dH, d, J = 7.5 Hz), 7.90 (4H, t, J = 7. 5Hz), 7.55 (2H, t, J = 7.6 Hz), 7.46-7.40 (6H, m), 7.34-7.30 (5H, m), 6.42 (1H, t, J = 9.8 Hz), 5.95 (1H, t, J = 9.3 Hz), 5.87 (1H, t, J = 9.8 Hz), 5.50 (1H, dd, J = 2) .5, 9.3 Hz), 4.18 (1H, t, J = 8.0 Hz), 3.35 (1H, d, J = 8.0 Hz), 3.18 (1H, d, J = 2. 3Hz), 1.60-1.55 (6H, m).
80% AcOH(5mL)中の化合物(5-22)(54.5mg、97.9μmol)の撹拌溶液を120℃で1.5時間加熱し、真空内で濃縮した。残留物をPTLC(EtOAc/ヘキサン=1/1)に供して化合物(1-27)(34.7mg、74%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 8.00(2H、d、J=7.2Hz)、7.95(dH、d、J=7.2Hz)、7.84(4H、t、J=7.2Hz)、7.50(2H、t、J=7.6Hz)、7.40-7.34(6H、m)、7.28-7.25(5H、m)、6.33(1H、t、J=10.0Hz)、5.92(1H、t、J=9.2Hz)、5.87(1H、t、J=10.0Hz)、5.47(1H、dd、J=2.4、10.0Hz)、4.13(1H、t、J=8Hz)、3.33(1H、d、J=8Hz)、3.14(1H、d、J=2.4Hz). A stirred solution of compound (5-22) (54.5 mg, 97.9 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 1.5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-27) (34.7 mg, 74%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.00 (2H, d, J = 7.2 Hz), 7.95 (dH, d, J = 7.2 Hz), 7.84 (4H, t, J = 7. 2Hz), 7.50 (2H, t, J = 7.6 Hz), 7.40-7.34 (6H, m), 7.28-7.25 (5H, m), 6.33 (1H, t, J = 10.0 Hz), 5.92 (1H, t, J = 9.2 Hz), 5.87 (1H, t, J = 10.0 Hz), 5.47 (1H, dd, J = 2) .4, 10.0 Hz), 4.13 (1 H, t, J = 8 Hz), 3.33 (1 H, d, J = 8 Hz), 3.14 (1 H, d, J = 2.4 Hz).
1H NMR(CDCl3) δ 8.00(2H、d、J=7.2Hz)、7.95(dH、d、J=7.2Hz)、7.84(4H、t、J=7.2Hz)、7.50(2H、t、J=7.6Hz)、7.40-7.34(6H、m)、7.28-7.25(5H、m)、6.33(1H、t、J=10.0Hz)、5.92(1H、t、J=9.2Hz)、5.87(1H、t、J=10.0Hz)、5.47(1H、dd、J=2.4、10.0Hz)、4.13(1H、t、J=8Hz)、3.33(1H、d、J=8Hz)、3.14(1H、d、J=2.4Hz). A stirred solution of compound (5-22) (54.5 mg, 97.9 μmol) in 80% AcOH (5 mL) was heated at 120 ° C. for 1.5 hours and concentrated in vacuo. The residue was subjected to PTLC (EtOAc / hexane = 1/1) to obtain compound (1-27) (34.7 mg, 74%) as a white powder. The NMR spectrum results and reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 8.00 (2H, d, J = 7.2 Hz), 7.95 (dH, d, J = 7.2 Hz), 7.84 (4H, t, J = 7. 2Hz), 7.50 (2H, t, J = 7.6 Hz), 7.40-7.34 (6H, m), 7.28-7.25 (5H, m), 6.33 (1H, t, J = 10.0 Hz), 5.92 (1H, t, J = 9.2 Hz), 5.87 (1H, t, J = 10.0 Hz), 5.47 (1H, dd, J = 2) .4, 10.0 Hz), 4.13 (1 H, t, J = 8 Hz), 3.33 (1 H, d, J = 8 Hz), 3.14 (1 H, d, J = 2.4 Hz).
<合成例23>
[(1S,2R,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(パラ-トルイル酸)の合成]
ピリジン(30mL)中の化合物(3-2)(1.0g、3.84mmol)の撹拌溶液に、パラ-トルイル酸クロライド(4.1mL、31.0mmol)を加えた。得られた混合物を室温で24時間撹拌した。反応溶液を冷水(150mL)に加え、1日放置し、生じた沈殿を濾過により回収した。回収した沈殿をクロロホルムに溶解し、濾過により溶け残りを除いた。濾液を濃縮し、残渣をクロロホルムーエタノールで再結晶した。濾過により、化合物(3-2)(1.98g、70%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.89(4H、dd、J=12.9、7.3Hz)、7.79(4H、dd、J=8.0Hz、6.3Hz)、7.23(4H、dd、J=8.0Hz、2.0Hz)、7.14(4H、d、J=8.3Hz)、6.13(1H、t、J=10.3Hz)、5.90(2H、m)、5.48(1H、dd、J=10.3Hz、2.9Hz)、4.63(1H、t、J=2.9Hz)、4.17(1H、dd、J=10.3Hz、2.9Hz)、2.43(6H、s)、2.36(1H、s)、2.02-1.43(6H、m). <Synthesis Example 23>
[Synthesis of (1S, 2R, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (para-toluic acid)]
To a stirred solution of compound (3-2) (1.0 g, 3.84 mmol) in pyridine (30 mL) was added para-toluic acid chloride (4.1 mL, 31.0 mmol). The resulting mixture was stirred at room temperature for 24 hours. The reaction solution was added to cold water (150 mL), allowed to stand for 1 day, and the resulting precipitate was collected by filtration. The collected precipitate was dissolved in chloroform, and the residue was removed by filtration. The filtrate was concentrated and the residue was recrystallized from chloroform-ethanol. Filtration afforded compound (3-2) (1.98 g, 70%) as a white powder. The results of NMR spectrum and the reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.89 (4H, dd, J = 12.9, 7.3 Hz), 7.79 (4H, dd, J = 8.0 Hz, 6.3 Hz), 7.23 ( 4H, dd, J = 8.0 Hz, 2.0 Hz), 7.14 (4H, d, J = 8.3 Hz), 6.13 (1H, t, J = 10.3 Hz), 5.90 (2H M), 5.48 (1H, dd, J = 10.3 Hz, 2.9 Hz), 4.63 (1H, t, J = 2.9 Hz), 4.17 (1H, dd, J = 10. 3Hz, 2.9Hz), 2.43 (6H, s), 2.36 (1H, s), 2.02-1.43 (6H, m).
[(1S,2R,3R,4S,5R,6S)-5,6-ジヒドロキシシクロヘキサン-1,2,3,4-テトライル テトラキス(パラ-トルイル酸)の合成]
ピリジン(30mL)中の化合物(3-2)(1.0g、3.84mmol)の撹拌溶液に、パラ-トルイル酸クロライド(4.1mL、31.0mmol)を加えた。得られた混合物を室温で24時間撹拌した。反応溶液を冷水(150mL)に加え、1日放置し、生じた沈殿を濾過により回収した。回収した沈殿をクロロホルムに溶解し、濾過により溶け残りを除いた。濾液を濃縮し、残渣をクロロホルムーエタノールで再結晶した。濾過により、化合物(3-2)(1.98g、70%)を白色粉末として得た。以下にNMRスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.89(4H、dd、J=12.9、7.3Hz)、7.79(4H、dd、J=8.0Hz、6.3Hz)、7.23(4H、dd、J=8.0Hz、2.0Hz)、7.14(4H、d、J=8.3Hz)、6.13(1H、t、J=10.3Hz)、5.90(2H、m)、5.48(1H、dd、J=10.3Hz、2.9Hz)、4.63(1H、t、J=2.9Hz)、4.17(1H、dd、J=10.3Hz、2.9Hz)、2.43(6H、s)、2.36(1H、s)、2.02-1.43(6H、m). <Synthesis Example 23>
[Synthesis of (1S, 2R, 3R, 4S, 5R, 6S) -5,6-dihydroxycyclohexane-1,2,3,4-tetrayl tetrakis (para-toluic acid)]
To a stirred solution of compound (3-2) (1.0 g, 3.84 mmol) in pyridine (30 mL) was added para-toluic acid chloride (4.1 mL, 31.0 mmol). The resulting mixture was stirred at room temperature for 24 hours. The reaction solution was added to cold water (150 mL), allowed to stand for 1 day, and the resulting precipitate was collected by filtration. The collected precipitate was dissolved in chloroform, and the residue was removed by filtration. The filtrate was concentrated and the residue was recrystallized from chloroform-ethanol. Filtration afforded compound (3-2) (1.98 g, 70%) as a white powder. The results of NMR spectrum and the reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.89 (4H, dd, J = 12.9, 7.3 Hz), 7.79 (4H, dd, J = 8.0 Hz, 6.3 Hz), 7.23 ( 4H, dd, J = 8.0 Hz, 2.0 Hz), 7.14 (4H, d, J = 8.3 Hz), 6.13 (1H, t, J = 10.3 Hz), 5.90 (2H M), 5.48 (1H, dd, J = 10.3 Hz, 2.9 Hz), 4.63 (1H, t, J = 2.9 Hz), 4.17 (1H, dd, J = 10. 3Hz, 2.9Hz), 2.43 (6H, s), 2.36 (1H, s), 2.02-1.43 (6H, m).
80% AcOH(7mL)中の化合物(5-23)(1.0g、1.36mmol)の撹拌溶液を120℃で2時間加熱し、真空内で濃縮した。残留物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/1)に供して化合物(1-5)(343.3mg、39%)を白色粉末として得た。以下にNMMスペクトルの結果と反応スキームを示す。
1H NMR(CDCl3) δ 7.84(4H、dd、J=12.9、7.3Hz)、7.70(4H、dd、J=8.0Hz、6.3Hz)、7.14(4H、dd、J=8.0Hz、2.0Hz)、7.04(4H、d、J=8.3Hz)、6.23(1H、t、J=10.3Hz)、5.80(2H、m)、5.38(1H、dd、J=10.3Hz、2.9Hz)、4.53(1H、t、J=2.9Hz)、4.07(1H、dd、J=10.3Hz、2.9Hz)、2.33(6H、s). A stirred solution of compound (5-23) (1.0 g, 1.36 mmol) in 80% AcOH (7 mL) was heated at 120 ° C. for 2 hours and concentrated in vacuo. The residue was subjected to silica gel column chromatography (chloroform / methanol = 100/1) to obtain compound (1-5) (343.3 mg, 39%) as a white powder. The results of the NMM spectrum and the reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.84 (4H, dd, J = 12.9, 7.3 Hz), 7.70 (4H, dd, J = 8.0 Hz, 6.3 Hz), 7.14 ( 4H, dd, J = 8.0 Hz, 2.0 Hz), 7.04 (4H, d, J = 8.3 Hz), 6.23 (1H, t, J = 10.3 Hz), 5.80 (2H M), 5.38 (1H, dd, J = 10.3 Hz, 2.9 Hz), 4.53 (1H, t, J = 2.9 Hz), 4.07 (1H, dd, J = 10. 3Hz, 2.9Hz), 2.33 (6H, s).
1H NMR(CDCl3) δ 7.84(4H、dd、J=12.9、7.3Hz)、7.70(4H、dd、J=8.0Hz、6.3Hz)、7.14(4H、dd、J=8.0Hz、2.0Hz)、7.04(4H、d、J=8.3Hz)、6.23(1H、t、J=10.3Hz)、5.80(2H、m)、5.38(1H、dd、J=10.3Hz、2.9Hz)、4.53(1H、t、J=2.9Hz)、4.07(1H、dd、J=10.3Hz、2.9Hz)、2.33(6H、s). A stirred solution of compound (5-23) (1.0 g, 1.36 mmol) in 80% AcOH (7 mL) was heated at 120 ° C. for 2 hours and concentrated in vacuo. The residue was subjected to silica gel column chromatography (chloroform / methanol = 100/1) to obtain compound (1-5) (343.3 mg, 39%) as a white powder. The results of the NMM spectrum and the reaction scheme are shown below.
1 H NMR (CDCl 3 ) δ 7.84 (4H, dd, J = 12.9, 7.3 Hz), 7.70 (4H, dd, J = 8.0 Hz, 6.3 Hz), 7.14 ( 4H, dd, J = 8.0 Hz, 2.0 Hz), 7.04 (4H, d, J = 8.3 Hz), 6.23 (1H, t, J = 10.3 Hz), 5.80 (2H M), 5.38 (1H, dd, J = 10.3 Hz, 2.9 Hz), 4.53 (1H, t, J = 2.9 Hz), 4.07 (1H, dd, J = 10. 3Hz, 2.9Hz), 2.33 (6H, s).
以下の化合物(1-1)~(1-4)、化合物(2-1)、化合物(2-2)を公知の方法に従って合成した。なお、化合物(1-1)は、“Seiichiro OGAWA et al., BULLETIN OF CHEMICAL SOCIETY OF JAPAN,VOL.50(7),1867-1871(1977)”を参照して合成した。化合物(1-2)は、“Sung-Kee Chunget et al., Bioorganic & Medicinal Chemistry Letters 9 (1999) 2135-2140”を参照して合成した。化合物(1-3)は、“PER J.GARESO et al., Carbohydrate Research, 173 (1988) 205-216”を参照して合成した。化合物(1-4)は、“Tetsuo SUAMI et al., BULLETIN OF CHEMICAL SOCIETY OF JAPAN,VOL.44,835-841(1971)”を参照して合成した。化合物(2-1)は、“Andreas M. Doepner,et al, “2’-Deoxy-2’,2’-difluorouridine analogues for radiolabeling with fluorine-18 and other biomedical applications”,Tetrahedron Letters,VOL.56,3293-3297(2015)”参照して合成した。化合物(2-2)は、“Peng Wei,et al, “Iodine Monochloride (ICl) as a Highly Efficient, Green Oxidant for the Oxidation of Alcohols to Corresponding Carbonyl Compounds”,Synthetic Communications,VOL.45,1457-1470(2015)”参照して合成した。
The following compounds (1-1) to (1-4), compound (2-1) and compound (2-2) were synthesized according to known methods. Compound (1-1) was synthesized with reference to “Seichiro OGAWA et al., BULLETIN OF CHEMICAL SOCIETY OF JAPAN, VOL. 50 (7), 1867-1871 (1977)”. Compound (1-2) was synthesized with reference to “Sung-Kee Chunget et al., Bioorganic & Medicinal Chemistry Letters 9 (1999) 21135-2140”. The compound (1-3) was synthesized with reference to “PER J. GARESO et al., Carbohydrate Research, 173 (1988) 205-216”. The compound (1-4) was synthesized with reference to “Tetsuo SUAMI et al., BULLETIN OF CHEMICAL SOCIETY OF JAPAN, VOL. 44, 835-841 (1971)”. The compound (2-1) was prepared according to “Andreas M. Doepner, et al,“ 2′-Deoxy-2 ′, 2′-difluorourine analogues for radiolapping with fluorinet 18 ”. 3293-3297 (2015) ". Compound (2-2) is “Peng Wei, et al,“ Iodine Monochloride (ICl) as a Highly Efficient, Green Oxidant for the Coordination of Alcohols to CoL. 2015) ”and synthesized.
<MPP+処理細胞を用いた検討-1>
神経細胞を1-メチル-4-フェニルピリジニウム(MPP+)で処理すると、細胞死が誘導され、その過程において細胞内に斑点(α-シヌクレインの凝集体)が形成される。該斑点の形成はパーキンソン病発症の指標となるため、該斑点の形成を抑制できる化合物は有効なパーキンソン病治療薬であることが期待できる。そこで、以下、本発明の化合物(1-1)がMPP+処理細胞における斑点形成を抑制できるかを検討した。 <Examination using MPP + treated cells-1>
When nerve cells are treated with 1-methyl-4-phenylpyridinium (MPP + ), cell death is induced, and in the process, spots (aggregates of α-synuclein) are formed. Since the formation of the spots is an indicator of the onset of Parkinson's disease, a compound that can suppress the formation of the spots can be expected to be an effective treatment for Parkinson's disease. Therefore, hereinafter, it was examined whether the compound (1-1) of the present invention can suppress the spot formation in MPP + treated cells.
神経細胞を1-メチル-4-フェニルピリジニウム(MPP+)で処理すると、細胞死が誘導され、その過程において細胞内に斑点(α-シヌクレインの凝集体)が形成される。該斑点の形成はパーキンソン病発症の指標となるため、該斑点の形成を抑制できる化合物は有効なパーキンソン病治療薬であることが期待できる。そこで、以下、本発明の化合物(1-1)がMPP+処理細胞における斑点形成を抑制できるかを検討した。 <Examination using MPP + treated cells-1>
When nerve cells are treated with 1-methyl-4-phenylpyridinium (MPP + ), cell death is induced, and in the process, spots (aggregates of α-synuclein) are formed. Since the formation of the spots is an indicator of the onset of Parkinson's disease, a compound that can suppress the formation of the spots can be expected to be an effective treatment for Parkinson's disease. Therefore, hereinafter, it was examined whether the compound (1-1) of the present invention can suppress the spot formation in MPP + treated cells.
分化させたPC12D細胞を、0.3mM MPP+で24時間処理し、細胞内に斑点を形成させた。次いで、10μg/mLの本発明の化合物(1-1)又は10μg/mL SO82(対照化合物)を添加した。添加8時間後に所定の染色を行い、細胞を観察した。細胞観察の結果を図1に示す。
Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells. Then 10 μg / mL of the compound of the present invention (1-1) or 10 μg / mL SO82 (control compound) was added. Predetermined staining was performed 8 hours after the addition, and the cells were observed. The results of cell observation are shown in FIG.
図1中、「phase-contrast」は、染色前の細胞を位相差顕微鏡で観察した結果である。「ProteoStat dye」は、ProteoStat Aggresome Detection Kit(Enzo社製)によってアグリソームを染色し、共焦点顕微鏡で観察した結果である。「α-シヌクレイン」は、抗αーシヌクレイン抗体によって免疫染色を行い、共焦点顕微鏡で観察した結果である。「colocalization」は、ProteoStat Aggresome Detection Kitによって検出したアグリソームと抗αーシヌクレイン抗体によって検出したαーシヌクレイン抗体をマージした結果である。「control」は、未処理の細胞を示す。「化合物(1-1)」は、MPP+による処理を行わず、化合物(1-1)のみを添加した細胞を示す。「MPP+」は、MPP+による処理のみを行った細胞を示す。「MPP++化合物(1-1)」「MPP++SO82」は、それぞれ、MPP+処理後に化合物(1-1)又はSO82を添加した細胞を示す。以下に、対照化合物であるSO82の化学式を示す。
In FIG. 1, “phase-contrast” is the result of observation of cells before staining with a phase contrast microscope. “ProteoStat dye” is a result of staining the aggresome with ProteoStat Aggresome Detection Kit (manufactured by Enzo) and observing with a confocal microscope. “Α-synuclein” is the result of immunostaining with anti-α-synuclein antibody and observation with a confocal microscope. “Colocalization” is the result of merging the aggresome detected by ProteoStat Aggresome Detection Kit with the α-synuclein antibody detected by the anti-α-synuclein antibody. “Control” indicates an untreated cell. “Compound (1-1)” indicates a cell to which only compound (1-1) was added without being treated with MPP + . “MPP + ” indicates a cell that has been treated only with MPP + . “MPP + + compound (1-1)” and “MPP + + SO82” indicate cells to which compound (1-1) or SO82 was added after MPP + treatment, respectively. The chemical formula of SO82, which is a reference compound, is shown below.
図1に示されるとおり、MPP+処理によって細胞中に斑点が形成されたが、この斑点は、本発明の化合物(1-1)の投与により減少し、斑点のクリアランスが認められた。
As shown in FIG. 1, spots were formed in the cells by MPP + treatment, but these spots were reduced by administration of the compound (1-1) of the present invention, and spot clearance was observed.
<MPP+処理細胞を用いた検討-2>
分化させたPC12D細胞に、0.3mM MPP+で24時間処理し、細胞内に斑点を形成させた。次いで、10μg/mLの本発明の化合物(1-1)又は10μM ラパマイシン(オートファジー誘導剤)を添加した。添加8時間後にThioflavin S で染色し、共焦点顕微鏡にて細胞を観察した。なお、Thioflavin Sは凝集タンパク質を染色する。Thioflavin Sによって染色された部分は、α-シヌクレインを含むタンパク質の凝集体が存在しているものとみなした。細胞観察の結果を図2に示す。また、図2に示す画像から、Image Jを用いて画像解析を行い、凝集物の面積を算出した。算出結果から導き出した、凝集物の面積/細胞全体の面積(MPP+を1としたときの割合)に関するグラフを図3に示す。図2及び3中、「NT」は未処理の細胞を示す。「MPP+」は、MPP+のみで処理した細胞を示す。「MPP++化合物(1-1)」、「MPP++rapamycin」は、それぞれ、MPP+処理後に本発明の化合物(1-1)又はラパマイシンを添加した細胞を示す。 <Study-2 using MPP + treated cells>
Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells. Subsequently, 10 μg / mL of the compound (1-1) of the present invention or 10 μM rapamycin (autophagy inducer) was added. 8 hours after the addition, the cells were stained with Thioflavin S and the cells were observed with a confocal microscope. Thioflavin S stains aggregated proteins. The portion stained with Thioflavin S was considered to be an aggregate of protein containing α-synuclein. The results of cell observation are shown in FIG. Further, from the image shown in FIG. 2, image analysis was performed using Image J, and the area of the aggregate was calculated. FIG. 3 shows a graph relating to the area of the aggregate / the area of the whole cell (ratio where MPP + is 1 ), which is derived from the calculation result. 2 and 3, “NT” indicates untreated cells. “MPP + ” indicates cells treated with MPP + alone. “MPP + + compound (1-1)” and “MPP + + rapamycin” indicate cells to which the compound (1-1) or rapamycin of the present invention was added after MPP + treatment, respectively.
分化させたPC12D細胞に、0.3mM MPP+で24時間処理し、細胞内に斑点を形成させた。次いで、10μg/mLの本発明の化合物(1-1)又は10μM ラパマイシン(オートファジー誘導剤)を添加した。添加8時間後にThioflavin S で染色し、共焦点顕微鏡にて細胞を観察した。なお、Thioflavin Sは凝集タンパク質を染色する。Thioflavin Sによって染色された部分は、α-シヌクレインを含むタンパク質の凝集体が存在しているものとみなした。細胞観察の結果を図2に示す。また、図2に示す画像から、Image Jを用いて画像解析を行い、凝集物の面積を算出した。算出結果から導き出した、凝集物の面積/細胞全体の面積(MPP+を1としたときの割合)に関するグラフを図3に示す。図2及び3中、「NT」は未処理の細胞を示す。「MPP+」は、MPP+のみで処理した細胞を示す。「MPP++化合物(1-1)」、「MPP++rapamycin」は、それぞれ、MPP+処理後に本発明の化合物(1-1)又はラパマイシンを添加した細胞を示す。 <Study-2 using MPP + treated cells>
Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells. Subsequently, 10 μg / mL of the compound (1-1) of the present invention or 10 μM rapamycin (autophagy inducer) was added. 8 hours after the addition, the cells were stained with Thioflavin S and the cells were observed with a confocal microscope. Thioflavin S stains aggregated proteins. The portion stained with Thioflavin S was considered to be an aggregate of protein containing α-synuclein. The results of cell observation are shown in FIG. Further, from the image shown in FIG. 2, image analysis was performed using Image J, and the area of the aggregate was calculated. FIG. 3 shows a graph relating to the area of the aggregate / the area of the whole cell (ratio where MPP + is 1 ), which is derived from the calculation result. 2 and 3, “NT” indicates untreated cells. “MPP + ” indicates cells treated with MPP + alone. “MPP + + compound (1-1)” and “MPP + + rapamycin” indicate cells to which the compound (1-1) or rapamycin of the present invention was added after MPP + treatment, respectively.
図2、3に示されるとおり、MPP+による処理によって細胞中に斑点が形成された(「MPP+」)。他方、この斑点は、本発明の化合物(1-1)の投与により減少し、斑点のクリアランスが認められた(「MPP++化合物(1-1)」)。該クリアランス効果はラパマイシンと同等以上であった。
As shown in FIGS. 2 and 3, spots are formed on the cells by treatment with MPP + ( "MPP +"). On the other hand, the spots were decreased by administration of the compound (1-1) of the present invention, and the clearance of the spots was observed (“MPP + + compound (1-1)”). The clearance effect was equivalent to or better than rapamycin.
<MPP+処理細胞を用いた検討-3>
分化させたPC12D細胞に、0.3mM MPP+で48時間処理し、細胞死を誘導させた。他方、MPP+と同時に1又は10μg/mLの本発明の化合物(1-1)を48時間処理した。その後、細胞をPropidium IodideでDNAを染色し、フローサイトメトリーによるSubG1の比率から細胞死を定量化した。結果を図4に示す。 <Study-3 using MPP + treated cells>
Differentiated PC12D cells were treated with 0.3 mM MPP + for 48 hours to induce cell death. On the other hand, simultaneously with MPP +, 1 or 10 μg / mL of the compound (1-1) of the present invention was treated for 48 hours. Thereafter, the cells were stained with DNA with Propium Iodide, and cell death was quantified from the ratio of SubG1 by flow cytometry. The results are shown in FIG.
分化させたPC12D細胞に、0.3mM MPP+で48時間処理し、細胞死を誘導させた。他方、MPP+と同時に1又は10μg/mLの本発明の化合物(1-1)を48時間処理した。その後、細胞をPropidium IodideでDNAを染色し、フローサイトメトリーによるSubG1の比率から細胞死を定量化した。結果を図4に示す。 <Study-3 using MPP + treated cells>
Differentiated PC12D cells were treated with 0.3 mM MPP + for 48 hours to induce cell death. On the other hand, simultaneously with MPP +, 1 or 10 μg / mL of the compound (1-1) of the present invention was treated for 48 hours. Thereafter, the cells were stained with DNA with Propium Iodide, and cell death was quantified from the ratio of SubG1 by flow cytometry. The results are shown in FIG.
図4中、「Ctrl」は未処理の細胞を示す。「MPP+」は、MPP+のみで処理した細胞を示す。「MPP++化合物(1-1)」は、MPP+と同時に本発明の化合物(1-1)1又は10μg/mLを添加した細胞を示す。また、図4中のFはsubG1期、EはG1期、DはS期、CはG2/M期における細胞数を示す。横軸は蛍光強度、縦軸は細胞数である。また、図4中の数字(単位:%)は、全細胞数に対するsubG1期の細胞数の割合を示す。
In FIG. 4, “Ctrl” indicates an untreated cell. “MPP + ” indicates cells treated with MPP + alone. “MPP + + compound (1-1)” indicates a cell to which compound (1-1) 1 or 10 μg / mL of the present invention was added simultaneously with MPP + . In FIG. 4, F represents the number of cells in the subG1 phase, E represents the G1 phase, D represents the S phase, and C represents the G2 / M phase. The horizontal axis is the fluorescence intensity, and the vertical axis is the number of cells. The numbers (unit:%) in FIG. 4 indicate the ratio of the number of cells in the subG1 phase to the total number of cells.
図4に示されるとおり、本発明の化合物(1-1)の添加により、MPP+によって誘導される細胞死の抑制が認められた(「MPP++化合物(1-1)」)。
As shown in FIG. 4, the addition of the compounds of the present invention (1-1), suppression of cell death induced by MPP + was observed ( "MPP + + Compound (1-1)").
<各化合物の斑点抑制活性の測定>
分化させたPC12D細胞に、0.3mM MPP+で24時間処理し、細胞内に斑点を形成させ、細胞観察により、細胞面積に占める斑点の面積の割合を算出した。他方で、上記
の本発明の各化合物(1-1)~(1-27)をそれぞれ複数の濃度でMPP+と同時に添加し、24時間後に、細胞観察により、細胞面積に占める斑点の面積の割合を算出した。MPP+によって形成された斑点の面積が、細胞面積に占める割合の50%となる濃度をIC50値として特定した。その結果を下記の表1に示す。 <Measurement of speckle inhibitory activity of each compound>
Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells, and the percentage of the spot area in the cell area was calculated by cell observation. On the other hand, each of the above-mentioned compounds (1-1) to (1-27) of the present invention was added at a plurality of concentrations at the same time as MPP + , and 24 hours later, the cell observation showed that the area of the spots occupied by the cells The percentage was calculated. The concentration at which the area of the spots formed by MPP + was 50% of the cell area was identified as the IC 50 value. The results are shown in Table 1 below.
分化させたPC12D細胞に、0.3mM MPP+で24時間処理し、細胞内に斑点を形成させ、細胞観察により、細胞面積に占める斑点の面積の割合を算出した。他方で、上記
の本発明の各化合物(1-1)~(1-27)をそれぞれ複数の濃度でMPP+と同時に添加し、24時間後に、細胞観察により、細胞面積に占める斑点の面積の割合を算出した。MPP+によって形成された斑点の面積が、細胞面積に占める割合の50%となる濃度をIC50値として特定した。その結果を下記の表1に示す。 <Measurement of speckle inhibitory activity of each compound>
Differentiated PC12D cells were treated with 0.3 mM MPP + for 24 hours to form spots in the cells, and the percentage of the spot area in the cell area was calculated by cell observation. On the other hand, each of the above-mentioned compounds (1-1) to (1-27) of the present invention was added at a plurality of concentrations at the same time as MPP + , and 24 hours later, the cell observation showed that the area of the spots occupied by the cells The percentage was calculated. The concentration at which the area of the spots formed by MPP + was 50% of the cell area was identified as the IC 50 value. The results are shown in Table 1 below.
表1の示すとおり、IC50の数値に差はあるものの、全ての化合物について斑点抑制活性がみられた。特に、ハロゲン原子等の電子吸引性基を有する化合物より、電子供与性基であるメトキシ基の方が活性が高かった。このことから、電子供与性基を有することで電子的に密になり、安定した構造となり、その結果活性が高くなるものと考えられる。また、ベンゼン環のオルト位が置換されている化合物の方が活性が高かった。これは、ベンゼン環のオルト位が置換されることで、嵩張った構造となり、結合部が立体的に回転しにくくなった結果、活性が高くなったものと考えられる。また、化合物(2-1)、(2-2)のように、糖骨格を有するものについても、斑点抑制活性を有することがわかった。
As indicated by Table 1, although the numerical IC 50 of the difference is, spots inhibitory activity was observed for all compounds. In particular, the activity of the methoxy group, which is an electron donating group, was higher than that of a compound having an electron withdrawing group such as a halogen atom. From this, it is considered that having an electron-donating group makes it electronically dense and has a stable structure, resulting in high activity. In addition, the compound in which the ortho position of the benzene ring was substituted was higher in activity. This is thought to be due to the fact that the ortho-position of the benzene ring is substituted, resulting in a bulky structure, and the bond portion is less likely to rotate sterically, resulting in increased activity. Further, it was found that compounds having a sugar skeleton such as compounds (2-1) and (2-2) also have speckle inhibitory activity.
以上の結果より、本発明の化合物が、ドーパミン分泌細胞の変性や細胞死を抑制できる新たなパーキンソン病治療薬として利用できることがわかった。
From the above results, it was found that the compound of the present invention can be used as a new therapeutic agent for Parkinson's disease that can suppress degeneration and cell death of dopamine secreting cells.
Claims (5)
- 以下の式(1)で表される化合物又はその塩。
前記式(I)及び前記式(II)中、R5は、置換基を有してもよい炭素数3以上の1価の枝分かれ状の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であり、
前記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。) A compound represented by the following formula (1) or a salt thereof.
In the formula (I) and the formula (II), R 5 may have a monovalent branched chain hydrocarbon group having 3 or more carbon atoms, which may have a substituent, or a substituent. 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or 3- to 10-membered monocyclic to tricyclic monovalent heterocyclic group which may have a substituent X 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms which may have a single bond or a substituent,
In the formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. ) - 前記式(I)又は前記式(II)におけるR5が、置換基を有してもよいアリール基、置換基を有してもよいシクロヘキシル基、又は置換基を有してもよいアダマンチル基である、請求項1に記載の化合物又はその塩。 R 5 in the formula (I) or the formula (II) is an aryl group which may have a substituent, a cyclohexyl group which may have a substituent, or an adamantyl group which may have a substituent. The compound according to claim 1 or a salt thereof.
- 前記アリール基がフェニル基であり、該フェニル基における、前記式(I)又は前記式(II)におけるX1が結合する炭素原子に対するオルト位が少なくとも置換されている、請求項2に記載の化合物又はその塩。 The compound according to claim 2, wherein the aryl group is a phenyl group, and the ortho position of the phenyl group with respect to the carbon atom to which X 1 in the formula (I) or the formula (II) is bonded is substituted. Or a salt thereof.
- 前記炭素数3以上の1価の枝分かれ状の鎖式炭化水素基、前記5~10員の単環式~3環式の1価の炭素環式基、又は前記3~10員の単環式~3環式の1価の複素環式基が、電子供与性基により置換されている、請求項1から3のいずれかに記載の化合物又はその塩。 The monovalent branched chain hydrocarbon group having 3 or more carbon atoms, the 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group, or the 3- to 10-membered monocyclic The compound or a salt thereof according to any one of claims 1 to 3, wherein the tricyclic monovalent heterocyclic group is substituted with an electron donating group.
- 以下の式(1)又は式(2)で表される化合物又はその薬理学的に許容される塩を含有する、パーキンソン病治療薬又は予防薬。
式(2)中、R6~R9は、それぞれ独立に、以下の式(III)又は式(IV)で表される基であるか、又は、
前記式(I)、前記式(II)、前記式(III)及び前記式(IV)中、R5は、置換基を有してもよい炭素数3以上の枝分かれ状の1価の鎖式炭化水素基、置換基を有してもよい5~10員の単環式~3環式の1価の炭素環式基、又は置換基を有してもよい3~10員の単環式~3環式の1価の複素環式基であり、X1は単結合又は置換基を有してもよい炭素数1~10の2価の炭化水素基であり、
前記式(I)中、R6は水素原子又はオキソ基であり、点線は結合の存在又は非存在である。) A therapeutic or prophylactic agent for Parkinson's disease comprising a compound represented by the following formula (1) or formula (2) or a pharmacologically acceptable salt thereof.
In formula (2), R 6 to R 9 are each independently a group represented by the following formula (III) or formula (IV), or
In the formula (I), the formula (II), the formula (III) and the formula (IV), R 5 is a branched monovalent chain formula having 3 or more carbon atoms which may have a substituent. Hydrocarbon group, 5- to 10-membered monocyclic to tricyclic monovalent carbocyclic group which may have a substituent, or 3- to 10-membered monocyclic which may have a substituent Is a tricyclic monovalent heterocyclic group, and X 1 is a C 1-10 divalent hydrocarbon group which may have a single bond or a substituent,
In the formula (I), R 6 is a hydrogen atom or an oxo group, and the dotted line is the presence or absence of a bond. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018526450A JP6954647B2 (en) | 2016-07-07 | 2017-07-07 | Dihydroxy compounds or salts thereof, and Parkinson's disease therapeutic or prophylactic agents |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-135487 | 2016-07-07 | ||
JP2016135487 | 2016-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018008737A1 true WO2018008737A1 (en) | 2018-01-11 |
Family
ID=60912774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/024921 WO2018008737A1 (en) | 2016-07-07 | 2017-07-07 | Dihydroxy compound or salt thereof, and therapeutic or prophylactic drug for parkinson's disease |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6954647B2 (en) |
WO (1) | WO2018008737A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993011731A2 (en) * | 1991-12-12 | 1993-06-24 | The Trustees Of The University Of Pennsylvania | Alicyclic peptidomimetics |
-
2017
- 2017-07-07 WO PCT/JP2017/024921 patent/WO2018008737A1/en active Application Filing
- 2017-07-07 JP JP2018526450A patent/JP6954647B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993011731A2 (en) * | 1991-12-12 | 1993-06-24 | The Trustees Of The University Of Pennsylvania | Alicyclic peptidomimetics |
Non-Patent Citations (5)
Title |
---|
GAREGG, PER J. ET AL.: "Synthesis of some benzyl and methyl ethers of myo-inositol", CARBOHYDRATE RESEARCH, vol. 173, 1988, pages 205 - 216, XP026622192 * |
LEE, B.-Y. ET AL.: "Synthesis of glycosylphosphatidylinositol (GPI)-anchor glycolipids bearing unsaturated lipids", CHEMICAL COMMUNICATIONS, vol. 52, 28 January 2016 (2016-01-28), pages 1586 - 1589, XP055452449 * |
SAITO, SHINTARO ET AL.: "Diastereoselective synthesis of D- and L-myo-inositol 3,4,5,6- tetrakisphosphates from D-glucose via dihydroxylation of (+)-conduritol B derivatives", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 52, 2004, pages 727 - 732 * |
SUAMI, TETSUO ET AL.: "p-Toluenesulfonylation of 1 , 2-0 -cyclohexylidene-myo-inositol", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 44, 1971, pages 835 - 41 * |
SWARTS, BENJAMIN M. ET AL.: "Synthesis of a Glycosylphosphatidylinositol Anchor Bearing Unsaturated Lipid Chains", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, 19 May 2010 (2010-05-19), pages 6648 - 6650, XP055452441 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018008737A1 (en) | 2019-04-25 |
JP6954647B2 (en) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI674258B (en) | Dna alkylating agents | |
EP1339717B1 (en) | Novel carbamate-substituted pyrazolopyridine derivatives | |
WO2018149284A1 (en) | Kinase inhibitor and preparation method therefor and use thereof | |
JP2015518891A (en) | Solid form of antiviral compound | |
CA3113463A1 (en) | Nitroxoline prodrug and use thereof | |
JP6884800B2 (en) | Memantine compounds and their preparations and their use | |
JP2022169800A (en) | Bacterial efflux pump inhibitors | |
CN113912663B (en) | Betulinic acid derivative, preparation method, pharmaceutical composition and application thereof | |
WO2023061406A1 (en) | Parp inhibitor containing fused tri-cyclic structure, and preparation method therefor and medical use thereof | |
US20210309640A1 (en) | Pharmaceutical salts of pyrimidine derivatives and method of treating disorders | |
JP2022548250A (en) | Thyroid hormone receptor beta agonist compounds | |
DE102010044131A1 (en) | Substituted sodium 1H-pyrazole-5-olate | |
JP5220601B2 (en) | Use of chorismycin and its derivatives as oxidative stress inhibitors | |
EP4273139A1 (en) | 2-pyridone derivative, and preparation method therefor and pharmaceutical application thereof | |
JP2023538405A (en) | Novel N-heterocyclic BET bromodomain inhibitor, its preparation method and pharmaceutical application | |
JP5372514B2 (en) | Novel indolizine derivative, process for its preparation and therapeutic composition containing it | |
WO2017020869A1 (en) | B crystal form of 2-[(2r)-2-methyl-2-pyrrolidinyl]-1h-benzimidazole-7-carboxamide, preparation method and use | |
WO2023174409A1 (en) | Salt form and crystal form of vanin enzyme inhibitor, method for preparing same, and use thereof | |
ES2391371T3 (en) | 2-Trifluoromethylnicotinamide derivatives as agents to increase HDL-cholesterol | |
WO2018008737A1 (en) | Dihydroxy compound or salt thereof, and therapeutic or prophylactic drug for parkinson's disease | |
AU2023225907A1 (en) | Compounds and compositions for treating conditions associated with lpa receptor activity | |
EP3242881B1 (en) | Furoquinolinediones as inhibitors of tdp2 | |
US9381260B2 (en) | Hypoxia inducible factor-1 pathway inhibitors and uses as anticancer and imaging agents | |
TW200301114A (en) | Crystals of taxane derivative and process for the production thereof | |
WO2020216669A1 (en) | Phenyl-substituted imidazopyridine amides and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17824340 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018526450 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17824340 Country of ref document: EP Kind code of ref document: A1 |