WO2018008673A1 - Organic electroluminescent material and organic electroluminescent element using same - Google Patents

Organic electroluminescent material and organic electroluminescent element using same Download PDF

Info

Publication number
WO2018008673A1
WO2018008673A1 PCT/JP2017/024610 JP2017024610W WO2018008673A1 WO 2018008673 A1 WO2018008673 A1 WO 2018008673A1 JP 2017024610 W JP2017024610 W JP 2017024610W WO 2018008673 A1 WO2018008673 A1 WO 2018008673A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
compound
layer
ring
Prior art date
Application number
PCT/JP2017/024610
Other languages
French (fr)
Japanese (ja)
Inventor
横山 正幸
一剛 萩谷
安達 千波矢
Original Assignee
東洋紡株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 国立大学法人九州大学 filed Critical 東洋紡株式会社
Priority to CN201780042021.1A priority Critical patent/CN109641876A/en
Priority to JP2018526412A priority patent/JP7040442B2/en
Priority to KR1020197003250A priority patent/KR102493739B1/en
Publication of WO2018008673A1 publication Critical patent/WO2018008673A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic electroluminescent material and an organic electroluminescent element using the same.
  • the present invention relates to an excellent compound as a hole block material, a hole block material, and an organic light emitting device using the compound.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various contrivances for improving luminous efficiency have been made by newly developing and combining light-emitting materials and other functional materials constituting organic electroluminescence elements.
  • a hole block that is contained in a layer in contact with the cathode side of the light emitting layer and prevents the holes injected into the light emitting layer and excitons (excitons) generated in the light emitting layer from diffusing outside the light emitting layer.
  • excitons excitons
  • Patent Document 1 discloses that triplet excitation of a blue phosphorescent material generated in a light-emitting layer occurs when the layer in contact with the light-emitting layer contains an m-phenyl-pyridyl type compound such as TmPyPB represented by the following formula: It is described that the child can be prevented from moving out of the light emitting layer from the side in contact with the layer.
  • TmPyPB, PPT, and DPEPO are conventionally known as compounds that can function as a hole blocking material.
  • the present inventors used these compounds as a hole block material and combined with a blue light emitting material to produce an organic EL device, none of them could provide sufficiently satisfactory light emission efficiency or blue purity. found.
  • phosphine oxide type compounds are easily oxidized, and there is a risk of impairing the durability of the device when used as a hole block material. Therefore, the present inventors have repeated research aiming to find a new compound that is excellent as a hole block material.
  • the general formula of the compound useful as a hole block material was derived
  • the inventors of the present invention need to have a hole blocking property, exciton blocking property, high electron transporting property, and stability in a compound used for the hole blocking material, and in particular, the lowest excited triplet energy level T 1 is high.
  • the lowest excited triplet energy level T 1 is sufficiently high.
  • the compound was designed combining various aromatic rings and substituents, and the examination which evaluates the exciton block property and the hole block property was performed comprehensively. As a result, it was first discovered that a compound group having a carbazolyl group substituted with an electron-withdrawing group is useful as a hole blocking material, and further investigation was made.
  • TmPyPBm is a phenyl-pyridyl type compound.
  • PPT and DPEPO are phosphine oxide type compounds. None of these compounds has a carbazolyl group substituted with an electron-withdrawing group. Therefore, the usefulness of a compound having a carbazolyl group substituted with an electron-withdrawing group as a hole blocking material cannot be predicted from these compounds.
  • Cz represents a 9-carbazolyl group substituted at least two positions with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group
  • Ar represents a triazine ring, a pyridazine ring, It represents a pyrimidine ring or a pyrazine ring, and these rings may have a substituent other than the 9-carbazolyl group.
  • n is an integer of 1 or 2.
  • substitution position in the 9-carbazolyl group of the substituent selected from the group consisting of the fluoroalkyl group and the cyano group is 2-position and 7-position, 3-position, 6-position, 2-position, The compound according to [1], which is in the 3rd, 6th and 7th positions.
  • substitution position in the 9-carbazolyl group of the substituent selected from the group consisting of the fluoroalkyl group and the cyano group is the 3-position and the 6-position.
  • the compound of the present invention is excellent in exciton blocking property and hole blocking property and is useful as a hole blocking material.
  • An organic light emitting device using the compound of the present invention as a hole block material can realize high luminous efficiency.
  • FIG. 6 is a graph showing voltage-current density characteristics of the electronic-only devices manufactured in Example 1 and Comparative Examples 1, 2, and 3. It is a graph which shows the voltage change characteristic with time at the time of flowing an electron with the fixed current density to the electronic only element manufactured in Example 1 and Comparative Examples 1 and 2.
  • FIG. It is an energy level diagram which shows the HOMO level and LUMO level of the compound used in Example 2 and Comparative Examples 4 and 5. It is an emission spectrum of the organic electroluminescent element manufactured in Example 2 and Comparative Examples 4 and 5.
  • 6 is a graph showing voltage-current density-luminance characteristics of organic electroluminescence elements manufactured in Example 2 and Comparative Examples 4 and 5.
  • 6 is a graph showing luminance-external quantum efficiency characteristics of organic electroluminescence elements manufactured in Example 2 and Comparative Examples 4 and 5. It is an energy level diagram which shows the HOMO level and LUMO level of the compound used in Example 3 and Comparative Example 6. 2 is an emission spectrum of organic electroluminescence elements manufactured in Example 3 and Comparative Example 6. 6 is a graph showing voltage-current density-luminance characteristics of organic electroluminescence elements manufactured in Example 3 and Comparative Example 6.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of them are 2 H. (Deuterium D) may be used.
  • the compound of the present invention has a structure in which a 9-carbazolyl group substituted with at least two substituents selected from the group consisting of a fluoroalkyl group and a cyano group is substituted with a specific nitrogen-containing aromatic 6-membered ring .
  • Such a compound is excellent in exciton block property and hole block property, and has high utility as a hole block material.
  • the reason why the compound of the present invention is excellent as a hole block material is not limited to any theory, but is presumed to be due to the following mechanism.
  • the “hole block material” realizes efficient light emission in the light emitting layer by suppressing the leakage (diffusion) of holes and excitons from the light emitting layer.
  • a compound useful as a hole blocking material is a compound having exciton blocking properties as well as hole blocking properties.
  • the HOMO level is an index for the hole block property of the compound
  • the lowest excited triplet energy level T 1 is an index for the exciton block property. That is, as the HOMO level is lower (deeper), holes from the light emitting layer are less likely to be injected into the HOMO and the hole blocking property tends to be higher, and as the lowest excited triplet energy level T 1 is higher, the light emitting layer. It is difficult to receive exciton energy, and exciton block property tends to be high.
  • TmPyPB which has been conventionally used as a hole block material, has a low HOMO level ( ⁇ 6.4 eV), but it cannot be said that the lowest excited triplet energy level T 1 is sufficiently high. (2.78 eV). Therefore, especially when the lowest excited triplet energy level T 1 is comprises a high blue light-emitting material emitting layer, the energy of the exciton easily receive hole blocking material is sufficiently suppress diffusion of excitons from the luminescent layer I guess it can't be done.
  • the 9-carbazolyl group has a high lowest excited triplet energy level T 1 , and the 9-carbazolyl group has an electron withdrawing property such as a fluoroalkyl group or a cyano group.
  • the HOMO level is low because the group is substituted.
  • nitrogen-containing aromatic six-membered rings such as triazine ring and pyrimidine ring contain nitrogen atoms with high electronegativity, so that the ⁇ electron density on carbon atoms is low, and it is presumed to have high electron transport properties.
  • the compound of the present invention Since the compound of the present invention has such a partial structure, it is less susceptible to hole injection from the light emitting layer and exciton energy transfer from the light emitting layer, and exhibits excellent hole blocking properties and exciton blocking properties.
  • having the 9-carbazolyl group as described above greatly contributes to the prevention of exciton diffusion of a light emitting material having a high lowest excited triplet energy level T 1 like a blue light emitting material.
  • the compound of the present invention is very excellent in hole blocking property and exciton blocking property, and has extremely high utility as a hole blocking material.
  • the compound of the present invention does not have a structure vulnerable to oxidation like phosphine oxide, it has high stability and excellent electron transport properties. For this reason, it can also be widely used as a functional material of various elements.
  • Cz represents a 9-carbazolyl group substituted at least at two positions with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group.
  • substituent modified 9-carbazolyl group may be referred to as “substituent modified 9-carbazolyl group”.
  • the 9-carbazolyl group may be substituted only with a fluoroalkyl group, may be substituted only with a cyano group, or may be substituted with both a fluoroalkyl group and a cyano group.
  • the fluoroalkyl group may be a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms, or a partially fluorinated alkyl in which only some of the hydrogen atoms of the alkyl group are substituted with fluorine atoms It may be a group.
  • the fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • the fluoroalkyl group may be linear or branched.
  • the substituent selected from the group consisting of a fluoroalkyl group and a cyano group is substituted at at least 2 positions of the 9-carbazolyl group, preferably substituted at 2-6 positions, and substituted at 2-4 positions. More preferably, it is most preferably substituted at two positions.
  • the substituent selected from the group consisting of a fluoroalkyl group and a cyano group may be substituted with the same number on both benzene rings of the carbazolyl group, or with a different number on both benzene rings of the carbazolyl group.
  • the substituent may be bonded to only one benzene ring, and the substituent may not be substituted on the other benzene ring.
  • the substitution position in the carbazolyl group of the substituent selected from the group consisting of a fluoroalkyl group and a cyano group is preferably any of the 2 to 7 positions, the 2nd and 7th positions, the 3rd and 6th positions, or 2 It is more preferable that they are the 3rd, 6th and 7th positions.
  • the 3-position and 6-position of the 9-carbazolyl group are substituted with a cyano group, the HOMO level of the compound tends to decrease.
  • the 2-position and 7-position of the 9-carbazolyl group are substituted with a fluoroalkyl group, the HOMO level of the compound tends to decrease.
  • the 9-carbazolyl group fluoroalkyl group and the methine group not substituted with a cyano group may be substituted or unsubstituted, but are preferably unsubstituted.
  • substituent other than the fluoroalkyl group and the cyano group that can be substituted on the 9-carbazolyl group include an aryl group, a heteroaryl group, and an alkyl group (for example, a methyl group and a tert-butyl group).
  • Ar represents a triazine ring, a pyridazine ring, a pyrimidine ring or a pyrazine ring, and these rings are substituent-modified 9-carbazolyl groups (that is, at least two substituents selected from the group consisting of a fluoroalkyl group and a cyano group). It may have a substituent other than (substituted 9-carbazolyl group).
  • Ar is preferably a triazine ring or a pyrimidine ring.
  • the triazine ring may be any of 1,2,3-triazine ring, 1,2,4-triazine ring and 1,3,5-triazine ring, but it must be 1,3,5-triazine ring. Is most preferred.
  • N represents the number of substitutions of the substituent-modified 9-carbazolyl group on the ring represented by Ar, and is 1 or 2.
  • n is particularly preferably 1.
  • a compound in which n is 1 or 2 exhibits better electron transport properties than a compound in which n is 3 or more. This is presumably because the compound in which n is 1 or 2 has a more planar structure than the compound in which n is 3 or more, and has good packing properties when deposited on a substrate to form a layer.
  • the modified substitution position is not particularly limited, but when the ring represented by Ar is a pyrimidine ring, the substitution position of the substituent-modified 9-carbazolyl group is at least one of 4-position and 6-position, or 4-position and 6-position. Both are preferred.
  • the methine group not substituted with the substituent-modified 9-carbazolyl group of the ring represented by Ar may be substituted with a substituent other than the substituent-modified 9-carbazolyl group, or may be unsubstituted.
  • a substituent other than the substituent-modified 9-carbazolyl group that may be substituted on the ring represented by Ar is not particularly limited, but is preferably an aryl group, a heteroaryl group, an alkyl group, or a cyano group.
  • the aryl group is preferably an aryl group having 6 to 40 carbon atoms, more preferably a phenyl group or a naphthyl group.
  • the heteroaryl group is preferably a heteroaryl group having 3 to 40 carbon atoms, more preferably a pyridyl group or a pyrimidyl group.
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group is preferably a fluoroalkyl group in which at least a part of the hydrogen atoms are substituted with fluorine atoms.
  • the fluoroalkyl group may be a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms, or a partially fluorinated alkyl in which only some of the hydrogen atoms of the alkyl group are substituted with fluorine atoms It may be a group.
  • substituents those that can be further substituted with a substituent may be substituted with a substituent selected from these substituent groups.
  • the compound of the present invention has a low HOMO level and a high lowest excited triplet energy level T 1 is presumed to contribute to the hole blocking property and the exciton blocking property.
  • the HOMO level of the compound of the present invention is preferably less than ⁇ 6.1 eV, and more preferably less than ⁇ 6.2 eV.
  • a compound having a HOMO level in the above range is less likely to inject holes from the light emitting layer into the HOMO, and can more effectively prevent the diffusion of holes outside the light emitting layer.
  • the lowest excited triplet energy level T 1 of the compound of the present invention is preferably larger than 2.8 eV, more preferably larger than 2.87 eV.
  • Compounds having the lowest excited triplet energy level T 1 in the above range are less likely to receive the energy of triplet excitons (excitons) generated in the light emitting layer, and are more effective in diffusing triplet excitons outside the light emitting layer. Can be blocked.
  • the compound having the lowest excited triplet energy level T 1 in the above range also has a higher lowest excited triplet energy level S 1, it is difficult to receive energy of singlet excitons (excitons) generated in the light emitting layer. Further, it is possible to effectively prevent the diffusion of singlet excitons outside the light emitting layer.
  • the LUMO level of the compound of the present invention may be, for example, in the range of ⁇ 2.7 eV or lower, in the range of ⁇ 3.3 eV or higher, and in the range of ⁇ 2.8 eV or lower, for example. , ⁇ 3.2 eV or more.
  • “HOMO level”, “LUMO level”, and “lowest excited triplet energy level T 1 ” in this specification are measured values measured by the method described in the section of the examples.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is usually 247 or more, preferably 290 or more.
  • a particularly preferred combination is a combination of Z01 and A01.
  • the compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule for the hole blocking layer of the organic light emitting device For example, it is conceivable to use a polymer obtained by polymerizing a polymerizable monomer having a structure represented by the general formula (1) for a hole blocking layer of an organic light emitting device. Specifically, a monomer having a polymerizable functional group in either Cz or Ar in the general formula (1) is prepared, and this is polymerized alone or copolymerized with other monomers to repeat units. It is conceivable to obtain a polymer having the above and use the polymer for a hole blocking layer of an organic light emitting device. Alternatively, it is also conceivable that dimers and trimers are obtained by coupling compounds having a structure represented by the general formula (1) and used in the hole blocking layer of the organic light emitting device.
  • a substituent in any one of Cz and Ar in the general formula (1) is represented by the following general formula (10) or (11). What is a structure represented by these can be mentioned.
  • L 1 and L 2 each represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the structure of the repeating unit include those in which the substituent in any one of Cz and Ar in the general formula (1) is represented by the following formulas (12) to (15). Two or more of the substituents may be represented by the following formulas (12) to (15), but it is preferable that one of the substituents is any of the following formulas (12) to (15). .
  • the substituent in either Cz or Ar in the general formula (1) is made into a hydroxy group, and the following compounds are reacted using it as a linker. It can be synthesized by introducing a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • the compound represented by the above general formula (1) is a novel compound.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions.
  • Cz in the general formula (1) is a 9-carbazolyl group substituted at the 3-position and 6-position with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group, and Ar is a triazine ring.
  • a compound having a structure in which one methine group is substituted with the above 9-carbazolyl group and the remaining two methine groups are substituted with a substituent other than the above 9-carbazolyl group is represented by the following two compounds: It can be synthesized by reacting.
  • R 1 and R 2 in the above reaction formula the explanation of “substituent selected from the group consisting of a fluoroalkyl group and a cyano group” in the general formula (1) can be referred to, R 3 .
  • R 4 reference can be made to the description of “substituents other than the substituent-modified 9-carbazolyl group” which may be substituted on the ring represented by Ar.
  • X represents a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom, a bromine atom, and an iodine atom are preferable.
  • the details of the above reaction can be referred to the synthesis examples described below.
  • the compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
  • the compound represented by the general formula (1) of the present invention is excellent in hole blocking property and exciton blocking property, and in particular, a light emitting material having a high lowest excited triplet energy level T 1 such as a blue light emitting material. Even when the light emitting layer is included, the exciton can be effectively prevented from diffusing from the light emitting layer. For this reason, the compound represented by General formula (1) of this invention is useful as a hole block material, and can be used effectively as a hole block material of an organic light emitting element.
  • the compound represented by the general formula (1) of the present invention may be applied to either an organic photoluminescence element (organic PL element) or an organic electroluminescence element (organic EL element), but is applicable to an organic electroluminescence element. In this case, a higher effect can be obtained.
  • the organic photoluminescence device to which the compound represented by the general formula (1) of the present invention is applied has a structure in which at least a light emitting layer and a layer containing the compound represented by the general formula (1) are formed on a substrate.
  • the layer containing the compound represented by the general formula (1) is disposed, for example, between the light emitting layer and the substrate and at least one side of the light emitting layer opposite to the substrate, and excitons are formed outside the light emitting layer.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer and a hole blocking layer formed so as to be in contact with the cathode side of the light emitting layer, and the hole blocking layer includes a compound represented by the general formula (1) of the present invention.
  • the organic layer may be composed of only the light emitting layer and the hole blocking layer, or may have one or more organic layers in addition to the light emitting layer and the hole blocking layer.
  • Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron block layer, an electron injection layer, an electron transport layer, and an exciton block layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is a hole block layer, 7 is an electron transport layer, and 8 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after exciton is generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer, Preferably, a luminescent material and a host material are included.
  • the light emitting material contained in the light emitting layer may be a fluorescent light emitting material or a phosphorescent light emitting material.
  • the light emitting material may be a delayed fluorescent material that emits delayed fluorescence together with normal fluorescence. Among these, high luminous efficiency can be obtained by using the delayed fluorescent material as the light emitting material.
  • the organic electroluminescence device of the present invention In order for the organic electroluminescence device of the present invention to exhibit high luminous efficiency, it is important to confine singlet and triplet excitons generated in the light emitting material in the light emitting material. Therefore, it is preferable to use a host material in addition to the light emitting material in the light emitting layer.
  • a host material an organic compound in which at least one of excited singlet energy and excited triplet energy has a value higher than that of the light-emitting material can be used.
  • singlet and triplet excitons generated in the light-emitting material can be confined in the molecules of the light-emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • any host material that can achieve high emission efficiency may be used. It can use for this invention without a restriction
  • light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This light emission may be any of fluorescent light emission, delayed fluorescent light emission, and phosphorescent light emission, and these light emission may be mixed. In addition, light emission from the host material may be partly or partly emitted.
  • the amount of the light emitting material contained in the light emitting layer is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% by weight or less. Is preferably 20% by weight or less, more preferably 10% by weight or less.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the light emitting material of the light emitting layer is preferably a delayed fluorescent material because high light emission efficiency can be obtained.
  • High luminous efficiency can be obtained by the delayed fluorescent material based on the following principle.
  • an organic electroluminescence element carriers are injected into a light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to an excited singlet state, and the remaining 75% are excited to an excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence. To do.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • the excited singlet exciton emits fluorescence as usual.
  • exciton in the excited triplet state absorbs heat generated by the device and crosses the excited singlet to emit fluorescence.
  • the light since the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in the excited singlet state, which normally produced only 25%, is raised to 25% or more by absorbing thermal energy after carrier injection. It becomes possible.
  • the hole blocking layer containing the compound represented by the general formula (1) is formed so as to be in contact with the cathode side of the light emitting layer, so that the excited triplet state generated in the light emitting layer is obtained.
  • Exciton and excited singlet state excitons are prevented from diffusing to the cathode side, and the reverse triplet state to excited singlet state crossing from the excited triplet state to the excited singlet state excitons in the light emitting layer. It occurs with high probability. For this reason, luminous efficiency can be further improved.
  • preferred delayed fluorescent materials that can be used for the light emitting layer are listed. However, the light-emitting material that can be used in the present invention is not limited to the following delayed fluorescent material.
  • paragraphs 0008 to 0048 and 0095 to 0133 of WO2013 / 154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013 / 011954, and paragraphs 0007 to 0033 of WO2013 / 011955 are disclosed.
  • delayed fluorescent materials that emit delayed fluorescence JP2013-253121A, WO2013 / 133359, WO2014 / 034535, WO2014 / 115743, WO2014 / 122895, WO2014 / 126200, WO2014 / 136758, WO2014 / 133121, WO2014 / 136860, WO2014 / 196585, WO2014 / 189122, WO2014 / 168101, WO2015 / 008580, WO2014 / 203840, WO2015 / No.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the light emission luminance.
  • the injection layer can be provided as necessary.
  • the block layer is a layer that can prevent electric charges (electrons or holes) and / or excitons existing in the light emitting layer from diffusing outside the light emitting layer.
  • the hole blocking layer can be disposed between the light emitting layer and the electron transport layer, and prevents holes from passing through the light emitting layer toward the electron transport layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and prevents electrons from passing through the light emitting layer toward the hole transport layer.
  • the blocking layer can also be used to prevent excitons from diffusing outside the emissive layer. That is, each of the electron block layer and the hole block layer can also function as an exciton block layer.
  • the hole block layer or exciton block layer used in the present specification is used in the sense of including a layer having the functions of a hole block layer and an exciton block layer in one layer, and the electron block layer or exciton block layer is also a single layer. It is used in the meaning including a layer having a function of an electron block layer and an exciton block layer.
  • the hole block layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transporting layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer.
  • the exciton block layer is a layer to prevent exciton generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to confine in the layer, and the luminous efficiency of the device can be improved.
  • the exciton block layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously. That is, when the exciton block layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, In between, the layer can be inserted adjacent to the light emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton block layer adjacent to the anode side of the light emitting layer, and the exciton block layer adjacent to the cathode and the cathode side of the light emitting layer.
  • an electron injection layer, an electron transport layer, a hole block layer, and the like can be provided between the anode and the exciton block layer adjacent to the anode side of the light emitting layer, and the exciton block layer adjacent to the cathode and the cathode side of the light emitting layer.
  • an electron injection layer, an electron transport layer, a hole block layer, and the like it is preferable that at least one of the excited singlet energy and the excited triplet energy of the material used as the block layer is higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole block layer or exciton block layer referred to in this specification is used in the sense of including a layer having the functions of a hole block layer and an exciton block layer in one layer. That is, the organic electroluminescent element may have a hole block layer and an exciton block layer separately, or the hole block layer may have the function of an exciton block layer.
  • one or more compounds selected from the compound group represented by the general formula (1) of the present invention can be used as the material for the hole block layer and the exciton block layer.
  • the compounds used for the hole block layer and the exciton block layer are preferably different compounds.
  • a compound having a lower HOMO level is preferably used for the hole block layer, and a compound having a higher lowest excited triplet energy level T 1 is preferably used for the exciton block layer.
  • the exciton block layer is formed so as to be in contact with the cathode side of the light emitting layer, and the hole block layer is formed on the cathode side of the exciton block layer.
  • the latter hole block layer also serves as the exciton block layer
  • one or more compounds selected from the compound group represented by the general formula (1) of the present invention are used as the material of the hole block layer.
  • Can be used Since the compound represented by the general formula (1) of the present invention is excellent in both the hole blocking property and the exciton blocking property, it is effective as a material for the hole blocking layer when the hole blocking layer also functions as the exciton blocking layer. Can be used.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino acids
  • Substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers include porphyrin compounds, aromatics It is preferable to use a tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the hole block layer and the exciton block layer but also for layers other than these layers.
  • the compound represented by the general formula (1) used for the hole block layer and the exciton block layer and the compound represented by the general formula (1) used for a layer other than these layers may be the same or different. It may be.
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds.
  • R and R 2 to R 7 each independently represent a hydrogen atom or a substituent, and n represents an integer of 3 to 5.
  • the host material may be bipolar (both holes and electrons flow well) or unipolar, and preferably has a higher T 1 level than the light-emitting material. More preferably, it is bipolar and has a T 1 level higher than that of the light emitting material.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • an organic light emitting device with greatly improved luminous efficiency can be obtained by incorporating the compound represented by the general formula (1) into the hole blocking layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • a nitrogen laser (Lasertechnik Berlin, MNL200) was used as an excitation light source, and a streak camera (Hamamatsu Photonics, C4334) was used as a detector. Moreover, the energy level and sublimation point of each material were measured by the following methods.
  • the ionization potential of the measurement target compound was measured using a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-3), and the value of the measured ionization potential was defined as the HOMO level.
  • the LUMO level is estimated from the optical absorption edge of a spectrophotometer (LAMBDA950-PKA manufactured by PerkinElmer), and the band gap of the measurement target compound is estimated. Obtained by adding.
  • the lowest excited triplet energy level T 1 was calculated by the following method.
  • a sample having a thickness of 100 nm was produced on a Si substrate by vapor-depositing the measurement target compound.
  • the sample was cooled to 5 [K]
  • the sample for phosphorescence measurement was irradiated with excitation light (337 nm), and the phosphorescence intensity was measured using a streak camera.
  • excitation light 337 nm
  • a tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and a wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • a value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as T 1 .
  • Conversion formula: T 1 [eV] 1239.85 / ⁇ edge
  • T 1 [eV] 1239.85 / ⁇ edge
  • This tangent line increases as the curve rises (that is, as the vertical axis increases).
  • the tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • a temperature at which the weight of the compound to be measured was reduced by 5% by weight under 1 Pa was measured using a thermogravimetric measuring instrument (TG-DTA2400SA manufactured by Bruker), and the temperature was defined as the sublimation point.
  • the raw material 3,6-dicyanocarbazole was synthesized from 3,6-dibromocarbazole with reference to a known method (Macromolecules, 2014, 47, 2875-2882.).
  • Sodium hydride 60 wt% oil, 480 mg
  • Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed.
  • N-methylpyrrolidone (NMP, 100 mL) was added, and 3,6-dicyanocarbazole (2.17 g) was added with stirring at room temperature.
  • the raw material 2,7-ditrifluoromethylcarbazole was synthesized with reference to a known method (Chem. Mater., 2015, 27 (5), 1772-1779.).
  • Sodium hydride 60 wt% oil, 288 mg
  • Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed.
  • N-methylpyrrolidone (NMP, 60 mL) was added, and 2,7-ditrifluoromethylcarbazole (1.82 g) was added with stirring at room temperature.
  • Table 1 shows the results of measuring the HOMO level, LUMO level, lowest excited triplet energy level T 1 , and sublimation point of Compounds 1 to 4 and Comparative Compounds 1 and 2 synthesized in Synthesis Examples 1 to 6. Comparative compounds 1 and 2 could not be sublimated due to thermal decomposition. In addition, since it was insoluble in various solvents such as chloroform and acetone, it was difficult to form a film by both the vapor deposition method and the coating method. Therefore, the HOMO level, LUMO level, and lowest excited triplet energy level T 1 could not be measured using a thin film.
  • Example 1 Production of an Electronic Only Element Using Compound 1
  • ITO indium tin oxide
  • Lamination was performed at 10 ⁇ 4 to 10 ⁇ 5 Pa.
  • Compound 1 is formed to a thickness of 100 nm on ITO, on which lithium fluoride (LiF) is vapor-deposited to a thickness of 0.8 nm, and then aluminum (Al) is deposited to a thickness of 100 nm.
  • LiF lithium fluoride
  • Al aluminum
  • FIG. 2 shows the voltage-current density characteristics of the electron-only devices manufactured in Example 1 and Comparative Examples 1, 2, and 3.
  • the voltage change characteristics over time when electrons are passed at a constant current density of 100 mAh / cm 2 are shown in FIG.
  • Compound 1 shown in FIGS. 2 and 3 indicates that it is an electronic only device manufactured in Example 1
  • PPT indicates that it is an electronic only device manufactured in Comparative Example 1
  • TBi Represents an electronic-only device manufactured in Comparative Example 2
  • DPEPO represents an electronic-only device manufactured in Comparative Example 3. From FIG.
  • the electronic-only device using Compound 1 has a lower threshold voltage at which current starts to flow and the obtained current value is higher than that of the electronic-only device using Comparative Compounds 3, 4, and 5; It can be seen that it exhibits electron transport properties.
  • the electron-only device using the comparative compound 4 shows a gentle increase in current (leakage current) in a low voltage region of 1 V or less, the flatness of the film of the comparative compound 4 is predicted to be low.
  • no leak current is observed in the electron-only device using Compound 1, it can be seen that the film-forming property of Compound 1 is good. From FIG.
  • the voltage change during driving of the electronic-only device using the compound 1 is extremely small compared to the electronic-only device using the comparative compounds 3 and 4, and the stability of the compound 1 is very high.
  • the electron-only device using the comparative compound 5 has low electron transport characteristics, and has not been able to pass a current of 100 mA / cm 2 , and thus does not exhibit characteristics.
  • Example 2 Production of organic electroluminescence device using compound 1 Each thin film was vacuum-deposited by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 150 nm was formed. The layers were laminated at a degree of 10 ⁇ 4 to 10 ⁇ 5 Pa. First, ⁇ -NPD was formed to a thickness of 40 nm on ITO, and mCP was formed to a thickness of 10 nm thereon. Next, 2CzPN and mCP were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer.
  • ITO indium tin oxide
  • Compound 1 was formed to a thickness of 10 nm to form a hole blocking layer, and TPBi was formed thereon to a thickness of 40 nm. Further, lithium fluoride (LiF) was vapor-deposited to a thickness of 0.8 nm, and aluminum (Al) was vapor-deposited thereon to a thickness of 100 nm to form a cathode, whereby an organic electroluminescence element was obtained.
  • LiF lithium fluoride
  • Al aluminum
  • FIG. 5 the emission spectrum of the organic electroluminescence device manufactured in Example 2 and Comparative Examples 4 and 5 is shown in FIG. 5, the voltage-current density-luminance characteristic is shown in FIG. 6, and the luminance-external quantum efficiency (EQE) characteristic is shown.
  • EQE luminance-external quantum efficiency
  • the organic electroluminescent device using Compound 1 for the hole blocking layer has an emission wavelength on the blue wavelength side (short wavelength side) as compared with the organic electroluminescent device using Comparative Compounds 3 and 4 for the hole blocking layer. You can see that there is a shift. Moreover, in the organic electroluminescent element using the comparative compound 4, light emission derived from the comparative compound 4 is observed, whereas in the organic electroluminescent element using the compound 1, such a hole block material (compound 1) is used. The derived luminescence is not recognized. From this, it was found that by using Compound 1 as a hole blocking material, blue light emission with high purity becomes possible. The reason why the emission wavelength is shifted to the blue wavelength side is considered that the good electron transport property of Compound 1 is involved.
  • Compound 1 is well matched with the LUMO level of the surrounding material, and has higher electron mobility than Comparative Compounds 3 and 4, and therefore has high electron injection properties into the light emitting layer. Since the recombination region of holes and electrons is away from the interface, it is considered that excitons are not easily affected by the charge and are blue-shifted. 6, the organic electroluminescence device using Compound 1 for the hole blocking layer has a higher current density and luminance rising voltage than the organic electroluminescence device using Comparative Compounds 3 and 4 for the hole blocking layer. It is clearly low, and it can be seen that a high current density and a high luminance can be obtained at a low voltage.
  • Example 3 Production of other organic electroluminescence elements using compound 1
  • ITO indium tin oxide
  • ⁇ -NPD was formed to a thickness of 30 nm on ITO.
  • TCTA was formed to a thickness of 20 nm
  • mCBP was formed thereon to a thickness of 15 nm.
  • TCC01 and DPEPO were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer.
  • TCC01 concentration of TCC01 was 15% by weight.
  • Compound 1 was formed to a thickness of 10 nm to form a hole blocking layer, and TPBi was formed thereon to a thickness of 30 nm. Furthermore, lithium fluoride (LiF) was vapor-deposited to a thickness of 0.7 nm, and aluminum (Al) was vapor-deposited thereon to a thickness of 100 nm to form a cathode, whereby an organic electroluminescence element was obtained.
  • LiF lithium fluoride
  • Al aluminum
  • FIG. 8 shows HOMO levels and LUMO levels of the compounds used in Example 3 and Comparative Example 6.
  • the numerical value above each column indicates the absolute value of the LUMO level
  • the numerical value below each column indicates the absolute value of the HOMO level
  • the numerical values below ITO and LiF / Al are the Fermi level. Indicates an absolute value.
  • FIG. 9 shows an emission spectrum of the organic electroluminescence elements produced in Example 3 and Comparative Example 6, and FIG.
  • Example 10 shows voltage-current density-luminance characteristics.
  • “Compound 1” shown in the figure represents the organic electroluminescence device produced in Example 3, and “DPEPO (Comparative Compound 5)” represents the organic electroluminescence device produced in Comparative Example 6. .
  • the organic electroluminescence device using Compound 1 for the hole blocking layer has an emission wavelength that is larger than that of the organic electroluminescence device using Comparative Compound 6 for the hole blocking layer. It shifted to the blue wavelength side (short wavelength side), and a high current density and a high luminance could be obtained at a low voltage.
  • the external quantum efficiency was equivalent to DPEPO, and a maximum value of 18% could be realized.
  • the compound of the present invention is excellent in hole blocking property and exciton blocking property, and is useful as a hole blocking material.
  • the compound of the present invention for the hole blocking layer of the organic light emitting device, high luminous efficiency can be realized. For this reason, this invention has high industrial applicability.

Abstract

A compound represented by general formula (Cz)n-Ar is excellent as a hole-blocking material. Cz denotes a 9-carbazolyl group substituted in at least 2 positions with substituent groups selected from the group consisting of fluoroalkyl groups and cyano groups, Ar denotes a triazine ring, a pyridazine ring, a pyrimidine ring or a pyrazine ring, and these rings may have substituent groups other than the 9-carbazolyl group. n is 1 or 2.

Description

有機エレクトロルミネッセンス材料及びこれを用いた有機エレクトロルミネッセンス素子Organic electroluminescent material and organic electroluminescent device using the same
 本発明は、有機エレクトロルミネッセンス材料及びこれを用いた有機エレクトロルミネッセンス素子に関する。特に本発明は、ホールブロック材料として優れた化合物、ホールブロック材料、その化合物を用いた有機発光素子に関する。 The present invention relates to an organic electroluminescent material and an organic electroluminescent element using the same. In particular, the present invention relates to an excellent compound as a hole block material, a hole block material, and an organic light emitting device using the compound.
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する発光材料や他の機能材料を新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、発光層の陰極側に接する層に含有され、発光層中に注入されたホールや発光層中で発生したエキシトン(励起子)が発光層外へ拡散するのを阻止するホールブロック材料に関する研究も見受けられる。 Researches for increasing the light emission efficiency of organic light emitting devices such as organic electroluminescence devices (organic EL devices) are being actively conducted. In particular, various contrivances for improving luminous efficiency have been made by newly developing and combining light-emitting materials and other functional materials constituting organic electroluminescence elements. Among them, a hole block that is contained in a layer in contact with the cathode side of the light emitting layer and prevents the holes injected into the light emitting layer and excitons (excitons) generated in the light emitting layer from diffusing outside the light emitting layer. There are also studies on materials.
 例えば、特許文献1には、発光層に接する層が下記式で表されるTmPyPB等のm-フェニル-ピリジル型化合物を含んでいると、発光層中で発生した青色リン光材料の三重項励起子が、その層が接する側から発光層外へ移動することが抑えられることが記載されている。 For example, Patent Document 1 discloses that triplet excitation of a blue phosphorescent material generated in a light-emitting layer occurs when the layer in contact with the light-emitting layer contains an m-phenyl-pyridyl type compound such as TmPyPB represented by the following formula: It is described that the child can be prevented from moving out of the light emitting layer from the side in contact with the layer.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、ホールブロック層に、下記式で表されるPPT、DPEPOが用いられた例も知られている(例えば、特許文献2参照)。 Further, an example in which PPT and DPEPO represented by the following formula are used for the hole block layer is also known (for example, see Patent Document 2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
特開2013-115066号公報JP 2013-115066 A 特開2016-036025号公報JP 2016-036025 A
 上記のように、ホールブロック材料として機能しうる化合物として、従来からTmPyPB、PPT、DPEPOが知られている。しかしながら、本発明者らが、これらの化合物をホールブロック材料に用い、青色発光材料と組み合わせて有機EL素子を作製したところ、いずれも十分に満足のゆく発光効率や青色純度が得られないことが判明した。特に、ホスフィンオキシド型化合物は酸化されやすく、これをホールブロック材料に用いると素子の耐久性を損なう危険性があることも判明した。
 そこで本発明者らは、ホールブロック材料として優れている新たな化合物を見出すことを目指して研究を重ねた。そして、ホールブロック材料として有用な化合物の一般式を導きだし、発光効率が高い有機発光素子の構成を一般化することを目的として鋭意検討を進めた。
As described above, TmPyPB, PPT, and DPEPO are conventionally known as compounds that can function as a hole blocking material. However, when the present inventors used these compounds as a hole block material and combined with a blue light emitting material to produce an organic EL device, none of them could provide sufficiently satisfactory light emission efficiency or blue purity. found. In particular, it has been found that phosphine oxide type compounds are easily oxidized, and there is a risk of impairing the durability of the device when used as a hole block material.
Therefore, the present inventors have repeated research aiming to find a new compound that is excellent as a hole block material. And the general formula of the compound useful as a hole block material was derived | led-out, and the earnest examination was advanced in order to generalize the structure of the organic light emitting element with high luminous efficiency.
 本発明者らは、ホールブロック材料に用いる化合物にはホールブロック性とエキシトンブロック性、高い電子輸送性、安定性を持つことが必要であり、特に、最低励起三重項エネルギー準位T1が高い青色発光材料に対しても十分なエキシトンブロック性を奏するには、その最低励起三重項エネルギー準位T1が十分に高いことが重要であると考えた。そして、このような考えに基づいて、種々の芳香環や置換基を組み合わせて化合物を設計し、そのエキシトンブロック性とホールブロック性を評価する検討を網羅的に行った。その結果、電子吸引性基で置換されたカルバゾリル基を有する化合物群にホールブロック材料として有用性があることを初めて見出し、さらに検討を進めることにした。
 上記のように、TmPyPBmはフェニル-ピリジル型化合物である。また、PPTおよびDPEPOはホスフィンオキシド型の化合物である。これらの化合物はいずれも電子吸引性基で置換されたカルバゾリル基を有していない。このため、これらの化合物からは、電子吸引性基で置換されたカルバゾリル基を有する化合物のホールブロック材料としての有用性は予測がつかない。
The inventors of the present invention need to have a hole blocking property, exciton blocking property, high electron transporting property, and stability in a compound used for the hole blocking material, and in particular, the lowest excited triplet energy level T 1 is high. In order to achieve a sufficient exciton blocking property even for a blue light-emitting material, it is considered important that the lowest excited triplet energy level T 1 is sufficiently high. And based on such an idea, the compound was designed combining various aromatic rings and substituents, and the examination which evaluates the exciton block property and the hole block property was performed comprehensively. As a result, it was first discovered that a compound group having a carbazolyl group substituted with an electron-withdrawing group is useful as a hole blocking material, and further investigation was made.
As mentioned above, TmPyPBm is a phenyl-pyridyl type compound. PPT and DPEPO are phosphine oxide type compounds. None of these compounds has a carbazolyl group substituted with an electron-withdrawing group. Therefore, the usefulness of a compound having a carbazolyl group substituted with an electron-withdrawing group as a hole blocking material cannot be predicted from these compounds.
 このような状況下で鋭意検討を進めた結果、本発明者らは、フルオロアルキル基やシアノ基で置換された9-カルバゾリル基が特定の窒素含有芳香族6員環に置換した構造を有する化合物が、最低励起三重項エネルギー準位T1が顕著に高く、エキシトンブロック性とホールブロック性に優れていることを見出した。そして、そのような化合物をホールブロック層に用いることにより発光効率が高い有機発光素子を提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。 As a result of diligent investigation under such circumstances, the present inventors have obtained a compound having a structure in which a 9-carbazolyl group substituted with a fluoroalkyl group or a cyano group is substituted with a specific nitrogen-containing aromatic 6-membered ring However, it has been found that the lowest excited triplet energy level T1 is remarkably high and exciton blocking property and hole blocking property are excellent. And it was clarified that an organic light emitting device with high luminous efficiency can be provided by using such a compound for the hole blocking layer. Based on these findings, the present inventors have provided the following present invention as means for solving the above problems.
[1] 下記一般式(1)で表される化合物。
一般式(1)
    (Cz)n-Ar
[一般式(1)において、Czは、フルオロアルキル基およびシアノ基からなる群より選択される置換基で少なくとも2箇所が置換されている9-カルバゾリル基を表し、Arはトリアジン環、ピリダジン環、ピリミジン環またはピラジン環を表し、これらの環は前記9-カルバゾリル基以外の置換基を有していてもよい。nは1もしくは2の整数である。]
[2] 前記フルオロアルキル基およびシアノ基からなる群より選択される置換基の前記9-カルバゾリル基における置換位置が2位と7位であるか、3位と6位であるか、2位と3位と6位と7位である、[1]に記載の化合物。
[3] 前記フルオロアルキル基およびシアノ基からなる群より選択される置換基の前記9-カルバゾリル基における置換位置が3位と6位である、[1]または[2]に記載の化合物。
[4] 前記Arが表す環がトリアジン環またはピリミジン環である、[1]~[3]のいずれか1項に記載の化合物。
[5] 前記Arが表す環がトリアジン環である、[1]~[4]のいずれか1項に記載の化合物。
[6] 前記Arが表す環が1,3,5-トリアジン環である、[1]~[5]のいずれか1項に記載の化合物。
[7] 前記Arが表す環がピリミジン環である、[1]~[4]のいずれか1項に記載の化合物。
[8] 前記Arが表す環がピリミジン環であって、そのピリミジン環の4位と6位が前記9-カルバゾリル基で置換されている、[7]に記載の化合物。
[9] nが1である、[1]~[8]のいずれか1項に記載の化合物。
[10] 前記Arが表す環が前記9-カルバゾリル基以外の置換基を有する、[1]~[9]のいずれか1項に記載の化合物。
[11] 前記9-カルバゾリル基以外の置換基が、アリール基およびフルオロアルキル基からなる群から選択される置換基である、[10]に記載の化合物。
[12] HOMO準位が-6.1eV未満である、[1]~[11]のいずれか1項に記載の化合物。
[13] 最低励起三重項エネルギー準位T1が2.8eVよりも大きい、[1]~[12]のいずれか1項に記載の化合物。
[14] [1]~[13]のいずれか1項に記載の化合物を含有するホールブロック材料。
[15] [1]~[13]のいずれか1項に記載の化合物と発光材料を用いた有機発光素子。
[16] 前記発光材料が青色発光材料である、[15]に記載の有機発光素子。
[17] 前記発光材料が遅延蛍光材料である、[15]または[16]に記載の有機発光素子。
[18] 前記発光材料と前記化合物が別の層に含まれている、[15]~[17]のいずれか1項に記載の有機発光素子。
[19] 前記発光材料を含む層の陰極側に接するように、前記化合物を含む層が形成されている、[15]~[18]のいずれか1項に記載の有機発光素子。
[20] 有機エレクトロルミネッセンス素子である、[15]~[19]のいずれか1項に記載の有機発光素子。
[1] A compound represented by the following general formula (1).
General formula (1)
(Cz) n -Ar
[In the general formula (1), Cz represents a 9-carbazolyl group substituted at least two positions with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group, Ar represents a triazine ring, a pyridazine ring, It represents a pyrimidine ring or a pyrazine ring, and these rings may have a substituent other than the 9-carbazolyl group. n is an integer of 1 or 2. ]
[2] The substitution position in the 9-carbazolyl group of the substituent selected from the group consisting of the fluoroalkyl group and the cyano group is 2-position and 7-position, 3-position, 6-position, 2-position, The compound according to [1], which is in the 3rd, 6th and 7th positions.
[3] The compound according to [1] or [2], wherein the substitution position in the 9-carbazolyl group of the substituent selected from the group consisting of the fluoroalkyl group and the cyano group is the 3-position and the 6-position.
[4] The compound according to any one of [1] to [3], wherein the ring represented by Ar is a triazine ring or a pyrimidine ring.
[5] The compound according to any one of [1] to [4], wherein the ring represented by Ar is a triazine ring.
[6] The compound according to any one of [1] to [5], wherein the ring represented by Ar is a 1,3,5-triazine ring.
[7] The compound according to any one of [1] to [4], wherein the ring represented by Ar is a pyrimidine ring.
[8] The compound according to [7], wherein the ring represented by Ar is a pyrimidine ring and the 4-position and 6-position of the pyrimidine ring are substituted with the 9-carbazolyl group.
[9] The compound according to any one of [1] to [8], wherein n is 1.
[10] The compound according to any one of [1] to [9], wherein the ring represented by Ar has a substituent other than the 9-carbazolyl group.
[11] The compound according to [10], wherein the substituent other than the 9-carbazolyl group is a substituent selected from the group consisting of an aryl group and a fluoroalkyl group.
[12] The compound according to any one of [1] to [11], wherein the HOMO level is less than −6.1 eV.
[13] The compound according to any one of [1] to [12], wherein the lowest excited triplet energy level T 1 is greater than 2.8 eV.
[14] A hole block material containing the compound according to any one of [1] to [13].
[15] An organic light-emitting device using the compound according to any one of [1] to [13] and a light-emitting material.
[16] The organic light emitting device according to [15], wherein the light emitting material is a blue light emitting material.
[17] The organic light-emitting device according to [15] or [16], wherein the light-emitting material is a delayed fluorescent material.
[18] The organic light-emitting device according to any one of [15] to [17], wherein the light-emitting material and the compound are contained in separate layers.
[19] The organic light-emitting device according to any one of [15] to [18], wherein the layer containing the compound is formed so as to be in contact with the cathode side of the layer containing the light-emitting material.
[20] The organic light-emitting device according to any one of [15] to [19], which is an organic electroluminescence device.
 本発明の化合物は、エキシトンブロック性およびホールブロック性に優れており、ホールブロック材料として有用である。本発明の化合物をホールブロック材料として用いた有機発光素子は、高い発光効率を実現しうる。 The compound of the present invention is excellent in exciton blocking property and hole blocking property and is useful as a hole blocking material. An organic light emitting device using the compound of the present invention as a hole block material can realize high luminous efficiency.
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。It is a schematic sectional drawing which shows the layer structural example of an organic electroluminescent element. 実施例1および比較例1、2、3で製造した電子オンリー素子の電圧-電流密度特性を示すグラフである。6 is a graph showing voltage-current density characteristics of the electronic-only devices manufactured in Example 1 and Comparative Examples 1, 2, and 3. 実施例1および比較例1、2で製造した電子オンリー素子に一定電流密度で電子を流した際の経時による電圧変化特性を示すグラフである。It is a graph which shows the voltage change characteristic with time at the time of flowing an electron with the fixed current density to the electronic only element manufactured in Example 1 and Comparative Examples 1 and 2. FIG. 実施例2および比較例4、5で使用した化合物のHOMO準位およびLUMO準位を示すエネルギー準位図である。It is an energy level diagram which shows the HOMO level and LUMO level of the compound used in Example 2 and Comparative Examples 4 and 5. 実施例2および比較例4,5で製造した有機エレクトロルミネッセンス素子の発光スペクトルである。It is an emission spectrum of the organic electroluminescent element manufactured in Example 2 and Comparative Examples 4 and 5. 実施例2および比較例4,5で製造した有機エレクトロルミネッセンス素子の電圧-電流密度-輝度特性を示すグラフである。6 is a graph showing voltage-current density-luminance characteristics of organic electroluminescence elements manufactured in Example 2 and Comparative Examples 4 and 5. 実施例2および比較例4,5で製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。6 is a graph showing luminance-external quantum efficiency characteristics of organic electroluminescence elements manufactured in Example 2 and Comparative Examples 4 and 5. 実施例3および比較例6で使用した化合物のHOMO準位およびLUMO準位を示すエネルギー準位図である。It is an energy level diagram which shows the HOMO level and LUMO level of the compound used in Example 3 and Comparative Example 6. 実施例3および比較例6で製造した有機エレクトロルミネッセンス素子の発光スペクトルである。2 is an emission spectrum of organic electroluminescence elements manufactured in Example 3 and Comparative Example 6. 実施例3および比較例6で製造した有機エレクトロルミネッセンス素子の電圧-電流密度-輝度特性を示すグラフである。6 is a graph showing voltage-current density-luminance characteristics of organic electroluminescence elements manufactured in Example 3 and Comparative Example 6.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。 Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. In addition, the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of them are 2 H. (Deuterium D) may be used.
[一般式(1)で表される化合物]
 本発明の化合物は、フルオロアルキル基およびシアノ基からなる群より選択される置換基で少なくとも2箇所が置換されている9-カルバゾリル基が特定の窒素含有芳香族6員環に置換した構造を有する。こうした化合物は、エキシトンブロック性およびホールブロック性に優れ、ホールブロック材料として高い有用性を有する。本発明の化合物がホールブロック材料として優れているのは、いかなる理論にも拘泥するものではないが、以下のメカニズムによるものと推測している。
 まず、「ホールブロック材料」とは、発光層からのホールやエキシトンの漏れ(拡散)を抑制して発光層での効率のよい発光を実現するものである。このため、ホールブロック材料として有用な化合物は、ホールブロック性とともにエキシトンブロック性を有する化合物である。ここで、化合物のホールブロック性についてはHOMO準位が指標になり、エキシトンブロック性については最低励起三重項エネルギー準位T1が指標になる。すなわち、HOMO準位が低い(深い)もの程、発光層からのホールがHOMOに注入されにくく、ホールブロック性が高い傾向があり、最低励起三重項エネルギー準位T1が高いもの程、発光層からエキシトンのエネルギーを受け取りにくく、エキシトンブロック性が高い傾向がある。
 以上の点において、従来からホールブロック材料として使用されているTmPyPBを見ると、HOMO準位(-6.4eV)は低いものの、最低励起三重項エネルギー準位T1が十分に高いとはいえない(2.78eV)。このため、特に最低励起三重項エネルギー準位T1が高い青色発光材料を発光層が含む場合には、そのエキシトンのエネルギーをホールブロック材料が受け取りやすく、発光層からのエキシトンの拡散を十分に抑制することができないと推測される。
 これに対して、本発明の化合物は、その9-カルバゾリル基が高い最低励起三重項エネルギー準位T1を有しており、その9-カルバゾリル基にフルオロアルキル基やシアノ基といった電子求引性基が置換していることでHOMO準位が低いものになっている。また、トリアジン環、ピリミジン環等の窒素含有芳香族6員環は、電気陰性度が高い窒素原子を含むために炭素原子上のπ電子密度が小さく、高い電子輸送性を奏すると推測される。本発明の化合物は、こうした部分構造を併せ持つことにより、発光層からのホールの注入、発光層からのエキシトンエネルギーの移動を受けにくく、優れたホールブロック性およびエキシトンブロック性を発揮する。特に、上記のような9-カルバゾリル基を有することが、青色発光材料のように、最低励起三重項エネルギー準位T1が高い発光材料のエキシトンの拡散阻止に大きく寄与すると推測される。以上のことから、本発明の化合物は、ホールブロック性およびエキシトンブロック性に非常に優れており、ホールブロック材料として極めて高い有用性を有する。
 さらに、本発明の化合物は、ホスフィンオキシドのような酸化に弱い構造を有していないため、安定性が高く、また、電子輸送性にも優れている。このため、各種素子の機能材料として幅広く用いることもできる。
[Compound represented by general formula (1)]
The compound of the present invention has a structure in which a 9-carbazolyl group substituted with at least two substituents selected from the group consisting of a fluoroalkyl group and a cyano group is substituted with a specific nitrogen-containing aromatic 6-membered ring . Such a compound is excellent in exciton block property and hole block property, and has high utility as a hole block material. The reason why the compound of the present invention is excellent as a hole block material is not limited to any theory, but is presumed to be due to the following mechanism.
First, the “hole block material” realizes efficient light emission in the light emitting layer by suppressing the leakage (diffusion) of holes and excitons from the light emitting layer. For this reason, a compound useful as a hole blocking material is a compound having exciton blocking properties as well as hole blocking properties. Here, the HOMO level is an index for the hole block property of the compound, and the lowest excited triplet energy level T 1 is an index for the exciton block property. That is, as the HOMO level is lower (deeper), holes from the light emitting layer are less likely to be injected into the HOMO and the hole blocking property tends to be higher, and as the lowest excited triplet energy level T 1 is higher, the light emitting layer. It is difficult to receive exciton energy, and exciton block property tends to be high.
In view of the above, TmPyPB, which has been conventionally used as a hole block material, has a low HOMO level (−6.4 eV), but it cannot be said that the lowest excited triplet energy level T 1 is sufficiently high. (2.78 eV). Therefore, especially when the lowest excited triplet energy level T 1 is comprises a high blue light-emitting material emitting layer, the energy of the exciton easily receive hole blocking material is sufficiently suppress diffusion of excitons from the luminescent layer I guess it can't be done.
In contrast, in the compound of the present invention, the 9-carbazolyl group has a high lowest excited triplet energy level T 1 , and the 9-carbazolyl group has an electron withdrawing property such as a fluoroalkyl group or a cyano group. The HOMO level is low because the group is substituted. In addition, nitrogen-containing aromatic six-membered rings such as triazine ring and pyrimidine ring contain nitrogen atoms with high electronegativity, so that the π electron density on carbon atoms is low, and it is presumed to have high electron transport properties. Since the compound of the present invention has such a partial structure, it is less susceptible to hole injection from the light emitting layer and exciton energy transfer from the light emitting layer, and exhibits excellent hole blocking properties and exciton blocking properties. In particular, it is presumed that having the 9-carbazolyl group as described above greatly contributes to the prevention of exciton diffusion of a light emitting material having a high lowest excited triplet energy level T 1 like a blue light emitting material. From the above, the compound of the present invention is very excellent in hole blocking property and exciton blocking property, and has extremely high utility as a hole blocking material.
Furthermore, since the compound of the present invention does not have a structure vulnerable to oxidation like phosphine oxide, it has high stability and excellent electron transport properties. For this reason, it can also be widely used as a functional material of various elements.
 以下、本発明の化合物について具体的に説明する。
 本発明の化合物は、下記一般式(1)で表される。
一般式(1)
    (Cz)n-Ar
 一般式(1)において、Czは、フルオロアルキル基およびシアノ基からなる群より選択される置換基で少なくとも2箇所が置換されている9-カルバゾリル基を表す。以下の説明では、「フルオロアルキル基およびシアノ基からなる群より選択される置換基で少なくとも2箇所が置換されている9-カルバゾリル基」を「置換基修飾9-カルバゾリル基」ということがある。
 9-カルバゾリル基は、フルオロアルキル基のみで置換されていても、シアノ基のみで置換されていてもよく、フルオロアルキル基とシアノ基の両方で置換されていてもよい。
 フルオロアルキル基は、アルキル基の全ての水素原子がフッ素原子で置換されたパーフルオロアルキル基であってもよいし、アルキル基の水素原子の一部だけがフッ素原子で置換された部分フッ素化アルキル基であってもよい。フルオロアルキル基の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、1~5であることがさらに好ましく、1~3であることが特に好ましい。フルオロアルキル基の炭素数が3以上であるとき、フルオロアルキル基は直鎖状であってもよいし、分枝状であってもよい。
Hereinafter, the compound of the present invention will be specifically described.
The compound of the present invention is represented by the following general formula (1).
General formula (1)
(Cz) n -Ar
In the general formula (1), Cz represents a 9-carbazolyl group substituted at least at two positions with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group. In the following description, “9-carbazolyl group substituted at least at two positions with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group” may be referred to as “substituent modified 9-carbazolyl group”.
The 9-carbazolyl group may be substituted only with a fluoroalkyl group, may be substituted only with a cyano group, or may be substituted with both a fluoroalkyl group and a cyano group.
The fluoroalkyl group may be a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms, or a partially fluorinated alkyl in which only some of the hydrogen atoms of the alkyl group are substituted with fluorine atoms It may be a group. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 3 carbon atoms. When the fluoroalkyl group has 3 or more carbon atoms, the fluoroalkyl group may be linear or branched.
 フルオロアルキル基およびシアノ基からなる群より選択される置換基は9-カルバゾリル基の少なくとも2箇所に置換しており、2~6箇所に置換していることが好ましく、2~4箇所に置換していることがより好ましく、2箇所に置換していることが最も好ましい。また、フルオロアルキル基およびシアノ基からなる群より選択される置換基は、カルバゾリル基の両方のベンゼン環に同じ数で置換していてもよいし、カルバゾリル基の両方のベンゼン環に異なる数で置換していてもよいし、一方のベンゼン環にのみ置換基が結合していて、他方のベンゼン環には置換基が置換していなくても構わない。
 フルオロアルキル基およびシアノ基からなる群より選択される置換基のカルバゾリル基における置換位置は、2~7位のいずれかであることが好ましく、2位と7位、3位と6位、または2位と3位と6位と7位であることがより好ましい。9-カルバゾリル基の3位と6位がシアノ基で置換されていると、化合物のHOMO準位が下がる傾向がある。9-カルバゾリル基の2位と7位がフルオロアルキル基で置換されていると、化合物のHOMO準位が下がる傾向がある。
The substituent selected from the group consisting of a fluoroalkyl group and a cyano group is substituted at at least 2 positions of the 9-carbazolyl group, preferably substituted at 2-6 positions, and substituted at 2-4 positions. More preferably, it is most preferably substituted at two positions. In addition, the substituent selected from the group consisting of a fluoroalkyl group and a cyano group may be substituted with the same number on both benzene rings of the carbazolyl group, or with a different number on both benzene rings of the carbazolyl group. The substituent may be bonded to only one benzene ring, and the substituent may not be substituted on the other benzene ring.
The substitution position in the carbazolyl group of the substituent selected from the group consisting of a fluoroalkyl group and a cyano group is preferably any of the 2 to 7 positions, the 2nd and 7th positions, the 3rd and 6th positions, or 2 It is more preferable that they are the 3rd, 6th and 7th positions. When the 3-position and 6-position of the 9-carbazolyl group are substituted with a cyano group, the HOMO level of the compound tends to decrease. When the 2-position and 7-position of the 9-carbazolyl group are substituted with a fluoroalkyl group, the HOMO level of the compound tends to decrease.
 9-カルバゾリル基のフルオロアルキル基およびシアノ基で置換されていないメチン基は、置換基で置換されていても無置換であってもよいが、無置換であることが好ましい。9-カルバゾリル基に置換しうるフルオロアルキル基およびシアノ基以外の置換基として、アリール基、ヘテロアリール基、アルキル基(例えばメチル基、tert-ブチル基)等を挙げることができる。 The 9-carbazolyl group fluoroalkyl group and the methine group not substituted with a cyano group may be substituted or unsubstituted, but are preferably unsubstituted. Examples of the substituent other than the fluoroalkyl group and the cyano group that can be substituted on the 9-carbazolyl group include an aryl group, a heteroaryl group, and an alkyl group (for example, a methyl group and a tert-butyl group).
 Arはトリアジン環、ピリダジン環、ピリミジン環またはピラジン環を表し、これらの環は置換基修飾9-カルバゾリル基(すなわち、フルオロアルキル基およびシアノ基からなる群より選択される置換基で少なくとも2箇所が置換されている9-カルバゾリル基)以外の置換基を有していてもよい。Arはトリアジン環またはピリミジン環であることが好ましい。トリアジン環は、1,2,3-トリアジン環、1,2,4-トリアジン環、1,3,5-トリアジン環のいずれであってもよいが、1,3,5-トリアジン環であることが最も好ましい。 Ar represents a triazine ring, a pyridazine ring, a pyrimidine ring or a pyrazine ring, and these rings are substituent-modified 9-carbazolyl groups (that is, at least two substituents selected from the group consisting of a fluoroalkyl group and a cyano group). It may have a substituent other than (substituted 9-carbazolyl group). Ar is preferably a triazine ring or a pyrimidine ring. The triazine ring may be any of 1,2,3-triazine ring, 1,2,4-triazine ring and 1,3,5-triazine ring, but it must be 1,3,5-triazine ring. Is most preferred.
 nは、Arが表す環への置換基修飾9-カルバゾリル基の置換数を表し、1もしくは2である。Arが表す環がいずれの環である場合にも、nは1であることが特に好ましい。nが1もしくは2である化合物は、nが3以上である化合物に比べて良好な電子輸送性を発揮する。これは、nが1もしくは2である化合物は、nが3以上である化合物よりも平面構造をとりやすく、基板上に堆積させて層を形成したときのパッキング性がよいためと考えられる。また、nが1もしくは2である化合物は、nが3以上である化合物に比べて昇華温度が低く、また、各種溶媒に対する溶解性にも優れるために蒸着法および塗布法のどちらの手法を用いても製膜可能であり、ハンドリングに優れる。例えば、シアノ基で修飾された9-カルバゾリル基を有し、nが3以上の化合物の場合、昇華温度に達する前に熱分解が起こる。そのために蒸着法による製膜は行えず、また、各種溶媒に対する溶解性に劣るために塗布製膜にも制限が生じる。n=1もしくは2の場合、これらの問題は生じ難い。修飾置換位置については特に限定されないが、Arが表す環がピリミジン環である場合、置換基修飾9-カルバゾリル基の置換位置は、4位および6位の少なくとも一方、もしくは、4位と6位の両方であることが好ましい。 N represents the number of substitutions of the substituent-modified 9-carbazolyl group on the ring represented by Ar, and is 1 or 2. When the ring represented by Ar is any ring, n is particularly preferably 1. A compound in which n is 1 or 2 exhibits better electron transport properties than a compound in which n is 3 or more. This is presumably because the compound in which n is 1 or 2 has a more planar structure than the compound in which n is 3 or more, and has good packing properties when deposited on a substrate to form a layer. Further, the compound in which n is 1 or 2 has a sublimation temperature lower than that of a compound in which n is 3 or more, and is excellent in solubility in various solvents, so that either vapor deposition method or coating method is used. Even film formation is possible, and it is excellent in handling. For example, in the case of a compound having a 9-carbazolyl group modified with a cyano group and n is 3 or more, thermal decomposition occurs before reaching the sublimation temperature. Therefore, the film formation by the vapor deposition method cannot be performed, and the coating film formation is limited due to poor solubility in various solvents. When n = 1 or 2, these problems hardly occur. The modified substitution position is not particularly limited, but when the ring represented by Ar is a pyrimidine ring, the substitution position of the substituent-modified 9-carbazolyl group is at least one of 4-position and 6-position, or 4-position and 6-position. Both are preferred.
 Arが表す環の置換基修飾9-カルバゾリル基で置換されていないメチン基は、置換基修飾9-カルバゾリル基以外の置換基で置換されていてもよいし、無置換であってもよい。Arが表す環に置換していてもよい、置換基修飾9-カルバゾリル基以外の置換基としては、特に限定されないが、アリール基、ヘテロアリール基、アルキル基、シアノ基であることが好ましい。アリール基は、炭素数6~40のアリール基であることが好ましく、フェニル基、ナフチル基であることがより好ましい。ヘテロアリール基は、炭素数3~40のヘテロアリール基であることが好ましく、ピリジル基、ピリミジル基であることがより好ましい。アルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましい。また、アルキル基は、その水素原子の少なくとも一部がフッ素原子で置換されたフルオロアルキル基であることが好ましい。フルオロアルキル基は、アルキル基の全ての水素原子がフッ素原子で置換されたパーフルオロアルキル基であってもよいし、アルキル基の水素原子の一部だけがフッ素原子で置換された部分フッ素化アルキル基であってもよい。これらの置換基のうち、さらに置換基により置換可能なものは、これらの置換基群から選択される置換基で置換されていてもよい。 The methine group not substituted with the substituent-modified 9-carbazolyl group of the ring represented by Ar may be substituted with a substituent other than the substituent-modified 9-carbazolyl group, or may be unsubstituted. A substituent other than the substituent-modified 9-carbazolyl group that may be substituted on the ring represented by Ar is not particularly limited, but is preferably an aryl group, a heteroaryl group, an alkyl group, or a cyano group. The aryl group is preferably an aryl group having 6 to 40 carbon atoms, more preferably a phenyl group or a naphthyl group. The heteroaryl group is preferably a heteroaryl group having 3 to 40 carbon atoms, more preferably a pyridyl group or a pyrimidyl group. The alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. The alkyl group is preferably a fluoroalkyl group in which at least a part of the hydrogen atoms are substituted with fluorine atoms. The fluoroalkyl group may be a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms, or a partially fluorinated alkyl in which only some of the hydrogen atoms of the alkyl group are substituted with fluorine atoms It may be a group. Among these substituents, those that can be further substituted with a substituent may be substituted with a substituent selected from these substituent groups.
 上記のように、本発明の化合物は、そのHOMO準位が低く、最低励起三重項エネルギー準位T1が高いことがホールブロック性とエキシトンブロック性に寄与していると推測される。具体的には、本発明の化合物のHOMO準位は-6.1eV未満であることが好ましく、-6.2eV未満であることがより好ましい。HOMO準位が上記の範囲である化合物は、そのHOMOに発光層からのホールが注入されにくく、発光層外へのホールの拡散をより効果的に阻止することができる。一方、本発明の化合物の最低励起三重項エネルギー準位T1は2.8eVよりも大きいことが好ましく、2.87eVよりも大きいことがより好ましい。最低励起三重項エネルギー準位T1が上記の範囲である化合物は、発光層で発生した三重項励起子(エキシトン)のエネルギーを受け取りにくく、発光層外への三重項励起子の拡散をより効果的に阻止することができる。また、最低励起三重項エネルギー準位T1が上記の範囲である化合物は、最低励起三重項エネルギー準位S1も高いため、発光層で発生した一重項励起子(エキシトン)のエネルギーも受け取りにくく、発光層外への一重項励起子の拡散も効果的に阻止することが可能である。
 また、本発明の化合物のLUMO準位は、例えば-2.7eV以下の範囲内や、-3.3eV以上の範囲内であってもよいし、また、例えば-2.8eV以下の範囲内や、-3.2eV以上の範囲内であってもよい。
 ここで、本明細書中における「HOMO準位」、「LUMO準位」、「最低励起三重項エネルギー準位T1」は、実施例の項で説明する方法により測定される測定値であることとする。
As described above, the compound of the present invention has a low HOMO level and a high lowest excited triplet energy level T 1 is presumed to contribute to the hole blocking property and the exciton blocking property. Specifically, the HOMO level of the compound of the present invention is preferably less than −6.1 eV, and more preferably less than −6.2 eV. A compound having a HOMO level in the above range is less likely to inject holes from the light emitting layer into the HOMO, and can more effectively prevent the diffusion of holes outside the light emitting layer. On the other hand, the lowest excited triplet energy level T 1 of the compound of the present invention is preferably larger than 2.8 eV, more preferably larger than 2.87 eV. Compounds having the lowest excited triplet energy level T 1 in the above range are less likely to receive the energy of triplet excitons (excitons) generated in the light emitting layer, and are more effective in diffusing triplet excitons outside the light emitting layer. Can be blocked. In addition, since the compound having the lowest excited triplet energy level T 1 in the above range also has a higher lowest excited triplet energy level S 1, it is difficult to receive energy of singlet excitons (excitons) generated in the light emitting layer. Further, it is possible to effectively prevent the diffusion of singlet excitons outside the light emitting layer.
The LUMO level of the compound of the present invention may be, for example, in the range of −2.7 eV or lower, in the range of −3.3 eV or higher, and in the range of −2.8 eV or lower, for example. , −3.2 eV or more.
Here, “HOMO level”, “LUMO level”, and “lowest excited triplet energy level T 1 ” in this specification are measured values measured by the method described in the section of the examples. And
 以下にZ01 ~ Z22として、本発明に係る化合物の部分構造をなすカルバゾリル基の具体例を示し、これらを部分構造とする本発明に係る化合物の具体例をAr01~Ar30に例示するが、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。なお、Z01~Z22の構造式中に示されている*は結合部位を示す。Ar01~Ar30の構造式中に示されているZXXは、Z01~Z22のいずれかのカルバゾリル基を表す。 Specific examples of the carbazolyl group constituting the partial structure of the compound according to the present invention are shown below as Z01 to Z22, and specific examples of the compound according to the present invention having these partial structures are exemplified as Ar01 to Ar30. The compound represented by the general formula (1) that can be used in the present invention should not be construed as being limited by these specific examples. Note that * shown in the structural formulas of Z01 to Z22 represents a binding site. ZXX shown in the structural formulas of Ar01 to Ar30 represents any one of carbazolyl groups of Z01 to Z22.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、通常247以上であり、好ましくは290以上である。特に好ましい組み合わせはZ01とA01の組み合わせである。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。
The molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less. The lower limit of the molecular weight is usually 247 or more, preferably 290 or more. A particularly preferred combination is a combination of Z01 and A01.
The compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight.
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、有機発光素子のホールブロック層に用いることも考えられる。
 例えば、一般式(1)で表される構造を有する重合性モノマーを重合させた重合体を、有機発光素子のホールブロック層に用いることが考えられる。具体的には、一般式(1)のCz、Arのいずれかに重合性官能基を有するモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を有機発光素子のホールブロック層に用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを有機発光素子のホールブロック層に用いることも考えられる。
By applying the present invention, it is also conceivable to use a compound containing a plurality of structures represented by the general formula (1) in the molecule for the hole blocking layer of the organic light emitting device.
For example, it is conceivable to use a polymer obtained by polymerizing a polymerizable monomer having a structure represented by the general formula (1) for a hole blocking layer of an organic light emitting device. Specifically, a monomer having a polymerizable functional group in either Cz or Ar in the general formula (1) is prepared, and this is polymerized alone or copolymerized with other monomers to repeat units. It is conceivable to obtain a polymer having the above and use the polymer for a hole blocking layer of an organic light emitting device. Alternatively, it is also conceivable that dimers and trimers are obtained by coupling compounds having a structure represented by the general formula (1) and used in the hole blocking layer of the organic light emitting device.
 一般式(1)で表される構造を含む重合体を構成する繰り返し単位の構造例として、一般式(1)のCz、Arのいずれかにおける置換基が下記一般式(10)または(11)で表される構造であるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000008
As a structural example of the repeating unit constituting the polymer including the structure represented by the general formula (1), a substituent in any one of Cz and Ar in the general formula (1) is represented by the following general formula (10) or (11). What is a structure represented by these can be mentioned.
Figure JPOXMLDOC01-appb-C000008
 一般式(10)および(11)において、L1およびL2は連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(10)および(11)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
In the general formulas (10) and (11), L 1 and L 2 each represent a linking group. The linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11. Here, X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom. L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
In the general formulas (10) and (11), R 101 , R 102 , R 103 and R 104 each independently represent a substituent. Preferably, it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms. An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom, and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
 繰り返し単位の具体的な構造例として、一般式(1)のCz、Arのいずれかにおける置換基が下記式(12)~(15)であるものを挙げることができる。その置換基の2つ以上が、下記式(12)~(15)であってもよいが、好ましいのは置換基の1つが下記式(12)~(15)のいずれかである場合である。
Figure JPOXMLDOC01-appb-C000009
Specific examples of the structure of the repeating unit include those in which the substituent in any one of Cz and Ar in the general formula (1) is represented by the following formulas (12) to (15). Two or more of the substituents may be represented by the following formulas (12) to (15), but it is preferable that one of the substituents is any of the following formulas (12) to (15). .
Figure JPOXMLDOC01-appb-C000009
 これらの式(12)~(15)を含む繰り返し単位を有する重合体は、一般式(1)のCz、Arのいずれかにおける置換基をヒドロキシ基にしておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000010
In the polymer having a repeating unit containing these formulas (12) to (15), the substituent in either Cz or Ar in the general formula (1) is made into a hydroxy group, and the following compounds are reacted using it as a linker. It can be synthesized by introducing a polymerizable group and polymerizing the polymerizable group.
Figure JPOXMLDOC01-appb-C000010
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。 The polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units. The repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
[一般式(1)で表される化合物の合成方法]
 上記の一般式(1)で表される化合物は新規化合物である。
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、一般式(1)のCzが、3位と6位がフルオロアルキル基およびシアノ基からなる群より選択される置換基で置換された9-カルバゾリル基であり、Arがトリアジン環であって、その1つのメチン基が上記の9-カルバゾリル基で置換され、残りの2つのメチン基が上記の9-カルバゾリル基以外の置換基で置換された構造を有する化合物は、以下の2つの化合物を反応させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000011
[Synthesis Method of Compound Represented by General Formula (1)]
The compound represented by the above general formula (1) is a novel compound.
The compound represented by the general formula (1) can be synthesized by combining known reactions. For example, Cz in the general formula (1) is a 9-carbazolyl group substituted at the 3-position and 6-position with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group, and Ar is a triazine ring. A compound having a structure in which one methine group is substituted with the above 9-carbazolyl group and the remaining two methine groups are substituted with a substituent other than the above 9-carbazolyl group is represented by the following two compounds: It can be synthesized by reacting.
Figure JPOXMLDOC01-appb-C000011
 上記の反応式におけるR1、R2の説明については、一般式(1)における「フルオロアルキル基およびシアノ基からなる群より選択される置換基」の説明を参照することができ、R3、R4の説明については、Arが表す環に置換してもよい「置換基修飾9-カルバゾリル基以外の置換基」の説明を参照することができる。Xはハロゲン原子を表し、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子、ヨウ素原子が好ましい。
 上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
For the explanation of R 1 and R 2 in the above reaction formula, the explanation of “substituent selected from the group consisting of a fluoroalkyl group and a cyano group” in the general formula (1) can be referred to, R 3 , For the description of R 4 , reference can be made to the description of “substituents other than the substituent-modified 9-carbazolyl group” which may be substituted on the ring represented by Ar. X represents a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom, a bromine atom, and an iodine atom are preferable.
The details of the above reaction can be referred to the synthesis examples described below. The compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
[有機発光素子]
 本発明の一般式(1)で表される化合物は、ホールブロック性およびエキシトンブロック性に優れており、特に、青色発光材料のような、最低励起三重項エネルギー準位T1が高い発光材料を発光層が含む場合でも、そのエキシトンが発光層から拡散することを効果的に阻止することができる。このため、本発明の一般式(1)で表される化合物は、ホールブロック材料として有用であり、有機発光素子のホールブロック材料として効果的に用いることができる。そして、そのような化合物をホールブロック材料として用いた有機発光素子は、発光層に注入されたホールの発光層からの拡散が阻止されるために、ホールと電子の再結合が高い確率で起こり、再結合エネルギーを効率よく発生することができる。また、再結合エネルギーにより発生した発光材料のエキシトンが発光層から拡散することも効果的に阻止されるため、そのエキシトンのエネルギーを効率よく発光に利用することができる。以上のことから、本発明の一般式(1)で表される化合物をホールブロック材料として用いることにより、有機発光素子の発光効率を飛躍的に向上させることができる。
[Organic light emitting device]
The compound represented by the general formula (1) of the present invention is excellent in hole blocking property and exciton blocking property, and in particular, a light emitting material having a high lowest excited triplet energy level T 1 such as a blue light emitting material. Even when the light emitting layer is included, the exciton can be effectively prevented from diffusing from the light emitting layer. For this reason, the compound represented by General formula (1) of this invention is useful as a hole block material, and can be used effectively as a hole block material of an organic light emitting element. And in an organic light emitting device using such a compound as a hole blocking material, diffusion of holes injected into the light emitting layer from the light emitting layer is prevented, so that recombination of holes and electrons occurs with a high probability, Recombination energy can be generated efficiently. Further, since the exciton of the light emitting material generated by the recombination energy is effectively prevented from diffusing from the light emitting layer, the energy of the exciton can be efficiently used for light emission. From the above, by using the compound represented by the general formula (1) of the present invention as the hole block material, the light emission efficiency of the organic light emitting device can be dramatically improved.
 本発明の一般式(1)で表される化合物は、有機フォトルミネッセンス素子(有機PL素子)および有機エレクトロルミネッセンス素子(有機EL素子)のいずれに適用してもよいが、有機エレクトロルミネッセンス素子に適用した場合に、より高い効果を得ることができる。
 本発明の一般式(1)で表される化合物を適用した有機フォトルミネッセンス素子は、基板上に少なくとも発光層と一般式(1)で表される化合物を含む層を形成した構造を有する。ここで、一般式(1)で表される化合物を含む層は、例えば、発光層と基板の間、および、発光層の基板と反対側の少なくとも一方に配され、発光層の外にエキシトンが拡散することを素子するエキシトンブロック層として機能する。
 また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層と、発光層の陰極側に接するように形成されたホールブロック層を含むものであり、このホールブロック層が本発明の一般式(1)で表される化合物を含む。有機層は、発光層とホールブロック層のみからなるものであってもよいし、発光層とホールブロック層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、ホール輸送層、ホール注入層、電子ブロック層、電子注入層、電子輸送層、エキシトンブロック層などを挙げることができる。ホール輸送層はホール注入機能を有したホール注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3はホール注入層、4はホール輸送層、5は発光層、6はホールブロック層、7は電子輸送層、8は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
The compound represented by the general formula (1) of the present invention may be applied to either an organic photoluminescence element (organic PL element) or an organic electroluminescence element (organic EL element), but is applicable to an organic electroluminescence element. In this case, a higher effect can be obtained.
The organic photoluminescence device to which the compound represented by the general formula (1) of the present invention is applied has a structure in which at least a light emitting layer and a layer containing the compound represented by the general formula (1) are formed on a substrate. Here, the layer containing the compound represented by the general formula (1) is disposed, for example, between the light emitting layer and the substrate and at least one side of the light emitting layer opposite to the substrate, and excitons are formed outside the light emitting layer. It functions as an exciton block layer that diffuses the element.
The organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode. The organic layer includes at least a light emitting layer and a hole blocking layer formed so as to be in contact with the cathode side of the light emitting layer, and the hole blocking layer includes a compound represented by the general formula (1) of the present invention. . The organic layer may be composed of only the light emitting layer and the hole blocking layer, or may have one or more organic layers in addition to the light emitting layer and the hole blocking layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron block layer, an electron injection layer, an electron transport layer, and an exciton block layer. The hole transport layer may be a hole injection / transport layer having a hole injection function, and the electron transport layer may be an electron injection / transport layer having an electron injection function. A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is a hole block layer, 7 is an electron transport layer, and 8 is a cathode.
Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board | substrate and a light emitting layer corresponds also to the board | substrate and light emitting layer of an organic photo-luminescence element.
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(substrate)
The organic electroluminescence device of the present invention is preferably supported on a substrate. The substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements. For example, a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(anode)
As the anode in the organic electroluminescence element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used. For the anode, a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the material which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(cathode)
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic electroluminescence element is transparent or translucent, the emission luminance is advantageously improved.
In addition, by using the conductive transparent material mentioned in the description of the anode as a cathode, a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することによりエキシトンが生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。
 発光層に含まれる発光材料は、蛍光発光材料であってもよいし、りん光発光材料であってもよい。また、発光材料は、通常の蛍光とともに遅延蛍光を放射する遅延蛍光材料であってもよい。このうち、遅延蛍光材料を発光材料として用いることにより、高い発光効率を得ることができる。
 また、本発明の有機エレクトロルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項状態のエキシトンおよび三重項状態のエキシトンを、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が発光材料よりも高い値を有する有機化合物を用いることができる。その結果、発光材料に生成した一重項状態のエキシトンおよび三重項状態のエキシトンを、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項状態のエキシトンおよび三重項状態のエキシトンを十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光、遅延蛍光発光、燐光発光のいずれであってもよく、これらの発光が混在していてもよい。また、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(Light emitting layer)
The light emitting layer is a layer that emits light after exciton is generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer, Preferably, a luminescent material and a host material are included.
The light emitting material contained in the light emitting layer may be a fluorescent light emitting material or a phosphorescent light emitting material. The light emitting material may be a delayed fluorescent material that emits delayed fluorescence together with normal fluorescence. Among these, high luminous efficiency can be obtained by using the delayed fluorescent material as the light emitting material.
In order for the organic electroluminescence device of the present invention to exhibit high luminous efficiency, it is important to confine singlet and triplet excitons generated in the light emitting material in the light emitting material. Therefore, it is preferable to use a host material in addition to the light emitting material in the light emitting layer. As the host material, an organic compound in which at least one of excited singlet energy and excited triplet energy has a value higher than that of the light-emitting material can be used. As a result, singlet and triplet excitons generated in the light-emitting material can be confined in the molecules of the light-emitting material of the present invention, and the light emission efficiency can be sufficiently extracted. However, even if the singlet state excitons and the triplet state excitons cannot be sufficiently confined, high emission efficiency may be obtained, so any host material that can achieve high emission efficiency may be used. It can use for this invention without a restriction | limiting especially. In the organic electroluminescence device of the present invention, light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This light emission may be any of fluorescent light emission, delayed fluorescent light emission, and phosphorescent light emission, and these light emission may be mixed. In addition, light emission from the host material may be partly or partly emitted.
When the host material is used, the amount of the light emitting material contained in the light emitting layer is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% by weight or less. Is preferably 20% by weight or less, more preferably 10% by weight or less.
The host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
 上記のように、発光層の発光材料は、高い発光効率が得られることから、遅延蛍光材料であることが好ましい。遅延蛍光材料により高い発光効率が得られるのは、以下の原理による。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成したエキシトンのうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態のエキシトンとの相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態のエキシトンは通常通り蛍光を放射する。一方、励起三重項状態のエキシトンは、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型のエキシトン移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 そして、本発明では、一般式(1)で表される化合物を含むホールブロック層が、発光層の陰極側に接するように形成されていることにより、発光層中で発生した励起三重項状態のエキシトンおよび励起一重項状態のエキシトンが陰極側に拡散することが阻止され、発光層中において励起三重項状態から励起一重項状態への逆項間交差、励起一重項状態のエキシトンの放射失活が高い確率で発生する。このため、発光効率をより一層向上させることができる。
 以下に、発光層に用いることができる好ましい遅延蛍光材料を挙げる。ただし、本発明において用いることができる発光材料は、以下の遅延蛍光材料によって限定的に解釈されることはない。
As described above, the light emitting material of the light emitting layer is preferably a delayed fluorescent material because high light emission efficiency can be obtained. High luminous efficiency can be obtained by the delayed fluorescent material based on the following principle.
In an organic electroluminescence element, carriers are injected into a light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light. In general, in the case of a carrier injection type organic electroluminescence element, 25% of the generated excitons are excited to an excited singlet state, and the remaining 75% are excited to an excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used. However, since the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high. On the other hand, delayed fluorescent materials, after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence. To do. In the organic electroluminescence device, it is considered that a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful. When a delayed fluorescent material is used for the organic electroluminescence element, the excited singlet exciton emits fluorescence as usual. On the other hand, exciton in the excited triplet state absorbs heat generated by the device and crosses the excited singlet to emit fluorescence. At this time, since the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in the excited singlet state, which normally produced only 25%, is raised to 25% or more by absorbing thermal energy after carrier injection. It becomes possible. If a compound that emits strong fluorescence and delayed fluorescence even at a low temperature of less than 100 ° C is used, the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
In the present invention, the hole blocking layer containing the compound represented by the general formula (1) is formed so as to be in contact with the cathode side of the light emitting layer, so that the excited triplet state generated in the light emitting layer is obtained. Exciton and excited singlet state excitons are prevented from diffusing to the cathode side, and the reverse triplet state to excited singlet state crossing from the excited triplet state to the excited singlet state excitons in the light emitting layer. It occurs with high probability. For this reason, luminous efficiency can be further improved.
Hereinafter, preferred delayed fluorescent materials that can be used for the light emitting layer are listed. However, the light-emitting material that can be used in the present invention is not limited to the following delayed fluorescent material.
 遅延蛍光を放射する遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076に記載される一般式に包含される化合物、特に例示化合物を好ましく挙げることができる。これらの公報は、本明細書の一部としてここに引用している。
 また、遅延蛍光を放射する遅延蛍光材料として、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される一般式に包含される化合物、特に例示化合物を好ましく挙げることができる。これらの公報も、本明細書の一部としてここに引用している。
As delayed fluorescent materials that emit delayed fluorescence, paragraphs 0008 to 0048 and 0095 to 0133 of WO2013 / 154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013 / 011954, and paragraphs 0007 to 0033 of WO2013 / 011955 are disclosed. And 0059 to 0066, paragraphs 0008 to 0071 and 0118 to 0133 of WO2013 / 081088, paragraphs 0009 to 0046 and 0093 to 0134 of JP2013-256490A, paragraphs 0008 to 0020 of JP2013-116975A and 0038 to 0040, paragraphs 0007 to 0032 and 0079 to 0084 of WO 2013/133359, paragraphs 0008 to 005 of WO 2013/161437 And 0101 to 0121, paragraphs 0007 to 0041 and 0060 to 0069 of JP 2014-9352 A, compounds included in the general formulas described in paragraphs 0008 to 0048 and 0067 to 0076 of JP 2014-9224 A, In particular, exemplary compounds can be mentioned preferably. These publications are hereby incorporated by reference as part of this specification.
Further, as delayed fluorescent materials that emit delayed fluorescence, JP2013-253121A, WO2013 / 133359, WO2014 / 034535, WO2014 / 115743, WO2014 / 122895, WO2014 / 126200, WO2014 / 136758, WO2014 / 133121, WO2014 / 136860, WO2014 / 196585, WO2014 / 189122, WO2014 / 168101, WO2015 / 008580, WO2014 / 203840, WO2015 / No. 002213, WO2015 / 016200, WO2015 / 019725, WO2015 / 072470, WO201 No. / 108049, WO2015 / 080182, WO2015 / 072537, WO2015 / 080183, JP2015-129240, WO2015 / 129714, WO2015 / 129715, WO2015 / 133501, WO2015 / 136880, WO2015 / 137244, WO2015 / 137202, WO2015 / 137136, WO2015 / 146541, and WO2015 / 159541, particularly exemplified compounds. Preferable examples can be given. These publications are also cited herein as part of this specification.
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、ホール注入層と電子注入層があり、陽極と発光層またはホール輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(Injection layer)
The injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the light emission luminance. There are a hole injection layer and an electron injection layer, and between the anode and the light emitting layer or the hole transport layer, and the cathode. Between the light emitting layer and the electron transport layer. The injection layer can be provided as necessary.
(ブロック層)
 ブロック層は、発光層中に存在する電荷(電子もしくはホール)および/またはエキシトンの発光層外への拡散を阻止することができる層である。ホールブロック層は発光層および電子輸送層の間に配置されることができ、ホールが電子輸送層の方に向かって発光層を通過することを阻止する。同様に、電子ブロック層は、発光層およびホール輸送層の間に配置されることができ、電子がホール輸送層の方に向かって発光層を通過することを阻止する。ブロック層はまた、エキシトンが発光層の外側に拡散することを阻止するために用いることができる。すなわち電子ブロック層、ホールブロック層はそれぞれエキシトンブロック層としての機能も兼ね備えることができる。本明細書でいうホールブロック層またはエキシトンブロック層は、一つの層でホールブロック層およびエキシトンブロック層の機能を有する層を含む意味で使用され、電子ブロック層またはエキシトンブロック層も、一つの層で電子ブロック層およびエキシトンブロック層の機能を有する層を含む意味で使用される。
(Block layer)
The block layer is a layer that can prevent electric charges (electrons or holes) and / or excitons existing in the light emitting layer from diffusing outside the light emitting layer. The hole blocking layer can be disposed between the light emitting layer and the electron transport layer, and prevents holes from passing through the light emitting layer toward the electron transport layer. Similarly, the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and prevents electrons from passing through the light emitting layer toward the hole transport layer. The blocking layer can also be used to prevent excitons from diffusing outside the emissive layer. That is, each of the electron block layer and the hole block layer can also function as an exciton block layer. The hole block layer or exciton block layer used in the present specification is used in the sense of including a layer having the functions of a hole block layer and an exciton block layer in one layer, and the electron block layer or exciton block layer is also a single layer. It is used in the meaning including a layer having a function of an electron block layer and an exciton block layer.
(ホールブロック層)
 ホールブロック層とは広い意味では電子輸送層の機能を有する。ホールブロック層は電子を輸送しつつ、ホールが電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子とホールの再結合確率を向上させることができる。
(Hall block layer)
The hole block layer has a function of an electron transport layer in a broad sense. The hole blocking layer has a role of blocking holes from reaching the electron transporting layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
(電子ブロック層)
 電子ブロック層とは、広い意味ではホールを輸送する機能を有する。電子ブロック層はホールを輸送しつつ、電子がホール輸送層へ到達することを阻止する役割があり、これにより発光層中での電子とホールが再結合する確率を向上させることができる。
(Electronic block layer)
The electron blocking layer has a function of transporting holes in a broad sense. The electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer.
(エキシトンブロック層)
 エキシトンブロック層とは、発光層内でホールと電子が再結合することにより生じたエキシトンが電荷輸送層に拡散することを阻止するための層であり、本層の挿入によりエキシトンを効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。エキシトンブロック層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、エキシトンブロック層を陽極側に有する場合、ホール輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接するエキシトンブロック層との間には、ホール注入層や電子ブロック層などを有することができ、陰極と、発光層の陰極側に隣接するエキシトンブロック層との間には、電子注入層、電子輸送層、ホールブロック層などを有することができる。ブロック層を配置する場合、ブロック層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
 上記のように、本明細書でいうホールブロック層またはエキシトンブロック層は、一つの層でホールブロック層およびエキシトンブロック層の機能を有する層を含む意味で使用される。すなわち、有機エレクトロルミネッセンス素子は、ホールブロック層とエキシトンブロック層を別々に有していてもよいし、ホールブロック層がエキシトンブロック層の機能を兼ね備えていてもよい。前者の場合、ホールブロック層とエキシトンブロック層のそれぞれの材料として、本発明の一般式(1)で表される化合物群から選択される1種または2種以上の化合物を用いることができる。ここで、ホールブロック層とエキシトンブロック層に用いる化合物は異なる化合物であることが好ましい。具体的には、ホールブロック層にはHOMO準位がより低い化合物を用いることが好ましく、エキシトンブロック層には最低励起三重項エネルギー準位T1がより高い化合物を用いることが好ましい。また、ホールブロック層とエキシトンブロック層を別々に設ける場合には、エキシトンブロック層が発光層の陰極側に接するように形成され、ホールブロック層がエキシトンブロック層の陰極側に形成されていることが好ましい。一方、後者のホールブロック層がエキシトンブロック層の機能を兼ねる場合、ホールブロック層の材料として、本発明の一般式(1)で表される化合物群から選択される1種または2種以上の化合物を用いることができる。本発明の一般式(1)で表される化合物は、ホールブロック性とエキシトンブロック性の両方に優れるため、ホールブロック層がエキシトンブロック層の機能も兼ねる場合のホールブロック層の材料として効果的に用いることができる。
(Exciton block layer)
The exciton block layer is a layer to prevent exciton generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to confine in the layer, and the luminous efficiency of the device can be improved. The exciton block layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously. That is, when the exciton block layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, In between, the layer can be inserted adjacent to the light emitting layer. Further, a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton block layer adjacent to the anode side of the light emitting layer, and the exciton block layer adjacent to the cathode and the cathode side of the light emitting layer. And an electron injection layer, an electron transport layer, a hole block layer, and the like. When the block layer is arranged, it is preferable that at least one of the excited singlet energy and the excited triplet energy of the material used as the block layer is higher than the excited singlet energy and the excited triplet energy of the light emitting material.
As described above, the hole block layer or exciton block layer referred to in this specification is used in the sense of including a layer having the functions of a hole block layer and an exciton block layer in one layer. That is, the organic electroluminescent element may have a hole block layer and an exciton block layer separately, or the hole block layer may have the function of an exciton block layer. In the former case, one or more compounds selected from the compound group represented by the general formula (1) of the present invention can be used as the material for the hole block layer and the exciton block layer. Here, the compounds used for the hole block layer and the exciton block layer are preferably different compounds. Specifically, a compound having a lower HOMO level is preferably used for the hole block layer, and a compound having a higher lowest excited triplet energy level T 1 is preferably used for the exciton block layer. When the hole block layer and the exciton block layer are provided separately, the exciton block layer is formed so as to be in contact with the cathode side of the light emitting layer, and the hole block layer is formed on the cathode side of the exciton block layer. preferable. On the other hand, when the latter hole block layer also serves as the exciton block layer, one or more compounds selected from the compound group represented by the general formula (1) of the present invention are used as the material of the hole block layer. Can be used. Since the compound represented by the general formula (1) of the present invention is excellent in both the hole blocking property and the exciton blocking property, it is effective as a material for the hole blocking layer when the hole blocking layer also functions as the exciton blocking layer. Can be used.
(ホール輸送層)
 ホール輸送層とはホールを輸送する機能を有するホール輸送材料からなり、ホール輸送層は単層または複数層設けることができる。
 ホール輸送材料としては、ホールの注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知のホール輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(Hall transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino acids Substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers, include porphyrin compounds, aromatics It is preferable to use a tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(ホール阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
The electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer. Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物をホールブロック層やエキシトンブロック層に用いるだけでなく、これらの層以外の層にも用いてもよい。その際、ホールブロック層およびエキシトンブロック層に用いる一般式(1)で表される化合物と、これらの層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、発光層のホスト材料として、あるいは、上記の注入層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。 When producing an organic electroluminescence device, the compound represented by the general formula (1) may be used not only for the hole block layer and the exciton block layer but also for layers other than these layers. At that time, the compound represented by the general formula (1) used for the hole block layer and the exciton block layer and the compound represented by the general formula (1) used for a layer other than these layers may be the same or different. It may be. For example, you may use the compound represented by General formula (1) as a host material of a light emitting layer, or said injection | pouring layer, an electron carrying layer, etc. The method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R2~R7は、各々独立に水素原子または置換基を表し、nは3~5の整数を表す。 Below, the preferable material which can be used for an organic electroluminescent element is illustrated concretely. However, the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function. In the structural formulas of the following exemplary compounds, R and R 2 to R 7 each independently represent a hydrogen atom or a substituent, and n represents an integer of 3 to 5.
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。ホスト材料としては、バイポーラー性 (正孔と電子を両方よく流す) であっても、ユニポーラー性であっても良く、発光材料よりもT1準位が高いものであることが好ましい。より好ましくはバイポーラー性を有し、発光材料よりもT1準位が高いものである。 First, preferred compounds that can also be used as a host material for the light emitting layer are listed. The host material may be bipolar (both holes and electrons flow well) or unipolar, and preferably has a higher T 1 level than the light-emitting material. More preferably, it is bipolar and has a T 1 level higher than that of the light emitting material.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 次に、ホール注入材料として用いることができる好ましい化合物例を挙げる。 Next, preferred compound examples that can be used as the hole injection material are given.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 次に、ホール輸送材料として用いることができる好ましい化合物例を挙げる。 Next, preferred examples of compounds that can be used as a hole transport material are given.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。 Next, preferred examples of compounds that can be used as an electron blocking material are given.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。 Next, preferred compound examples that can be used as an electron transporting material are listed.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。 Next, preferred examples of compounds that can be used as an electron injection material will be given.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。 Further preferred compound examples are given as materials that can be added. For example, adding as a stabilizing material can be considered.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
The organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
On the other hand, phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates. In order to measure the excited triplet energy of a normal organic compound, it can be measured by observing light emission under extremely low temperature conditions.
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、ホールブロック層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。 The organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved luminous efficiency can be obtained by incorporating the compound represented by the general formula (1) into the hole blocking layer. The organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention. For details, see “Organic EL Display” (Ohm Co., Ltd.) written by Shizushi Tokito, Chiba Adachi and Hideyuki Murata. ) Can be referred to. In particular, the organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、絶対外部量子効率測定システム(浜松ホトニクス社製:C9920-12)、分光計(浜松ホトニクス社製:PMA-12)を用いて行った。発光スペクトルの測定には、励起光源に窒素レーザー(Lasertechnik Berlin社製、M NL200)を用い、検出器にストリークカメラ(浜松ホトニクス社製、C4334)を用いた。
 また、各材料のエネルギー準位および昇華点は以下の方法により測定した。
The features of the present invention will be described more specifically with reference to synthesis examples and examples. The following materials, processing details, processing procedures, and the like can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
The light emission characteristics were evaluated using a source meter (Keithley: 2400 series), an absolute external quantum efficiency measurement system (Hamamatsu Photonics: C9920-12), and a spectrometer (Hamamatsu Photonics: PMA-12). I went. For measurement of the emission spectrum, a nitrogen laser (Lasertechnik Berlin, MNL200) was used as an excitation light source, and a streak camera (Hamamatsu Photonics, C4334) was used as a detector.
Moreover, the energy level and sublimation point of each material were measured by the following methods.
 HOMO準位については、光電子分光装置(理研計器社製:AC-3)を用いて、測定対象化合物のイオン化ポテンシャルを測定し、その測定されたイオン化ポテンシャルの値をHOMO準位とした。また、LUMO準位は、分光光度計(PerkinElmer社製LAMBDA950-PKA)による光学吸収端より、測定対象化合物のバンドギャップを見積もり、そのバンドギャップを、上記の光電子分光装置で測定されたイオン化ポテンシャルに加算することで求めた。 Regarding the HOMO level, the ionization potential of the measurement target compound was measured using a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-3), and the value of the measured ionization potential was defined as the HOMO level. The LUMO level is estimated from the optical absorption edge of a spectrophotometer (LAMBDA950-PKA manufactured by PerkinElmer), and the band gap of the measurement target compound is estimated. Obtained by adding.
 最低励起三重項エネルギー準位T1は以下の方法で算出した。
 測定対象化合物を蒸着することでSi基板上に厚さ100nmの試料を作製した。その試料を5[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をT1とした。
  換算式:T1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
The lowest excited triplet energy level T 1 was calculated by the following method.
A sample having a thickness of 100 nm was produced on a Si substrate by vapor-depositing the measurement target compound. The sample was cooled to 5 [K], the sample for phosphorescence measurement was irradiated with excitation light (337 nm), and the phosphorescence intensity was measured using a streak camera. By integrating the luminescence from 1 millisecond after the excitation light incidence to 10 milliseconds after the incidence, a phosphorescence spectrum having the luminescence intensity on the vertical axis and the wavelength on the horizontal axis was obtained. A tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and a wavelength value λ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained. A value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as T 1 .
Conversion formula: T 1 [eV] = 1239.85 / λedge
The tangent to the short wavelength rising edge of the phosphorescence spectrum was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, tangents at each point on the curve are considered toward the long wavelength side. The slope of this tangent line increases as the curve rises (that is, as the vertical axis increases). The tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
In addition, the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side. The tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
 昇華点については、熱重量測定装置 (Bruker社製TG-DTA2400SA)を用いて、1Pa下で測定対象化合物の重量が5重量%減少する温度を測定し、その温度を昇華点とした。 As for the sublimation point, a temperature at which the weight of the compound to be measured was reduced by 5% by weight under 1 Pa was measured using a thermogravimetric measuring instrument (TG-DTA2400SA manufactured by Bruker), and the temperature was defined as the sublimation point.
(合成例1) 化合物1の合成
Figure JPOXMLDOC01-appb-C000030
Synthesis Example 1 Synthesis of Compound 1
Figure JPOXMLDOC01-appb-C000030
 原料の3,6-ジシアノカルバゾールは既知法(Macromolecules,2014,47,2875-2882.)を参考に3,6-ジブロモカルバゾールから合成した。200mLナスフラスコに水素化ナトリウム(60重量%油状、480mg)を入れ、窒素置換した。脱水ヘキサン(20mL)を加えて室温下撹拌後、静置し、上澄みを除去した。N-メチルピロリドン(NMP、100mL)を入れ、室温下撹拌しながら3,6-ジシアノカルバゾール(2.17g)を加えた。室温で1時間撹拌後、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン(2.14g)を加えた。反応容器をオイルバス中に移し、170℃に加熱しながら14時間撹拌した。放冷後、撹拌しながら水(100mL)を加えた。析出物を桐山ロートでろ取し、水、アセトンで順に洗浄後、昇華精製することで目的物(850mg、収率24%)を得た。 The raw material 3,6-dicyanocarbazole was synthesized from 3,6-dibromocarbazole with reference to a known method (Macromolecules, 2014, 47, 2875-2882.). Sodium hydride (60 wt% oil, 480 mg) was placed in a 200 mL eggplant flask and purged with nitrogen. Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed. N-methylpyrrolidone (NMP, 100 mL) was added, and 3,6-dicyanocarbazole (2.17 g) was added with stirring at room temperature. After stirring at room temperature for 1 hour, 2-chloro-4,6-diphenyl-1,3,5-triazine (2.14 g) was added. The reaction vessel was transferred into an oil bath and stirred for 14 hours while heating to 170 ° C. After allowing to cool, water (100 mL) was added with stirring. The precipitate was collected by filtration with a Kiriyama funnel, washed successively with water and acetone, and purified by sublimation to obtain the desired product (850 mg, yield 24%).
(合成例2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000031
Synthesis Example 2 Synthesis of Compound 2
Figure JPOXMLDOC01-appb-C000031
 原料の2,7-ジトリフルオロメチルカルバゾールは既知法(Chem.Mater.,2015,27(5),1772-1779.)を参考に合成した。100mLナスフラスコに水素化ナトリウム(60重量%油状、288mg)を入れ、窒素置換した。脱水ヘキサン(20mL)を加えて室温下撹拌後、静置し、上澄みを除去した。N-メチルピロリドン(NMP、60mL)を入れ、室温下撹拌しながら2,7-ジトリフルオロメチルカルバゾール(1.82g)を加えた。室温で1時間撹拌後、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン(1.28g)を加えた。反応容器をオイルバス中に移し、170℃に加熱しながら14時間撹拌した。放冷後、撹拌しながら水(60mL)を加えた。析出物を桐山ロートでろ取し、水、酢酸エチルで順に洗浄後、昇華精製することで目的物(987mg、収率38%)を得た。 The raw material 2,7-ditrifluoromethylcarbazole was synthesized with reference to a known method (Chem. Mater., 2015, 27 (5), 1772-1779.). Sodium hydride (60 wt% oil, 288 mg) was placed in a 100 mL eggplant flask and purged with nitrogen. Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed. N-methylpyrrolidone (NMP, 60 mL) was added, and 2,7-ditrifluoromethylcarbazole (1.82 g) was added with stirring at room temperature. After stirring at room temperature for 1 hour, 2-chloro-4,6-diphenyl-1,3,5-triazine (1.28 g) was added. The reaction vessel was transferred into an oil bath and stirred for 14 hours while heating to 170 ° C. After standing to cool, water (60 mL) was added with stirring. The precipitate was collected by filtration with a Kiriyama funnel, washed in turn with water and ethyl acetate, and purified by sublimation to obtain the desired product (987 mg, 38% yield).
(合成例3) 化合物3の合成
Figure JPOXMLDOC01-appb-C000032
Synthesis Example 3 Synthesis of Compound 3
Figure JPOXMLDOC01-appb-C000032
 200mLナスフラスコに水素化ナトリウム(60重量%油状、480mg)を入れ、窒素置換した。脱水ヘキサン(20mL)を加えて室温下撹拌後、静置し、上澄みを除去した。テトラヒドロフラン(THF、100mL)を入れ、室温下撹拌しながら3,6-ジシアノカルバゾール(2.17g)を加えた。室温で1時間撹拌後、4,6-ジクロロ-2-トリフルオロメチル-1,3-ピリミジン(870mg)を加えた。反応容器をオイルバス中に移し、加熱還流しながら9時間撹拌した。放冷後、撹拌しながら水(100mL)を加えた。析出物を桐山ロートでろ取し、水、アセトンで順に洗浄後、昇華精製することで目的物(508mg、収率22%)を得た。 Sodium hydride (60 wt% oil, 480 mg) was placed in a 200 mL eggplant flask and purged with nitrogen. Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed. Tetrahydrofuran (THF, 100 mL) was added, and 3,6-dicyanocarbazole (2.17 g) was added with stirring at room temperature. After stirring at room temperature for 1 hour, 4,6-dichloro-2-trifluoromethyl-1,3-pyrimidine (870 mg) was added. The reaction vessel was transferred into an oil bath and stirred for 9 hours while heating under reflux. After allowing to cool, water (100 mL) was added with stirring. The precipitate was collected by filtration with a Kiriyama funnel, washed successively with water and acetone, and purified by sublimation to obtain the desired product (508 mg, yield 22%).
(合成例4) 化合物4の合成
Figure JPOXMLDOC01-appb-C000033
(Synthesis Example 4) Synthesis of Compound 4
Figure JPOXMLDOC01-appb-C000033
 100mLナスフラスコに水素化ナトリウム(60重量%油状、288mg)を入れ、窒素置換した。脱水ヘキサン(20mL)を加えて室温下撹拌後、静置し、上澄みを除去した。テトラヒドロフラン(THF、60mL)を入れ、室温下撹拌しながら2,7-ジトリフルオロメチルカルバゾール(1.82g)を加えた。室温で1時間撹拌後、4,6-ジクロロ-2-トリフルオロメチル-1,3-ピリミジン(521mg)を加えた。反応容器をオイルバス中に移し、70℃に加熱しながら20時間撹拌した。放冷後、反応液を濃縮した。残渣を水、酢酸エチルで順に洗浄後、昇華精製することで目的物(325mg、収率18%)を得た。 Sodium hydride (60 wt% oil, 288 mg) was placed in a 100 mL eggplant flask and purged with nitrogen. Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed. Tetrahydrofuran (THF, 60 mL) was added, and 2,7-ditrifluoromethylcarbazole (1.82 g) was added with stirring at room temperature. After stirring at room temperature for 1 hour, 4,6-dichloro-2-trifluoromethyl-1,3-pyrimidine (521 mg) was added. The reaction vessel was transferred into an oil bath and stirred for 20 hours while heating to 70 ° C. The reaction liquid was concentrated after standing_to_cool. The residue was washed successively with water and ethyl acetate, and purified by sublimation to obtain the desired product (325 mg, yield 18%).
(合成例5) 比較化合物1の合成
Figure JPOXMLDOC01-appb-C000034
Synthesis Example 5 Synthesis of Comparative Compound 1
Figure JPOXMLDOC01-appb-C000034
 100mLナスフラスコに水素化ナトリウム(60重量%油状、480mg)を入れ、窒素置換した。脱水ヘキサン(20mL)を加えて室温下撹拌後、静置し、上澄みを除去した。N-メチルピロリドン(NMP、100mL)を入れ、室温下撹拌しながら3,6-ジシアノカルバゾール(2.17g)を加えた。室温で1時間撹拌後、2,4,6-トリクロロ-1,3,5-トリアジン(500mg)を加えた。反応容器をオイルバス中に移し、170℃に加熱しながら14時間撹拌した。放冷後、撹拌しながら水(300mL)を加えた。析出物を桐山ロートでろ取し、水、クロロホルム、メタノールで順に洗浄することで目的物(1.5g、収率90%)を得た。 Sodium hydride (60 wt% oil, 480 mg) was placed in a 100 mL eggplant flask and purged with nitrogen. Dehydrated hexane (20 mL) was added, and the mixture was stirred at room temperature and allowed to stand, and the supernatant was removed. N-methylpyrrolidone (NMP, 100 mL) was added, and 3,6-dicyanocarbazole (2.17 g) was added with stirring at room temperature. After stirring for 1 hour at room temperature, 2,4,6-trichloro-1,3,5-triazine (500 mg) was added. The reaction vessel was transferred into an oil bath and stirred for 14 hours while heating to 170 ° C. After standing to cool, water (300 mL) was added with stirring. The precipitate was collected by filtration with a Kiriyama funnel and washed in turn with water, chloroform, and methanol to obtain the desired product (1.5 g, yield 90%).
(合成例6) 比較化合物2の合成
Figure JPOXMLDOC01-appb-C000035
Synthesis Example 6 Synthesis of Comparative Compound 2
Figure JPOXMLDOC01-appb-C000035
 原料に2,7-ジシアノカルバゾールを用いた以外は合成例5と同様に反応させた。 The reaction was conducted in the same manner as in Synthesis Example 5 except that 2,7-dicyanocarbazole was used as a raw material.
 合成例1~6で合成した化合物1~4、比較化合物1,2について、HOMO準位及びLUMO準位、最低励起三重項エネルギー準位T1、昇華点を測定した結果を表1に示す。なお、比較化合物1,2は熱分解が起こるために昇華することができなかった。また、クロロホルムやアセトン等の各種溶媒に対して不溶であったため、蒸着法、塗布法共に製膜することが困難であった。そのため、薄膜を用いた、HOMO準位及びLUMO準位、最低励起三重項エネルギー準位T1の測定はできなかった。 Table 1 shows the results of measuring the HOMO level, LUMO level, lowest excited triplet energy level T 1 , and sublimation point of Compounds 1 to 4 and Comparative Compounds 1 and 2 synthesized in Synthesis Examples 1 to 6. Comparative compounds 1 and 2 could not be sublimated due to thermal decomposition. In addition, since it was insoluble in various solvents such as chloroform and acetone, it was difficult to form a film by both the vapor deposition method and the coating method. Therefore, the HOMO level, LUMO level, and lowest excited triplet energy level T 1 could not be measured using a thin film.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表1に示すように、化合物1~4はいずれも深いHOMO準位と高い最低励起三重項エネルギー準位T1を有していた。 As shown in Table 1, all of Compounds 1 to 4 had a deep HOMO level and a high lowest excited triplet energy level T 1 .
[電子オンリー素子の作製と電子輸送特性の評価]
(実施例1) 化合物1を用いた電子オンリー素子の作製
 膜厚150nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度10-4~10-5Paで積層した。まず、ITO上に化合物1を100nmの厚さに形成し、その上に、フッ化リチウム(LiF)を0.8nmの厚さに蒸着し、その上に、アルミニウム(Al)を100nmの厚さに蒸着することにより、電子オンリー素子とした。
[Production of electron-only devices and evaluation of electron transport properties]
Example 1 Production of an Electronic Only Element Using Compound 1 Each thin film was vacuum-deposited on a glass substrate on which an anode made of indium tin oxide (ITO) having a film thickness of 150 nm was formed by a vacuum deposition method. Lamination was performed at 10 −4 to 10 −5 Pa. First, Compound 1 is formed to a thickness of 100 nm on ITO, on which lithium fluoride (LiF) is vapor-deposited to a thickness of 0.8 nm, and then aluminum (Al) is deposited to a thickness of 100 nm. By vapor deposition, an electronic only element was obtained.
(比較例1,2,3) 比較化合物3,4,5を用いた電子オンリー素子の作製
 化合物1のかわりに比較化合物3,4,5を用いた以外は実施例1と同様に、電子オンリー素子を作製した。
Figure JPOXMLDOC01-appb-C000037
(Comparative Examples 1, 2, 3) Preparation of an electronic-only device using comparative compounds 3, 4, 5 As in Example 1, except that comparative compounds 3, 4, 5 were used instead of compound 1, electronic-only devices were used. An element was produced.
Figure JPOXMLDOC01-appb-C000037
 実施例1および比較例1、2、3で製造した電子オンリー素子の電圧-電流密度特性を図2に示し、100mAh/cm2の一定電流密度で電子を流した際の経時による電圧変化特性を図3に示す。図2、3中に表記した「化合物1」は実施例1で製造した電子オンリー素子であることを表し、「PPT」は比較例1で製造した電子オンリー素子であることを表し、「TPBi」は比較例2で製造した電子オンリー素子であることを表し、「DPEPO」は比較例3で製造した電子オンリー素子であることを表す。
 図2から、化合物1を用いた電子オンリー素子は、比較化合物3、4、5を用いた電子オンリー素子に比べて電流が流れ始める閾値電圧が低く、得られる電流値も高いことから、良好な電子輸送性を示すことが分かる。また、比較化合物4を用いた電子オンリー素子は1V以下の低電圧領域においてなだらかな電流増加(リーク電流)が見られることから、比較化合物4の膜の平坦性が低いことが予測される。一方、化合物1を用いた電子オンリー素子ではリーク電流がみられないことから、化合物1の製膜性が良好であることが分かる。
 図3から、化合物1を用いた電子オンリー素子は、比較化合物3、4を用いた電子オンリー素子に比べて駆動時の電圧変化が極めて小さく、化合物1の安定性が非常に高いことが分かる。比較化合物5を用いた電子オンリー素子は電子輸送特性が低く、100mA/cm2の電流を流すことができなかったため、特性を示していない。
FIG. 2 shows the voltage-current density characteristics of the electron-only devices manufactured in Example 1 and Comparative Examples 1, 2, and 3. The voltage change characteristics over time when electrons are passed at a constant current density of 100 mAh / cm 2 are shown in FIG. As shown in FIG. “Compound 1” shown in FIGS. 2 and 3 indicates that it is an electronic only device manufactured in Example 1, “PPT” indicates that it is an electronic only device manufactured in Comparative Example 1, and “TPBi”. Represents an electronic-only device manufactured in Comparative Example 2, and “DPEPO” represents an electronic-only device manufactured in Comparative Example 3.
From FIG. 2, the electronic-only device using Compound 1 has a lower threshold voltage at which current starts to flow and the obtained current value is higher than that of the electronic-only device using Comparative Compounds 3, 4, and 5; It can be seen that it exhibits electron transport properties. In addition, since the electron-only device using the comparative compound 4 shows a gentle increase in current (leakage current) in a low voltage region of 1 V or less, the flatness of the film of the comparative compound 4 is predicted to be low. On the other hand, since no leak current is observed in the electron-only device using Compound 1, it can be seen that the film-forming property of Compound 1 is good.
From FIG. 3, it can be seen that the voltage change during driving of the electronic-only device using the compound 1 is extremely small compared to the electronic-only device using the comparative compounds 3 and 4, and the stability of the compound 1 is very high. The electron-only device using the comparative compound 5 has low electron transport characteristics, and has not been able to pass a current of 100 mA / cm 2 , and thus does not exhibit characteristics.
[有機エレクトロルミネッセンス素子の作製と発光特性の評価]
(実施例2) 化合物1を用いた有機エレクトロルミネッセンス素子の作製
 膜厚150nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度10-4~10-5Paで積層した。まず、ITO上にα-NPDを40nmの厚さに形成し、その上に、mCPを10nmの厚さに形成した。次に、2CzPNとmCPを異なる蒸着源から共蒸着し、20nmの厚さの層を形成して発光層とした。この時、2CzPNの濃度は10重量%とした。次に、化合物1を10nmの厚さに形成してホールブロック層とし、その上に、TPBiを40nmの厚さに形成した。さらにフッ化リチウム(LiF)を0.8nmの厚さに蒸着し、その上に、アルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
[Production of organic electroluminescence device and evaluation of light emission characteristics]
(Example 2) Production of organic electroluminescence device using compound 1 Each thin film was vacuum-deposited by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 150 nm was formed. The layers were laminated at a degree of 10 −4 to 10 −5 Pa. First, α-NPD was formed to a thickness of 40 nm on ITO, and mCP was formed to a thickness of 10 nm thereon. Next, 2CzPN and mCP were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer. At this time, the concentration of 2CzPN was 10% by weight. Next, Compound 1 was formed to a thickness of 10 nm to form a hole blocking layer, and TPBi was formed thereon to a thickness of 40 nm. Further, lithium fluoride (LiF) was vapor-deposited to a thickness of 0.8 nm, and aluminum (Al) was vapor-deposited thereon to a thickness of 100 nm to form a cathode, whereby an organic electroluminescence element was obtained.
(比較例4、5) 比較化合物3、4を用いた有機エレクトロルミネッセンス素子の作製
 化合物1の代わりに、比較化合物3(PPT)または比較化合物4(TPBi)を用いて厚さ10nmのホールブロック層を形成したこと以外は、実施例1と同様にして有機エレクトロルミネッセンス素子を製造した。
 実施例2および比較例4、5で使用した化合物のHOMO準位およびLUMO準位を図4に示す。図4において、各欄の上方の数値はLUMO準位の絶対値を示し、各欄の下方の数値はHOMO準位の絶対値を示し、ITOおよびLiF/Alの下方の数値はフェルミ準位の絶対値を示す。
 また、実施例2および比較例4,5で製造した有機エレクトロルミネッセンス素子の発光スペクトルを図5に示し、電圧-電流密度-輝度特性を図6に示し、輝度-外部量子効率(EQE)特性を図7に示す。図4~7中に表記した「化合物1」は実施例2で製造した有機エレクトロルミネッセンス素子であることを表し、「PPT(比較化合物3)」は比較例4で製造した有機エレクトロルミネッセンス素子であることを表し、「TPBi(比較化合物4)」は比較例5で製造した有機エレクトロルミネッセンス素子であることを表す。
 図5から、化合物1をホールブロック層に用いた有機エレクトロルミネッセンス素子は、比較化合物3,4をホールブロック層に用いた有機エレクトロルミネッセンス素子に比べて発光波長が青色波長側(短波長側)にシフトしていることがわかる。また、比較化合物4を用いた有機エレクトロルミネッセンス素子では比較化合物4に由来する発光が認められるのに対して、化合物1を用いた有機エレクトロルミネッセンス素子では、このようなホールブロック材料(化合物1)に由来する発光は認められない。このことから、化合物1をホールブロック材料として用いることにより、純度が高い青色発光が可能になることがわかった。発光波長が青色波長側にシフトした理由については、化合物1の良好な電子輸送性が関与していると考えられる。化合物1は、周辺材料のLUMO準位とよく適合しており、かつ、電子移動度が比較化合物3、4よりも大きいことから発光層への電子注入性が高い。正孔と電子の再結合領域が界面から離れるために、励起子が電荷の影響を受けにくくブルーシフトしていると考えられる。
 また、図6を見ると、化合物1をホールブロック層に用いた有機エレクトロルミネッセンス素子は、比較化合物3,4をホールブロック層に用いた有機エレクトロルミネッセンス素子よりも、電流密度および輝度の立ち上がり電圧が明らかに低く、低い電圧で高い電流密度と高い輝度が得られることがわかる。このことから、化合物1をホールブロック材料として用いることにより、電子注入性が向上することがわかった。
 さらに、図7から、化合物1をホールブロック層に用いた有機エレクトロルミネッセンス素子は、比較化合物3,4をホールブロック層に用いた有機エレクトロルミネッセンス素子に比べて、高い外部量子効率が得られることを確認することができた。
(Comparative Examples 4 and 5) Production of Organic Electroluminescence Device Using Comparative Compounds 3 and 4 A hole blocking layer having a thickness of 10 nm using Comparative Compound 3 (PPT) or Comparative Compound 4 (TPBi) instead of Compound 1 An organic electroluminescence element was produced in the same manner as in Example 1 except that the above was formed.
The HOMO level and LUMO level of the compounds used in Example 2 and Comparative Examples 4 and 5 are shown in FIG. In FIG. 4, the numerical value above each column indicates the absolute value of the LUMO level, the numerical value below each column indicates the absolute value of the HOMO level, and the numerical values below ITO and LiF / Al are the Fermi level. Indicates an absolute value.
In addition, the emission spectrum of the organic electroluminescence device manufactured in Example 2 and Comparative Examples 4 and 5 is shown in FIG. 5, the voltage-current density-luminance characteristic is shown in FIG. 6, and the luminance-external quantum efficiency (EQE) characteristic is shown. As shown in FIG. “Compound 1” shown in FIGS. 4 to 7 represents the organic electroluminescence device produced in Example 2, and “PPT (Comparative Compound 3)” is the organic electroluminescence device produced in Comparative Example 4. “TPBi (Comparative Compound 4)” represents the organic electroluminescence device produced in Comparative Example 5.
From FIG. 5, the organic electroluminescent device using Compound 1 for the hole blocking layer has an emission wavelength on the blue wavelength side (short wavelength side) as compared with the organic electroluminescent device using Comparative Compounds 3 and 4 for the hole blocking layer. You can see that there is a shift. Moreover, in the organic electroluminescent element using the comparative compound 4, light emission derived from the comparative compound 4 is observed, whereas in the organic electroluminescent element using the compound 1, such a hole block material (compound 1) is used. The derived luminescence is not recognized. From this, it was found that by using Compound 1 as a hole blocking material, blue light emission with high purity becomes possible. The reason why the emission wavelength is shifted to the blue wavelength side is considered that the good electron transport property of Compound 1 is involved. Compound 1 is well matched with the LUMO level of the surrounding material, and has higher electron mobility than Comparative Compounds 3 and 4, and therefore has high electron injection properties into the light emitting layer. Since the recombination region of holes and electrons is away from the interface, it is considered that excitons are not easily affected by the charge and are blue-shifted.
6, the organic electroluminescence device using Compound 1 for the hole blocking layer has a higher current density and luminance rising voltage than the organic electroluminescence device using Comparative Compounds 3 and 4 for the hole blocking layer. It is clearly low, and it can be seen that a high current density and a high luminance can be obtained at a low voltage. From this, it was found that the use of Compound 1 as a hole block material improves the electron injection property.
Furthermore, it can be seen from FIG. 7 that the organic electroluminescence device using Compound 1 as the hole blocking layer has higher external quantum efficiency than the organic electroluminescence device using Comparative Compounds 3 and 4 as the hole blocking layer. I was able to confirm.
(実施例3) 化合物1を用いた他の有機エレクトロルミネッセンス素子の作製
 膜厚150nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度10-4~10-5Paで積層した。まず、ITO上にα-NPDを30nmの厚さに形成した。次に、TCTAを20nmの厚さに形成し、その上に、mCBPを15nmの厚さに形成した。次に、TCC01とDPEPOを異なる蒸着源から共蒸着し、20nmの厚さの層を形成して発光層とした。この時、TCC01の濃度は15重量%とした。次に、化合物1を10nmの厚さに形成してホールブロック層とし、その上に、TPBiを30nmの厚さに形成した。さらにフッ化リチウム(LiF)を0.7nmの厚さに蒸着し、その上に、アルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
(Example 3) Production of other organic electroluminescence elements using compound 1 Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 150 nm was formed. And a degree of vacuum of 10 −4 to 10 −5 Pa. First, α-NPD was formed to a thickness of 30 nm on ITO. Next, TCTA was formed to a thickness of 20 nm, and mCBP was formed thereon to a thickness of 15 nm. Next, TCC01 and DPEPO were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer. At this time, the concentration of TCC01 was 15% by weight. Next, Compound 1 was formed to a thickness of 10 nm to form a hole blocking layer, and TPBi was formed thereon to a thickness of 30 nm. Furthermore, lithium fluoride (LiF) was vapor-deposited to a thickness of 0.7 nm, and aluminum (Al) was vapor-deposited thereon to a thickness of 100 nm to form a cathode, whereby an organic electroluminescence element was obtained.
(比較例6) 比較化合物5を用いた有機エレクトロルミネッセンス素子の作製
 化合物1の代わりに、比較化合物5(DPEPO)を用いて厚さ10nmのホールブロック層を形成したこと以外は、実施例3と同様にして有機エレクトロルミネッセンス素子を製造した。
 実施例3および比較例6で使用した化合物のHOMO準位およびLUMO準位を図8に示す。図8において、各欄の上方の数値はLUMO準位の絶対値を示し、各欄の下方の数値はHOMO準位の絶対値を示し、ITOおよびLiF/Alの下方の数値はフェルミ準位の絶対値を示す。
 また、実施例3および比較例6で製造した有機エレクトロルミネッセンス素子の発光スペクトルを図9に示し、電圧-電流密度-輝度特性を図10に示す。図中に表記した「化合物1」は実施例3で製造した有機エレクトロルミネッセンス素子であることを表し、「DPEPO(比較化合物5)」は比較例6で製造した有機エレクトロルミネッセンス素子であることを表す。
 図5~図7で示された傾向と同様に、化合物1をホールブロック層に用いた有機エレクトロルミネッセンス素子は、比較化合物6をホールブロック層に用いた有機エレクトロルミネッセンス素子に比べて、発光波長が青色波長側(短波長側)にシフトしており、低い電圧で高い電流密度と高い輝度を得ることができた。また、外部量子効率はDPEPOと同等で、最大で18%と高い値を実現することができた。
Figure JPOXMLDOC01-appb-C000038
(Comparative example 6) Preparation of the organic electroluminescent element using the comparative compound 5 It replaced with the compound 1 and Example 3 except having formed the 10-nm-thick hole block layer using the comparative compound 5 (DPEPO). Similarly, an organic electroluminescence element was produced.
FIG. 8 shows HOMO levels and LUMO levels of the compounds used in Example 3 and Comparative Example 6. In FIG. 8, the numerical value above each column indicates the absolute value of the LUMO level, the numerical value below each column indicates the absolute value of the HOMO level, and the numerical values below ITO and LiF / Al are the Fermi level. Indicates an absolute value.
In addition, FIG. 9 shows an emission spectrum of the organic electroluminescence elements produced in Example 3 and Comparative Example 6, and FIG. 10 shows voltage-current density-luminance characteristics. “Compound 1” shown in the figure represents the organic electroluminescence device produced in Example 3, and “DPEPO (Comparative Compound 5)” represents the organic electroluminescence device produced in Comparative Example 6. .
Similar to the tendency shown in FIGS. 5 to 7, the organic electroluminescence device using Compound 1 for the hole blocking layer has an emission wavelength that is larger than that of the organic electroluminescence device using Comparative Compound 6 for the hole blocking layer. It shifted to the blue wavelength side (short wavelength side), and a high current density and a high luminance could be obtained at a low voltage. Moreover, the external quantum efficiency was equivalent to DPEPO, and a maximum value of 18% could be realized.
Figure JPOXMLDOC01-appb-C000038
 本発明の化合物は、ホールブロック性およびエキシトンブロック性に優れており、ホールブロック材料として有用である。本発明の化合物を有機発光素子のホールブロック層に用いることにより、高い発光効率を実現することができる。このため、本発明は産業上の利用可能性が高い。 The compound of the present invention is excellent in hole blocking property and exciton blocking property, and is useful as a hole blocking material. By using the compound of the present invention for the hole blocking layer of the organic light emitting device, high luminous efficiency can be realized. For this reason, this invention has high industrial applicability.
 1 基板
 2 陽極
 3 ホール注入層
 4 ホール輸送層
 5 発光層
 6 ホールブロック層
 7 電子輸送層
 8 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole block layer 7 Electron transport layer 8 Cathode

Claims (20)

  1.  下記一般式(1)で表される化合物。
    一般式(1)
        (Cz)n-Ar
    [一般式(1)において、Czは、フルオロアルキル基およびシアノ基からなる群より選択される置換基で少なくとも2箇所が置換されている9-カルバゾリル基を表し、Arはトリアジン環、ピリダジン環、ピリミジン環またはピラジン環を表し、これらの環は前記9-カルバゾリル基以外の置換基を有していてもよい。nは1もしくは2の整数である。]
    A compound represented by the following general formula (1).
    General formula (1)
    (Cz) n -Ar
    [In the general formula (1), Cz represents a 9-carbazolyl group substituted at least two positions with a substituent selected from the group consisting of a fluoroalkyl group and a cyano group, Ar represents a triazine ring, a pyridazine ring, It represents a pyrimidine ring or a pyrazine ring, and these rings may have a substituent other than the 9-carbazolyl group. n is an integer of 1 or 2. ]
  2.  前記フルオロアルキル基およびシアノ基からなる群より選択される置換基の前記9-カルバゾリル基における置換位置が2位と7位であるか、3位と6位であるか、2位と3位と6位と7位である、請求項1に記載の化合物。 The substitution position in the 9-carbazolyl group of the substituent selected from the group consisting of the fluoroalkyl group and the cyano group is 2-position and 7-position, 3-position and 6-position, 2-position and 3-position, The compound according to claim 1, which is in the 6th and 7th positions.
  3.  前記フルオロアルキル基およびシアノ基からなる群より選択される置換基の前記9-カルバゾリル基における置換位置が3位と6位である、請求項1または2に記載の化合物。 The compound according to claim 1 or 2, wherein substitution positions in the 9-carbazolyl group of the substituent selected from the group consisting of the fluoroalkyl group and the cyano group are the 3-position and the 6-position.
  4.  前記Arが表す環がトリアジン環またはピリミジン環である、請求項1~3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein the ring represented by Ar is a triazine ring or a pyrimidine ring.
  5.  前記Arが表す環がトリアジン環である、請求項1~4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein the ring represented by Ar is a triazine ring.
  6.  前記Arが表す環が1,3,5-トリアジン環である、請求項1~5のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 5, wherein the ring represented by Ar is a 1,3,5-triazine ring.
  7.  前記Arが表す環がピリミジン環である、請求項1~4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein the ring represented by Ar is a pyrimidine ring.
  8.  前記Arが表す環がピリミジン環であって、そのピリミジン環の4位と6位が前記9-カルバゾリル基で置換されている、請求項7に記載の化合物。 The compound according to claim 7, wherein the ring represented by Ar is a pyrimidine ring, and the 4-position and the 6-position of the pyrimidine ring are substituted with the 9-carbazolyl group.
  9.  nが1である、請求項1~8のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 8, wherein n is 1.
  10.  前記Arが表す環が前記9-カルバゾリル基以外の置換基を有する、請求項1~9のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 9, wherein the ring represented by Ar has a substituent other than the 9-carbazolyl group.
  11.  前記9-カルバゾリル基以外の置換基が、アリール基およびフルオロアルキル基からなる群から選択される置換基である、請求項10に記載の化合物。 The compound according to claim 10, wherein the substituent other than the 9-carbazolyl group is a substituent selected from the group consisting of an aryl group and a fluoroalkyl group.
  12.  HOMO準位が-6.1eV未満である、請求項1~11のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 11, wherein the HOMO level is less than -6.1 eV.
  13.  最低励起三重項エネルギー準位T1が2.8eVよりも大きい、請求項1~12のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 12, wherein the lowest excited triplet energy level T 1 is larger than 2.8 eV.
  14.  請求項1~13のいずれか1項に記載の化合物を含有するホールブロック材料。 A hole block material containing the compound according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか1項に記載の化合物と発光材料を用いた有機発光素子。 An organic light emitting device using the compound according to any one of claims 1 to 13 and a light emitting material.
  16.  前記発光材料が青色発光材料である、請求項15に記載の有機発光素子。 The organic light emitting device according to claim 15, wherein the light emitting material is a blue light emitting material.
  17.  前記発光材料が遅延蛍光材料である、請求項15または16に記載の有機発光素子。 The organic light emitting device according to claim 15 or 16, wherein the light emitting material is a delayed fluorescent material.
  18.  前記発光材料と前記化合物が別の層に含まれている、請求項15~17のいずれか1項に記載の有機発光素子。 The organic light emitting device according to any one of claims 15 to 17, wherein the light emitting material and the compound are contained in separate layers.
  19.  前記発光材料を含む層の陰極側に接するように、前記化合物を含む層が形成されている、請求項15~18のいずれか1項に記載の有機発光素子。 The organic light emitting device according to any one of claims 15 to 18, wherein the layer containing the compound is formed so as to be in contact with the cathode side of the layer containing the light emitting material.
  20.  有機エレクトロルミネッセンス素子である、請求項15~19のいずれか1項に記載の有機発光素子。 The organic light-emitting device according to any one of claims 15 to 19, which is an organic electroluminescence device.
PCT/JP2017/024610 2016-07-05 2017-07-05 Organic electroluminescent material and organic electroluminescent element using same WO2018008673A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780042021.1A CN109641876A (en) 2016-07-05 2017-07-05 Electroluminescent organic material and the organic electroluminescent device for using it
JP2018526412A JP7040442B2 (en) 2016-07-05 2017-07-05 Organic electroluminescence material and organic electroluminescence device using it
KR1020197003250A KR102493739B1 (en) 2016-07-05 2017-07-05 Organic electroluminescence material and organic electroluminescence device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-133056 2016-07-05
JP2016133056 2016-07-05

Publications (1)

Publication Number Publication Date
WO2018008673A1 true WO2018008673A1 (en) 2018-01-11

Family

ID=60912745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024610 WO2018008673A1 (en) 2016-07-05 2017-07-05 Organic electroluminescent material and organic electroluminescent element using same

Country Status (5)

Country Link
JP (1) JP7040442B2 (en)
KR (1) KR102493739B1 (en)
CN (1) CN109641876A (en)
TW (1) TWI712599B (en)
WO (1) WO2018008673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047948A1 (en) * 2016-09-09 2019-07-18 東洋紡株式会社 Organic light emitting element and light emitting material and compound used therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335754A (en) * 2002-05-15 2003-11-28 Fuji Photo Film Co Ltd Heterocyclic compound and light-emitting element using the same
JP2004171808A (en) * 2002-11-18 2004-06-17 Konica Minolta Holdings Inc Organic electroluminescent element and display device
JP2011049512A (en) * 2009-07-31 2011-03-10 Fujifilm Corp Organic electroluminescent element
JP2016017078A (en) * 2014-07-09 2016-02-01 三星電子株式会社Samsung Electronics Co.,Ltd. Condensed cyclic compound and organic light-emitting device including the same
US20170005275A1 (en) * 2015-07-01 2017-01-05 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900847B2 (en) 2011-11-25 2016-04-06 国立大学法人山形大学 Organic electroluminescence device
US10403825B2 (en) * 2014-02-27 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
KR20160006629A (en) * 2014-07-09 2016-01-19 삼성전자주식회사 Condensed cyclic compound and organic light emitting device including the same
JP2016036025A (en) 2014-07-31 2016-03-17 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT DEVICE AND π CONJUGATED COMPOUND

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335754A (en) * 2002-05-15 2003-11-28 Fuji Photo Film Co Ltd Heterocyclic compound and light-emitting element using the same
JP2004171808A (en) * 2002-11-18 2004-06-17 Konica Minolta Holdings Inc Organic electroluminescent element and display device
JP2011049512A (en) * 2009-07-31 2011-03-10 Fujifilm Corp Organic electroluminescent element
JP2016017078A (en) * 2014-07-09 2016-02-01 三星電子株式会社Samsung Electronics Co.,Ltd. Condensed cyclic compound and organic light-emitting device including the same
US20170005275A1 (en) * 2015-07-01 2017-01-05 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047948A1 (en) * 2016-09-09 2019-07-18 東洋紡株式会社 Organic light emitting element and light emitting material and compound used therefor
JP7028176B2 (en) 2016-09-09 2022-03-02 東洋紡株式会社 Organic light emitting devices and light emitting materials and compounds used for them
US11618730B2 (en) 2016-09-09 2023-04-04 Toyobo Co., Ltd. Organic light-emitting element, and light-emitting material and compound for use therein

Also Published As

Publication number Publication date
TW201815780A (en) 2018-05-01
KR102493739B1 (en) 2023-01-30
CN109641876A (en) 2019-04-16
JP7040442B2 (en) 2022-03-23
TWI712599B (en) 2020-12-11
KR20190025010A (en) 2019-03-08
JPWO2018008673A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5669163B1 (en) Organic electroluminescence device
JP6383538B2 (en) Luminescent materials, organic light emitting devices and compounds
JP6305391B2 (en) Charge transport materials, host materials, thin films, and organic light emitting devices
JP6284370B2 (en) Luminescent materials, organic light emitting devices and compounds
JP6326050B2 (en) COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE
JP6293417B2 (en) COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE
JP6367189B2 (en) Luminescent materials, organic light emitting devices and compounds
WO2015133501A1 (en) Light-emitting material, organic light-emitting element, and compound
WO2014126200A1 (en) Compound, light-emitting material and organic light-emitting element
WO2014189122A1 (en) Compound, light-emitting material, and organic light-emitting element
JP2017119663A (en) Compound, light-emitting material, and organic light-emitting device
WO2018117179A1 (en) Organic light-emitting element, and light-emitting material and fluorescent body used in same
JP6647514B2 (en) Organic light emitting device and light emitting material and compound used therefor
KR102391760B1 (en) Organic light emitting device, light emitting material and compound used therefor
JP7184301B2 (en) charge transport material
JP6783059B2 (en) Compounds, carrier transport materials and organic light emitting devices
WO2016111196A1 (en) Compound, mixture, light-emitting layer, organic light-emitting element, and assist dopant
JP7040442B2 (en) Organic electroluminescence material and organic electroluminescence device using it
JP7395136B2 (en) Composition and organic light emitting device
JP7337369B2 (en) Organic light emitting device, laminate and light emitting method
JP2018111751A (en) Light emitting material, compound and organic light emitting element
JP2016084283A (en) Compound, light-emitting material, and organic light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018526412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197003250

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17824276

Country of ref document: EP

Kind code of ref document: A1