WO2018006567A1 - High-efficiency method for linking dna connector - Google Patents

High-efficiency method for linking dna connector Download PDF

Info

Publication number
WO2018006567A1
WO2018006567A1 PCT/CN2016/113506 CN2016113506W WO2018006567A1 WO 2018006567 A1 WO2018006567 A1 WO 2018006567A1 CN 2016113506 W CN2016113506 W CN 2016113506W WO 2018006567 A1 WO2018006567 A1 WO 2018006567A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
linker
adapter
double
overhang
Prior art date
Application number
PCT/CN2016/113506
Other languages
French (fr)
Chinese (zh)
Inventor
耿亮
辛文
Original Assignee
北京全式金生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京全式金生物技术有限公司 filed Critical 北京全式金生物技术有限公司
Publication of WO2018006567A1 publication Critical patent/WO2018006567A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1027Mutagenizing nucleic acids by DNA shuffling, e.g. RSR, STEP, RPR

Definitions

  • Standard second-generation sequencing library construction involves the following steps: (i) fragmentation, (ii) end-repair, (iii) 5' end phosphorylation, (iv) 3' end plus dA, which can be ligated to the sequencing linker, (v The adaptor is ligated (vi) by PCR to enrich the product of the linker successfully connected at both ends.
  • Figure 6 is a diagram showing the electrophoresis pattern of the ligation reaction in Example 2.
  • Lane M 100bp DNA Ladder
  • Lane 4 120 bp fragment plus A product + S-L Adapter Mix ligation product.
  • the materials and sources used in the examples are: DNA Polymerase, FastPfu PCR SuperMix (-dye), PCR Purification Kit, T4 DNA Ligase (Beijing Quanjin Biotechnology Co., Ltd.), ⁇ DNA (Takara), primer synthesis, sequencing (Life technologies).
  • the annealing product conditions were: 95 ° C for 5 minutes, and slowly cooled to room temperature. 1 ⁇ l was detected by electrophoresis on a 2.0% agarose gel.
  • the reaction conditions were: 25 ° C, 2 hours.
  • Example 2 of the present invention shows that a mixture of three terminal structure linkers is used, and its DNA fragment attachment efficiency is much higher than that of a conventional 3'dT overhang structure, and both ends of the fragment are The success rate of connection to the connector is significantly improved.

Abstract

Provided is a high-efficiency method for linking a connector, the method comprising: using a type A DNA polymerase or a DNA polymerase Klenow fragment to process a DNA molecule so as to add a 3'dA protruding end; then linking the processed DNA molecule to a connector mixture to obtain a linking product, wherein the connector mixture comprises three kinds of double-strand DNA connectors, and the ends of the three double-strand DNA connectors are a blunt end, a 3'dT protruding end and a 3'dC protruding end respectively. The method may effectively improve the efficiency of linking a connector to DNA.

Description

一种高效的DNA接头连接方法Efficient DNA connector connection method 技术领域Technical field
本发明属于分子生物学领域,具体涉及一种重组DNA构建方法,即高效的DNA接头连接方法。The invention belongs to the field of molecular biology, and particularly relates to a recombinant DNA construction method, that is, an efficient DNA connector connection method.
背景技术Background technique
接头,是指化学合成的双链DNA分子,包括三种不同的类型:平末端接头,其两端都是平末端;TA接头,一端是平末端而另一端有3’端突出的dT碱基;粘末端接头,一端是平末端而另一端为粘性末端。其中,粘末端接头可与限制性内切酶消化后的DNA分子连接,被用于文库构建等应用。A linker is a chemically synthesized double-stranded DNA molecule consisting of three different types: a blunt-ended linker with a blunt end at both ends; and a TA linker with a blunt end at one end and a dT base at the 3' end at the other end. A sticky end fitting with a flat end at one end and a sticky end at the other end. Among them, the sticky end linker can be ligated to the DNA molecule after restriction endonuclease digestion, and is used for applications such as library construction.
Clark等(Clark JM.Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases.Nucleic Acids Res.1988,16:9677-9686;Hu,G.DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3′end of a DNA fragment.DNA Cell Biol.1993,12:763-770)发现,某些DNA聚合酶可以在DNA片段的3’末端催化添加A碱基而不依赖模板,这一发现奠定了TA克隆(TA Holton and M W Graham,A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors.Nucleic Acids Res.1991,9:1156)和二代测序文库构建(Steven R.Head,H.Kiyomi Komori,Sarah A.LaMere,Thomas Whisenant,Filip Van Nieuwerburgh,Daniel R.Salomon,and Phillip Ordoukhanian,Library construction for next-generation sequencing:Overviews and challenges.BioTechniques,2014,56:61-77)等一系列技术的基础。然而已有学者发现,3’末端dA的添加效率因模板而异,如Brownstein等发现,3’末端dA的添加效率依赖于PCR产物3’末端的核苷酸碱基组成,并于4%~75%之间波动(J.M.Brownstein,J.D.Carptena and J.R.Smith Modulation of Non-Templated Nucleotide Addition by Taq DNA Polymerase:Primer Modifications that Facilitate Genotyping BioTechniques,199620:1004-1010);又如Magnuson等发现,当PCR产物的3’末端核苷酸分别为C、T、G、A碱基时,其对应的加A效率分别为80-85%、75-80%、45-50%、20-30%(V.L.Magnuson,D.S.Ally,S.J.Nylund,Z.E.Karanjawala,A.L.Lowe,S.Gough and F.S.Collins,Substrate Nucleotide-Determined Non-Templated Addition of Adenine by Taq DNA Polymerase:Implications for PCR-Based Genotyping and Cloning Biotechniques 1996,21:700-709)。Clark et al. (Clark JM. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988, 16: 9967-9686; Hu, G. DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3' End of a DNA fragment. DNA Cell Biol. 1993, 12: 763-770) found that certain DNA polymerases can catalyze the addition of A bases at the 3' end of the DNA fragment without relying on the template. (TA Holton and M W Graham, A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 1991, 9:1156) and second generation sequencing library construction (Steven R.Head, H.Kiyomi Komori, Sarah A.LaMere, Thomas Whisenant, Filip Van Nieuwerburgh, Daniel R. Salomon, and Phillip Ordoukhanian, Library construction for next-generation sequencing: Overview and challenges. BioTechniques, 2014, 56: 61-77) basis. However, some scholars have found that the efficiency of addition of dA at the 3' end varies from template to template. For example, Brownstein et al. found that the efficiency of addition of dA at the 3' end depends on the nucleotide base composition at the 3' end of the PCR product, and is 4%~ Fluctuation between 75% (JMBrownstein, JDCarptena and JRSmith Modulation of Non-Templated Nucleotide Addition by Taq DNA Polymerase: Prime Modifications that Facilitate Genotyping BioTechniques, 199620: 1004-1010); and as found by Magnuson et al., when PCR products When the 3' terminal nucleotides are C, T, G, and A bases, respectively, the corresponding A-addition efficiencies are 80-85%, 75-80%, 45-50%, and 20-30%, respectively (VLMagnuson, DSAlly, SJNylund, ZEKaranjawala, ALLowe, S. Gough and FS Collins, Substrate Nucleotide-Determined Non-Templated Addition of Adenine by Taq DNA Polymerase: Implications for PCR-Based Genotyping and Cloning Biotechniques 1996, 21:700-709 ).
与传统的Sanger测序方法相比,二代测序技术使得科学家们可以更加快速、廉价地对DNA与RNA进行测序,彻底变革了分子生物学与基因组学的研究(Quail,M.A.,I.Kozarewa, F.Smith,A.Scally,P.J.Stephens,R.Durbin,H.Swerdlow,and D.J.Turner.A large genome center’s improvements to the Illumina sequencing system.Nat.Methods 2008,5:1005-1010)。标准的二代测序文库构建包括如下步骤:(i)片段化,(ii)末端修复,(iii)5’末端磷酸化,(iv)3’末端加dA,从而可与测序接头连接,(v)连接接头,(vi)通过PCR富集两端均成功连接接头的产物。(Steven R.Head,H.Kiyomi Komori,Sarah A.LaMere,Thomas Whisenant,Filip Van Nieuwerburgh,Daniel R.Salomon,and Phillip Ordoukhanian,Library construction for next-generation sequencing:Overviews and challenges.BioTechniques,2014,56:61-77)。由于TA接头与相应DNA的连接效率显著高于平末端连接,因此需要用Taq或exo Klenow DNA聚合酶为DNA3’端添加dA突出端。据Neiman等估算,仅有约1/16的DNA分子两端均带dA突出端(
Figure PCTCN2016113506-appb-000001
Neiman,Simon Sundling,Henrik
Figure PCTCN2016113506-appb-000002
Per Hall,Kamila Czene,Johan Lindberg,Daniel Klevebring,Library Preparation and Multiplex Capture for Massive Parallel Sequencing Applications Made Efficient and Easy.PLOS One 2002,7:e48616)。尽管也有学者开发或改进了一些DNA聚合酶以增加dA尾的添加效率(ENZYME COMPOSITION FOR DNA END REPAIR,ADENYLATION,PHOSPHORYLATION.United States Patent Application 20150087557;Thermostable Viral Polymerases and Methods of Use.United States Patent Application 20080268498),但即使是在优化后的反应条件下使用这些酶,加A效率依然不尽如人意。因此,迫切需要开发一种简便的方法,用以提升接头与DNA的连接效率。
Compared to traditional Sanger sequencing methods, second-generation sequencing technology enables scientists to sequence DNA and RNA more quickly and cheaply, revolutionizing molecular biology and genomics research (Quail, MA, I. Kozarewa, F .Smith, A. Scally, PJ Stephens, R. Durbin, H. Swerdlow, and DJ Turner. A large genome center's improvements to the Illumina sequencing system. Nat. Methods 2008, 5: 1005-1010). Standard second-generation sequencing library construction involves the following steps: (i) fragmentation, (ii) end-repair, (iii) 5' end phosphorylation, (iv) 3' end plus dA, which can be ligated to the sequencing linker, (v The adaptor is ligated (vi) by PCR to enrich the product of the linker successfully connected at both ends. (Steven R. Head, H. Kiyomi Komori, Sarah A. LaMere, Thomas Whisenant, Filip Van Nieuwerburgh, Daniel R. Salomon, and Phillip Ordoukhanian, Library construction for next-generation sequencing: Overview and challenges. BioTechniques, 2014, 56: 61-77). Since the TA linker is significantly more efficient than the blunt-end ligation with the corresponding DNA, it is necessary to add a dA overhang to the 3' end of the DNA using Taq or exo Klenow DNA polymerase. According to Neiman et al., only about 1/16 of the DNA molecules have dA overhangs at both ends (
Figure PCTCN2016113506-appb-000001
Neiman, Simon Sundling, Henrik
Figure PCTCN2016113506-appb-000002
Per Hall, Kamila Czene, Johan Lindberg, Daniel Klevebring, Library Preparation and Multiplex Capture for Massive Parallel Sequencing Applications Made Efficient and Easy. PLOS One 2002, 7: e48616). Although some scholars have developed or improved some DNA polymerases to increase the efficiency of addition of dA tails (ENZYME COMPOSITION FOR DNA END REPAIR, ADENYLATION, PHOSPHORYLATION. United States Patent Application 20150087557; Thermostable Viral Polymerases and Methods of Use. United States Patent Application 20080268498) However, even if these enzymes are used under optimized reaction conditions, the efficiency of adding A is still not satisfactory. Therefore, there is an urgent need to develop a simple method for improving the efficiency of ligation of DNA to a linker.
发明内容Summary of the invention
本发明要解决的技术问题是提供一种高效的DNA接头连接方法构建重组DNA。该方法可用于基因克隆、文库构建、二代测序文库构建等。The technical problem to be solved by the present invention is to provide a highly efficient DNA linker ligation method for constructing recombinant DNA. This method can be used for gene cloning, library construction, second generation sequencing library construction, and the like.
为解决上述技术问题,本发明采用下述技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:
一种高效的DNA接头连接方法,该方法包括:使用A型DNA聚合酶或DNA聚合酶Klenow片段处理DNA分子以添加3’dA突出端,再将处理后的DNA分子与接头混合物进行连接,得到连接产物,其中,所述接头混合物包括三种双链DNA接头,它们的一端分别为平末端、3’dT突出端和3’dC突出端。An efficient DNA linker ligation method comprising: treating a DNA molecule with a type A DNA polymerase or a DNA polymerase Klenow fragment to add a 3'dA overhang, and then ligating the treated DNA molecule to a linker mixture to obtain The ligation product, wherein the linker mixture comprises three double-stranded DNA linkers, one end of which is a blunt end, a 3'dT overhang, and a 3'dC overhang, respectively.
进一步地,所述三种双链DNA接头除了上述一端序列结构(例如平末端、3’dT突出端和3’dC突出端)不同外,其余DNA序列可以完全相同,也可以不同。Further, the three double-stranded DNA adaptors may be identical or different in DNA sequence except that the one-end sequence structure (e.g., blunt end, 3'dT overhang, and 3'dC overhang) is different.
发明人发现A型DNA聚合酶对双链DNA分子3’末端dA的添加效率因模板而异,且还可以在3’末端添加不依赖模板的其他核苷酸如dG,得到的反应产物是末端分别为平末 端、3’dA突出端、3’dG突出端三种结构的一系列DNA分子的混合物,由于仅有极少的DNA分子两端均带3’dA突出端。传统的3’dT突出端接头仅能与这极少一部分DNA分子连接,在其两端成功添加接头;大部分分子均无法在两端成功添加单一末端结构的3’dT突出端接头。本发明使用3种具有不同末端结构的双链DNA接头混合物代替传统的3’dT突出端接头,接头混合物中的平末端、3’dT突出端、3’dG突出端,分别对应加A反应后,DNA分子末端可能具有的平末端、3’dA突出端、3’dG突出端三种结构,并分别与其连接。因此,无论DNA分子的加A效率如何,具有何种末端结构,均有与之相匹配的接头相连接,确保了分子两端添加接头效率的显著提升,见图1。The inventors have found that the efficiency of the addition of the type A DNA polymerase to the 3' terminal dA of the double-stranded DNA molecule varies depending on the template, and it is also possible to add other nucleotides other than the template such as dG at the 3' end, and the obtained reaction product is the end. Ping A mixture of a series of DNA molecules of three structures, a 3'dA overhang and a 3'dG overhang, with only a few DNA molecules with 3'dA overhangs at both ends. Conventional 3'dT overhangs are only able to attach to this very small portion of the DNA molecule, successfully adding a linker at both ends; most molecules are unable to successfully add a single end structure 3'dT overhang linker at both ends. The present invention uses three double-stranded DNA linker mixtures with different terminal structures to replace the traditional 3'dT overhang junctions, the blunt ends, the 3'dT overhangs, and the 3'dG overhangs in the linker mixture, respectively corresponding to the addition of A reaction. The DNA molecule may have three structures at the end of the blunt end, the 3'dA overhang, and the 3'dG overhang, and are respectively connected thereto. Therefore, regardless of the addition efficiency of the DNA molecule, the end structure has a matching linker, which ensures a significant increase in the efficiency of the joint at both ends of the molecule, as shown in Fig. 1.
进一步地,上述方法中,使用的A型DNA聚合酶即可以是单纯的A型DNA聚合酶,也可以是含有A型DNA聚合酶的混合聚合酶,包括但不限于,Taq DNA聚合酶、EasyTaq DNA聚合酶、TransTaq HiFi DNA聚合酶、Platinum Taq DNA聚合酶等。Further, in the above method, the A-type DNA polymerase used may be a simple type A DNA polymerase or a mixed polymerase containing a type A DNA polymerase, including but not limited to, Taq DNA polymerase, EasyTaq. DNA polymerase, TransTaq HiFi DNA polymerase, Platinum Taq DNA polymerase, and the like.
进一步地,上述方法中,将处理后的DNA分子与接头混合物进行连接时,通常使用T4DNA连接酶。Further, in the above method, when the DNA molecule after the treatment is ligated to the linker mixture, T4 DNA ligase is usually used.
进一步地,本发明所述DNA分子为PCR产物、二代测序建库过程中经过打断与末端修复的DNA片段或直接提取并经过修复的DNA片段。Further, the DNA molecule of the present invention is a PCR product, a DNA fragment which is interrupted and end-repaired during the second generation sequencing, or a DNA fragment which is directly extracted and repaired.
进一步地,为了确保双链DNA接头不会与加A反应后的DNA分子相连接,保证接头连接的方向性,优选地,本发明所述的三种双链DNA接头一端分别为上述3种结构,即平末端、3’dT突出端和3’dC突出端,而另一端可以为粘性末端,见图1;也可以为两条不互补的单链末端(Y型结构),见图2;还可以为茎环结构,见图3。Further, in order to ensure that the double-stranded DNA linker is not linked to the DNA molecule after the reaction with A, and the directionality of the linker is ensured, preferably, one of the three double-stranded DNA linkers of the present invention has the above three structures. , ie, the blunt end, the 3'dT overhang and the 3'dC overhang, and the other end may be a sticky end, see Figure 1; or two non-complementary single-stranded ends (Y-shaped structure), see Figure 2; It can also be a stem-and-loop structure, see Figure 3.
本发明所述双链DNA接头可以通过化学合成或其它分子生物学方法获得,其一端具有三种不同的结构,可以在连接酶作用下,与具有互补末端结构的DNA分子连接。在本发明的具体实施方案中,双链DNA接头可以用两条合成的反向互补的单链DNA退火制备;也可以用一条合成的两端具有互补序列的单链DNA退火制备。The double-stranded DNA linker of the present invention can be obtained by chemical synthesis or other molecular biological methods, and has one end having three different structures, which can be linked to a DNA molecule having a complementary terminal structure by a ligase. In a particular embodiment of the invention, a double stranded DNA linker can be prepared by annealing two synthetic reverse complementary single stranded DNAs; it can also be prepared by annealing a single stranded DNA with complementary sequences at both ends.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
传统二代测序文库构建方法中,为了在DNA两端都能连接接头,不依赖模板的加A反应必须在DNA两端都要发生。然而现有研究成果表明,A型DNA聚合酶或DNA聚合酶Klenow片段催化的加A反应效率十分低下且因模板而异,仅有约1/16的DNA分子两端均带dA突出端。因此,只有极少数分子可在加A后,两端均成功连接接头,进而,低下的加A反应效率严重制约了文库构建效率。In the traditional second-generation sequencing library construction method, in order to connect the linker at both ends of the DNA, the A-independent reaction of the template must occur at both ends of the DNA. However, the existing research results show that the A-type DNA polymerase or DNA polymerase Klenow fragment catalyzed the addition of A reaction efficiency is very low and varies from template to template. Only about 1/16 of the DNA molecules have dA overhangs at both ends. Therefore, only a very small number of molecules can be successfully connected to the linker after both addition of A. Furthermore, the low A plus reaction efficiency severely restricts the library construction efficiency.
为解决此问题,传统方法多为利用各种手段提升DNA聚合酶的加A反应效率。但受 制于酶本身的催化能力,此类方法收效甚微。In order to solve this problem, the traditional methods mostly use various means to increase the efficiency of the DNA polymerase plus A reaction. But subject to These methods have little effect on the catalytic ability of the enzyme itself.
与传统方法相比,本发明提供的一种高效的DNA接头连接方法,使用的接头混合物包括三种双链DNA接头,即平末端接头、3’dT突出端接头和3’dC突出端接头,可以匹配加A反应后的DNA分子两端可能具有的各种不同结构,能够显著增加DNA分子与接头的连接效率,从而不再受到加A反应效率的影响,从根本上提升文库构建效率。Compared with the conventional method, the present invention provides an efficient DNA linker ligation method using a linker mixture comprising three double-stranded DNA linkers, namely a blunt end linker, a 3'dT overhang linker and a 3'dC overhang linker. It can match the various structures that may be present at both ends of the DNA molecule after the addition of A reaction, and can significantly increase the connection efficiency of the DNA molecule and the linker, thereby no longer being affected by the efficiency of the addition of A reaction, thereby fundamentally improving the library construction efficiency.
附图说明DRAWINGS
下面结合附图对本发明的具体实施方式作进一步详细的说明。The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
图1示出粘性末端接头混合物结构示意图。Figure 1 shows a schematic view of the structure of a viscous end joint mixture.
图2示出Y型结构接头混合物结构示意图。Figure 2 shows a schematic view of the structure of a Y-shaped joint mixture.
图3示出茎环结构接头混合物结构示意图。Figure 3 is a schematic view showing the structure of a stem-and-loop structure joint mixture.
图4示出连接反应原理图。Figure 4 shows a schematic diagram of the connection reaction.
图5示出实施例1中连接反应电泳图;Figure 5 is a diagram showing the electrophoresis pattern of the ligation reaction in Example 1;
其中:泳道M:100bp DNA Ladder;Where: lane M: 100 bp DNA Ladder;
泳道1:120bp片段加A产物+ds Adapter Blunt连接产物;Lane 1:120 bp fragment plus A product + ds Adapter Blunt ligation product;
泳道2:120bp片段加A产物+ds Adapter C连接产物;Lane 2: 120 bp fragment plus A product + ds Adapter C ligation product;
泳道3:120bp片段加A产物+ds Adapter T连接产物;Lane 3: 120 bp fragment plus A product + ds Adapter T ligation product;
泳道4:121bp合成含A片段+ds Adapter Blunt连接产物;Lane 4: 121 bp synthesis containing A fragment + ds Adapter Blunt ligation product;
泳道5:120bp合成含A片段+ds Adapter C连接产物;Lane 5: 120 bp synthesis containing A fragment + ds Adapter C ligation product;
泳道6:120bp合成含A片段+ds Adapter T连接产物。Lane 6: 120 bp synthesis contains the A fragment + ds Adapter T ligation product.
图6示出实施例2中连接反应电泳图;Figure 6 is a diagram showing the electrophoresis pattern of the ligation reaction in Example 2;
其中:泳道M:100bp DNA LadderOf which: Lane M: 100bp DNA Ladder
泳道1:120bp片段加A产物+ds Adapter T连接产物;Lane 1:120 bp fragment plus A product + ds Adapter T ligation product;
泳道2:120bp片段加A产物+ds Adapter Mix连接产物;Lane 2: 120 bp fragment plus A product + ds Adapter Mix ligation product;
泳道3:120bp片段加A产物+Y Adapter Mix连接产物;Lane 3: 120 bp fragment plus A product + Y Adapter Mix ligation product;
泳道4:120bp片段加A产物+S-L Adapter Mix连接产物。Lane 4: 120 bp fragment plus A product + S-L Adapter Mix ligation product.
具体实施方式detailed description
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。In order to explain the present invention more clearly, the present invention will be further described in conjunction with the preferred embodiments and the accompanying drawings. Similar components in the drawings are denoted by the same reference numerals. It should be understood by those skilled in the art that the following detailed description is intended to be illustrative and not restrictive.
实施例中所用的材料及来源分别为:
Figure PCTCN2016113506-appb-000003
DNA Polymerase、
Figure PCTCN2016113506-appb-000004
FastPfu  PCR SuperMix(-dye)、
Figure PCTCN2016113506-appb-000005
PCR Purification Kit、T4 DNA Ligase(北京全式金生物技术有限公司),λDNA(Takara公司),引物合成、测序(Life technologies公司)。
The materials and sources used in the examples are:
Figure PCTCN2016113506-appb-000003
DNA Polymerase,
Figure PCTCN2016113506-appb-000004
FastPfu PCR SuperMix (-dye),
Figure PCTCN2016113506-appb-000005
PCR Purification Kit, T4 DNA Ligase (Beijing Quanjin Biotechnology Co., Ltd.), λDNA (Takara), primer synthesis, sequencing (Life technologies).
实施例1:验证DNA加A反应产物具有不同的末端结构。Example 1: Verify that the DNA plus A reaction product has a different terminal structure.
1.扩增DNA片段并加3’dA1. Amplify the DNA fragment and add 3'dA
以λDNA为模板,设计引物以扩增长度为120bp的目的片段。PCR引物为5’磷酸化引物,序列如下:Using λDNA as a template, primers were designed to amplify a fragment of interest of 120 bp in length. The PCR primers are 5' phosphorylated primers with the following sequence:
120bp Primer F:5’-GAGGATGACTGCTGCTGC-3’(见序列表SEQ ID No.1)120 bp Primer F: 5'-GAGGATGACTGCTGCTGC-3' (see Sequence Listing SEQ ID No. 1)
120bp Primer R:5’-GGTATCCCAGGTGGCCTG-3’(见序列表SEQ ID No.2)120 bp Primer R: 5'-GGTATCCCAGGTGGCCTG-3' (see SEQ ID No. 2 of the Sequence Listing)
PCR反应体系如下:The PCR reaction system is as follows:
Figure PCTCN2016113506-appb-000006
Figure PCTCN2016113506-appb-000006
PCR反应条件为:The PCR reaction conditions are:
Figure PCTCN2016113506-appb-000007
Figure PCTCN2016113506-appb-000007
PCR结束后,取5μl于2.0%的琼脂糖凝胶电泳检测。然后用
Figure PCTCN2016113506-appb-000008
PCR Purification Kit纯化PCR产物。用分光光度计定量。
After the end of the PCR, 5 μl was detected by electrophoresis on a 2.0% agarose gel. Then use
Figure PCTCN2016113506-appb-000008
The PCR product was purified by PCR Purification Kit. Quantitatively measured with a spectrophotometer.
接下来对PCR产物加3’dA,反应体系如下:Next, 3'dA was added to the PCR product, and the reaction system was as follows:
Figure PCTCN2016113506-appb-000009
Figure PCTCN2016113506-appb-000009
然后用
Figure PCTCN2016113506-appb-000010
PCR Purification Kit纯化PCR产物。用分光光度计定量。
Then use
Figure PCTCN2016113506-appb-000010
The PCR product was purified by PCR Purification Kit. Quantitatively measured with a spectrophotometer.
产物记名为“120bp片段加A产物”。 The product was designated "120 bp fragment plus A product".
2.合成DNA片段2. Synthetic DNA fragments
合成两条长度为121nt的5’磷酸化的单链DNA,序列如下:Two 5'-phosphorylated single-stranded DNAs of 121 nt in length were synthesized and the sequences were as follows:
121bp F:121bp F:
GAGGATGACTGCTGCTGCATTGACGTTGAGCGAAAACGCACGTTTACCATGATGATTCGGGAAGGTGTGGCCATGCACGCCTTTAACGGTGAACTGTTCGTTCAGGCCACCTGGGATACCA(见序列表SEQ ID No.3) GAGGATGACTGCTGCTGC ATTGACGTTGAGCGAAAACGCACGTTTACCATGATGATTCGGGAAGGTGTGGCCATGCACGCCTTTAACGGTGAACTGTTCGTTCAGGCCACCTGGGATACCA (see Sequence Listing SEQ ID No. 3)
121bp R:121bp R:
GGTATCCCAGGTGGCCTGAACGAACAGTTCACCGTTAAAGGCGTGCATGGCCACACCTTCCCGAATCATCATGGTAAACGTGCGTTTTCGCTCAACGTCAATGCAGCAGCAGTCATCCTCA(见序列表SEQ ID No.4) GGTATCCCAGGTGGCCTG AACGAACAGTTCACCGTTAAAGGCGTGCATGGCCACACCTTCCCGAATCATCATGGTAAACGTGCGTTTTCGCTCAACGTCAATGCAGCAGCAGTCATCCTCA (see Sequence Listing SEQ ID No. 4)
将这两条单链DNA退火,退火反应体系如下:The two single-stranded DNAs are annealed and the annealing reaction system is as follows:
Figure PCTCN2016113506-appb-000011
Figure PCTCN2016113506-appb-000011
退火产物条件为:95℃5分钟,缓慢冷却至室温。取1μl于2.0%的琼脂糖凝胶电泳检测。The annealing product conditions were: 95 ° C for 5 minutes, and slowly cooled to room temperature. 1 μl was detected by electrophoresis on a 2.0% agarose gel.
退火产物为1条120bp的双链DNA,片段两端各带1个3’dA尾。此片段中120bp的双链部分,其序列与步骤1中的PCR产物序列完全相同。The annealed product was a 120 bp double-stranded DNA with a 3'dA tail at each end. The 120 bp double-stranded portion of this fragment has the same sequence as the PCR product sequence in step 1.
产物记名为“121bp合成含A片段”The product is named "121bp synthetic A-containing fragment"
3.制备双链DNA接头3. Preparation of double-stranded DNA linkers
合成4条单链DNA,序列如下:Synthesis of 4 single-stranded DNAs with the following sequence:
Adapter T Forward:Adapter T Forward:
TTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGT(见序列表SEQ ID No.5)TTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGT (see sequence listing SEQ ID No. 5)
Adapter C Forward:Adapter C Forward:
TTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGC(见序列表SEQ ID No.6)TTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGC (see sequence listing SEQ ID No. 6)
Adapter Blunt Forward:Adapter Blunt Forward:
TTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATG(见序列 表SEQ ID No.7)TTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATG (see sequence Table SEQ ID No. 7)
Adapter Reverse:Adapter Reverse:
CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAAGGGG(见序列表SEQ ID No.8)CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAAGGGG (see Sequence Listing SEQ ID No. 8)
将Adapter T Forward、Adapter C Forward、Adapter Blunt Forward分别与Adapter Reverse进行退火,构建3个接头,退火反应体系如下:The Adapter T Forward, Adapter C Forward, and Adapter Blunt Forward are respectively annealed with the Adapter Reverse to construct three joints. The annealing reaction system is as follows:
Figure PCTCN2016113506-appb-000012
Figure PCTCN2016113506-appb-000012
退火产物条件为:95℃5分钟,缓慢冷却至室温。取1μl于2.0%的琼脂糖凝胶电泳检测。The annealing product conditions were: 95 ° C for 5 minutes, and slowly cooled to room temperature. 1 μl was detected by electrophoresis on a 2.0% agarose gel.
3个退火反应的产物为3种双链DNA接头,其一端均为3’端4个G碱基的粘性末端(其目的是确保这一端不会与加A后的PCR产物或合成的DNA片段相连接),而另一端分别为3’dT突出端、3’dC突出端、平末端。The products of the three annealing reactions are three double-stranded DNA adaptors, one end of which is the sticky end of the 3' end and 4 G bases (the purpose of which is to ensure that this end does not overlap with the PCR product or synthetic DNA fragment after addition of A). Connected to the other end, and the other end is a 3'dT overhang, a 3'dC overhang, and a flat end.
这3种双链DNA接头记名为“ds Adapter T”、“ds Adapter C”、“ds Adapter Blunt”。These three double-stranded DNA connectors are named "ds Adapter T", "ds Adapter C", and "ds Adapter Blunt".
4.片段+接头连接反应4. Fragment + linker reaction
将步骤1、2中获得的“120bp加A片段”、“121bp合成片段”分别与步骤3获得的3个接头“ds Adapter T”、“ds Adapter C”、“ds Adapter Blunt”相连接,共计6个连接反应。反应体系如下:The "120 bp plus A fragment" and "121 bp synthetic fragment" obtained in steps 1 and 2 are respectively connected with the three joints "ds Adapter T", "ds Adapter C", and "ds Adapter Blunt" obtained in step 3. 6 connection reactions. The reaction system is as follows:
Figure PCTCN2016113506-appb-000013
Figure PCTCN2016113506-appb-000013
反应条件为:25℃,2小时。The reaction conditions were: 25 ° C, 2 hours.
反应结束后,各取10μl产物于2.0%的琼脂糖凝胶电泳检测。电泳结果如图5所示。After the end of the reaction, 10 μl of each product was detected by electrophoresis on a 2.0% agarose gel. The electrophoresis results are shown in Figure 5.
实施例2:比较本发明介绍的方法与使用传统接头的建库方法之差异。Example 2: The difference between the method described in the present invention and the method of building a library using a conventional joint was compared.
1.扩增DNA片段并加A1. Amplify the DNA fragment and add A
同实施例1中步骤1 Same as step 1 in the first embodiment
2.制备双链DNA接头2. Preparation of double-stranded DNA linkers
同实施例1中步骤3 Step 3 in the same manner as in Embodiment 1
3.制备Y型结构DNA接头3. Preparation of Y-type DNA connector
合成1条单链DNA,序列如下:To synthesize a single-stranded DNA, the sequence is as follows:
Y Adapter Reverse:Y Adapter Reverse:
CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGGCGTCAGTTT(见序列表SEQ ID No.9)CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGGCGTCAGTTT (see Sequence Listing SEQ ID No. 9)
将Adapter T Forward、Adapter C Forward、Adapter Blunt Forward分别与Y Adapter Reverse进行退火,构建3个接头,退火反应体系如下:Adapter T Forward, Adapter C Forward, and Adapter Blunt Forward are respectively annealed with Y Adapter Reverse to construct three joints. The annealing reaction system is as follows:
Figure PCTCN2016113506-appb-000014
Figure PCTCN2016113506-appb-000014
退火产物条件为:95℃5分钟,缓慢冷却至室温。取1μl于2.0%的琼脂糖凝胶电泳检测。The annealing product conditions were: 95 ° C for 5 minutes, and slowly cooled to room temperature. 1 μl was detected by electrophoresis on a 2.0% agarose gel.
3个退火反应的产物为3种Y型结构DNA接头,其一端为2条不互补的单链构成的Y型结构(其目的是确保这一端不会与加A后的PCR产物或合成的DNA片段相连接),而另一端分别为3’dT突出端、3’dC突出端、平末端。The products of the three annealing reactions are three Y-type DNA linkers, one end of which is a Y-type structure composed of two non-complementary single strands (the purpose of which is to ensure that this end does not overlap with the PCR product or synthetic DNA after addition of A). The segments are connected, while the other ends are 3'dT overhangs, 3'dC overhangs, and blunt ends.
这3种接头记名为“Y Adapter T”、“Y Adapter C”、“Y Adapter Blunt”。These three types of connectors are named "Y Adapter T", "Y Adapter C", and "Y Adapter Blunt".
4.制备茎环结构DNA接头4. Preparation of stem-loop structure DNA linker
合成3条单链DNA,序列如下:Synthesis of 3 single-stranded DNAs with the following sequence:
S-L Adapter T F-R:S-L Adapter T F-R:
CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAACCTTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGT(见序列表SEQ ID No.10)CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAACCTTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGT (see Sequence Listing SEQ ID No. 10)
S-L Adapter C F-R:S-L Adapter C F-R:
CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAACCTTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGC(见序列表SEQ ID No.11)CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAACCTTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATGC (see Sequence Listing SEQ ID No. 11)
S-L Adapter Blunt F-R: S-L Adapter Blunt F-R:
CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAACCTTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATG(见序列表SEQ ID No.12)CATACCGGTTTTATGTCACGCACACGGGCGATGATGTCAGCGCAGTCAAACCTTTGACTGCGCTGACATCATCGCCCGTGTGCGTGACATAAAACCGGTATG (see Sequence Listing SEQ ID No. 12)
将S-L Adapter T F-R、S-L Adapter C F-R、S-L Adapter Blunt F-R分别进行自身退火,构建3个接头,退火反应体系如下:The S-L Adapter T F-R, S-L Adapter C F-R, and S-L Adapter Blunt F-R were separately annealed to construct three joints. The annealing reaction system was as follows:
S-LAdapter T/C/Blunt F-R(100μM)          10μlS-LAdapter T/C/Blunt F-R (100μM) 10μl
0.5M Tris-HCl pH8.0                       1μl0.5M Tris-HCl pH 8.0 1μl
dd H2O                                    39μlDd H2O 39μl
退火产物条件为:95℃5分钟,缓慢冷却至室温。取1μl于2.0%的琼脂糖凝胶电泳检测。The annealing product conditions were: 95 ° C for 5 minutes, and slowly cooled to room temperature. 1 μl was detected by electrophoresis on a 2.0% agarose gel.
3个退火反应的产物为3种茎环结构DNA接头,其一端为2个C碱基的环状结构(其目的是确保这一端不会与加A后的PCR产物或合成的DNA片段相连接),而另一端分别为3’dT突出端、3’dC突出端、平末端。The products of the three annealing reactions are three kinds of stem-loop DNA linkers, one end of which is a two-C base circular structure (the purpose of which is to ensure that this end is not linked to the PCR product or synthetic DNA fragment after addition of A). ), while the other end is a 3'dT overhang, a 3'dC overhang, and a flat end.
这3种接头记名为“S-L Adapter T”、“S-L Adapter C”、“S-L Adapter Blunt”。These three types of connectors are named "S-L Adapter T", "S-L Adapter C", and "S-L Adapter Blunt".
5.制备接头混合物5. Preparation of joint mixture
将步骤2中获得的3种接头“ds Adapter T”、“ds Adapter C”、“ds Adapter Blunt”等摩尔比混合,记为ds Adapter Mix。Mix the three kinds of joints "ds Adapter T", "ds Adapter C", "ds Adapter Blunt" obtained in step 2, and record them as ds Adapter Mix.
将步骤3中获得的3种接头“Y Adapter T”、“Y Adapter C”、“Y Adapter Blunt”等摩尔比混合,记为Y Adapter Mix。The three types of joints "Y Adapter T", "Y Adapter C", and "Y Adapter Blunt" obtained in the step 3 were mixed and referred to as Y Adapter Mix.
将步骤4中获得的3种接头“S-L Adapter T”、“S-L Adapter C”、“S-L Adapter Blunt”等摩尔比混合,记为S-L Adapter Mix。The molar ratios of the three types of joints "S-L Adapter T", "S-L Adapter C", and "S-L Adapter Blunt" obtained in the step 4 were mixed and designated as S-L Adapter Mix.
6.片段+接头连接反应6. Fragment + linker reaction
将步骤1中获得的“120bp加A片段”分别与步骤3获得的双链DNA接头“ds Adapter T”、步骤4获得的3种接头混合物“ds Adapter Mix”、“Y Adapter Mix”、“S-L Adapter Mix”相连接,共计3个连接反应。反应体系如下:The "120 bp plus A fragment" obtained in the step 1 is respectively combined with the double-stranded DNA link "ds Adapter T" obtained in the step 3, and the three kinds of the joint mixture "ds Adapter Mix", "Y Adapter Mix", "SL" obtained in the step 4. The Adapter Mix is connected for a total of 3 connection reactions. The reaction system is as follows:
Figure PCTCN2016113506-appb-000015
Figure PCTCN2016113506-appb-000015
反应条件为:25℃,2小时。The reaction conditions were: 25 ° C, 2 hours.
反应结束后,各取10μl产物于2.0%的琼脂糖凝胶电泳检测。电泳结果如图6所示。After the end of the reaction, 10 μl of each product was detected by electrophoresis on a 2.0% agarose gel. The electrophoresis results are shown in Figure 6.
比较结论Comparative conclusion
1、本发明的实施例1显示,人工合成的末端100%带有3’dA突出端的DNA片段,仅能连接3’dT突出端的接头;而与之相比,加A后的DNA片段则可以与3种接头(3’dT突出端、3’dC突出端、平末端)均发生连接,证明了加A反应是一个低效率反应,反应产物中是3’dA突出端、3’dG突出端、平末端3种产物的混合体。1. Example 1 of the present invention shows that a synthetic DNA fragment having a 3'dA overhang at the end is 100%, and only a linker of the 3'dT overhang can be ligated; compared with the DNA fragment after the addition of A, It is linked with three kinds of linkers (3'dT overhang, 3'dC overhang, blunt end), which proves that the addition of A reaction is an inefficient reaction. The reaction product is a 3'dA overhang and a 3'dG overhang. A mixture of three products at the blunt end.
2、本发明的实施例2显示,使用3种末端结构接头的混合物,其与加A后DNA片段的连接效率远远高于具有单一3’dT突出端结构的传统接头,且片段两端均与接头连接的成功率有显著提升。2. Example 2 of the present invention shows that a mixture of three terminal structure linkers is used, and its DNA fragment attachment efficiency is much higher than that of a conventional 3'dT overhang structure, and both ends of the fragment are The success rate of connection to the connector is significantly improved.
综上,本发明与传统方法相比,可以显著提升DNA接头的连接效率。In summary, the present invention can significantly improve the connection efficiency of the DNA linker as compared with the conventional method.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。 It is apparent that the above-described embodiments of the present invention are merely illustrative of the present invention and are not intended to limit the embodiments of the present invention, and those skilled in the art can also make the above description. It is to be understood that various changes and modifications may be made without departing from the spirit and scope of the invention.

Claims (6)

  1. 一种高效的接头连接方法,其特征在于,该方法包括:使用A型DNA聚合酶或DNA聚合酶Klenow片段处理DNA分子以添加3’dA突出端,再将处理后的DNA分子与接头混合物进行连接,得到连接产物,其中,所述接头混合物包括三种双链DNA接头,它们的一端分别为平末端、3’dT突出端和3’dC突出端。A highly efficient method for linker ligation, which comprises: treating a DNA molecule with a type A DNA polymerase or a DNA polymerase Klenow fragment to add a 3'dA overhang, and then processing the treated DNA molecule with a linker mixture Ligation, to obtain a ligation product, wherein the linker mixture comprises three double-stranded DNA linkers, one end of which is a blunt end, a 3'dT overhang, and a 3'dC overhang, respectively.
  2. 根据权利要求1所述的一种高效的接头连接方法,其特征在于,所述三种双链DNA接头的另一端为粘性末端。A highly efficient linker ligation method according to claim 1, wherein the other end of the three double-stranded DNA linkers is a sticky end.
  3. 根据权利要求1所述的一种高效的接头连接方法,其特征在于,所述三种双链DNA接头的另一端为两条不互补的单链末端。The high-efficiency adaptor ligation method according to claim 1, wherein the other ends of the three double-stranded DNA adaptors are two non-complementary single-stranded ends.
  4. 根据权利要求1所述的一种高效的接头连接方法,其特征在于,所述三种双链DNA接头的另一端为茎环结构。The high-efficiency adaptor ligation method according to claim 1, wherein the other end of the three double-stranded DNA adaptors is a stem-loop structure.
  5. 根据权利要求1所述的一种高效的接头连接方法,其特征在于,所述DNA分子为PCR产物、二代测序建库过程中经过打断与末端修复的DNA片段或直接提取并经过修复的DNA片段。The method of claim 1, wherein the DNA molecule is a PCR product, a DNA fragment that has been interrupted and end-repaired during the second generation sequencing process, or directly extracted and repaired. DNA fragment.
  6. 根据权利要求1所述的一种高效的接头连接方法,其特征在于,所述双链DNA接头通过两条反向互补的单链DNA退火制备,或通过一条两端具有互补序列的单链DNA退火制备。 The high-performance linker ligation method according to claim 1, wherein the double-stranded DNA linker is prepared by annealing two reverse-complementary single-stranded DNAs or by single-stranded DNA having complementary sequences at both ends Annealed preparation.
PCT/CN2016/113506 2016-07-08 2016-12-30 High-efficiency method for linking dna connector WO2018006567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610537963.4 2016-07-08
CN201610537963.4A CN105950612B (en) 2016-07-08 2016-07-08 A kind of efficient DNA connector connecting method

Publications (1)

Publication Number Publication Date
WO2018006567A1 true WO2018006567A1 (en) 2018-01-11

Family

ID=56899681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113506 WO2018006567A1 (en) 2016-07-08 2016-12-30 High-efficiency method for linking dna connector

Country Status (2)

Country Link
CN (1) CN105950612B (en)
WO (1) WO2018006567A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950612B (en) * 2016-07-08 2019-06-21 北京全式金生物技术有限公司 A kind of efficient DNA connector connecting method
CN108048915A (en) * 2017-12-01 2018-05-18 北京科迅生物技术有限公司 For the connector mixture of ctDNA library constructions, the kit including it and application
CN110129415B (en) * 2019-05-17 2023-08-18 迈杰转化医学研究(苏州)有限公司 NGS library-building molecular joint and preparation method and application thereof
CN110565174B (en) * 2019-09-17 2022-09-30 北京博昊云天科技有限公司 DNA library construction method
CN111041070B (en) * 2019-12-27 2022-08-19 北京优迅医学检验实验室有限公司 Method for detecting DNA conversion efficiency constructed by high-throughput sequencing library

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061335A (en) * 2010-11-15 2011-05-18 苏州众信生物技术有限公司 Asymmetric deoxyribose nucleic acid (DNA) artificial adapters by using second-generation high-throughput sequencing technology and application thereof
WO2012013932A1 (en) * 2010-07-29 2012-02-02 University Court Of The University Of St Andrews Improved race
WO2015103339A1 (en) * 2013-12-30 2015-07-09 Atreca, Inc. Analysis of nucleic acids associated with single cells using nucleic acid barcodes
CN104789553A (en) * 2015-04-08 2015-07-22 浙江圣庭生物科技有限公司 Method for constructing blood free DNA library
CN105950612A (en) * 2016-07-08 2016-09-21 北京全式金生物技术有限公司 High-efficiency method for ligating DNA (Deoxyribonucleic Acid) with adapters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120238738A1 (en) * 2010-07-19 2012-09-20 New England Biolabs, Inc. Oligonucleotide Adapters: Compositions and Methods of Use
CN105400776B (en) * 2014-09-12 2019-12-31 深圳华大智造科技有限公司 Oligonucleotide linker and application thereof in constructing nucleic acid sequencing single-stranded circular library
CN105200530A (en) * 2015-10-13 2015-12-30 北京百迈客生物科技有限公司 Method for establishing multi-sample hybrid library suitable for high-flux whole-genome sequencing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013932A1 (en) * 2010-07-29 2012-02-02 University Court Of The University Of St Andrews Improved race
CN102061335A (en) * 2010-11-15 2011-05-18 苏州众信生物技术有限公司 Asymmetric deoxyribose nucleic acid (DNA) artificial adapters by using second-generation high-throughput sequencing technology and application thereof
WO2015103339A1 (en) * 2013-12-30 2015-07-09 Atreca, Inc. Analysis of nucleic acids associated with single cells using nucleic acid barcodes
CN104789553A (en) * 2015-04-08 2015-07-22 浙江圣庭生物科技有限公司 Method for constructing blood free DNA library
CN105950612A (en) * 2016-07-08 2016-09-21 北京全式金生物技术有限公司 High-efficiency method for ligating DNA (Deoxyribonucleic Acid) with adapters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAGNUSON, V.L. ET AL.: "Substrate Nucleotide-determined Non-templated Addition of Adenine by Tag DNA Polymerase: Implications for PCR-based Genotyping and Cloning", BIOTECHNIQUES, vol. 21, no. 4, 31 October 1996 (1996-10-31), pages 700 - 709, XP008062075, ISSN: 0736-6205 *

Also Published As

Publication number Publication date
CN105950612B (en) 2019-06-21
CN105950612A (en) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2018006567A1 (en) High-efficiency method for linking dna connector
KR102643955B1 (en) Contiguity preserving transposition
US4873192A (en) Process for site specific mutagenesis without phenotypic selection
JP3421664B2 (en) Nucleotide base identification method
CA2976786A1 (en) Dna sequencing using controlled strand displacement
JP2013528058A (en) Combination sequence barcodes for high-throughput screening
WO2007087291A2 (en) Asymmetrical adapters and methods of use thereof
WO2016058134A1 (en) Linker element and method of using same to construct sequencing library
CN111041026B (en) Nucleic acid linker for high-throughput sequencing and library construction method
WO2021128441A1 (en) Controlled strand-displacement for paired-end sequencing
JPWO2004040019A1 (en) Nucleic acid amplification method
US20030152984A1 (en) Method for the manufacture of DNA
CN110607353A (en) Method and kit for rapidly preparing DNA sequencing library by utilizing efficient ligation technology
WO2018014799A1 (en) Recombinase polymerase amplification reagent kit, amplification method, and amplification reagent
US9695417B2 (en) Method for large-scale synthesis of long-chain nucleic acid molecule
JPH06510428A (en) DNA sequencing with T-type gene 6 exonuclease
CN113136416B (en) Library construction method for PacBio sequencing
EP3759243B1 (en) Methods and compositions for enriching nucleic acids
CN1800404A (en) Preparation method of T vector for T-A cloning
CN111748611B (en) PCR primer and application thereof in DNA fragment connection
CN111073952B (en) Method for constructing DNA library and application thereof
CN106801044B (en) Cyclic transposon complex and application thereof
WO2010064040A1 (en) Method for use in polynucleotide sequencing
WO2019090482A1 (en) Second-generation high-throughput sequencing library construction method
US20230295606A1 (en) Ligation free methods of nucleic acid library preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16908071

Country of ref document: EP

Kind code of ref document: A1