WO2018008435A1 - Nucleic acid analyzing method - Google Patents

Nucleic acid analyzing method Download PDF

Info

Publication number
WO2018008435A1
WO2018008435A1 PCT/JP2017/023323 JP2017023323W WO2018008435A1 WO 2018008435 A1 WO2018008435 A1 WO 2018008435A1 JP 2017023323 W JP2017023323 W JP 2017023323W WO 2018008435 A1 WO2018008435 A1 WO 2018008435A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
target
probe
sample
control
Prior art date
Application number
PCT/JP2017/023323
Other languages
French (fr)
Japanese (ja)
Inventor
光一郎 辻丸
Original Assignee
株式会社ダナフォーム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダナフォーム filed Critical 株式会社ダナフォーム
Priority to JP2018526035A priority Critical patent/JPWO2018008435A1/en
Publication of WO2018008435A1 publication Critical patent/WO2018008435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a nucleic acid analysis method.
  • a nucleic acid in a sample is amplified with a specific primer and the presence or absence of the amplification is detected, or the obtained amplification product and a specific probe are hybridized.
  • a method for detecting soybean is employed.
  • amplification of the nucleic acid is essential from the viewpoint of accuracy and sensitivity.
  • the analysis result obtained is the result of the amplified nucleic acid, so the amount of nucleic acid originally contained in the sample is unknown.
  • the sample amount is small, a sufficient signal cannot be obtained even if a probe is used. For this reason, for example, the use of a fluorescent reagent that binds non-specifically to double-stranded DNA has been attempted, but this method detects non-specific DNA because it is non-specific binding. Stays on.
  • an object of the present invention is to provide a nucleic acid analysis method that enables specific analysis of nucleic acid regardless of the amount of the sample even if the sample is not subjected to amplification treatment.
  • the first nucleic acid analysis method of the present invention comprises: A mixing step of mixing the biological sample and the control probe; and A detection step of detecting hybridization between the nucleic acid in the sample and the control probe in the mixture;
  • the control probe is A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
  • the nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body,
  • the signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
  • the detection step includes The control nucleic acid in the sample is detected by detecting the hybridization.
  • the second nucleic acid analysis method of the present invention comprises: A mixing step of mixing a sample derived from a living body and a target probe; and A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
  • the target probe is A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
  • the nucleic acid molecule is a nucleic acid molecule that hybridizes to a target nucleic acid,
  • the signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
  • the detection step includes The target nucleic acid in the sample is detected by detecting the hybridization.
  • the nucleic acid analysis method of the present invention for example, even for a sample that has not been subjected to amplification treatment, the nucleic acid can be specifically analyzed by using the fluorogenic probe regardless of the amount of the sample. .
  • the first nucleic acid analysis method of the present invention is as follows.
  • the control probe is A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
  • the nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body,
  • the signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
  • the detection step includes The control nucleic acid in the sample is detected by detecting the hybridization.
  • the control nucleic acid can be detected without performing the amplification treatment of the sample and without being influenced by the amount of the sample.
  • the sample is detected by detection of the control nucleic acid as described later. It is also possible to estimate the number of cells inside. In fields such as diagnosis, it is important to know the amount per cell. According to the present invention, since the number of cells in a sample can be estimated, it can be said that this is a very useful method in the field of diagnosis and the like.
  • the nucleic acid sample is a nucleic acid sample that has not been amplified.
  • control nucleic acid is DNA or RNA.
  • control nucleic acid is DNA or RNA encoding actin.
  • control probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
  • the first nucleic acid analysis method of the present invention uses, for example, a plurality of the control probes for the same control nucleic acid in the mixing step, Each of the plurality of control probes has a nucleic acid molecule that hybridizes to a different region with respect to the control nucleic acid.
  • the first nucleic acid analysis method of the present invention further includes, for example, a total nucleic acid detection step and a control nucleic acid ratio calculation step
  • the total nucleic acid detection step includes: Detecting the total nucleic acid in the sample
  • the ratio calculating step includes: Based on the detection result of the total nucleic acid and the detection result of the control nucleic acid, the ratio of the control nucleic acid in the total nucleic acid is calculated.
  • the first nucleic acid analysis method of the present invention further includes, for example, a calculation step of calculating the number of cells, the amount of tissue, or the amount of body fluid of the sample based on the correlation and the detection result of the control nucleic acid in the sample.
  • Including The correlation is a correlation between the number of cells, the amount of tissue or the amount of body fluid, and the amount of the control nucleic acid contained therein.
  • a mixing step of further mixing the sample and the target probe and A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
  • the target probe is A probe that hybridizes to a target nucleic acid,
  • the detection step includes The target nucleic acid in the sample is detected by detecting the hybridization.
  • the target probe is: A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
  • the nucleic acid molecule is a nucleic acid molecule that hybridizes to the target nucleic acid,
  • the signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
  • the luminescent signal of the signal generating substance in the control probe and the luminescent signal of the signal generating substance in the target probe have different fluorescence characteristics.
  • the target probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
  • the first nucleic acid analysis method of the present invention uses, for example, a plurality of the target probes for the same target nucleic acid in the mixing step, Each of the plurality of target probes has a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid.
  • the first nucleic acid analysis method of the present invention further includes, for example, a total nucleic acid detection step, and a target nucleic acid ratio calculation step
  • the total nucleic acid detection step includes: Detecting the total nucleic acid in the sample
  • the ratio calculating step includes: The ratio of the target nucleic acid in the total nucleic acid is calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid.
  • the base having a pair of fluorescent atomic groups exhibiting the exciton effect is represented by the following formula (16), (16b), (17), or (17b). Has a structure.
  • the detection step is a detection step by melting curve analysis.
  • fluorogenic means, for example, that a signal is generated in a state of being specifically bound to a target and that the signal is lost in an unbound state, and the generation and disappearance of the signal is reversible.
  • analysis may be, for example, qualitative analysis or quantitative analysis.
  • the sample may be, for example, a sample that has not been amplified or a sample that has been amplified.
  • the present invention is particularly useful for analysis of a sample that has not been subjected to the former amplification treatment.
  • the sample is not particularly limited as long as it is derived from a living body.
  • the kind of the biological sample is not particularly limited, and examples thereof include body fluids, tissues, cells, and the like.
  • the body fluid include whole blood, plasma, blood such as serum, intraocular fluid such as aqueous humor, lymph, cerebrospinal fluid, tears, sweat, semen, saliva, mucus, urine, nasal discharge, and nasal swab Etc.
  • the tissue include intraocular tissues such as vitreous, and pathogenic tissues such as tumors.
  • the cells include pathogenic cells such as tumors, blood cells (for example, erythrocytes, leukocytes, etc.) and the like.
  • the kind of the living body is not particularly limited, and examples thereof include animals such as humans, non-human mammals (for example, cows, pigs, sheep, mice, rats, rabbits and horses), birds, and fish.
  • the control probe is a probe for control nucleic acid that is constantly present in a living body. Therefore, the control probe can be appropriately determined by setting the control nucleic acid according to the type of the sample to be analyzed, for example.
  • the control nucleic acid include a nucleic acid that is known to exist constitutively in the type of sample, and a nucleic acid that is known to exist constitutively in the future.
  • the control nucleic acid include nucleic acids encoding ⁇ -actin, GAPDH (glyceraldehyde 3-phosphate dehydrogenase), ubiquitin and the like.
  • the amount per body fluid, the amount per tissue, or the amount per cell can be defined for the control nucleic acid such as actin depending on the type of animal (eg, human).
  • control nucleic acid to be analyzed may be, for example, DNA or RNA.
  • the control nucleic acid may be, for example, a single-stranded nucleic acid or a double-stranded nucleic acid.
  • any single-stranded nucleic acid may be set as a nucleic acid to which the control probe hybridizes.
  • the sense strand may be set as a hybridizing nucleic acid
  • the antisense strand may be set as a hybridizing nucleic acid.
  • the control probe is a fluorogenic probe in which a signal generating substance is bound to a nucleic acid molecule, and the nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body.
  • the nucleic acid molecule only needs to be able to hybridize to the control nucleic acid, and the sequence of the nucleic acid molecule can be appropriately designed according to the sequence of the control nucleic acid.
  • the nucleic acid molecule may be, for example, a nucleic acid molecule in which the control nucleic acid is single-stranded and forms a double strand by hybridization to the control nucleic acid, or the control nucleic acid is double-stranded, and the control nucleic acid It may be a nucleic acid molecule using Hoogsteen-type base pairing, which forms a triple strand by hybridization.
  • the nucleic acid molecule may be modified so that, for example, the 3 ′ end cannot be extended, and specifically, for example, the 3 ′ end may be chemically modified with a linker OH group.
  • the signal generating substance is a substance that generates a luminescent signal by hybridization to a target and disappears by dissociation from the target. Generation or disappearance of the signal may use, for example, FRET (Fluorescence resonance energy transfer) or may not use FRET.
  • FRET Fluorescence resonance energy transfer
  • Examples of the signal generating substance in the control probe include a fluorescent atomic group exhibiting an ethoxine effect.
  • the control probe preferably has, for example, at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule (hereinafter also referred to as “E probe”).
  • the E probe can refer to, for example, Japanese Patent No. 4370385 and International Publication WO2014 / 013954 pamphlet.
  • the E probe is a probe into which two fluorescent atomic groups (for example, thiazole orange and the like) are introduced.
  • the E probe hardly emits fluorescence due to the exciton effect in which two fluorescent atomic groups form an exciplex, but hybridizes with the target to form a double-stranded state or 3
  • the two fluorescent atomic groups are separated from each other, and have the property of greatly emitting fluorescence by eliminating the exciton effect.
  • “E-probe” is a trade name of Danaform Co., Ltd. (“Eprobe” is a registered trademark), but “E-probe” in the present invention is given a product name of “E-probe” or “Eprobe”. The product may or may not be the same.
  • the binding position of the two fluorescent atomic groups is not particularly limited and can be set at any position.
  • the two fluorescent atoms may be bound to the same base in the nucleic acid molecule, or each may be bound to two adjacent bases.
  • the nucleic acid molecule is a nucleic acid molecule that forms a double strand with the control nucleic acid
  • at least one of the two fluorescent atoms is a base several bases inside from the 3 ′ end or the 5 ′ end of the nucleic acid molecule. It is preferable that the terminal base is the first, and it is preferable that the terminal base is bound to the base inside 3 bases.
  • the nucleic acid molecule is an oligonucleotide using Hoogsteen-type base pairs that form a triple strand with the control nucleic acid, for example, the two fluorescent atoms are at the 5 ′ end or the 3 ′ end, for example. It is preferred that they are bonded.
  • the two fluorescent atomic groups may be directly bonded to the oligonucleotide or indirectly bonded to the oligonucleotide, for example. In the latter case, the two fluorescent atomic groups are bonded to the oligonucleotide via, for example, a linker.
  • the fluorescent atomic group exhibiting the exciton effect is: (I) Two planar chemical structures in one molecule are not in the same plane but exist at a certain angle, but when the molecule intercalates or grooves binds to a nucleic acid, two planar chemical structures Fluorescence emission is caused by arranging the structures so that they are aligned in the same plane, (Ii) When the two or more dye molecules do not exhibit fluorescence due to the exciton effect caused by assembly in parallel, but when these molecules intercalate or groove bind to a target molecule, eg, a nucleic acid, It is composed of two or more dye molecule groups that generate fluorescence when the aggregated state is solved, or (Iii) When the two or more dye molecules do not exhibit fluorescence due to the exciton effect caused by the assembly in parallel, but when these molecules intercalate or groove bind to a target molecule, eg, a nucleic acid, It has the chemical structure of two or more dye molecules in which fluor
  • the base having a pair of fluorescent atomic groups exhibiting the exciton effect is represented by the following formula (16), (16b), (17), (17b), (18) or (18b), for example. It has a structure.
  • tautomers, stereoisomers, or salts thereof with respect to the structures represented by these formulas are also included in the structures in the present invention.
  • the structure represented by the following formulas having the atomic groups Z 11 and Z 12 exhibiting fluorescence may be referred to as “label structure”.
  • B is an atomic group having a natural nucleobase (adenine, guanine, cytosine, thymine or uracil) skeleton or an artificial nucleobase skeleton
  • E is (I) an atomic group having a structure derived from a deoxyribose skeleton, a ribose skeleton, or any of them, or (ii) an atomic group having a peptide structure or a peptoid structure
  • Z 11 and Z 12 are each an atomic group that exhibits fluorescence, and may be the same or different
  • L 1 , L 2 and L 3 are each a linker (a bridging atom or an atomic group)
  • the main chain length (the number of main chain atoms) is arbitrary
  • C, N, O, S, P and Si may or may not contain each, and in the main chain, single bond, double bond, triple bond, amide bond, ester
  • the main chain lengths (number of main chain atoms) of L 1 , L 2 and L 3 are each 2 or more It is preferable that it is an integer.
  • the upper limit of the main chain length (number of main chain atoms) of L 1 , L 2 and L 3 is not particularly limited, but is, for example, 100 or less, more preferably 30 or less, and particularly preferably 10 or less.
  • Z 11 and Z 12 are fluorescent atomic groups that exhibit an exciton effect.
  • the environmental change around the fluorescent dye when bound to the target sequence for example, the increase in fluorescence when a double helical structure is formed is large, and the target sequence can be detected more effectively.
  • Z 11 and Z 12 may be any fluorescent atomic group exhibiting an exciton effect, and are not particularly limited. More preferably, Z 11 and Z 12 are each independently a group derived from thiazole orange, oxazole yellow, cyanine, hemicyanine, other cyanine dyes, methyl red, azo dyes or derivatives thereof. In addition, groups derived from other known dyes can also be used as appropriate. Many fluorescent dyes that change fluorescence intensity by binding to nucleic acids such as DNA have been reported. In a typical example, ethidium bromide is known to exhibit strong fluorescence by intercalating into the double helix structure of DNA, and is frequently used for DNA detection.
  • fluorescent dyes capable of controlling the fluorescence intensity according to the microscopic polarity, such as pyrenecarboxamide and prodan.
  • the thiazole orange is a fluorescent dye in which a benzothiazole ring and a quinoline ring are connected by a methine group, and usually shows weak fluorescence, but emits strong fluorescence when intercalated into DNA having a double helix structure.
  • Other examples include dyes such as fluorescein and Cy3.
  • Z 11 and Z 12 are each independently an atomic group represented by any one of the following formulas (7) to (9).
  • X 1 and X 2 are S, Se or O; n ′′ is 0 or a positive integer; R 1 to R 10 and R 13 to R 21 are each independently a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group, or an amino group,
  • R 11 and R 12 is a linking group that binds to L 1 or L 2 in the formulas (16), (17), (16b), (17b), (18), and (18b).
  • R 15 may be the same or different when a plurality of R 15 are present in the formula (7), (8) or (9), R 16 may be the same or different when there are a plurality of R 16 in the formula (7), (8) or (9), And X 1, X 2 and R 1 ⁇ R 21 in Z 11, and X 1, X 2 and R 1 ⁇ R 21 in Z 12, may be the same or different from each other.
  • the lower alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms, and the lower alkoxy group is 1 to carbon atoms. More preferably, it is a 6 straight-chain or branched alkoxy group.
  • the linking group is a polymethylene carbonyl group having 2 or more carbon atoms, and in the carbonyl group portion, the formulas (16), (16b), ( More preferably, it binds to L 1 or L 2 in 17), (17b), (18) and (18b).
  • the upper limit of the carbon number of the polymethylenecarbonyl group is not particularly limited, but is, for example, 100 or less, preferably 50 or less, more preferably 30 or less, and particularly preferably 10 or less.
  • Z 11 and Z 12 are represented by the above formulas (7) to (9), for example, each independently is more preferably a group represented by the following formula (19) or (20).
  • X 1 represents —S— or —O—.
  • R 1 to R 10 , R 13 and R 14 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group or an amino group.
  • One of R 11 and R 12 represents a linking group bonded to L 1 and L 2 in the formulas (16), (17), (16b), (17b), (18) and (18b), and R The other of 11 and R 12 represents a hydrogen atom or a lower alkyl group.
  • Z 11 and Z 12 are each independently an atomic group represented by any one of the following chemical formulas.
  • n is a positive integer and is particularly preferably in the range of 2-6.
  • B may have a natural nucleobase skeleton. It may have a skeleton.
  • B is Py (pyrimidine ring), Py der. , Pu (purine ring), or Pu der. It is preferable that it is a structure represented by these.
  • the Py is an atomic group having a covalent bond bonded to E at the 1-position and a covalent bond bonded to the linker moiety at the 5-position among the 6-membered ring represented by the following formula (11). Yes, The Py der.
  • the Pu is an atomic group having a covalent bond bonded to E at the 9-position and a covalent bond bonded to the linker moiety at the 8-position among the condensed rings represented by the following formula (12). , The Pu der.
  • the oligonucleotide in the E probe is, for example, a nucleotide structure represented by the following chemical formula 106, 110, 113, 117, 120, 122, 123, 124 or 114-2, or a geometric isomer or stereoisomer thereof. It may contain at least one structure which is a body or a salt.
  • the linker length n is a positive integer and is preferably in the range of 2-6.
  • the number of the label structures included in the E probe is not particularly limited, but is, for example, about 1 to 100 and about 1 to 20. Further, in the E probe, the site including the label structure is not particularly limited.
  • the nucleic acid molecule in the control probe may be composed of any one of, for example, a natural nucleotide residue, a non-nucleotide residue, a modified nucleotide residue and a non-natural main skeleton, or any one kind or any two kinds Alternatively, the three types may be included, or the four types may be included.
  • the non-natural main skeleton is not particularly limited, and examples thereof include nucleic acids having LNA, PNA and modified phosphodiester bonds.
  • the modified nucleotide residue is not particularly limited and is a S-nucleotide residue, and the nucleotide residue may contain a sulfur atom (S) or may be modified with a sulfur atom (S).
  • the basic skeleton of the nucleic acid molecule in the control probe is not particularly limited.
  • the basic skeleton of the nucleic acid may be natural or artificially synthesized.
  • any nucleic acid may be used as long as it can form a base pair bond.
  • nucleic acid sample or a target nucleic acid sequence for example, it may function as a template for complementary strand synthesis.
  • the nucleic acid may be, for example, a nucleotide derivative partially or entirely composed of an artificial structure.
  • Examples of the artificial base constituting the nucleic acid include 2-amino-6- (N, N-dimethylamino) purinepyridin-2-one, 5-methylpyridin-2-one, 2-amino-6- (2-thienyl) purine, pyrrole-2-carbaldehyde, 9-Methylimidazo [(4,5) -b] pyridine, 5-iodo-2-oxo (1H) pyridine 2-oxo- (1H) pyridine, 2-amino-6- (2 -thiazolyl) purine, 7- (2-thienyl) -imidazo [4,5-b] pyridine and the like, but are not limited thereto.
  • nucleotide may be, for example, either deoxynucleotide or ribonucleotide
  • oligonucleotide and polynucleotide are, for example, either deoxynucleotide or ribonucleotide. It may be comprised from, and both may be included.
  • the number of bases constituting the nucleic acid is not particularly limited.
  • nucleic acid is generally synonymous with the term polynucleotide.
  • oligonucleotide is generally used as a term indicating a polynucleotide having a particularly small number of bases.
  • polynucleotide having a length of 2 to 100 bases, more generally about 2 to 50 bases is referred to as an “oligonucleotide”, but it is not limited to these numerical values.
  • polynucleotide is intended to include, in the first analytical method, for example, polynucleotides and oligonucleotides, as well as artificially synthesized nucleic acids such as peptide nucleic acids, morpholino nucleic acids, methyl phosphonate nucleic acids, S-oligonucleic acids.
  • the PNA peptide nucleic acid
  • the PNA generally has a structure in which the deoxyribose main chain of an oligonucleotide is replaced with a peptide main chain.
  • the peptide main chain include a repeating unit of N- (2-aminoethyl) glycine linked by an amide bond.
  • the base to be bound to the peptide main chain of PNA include thymine, cytosine, adenine, guanine, inosine, uracil, 5-methylcytosine, thiouracil and 2,6-diaminopurine, naturally occurring bases such as bromothymine, azaadenine And artificial bases such as azaguanine, but are not limited thereto.
  • the LNA is generally a nucleic acid having two circular structures in which the 2'-position oxygen atom and the 4'-position carbon atom of ribose are linked by a methylene bridge in the sugar-phosphate skeleton.
  • an oligonucleotide containing LNA anneals to DNA, the double-stranded conformation changes and thermal stability increases. Since LNA has a stronger binding force to nucleic acids than ordinary oligonucleotides, for example, more reliable and robust hybridization is possible depending on oligonucleotide design conditions.
  • the number of bases contained in the nucleic acid molecule in the control probe is not particularly limited, and is, for example, about 5 to 100, about 6 to 50, or about 6 to 25.
  • the mixing step is a step of mixing a biological sample and a control probe.
  • the amount of the biological sample is not particularly limited. According to the present invention, for example, in the case of a sufficient sample amount or a small sample amount, by using the control probe, it is possible to emit light in a sample without performing an amplification process.
  • the control nucleic acid can be detected.
  • the sample amount to be used may be, for example, in nanoliter order, microliter order, or milliliter order, for example, 0.1 nL to 1 mL, and specific examples include, for example, 0.1 nL to 10 nL, 10 nL to 100 nL. Yes, or 0.1 ⁇ L to 10 ⁇ L, 10 ⁇ L to 1000 ⁇ L.
  • the amount of the control probe added is not particularly limited, and can be appropriately set according to the sample amount, for example.
  • the addition amount is, for example, 1 ⁇ 10 ⁇ 12 to 1 ⁇ 10 ⁇ 9 ⁇ mol, 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 6 ⁇ mol, and 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 3 ⁇ mol with respect to 1 ⁇ L of the sample.
  • the control probe is preferably mixed with the sample, for example, as a probe reagent mixed in a solvent.
  • the concentration of the control probe is not particularly limited, for example, 1x10 -6 ⁇ 1x10 -3 ⁇ mol / L , 1x10 -3 ⁇ 1 ⁇ mol / L, 1 ⁇ 1x10 3 ⁇ mol / L.
  • the number of types of the control probe used in the mixing step is not particularly limited and can be appropriately set depending on the type or number of control nucleic acids to be set.
  • one type of control probe may be used, or two or more types of control probes may be used.
  • the mixing step a plurality of the control probes for the same control nucleic acid are used, and the plurality of control probes each have a nucleic acid molecule that hybridizes to a different region with respect to the control nucleic acid. It is preferable to have.
  • each of the plurality of control probes has a nucleic acid molecule that hybridizes to different regions, but preferably has the same signal generating substance and emits the same luminescent signal by hybridization.
  • a plurality of control probes can be hybridized to a plurality of locations of one type of control nucleic acid, and the total amount of luminescence signals by hybridization can be increased.
  • control nucleic acids when there are a plurality of control nucleic acids to be set, for example, one type of control probe may be used for each control nucleic acid, or two types of control probes may be used.
  • the control probe for each control nucleic acid preferably has a different signal luminescent substance, for example.
  • each control nucleic acid can be detected and separated by having different signal luminescent substances.
  • Different signal luminescent substances mean, for example, having different fluorescence properties, specifically, for example, having different excitation wavelengths, having different fluorescence wavelengths, or having different excitation wavelengths and different fluorescence wavelengths. Means that.
  • the mixed solution of the sample and the control probe is preferably processed at a temperature at which hybridization between the nucleic acid in the sample and the control probe is likely to occur (hybridization temperature), for example.
  • hybridization temperature a temperature at which hybridization between the nucleic acid in the sample and the control probe is likely to occur
  • the control nucleic acid is a double-stranded nucleic acid and is dissociated into a single-stranded nucleic acid and hybridized with the control probe
  • the sample is treated with a dissociation temperature, then mixed with the control probe,
  • the treatment may be performed at a hybridization temperature, or the mixture may be treated at a hybridization temperature after the mixture is treated at a dissociation temperature.
  • the hybridization temperature is, for example, 15 to 70 ° C.
  • the dissociation temperature is, for example, 90 to 100 ° C.
  • the detection step is a step of detecting hybridization between the nucleic acid in the sample and the control probe in the mixture.
  • the control nucleic acid in the sample can be detected by detecting the hybridization.
  • the method for detecting hybridization is not particularly limited, and can be appropriately determined depending on the signal generating substance in the control probe.
  • Examples of hybridization between the control probe and the control nucleic acid include detection by melting curve analysis.
  • the present invention may further include a total nucleic acid detection step and a control nucleic acid ratio calculation step for the sample.
  • the total nucleic acid detection step is a step of detecting total nucleic acid in the sample.
  • the method for detecting the total nucleic acid is not particularly limited, and examples thereof include a method for non-specifically detecting the nucleic acid in the sample.
  • an intercalator that intercalates into a double strand for example, SYBR (trademark) Green
  • SYBR trademark
  • the total nucleic acid detection step may be performed, for example, on the same system (the mixed solution) as the detection using the control probe, or may be performed on a different system, but the total amount of the sample to be used Can be reduced, the former is preferable. That is, it is preferable that the sample is mixed with the control probe and the intercalator, and both detection of hybridization with the control probe and detection of the total nucleic acid are performed.
  • the control probe and the intercalator may be added to the sample, for example, either first or simultaneously, and the detection of the hybridization and the detection of the total nucleic acid may be performed, for example, You may go first.
  • the ratio of the control nucleic acid in the total nucleic acid can be calculated based on the detection result of the total nucleic acid and the detection result of the control nucleic acid.
  • the present invention may further include a calculation step of calculating the number of cells, the amount of tissue, or the amount of body fluid of the sample based on the correlation and the detection result of the control nucleic acid in the sample.
  • the correlation is, for example, the relationship between the number of cells, the amount of tissue or the amount of body fluid, and the amount of the control nucleic acid contained therein.
  • the correlation can be obtained in advance from the amount of the control nucleic acid per target cell, tissue, or body fluid. it can. Based on the detection result of the control and the correlation, the number of cells, the amount of tissue, or the amount of body fluid in the sample can be calculated.
  • the target nucleic acid in the sample for example, even if the amount of the target nucleic acid can be analyzed, in diagnosis or the like, it is important to determine how many cells or the like are derived from. According to the present invention, by detecting the control nucleic acid, it is possible to further determine the amount of cells, tissues, or body fluids contained in the sample.
  • the present invention may further include a step of detecting a target nucleic acid for the sample.
  • the present invention further includes, for example, a mixing step of mixing the sample and the target probe, and a detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture.
  • the detection step the target nucleic acid in the sample can be detected by detecting the hybridization.
  • the present invention since the control nucleic acid that is constantly present in the living body can be detected, by further detecting the target nucleic acid, for example, the amount of the target nucleic acid relative to the control nucleic acid. Can be requested.
  • the target probe is not particularly limited, and a probe that hybridizes to a target nucleic acid can be used. However, like the control probe, a fluorogenic probe in which a signal generating substance is bound to a nucleic acid molecule is preferable.
  • the target probe is a fluorogenic probe
  • the nucleic acid molecule is a nucleic acid molecule that hybridizes to the target nucleic acid, and the signal generating substance generates a luminescent signal by hybridization to a target, It is a substance that loses its luminescence signal upon dissociation from the target, and the control probe and the target probe have different fluorescence characteristics.
  • control probe The description of the control probe can be used except that the target probe hybridizes to the target nucleic acid.
  • the number of types of the target probe is not particularly limited and can be appropriately set depending on the type or number of target nucleic acids to be set.
  • one type of target probe may be used, or two or more types of target probes may be used.
  • the mixing step a plurality of the target probes for the same target nucleic acid are used, and the plurality of target probes each have a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid. It is preferable to have.
  • each of the plurality of target probes has a nucleic acid molecule that hybridizes to different regions, but preferably has the same signal generating substance and emits the same luminescent signal by hybridization.
  • a plurality of the target probes can be hybridized to a plurality of locations of one type of target nucleic acid, and the total amount of luminescence signals by the hybridization can be increased.
  • each target nucleic acid when a plurality of target nucleic acids are set, for example, one type of target probe may be used for each target nucleic acid, or two types of target probes may be used. It is preferable that the target probe for each target nucleic acid has a different signal luminescent substance, for example. Thus, each target nucleic acid can be detected and separated by having different signal luminescent substances.
  • Different signal luminescent substances mean, for example, having different fluorescence properties, specifically, for example, having different excitation wavelengths, having different fluorescence wavelengths, or having different excitation wavelengths and different fluorescence wavelengths. Means that.
  • the mixed solution of the sample and the target probe is preferably processed at a temperature at which hybridization between the nucleic acid in the sample and the target probe is likely to occur (hybridization temperature), for example.
  • hybridization temperature a temperature at which hybridization between the nucleic acid in the sample and the target probe is likely to occur
  • the sample is treated with a dissociation temperature, then mixed with the target probe,
  • the treatment may be performed at a hybridization temperature, or the mixture may be treated at a hybridization temperature after the mixture is treated at a dissociation temperature.
  • the hybridization temperature and the dissociation temperature are as described above, for example.
  • the method for detecting the hybridization is not particularly limited, and can be appropriately determined depending on, for example, the type of the target probe. As a specific example, it can be appropriately determined depending on the signal generating substance.
  • the target nucleic acid detection step may be performed, for example, on the same system (the mixed solution) as the detection using the control probe, or may be performed in another system, but the total amount of the sample to be used Can be reduced, the former is preferable. That is, it is preferable to mix the control probe and the target probe with a sample and perform both detection of hybridization with the control probe and detection of hybridization with the target probe.
  • the control probe and the target probe may be added to the sample, for example, either first or simultaneously, and detection of hybridization with the control probe and high detection with the target probe. Any detection of hybridization may be performed first, for example.
  • the present invention may further include a total nucleic acid detection step and a target nucleic acid ratio calculation step for the sample.
  • the total nucleic acid detection step is the same as described above, for example.
  • the ratio of the target nucleic acid in the total nucleic acid can be calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid.
  • the ratio of the total nucleic acid, the control nucleic acid, and the target nucleic acid can be obtained for the sample.
  • control probe and optionally the target probe, and optionally the intercalator may be added to the reaction vessel, for example, or may be added in advance to the reaction vessel, or a necessary amount of the sample. May be held in a pipette tip to collect the. In the case of holding the pipette tip, for example, it is preferable to hold the sample so as to be released from the pipette tip by aspiration of the sample.
  • the first nucleic acid analysis method of the present invention will be described with reference to an example of detecting the control nucleic acid, the target nucleic acid and the total nucleic acid.
  • a control probe for the control nucleic acid, a target probe for the target nucleic acid, and an intercalator for the total nucleic acid are placed as dry reagents on the inner wall of the pipette tip for sample collection.
  • the control probe and the target probe are, for example, E probes each having different fluorescence characteristics.
  • the mixed liquid is discharged into a container, and the mixed liquid is hybridized with the control nucleic acid and the control probe, the target nucleic acid is hybridized with the target probe, and the intercalator is intercalated with respect to the total nucleic acid.
  • the control probe and the target probe have the same fluorescence wavelength at different excitation wavelengths, the control probe and the target probe are excited at the respective excitation wavelengths, and the fluorescence signals obtained by the respective excitation wavelengths are detected at the same fluorescence wavelength.
  • the control probe and the target probe have the same excitation wavelength and different fluorescence wavelengths, the control probe and the target probe are excited with the same excitation wavelength, and the fluorescence signal of each fluorescence wavelength is detected.
  • the amount of the control nucleic acid, the target nucleic acid, and the total nucleic acid is detected for the sample by the detection. Based on these results, the number of cells, the amount of tissue or the amount of body fluid in the sample can be calculated, and the ratio of the control nucleic acid to the total nucleic acid and the ratio of the target nucleic acid to the total nucleic acid or the control nucleic acid can be known. Can do.
  • the second nucleic acid analysis method of the present invention is as follows.
  • the target probe is A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
  • the nucleic acid molecule is a nucleic acid molecule that hybridizes to a target nucleic acid,
  • the signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
  • the detection step includes The target nucleic acid in the sample is detected by detecting the hybridization.
  • the target nucleic acid can be detected without performing the amplification process of the sample and without being influenced by the amount of the sample.
  • the description of the first nucleic acid analysis method can be used in the second nucleic acid analysis method of the present invention unless otherwise specified.
  • the sample is a sample that has not been amplified.
  • the target nucleic acid is DNA or RNA.
  • the target probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
  • the second nucleic acid analysis method of the present invention uses, for example, a plurality of the target probes for the same target nucleic acid in the mixing step, Each of the plurality of target probes has a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid.
  • the second nucleic acid analysis method of the present invention further includes, for example, a total nucleic acid detection step and a target nucleic acid ratio calculation step
  • the total nucleic acid detection step includes: Detecting the total nucleic acid in the sample
  • the ratio calculating step includes: The ratio of the target nucleic acid in the total nucleic acid is calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid.
  • the detection step is a detection step by melting curve analysis.
  • a fluorogenic probe is used as an actin probe, and actin DNA, which is a control nucleic acid, is detected from a non-amplified sample.
  • Probe for actin A DNA nucleic acid molecule having the following sequence is synthesized, and a signal generating substance is bound to 7 bases from the 3 ′ end so as to have the structure represented by the formula (113) to prepare an E probe. .
  • a probe reagent is prepared by mixing with Tris-NaCl buffer so that the concentration of E probe is 1 ⁇ 10 ⁇ 7 mol / L.
  • Probe sequence SEQ ID NO: 1): GGCGAACZGGTGGC (Z: labeled T base)
  • the nucleic acid analysis method of the present invention for example, even for a sample that has not been subjected to amplification treatment, the nucleic acid can be specifically analyzed by using the fluorogenic probe regardless of the amount of the sample. .

Abstract

Provided is a nucleic acid analyzing method which enables a nucleic acid-specific analysis regardless of an amount of nucleic acids even for a sample which has not undergone an amplification processing. This nucleic acid analyzing method includes: a mixing step of mixing a living body-derived sample and a control probe; and a detecting step of detecting, from the mixture, hybridization of a nucleic acid in the sample and the control probe. The nucleic acid analyzing method is characterized in that: the control probe is a fluorogenic probe in which signal generating substances are bonded to nucleic acid molecules; the nucleic acid molecules are nucleic acid molecules hybridizable to predetermined control nucleic acids constantly present in a living body; the signal generating substances are substances which generate a light-emitting signal due to hybridization to a target and lose the light-emitting signal due to dissociation from the target; and in the detecting step, the control nucleic acids are detected from the sample by detecting the hybridization.

Description

核酸分析方法Nucleic acid analysis method
 本発明は、核酸の分析方法に関する。 The present invention relates to a nucleic acid analysis method.
 サンプル中の標的核酸の分析を行う場合、一般的に、サンプル中の核酸を特異的プライマーにより増幅させ、その増幅の有無を検出する方法、または、得られた増幅産物と特異的プローブとのハイブリダイズを検出する方法が採用されている。このように、標的核酸を特異的に検出するには、精度および感度の点から、核酸の増幅は必須である。 When analyzing a target nucleic acid in a sample, generally, a nucleic acid in a sample is amplified with a specific primer and the presence or absence of the amplification is detected, or the obtained amplification product and a specific probe are hybridized. A method for detecting soybean is employed. Thus, in order to specifically detect the target nucleic acid, amplification of the nucleic acid is essential from the viewpoint of accuracy and sensitivity.
 しかしながら、サンプル中の核酸を増幅させた場合、得られる分析結果は、増幅した核酸の結果であるため、サンプルに元来含まれていた核酸量が不明である。他方、サンプル中の核酸を増幅することなく検出する場合、例えば、サンプル量が少ないと、プローブを使用しても十分なシグナルを得ることができない。このため、例えば、二本鎖DNAに非特異的に結合する蛍光試薬の使用が試みられているが、この方法では、非特異的な結合であるため、非特異的なDNAの検出が行われるにとどまっている。 However, when the nucleic acid in the sample is amplified, the analysis result obtained is the result of the amplified nucleic acid, so the amount of nucleic acid originally contained in the sample is unknown. On the other hand, when detecting a nucleic acid in a sample without amplifying, for example, if the sample amount is small, a sufficient signal cannot be obtained even if a probe is used. For this reason, for example, the use of a fluorescent reagent that binds non-specifically to double-stranded DNA has been attempted, but this method detects non-specific DNA because it is non-specific binding. Stays on.
 そこで、本発明は、例えば、増幅処理を行っていないサンプルであっても、サンプル量にかかわらず、核酸の特異的な分析を可能とする核酸分析方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a nucleic acid analysis method that enables specific analysis of nucleic acid regardless of the amount of the sample even if the sample is not subjected to amplification treatment.
 前記目的を達成するために、本発明の第1の核酸分析方法は、
生体由来のサンプルとコントロールプローブとを混合する混合工程、および、
前記混合物において、前記サンプル中の核酸と前記コントロールプローブとのハイブリダイゼーションを検出する検出工程を含み、
前記コントロールプローブは、
 核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
 前記核酸分子は、生体に恒常的に存在する所定のコントロール核酸に対してハイブリダイズする核酸分子であり、
 前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
前記検出工程は、
 前記ハイブリダイゼーションの検出により、前記サンプルにおける前記コントロール核酸を検出することを特徴とする。
In order to achieve the above object, the first nucleic acid analysis method of the present invention comprises:
A mixing step of mixing the biological sample and the control probe; and
A detection step of detecting hybridization between the nucleic acid in the sample and the control probe in the mixture;
The control probe is
A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
The nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body,
The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
The detection step includes
The control nucleic acid in the sample is detected by detecting the hybridization.
 本発明の第2の核酸分析方法は、
生体由来のサンプルと標的プローブとを混合する混合工程、および、
前記混合物において、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションを検出する検出工程を含み、
前記標的プローブは、
 核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
 前記核酸分子は、標的核酸に対してハイブリダイズする核酸分子であり、
 前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
前記検出工程は、
 前記ハイブリダイゼーションの検出により、前記サンプルにおける前記標的核酸を検出することを特徴とする。
The second nucleic acid analysis method of the present invention comprises:
A mixing step of mixing a sample derived from a living body and a target probe; and
A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
The target probe is
A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
The nucleic acid molecule is a nucleic acid molecule that hybridizes to a target nucleic acid,
The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
The detection step includes
The target nucleic acid in the sample is detected by detecting the hybridization.
 本発明の核酸分析方法によれば、例えば、増幅処理を行っていないサンプルであっても、サンプル量にかかわらず、前記フルオロジェニックプローブを使用することにより、核酸の特異的な分析が可能となる。 According to the nucleic acid analysis method of the present invention, for example, even for a sample that has not been subjected to amplification treatment, the nucleic acid can be specifically analyzed by using the fluorogenic probe regardless of the amount of the sample. .
<第1の核酸分析方法>
 本発明の第1の核酸分析方法は、前述のように、
生体由来のサンプルとコントロールプローブとを混合する混合工程、および、
前記混合物において、前記サンプル中の核酸と前記コントロールプローブとのハイブリダイゼーションを検出する検出工程を含み、
前記コントロールプローブは、
 核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
 前記核酸分子は、生体に恒常的に存在する所定のコントロール核酸に対してハイブリダイズする核酸分子であり、
 前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
前記検出工程は、
 前記ハイブリダイゼーションの検出により、前記サンプルにおける前記コントロール核酸を検出することを特徴とする。
<First nucleic acid analysis method>
As described above, the first nucleic acid analysis method of the present invention is as follows.
A mixing step of mixing the biological sample and the control probe; and
A detection step of detecting hybridization between the nucleic acid in the sample and the control probe in the mixture;
The control probe is
A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
The nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body,
The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
The detection step includes
The control nucleic acid in the sample is detected by detecting the hybridization.
 本発明によれば、前記コントロールプローブを使用することによって、例えば、前記サンプルの増幅処理を行うことなく、また、前記サンプルの量に影響されることなく、前記コントロール核酸を検出できる。また、本発明によれば、増幅処理が不要であり、且つ、生体に恒常的に存在するコントロール核酸に結合するコントロールプローブを使用するため、前記コントロール核酸の検出によって、後述するように、前記サンプル中の細胞数を推定することも可能になる。診断等の分野においては、細胞あたりの量を知ることが重要となる。本発明によれば、サンプル中の細胞数の推定も可能であることから、診断等の分野において、非常に有用な方法であると言える。 According to the present invention, by using the control probe, for example, the control nucleic acid can be detected without performing the amplification treatment of the sample and without being influenced by the amount of the sample. In addition, according to the present invention, since a control probe that binds to a control nucleic acid that does not require an amplification process and is constantly present in a living body is used, the sample is detected by detection of the control nucleic acid as described later. It is also possible to estimate the number of cells inside. In fields such as diagnosis, it is important to know the amount per cell. According to the present invention, since the number of cells in a sample can be estimated, it can be said that this is a very useful method in the field of diagnosis and the like.
 本発明の第1の核酸分析方法は、例えば、前記核酸サンプルが、増幅処理を行っていない核酸サンプルである。 In the first nucleic acid analysis method of the present invention, for example, the nucleic acid sample is a nucleic acid sample that has not been amplified.
 本発明の第1の核酸分析方法は、例えば、前記コントロール核酸が、DNAまたはRNAである。 In the first nucleic acid analysis method of the present invention, for example, the control nucleic acid is DNA or RNA.
 本発明の第1の核酸分析方法は、例えば、前記コントロール核酸が、アクチンをコードするDNAまたはRNAである。 In the first nucleic acid analysis method of the present invention, for example, the control nucleic acid is DNA or RNA encoding actin.
 本発明の第1の核酸分析方法は、例えば、前記コントロールプローブが、1分子あたり、前記シグナル発生物質として、エキシトン効果を示す少なくとも2つの蛍光性原子団を有する。 In the first nucleic acid analysis method of the present invention, for example, the control probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
 本発明の第1の核酸分析方法は、例えば、前記混合工程において、同じコントロール核酸に対する複数の前記コントロールプローブを使用し、
前記複数のコントロールプローブが、それぞれ、前記コントロール核酸に対して、異なる領域にハイブリダイズする核酸分子を有する。
The first nucleic acid analysis method of the present invention uses, for example, a plurality of the control probes for the same control nucleic acid in the mixing step,
Each of the plurality of control probes has a nucleic acid molecule that hybridizes to a different region with respect to the control nucleic acid.
 本発明の第1の核酸分析方法は、例えば、さらに、トータル核酸の検出工程と、前記コントロール核酸の割合の算出工程とを含み、
前記トータル核酸の検出工程は、
 前記サンプル中のトータル核酸を検出する工程であり、
前記割合の算出工程は、
 前記トータル核酸の検出結果と、前記コントロール核酸の検出結果とに基づいて、前記トータル核酸における前記コントロール核酸の割合を算出する。
The first nucleic acid analysis method of the present invention further includes, for example, a total nucleic acid detection step and a control nucleic acid ratio calculation step,
The total nucleic acid detection step includes:
Detecting the total nucleic acid in the sample,
The ratio calculating step includes:
Based on the detection result of the total nucleic acid and the detection result of the control nucleic acid, the ratio of the control nucleic acid in the total nucleic acid is calculated.
 本発明の第1の核酸分析方法は、例えば、さらに、相関関係と、前記サンプルにおける前記コントロール核酸の検出結果とに基づいて、前記サンプルの細胞数、組織量または体液量を算出する算出工程を含み、
前記相関関係が、細胞の個数、組織量または体液量と、それらに含まれる前記コントロール核酸の量との相関関係である。
The first nucleic acid analysis method of the present invention further includes, for example, a calculation step of calculating the number of cells, the amount of tissue, or the amount of body fluid of the sample based on the correlation and the detection result of the control nucleic acid in the sample. Including
The correlation is a correlation between the number of cells, the amount of tissue or the amount of body fluid, and the amount of the control nucleic acid contained therein.
 本発明の第1の核酸分析方法は、例えば、さらに、前記サンプルと標的プローブとを混合する混合工程、および、
前記混合物において、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションを検出する検出工程を含み、
前記標的プローブは、
 標的核酸に対してハイブリダイズするプローブであり、
前記検出工程は、
 前記ハイブリダイゼーションの検出により、前記サンプルにおける前記標的核酸を検出する。
In the first nucleic acid analysis method of the present invention, for example, a mixing step of further mixing the sample and the target probe, and
A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
The target probe is
A probe that hybridizes to a target nucleic acid,
The detection step includes
The target nucleic acid in the sample is detected by detecting the hybridization.
 本発明の第1の核酸分析方法は、例えば、前記標的プローブは、
 核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
 前記核酸分子は、前記標的核酸に対してハイブリダイズする核酸分子であり、
 前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
前記コントロールプローブにおけるシグナル発生物質の発光シグナルと、前記標的プローブにおけるシグナル発生物質の発光シグナルとは、異なる蛍光特性である。
In the first nucleic acid analysis method of the present invention, for example, the target probe is:
A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
The nucleic acid molecule is a nucleic acid molecule that hybridizes to the target nucleic acid,
The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
The luminescent signal of the signal generating substance in the control probe and the luminescent signal of the signal generating substance in the target probe have different fluorescence characteristics.
 本発明の第1の核酸分析方法は、例えば、前記標的プローブが、1分子あたり、前記シグナル発生物質として、エキシトン効果を示す少なくとも2つの蛍光性原子団を有する。 In the first nucleic acid analysis method of the present invention, for example, the target probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
 本発明の第1の核酸分析方法は、例えば、前記混合工程において、同じ標的核酸に対する複数の前記標的プローブを使用し、
前記複数の標的プローブが、それぞれ、前記標的核酸に対して、異なる領域にハイブリダイズする核酸分子を有する。
The first nucleic acid analysis method of the present invention uses, for example, a plurality of the target probes for the same target nucleic acid in the mixing step,
Each of the plurality of target probes has a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid.
 本発明の第1の核酸分析方法は、例えば、さらに、トータル核酸の検出工程と、前記標的核酸の割合の算出工程とを含み、
前記トータル核酸の検出工程は、
 前記サンプル中のトータル核酸を検出する工程であり、
前記割合の算出工程は、
 前記トータル核酸の検出結果と、前記標的核酸の検出結果とに基づいて、前記トータル核酸における前記標的核酸の割合を算出する。
The first nucleic acid analysis method of the present invention further includes, for example, a total nucleic acid detection step, and a target nucleic acid ratio calculation step,
The total nucleic acid detection step includes:
Detecting the total nucleic acid in the sample,
The ratio calculating step includes:
The ratio of the target nucleic acid in the total nucleic acid is calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid.
 本発明の第1の核酸分析方法は、例えば、前記エキシトン効果を示す一対の蛍光性原子団を有する塩基が、後述する式(16)、(16b)、(17)、または(17b)で表される構造を有する。 In the first nucleic acid analysis method of the present invention, for example, the base having a pair of fluorescent atomic groups exhibiting the exciton effect is represented by the following formula (16), (16b), (17), or (17b). Has a structure.
 本発明の第1の核酸分析方法は、例えば、前記検出工程が、融解曲線解析による検出工程である。 In the first nucleic acid analysis method of the present invention, for example, the detection step is a detection step by melting curve analysis.
 以下に、本発明の第1の核酸分析方法について、具体的に説明する。なお、本発明の方法は、これらの記載には限定されない。 Hereinafter, the first nucleic acid analysis method of the present invention will be specifically described. The method of the present invention is not limited to these descriptions.
 本発明において、「フルオロジェニック」とは、例えば、標的に特異的に結合した状態で、シグナルを発生し、未結合の状態で、シグナルを消失することをいい、シグナルの発生と消失とが可逆的であることを意味する。本発明において、「分析」とは、例えば、定性分析でもよいし、定量分析でもよい。 In the present invention, “fluorogenic” means, for example, that a signal is generated in a state of being specifically bound to a target and that the signal is lost in an unbound state, and the generation and disappearance of the signal is reversible. Means that In the present invention, “analysis” may be, for example, qualitative analysis or quantitative analysis.
 本発明において、前記サンプルは、例えば、増幅処理を行っていないサンプルでもよいし、増幅処理を行ったサンプルでもよい。本発明は、前述のように、増幅処理を行わない場合でも、コントロール核酸の検出が可能であることから、特に、前者の増幅処理を行っていないサンプルの分析に有用である。 In the present invention, the sample may be, for example, a sample that has not been amplified or a sample that has been amplified. As described above, since the control nucleic acid can be detected even when the amplification treatment is not performed, the present invention is particularly useful for analysis of a sample that has not been subjected to the former amplification treatment.
 前記サンプルは、特に制限されず、生体由来であればよい。前記生体由来サンプルの種類は、特に制限されず、例えば、体液、組織、細胞等があげられる。前記体液は、例えば、全血、血漿、血清等の血液、房水等の眼球内液、リンパ液、脳脊髄液、涙、汗、精液、唾液、粘液、尿、鼻水、鼻腔ぬぐい液(スワブ)等があげられる。前記組織としては、例えば、硝子体等の眼球内組織、腫瘍等の病原を有する組織等があげられる。また、前記細胞としては、例えば、腫瘍等の病原細胞、血球細胞(例えば、赤血球、白血球等)等があげられる。前記生体の種類は、特に制限されず、例えば、ヒト、非ヒト哺乳類(例えば、ウシ、ブタ、ヒツジ、マウス、ラット、ウサギおよびウマ等)、鳥類、魚類等の動物があげられる。 The sample is not particularly limited as long as it is derived from a living body. The kind of the biological sample is not particularly limited, and examples thereof include body fluids, tissues, cells, and the like. Examples of the body fluid include whole blood, plasma, blood such as serum, intraocular fluid such as aqueous humor, lymph, cerebrospinal fluid, tears, sweat, semen, saliva, mucus, urine, nasal discharge, and nasal swab Etc. Examples of the tissue include intraocular tissues such as vitreous, and pathogenic tissues such as tumors. Examples of the cells include pathogenic cells such as tumors, blood cells (for example, erythrocytes, leukocytes, etc.) and the like. The kind of the living body is not particularly limited, and examples thereof include animals such as humans, non-human mammals (for example, cows, pigs, sheep, mice, rats, rabbits and horses), birds, and fish.
 本発明において、前記コントロールプローブは、生体に恒常的に存在するコントール核酸に対するプローブである。したがって、前記コントロールプローブは、例えば、分析対象である前記サンプルの種類に応じて、前記コントロール核酸を設定することによって、適宜決定できる。前記コントロール核酸は、例えば、前記サンプルの種類において恒常的に存在することが既知である核酸、また、今後、恒常的に存在することが既知となる核酸があげられる。前記コントロール核酸としては、例えば、β-アクチン、GAPDH(glyceraldehyde 3-phosphate dehydrogenase)、ユビキチン等をコードする核酸があげられる。アクチン等のコントロール核酸は、例えば、動物の種類(例えば、ヒト)に応じて、体液あたりの量、組織あたりの量、または細胞あたりの量が規定できる。 In the present invention, the control probe is a probe for control nucleic acid that is constantly present in a living body. Therefore, the control probe can be appropriately determined by setting the control nucleic acid according to the type of the sample to be analyzed, for example. Examples of the control nucleic acid include a nucleic acid that is known to exist constitutively in the type of sample, and a nucleic acid that is known to exist constitutively in the future. Examples of the control nucleic acid include nucleic acids encoding β-actin, GAPDH (glyceraldehyde 3-phosphate dehydrogenase), ubiquitin and the like. For example, the amount per body fluid, the amount per tissue, or the amount per cell can be defined for the control nucleic acid such as actin depending on the type of animal (eg, human).
 本発明において、分析対象である前記コントロール核酸は、例えば、DNAでもよいし、RNAでもよい。また、前記コントロール核酸は、例えば、一本鎖核酸でもよいし、二本鎖核酸でもよい。後者の場合、例えば、前記二本鎖核酸を構成する一対の一本鎖核酸のうち、いずれの一本鎖核酸を、前記コントロールプローブがハイブリダイズする核酸に設定してもよい。具体的には、前記一対の一本鎖核酸のうち、例えば、センス鎖を、ハイブリダイズする核酸に設定してもよいし、アンチセンス鎖を、ハイブリダイズする核酸に設定してもよい。 In the present invention, the control nucleic acid to be analyzed may be, for example, DNA or RNA. The control nucleic acid may be, for example, a single-stranded nucleic acid or a double-stranded nucleic acid. In the latter case, for example, out of a pair of single-stranded nucleic acids constituting the double-stranded nucleic acid, any single-stranded nucleic acid may be set as a nucleic acid to which the control probe hybridizes. Specifically, among the pair of single-stranded nucleic acids, for example, the sense strand may be set as a hybridizing nucleic acid, or the antisense strand may be set as a hybridizing nucleic acid.
 前記コントロールプローブは、核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、前記核酸分子は、生体に恒常的に存在する所定のコントロール核酸に対してハイブリダイズする核酸分子である。前記核酸分子は、前記コントロール核酸にハイブリダイズできればよく、前記核酸分子の配列は、前記コントロール核酸の配列に応じて適宜設計できる。前記核酸分子は、例えば、前記コントロール核酸が一本鎖であり、前記コントロール核酸へのハイブリダイズにより二本鎖を形成する核酸分子でもよいし、前記コントロール核酸が二本鎖であり、前記コントロール核酸へのハイブリダイズにより三本鎖を形成する、フーグスティーン型塩基対を利用する核酸分子でもよい。 The control probe is a fluorogenic probe in which a signal generating substance is bound to a nucleic acid molecule, and the nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body. The nucleic acid molecule only needs to be able to hybridize to the control nucleic acid, and the sequence of the nucleic acid molecule can be appropriately designed according to the sequence of the control nucleic acid. The nucleic acid molecule may be, for example, a nucleic acid molecule in which the control nucleic acid is single-stranded and forms a double strand by hybridization to the control nucleic acid, or the control nucleic acid is double-stranded, and the control nucleic acid It may be a nucleic acid molecule using Hoogsteen-type base pairing, which forms a triple strand by hybridization.
 前記核酸分子は、例えば、3’末端が、伸長不可なように修飾されてもよく、具体的には、例えば、3’末端をリンカーOH基で化学修飾したものでもよい。 The nucleic acid molecule may be modified so that, for example, the 3 ′ end cannot be extended, and specifically, for example, the 3 ′ end may be chemically modified with a linker OH group.
 前記コントロールプローブにおいて、前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質である。前記シグナルの発生または消失は、例えば、FRET(Fluorescence resonance energy transfer)を利用してもよいし、FRETを利用しなくてもよい。 In the control probe, the signal generating substance is a substance that generates a luminescent signal by hybridization to a target and disappears by dissociation from the target. Generation or disappearance of the signal may use, for example, FRET (Fluorescence resonance energy transfer) or may not use FRET.
 前記コントロールプローブにおける前記シグナル発生物質は、例えば、エトキシン効果を示す蛍光原子団等があげられる。前記コントロールプローブは、例えば、1分子あたり、前記シグナル発生物質として、エキシトン効果を示す少なくとも2つの蛍光性原子団を有することが好ましい(以下、「Eプローブ」ともいう)。前記Eプローブは、例えば、特許第4370385号公報、国際公開公報WO2014/013954号パンフレットを参照できる。 Examples of the signal generating substance in the control probe include a fluorescent atomic group exhibiting an ethoxine effect. The control probe preferably has, for example, at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule (hereinafter also referred to as “E probe”). The E probe can refer to, for example, Japanese Patent No. 4370385 and International Publication WO2014 / 013954 pamphlet.
 前記Eプローブは、2つの蛍光性原子団(例えば、チアゾールオレンジやその類似物)が導入されたプローブである。前記Eプローブは、例えば、1本鎖の状態では、2つの蛍光性原子団がエキシプレックスを形成するエキシトン効果により、蛍光をほとんど発しないが、標的とハイブリダイズして2本鎖の状態または3本鎖の状態をとると、2つの蛍光性原子団がお互いに離れ、エキシトン効果を解消することによって大きく蛍光を発するという性質を持つ。なお、「Eプローブ」は、株式会社ダナフォームの商品名(「Eprobe」は登録商標)であるが、本発明における「Eプローブ」は、「Eプローブ」または「Eprobe」の商品名を付された商品と同一であっても、同一でなくても良い。 The E probe is a probe into which two fluorescent atomic groups (for example, thiazole orange and the like) are introduced. For example, in the single-stranded state, the E probe hardly emits fluorescence due to the exciton effect in which two fluorescent atomic groups form an exciplex, but hybridizes with the target to form a double-stranded state or 3 When it takes the state of this chain, the two fluorescent atomic groups are separated from each other, and have the property of greatly emitting fluorescence by eliminating the exciton effect. “E-probe” is a trade name of Danaform Co., Ltd. (“Eprobe” is a registered trademark), but “E-probe” in the present invention is given a product name of “E-probe” or “Eprobe”. The product may or may not be the same.
 前記Eプローブを構成する核酸分子の塩基配列において、前記2つの蛍光原子団の結合位置は、特に制限されず、任意の位置に設定できる。前記2つの蛍光原子は、例えば、前記核酸分子内の同一塩基に結合されてもよいし、それぞれが、互いに隣接する2つの塩基に結合されてもよい。前記核酸分子が、前記コントロール核酸と2本鎖を形成する核酸分子の場合、前記2つの蛍光原子は、例えば、少なくとも一方が、前記核酸分子の3’末端または5’末端から数塩基内側の塩基に結合されることが好ましく、前記末端の塩基を1番目として、3塩基内側の塩基に結合されることが好ましい。また、前記核酸分子が、前記コントロール核酸と3本鎖を形成するフーグスティーン型塩基対を利用するオリゴヌクレオチドの場合、例えば、前記2つの蛍光原子は、例えば、5’末端または3’末端に結合されることが好ましい。 In the base sequence of the nucleic acid molecule constituting the E probe, the binding position of the two fluorescent atomic groups is not particularly limited and can be set at any position. For example, the two fluorescent atoms may be bound to the same base in the nucleic acid molecule, or each may be bound to two adjacent bases. When the nucleic acid molecule is a nucleic acid molecule that forms a double strand with the control nucleic acid, for example, at least one of the two fluorescent atoms is a base several bases inside from the 3 ′ end or the 5 ′ end of the nucleic acid molecule. It is preferable that the terminal base is the first, and it is preferable that the terminal base is bound to the base inside 3 bases. When the nucleic acid molecule is an oligonucleotide using Hoogsteen-type base pairs that form a triple strand with the control nucleic acid, for example, the two fluorescent atoms are at the 5 ′ end or the 3 ′ end, for example. It is preferred that they are bonded.
 前記2つの蛍光原子団は、例えば、直接的に前記オリゴヌクレオチドに結合してもよいし、間接的に前記オリゴヌクレオチドに結合してもよい。後者の場合、前記2つの蛍光原子団は、例えば、リンカーを介して前記オリゴヌクレオチドに結合している。 The two fluorescent atomic groups may be directly bonded to the oligonucleotide or indirectly bonded to the oligonucleotide, for example. In the latter case, the two fluorescent atomic groups are bonded to the oligonucleotide via, for example, a linker.
 前記Eプローブにおいて、前記エキシトン効果を示す蛍光性原子団は、
(i)1つの分子内の2つの平面化学構造が同一平面内ではなく、ある一定の角度をもって存在するが、その分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには2つの平面化学構造が同一平面内に並ぶように配置することによって蛍光発光が生じるものであるか、
(ii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が標的分子、たとえば核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子群からなるものであるか、または、
(iii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が標的分子、たとえば核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子の化学構造を同一分子内に有することを特徴とするものである。
前記(ii)または(iii)の場合において、前記色素分子が、前記(i)記載の分子であることが好ましい。
In the E probe, the fluorescent atomic group exhibiting the exciton effect is:
(I) Two planar chemical structures in one molecule are not in the same plane but exist at a certain angle, but when the molecule intercalates or grooves binds to a nucleic acid, two planar chemical structures Fluorescence emission is caused by arranging the structures so that they are aligned in the same plane,
(Ii) When the two or more dye molecules do not exhibit fluorescence due to the exciton effect caused by assembly in parallel, but when these molecules intercalate or groove bind to a target molecule, eg, a nucleic acid, It is composed of two or more dye molecule groups that generate fluorescence when the aggregated state is solved, or
(Iii) When the two or more dye molecules do not exhibit fluorescence due to the exciton effect caused by the assembly in parallel, but when these molecules intercalate or groove bind to a target molecule, eg, a nucleic acid, It has the chemical structure of two or more dye molecules in which fluorescence emission occurs when the aggregate state is solved in the same molecule.
In the case of (ii) or (iii), the dye molecule is preferably the molecule described in (i).
 前記Eプローブにおいて、前記エキシトン効果を示す一対の蛍光原子団を有する塩基は、例えば、下記式(16)、(16b)、(17)、(17b)、(18)または(18b)で表される構造を有する。また、これらの式で表される構造に対する、互変異性体もしくは立体異性体、またはそれらの塩も、本発明における前記構造に含まれる。以下、蛍光性を示す原子団Z11およびZ12を有する、下記各式で表される構造を、「標識構造」ということがある。 In the E probe, the base having a pair of fluorescent atomic groups exhibiting the exciton effect is represented by the following formula (16), (16b), (17), (17b), (18) or (18b), for example. It has a structure. In addition, tautomers, stereoisomers, or salts thereof with respect to the structures represented by these formulas are also included in the structures in the present invention. Hereinafter, the structure represented by the following formulas having the atomic groups Z 11 and Z 12 exhibiting fluorescence may be referred to as “label structure”.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(16)、(16b)、(17)、(17b)、(18)および(18b)中、
Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
Eは、
(i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
(ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
11およびZ12は、それぞれ、蛍光性を示す原子団であり、同一でも異なっていてもよく、
、LおよびLは、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L、LおよびLは、互いに同一でも異なっていても良く、
Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
bは、単結合、二重結合もしくは三重結合であるか、
または、前記式(16)および(16b)中、LおよびLは前記リンカーであり、L、Dおよびbは存在せず、LおよびLがBに直接結合していてもよく、
ただし、
式(16)、(17)および(18)中、Eは、前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
式(16b)、(17b)および(18b)中、Eは、前記(ii)の原子団であり、
式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。
In the formulas (16), (16b), (17), (17b), (18) and (18b),
B is an atomic group having a natural nucleobase (adenine, guanine, cytosine, thymine or uracil) skeleton or an artificial nucleobase skeleton,
E is
(I) an atomic group having a structure derived from a deoxyribose skeleton, a ribose skeleton, or any of them, or (ii) an atomic group having a peptide structure or a peptoid structure,
Z 11 and Z 12 are each an atomic group that exhibits fluorescence, and may be the same or different,
L 1 , L 2 and L 3 are each a linker (a bridging atom or an atomic group), the main chain length (the number of main chain atoms) is arbitrary, and C, N, O, S, P and Si may or may not contain each, and in the main chain, single bond, double bond, triple bond, amide bond, ester bond, disulfide bond, imino group, ether bond, thioether bond And a thioester bond may or may not be included, and L 1 , L 2 and L 3 may be the same or different from each other,
D is CR, N, P, P═O, B, or SiR, R is a hydrogen atom, an alkyl group, or an optional substituent,
b is a single bond, a double bond or a triple bond,
Alternatively, in the formulas (16) and (16b), L 1 and L 2 are the linkers, L 3 , D and b may not exist, and L 1 and L 2 may be directly bonded to B ,
However,
In the formulas (16), (17) and (18), E is the atomic group of the above (i), and at least one O atom in the phosphoric acid bridge may be substituted with an S atom,
In the formulas (16b), (17b) and (18b), E is the atomic group of the above (ii),
In formulas (17) and (17b), each B may be the same or different, and each E may be the same or different.
 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、L、LおよびLの主鎖長(主鎖原子数)は、それぞれ2以上の整数であることが好ましい。L、LおよびLの主鎖長(主鎖原子数)は、上限は特に制限されないが、例えば100以下であり、より好ましくは30以下であり、特に好ましくは10以下である。 In the formulas (16), (17), (16b), (17b), (18) and (18b), the main chain lengths (number of main chain atoms) of L 1 , L 2 and L 3 are each 2 or more It is preferable that it is an integer. The upper limit of the main chain length (number of main chain atoms) of L 1 , L 2 and L 3 is not particularly limited, but is, for example, 100 or less, more preferably 30 or less, and particularly preferably 10 or less.
 Z11およびZ12は、エキシトン効果を示す蛍光性原子団である。これにより、標的配列と結合したときの蛍光色素周りの環境変化、例えば、二重らせん構造となったときの蛍光の増大が大きく、標的配列をいっそう効果的に検出することができる。 Z 11 and Z 12 are fluorescent atomic groups that exhibit an exciton effect. As a result, the environmental change around the fluorescent dye when bound to the target sequence, for example, the increase in fluorescence when a double helical structure is formed is large, and the target sequence can be detected more effectively.
 Z11およびZ12は、エキシトン効果を示す蛍光性原子団であればよく、特に制限されない。Z11およびZ12は、例えば、それぞれ独立に、チアゾールオレンジ、オキサゾールイエロー、シアニン、ヘミシアニン、その他のシアニン色素、メチルレッド、アゾ色素またはそれらの誘導体から誘導される基であることがより好ましい。また、その他の公知の色素から誘導される基も、適宜用いることができる。DNA等の核酸に結合することによって蛍光強度を変化させる蛍光色素は、数多く報告されている。典型的な例では、エチジウムブロミドがDNAの二重らせん構造にインターカレーションして強い蛍光を示すことが知られており、DNA検出に多用されている。また、ピレンカルボキシアミドやプロダンのような微視的極性に応じて蛍光強度を制御できる蛍光色素も知られている。また、前記チアゾールオレンジは、ベンゾチアゾール環とキノリン環をメチン基で連結した蛍光色素であり、通常微弱な蛍光を示すが、二重らせん構造をもつDNAにインターカレーションすることによって強い蛍光発光を与えるようになる。その他、例えば、フルオレセインやCy3等の色素もあげられる。 Z 11 and Z 12 may be any fluorescent atomic group exhibiting an exciton effect, and are not particularly limited. More preferably, Z 11 and Z 12 are each independently a group derived from thiazole orange, oxazole yellow, cyanine, hemicyanine, other cyanine dyes, methyl red, azo dyes or derivatives thereof. In addition, groups derived from other known dyes can also be used as appropriate. Many fluorescent dyes that change fluorescence intensity by binding to nucleic acids such as DNA have been reported. In a typical example, ethidium bromide is known to exhibit strong fluorescence by intercalating into the double helix structure of DNA, and is frequently used for DNA detection. Also known are fluorescent dyes capable of controlling the fluorescence intensity according to the microscopic polarity, such as pyrenecarboxamide and prodan. The thiazole orange is a fluorescent dye in which a benzothiazole ring and a quinoline ring are connected by a methine group, and usually shows weak fluorescence, but emits strong fluorescence when intercalated into DNA having a double helix structure. To give. Other examples include dyes such as fluorescein and Cy3.
 Z11およびZ12は、それぞれ独立に、下記式(7)から(9)のいずれかで表される原子団であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
More preferably, Z 11 and Z 12 are each independently an atomic group represented by any one of the following formulas (7) to (9).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式(7)~(9)中、
およびXは、S、SeまたはOであり、
n’’は、0または正の整数であり、
~R10、R13~R21は、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
11およびR12のうち、一方は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLもしくはLに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
15は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
16は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
11中のX、XおよびR~R21と、Z12中のX、XおよびR~R21とは、互いに同一でも異なっていてもよい。
In formulas (7) to (9),
X 1 and X 2 are S, Se or O;
n ″ is 0 or a positive integer;
R 1 to R 10 and R 13 to R 21 are each independently a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group, or an amino group,
One of R 11 and R 12 is a linking group that binds to L 1 or L 2 in the formulas (16), (17), (16b), (17b), (18), and (18b). The other is a hydrogen atom or a lower alkyl group,
R 15 may be the same or different when a plurality of R 15 are present in the formula (7), (8) or (9),
R 16 may be the same or different when there are a plurality of R 16 in the formula (7), (8) or (9),
And X 1, X 2 and R 1 ~ R 21 in Z 11, and X 1, X 2 and R 1 ~ R 21 in Z 12, may be the same or different from each other.
 前記式(7)~(9)中、R~R21において、前記低級アルキル基が、炭素数1~6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1~6の直鎖または分枝アルコキシ基であることがさらに好ましい。 In the above formulas (7) to (9), in R 1 to R 21 , the lower alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms, and the lower alkoxy group is 1 to carbon atoms. More preferably, it is a 6 straight-chain or branched alkoxy group.
 前記式(7)~(9)中、R11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(16)、(16b)、(17)、(17b)、(18)および(18b)中のLもしくはLに結合することがさらに好ましい。前記ポリメチレンカルボニル基の炭素数は、その上限は特に制限されないが、例えば100以下、好ましくは50以下、より好ましくは30以下、特に好ましくは10以下である。 In the above formulas (7) to (9), in R 11 and R 12 , the linking group is a polymethylene carbonyl group having 2 or more carbon atoms, and in the carbonyl group portion, the formulas (16), (16b), ( More preferably, it binds to L 1 or L 2 in 17), (17b), (18) and (18b). The upper limit of the carbon number of the polymethylenecarbonyl group is not particularly limited, but is, for example, 100 or less, preferably 50 or less, more preferably 30 or less, and particularly preferably 10 or less.
 Z11およびZ12は、前記式(7)~(9)で表される場合は、例えば、それぞれ独立に、下記式(19)または(20)で示される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
In the case where Z 11 and Z 12 are represented by the above formulas (7) to (9), for example, each independently is more preferably a group represented by the following formula (19) or (20).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 前記式(19)および(20)中、Xは-S-又は-O-を示す。RからR10、R13およびR14はそれぞれ独立に水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、又はアミノ基を示す。R11およびR12の一方は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLおよびLに結合する連結基を示し、R11およびR12の他方は水素原子、または低級アルキル基を示す。 In the formulas (19) and (20), X 1 represents —S— or —O—. R 1 to R 10 , R 13 and R 14 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group or an amino group. One of R 11 and R 12 represents a linking group bonded to L 1 and L 2 in the formulas (16), (17), (16b), (17b), (18) and (18b), and R The other of 11 and R 12 represents a hydrogen atom or a lower alkyl group.
 また、Z11およびZ12が、それぞれ独立に、下記の各化学式のいずれかで表される原子団であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
In addition, it is particularly preferable that Z 11 and Z 12 are each independently an atomic group represented by any one of the following chemical formulas.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記各化学式中、
nは、正の整数であり、2~6の範囲であることが特に好ましい。
In the above chemical formulas,
n is a positive integer and is particularly preferably in the range of 2-6.
 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、Bは、天然核酸塩基骨格を有していても良いが、前述の通り、人工核酸塩基骨格を有していてもよい。例えば、Bが、Py(ピリミジン環)、Py der.、Pu(プリン環)、またはPu der.で表される構造であることが好ましい。ただし、
前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
In the formulas (16), (17), (16b), (17b), (18) and (18b), B may have a natural nucleobase skeleton. It may have a skeleton. For example, B is Py (pyrimidine ring), Py der. , Pu (purine ring), or Pu der. It is preferable that it is a structure represented by these. However,
The Py is an atomic group having a covalent bond bonded to E at the 1-position and a covalent bond bonded to the linker moiety at the 5-position among the 6-membered ring represented by the following formula (11). Yes,
The Py der. Is an atomic group in which at least one of all atoms of the 6-membered ring of Py is substituted with N, C, S, or O atoms, and the N, C, S, or O atoms are appropriately charged, hydrogen atoms Or it may have a substituent,
The Pu is an atomic group having a covalent bond bonded to E at the 9-position and a covalent bond bonded to the linker moiety at the 8-position among the condensed rings represented by the following formula (12). ,
The Pu der. Is an atomic group in which at least one of all atoms of the five-membered ring of Pu is substituted with N, C, S, or O atoms, and the N, C, S, or O atoms are appropriately charged, hydrogen atoms Or you may have a substituent.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 また、前記Eプローブにおける前記オリゴヌクレオチドは、例えば、下記化学式106、110、113、117、120、122、123、124または114-2で表されるヌクレオチド構造、またはそれらの幾何異性体、立体異性体もしくは塩である構造を少なくとも一つ含んでいても良い。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
The oligonucleotide in the E probe is, for example, a nucleotide structure represented by the following chemical formula 106, 110, 113, 117, 120, 122, 123, 124 or 114-2, or a geometric isomer or stereoisomer thereof. It may contain at least one structure which is a body or a salt.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 上記化学式106、110、113、117、120、122、123、124および114-2中、リンカー長nは、正の整数であり、2~6の範囲であることが好ましい。 In the above chemical formulas 106, 110, 113, 117, 120, 122, 123, 124 and 114-2, the linker length n is a positive integer and is preferably in the range of 2-6.
 前記Eプローブに含まれる前記標識構造の数は、特に限定されないが、例えば、1~100個程度、1~20個程度である。また、前記Eプローブにおいて、前記標識構造が含まれる部位も特に制限されない。 The number of the label structures included in the E probe is not particularly limited, but is, for example, about 1 to 100 and about 1 to 20. Further, in the E probe, the site including the label structure is not particularly limited.
 前記コントロールプローブにおける核酸分子は、例えば、天然ヌクレオチド残基、非ヌクレオチド残基、修飾ヌクレオチド残基および非天然主骨格のいずれから構成されてもよく、いずれか一種類でもよいし、いずれか二種類でもよいし、前記三種類を含んでもよいし、前記四種類を含んでもよい。前記非天然主骨格は、特に制限されず、例えば、LNA、PNAおよび修飾型リン酸ジエステル結合をもつ核酸等があげられる。また、前記修飾ヌクレオチド残基は、特に制限されず、S化ヌクレオチド残基であり、前記ヌクレオチド残基が硫黄原子(S)を含んでもよいし、硫黄原子(S)で修飾されてもよい。 The nucleic acid molecule in the control probe may be composed of any one of, for example, a natural nucleotide residue, a non-nucleotide residue, a modified nucleotide residue and a non-natural main skeleton, or any one kind or any two kinds Alternatively, the three types may be included, or the four types may be included. The non-natural main skeleton is not particularly limited, and examples thereof include nucleic acids having LNA, PNA and modified phosphodiester bonds. The modified nucleotide residue is not particularly limited and is a S-nucleotide residue, and the nucleotide residue may contain a sulfur atom (S) or may be modified with a sulfur atom (S).
 前記コントロールプローブにおける核酸分子の基本骨格は、特に制限されず、例えば、オリゴヌクレオチド、修飾オリゴヌクレオチド、オリゴヌクレオシド、修飾オリゴヌクレオシド、ポリヌクレオチド、修飾ポリヌクレオチド、ポリヌクレオシド、修飾ポリヌクレオシド、DNA、修飾DNA、RNA、修飾RNA、LNA、PNA(ペプチド核酸)、または、これらキメラ分子のいずれであっても良いし、その他の構造であっても良い。また、前記核酸の基本骨格は、天然のものであっても、人工的に合成されたものであってもよい。前記核酸がプローブの場合、例えば、塩基対結合を形成し得るものであればよく、核酸試料や標的核酸配列の場合、例えば、相補鎖合成のための鋳型として機能すればよい。このため、前記核酸は、例えば、部分的に、または、全体が完全に人工的な構造からなるヌクレオチド誘導体であってもよい。前記核酸を構成する人工塩基としては、例えば、2-amino-6-(N,N-dimethylamino)purinepyridin-2-one、5-methylpyridin-2-one、2-amino-6-(2-thienyl)purine、pyrrole-2-carbaldehyde、9-Methylimidazo[(4,5)-b]pyridine、5-iodo-2-oxo(1H)pyridine 2-oxo-(1H)pyridine、2-amino-6-(2-thiazolyl)purine、7-(2-thienyl)-imidazo[4,5-b]pyridine等があげられるが、これには限定されない。 The basic skeleton of the nucleic acid molecule in the control probe is not particularly limited. For example, oligonucleotide, modified oligonucleotide, oligonucleoside, modified oligonucleoside, polynucleotide, modified polynucleotide, polynucleoside, modified polynucleoside, DNA, modified DNA , RNA, modified RNA, LNA, PNA (peptide nucleic acid), or any of these chimeric molecules, or other structures. Moreover, the basic skeleton of the nucleic acid may be natural or artificially synthesized. When the nucleic acid is a probe, for example, any nucleic acid may be used as long as it can form a base pair bond. For a nucleic acid sample or a target nucleic acid sequence, for example, it may function as a template for complementary strand synthesis. For this reason, the nucleic acid may be, for example, a nucleotide derivative partially or entirely composed of an artificial structure. Examples of the artificial base constituting the nucleic acid include 2-amino-6- (N, N-dimethylamino) purinepyridin-2-one, 5-methylpyridin-2-one, 2-amino-6- (2-thienyl) purine, pyrrole-2-carbaldehyde, 9-Methylimidazo [(4,5) -b] pyridine, 5-iodo-2-oxo (1H) pyridine 2-oxo- (1H) pyridine, 2-amino-6- (2 -thiazolyl) purine, 7- (2-thienyl) -imidazo [4,5-b] pyridine and the like, but are not limited thereto.
 本発明の分析方法において、「ヌクレオチド」とは、例えば、デオキシヌクレオチドおよびリボヌクレオチドのいずれであってもよく、「オリゴヌクレオチド」および「ポリヌクレオチド」は、例えば、デオキシヌクレオチドおよびリボヌクレオチドのいずれか一方から構成されてもよいし、両者を含んでもよい。前記プローブにおいて、核酸の構成塩基数は、特に制限されない。核酸という用語は、一般に、ポリヌクレオチドという用語と同義である。オリゴヌクレオチドという用語は、一般に、ポリヌクレオチドの中でも、特に構成塩基数が少ないものを示す用語として用いる。一般には、例えば、2~100塩基長、より一般的には2~50塩基長程度のポリヌクレオチドを「オリゴヌクレオチド」と呼ぶが、これらの数値に限定されるものではない。ポリヌクレオチドという用語は、第1の分析方法において、例えば、ポリヌクレオチドおよびオリゴヌクレオチド、ならびに、ペプチド核酸、モルホリノ核酸、メチルフォスフォネート核酸、S-オリゴ核酸などの人工合成核酸をも含むものとする。 In the analysis method of the present invention, “nucleotide” may be, for example, either deoxynucleotide or ribonucleotide, and “oligonucleotide” and “polynucleotide” are, for example, either deoxynucleotide or ribonucleotide. It may be comprised from, and both may be included. In the probe, the number of bases constituting the nucleic acid is not particularly limited. The term nucleic acid is generally synonymous with the term polynucleotide. The term “oligonucleotide” is generally used as a term indicating a polynucleotide having a particularly small number of bases. In general, for example, a polynucleotide having a length of 2 to 100 bases, more generally about 2 to 50 bases is referred to as an “oligonucleotide”, but it is not limited to these numerical values. The term polynucleotide is intended to include, in the first analytical method, for example, polynucleotides and oligonucleotides, as well as artificially synthesized nucleic acids such as peptide nucleic acids, morpholino nucleic acids, methyl phosphonate nucleic acids, S-oligonucleic acids.
 前記PNA(ペプチド核酸)は、一般に、オリゴヌクレオチドのデオキシリボース主鎖が、ペプチド主鎖で置換された構造を有する。前記ペプチド主鎖としては、例えば、アミド結合によって結合したN-(2-アミノエチル)グリシンの反復単位があげられる。PNAのペプチド主鎖に結合させる塩基としては、例えば、チミン、シトシン、アデニン、グアニン、イノシン、ウラシル、5-メチルシトシン、チオウラシルおよび2,6-ジアミノプリン等の天然に存在する塩基、ブロモチミン、アザアデニンおよびアザグアニン等の人工塩基があげられるが、これに限定されない。 The PNA (peptide nucleic acid) generally has a structure in which the deoxyribose main chain of an oligonucleotide is replaced with a peptide main chain. Examples of the peptide main chain include a repeating unit of N- (2-aminoethyl) glycine linked by an amide bond. Examples of the base to be bound to the peptide main chain of PNA include thymine, cytosine, adenine, guanine, inosine, uracil, 5-methylcytosine, thiouracil and 2,6-diaminopurine, naturally occurring bases such as bromothymine, azaadenine And artificial bases such as azaguanine, but are not limited thereto.
 前記LNAは、一般に、糖-リン酸骨格において、リボースの2’位の酸素原子と4’位の炭素原子との間がメチレン架橋で結合された、2つの環状構造を持つ核酸である。LNAを含むオリゴヌクレオチドがDNAとアニールすると、二本鎖のコンフォメーションが変化し、熱安定性が上昇する。LNAは、通常のオリゴヌクレオチドに比較して核酸に対する結合力が強いため、例えば、オリゴヌクレオチドの設計条件によって、より確実、強固なハイブリダイゼーションが可能となる。 The LNA is generally a nucleic acid having two circular structures in which the 2'-position oxygen atom and the 4'-position carbon atom of ribose are linked by a methylene bridge in the sugar-phosphate skeleton. When an oligonucleotide containing LNA anneals to DNA, the double-stranded conformation changes and thermal stability increases. Since LNA has a stronger binding force to nucleic acids than ordinary oligonucleotides, for example, more reliable and robust hybridization is possible depending on oligonucleotide design conditions.
 前記コントロールプローブにおいて前記核酸分子に含まれる塩基数は、特に限定されず、例えば、5~100程度、6~50程度、6~25程度である。 The number of bases contained in the nucleic acid molecule in the control probe is not particularly limited, and is, for example, about 5 to 100, about 6 to 50, or about 6 to 25.
 本発明において前記混合工程は、生体由来のサンプルとコントロールプローブとを混合する工程である。前記生体由来のサンプルの量は、特に制限されない。本発明によれば、例えば、十分なサンプル量の場合であっても、少ないサンプル量の場合であっても、前記コントロールプローブを使用することで、増幅処理を行わなくても、発光によりサンプル中のコントロール核酸を検出することができる。使用するサンプル量は、例えば、ナノリットルオーダー、マイクロリットルオーダー、ミリリットルオーダーのいずれでもよく、例えば、0.1nL~1mLであり、具体例としては、例えば、0.1nL~10nL、10nL~100nLであり、または、0.1μL~10μL、10μL~1000μLである。 In the present invention, the mixing step is a step of mixing a biological sample and a control probe. The amount of the biological sample is not particularly limited. According to the present invention, for example, in the case of a sufficient sample amount or a small sample amount, by using the control probe, it is possible to emit light in a sample without performing an amplification process. The control nucleic acid can be detected. The sample amount to be used may be, for example, in nanoliter order, microliter order, or milliliter order, for example, 0.1 nL to 1 mL, and specific examples include, for example, 0.1 nL to 10 nL, 10 nL to 100 nL. Yes, or 0.1 μL to 10 μL, 10 μL to 1000 μL.
 前記混合工程において、前記コントロールプローブの添加量は、特に制限されず、例えば、サンプル量に応じて適宜設定できる。前記添加量は、例えば、サンプル1μLに対して、1x10-12~1x10-9μmol、1x10-9~1x10-6μmol、1x10-6~1x10-3μmolである。前記コントロールプローブは、例えば、溶媒に混合したプローブ試薬として、前記サンプルと混合することが好ましい。前記プローブ試薬において、前記コントロールプローブの濃度は、特に制限されず、例えば、1x10-6~1x10-3μmol/L、1x10-3~1μmol/L、1~1x103μmol/Lである。 In the mixing step, the amount of the control probe added is not particularly limited, and can be appropriately set according to the sample amount, for example. The addition amount is, for example, 1 × 10 −12 to 1 × 10 −9 μmol, 1 × 10 −9 to 1 × 10 −6 μmol, and 1 × 10 −6 to 1 × 10 −3 μmol with respect to 1 μL of the sample. The control probe is preferably mixed with the sample, for example, as a probe reagent mixed in a solvent. In the probe reagent, the concentration of the control probe is not particularly limited, for example, 1x10 -6 ~ 1x10 -3 μmol / L , 1x10 -3 ~ 1μmol / L, 1 ~ 1x10 3 μmol / L.
 前記混合工程において使用する前記コントロールプローブの種類の数は、特に制限されず、設定するコントロール核酸の種類または数によって適宜設定できる。具体例として、コントロール核酸が1種類の場合、例えば、1種類のコントロールプローブを使用してもよいし、2種類以上のコントロールプローブを使用してもよい。後者の場合は、例えば、前記混合工程において、同じコントロール核酸に対する複数の前記コントロールプローブを使用し、前記複数のコントロールプローブが、それぞれ、前記コントロール核酸に対して、異なる領域にハイブリダイズする核酸分子を有することが好ましい。この場合、前記複数のコントロールプローブは、それぞれ異なる領域にハイブリダイズする核酸分子を有するが、同じシグナル発生物質を有し、ハイブリダイズによって同じ発光シグナルを発することが好ましい。この形態によれば、例えば、1種類のコントロール核酸の複数箇所に、複数の前記コントロールプローブをハイブリダイズさせ、且つ、ハイブリダイズによる発光シグナルの総量を大きくすることができる。 The number of types of the control probe used in the mixing step is not particularly limited and can be appropriately set depending on the type or number of control nucleic acids to be set. As a specific example, when there is one type of control nucleic acid, for example, one type of control probe may be used, or two or more types of control probes may be used. In the latter case, for example, in the mixing step, a plurality of the control probes for the same control nucleic acid are used, and the plurality of control probes each have a nucleic acid molecule that hybridizes to a different region with respect to the control nucleic acid. It is preferable to have. In this case, each of the plurality of control probes has a nucleic acid molecule that hybridizes to different regions, but preferably has the same signal generating substance and emits the same luminescent signal by hybridization. According to this embodiment, for example, a plurality of control probes can be hybridized to a plurality of locations of one type of control nucleic acid, and the total amount of luminescence signals by hybridization can be increased.
 また、設定するコントロール核酸が複数の場合、例えば、各コントロール核酸に対して、1種類のコントロールプローブを使用してもよいし、2種類のコントロールプローブを使用してもよい。各コントロール核酸に対するコントロールプローブは、例えば、それぞれ、異なるシグナル発光物質を有することが好ましい。このように、異なるシグナル発光物質を有することで、各コントロール核酸を検出し分けることができる。異なるシグナル発光物質とは、例えば、異なる蛍光特性を有することを意味し、具体的には、例えば、異なる励起波長を有すること、異なる蛍光波長を有すること、または異なる励起波長と異なる蛍光波長を有することを意味する。 In addition, when there are a plurality of control nucleic acids to be set, for example, one type of control probe may be used for each control nucleic acid, or two types of control probes may be used. The control probe for each control nucleic acid preferably has a different signal luminescent substance, for example. Thus, each control nucleic acid can be detected and separated by having different signal luminescent substances. Different signal luminescent substances mean, for example, having different fluorescence properties, specifically, for example, having different excitation wavelengths, having different fluorescence wavelengths, or having different excitation wavelengths and different fluorescence wavelengths. Means that.
 前記混合工程において、前記サンプルと前記コントロールプローブとの混合液は、例えば、前記サンプル中の核酸と前記コントロールプローブとのハイブリダイゼーションが起こりやすい温度(ハイブリダイゼーション温度)で処理することが好ましい。前記コントロール核酸が二本鎖核酸であり、一本鎖核酸に解離させて、前記コントールプローブとハイブリダイズさせる場合は、例えば、前記サンプルを解離温度で処理した後に、前記コントロールプローブと混合し、ハイブリダイゼーション温度で処理してもよいし、前記混合液を解離温度で処理した後に、前記混合液をハイブリダイゼーション温度で処理してもよい。前記ハイブリダイゼーション温度は、例えば、15~70℃であり、前記解離温度は、例えば、90~100℃である。 In the mixing step, the mixed solution of the sample and the control probe is preferably processed at a temperature at which hybridization between the nucleic acid in the sample and the control probe is likely to occur (hybridization temperature), for example. When the control nucleic acid is a double-stranded nucleic acid and is dissociated into a single-stranded nucleic acid and hybridized with the control probe, for example, the sample is treated with a dissociation temperature, then mixed with the control probe, The treatment may be performed at a hybridization temperature, or the mixture may be treated at a hybridization temperature after the mixture is treated at a dissociation temperature. The hybridization temperature is, for example, 15 to 70 ° C., and the dissociation temperature is, for example, 90 to 100 ° C.
 本発明において前記検出工程は、前記混合物において、前記サンプル中の核酸と前記コントロールプローブとのハイブリダイゼーションを検出する工程である。前記ハイブリダイゼーションの検出により、前記サンプルにおける前記コントロール核酸を検出することができる。 In the present invention, the detection step is a step of detecting hybridization between the nucleic acid in the sample and the control probe in the mixture. The control nucleic acid in the sample can be detected by detecting the hybridization.
 前記ハイブリダイゼーションの検出方法は、特に制限されず、前記コントロールプローブにおける前記シグナル発生物質によって、適宜決定できる。前記コントロールプローブと前記コントロール核酸とのハイブリダイズは、例えば、融解曲線解析による検出があげられる。 The method for detecting hybridization is not particularly limited, and can be appropriately determined depending on the signal generating substance in the control probe. Examples of hybridization between the control probe and the control nucleic acid include detection by melting curve analysis.
 本発明は、さらに、前記サンプルに対する、トータル核酸の検出工程と、前記コントロール核酸の割合の算出工程とを含んでもよい。 The present invention may further include a total nucleic acid detection step and a control nucleic acid ratio calculation step for the sample.
 前記トータル核酸の検出工程は、前記サンプル中のトータル核酸を検出する工程である。前記トータル核酸を検出する方法は、特に制限されず、例えば、前記サンプル中の核酸を非特異的に検出する方法があげられる。前記トータル核酸が二本鎖DNAの場合、例えば、二本鎖にインターカレートするインターカレータ(例えば、SYBR(商標)Green等)を前記サンプルに混合し、その蛍光シグナルを検出することによって、前記トータル核酸を検出できる。 The total nucleic acid detection step is a step of detecting total nucleic acid in the sample. The method for detecting the total nucleic acid is not particularly limited, and examples thereof include a method for non-specifically detecting the nucleic acid in the sample. When the total nucleic acid is double-stranded DNA, for example, an intercalator that intercalates into a double strand (for example, SYBR (trademark) Green) is mixed with the sample, and the fluorescence signal is detected by mixing the sample with Total nucleic acid can be detected.
 前記トータル核酸の検出工程は、例えば、前記コントロールプローブを用いた検出と同じ系(前記混合液)に対して行ってもよいし、別の系でおこなってもよいが、使用するサンプルのトータル量を低減できることから、前者が好ましい。つまり、サンプルに対して、前記コントロールプローブおよび前記インターカレータを混合し、前記コントロールプローブとのハイブリダイゼーションの検出と、前記トータル核酸の検出との両方を行うことが好ましい。なお、前記サンプルに対する前記コントロールプローブの添加と前記インターカレータの添加は、例えば、いずれが先でもよいし、同時でもよく、また、前記ハイブリダイゼーションの検出と前記トータル核酸の検出は、例えば、いずれを先に行ってもよい。 The total nucleic acid detection step may be performed, for example, on the same system (the mixed solution) as the detection using the control probe, or may be performed on a different system, but the total amount of the sample to be used Can be reduced, the former is preferable. That is, it is preferable that the sample is mixed with the control probe and the intercalator, and both detection of hybridization with the control probe and detection of the total nucleic acid are performed. The control probe and the intercalator may be added to the sample, for example, either first or simultaneously, and the detection of the hybridization and the detection of the total nucleic acid may be performed, for example, You may go first.
 そして、前記割合の算出工程によれば、前記トータル核酸の検出結果と、前記コントロール核酸の検出結果とに基づいて、前記トータル核酸における前記コントロール核酸の割合を算出することができる。 Then, according to the ratio calculation step, the ratio of the control nucleic acid in the total nucleic acid can be calculated based on the detection result of the total nucleic acid and the detection result of the control nucleic acid.
 また、本発明は、さらに、相関関係と、前記サンプルにおける前記コントロール核酸の検出結果とに基づいて、前記サンプルの細胞数、組織量または体液量を算出する算出工程を含んでもよい。前記相関関係は、例えば、細胞の個数、組織量または体液量と、それらに含まれる前記コントロール核酸の量との関係である。前記コントロール核酸は、前述のように、細胞、組織または体液において恒常的に存在するため、例えば、予め、目的の細胞、組織、または体液あたりのコントロール核酸の量から、前記相関関係を求めることができる。そして、前記コントロールの検出結果と前記相関関係に基づけば、前記サンプルにおける細胞数、組織量、または体液量を算出できる。前記サンプルにおける標的核酸の分析において、例えば、前記標的核酸の量を分析できても、診断等においては、それがどれだけの細胞等に由来するものであるかの判断が重要である。本発明によれば、前記コントロール核酸の検出を行うことで、さらに、サンプルに含まれる細胞、組織、または体液の量も判断することが可能になる。 The present invention may further include a calculation step of calculating the number of cells, the amount of tissue, or the amount of body fluid of the sample based on the correlation and the detection result of the control nucleic acid in the sample. The correlation is, for example, the relationship between the number of cells, the amount of tissue or the amount of body fluid, and the amount of the control nucleic acid contained therein. As described above, since the control nucleic acid is constantly present in a cell, tissue, or body fluid, for example, the correlation can be obtained in advance from the amount of the control nucleic acid per target cell, tissue, or body fluid. it can. Based on the detection result of the control and the correlation, the number of cells, the amount of tissue, or the amount of body fluid in the sample can be calculated. In the analysis of the target nucleic acid in the sample, for example, even if the amount of the target nucleic acid can be analyzed, in diagnosis or the like, it is important to determine how many cells or the like are derived from. According to the present invention, by detecting the control nucleic acid, it is possible to further determine the amount of cells, tissues, or body fluids contained in the sample.
 また、本発明は、さらに、前記サンプルに対して、標的核酸を検出する工程を含んでもよい。具体的に、本発明は、例えば、さらに、前記サンプルと標的プローブとを混合する混合工程、および、前記混合物において、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションを検出する検出工程を含む。前記検出工程によれば、前記ハイブリダイゼーションの検出により、前記サンプルにおける前記標的核酸を検出することができる。本発明によれば、前述のように、生体に恒常的に存在するコントロール核酸を検出できるため、さらに、前記標的核酸を検出することで、例えば、前記コントロール核酸に対する相対的な前記標的核酸の量を求めることができる。 The present invention may further include a step of detecting a target nucleic acid for the sample. Specifically, the present invention further includes, for example, a mixing step of mixing the sample and the target probe, and a detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture. . According to the detection step, the target nucleic acid in the sample can be detected by detecting the hybridization. According to the present invention, as described above, since the control nucleic acid that is constantly present in the living body can be detected, by further detecting the target nucleic acid, for example, the amount of the target nucleic acid relative to the control nucleic acid. Can be requested.
 前記標的プローブは、特に制限されず、標的核酸に対してハイブリダイズするプローブが使用できるが、前記コントロールプローブと同様に、核酸分子にシグナル発生物質が結合したフルオロジェニックプローブが好ましい。前記標的プローブがフルオロジェニックプローブの場合、例えば、前記核酸分子は、前記標的核酸に対してハイブリダイズする核酸分子であり、前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、前記コントロールプローブと、前記標的プローブとは、異なる蛍光特性である。 The target probe is not particularly limited, and a probe that hybridizes to a target nucleic acid can be used. However, like the control probe, a fluorogenic probe in which a signal generating substance is bound to a nucleic acid molecule is preferable. When the target probe is a fluorogenic probe, for example, the nucleic acid molecule is a nucleic acid molecule that hybridizes to the target nucleic acid, and the signal generating substance generates a luminescent signal by hybridization to a target, It is a substance that loses its luminescence signal upon dissociation from the target, and the control probe and the target probe have different fluorescence characteristics.
 前記標的プローブは、前記標的核酸に対してハイブリダイズする以外は、前記コントロールプローブの記載を援用できる。 The description of the control probe can be used except that the target probe hybridizes to the target nucleic acid.
 前記標的プローブの種類の数は、特に制限されず、設定する標的核酸の種類または数によって適宜設定できる。具体例として、標的核酸が1種類の場合、例えば、1種類の標的プローブを使用してもよいし、2種類以上の標的プローブを使用してもよい。後者の場合は、例えば、前記混合工程において、同じ標的核酸に対する複数の前記標的プローブを使用し、前記複数の標的プローブが、それぞれ、前記標的核酸に対して、異なる領域にハイブリダイズする核酸分子を有することが好ましい。この場合、前記複数の標的プローブは、それぞれ異なる領域にハイブリダイズする核酸分子を有するが、同じシグナル発生物質を有し、ハイブリダイズによって同じ発光シグナルを発することが好ましい。この形態によれば、例えば、1種類の標的核酸の複数箇所に、複数の前記標的プローブをハイブリダイズさせ、且つ、ハイブリダイズによる発光シグナルの総量を大きくすることができる。 The number of types of the target probe is not particularly limited and can be appropriately set depending on the type or number of target nucleic acids to be set. As a specific example, when there is one type of target nucleic acid, for example, one type of target probe may be used, or two or more types of target probes may be used. In the latter case, for example, in the mixing step, a plurality of the target probes for the same target nucleic acid are used, and the plurality of target probes each have a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid. It is preferable to have. In this case, each of the plurality of target probes has a nucleic acid molecule that hybridizes to different regions, but preferably has the same signal generating substance and emits the same luminescent signal by hybridization. According to this embodiment, for example, a plurality of the target probes can be hybridized to a plurality of locations of one type of target nucleic acid, and the total amount of luminescence signals by the hybridization can be increased.
 また、設定する標的核酸が複数の場合、例えば、各標的核酸に対して、1種類の標的プローブを使用してもよいし、2種類の標的プローブを使用してもよい。各標的核酸に対する標的プローブは、例えば、それぞれ、異なるシグナル発光物質を有することが好ましい。このように、異なるシグナル発光物質を有することで、各標的核酸を検出し分けることができる。異なるシグナル発光物質とは、例えば、異なる蛍光特性を有することを意味し、具体的には、例えば、異なる励起波長を有すること、異なる蛍光波長を有すること、または異なる励起波長と異なる蛍光波長を有することを意味する。 Further, when a plurality of target nucleic acids are set, for example, one type of target probe may be used for each target nucleic acid, or two types of target probes may be used. It is preferable that the target probe for each target nucleic acid has a different signal luminescent substance, for example. Thus, each target nucleic acid can be detected and separated by having different signal luminescent substances. Different signal luminescent substances mean, for example, having different fluorescence properties, specifically, for example, having different excitation wavelengths, having different fluorescence wavelengths, or having different excitation wavelengths and different fluorescence wavelengths. Means that.
 前記混合工程において、前記サンプルと前記標的プローブとの混合液は、例えば、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションが起こりやすい温度(ハイブリダイゼーション温度)で処理することが好ましい。前記標的核酸が二本鎖核酸であり、一本鎖核酸に解離させて、前記標的プローブとハイブリダイズさせる場合は、例えば、前記サンプルを解離温度で処理した後に、前記標的プローブと混合し、ハイブリダイゼーション温度で処理してもよいし、前記混合液を解離温度で処理した後に、前記混合液をハイブリダイゼーション温度で処理してもよい。前記ハイブリダイゼーション温度および前記解離温度は、例えば、前述の通りである。 In the mixing step, the mixed solution of the sample and the target probe is preferably processed at a temperature at which hybridization between the nucleic acid in the sample and the target probe is likely to occur (hybridization temperature), for example. When the target nucleic acid is a double-stranded nucleic acid and is dissociated into a single-stranded nucleic acid and hybridized with the target probe, for example, the sample is treated with a dissociation temperature, then mixed with the target probe, The treatment may be performed at a hybridization temperature, or the mixture may be treated at a hybridization temperature after the mixture is treated at a dissociation temperature. The hybridization temperature and the dissociation temperature are as described above, for example.
 前記ハイブリダイゼーションの検出方法は、特に制限されず、例えば、前記標的プローブの種類によって適宜決定でき、具体例として、前記シグナル発生物質によって、適宜決定できる。 The method for detecting the hybridization is not particularly limited, and can be appropriately determined depending on, for example, the type of the target probe. As a specific example, it can be appropriately determined depending on the signal generating substance.
 前記標的核酸の検出工程は、例えば、前記コントロールプローブを用いた検出と同じ系(前記混合液)に対して行ってもよいし、別の系で行ってもよいが、使用するサンプルのトータル量を低減できることから、前者が好ましい。つまり、サンプルに対して、前記コントロールプローブおよび前記標的プローブを混合し、前記コントロールプローブとのハイブリダイゼーションの検出と、前記標的プローブとのハイブリダイゼーションの検出との両方を行うことが好ましい。なお、前記サンプルに対する前記コントロールプローブの添加と前記標的プローブの添加は、例えば、いずれが先でもよいし、同時でもよく、また、前記コントロールプローブとのハイブリダイゼーションの検出と、前記標的プローブとのハイブリダイゼーションの検出は、例えば、いずれを先に行ってもよい。 The target nucleic acid detection step may be performed, for example, on the same system (the mixed solution) as the detection using the control probe, or may be performed in another system, but the total amount of the sample to be used Can be reduced, the former is preferable. That is, it is preferable to mix the control probe and the target probe with a sample and perform both detection of hybridization with the control probe and detection of hybridization with the target probe. The control probe and the target probe may be added to the sample, for example, either first or simultaneously, and detection of hybridization with the control probe and high detection with the target probe. Any detection of hybridization may be performed first, for example.
 本発明は、さらに、前記サンプルに対する、トータル核酸の検出工程と、前記標的核酸の割合の算出工程とを含んでもよい。前記トータル核酸の検出工程は、例えば、前述と同様である。 The present invention may further include a total nucleic acid detection step and a target nucleic acid ratio calculation step for the sample. The total nucleic acid detection step is the same as described above, for example.
 そして、前記割合の算出工程によれば、前記トータル核酸の検出結果と、前記標的核酸の検出結果とに基づいて、前記トータル核酸における前記標的核酸の割合を算出することができる。また、本発明によれば、前記コントロール核酸の検出結果も得られていることから、前記サンプルについて、前記トータル核酸と、前記コントロール核酸と、前記標的核酸との割合を得ることができる。 Then, according to the ratio calculation step, the ratio of the target nucleic acid in the total nucleic acid can be calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid. In addition, according to the present invention, since the detection result of the control nucleic acid is also obtained, the ratio of the total nucleic acid, the control nucleic acid, and the target nucleic acid can be obtained for the sample.
 本発明において、前記コントロールプローブ、および任意で前記標的プローブ、任意でインターカレータは、例えば、反応容器に添加してもよいし、前記反応容器に予め添加してもよいし、必要量の前記サンプルを採取するピペットチップに保持させてもよい。前記ピペットチップに保持させる場合は、例えば、前記サンプルの吸引により、前記ピペットチップから遊離するように保持させることが好ましい。 In the present invention, the control probe, and optionally the target probe, and optionally the intercalator may be added to the reaction vessel, for example, or may be added in advance to the reaction vessel, or a necessary amount of the sample. May be held in a pipette tip to collect the. In the case of holding the pipette tip, for example, it is preferable to hold the sample so as to be released from the pipette tip by aspiration of the sample.
 本発明の第1の核酸分析方法について、前記コントロール核酸、前記標的核酸およびトータル核酸を検出する例をあげて説明する。 The first nucleic acid analysis method of the present invention will be described with reference to an example of detecting the control nucleic acid, the target nucleic acid and the total nucleic acid.
 サンプル採取用のピペットチップの内壁に、前記コントロール核酸に対するコントロールプローブ、前記標的核酸に対する標的プローブおよびトータル核酸に対するインターカレータを、乾燥試薬として配置する。前記コントロールプローブと前記標的プローブは、例えば、それぞれEプローブであり、異なる蛍光特性とする。 A control probe for the control nucleic acid, a target probe for the target nucleic acid, and an intercalator for the total nucleic acid are placed as dry reagents on the inner wall of the pipette tip for sample collection. The control probe and the target probe are, for example, E probes each having different fluorescence characteristics.
 そして、前記ピペットチップを使用して、必要量のサンプルを吸引する。吸引後、前記ピペットチップで排出と吸引とを繰り返し、前記ピペットに配置した前記乾燥試薬と前記サンプルとを混合する。 Then, aspirate the required amount of sample using the pipette tip. After aspiration, discharging and aspiration are repeated with the pipette tip, and the dry reagent placed in the pipette and the sample are mixed.
 そして、混合した混合液を容器に排出し、前記混合液について、前記コントロール核酸とコントロールプローブとのハイブリダイズ、前記標的核酸と前記標的プローブとのハイブリダイズ、前記トータル核酸に対するインターカレータのインターカレーションを、それぞれ検出する。前記コントロールプローブと前記標的プローブが、異なる励起波長で同じ蛍光波長の場合、それぞれの励起波長で励起させ、各励起波長により得られる蛍光シグナルを、それぞれ同じ蛍光波長で検出する。また、前記コントロールプローブと前記標的プローブが、同じ励起波長で異なる蛍光波長の場合、同じ励起波長で励起させ、各蛍光波長の蛍光シグナルを検出する。 Then, the mixed liquid is discharged into a container, and the mixed liquid is hybridized with the control nucleic acid and the control probe, the target nucleic acid is hybridized with the target probe, and the intercalator is intercalated with respect to the total nucleic acid. Are detected respectively. When the control probe and the target probe have the same fluorescence wavelength at different excitation wavelengths, the control probe and the target probe are excited at the respective excitation wavelengths, and the fluorescence signals obtained by the respective excitation wavelengths are detected at the same fluorescence wavelength. When the control probe and the target probe have the same excitation wavelength and different fluorescence wavelengths, the control probe and the target probe are excited with the same excitation wavelength, and the fluorescence signal of each fluorescence wavelength is detected.
 前記検出によって、前記サンプルについて、前記コントロール核酸と前記標的核酸と前記トータル核酸の量が検出される。これらの結果に基づけば、前記サンプルにおける細胞数、組織量または体液量を算出でき、さらに、前記トータル核酸に対する前記コントロール核酸の割合、前記トータル核酸または前記コントロール核酸に対する前記標的核酸の割合を知ることができる。 The amount of the control nucleic acid, the target nucleic acid, and the total nucleic acid is detected for the sample by the detection. Based on these results, the number of cells, the amount of tissue or the amount of body fluid in the sample can be calculated, and the ratio of the control nucleic acid to the total nucleic acid and the ratio of the target nucleic acid to the total nucleic acid or the control nucleic acid can be known. Can do.
<第2の核酸分析方法>
 本発明の第2の核酸分析方法は、前述のように、
生体由来のサンプルと標的プローブとを混合する混合工程、および、
前記混合物において、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションを検出する検出工程を含み、
前記標的プローブは、
 核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
 前記核酸分子は、標的核酸に対してハイブリダイズする核酸分子であり、
 前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
前記検出工程は、
 前記ハイブリダイゼーションの検出により、前記サンプルにおける前記標的核酸を検出することを特徴とする。
<Second nucleic acid analysis method>
As described above, the second nucleic acid analysis method of the present invention is as follows.
A mixing step of mixing a sample derived from a living body and a target probe; and
A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
The target probe is
A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
The nucleic acid molecule is a nucleic acid molecule that hybridizes to a target nucleic acid,
The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
The detection step includes
The target nucleic acid in the sample is detected by detecting the hybridization.
 本発明によれば、前記標的プローブを使用することによって、例えば、前記サンプルの増幅処理を行うことなく、また、前記サンプルの量に影響されることなく、前記標的核酸を検出できる。本発明の第2の核酸分析方法は、特に示さない限り、前記第1の核酸分析方法の記載を援用できる。 According to the present invention, by using the target probe, for example, the target nucleic acid can be detected without performing the amplification process of the sample and without being influenced by the amount of the sample. The description of the first nucleic acid analysis method can be used in the second nucleic acid analysis method of the present invention unless otherwise specified.
 本発明の第2の核酸分析方法は、例えば、前記サンプルが、増幅処理を行っていないサンプルである。 In the second nucleic acid analysis method of the present invention, for example, the sample is a sample that has not been amplified.
 本発明の第2の核酸分析方法は、例えば、前記標的核酸が、DNAまたはRNAである。 In the second nucleic acid analysis method of the present invention, for example, the target nucleic acid is DNA or RNA.
 本発明の第2の核酸分析方法は、例えば、前記標的プローブが、1分子あたり、前記シグナル発生物質として、エキシトン効果を示す少なくとも2つの蛍光性原子団を有する。 In the second nucleic acid analysis method of the present invention, for example, the target probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
 本発明の第2の核酸分析方法は、例えば、前記混合工程において、同じ標的核酸に対する複数の前記標的プローブを使用し、
前記複数の標的プローブが、それぞれ、前記標的核酸に対して、異なる領域にハイブリダイズする核酸分子を有する。
The second nucleic acid analysis method of the present invention uses, for example, a plurality of the target probes for the same target nucleic acid in the mixing step,
Each of the plurality of target probes has a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid.
 本発明の第2の核酸分析方法は、例えば、さらに、トータル核酸の検出工程と、前記標的核酸の割合の算出工程とを含み、
前記トータル核酸の検出工程は、
 前記サンプル中のトータル核酸を検出する工程であり、
前記割合の算出工程は、
 前記トータル核酸の検出結果と、前記標的核酸の検出結果とに基づいて、前記トータル核酸における前記標的核酸の割合を算出する。
The second nucleic acid analysis method of the present invention further includes, for example, a total nucleic acid detection step and a target nucleic acid ratio calculation step,
The total nucleic acid detection step includes:
Detecting the total nucleic acid in the sample,
The ratio calculating step includes:
The ratio of the target nucleic acid in the total nucleic acid is calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid.
 本発明の第2の核酸分析方法は、例えば、前記検出工程が、融解曲線解析による検出工程である。 In the second nucleic acid analysis method of the present invention, for example, the detection step is a detection step by melting curve analysis.
[実施形態1]
 アクチン用プローブとしてフルオロジェニックプローブを使用し、非増幅のサンプルについて、コントロール核酸であるアクチンDNAの検出を行う。
[Embodiment 1]
A fluorogenic probe is used as an actin probe, and actin DNA, which is a control nucleic acid, is detected from a non-amplified sample.
(1)アクチン用プローブ
 下記配列のDNA核酸分子を合成し、3’末端から7塩基に、前記式(113)で表される構造となるようにシグナル発生物質を結合させ、Eプローブを調製する。前記Eプローブの濃度が、1x10-7mol/Lになるように、Tris-NaCl緩衝液に混合して、プローブ試薬を調製する。
プローブの配列(配列番号1): GGCGAACZGGTGGC (Z:標識されたT塩基)
(1) Probe for actin A DNA nucleic acid molecule having the following sequence is synthesized, and a signal generating substance is bound to 7 bases from the 3 ′ end so as to have the structure represented by the formula (113) to prepare an E probe. . A probe reagent is prepared by mixing with Tris-NaCl buffer so that the concentration of E probe is 1 × 10 −7 mol / L.
Probe sequence (SEQ ID NO: 1): GGCGAACZGGTGGC (Z: labeled T base)
(2)サンプル
 サンプルは、Mouse Brain Total RNA(TAKARA BIO社製)を使用する。なお、前記サンプルに対して、増幅処理は行わない。
(2) Sample As a sample, Mouse Brain Total RNA (manufactured by TAKARA BIO) is used. Note that amplification processing is not performed on the sample.
(3)検出方法
 エッペンドルフチューブに前記サンプル10μLを注入し、さらに、前記プローブ試薬10μLを注入し、混合する。この混合液を、温度50℃で10分間インキュベートした後、前記混合液を波長510nmで励起し、発光スペクトルを確認する。
(3) Detection method 10 μL of the sample is injected into an Eppendorf tube, and further 10 μL of the probe reagent is injected and mixed. After incubating the mixed solution at a temperature of 50 ° C. for 10 minutes, the mixed solution is excited at a wavelength of 510 nm, and an emission spectrum is confirmed.
 以上、実施形態を参照して、本発明を説明したが、本発明は、上記発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments. However, the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the above invention.
 この出願は、2016年7月4日に出願された日本出願特願2016-132837を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-132837 filed on July 4, 2016, the entire disclosure of which is incorporated herein.
 本発明の核酸分析方法によれば、例えば、増幅処理を行っていないサンプルであっても、サンプル量にかかわらず、前記フルオロジェニックプローブを使用することにより、核酸の特異的な分析が可能となる。 According to the nucleic acid analysis method of the present invention, for example, even for a sample that has not been subjected to amplification treatment, the nucleic acid can be specifically analyzed by using the fluorogenic probe regardless of the amount of the sample. .

Claims (16)

  1. 生体由来のサンプルとコントロールプローブとを混合する混合工程、および、
    前記混合物において、前記サンプル中の核酸と前記コントロールプローブとのハイブリダイゼーションを検出する検出工程を含み、
    前記コントロールプローブは、
     核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
     前記核酸分子は、生体に恒常的に存在する所定のコントロール核酸に対してハイブリダイズする核酸分子であり、
     前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
    前記検出工程は、
     前記ハイブリダイゼーションの検出により、前記サンプルにおける前記コントロール核酸を検出することを特徴とする核酸分析方法。
    A mixing step of mixing the biological sample and the control probe; and
    A detection step of detecting hybridization between the nucleic acid in the sample and the control probe in the mixture;
    The control probe is
    A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
    The nucleic acid molecule is a nucleic acid molecule that hybridizes to a predetermined control nucleic acid that is constantly present in the living body,
    The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
    The detection step includes
    A nucleic acid analysis method comprising detecting the control nucleic acid in the sample by detecting the hybridization.
  2. 前記サンプルが、増幅処理を行っていないサンプルである、請求項1記載の核酸分析方法。 The nucleic acid analysis method according to claim 1, wherein the sample is a sample that has not been subjected to amplification treatment.
  3. 前記コントロール核酸が、DNAまたはRNAである、請求項1または2記載の核酸分析方法。 The nucleic acid analysis method according to claim 1 or 2, wherein the control nucleic acid is DNA or RNA.
  4. 前記コントロール核酸が、アクチンをコードするDNAまたはRNAである、請求項1から3のいずれか一項に記載の核酸分析方法。 The nucleic acid analysis method according to any one of claims 1 to 3, wherein the control nucleic acid is DNA or RNA encoding actin.
  5. 前記コントロールプローブが、1分子あたり、前記シグナル発生物質として、エキシトン効果を示す少なくとも2つの蛍光性原子団を有する、請求項1から4のいずれか一項に記載の核酸分析方法。 The nucleic acid analysis method according to any one of claims 1 to 4, wherein the control probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
  6. 前記混合工程において、同じコントロール核酸に対する複数の前記コントロールプローブを使用し、
    前記複数のコントロールプローブが、それぞれ、前記コントロール核酸に対して、異なる領域にハイブリダイズする核酸分子を有する、請求項1から5のいずれか一項に記載の核酸分析方法。
    In the mixing step, using a plurality of the control probes for the same control nucleic acid,
    The nucleic acid analysis method according to any one of claims 1 to 5, wherein each of the plurality of control probes has a nucleic acid molecule that hybridizes to a different region with respect to the control nucleic acid.
  7. さらに、トータル核酸の検出工程と、前記コントロール核酸の割合の算出工程とを含み、
    前記トータル核酸の検出工程は、
     前記サンプル中のトータル核酸を検出する工程であり、
    前記割合の算出工程は、
     前記トータル核酸の検出結果と、前記コントロール核酸の検出結果とに基づいて、前記トータル核酸における前記コントロール核酸の割合を算出する工程である、請求項1から6のいずれか一項に記載の核酸分析方法。
    Further, the method includes a total nucleic acid detection step, and a calculation step of the ratio of the control nucleic acid,
    The total nucleic acid detection step includes:
    Detecting the total nucleic acid in the sample,
    The ratio calculating step includes:
    The nucleic acid analysis according to any one of claims 1 to 6, which is a step of calculating a ratio of the control nucleic acid in the total nucleic acid based on the detection result of the total nucleic acid and the detection result of the control nucleic acid. Method.
  8. さらに、相関関係と、前記サンプルにおける前記コントロール核酸の検出結果とに基づいて、前記サンプルの細胞数、組織量または体液量を算出する算出工程を含み、
    前記相関関係が、細胞の個数、組織量または体液量と、それらに含まれる前記コントロール核酸の量との相関関係である、請求項1から7のいずれか一項に記載の核酸分析方法。
    Furthermore, based on the correlation and the detection result of the control nucleic acid in the sample, including a calculation step of calculating the number of cells, tissue amount or body fluid amount of the sample,
    The nucleic acid analysis method according to any one of claims 1 to 7, wherein the correlation is a correlation between the number of cells, the amount of tissue or body fluid, and the amount of the control nucleic acid contained therein.
  9. さらに、前記サンプルと標的プローブとを混合する混合工程、および、
    前記混合物において、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションを検出する検出工程を含み、
    前記標的プローブは、
     標的核酸に対してハイブリダイズするプローブであり、
    前記検出工程は、
     前記ハイブリダイゼーションの検出により、前記サンプルにおける前記標的核酸を検出する、請求項1から8のいずれか一項に記載の核酸分析方法。
    A mixing step of mixing the sample and the target probe; and
    A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
    The target probe is
    A probe that hybridizes to a target nucleic acid,
    The detection step includes
    The nucleic acid analysis method according to claim 1, wherein the target nucleic acid in the sample is detected by detecting the hybridization.
  10. 前記標的プローブは、
     核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
     前記核酸分子は、前記標的核酸に対してハイブリダイズする核酸分子であり、
     前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
    前記コントロールプローブにおけるシグナル発生物質の発光シグナルと、前記標的プローブにおけるシグナル発生物質の発光シグナルとは、異なる蛍光特性である、請求項9記載の核酸分析方法。
    The target probe is
    A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
    The nucleic acid molecule is a nucleic acid molecule that hybridizes to the target nucleic acid,
    The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
    The nucleic acid analysis method according to claim 9, wherein a luminescence signal of the signal generating substance in the control probe and a luminescence signal of the signal generating substance in the target probe have different fluorescence characteristics.
  11. 前記標的プローブが、1分子あたり、前記シグナル発生物質として、エキシトン効果を示す少なくとも2つの蛍光性原子団を有する、請求項10記載の核酸分析方法。 The nucleic acid analysis method according to claim 10, wherein the target probe has at least two fluorescent atomic groups exhibiting an exciton effect as the signal generating substance per molecule.
  12. 前記混合工程において、同じ標的核酸に対する複数の前記標的プローブを使用し、
    前記複数の標的プローブが、それぞれ、前記標的核酸に対して、異なる領域にハイブリダイズする核酸分子を有する、請求項9から11のいずれか一項に記載の核酸分析方法。
    Using a plurality of the target probes for the same target nucleic acid in the mixing step;
    The nucleic acid analysis method according to any one of claims 9 to 11, wherein each of the plurality of target probes has a nucleic acid molecule that hybridizes to a different region with respect to the target nucleic acid.
  13. さらに、トータル核酸の検出工程と、前記標的核酸の割合の算出工程とを含み、
    前記トータル核酸の検出工程は、
     前記サンプル中のトータル核酸を検出する工程であり、
    前記割合の算出工程は、
     前記トータル核酸の検出結果と、前記標的核酸の検出結果とに基づいて、前記トータル核酸における前記標的核酸の割合を算出する、請求項9から12のいずれか一項に記載の核酸分析方法。
    Furthermore, the method includes a total nucleic acid detection step and a calculation step of the target nucleic acid ratio,
    The total nucleic acid detection step includes:
    Detecting the total nucleic acid in the sample,
    The ratio calculating step includes:
    The nucleic acid analysis method according to any one of claims 9 to 12, wherein a ratio of the target nucleic acid in the total nucleic acid is calculated based on the detection result of the total nucleic acid and the detection result of the target nucleic acid.
  14. 前記エキシトン効果を示す一対の蛍光性原子団を有する塩基が、下記式(16)、(16b)、(17)、または(17b)で表される構造を有する、請求項5から13のいずれか一項に記載の核酸分析方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The base having a pair of fluorescent atomic groups exhibiting the exciton effect has a structure represented by the following formula (16), (16b), (17), or (17b): The nucleic acid analysis method according to one item.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  15. 前記検出工程が、融解曲線解析による検出工程である、請求項1から14のいずれか一項に記載の核酸分析方法。 The nucleic acid analysis method according to claim 1, wherein the detection step is a detection step by melting curve analysis.
  16. 生体由来のサンプルと標的プローブとを混合する混合工程、および、
    前記混合物において、前記サンプル中の核酸と前記標的プローブとのハイブリダイゼーションを検出する検出工程を含み、
    前記標的プローブは、
     核酸分子にシグナル発生物質が結合したフルオロジェニックプローブであり、
     前記核酸分子は、標的核酸に対してハイブリダイズする核酸分子であり、
     前記シグナル発生物質は、標的へのハイブリダイゼーションにより発光シグナルを発生し、前記標的との解離により発光シグナルを消失する物質であり、
    前記検出工程は、
     前記ハイブリダイゼーションの検出により、前記サンプルにおける前記標的核酸を検出することを特徴とする核酸分析方法。
    A mixing step of mixing a sample derived from a living body and a target probe; and
    A detection step of detecting hybridization between the nucleic acid in the sample and the target probe in the mixture;
    The target probe is
    A fluorogenic probe in which a signal generator is bound to a nucleic acid molecule;
    The nucleic acid molecule is a nucleic acid molecule that hybridizes to a target nucleic acid,
    The signal generating substance is a substance that generates a luminescent signal by hybridization to a target, and disappears by emitting from the target.
    The detection step includes
    A nucleic acid analysis method comprising detecting the target nucleic acid in the sample by detecting the hybridization.
PCT/JP2017/023323 2016-07-04 2017-06-26 Nucleic acid analyzing method WO2018008435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526035A JPWO2018008435A1 (en) 2016-07-04 2017-06-26 Nucleic acid analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016132837 2016-07-04
JP2016-132837 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018008435A1 true WO2018008435A1 (en) 2018-01-11

Family

ID=60912485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023323 WO2018008435A1 (en) 2016-07-04 2017-06-26 Nucleic acid analyzing method

Country Status (2)

Country Link
JP (1) JPWO2018008435A1 (en)
WO (1) WO2018008435A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067694A (en) * 2006-08-14 2008-03-27 Sony Corp Nucleic acid strand useful in detecting substances, and method of detection
JP2009526242A (en) * 2006-02-13 2009-07-16 オルナトスキー オルガ Gene expression assays performed by elemental analysis
WO2013129457A1 (en) * 2012-02-27 2013-09-06 東レ株式会社 Nucleic acid detection method
WO2014013954A1 (en) * 2012-07-16 2014-01-23 株式会社ダナフォーム Nucleic acid probe, method for designing nucleic acid probe, and method for detecting target sequence
WO2014034818A1 (en) * 2012-08-30 2014-03-06 株式会社ダナフォーム Method for analyzing target nucleic acid, kit, and analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526242A (en) * 2006-02-13 2009-07-16 オルナトスキー オルガ Gene expression assays performed by elemental analysis
JP2008067694A (en) * 2006-08-14 2008-03-27 Sony Corp Nucleic acid strand useful in detecting substances, and method of detection
WO2013129457A1 (en) * 2012-02-27 2013-09-06 東レ株式会社 Nucleic acid detection method
WO2014013954A1 (en) * 2012-07-16 2014-01-23 株式会社ダナフォーム Nucleic acid probe, method for designing nucleic acid probe, and method for detecting target sequence
WO2014034818A1 (en) * 2012-08-30 2014-03-06 株式会社ダナフォーム Method for analyzing target nucleic acid, kit, and analyzer

Also Published As

Publication number Publication date
JPWO2018008435A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
Okamoto ECHO probes: a concept of fluorescence control for practical nucleic acid sensing
JP4527789B2 (en) Method for detection and amplification of nucleic acid sequences using modified oligonucleotides with increased target-specific TM
EP0643140A1 (en) Determination of nucleic acid by PCR, measurement of number of microbial cells, genes, or gene-copies by PCR, and measuring-kit employed for the same
JPH06153997A (en) Method for detecting target nucleic acid by amplification of detected signal
CN107208140B (en) Method for detecting and quantifying biological materials by using the activity of nucleic acid polymerases modulated by target materials
US10066264B2 (en) Method for analyzing target nucleic acid, kit, and analyzer
Song et al. Use of β-cyclodextrin-tethered cationic polymer based fluorescence enhancement of pyrene and hybridization chain reaction for the enzyme-free amplified detection of DNA
US20040110141A1 (en) Nucleic acid detector and method of detecting targets within a sample
Peng et al. A versatile single-molecule counting-based platform by generation of fluorescent silver nanoclusters for sensitive detection of multiple nucleic acids
EP3124622B1 (en) Fluorescent labeled single-stranded nucleic acid and use thereof
AU2002330708B2 (en) Aptamers containing sequences of nucleic acids or nucleic acid analogues bound homologously, or in novel complexes
JP2004049241A (en) Fluoresce hybridization probe lowering background
WO2018008435A1 (en) Nucleic acid analyzing method
CN105838790B (en) A kind of silver nanoclusters sensor and preparation method thereof and the application in detection viral gene
Cissell et al. Resonance energy transfer methods of RNA detection
US10760116B2 (en) Analysis kit, analyzer, and methods for analyzing template nucleic acid or target substance
JP4454218B2 (en) Polynucleotide derivatives and uses thereof
EP3184636B1 (en) Pcr method and pcr kit
Sani et al. Effect of DNA type on response of DNA biosensor for carcinogens
WO2011026135A1 (en) Compositions and methods for rapid detection and analysis of nucleic acids
JPH06153998A (en) Method for detecting nucleic acid hybrid body and probe used therefor
JP2002112775A (en) Method for determination of human abc transporter, and probe and kit therefor
JPH07327696A (en) Method for detecting hybrid material of nucleic acid and probe used therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526035

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824042

Country of ref document: EP

Kind code of ref document: A1