WO2018006236A1 - 胎动量测装置 - Google Patents

胎动量测装置 Download PDF

Info

Publication number
WO2018006236A1
WO2018006236A1 PCT/CN2016/088355 CN2016088355W WO2018006236A1 WO 2018006236 A1 WO2018006236 A1 WO 2018006236A1 CN 2016088355 W CN2016088355 W CN 2016088355W WO 2018006236 A1 WO2018006236 A1 WO 2018006236A1
Authority
WO
WIPO (PCT)
Prior art keywords
fetal movement
fetal
movement
measuring device
sensor
Prior art date
Application number
PCT/CN2016/088355
Other languages
English (en)
French (fr)
Inventor
杜翌群
林美燕
石正邦
邱纬翔
邱仲逸
Original Assignee
杜翌群
林美燕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杜翌群, 林美燕 filed Critical 杜翌群
Priority to PCT/CN2016/088355 priority Critical patent/WO2018006236A1/zh
Publication of WO2018006236A1 publication Critical patent/WO2018006236A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/344Foetal cardiography

Definitions

  • the invention relates to a measuring device, in particular to a fetal movement measuring device.
  • Fetal movement, contraction and fetal heart rate are three important physiological parameters for observing fetal status during a woman's pregnancy cycle.
  • Fetal movement refers to the activity of the fetus in the uterus, the contraction of the contraction of the uterus, and the fetal heart rate. The heart rate of the fetus.
  • fetal movement is the earliest and simplest detectable signal. It is also the method that clinicians most often recommend pregnant women to observe fetal health independently. Therefore, the pregnant women's manual also provides a fetal movement record. It is hoped that pregnant women can regularly measure fetal movement to ensure fetal safety. However, self-measurement of fetal movement is quite lengthy.
  • the case does not have a multi-point measurement design, and it is necessary to use an electrode patch attached to the skin of a pregnant woman to detect the myoelectric signal, it is easy to cause discomfort to the pregnant woman and is susceptible to interference.
  • the case It is not disclosed how to judge and eliminate non-fetal signals caused by pregnant women's actions to avoid misjudgment, and to determine the location of each fetal movement. Therefore, the measurement effect and accuracy of the case for fetal movement are not good.
  • Taiwanese Bulletin No. I392480 discloses a maternal contraction and fetal movement monitoring device that monitors the state of a mother and a fetus.
  • the monitoring device includes a set of chip electrodes, a pre-stage signal processor, a first post-stage signal processor, a first analyzing unit, a second post-stage signal processor, a second analyzing unit, and a third analysis. unit.
  • the set of patch electrodes are attached to the abdomen of the parent to provide a measurement of at least three channels.
  • the pre-stage signal processor receives the plurality of sensing signals of the set of chip electrodes, and suppresses the noise and amplifies the characteristic signals to output a set of characteristic sensing signals.
  • the first post-stage signal processor receives the set of characteristic sensing signals output by the pre-stage signal processor, and after filtering the noise, analyzing the maternal body and the plurality of information of the fetus including the maternal electrocardiogram signal, the maternal uterine myoelectric signal and the fetus ECG signal.
  • the first analyzing unit is configured to calculate a sympathetic activity level signal of the fetus according to the plurality of information obtained by the first post-stage signal processor.
  • the second post-stage signal processor receives the set of characteristic sensing signals output by the pre-stage signal processor to separate a plurality of fetal electrocardiograms corresponding to the channels and a plurality of maternal contraction signal waves.
  • the second analyzing unit processes the fetal electrocardiogram complex to obtain the fetal electrocardiogram complex and a maternal electrocardiogram complex on each channel to determine whether the fetus has a fetal position change, and according to the maternal palace
  • the sign-down signal gets a signal of a contraction.
  • the third analyzing unit determines whether there is a fetal movement state according to a fetal movement identification method according to the signal of receiving the contraction state signal, the energy change signals, and the sympathetic activity level of the fetus.
  • the sympathetic activity level signal is used to increase the accuracy of the fetal movement judgment.
  • the case still uses the patch electrode attached to the skin of the pregnant woman to detect the myoelectric signal, so there is still a situation in which the pregnant woman is more likely to feel uncomfortable and susceptible to interference.
  • the case did not disclose how to judge and eliminate non-fetal signals caused by pregnant women's actions to avoid misjudgment.
  • the solution of the present invention is:
  • a fetal movement measuring device comprising:
  • a wearing part that is worn on a belly of a pregnant woman
  • each measuring unit includes a tire movement sensor for sensing a dynamic physiological signal of the abdomen, and electrically connecting the fetal movement sensor and supplying a power supply component for the required power;
  • a mobile device that transmits information with the fetal movement sensor and has a fetal movement calculation program.
  • the mobile device receives the dynamic physiological signals sensed by the plurality of fetal movement sensors, the synchronization signal analysis and determination are performed by the fetal movement calculation program.
  • the synchronization signal component is determined, the synchronization signal component is removed, and the residual signal component is further calculated to generate a fetal motion information by using the fetal movement calculation program, and the fetal movement information includes a fetal movement position and a fetal movement size.
  • the mobile device calculates and obtains the fetal movement information according to the following formula:
  • V is the vibration wave transmission speed
  • T 0 is the tire movement occurrence time
  • T n is the time of each vibration wave caused by each fetal movement sensor receiving the dynamic physiological signal, It is an integer
  • X 0 , Y 0 , and Z 0 are the fetal movement positions
  • X n , Y n , and Z n are the positions of the respective fetal motion sensors.
  • each of the fetal movement sensors is equal to the three axes of X, Y, and Z, and the fetal movement positions X 0 , Y 0 , and Z 0 are determined by the following formulas:
  • the time of the vibration wave is received by each fetal movement sensor, as shown by the following formula:
  • a 0 is the fetal movement
  • a n is the amplitude
  • k is the correction coefficient
  • Each tire movement sensor is an inertial sensor.
  • Each measuring unit further includes a signal transmitting module electrically connected to the fetal movement sensor and the power supply component, and each fetal motion sensor is transmitted to the mobile device by wireless communication through a corresponding signal transmitting module. information.
  • the fetal motion measuring device further includes a signal sending unit electrically connected to the fetal motion sensor, wherein the dynamic physiological signal sensed by each fetal movement sensor is wirelessly communicated with the mobile device through the signal transmitting unit Send message.
  • the mobile device transmits the obtained fetal movement information to a cloud server via the Internet, so that the medical terminal monitoring device downloads and retrieves the fetal movement information from the cloud server.
  • the power supply component is a battery.
  • the effect of the fetal movement measuring device of the present invention is that the pregnant woman can monitor the fetal movement signal at any time by simply wearing the wearing part and starting the fetal movement measuring device, and the use convenience is excellent.
  • the measuring unit can be installed on the wearer without directly contacting the pregnant woman's skin, which is different from the traditional apparatus for measuring physiological signals as the basis of analysis, such as the analysis of myoelectric signals. Therefore, the design of the present invention can provide better comfort and is less susceptible to interference.
  • the multi-point asynchronous method to calculate the location of fetal movement and the time of fetal movement not only can the fetal movement measurement be better and more accurate, but the obtained data can be used for higher value in subsequent medical reference.
  • FIG. 1 is a schematic view of a first embodiment of a fetal movement measuring device of the present invention.
  • FIG. 2 is a schematic view showing the connection relationship of the components of the first embodiment of the present invention.
  • Fig. 3 is a schematic view showing the use of the first embodiment of the present invention.
  • Fig. 4 is a schematic view showing the state of the fetal wave transmission when the fetal movement occurs in the first embodiment of the present invention.
  • 5A-5D are waveform diagrams for assistance in illustrating the dynamic physiological signals sensed by most of the fetal movement measuring devices located at different positions, wherein there is not yet a synchronized signal component.
  • 6A to 6D are waveform diagrams showing dynamic physiological signals sensed by respective fetal movement sensors located at different positions, wherein the synchronization signal component has been removed;
  • FIG. 7 is a flow chart of the fetal movement calculation process of the first embodiment.
  • Figure 8 is a block diagram showing the connection relationship of components of the second embodiment of the fetal movement measuring device of the present invention.
  • Cloud system 6 medical monitoring device 7 signal transmitting unit 8.
  • a first embodiment of the fetal movement measuring device of the present invention comprises a wearing member 1, a plurality of measuring units 2, and a mobile device 3.
  • the wearing part 1 can be worn on the abdomen 41 of the pregnant woman 4 as shown in FIG. 3.
  • the wearing part 1 is described as a stomach strap, and the wearing part 1 includes a package.
  • the upper support piece 11 covering the upper abdomen 411 of the pregnant woman 4
  • a lower support piece 12 for covering the lower abdomen 412 of the pregnant woman 4
  • a left connecting piece 13 connected to one end of the upper support piece 11 and one end of the lower support piece 12, and a connection to the other end of the upper support piece 11 and The right connecting piece 14 at the other end of the lower blade 12.
  • the upper support piece 11 and the outer surface of the lower support piece 12 are provided with a plurality of pockets 15.
  • the arrangement of the pockets 15 corresponds to the number of the measuring units 2, and in the present embodiment, four are described, but not For the limit, each pocket 15 is provided to accommodate a measuring unit 2.
  • the left connecting piece 13 and the right connecting piece 14 are respectively provided with a first positioning member 16 and a second positioning member 17 at the corresponding joints, whereby the wearing member 1 can be utilized when covering the abdomen 41 of the pregnant woman 4.
  • the first positioning member 16 on the left connecting piece 13 and the second positioning member 17 on the right connecting piece 14 are adhered to each other and positioned.
  • the wearing part 1 is not limited to the above-mentioned stomach strap pattern.
  • the upper supporting piece 11 and the lower supporting piece 12 may be integrated into one piece and can be used to cover the entire abdomen 41 of the pregnant woman 4. Both can perform subsequent fetal motion measurement.
  • the wearing part 1 can also be in other aspects such as a belt, as long as it can be worn on the abdomen 41 of the pregnant woman 4 and can be placed on the measuring unit 2.
  • the combination of the measuring unit 2 and the wearing member 1 should not be
  • a jig or a bonding assembly or the like may be used, as long as the component or structural design that enables the measuring unit 2 to be detachably coupled to the outer surface of the wearing member 1 can be implemented.
  • Each measuring unit 2 includes a tire movement sensor 21 for sensing the dynamic physiological signal of the abdomen 41, a power supply element 22 electrically connected to the tire movement sensor 21 and capable of supplying required power, and an electrical connection.
  • the fetal movement sensor 21 can be an inertial sensor or a pressure sensor. In this embodiment, an inertial sensor (IMU) is used, which includes a three-axis acceleration gauge and a three-axis gyroscope.
  • the power supply element 22 is a battery.
  • Each of the fetal movement sensors 21 transmits information to the mobile device 3 by wireless communication via a corresponding signal transmitting module 23.
  • the mobile device 3 is described by a smart phone, but not limited thereto.
  • it can also be a tablet computer, a personal digital assistant, a smart watch, or the like.
  • the mobile device 3 presets a fetal movement calculation program, which can analyze, judge and calculate the dynamic physiological signals of the abdomen 41 of the pregnant woman 4 received by the fetal movement sensor 21 to obtain an accurate fetal movement message.
  • the pregnant woman 4 in use, only needs to cover the wearing part 1 on the abdomen 41 , and the first positioning piece 16 on the left connecting piece 13 and the right connecting piece 14 are used.
  • the second positioning members 17 are adhered to each other to complete the wearing.
  • the fetal movement measuring device is activated, the fetal movement sensor 21 of the measuring unit 2 is first corrected and reset to zero. After that, each measuring unit 2 located at different positions will start to sense the dynamic physiological signals of different parts of the abdomen 41 of the pregnant woman 4, as shown in Fig.
  • each measurement unit 2 is further numbered 2a, 2b, 2c, 2d, respectively, and the distance measurement unit 2b is closest to the occurrence of the P point, followed by the measurement unit 2c and the measurement unit 2a.
  • the distance measuring unit 2d is the farthest.
  • the dynamic physiological signals sensed by the measuring units 2a, 2b, 2c, and 2d are respectively shown in FIGS. 5A to 5D.
  • the vertical axis represents acceleration
  • the unit is m/s 2
  • the horizontal axis is time. Its unit is seconds (s).
  • Each of the fetal movement sensors 21 further transmits the sensed dynamic physiological signal to the mobile device 3 through each of the signal transmitting modules 23, and the mobile device 3 executes the fetal movement calculation program for synchronous signal analysis and determination, with reference to FIG. 7
  • the adaptive signal component is removed by an adaptive filter, and the residual signal component is subjected to fetal movement analysis and calculation through the fetal movement calculation program to generate a fetal movement information, which is particularly special.
  • the synchronization signal analysis should be performed again, because the synchronization signal cannot be completely filtered out at one time, and the analysis operation needs to be performed twice or more times.
  • the fetal movement analysis is based on the difference between the magnitude of the amplitude and the transmission time of the vibration wave, and according to the following formula (1), the fetal movement information is further estimated:
  • V is the vibration wave transmission speed
  • T 0 is the tire movement occurrence time
  • T n is the time of each vibration wave caused by each fetal movement sensor receiving the dynamic physiological signal
  • n is an integer
  • X 0 , Y 0 , Z 0 are fetal movement The position
  • X n , Y n , Z n is the position of each of the fetal movement sensors 21.
  • n is 1, 2, 3, and 4, respectively substituted into the above formula (1), and the following formulas (2) to (5) are obtained.
  • n 1, 2, 3, and 4, respectively, into equations (11) to (13), and the following formulas (14) to (16) are obtained, and the fetal movement positions (X 0 , Y 0 , Z 0 ).
  • the tire movement time can be retrievable via the tire movement sensor 21, as shown in the following formula (17):
  • a 0 is the fetal movement
  • a n is the magnitude of the amplitude
  • k is the correction coefficient
  • (X 0 , Y 0 , Z 0 ) is the fetal movement position
  • (X n , Y n , Z n ) is the position of each fetal movement sensor 21; It is still an integer.
  • n is 1, 2, 3, and 4.
  • the mobile device 3 After acquiring the fetal movement information, the mobile device 3 can provide the pregnant woman 4 to view through a screen output display, and can further transmit the obtained fetal movement information to a cloud system 6 or a cloud server through a network 5. For the medical end monitoring device 7 to download and use the fetal movement information from the cloud server.
  • the fetal movement measuring device is wearable, and is more suitable for the normal life of the pregnant woman 4, for example, cooking, sleeping, shopping, and the like.
  • the measuring unit 2 combined with the wearing part 1 is small in size and light in weight, and can measure the normal life of the pregnant woman 4, and simultaneously measure the number of fetal movements, so that the pregnant woman 4 can do the work at his own hands without worrying about whether or not Measure fetal movement.
  • the mobile device 3 can also be provided with a detecting module (not shown) for detecting whether the wearing component 1 has been worn on the pregnant woman 4, and a prompting module electrically connected to the detecting module. a group (not shown), when the detecting module detects that the wearing part 1 is not worn on the pregnant woman 4, the prompting module outputs a prompt sound The reminder pregnant woman 4 needs to wear the wearing part 1 to prevent the pregnant woman 4 from forgetting.
  • a second embodiment of the fetal motion measuring device of the present invention is substantially the same as the first embodiment.
  • the difference is that the signal transmitting unit 8 is electrically connected to each of the fetal movement sensors 21 .
  • the signal transmitting unit 8 can be placed in the same pocket 15 (see FIG. 1) together with one of the measuring units 2, or can be separately coupled to the outer surface of the wearing member 1 (see FIG. 1).
  • Each measuring unit 2 only includes a tire movement sensor 21, and a power supply element 22 electrically connected to the tire movement sensor 21 and capable of supplying required power. Thereby, the same effect as the first embodiment can be achieved by this embodiment.
  • the fetal movement measuring device of the present invention allows the pregnant woman 4 to wear the wearing member 1 and activate the fetal movement measuring device to monitor the fetal movement signal at any time without affecting the normal life of the pregnant woman. Since each measuring unit 2 is respectively disposed on the outer surface of the wearing member 1 and can measure the fetal movement in a non-contact manner, it is not necessary to directly contact the skin of the pregnant woman 4, thereby providing better comfort and being less susceptible to interference. In addition, with the multi-point asynchronous method to calculate the location of fetal movement and the time of fetal movement, not only can the fetal movement measurement be better and more accurate, but the obtained data can be used for higher value in subsequent medical reference.
  • the detecting device 3 can also be provided with a detecting module and a prompting module.
  • the detecting module detects that the wearing member 1 is not worn on the pregnant woman 4
  • the prompting module outputs a prompt sound. Remind the pregnant woman 4 to wear the wearing part 1 to prevent the pregnant woman 4 from forgetting.
  • the fetal movement measuring device has excellent overall convenience.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种胎动量测装置,包含一用以穿戴于孕妇(4)腹部(41)处的穿戴件(1)、多数量测单元(2),以及一默认有一胎动演算程序的行动装置(3)。每一量测单元(2)分别设于穿戴件(1)外表面且均包括一用以感测腹部(41)的动态生理讯号的胎动传感器(21),以及一能供应所需电力的电源供应元件(22)。而行动装置(3)于接收到胎动传感器(21)所感测到的动态生理讯号时,将经过胎动演算程序处理,移除彼此间的同步讯号成分后,剩余讯号成分再经由胎动演算程序计算产生一胎动信息,所述胎动信息包括一胎动位置及一胎动大小。借此能以非接触方式量测胎动,同时搭配多点异步方式以获悉胎动发生位置。

Description

胎动量测装置 技术领域
本发明涉及一种量测装置,特别是指一种胎动量测装置。
背景技术
胎动、宫缩与胎心率是在妇女怀孕周期中观察胎儿状况的3项相当重要生理参数,胎动是指胎儿在子宫内的活动、宫缩为子宫收缩所产生的压力,而胎心率为胎儿的心跳速率。其中胎动为最早期、最简单可以侦测的讯号,也是临床医生最常建议孕妇自主观察胎儿健康的方法,因此,孕妇手册也提供胎动纪录表,希望孕妇能定时量测胎动以确保胎儿安全,但是自我量测胎动方式相当冗长,如为当怀孕天数来到8周时,至少13分钟就会有1次胎动,在20周时每12小时胎动平均次数大约200次,在32周时每12小时胎动平均次数大约575次。这样的计数方式对于孕妇来说是非常不容易的,不仅容易受主观影响,这么长时间计算也很难每日落实。
为了能改善上述情形,如中国台湾公告第I267369号「自动回馈孕妇及胎儿生理状态的方法」,是采用数种不同的监测方式,自动设定监测周期与时间,如果反应良好,则维持预设的监测时间,如果监测结果分析为不良情况,则修正监测周期或时间,并告知孕妇以进行处理,借由不同的监测方法交互进行监测,并将不同时间、不同监测方法所得到的数据综合,且可自动回馈重复监测,交互监测而后可得到更为详尽的监测结果,让该名孕妇得充分了解自己与胎儿的状况以寻求最适当的医疗辅助。然而因该案并无多点式量测设计,且需要使用电极贴片贴附于孕妇皮肤上来侦测肌电讯号,在配戴上较容易使孕妇产生不舒适感,且易受干扰。另外,该案 并未揭露如何判断及排除因孕妇行动所引起的非胎动讯号以避免发生误判情形,以及无法判断每次胎动发生的位置。因此,该案对于胎动的量测效果及准确度较不佳。
又如中国台湾公告第I392480号「母体胎儿监视装置与方法」,其所揭露的母体宫缩与胎动监视装置,监视一母体与一胎儿的状态。监视装置包括一组贴片电极、一前级讯号处理器、一第一后级讯号处理器、一第一分析单元、一第二后级讯号处理器、一第二分析单元以及一第三分析单元。该组贴片电极用以贴附于该母体的腹部,提供至少三个通道的量测。前级讯号处理器接收该组贴片电极的多个感应讯号,而将噪声抑制且放大特征讯号以输出一组特征感应讯号。第一后级讯号处理器接收该前级讯号处理器输出的该组特征感应讯号,经滤除噪声后分析得到该母体以及该胎儿的多个信息包括母体心电图讯号、母体子宫肌电讯号与胎儿心电图讯号。第一分析单元用以根据由该第一后级讯号处理器得到的该多个信息,计算出该胎儿的一交感神经活动程度讯号。第二后级讯号处理器,接收该前级讯号处理器输出的该组特征感应讯号,以分离出对应该些信道的多个胎儿心电复合波及多个母体宫缩讯号波。第二分析单元将该些胎儿心电复合波分析处理后得到每一个该通道上的该胎儿心电复合波与一母体心电复合波以判定是否该胎儿有一胎位变化,以及根据该些母体宫缩讯号得到一宫缩状态讯号。第三分析单元根据接收该宫缩状态讯号、该些能量变化讯号以及胎儿的该交感神经活动程度讯号,依照一胎动辨识法,决定是否有胎动的状态。其中该交感神经活动程度讯号用以增加胎动判断的准确度。然而该案仍是使用贴片电极贴附于孕妇皮肤上来侦测肌电讯号,因此在使用上仍存在较容易使孕妇产生不舒适感及易受干扰等情形。另外,该案并未揭露如何判断及排除因孕妇行动所引起的非胎动讯号以避免发生误判情形。
发明内容
本发明的目的在于提供一种能以非接触方式量测胎动,并且胎动量测更佳准确的胎动量测装置。
为了达成上述目的,本发明的解决方案是:
一种胎动量测装置,包含:
一穿戴件,该穿戴件穿戴于一孕妇的一腹部处;
多数个量测单元,多数个量测单元分别设于该穿戴件外表面,每一量测单元包括一用以感测腹部的动态生理讯号的胎动传感器,以及一电性连接该胎动传感器并供应所需电力的电源供应元件;以及
一行动装置,该行动装置与所述胎动传感器传递信息且内置有一胎动演算程序,该行动装置接收到多个胎动传感器所感测到的动态生理讯号时,通过该胎动演算程序进行同步讯号分析及判断,于判断具有同步讯号成分时,移除同步讯号成分,剩余讯号成分再经由该胎动演算程序计算产生一胎动信息,所述胎动信息包括一胎动位置及一胎动大小。
所述行动装置是依据下列公式计算获得该胎动信息:
Figure PCTCN2016088355-appb-000001
其中V为振波传递速度;T0为胎动发生时间;Tn为各胎动传感器接收到该动态生理讯号所引起的一振动波的时间,
Figure PCTCN2016088355-appb-000002
为整数;X0、Y0、Z0为胎动位置;Xn、Yn、Zn为各胎动传感器的位置。
设T0=0,V=1,简化公式为:
Figure PCTCN2016088355-appb-000003
各胎动传感器的位置于X、Y、Z三轴均为等分量,进而经由下列公式各别求出胎动位置X0、Y0、Z0
Figure PCTCN2016088355-appb-000004
Figure PCTCN2016088355-appb-000005
根据计算所获得的所述胎动位置后,是经由各胎动传感器接收到所述振动波的时间回推胎动大小,如下列公式所示:
Figure PCTCN2016088355-appb-000007
其中A0为胎动大力;An为振幅大小;k为校正系数。
各胎动传感器为惯性传感器。
每一量测单元还包括一电性连接所述胎动传感器与该电源供应元件的讯号发送模组,各胎动感测器是通过相对应的各讯号发送模组以无线通信方式与该行动装置传递信息。
所述的胎动量测装置,还包含一与所述胎动感测器电性连接的讯号发送单元,各胎动传感器所感测到的动态生理讯号是通过该讯号发送单元以无线通信方式与该行动装置传递信息。
所述行动装置通过因特网将所获得的胎动信息传送予一云端服务器,以供医疗端监测设备自该云端服务器下载取用该胎动信息。
所述电源供应元件为电池。
本发明胎动量测装置的功效在于能让孕妇只要穿着该穿戴件,启动该胎动量测装置便能随时监测胎动讯号,使用便利性极佳。同时该量测单元可装置于穿戴上,不需直接接触孕妇皮肤,此与传统以量测生理讯号作为分析基础的装置不同,例如肌电讯号的分析。因此,本发明的设计能提供较佳的舒适感,也不易受干扰。此外,搭配多点异步方式计算获取胎动发生位置及胎动发生的时间,不但能使胎动量测更佳准确,且所获得的数据数据可供后续医疗参考利用的价值更高。
附图说明
图1为本发明胎动量测装置的第一实施例的示意图。
图2为本发明该第一实施例组件连接关系的示意图。
图3为本发明第一实施例的使用态样示意图。
图4为本发明第一实施例中于胎动发生时的胎动波传递态样示意图。
图5A-图5D为辅助说明图示的波形图,显示多数位于不同位置的胎动量测器所感测的动态生理讯号,其中尚未一处同步讯号成分。
图6A至图6D为波形图,说明显示位于不同位置的各胎动传感器所感测的动态生理讯号,其中已移除同步讯号成分;
图7为本防第一实施例胎动演算流程的流程图。
图8为本发明胎动量测装置第二实施例的组件连接关系的方块示意图。
其中:
穿戴件1           上托片11           下托片12
左连接片13        右连接片14         口袋15
第一定位件16      第二定位件17       量测单元2
胎动感测去21      电源供应元件22     讯号发射模组23
行动装置3         孕妇4              腹部41
上腹部411         下腹部412          网络5
云端系统6         医疗监测设备7      讯号发射单元8。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
参阅图1及图2,本发明胎动量测装置的第一实施例,包含一穿戴件1、多数个量测单元2,以及一行动装置3。该穿戴件1可如图3所示用以穿戴于孕妇4的腹部41处,在本实施例中,该穿戴件1是以托腹带态样做说明,该穿戴件1包括一用以包覆于孕妇4上腹部411的上托片11、一 用以包覆于孕妇4下腹部412的下托片12、一连接于该上托片11一端与该下托片12一端的左连接片13,以及一连接于该上托片11另一端与该下托片12另一端的右连接片14。该上托片11与该下托片12外表面设置有多数个口袋15,口袋15的设置与量测单元2的数量相对应,在本实施例中均以四个做说明,但不以此为限,每一口袋15均供容纳一量测单元2。另外,该左连接片13与该右连接片14于对应连接处分别设有一第一定位件16与一第二定位件17,借此该穿戴件1包覆于孕妇4腹部41时,能利用该左连接片13上的第一定位件16与该右连接片14上的第二定位件17相互黏接而定位。特别说明的是,该穿戴件1不以上述托腹带态样为限,例如该上托片11与该下托片12也可以整合为一片式而能用以包覆孕妇4整个腹部41,均能进行后续胎动量测。当然该穿戴件1也可以是如腰带等其他态样,只要能穿戴于孕妇4腹部41且能供放置该等量测单元2均可。
承上述,在本实施例中虽揭示借由于该穿戴件1外表面设置多数个口袋15以供容纳多个量测单元2,但量测单元2与该穿戴件1的组合方式不应以此为限,例如亦可利用夹具或黏接组件等,只要能使量测单元2可脱离地结合于该穿戴件1外表面的组件或结构设计均可实施。
每一量测单元2包括一用以感测该腹部41的动态生理讯号的胎动传感器21、一电性连接该胎动传感器21并能供应所需电力的电源供应元件22,以及一电性连接该胎动传感器21与该电源供应元件22的讯号发送模组23。胎动传感器21可为惯性传感器或压力传感器,在本实施例中是采用惯性传感器(IMU),其中含有三轴加速规与三轴陀螺仪。该电源供应元件22为电池。各胎动传感器21是通过相对应的讯号发送模组23以无线通信方式与该行动装置3传递信息。
在本实施例中,该行动装置3是以智能手机做说明,但不以此为限, 例如亦可为平板计算机、个人数字助理、智能型手表等。该行动装置3预设有一胎动演算程序,能针对胎动传感器21所接收到的孕妇4腹部41的动态生理讯号进行分析、判断及运算,以获取准确的胎动讯息。
参阅图1、图3及图4,在使用上,孕妇4只需先将该穿戴件1包覆于腹部41,利用该左连接片13上的第一定位件16与该右连接片14上的第二定位件17相互黏接而完成穿戴。启动该胎动量测装置后,先使量测单元2的胎动传感器21进行校正及归零。之后,位于不同位置的各量测单元2便会开始感测孕妇4腹部41不同处的动态生理讯号,如图4所示,当P点处发生胎动时,通过子宫中羊水的传递会形成一胎动波,因各量测单元2的胎动传感器21会因距离胎动发生处(即P点位置)的不同,接收到的胎动波的波动时间与大小也会所有差异。以下为方便说明起见,将各量测单元2分别进一步编号为2a、2b、2c、2d,以P点发生处来说,距离量测单元2b最近,其次为量测单元2c、量测单元2a,距离量测单元2d最远。各量测单元2a、2b、2c、2d所感测到的动态生理讯号分别如图5A至图5D所示,这些波形图中纵轴代表加速度,其单位为m/s2,横轴为时间,其单位为秒(s)。
各胎动传感器21进一步通过各讯号发送模组23将感测到的动态生理讯号传输至该行动装置3,借由该行动装置3执行该胎动演算程序以进行同步讯号分析及判断,配合参阅图7,当判断具有同步讯号成分时,是利用一适应性滤波器(Adaptive filter)移除同步讯号成分,剩余讯号成分再经由该胎动演算程序进行胎动分析及计算而产生一胎动信息,在此要特别说明的是,滤除同步讯号后应再做同步讯号的分析,因同步讯号较不能一次全部滤除完全,需再做二次至多次的分析动作。其中所述胎动分析是根据振幅大小与振动波的传递时间差异,并依据下列公式(1),进而推估出该胎动信息:
Figure PCTCN2016088355-appb-000008
其中V为振波传递速度;T0为胎动发生时间;Tn为各胎动传感器接收到该动态生理讯号所引起的一振动波的时间,n为整数;X0、Y0、Z0为胎动位置;Xn、Yn、Zn为各胎动传感器21的位置。在本例中,因胎动传感器21的使用数量是以四个做说明,因此,n为1、2、3、4,分别代入上述公式(1)中,得到下列公式(2)至(5):
Figure PCTCN2016088355-appb-000009
Figure PCTCN2016088355-appb-000010
Figure PCTCN2016088355-appb-000011
Figure PCTCN2016088355-appb-000012
由于T0与V皆为固定值,故设T0=0,V=1,经简化后如下列公式(6),再进一步以n为1、2、3、4,分别代入公式(6)中,得到下列公式(7)至(10):
Figure PCTCN2016088355-appb-000013
Figure PCTCN2016088355-appb-000014
Figure PCTCN2016088355-appb-000015
Figure PCTCN2016088355-appb-000016
Figure PCTCN2016088355-appb-000017
而各胎动传感器21的位置于X、Y、Z三轴均为等分量,因此,公式(6)可以将简化如下列等比公式(11)至(13):
Figure PCTCN2016088355-appb-000018
Figure PCTCN2016088355-appb-000019
Figure PCTCN2016088355-appb-000020
再进一步以n为1、2、3、4,分别代入公式(11)至(13)中,得到下列公式(14)至(16),再各别求出胎动位置(X0、Y0、Z0)。
Figure PCTCN2016088355-appb-000021
Figure PCTCN2016088355-appb-000022
Figure PCTCN2016088355-appb-000023
求得胎动位置后可以经由各胎动传感器21接收到胎动波的时间可回推胎动大小,如下列公式(17)所示:
先取得各胎动传感器21所侦测到的振幅最大值,
Figure PCTCN2016088355-appb-000024
其中A0为胎动大力;An为振幅大小;k为校正系数;(X0、Y0、Z0)为胎动位置;(Xn、Yn、Zn)为各胎动传感器21位置;n仍为整数,在本例中,因胎动传感器21的使用数量是以四个做说明,因此,n为1、2、3、4。
该行动装置3获取该胎动信息后,除了能通过所具有的一屏幕输出显示,提供该孕妇4察看,还能进一步通过一网络5将所获得的该胎动信息传送予一云端系统6即云端服务器,以供一医疗端监测设备7自该云端服务器下载取用该胎动信息。
承上述,该胎动量测装置为可穿戴式,更能适用于孕妇4的平常生活,例如:煮饭、睡觉、购物等。与穿戴件1相结合的量测单元2体积小且重量轻,可以在不影响孕妇4平常的生活,同时量测胎动的次数,使孕妇4能够尽情地做自己手边的工作,无需顾虑是否已经量测胎动。此外,该行动装置3还能设有一用以侦测该穿戴件1是否已穿戴于孕妇4身上的侦测模组(图未示),及一与该侦测模组电性连接的提示模组(图未示),当侦测模组侦测到该穿戴件1未穿戴于孕妇4身上时,该提示模组会输出提示声 响提醒孕妇4需穿妥该穿戴件1,以防止孕妇4忘记。
参阅图8,本发明胎动量测装置的第二实施例,本实施例与第一实施例大致相同,不同的地方是在于还包含一与各胎动传感器21电性连接的讯号发送单元8,该讯号发送单元8可与其中一量测单元2一起置放于同一口袋15(参见图1)中,或是单独结合于该穿戴件1(参见图1)外表面。而每一量测单元2只包含一胎动传感器21,及一电性连接该胎动传感器21并能供应所需电力的电源供应元件22。借此本实施例亦可达到与第一实施例相同的功效。
综上所述,本发明胎动量测装置借由上述设计,能让孕妇4只要穿着该穿戴件1,启动该胎动量测装置便能随时监测胎动讯号,不会影响孕妇4平常的生活,同时因各量测单元2是分别设于该穿戴件1外表面且能以非接触方式量测胎动,不需要直接接触孕妇4皮肤,因此能提供较佳的舒适感,也不易受干扰。另外,搭配多点异步方式计算获取胎动发生位置及胎动发生的时间,不但能使胎动量测更佳准确,且所获得的数据数据可供后续医疗参考利用的价值更高。此外,搭配该行动装置3还能设有一侦测模组及一提示模组,一旦侦测模组侦测到该穿戴件1未穿戴于孕妇4身上时,该提示模组还会输出提示声响提醒孕妇4需穿妥该穿戴件1,以防止孕妇4忘记。该胎动量测装置整体使用便利性极佳。
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (10)

  1. 一种胎动量测装置,其特征在于,包含:
    一穿戴件,该穿戴件穿戴于一孕妇的一腹部处;
    多数个量测单元,多数个量测单元分别设于该穿戴件外表面,每一量测单元包括一用以感测腹部的动态生理讯号的胎动传感器,以及一电性连接该胎动传感器并供应所需电力的电源供应元件;以及
    一行动装置,该行动装置与所述胎动传感器传递信息且内置有一胎动演算程序,该行动装置接收到多个胎动传感器所感测到的动态生理讯号时,通过该胎动演算程序进行同步讯号分析及判断,于判断具有同步讯号成分时,移除同步讯号成分,剩余讯号成分再经由该胎动演算程序计算产生一胎动信息,所述胎动信息包括一胎动位置及一胎动大小。
  2. 如权利要求1所述的胎动量测装置,其特征在于:所述行动装置是依据下列公式计算获得该胎动信息:
    Figure PCTCN2016088355-appb-100001
    其中V为振波传递速度;T0为胎动发生时间;Tn为各胎动传感器接收到该动态生理讯号所引起的一振动波的时间,n为整数;X0、Y0、Z0为胎动位置;Xn、Yn、Zn为各胎动传感器的位置。
  3. 如权利要求2所述的胎动量测装置,其特征在于:设T0=0,V=1,简化公式为:
    Figure PCTCN2016088355-appb-100002
  4. 如权利要求3所述的胎动量测装置,其特征在于:各胎动传感器的位置于X、Y、Z三轴均为等分量,进而经由下列公式各别求 出胎动位置X0、Y0、Z0
    Figure PCTCN2016088355-appb-100003
    Figure PCTCN2016088355-appb-100004
    Figure PCTCN2016088355-appb-100005
  5. 如权利要求4所述的胎动量测装置,其特征在于:根据计算所获得的所述胎动位置后,是经由各胎动传感器接收到所述振动波的时间回推胎动大小,如下列公式所示:
    Figure PCTCN2016088355-appb-100006
    其中A0为胎动大力;An为振幅大小;k为校正系数。
  6. 如权利要求5所述的胎动量测装置,其特征在于:各胎动传感器为惯性传感器。
  7. 如权利要求6所述的胎动量测装置,其特征在于:每一量测单元还包括一电性连接所述胎动传感器与该电源供应元件的讯号发送模组,各胎动感测器是通过相对应的各讯号发送模组以无线通信方式与该行动装置传递信息。
  8. 如权利要求6所述的胎动量测装置,其特征在于:还包含一与所述胎动感测器电性连接的讯号发送单元,各胎动传感器所感测到的动态生理讯号是通过该讯号发送单元以无线通信方式与该行动装置传递信息。
  9. 如权利要求7或8所述的胎动量测装置,其特征在于:所述行动装置通过因特网将所获得的胎动信息传送予一云端服务器,以供医疗端监测设备自该云端服务器下载取用该胎动信息。
  10. 如权利要求1所述的胎动量测装置,其特征在于:所述电源供应元件为电池。
PCT/CN2016/088355 2016-07-04 2016-07-04 胎动量测装置 WO2018006236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088355 WO2018006236A1 (zh) 2016-07-04 2016-07-04 胎动量测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088355 WO2018006236A1 (zh) 2016-07-04 2016-07-04 胎动量测装置

Publications (1)

Publication Number Publication Date
WO2018006236A1 true WO2018006236A1 (zh) 2018-01-11

Family

ID=60901418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088355 WO2018006236A1 (zh) 2016-07-04 2016-07-04 胎动量测装置

Country Status (1)

Country Link
WO (1) WO2018006236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108992091A (zh) * 2018-08-30 2018-12-14 苏州贝莱弗医疗科技有限公司 一种胎监遥测装置和方法
CN112826505A (zh) * 2021-01-08 2021-05-25 北京工业大学 一种非接触式胎动监测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306893A1 (en) * 2009-02-27 2011-12-15 Analogic Corporation Fetal movement monitor
CN102551730A (zh) * 2011-12-15 2012-07-11 无锡市仁科医疗电子有限公司 一种摹拟腹壁表面动作的装置及其摹拟方法
CN103845060A (zh) * 2012-11-30 2014-06-11 中国科学院理化技术研究所 便携式胎动信号检测及分析装置
CN104586405A (zh) * 2015-02-15 2015-05-06 珠海安润普科技有限公司 智能胎动监测装置、监测系统及监测方法
CN105228512A (zh) * 2013-04-02 2016-01-06 莫尼卡保健有限公司 胎动监测器
CN105361889A (zh) * 2015-09-06 2016-03-02 江苏矽望电子科技有限公司 一种基于加速度传感器的最佳胎动计数位置的检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306893A1 (en) * 2009-02-27 2011-12-15 Analogic Corporation Fetal movement monitor
CN102551730A (zh) * 2011-12-15 2012-07-11 无锡市仁科医疗电子有限公司 一种摹拟腹壁表面动作的装置及其摹拟方法
CN103845060A (zh) * 2012-11-30 2014-06-11 中国科学院理化技术研究所 便携式胎动信号检测及分析装置
CN105228512A (zh) * 2013-04-02 2016-01-06 莫尼卡保健有限公司 胎动监测器
CN104586405A (zh) * 2015-02-15 2015-05-06 珠海安润普科技有限公司 智能胎动监测装置、监测系统及监测方法
CN105361889A (zh) * 2015-09-06 2016-03-02 江苏矽望电子科技有限公司 一种基于加速度传感器的最佳胎动计数位置的检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108992091A (zh) * 2018-08-30 2018-12-14 苏州贝莱弗医疗科技有限公司 一种胎监遥测装置和方法
CN112826505A (zh) * 2021-01-08 2021-05-25 北京工业大学 一种非接触式胎动监测装置和方法
CN112826505B (zh) * 2021-01-08 2023-08-11 北京工业大学 一种非接触式胎动监测装置和方法

Similar Documents

Publication Publication Date Title
TWI587837B (zh) 胎動量測裝置
US11089992B2 (en) Fetal movement monitor
EP3435849B1 (en) Fetal health data monitoring
EP3212062B1 (en) Device for contraction monitoring
US20200121241A1 (en) Breast Sense Feeding Monitor
US11311227B2 (en) Fetal ECG and heart rate assessment and monitoring device
US10631739B2 (en) Monitoring vital signs
CN106667528B (zh) 一种可穿戴智能臂环及检测女性最佳受孕日的方法
CN203898287U (zh) 一种能采集多参数健康指标的手环
US20110071412A1 (en) Belt Type Bio-Signal Detecting Device
KR20200002251A (ko) 생체 신호를 모니터링하는 방법, 장치 및 컴퓨터 프로그램
WO2018006236A1 (zh) 胎动量测装置
CN106667127A (zh) 一种坐姿矫正智能坐垫
US20160228004A1 (en) Infant body temperature and sleep monitoring system
KR102471204B1 (ko) 인체 신호 검출 헤드셋 장치
EP3723597B1 (en) An ecg device
TWM618094U (zh) 睡眠感測裝置,睡眠感測資料蒐集平台,及睡眠品質分析系統
TWM508300U (zh) 一種應用於智慧裝置之生理監測系統
US20220338796A1 (en) Breast Sense Feeding Monitor
WO2022267037A1 (zh) 可同时监测母体与胎儿心律的监护装置
US20220378308A1 (en) Method And Device That Monitors A Fetal Heart Rate
CN115363535A (zh) 睡眠检测装置、睡眠检测数据搜集平台及睡眠质量分析系统
TW202241354A (zh) 睡眠感測裝置,睡眠感測資料蒐集平台,及睡眠品質分析系統
JP2022029919A (ja) 生体情報取得装置
TWM500555U (zh) 手持身心穿戴裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907742

Country of ref document: EP

Kind code of ref document: A1