WO2018006100A1 - Dispositif robotisé pour fournir une mobilité verticale - Google Patents

Dispositif robotisé pour fournir une mobilité verticale Download PDF

Info

Publication number
WO2018006100A1
WO2018006100A1 PCT/US2017/040621 US2017040621W WO2018006100A1 WO 2018006100 A1 WO2018006100 A1 WO 2018006100A1 US 2017040621 W US2017040621 W US 2017040621W WO 2018006100 A1 WO2018006100 A1 WO 2018006100A1
Authority
WO
WIPO (PCT)
Prior art keywords
robotic device
vacuum
flexible seal
moving
recited
Prior art date
Application number
PCT/US2017/040621
Other languages
English (en)
Inventor
Jizhong Xiao
Kenshin USHIRODA
Guoyong YANG
SaiadiVishnu SANIGEPALLI
Original Assignee
Jizhong Xiao
Ushiroda Kenshin
Yang Guoyong
Sanigepalli Saiadivishnu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jizhong Xiao, Ushiroda Kenshin, Yang Guoyong, Sanigepalli Saiadivishnu filed Critical Jizhong Xiao
Priority to CN201780053431.6A priority Critical patent/CN110072764B/zh
Priority to US16/309,308 priority patent/US10532781B2/en
Publication of WO2018006100A1 publication Critical patent/WO2018006100A1/fr
Priority to US16/740,883 priority patent/US11029692B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4077Skirts or splash guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/075Tracked vehicles for ascending or descending stairs, steep slopes or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • B62D55/265Ground engaging parts or elements having magnetic or pneumatic adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/002Arrangements for cleaning building facades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power

Definitions

  • the subject matter disclosed herein relates to robotic devices that move across a vertical surface.
  • the first challenge is maintaining mobility while at the same time sticking strongly to the wall. This first challenge is significant as these properties are
  • the second challenge is maintaining a seal while moving across the wall. This is difficult as there are many types of surfaces such as flat surfaces or faces with curvatures as well as surface features, such as seams or ridges, which may make it difficult to maintain a vacuum seal.
  • the third challenge is avoiding debris that can damage the impeller or vacuum motors. It is very common for concrete structures to have debris that are likely to damage the device. An improved device is therefore desirable.
  • a vacuum chamber is circumscribed by a flexible seal.
  • a vacuum motor and impeller assembly evacuates the chamber and presses a payload, such as a ground penetration radar (GPR), against a flat surface (e.g. a wall or ground) or curved surfaces (e.g., surface of wind turbine blade).
  • GPR ground penetration radar
  • a robotic device for providing vertical mobility that has a payload is disposed inside a central compartment and supported by a skid. The skid can move up and down through latch and hook pairs to keep intimate contact with the surface and cross over bumps.
  • the apparatus uses a flexible seal to create a reliable vacuum chamber.
  • the flexible seal comprises a foam ring inside fabric pocket.
  • a plurality of rod and spring strips are configured to apply a downward force to the flexible seal to conform with surface curvatures.
  • the fabric pocket fills in the gaps or seams to maintain a vacuum.
  • the air flows inside a manifold and passes through a filter to avoid debris from damaging the vacuum motor assembly.
  • a robotic device for providing vertical mobility comprising: a housing enclosing a vacuum chamber that is exposed to an opening on a lower surface of the housing; a flexible seal circumscribing the opening; a plurality of rod and spring strips configured to apply a downward force to the flexible seal; a payload disposed inside a central compartment, the payload being supported by a skid that is vertically mobile; a vacuum motor assembly operatively connected to the vacuum chamber; a means for moving the robotic device across a surface, the means for moving being at least one wheel or at least one tank tread; wherein actuation of the vacuum motor assembly creates a vacuum in the vacuum chamber that pulls the housing toward the surface such that the means for moving is pressed against the surface.
  • a robotic device for providing vertical mobility comprising: a housing enclosing a vacuum chamber that is exposed to an opening on a lower surface of the housing, the vacuum chamber has a central compartment with a payload disposed therein; a flexible seal that circumscribes the opening; a vacuum motor assembly operatively connected to the vacuum chamber; a means for moving the robotic device across a surface, the means for moving being at least one wheel or at least one tank tread, wherein the means for moving is directly connected to the housing such that actuation of the vacuum motor assembly creates a vacuum in the vacuum chamber and pulls the housing toward the surface such that the means for moving is pressed against the surface; wherein the pay load is supported by a skid such that the payload is vertically mobile, but not laterally mobile, within the central compartment.
  • a robotic device for providing vertical mobility comprising: a housing enclosing a vacuum chamber that is exposed to an opening on a lower surface of the housing; a flexible seal circumscribing the opening; a plurality of rod and spring strips configured to apply a downward force to the flexible seal; a ground penetration radar unit disposed inside a central compartment that is within the housing, the ground penetration radar unit being supported by a skid that is vertically mobile, wherein the ground penetration radar unit is supported by a skid such that the ground penetration radar unit is vertically mobile, but not laterally mobile, within the central compartment; a vacuum motor assembly operatively connected to the vacuum chamber; a means for moving the robotic device across a surface, the means for moving being at least one wheel or at least one tank tread; wherein actuation of the vacuum motor assembly creates a vacuum in the vacuum chamber that pulls the housing toward the surface such that the means for moving is pressed against the surface.
  • FIG. 1 is a top perspective view of an apparatus for vertical mobility
  • FIG. 2 illustrates the apparatus of FIG. 1 with the housing shown in phantom;
  • FIG. 3 is a top exploded view of the apparatus of FIG. 1 ;
  • FIG. 4A is a bottom perspective view of an apparatus for vertical mobility
  • FIG. 4B is a top perspective view of an apparatus for vertical mobility
  • FIG. 5A is an exploded view of another apparatus for vertical mobility
  • FIG. 5B illustrates the housing of the apparatus of FIG. 5 A
  • FIG. 5C is a cut-off view of the apparatus of FIG. 5A showing the air flow
  • FIG. 6A is a bottom perspective view of the apparatus of FIG. 5 A showing a vacuum chamber with central compartment;
  • FIG. 6B is a bottom perspective view of the apparatus of FIG. 5 A where the central compartment is covered by a skid;
  • FIG. 7 is an exploded view of another apparatus for vertical mobility
  • FIG. 8A is a top perspective view of the apparatus of FIG. 7 with a cover removed;
  • FIG. 8B is a front view of the apparatus of FIG. 7 with the cover attached;
  • FIG. 8C is a cut-off view of the apparatus of FIG. 7 showing the air flow
  • FIG. 8D is a front view of the apparatus of FIG. 7 showing the flexible foam seal with multiple sections of rod and spring strips;
  • FIG. 8E illustrates one rod and spring strip
  • FIG. 9A is a bottom perspective view of the apparatus of FIG. 7 where a central compartment is covered by a skid.
  • FIG. 9B is a bottom perspective view of the apparatus of FIG. 7 where the skid is removed to show the central compartment.
  • an apparatus that provides vertical mobility for non-destructive testing (NDT) instruments and cameras.
  • NDT non-destructive testing
  • Such an apparatus is useful for the purpose of inspection of large structures with large flat areas such as, but not limited to, building facades, dams, tunnels, and bridges, or surfaces with a curvature such as wind turbine blades.
  • the apparatus is designed to be operable in any orientation whether it be on the ground, on the wall or on a ceiling, and is designed to overcome small gaps, ledges and other features that may be found on these surfaces.
  • the device may be configured for other purposes such as surveillance and surface cleaning.
  • This disclosure also provides a method and apparatus for moving on both rough and smooth surfaces of vertical walls reliably.
  • the method and apparatus permit carrying a payload that can be fitted into a central compartment.
  • payloads include a ground penetration radar (GPR) antenna or other NDT instrument.
  • GPR ground penetration radar
  • Apparatus 100 (FIG. 1, FIG. 2 and FIG. 3) is purposed to carry a large dual frequency model GPR antenna for deep penetration intended for dam and tunnel inspection.
  • Apparatus 100 comprises a vacuum motor 104; a flexible seal 106; a means for moving 108 and a housing 110.
  • Injection molding with a durable plastic, such as Acrylonitrile Butadiene Styrene (ABS) is appropriate for its construction.
  • the apparatus 100 comprises a chamber (not shown) with an open side which rests on a vertical surface such as the side of a building.
  • the flexible seal 106 is an outer circular flexible seal.
  • Air is evacuated from the chamber with the vacuum motor 104 to create a vacuum inside the chamber which allows the apparatus to adhere to a wall without any support from outside.
  • the air passes through a filter (not shown in FIG. 3 but see FIG. 5 A) inside the curved duct filter compartment 101 and is drawn out of the chamber.
  • the chamber does not directly contact the wall, but flexible seal 106 are attached and sealed to minimize as much air flow into the chamber as possible.
  • the flexible seal 106 is comprised of a foam ring wrapped inside a polymer or Nylon fabric pocket and is attached and sealed around the main body to create vacuum chamber and to conform to the contact surface as much as possible.
  • the square shaped inner flexible skirt seal 103 is attached to the skirt mount 105 to ensure reliable vacuum and minimize as much air flow into the vacuum chamber as possible.
  • Friction and mobility is provided by a means for moving 108 such as (1) tank treads or (2) wheels installed on the inside of the chamber on two opposing sides, and the space in between is left open as central compartment to hold a specialized payload such as the GPR unit 107.
  • the payload is capable of contacting the surface directly for optimized performance.
  • the aforementioned components are held together by the housing 110 and are protected by a cover 109.
  • the apparatus is powered by a battery pack 111.
  • the vacuum motor 104 includes an impeller that is designed to drive air out of the chamber and maintain a significant vacuum pressure while at the same time maintaining a relatively large air flow, as the seal with the wall is not required to be perfectly air tight.
  • a vacuum motor in the vacuum motor 104 is provided that matches the torque and rotations per minute (RPM) required for the impeller is used.
  • a pressure sensor (not shown) can be installed inside the chamber that provides feedback to rapidly adjust vacuum motor speed in order to maintain low pressure inside the vacuum chamber for maintaining adhesion to the wall at all times during operation.
  • the flexible seal 106 around the perimeter is designed to provide the maximum area for adhesion force, conforming to the surface textures, features and geometry of the wall, while limiting its own force onto the surface. This is made possible by making the flexible seal 106 slightly larger than the perimeter of the chamber and making the physical attachment to the chamber very flexible.
  • One flexible seal design is a low density foam wrapped inside a nylon fabric pocket. The low density foam conforms to surface geometry and the nylon fabric fills in gaps while making the flexible seal relatively air tight.
  • Nylon is abrasion resistant and has a low friction coefficient useful for sliding across rough surfaces like concrete.
  • the flexible seal 106 is connected to the chamber by fastening/screwing the pocket rim into the edge of the main body with a plastic ring. This way, the majority of the adhesion force goes directly to the chamber and therefore the means for moving 108, and only a small percentage of the down force is exerted onto the flexible seal 106, thereby allowing the apparatus 100 to move across the surface with minimal friction.
  • the circular shape of apparatus 100 circumscribes the square center chamber, leaving crescent shaped cavities in the sides, front and back.
  • the sides are populated by the means for moving 108 (e.g., a drive train) including the drive motors, wheels and gearboxes. Worm drive motors are shown used in the design because of their relatively narrow shape and high torque to weight ratio.
  • the front, back and top are populated by the vacuum motors and electronics.
  • the means for moving 108 is made as narrow as possible, in order to allow the GPR instrument to get close to the edge of the walls as much as possible.
  • the size and power of the drive motors is dictated by the overall weight of the vehicle.
  • the torque output at the wheels must be able to overcome the weight of the apparatus with its payload because it will be working directly against gravity as it will typically operate on a vertical surface.
  • Steering is a differential drive for both apparatus 100, apparatus 400, apparatus 500 and apparatus 700 allowing for pivot turning.
  • the payload is often required to contact the wall surface directly for the best measurement results. Therefore, a cavity with four walls is made within the chamber to fit around the payload so that it may move up and down, but not laterally.
  • Tolerances are made forgiving to allow for a moderate amount of tilt.
  • the payload instrument is spring loaded onto the surface with bended spring strips to press the sensor toward the wall surface.
  • the payload's extrusion from the cavity is limited by latches. See FIG. 7, FIG. 9A and FIG 9B.
  • the housing 110 serves multiple purposes as it may be used for noise dampening, and a smooth surface in order to minimize snagging on to power/signal cables and safety cable connecting through the central hole to the device while it moves.
  • Apparatus 400 (FIG. 4A, FIG. 4B) is designed to carry a different model of GPR which is approximately six inches across the overall dimensions. Apparatus 400 is much smaller than apparatus 100, as it is intended to carry a much smaller and lighter GPR instrument, but fundamentally both devices are similar.
  • a square shape of apparatus 400 is used in order to get the GPR as close to the edges of the wall as possible. Because there is not much space on the perimeter, the electronics and vacuum motor for this model is placed above the chamber. Tank treads are used in this design as it serves multiple purposes: power transmission and friction surface, thereby providing space savings on the sides.
  • FIG. 5A depicts another embodiment wherein apparatus 500 is shown.
  • Apparatus 500 comprises a cover 502 and a housing 504.
  • a vacuum motor assembly 506 consists of a vacuum motor 506a, heat sink 506b around the vacuum motor 506a, and an impeller 506c.
  • the vacuum motor assembly 506 draws air from gaps between the contact surface and bottom of housing unit and creates a vacuum around a central chamber (600, see FIG. 6A) that host NDT instrument (e.g., GPR sensor unit) inside a central compartment.
  • Intake air and/or exhaust air that drawn by the vacuum motor assembly 506 passes through air filters 514 inside the filter compartment (530, FIG. 5B) to avoid damage of the impeller 506c by the debris.
  • the air flows within the drive wheel compartment (532, FIG. 5B) and filter compartment 530 along the manifold created by the inner surface of the compartments as shown in FIG. 5 C.
  • An electronics control board 540 and switches 542 are also depicted in FIG. 5B.
  • the means for moving 508 comprises a drive motor 534 and a drive wheel 536 that are connected by a time belt 538.
  • the drive motor 534 is operatively connected in the housing 504 and drives the drive wheel 536 through the time belt 538 and bearings.
  • the drive wheel 536 is enclosed inside the drive wheel compartment 532.
  • An omni-directional wheel 512 facilitates moving of the apparatus 500, including pivot turning.
  • the omni-directional wheel 512 is freely mobile and passive without actuator.
  • the two drive wheels 536 and one omni-directional wheel 512 are in contact with the wall surface to keep the housing 504 on planar surface.
  • a payload 516 e.g.
  • a GPR unit or other NDT sensor is held within the central compartment 604 by a skid 518 within the vacuum chamber 600.
  • the skid 518 attaches to the housing 504 with hooks 602 (see FIG. 6A).
  • Four bended spring strips 802 (see FIG. 6A) on the bottom of the central compartment push the payload against the skid.
  • the hooks have space for the skid (and thus the payload 516) to move vertically, but not laterally, within the vacuum chamber.
  • Such a configuration helps maintain the payload 516 in close proximity to the surface while still allowing the payload 516 to move over bumps.
  • the housing 504 also comprises a bumper 520 on an external side of the housing 504 (FIG. 5A).
  • the bumper 520 is operationally connected with housing 504 to detect obstacles by means of two sets of switches 528 on left and right sides of housing 504 (FIG. 5B). Each set of switches 528 has two switches to detect the bumper motion in two directions (forward/backward, and sideway).
  • Apparatus 500 also has a range sensor 522 that scanning in a downward direction to detect edge of a wall surface.
  • Apparatus 500 comprises a handle 524 that provides a grasping location for a gripper to deliver the apparatus to vertical wall surfaces.
  • Apparatus 500 comprises a visual perception sensor 526 (e.g., stereo camera) to detect cracks on wall surface, and a servo motor 510 that tilts the stereo camera 526 by ⁇ 45 degree up and down.
  • a visual perception sensor 526 e.g., stereo camera
  • a flexible seal 544 encloses the housing 504 that created the vacuum chamber to adhere to wall surface. As shown in FIG 5C and FIG. 6A, the flexible seal 544 circumscribes the perimeter of the housing 504, and is protected by the housing rim 554.
  • FIG. 6A the bottom of apparatus 500 has a flexible seal 554 that circumscribes the opening of the vacuum chamber 600 and central compartment 604 (see FIG. 6A).
  • FIG. 6B shows the skid 518, omni-direction wheel 512 and the drive wheel 508.
  • FIG. 7 depicts another apparatus 700 with a housing 704 and a cover 702.
  • a vacuum motor assembly 706 draws air from gaps between the contact surface and bottom of housing unit and creates a vacuum around a central compartment 900, (see FIG. 9B). Intake air and/or exhaust air that drawn by the vacuum motor assembly 706 passes through air filters 714 inside the filter compartment (FIG. 8C) to avoid damage of the impeller by the debris. The filter compartment is protected by filter compartment covers 728. The air flows within the drive wheel compartment and filter compartment along the manifold created by the inner surface of the compartments as shown in FIG. 8 C. A flexible seal 712 is also provided.
  • An electronics control board 720 comprises a microprocessor that controls the operation of the drive motor controller 710, and the vacuum motor assembly 706 through vacuum motor controller 726, via a power and signal connector 722.
  • the means for moving 708 is a tank tread that consists of a drive motor 708a, a time belt 708b, two wheels 708c that are connected by a tread 708d and a fastener 708e.
  • the drive motor 800 (see FIG. 8A) is operatively connected to the housing 704 by fasteners 708e and controlled by the drive motor controller 710.
  • the drive wheels 708c and treads 708d are enclosed inside the drive wheel compartment.
  • the timing belt 708b connects to both the drive motor 800 and the drive wheel 708c.
  • FIG. 8B provides a front view of the apparatus 700, where the flexible seal 712 circumscribes and overhangs the housing 704.
  • a flexible seal 712 circumscribes the housing 704 and creates a vacuum chamber to adhere to a wall surface.
  • the flexible seal 712 around the perimeter is designed to provide the maximum area for adhesion force, conforming to the surface textures, features and geometry of the wall, while limiting its own force onto the surface. This is made possible by making the physical attachment to the housing very flexible.
  • One flexible seal design is a low density foam wrapped inside a nylon fabric pocket.
  • Multiple sections of rod and spring strip assembly 802 are inserted inside the pocket and circumscribe the perimeter of the housing unit. Each rod and spring strip assembly 802 comprises a rod 804 and a spring strip 806.
  • Each section can push down the foam by the bended spring strip to conform to surface curvature.
  • the low density foam conforms to surface geometry and the nylon fabric fills in gaps while making the flexible seal relatively air tight.
  • Nylon is abrasion resistant and has a low friction coefficient useful for sliding across rough surfaces like concrete.
  • the flexible seal 712 is connected to the chamber by fastening/screwing the pocket rim into the housing edge with a plastic ring. This way, the majority of the adhesion force goes directly to the vacuum chamber and therefore the means for moving (e.g., drivetrain) 708, and only a small percentage of the down force is exerted onto the flexible seal 712, thereby allowing the apparatus 700 to move across the surface with minimal friction.
  • the central compartment 900 is a cavity with four walls to fit around a payload 716 (e.g. GPR sensors or other NDT instrument) so that it may move up and down, but not laterally.
  • the payload 716 is held within the central compartment 900 by a skid 718.
  • the skid 718 has four latches 724 (see FIG. 7 and FIG. 9 A) that attach to four hooks 902 on the housing 704 (see FIG. 9B).
  • the hook and latch pairs enable the skid to move vertically, but not laterally, within the vacuum chamber.
  • Four rod and spring strip assemblies 802 on the bottom of the central compartment push the payload against the skid. The vertical motion of the skid enables the height adjustment for the skid to cross over bumps on wall surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)

Abstract

La présente invention concerne un dispositif robotisé pour fournir une mobilité verticale. Ledit dispositif comporte une charge utile qui est disposée à l'intérieur d'un compartiment central et supportée par un patin. Le patin peut se déplacer vers le haut et vers le bas par l'intermédiaire de paires de verrou et de crochet pour maintenir un contact étroit avec la surface et croiser des bosses. L'appareil utilise un joint d'étanchéité flexible pour créer une chambre à vide fiable. Le joint d'étanchéité flexible comprend un anneau en mousse à l'intérieur d'une poche en tissu. Une pluralité de bandes à tige et ressort sont conçues pour appliquer une force dirigée descendante sur le joint d'étanchéité flexible pour s'adapter aux courbures de surface. La poche en tissu remplit les intervalles ou les coutures pour maintenir un vide. L'air s'écoule à l'intérieur d'un collecteur et passe à travers un filtre afin d'éviter que des débris endommagent l'ensemble moteur à vide.
PCT/US2017/040621 2016-07-01 2017-07-03 Dispositif robotisé pour fournir une mobilité verticale WO2018006100A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780053431.6A CN110072764B (zh) 2016-07-01 2017-07-03 一种用于提供垂直移动性的机器人设备
US16/309,308 US10532781B2 (en) 2016-07-01 2017-07-03 Robotic device for providing vertical mobility
US16/740,883 US11029692B2 (en) 2016-07-01 2020-01-13 Robotic device for providing vertical mobility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662357607P 2016-07-01 2016-07-01
US62/357,607 2016-07-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/309,308 A-371-Of-International US10532781B2 (en) 2016-07-01 2017-07-03 Robotic device for providing vertical mobility
US16/740,883 Continuation-In-Part US11029692B2 (en) 2016-07-01 2020-01-13 Robotic device for providing vertical mobility

Publications (1)

Publication Number Publication Date
WO2018006100A1 true WO2018006100A1 (fr) 2018-01-04

Family

ID=60787454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/040621 WO2018006100A1 (fr) 2016-07-01 2017-07-03 Dispositif robotisé pour fournir une mobilité verticale

Country Status (3)

Country Link
US (1) US10532781B2 (fr)
CN (1) CN110072764B (fr)
WO (1) WO2018006100A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798061A (zh) * 2018-07-09 2018-11-13 四川农业大学 一种适用于传统瓦屋面防滑网加固装置套装
CN110261849A (zh) * 2019-07-24 2019-09-20 长江师范学院 隧道衬砌结构检测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029692B2 (en) 2016-07-01 2021-06-08 Innovbot, Llc Robotic device for providing vertical mobility
US11007635B2 (en) * 2018-07-25 2021-05-18 The Boeing Company Gravity compensation for self-propelled robotic vehicles crawling on non-level surfaces
WO2020176839A1 (fr) 2019-02-28 2020-09-03 Innovbot, Llc Procédé et appareil pour nettoyer des éoliennes
US11630025B2 (en) * 2020-04-02 2023-04-18 The Florida International University Board Of Trustees Robotic inspection device
WO2022229963A1 (fr) * 2021-04-28 2022-11-03 Bladeranger Ltd. Système et procédé de déplacement sur des surfaces inclinées

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330865A (en) * 1979-07-25 1982-05-18 Nuclear Power Company Limited Non-destructive test apparatus
US4865140A (en) * 1986-05-19 1989-09-12 Cottam Spencer D Robotic crawling device
US5852984A (en) * 1996-01-31 1998-12-29 Ishikawajimi-Harima Heavy Industries Co., Ltd. Underwater vehicle and method of positioning same
US20030066160A1 (en) * 2001-10-05 2003-04-10 Moshe Meller Self-propelled washing device using reduced internal pressure for adhering to a vertical or inclined surface
US20030108395A1 (en) * 2000-07-19 2003-06-12 Douglas Anthony J Tool positioning system
US6691881B1 (en) * 2002-01-16 2004-02-17 Aaron A. Masse Combined locomotive and crane construction
US7520356B2 (en) * 2006-04-07 2009-04-21 Research Foundation Of The City University Of New York Modular wall climbing robot with transition capability
US20150059120A1 (en) * 2013-08-30 2015-03-05 Klaus-Dieter Riehl Vacuum-cleaning robot

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896389B2 (ja) * 1991-09-27 1999-05-31 東芝プラント建設株式会社 壁面又は窓ガラスの清掃装置の真空吸盤
JP3525224B2 (ja) * 1993-07-23 2004-05-10 不可止 浦上 物体表面に吸着し且つそれに沿って移動可能な装置
US5947051A (en) * 1997-06-04 1999-09-07 Geiger; Michael B. Underwater self-propelled surface adhering robotically operated vehicle
DE19958890C1 (de) 1999-12-07 2001-02-15 Bsh Bosch Siemens Hausgeraete Sicherheitseinrichtung für eine auf einer Fläche beweglichen Vorrichtung
AU2002335723A1 (en) 2001-09-09 2003-03-24 Advanced Robotic Vehicles, Inc. Surface adhering tool carrying robot
CN2616744Y (zh) * 2003-03-14 2004-05-19 南开大学 可任意固定机器人位置的真空吸附装置
US6964312B2 (en) 2003-10-07 2005-11-15 International Climbing Machines, Inc. Surface traversing apparatus and method
US7404464B2 (en) 2006-01-13 2008-07-29 Mobile Robot Integration, Inc. Vacuum traction device
KR100823006B1 (ko) 2007-02-09 2008-04-18 김용욱 외벽 청소용 로봇과 그 방법
CN103565344B (zh) * 2012-08-08 2017-04-19 科沃斯机器人股份有限公司 自移动机器人及其行走方法
WO2014160238A1 (fr) 2013-03-13 2014-10-02 Research Foundation Of The City University Of New York Dispositif robotisé pour naviguer sur des surfaces inclinées
JP5969084B1 (ja) * 2015-04-23 2016-08-10 シャープ株式会社 壁面走行装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330865A (en) * 1979-07-25 1982-05-18 Nuclear Power Company Limited Non-destructive test apparatus
US4865140A (en) * 1986-05-19 1989-09-12 Cottam Spencer D Robotic crawling device
US5852984A (en) * 1996-01-31 1998-12-29 Ishikawajimi-Harima Heavy Industries Co., Ltd. Underwater vehicle and method of positioning same
US20030108395A1 (en) * 2000-07-19 2003-06-12 Douglas Anthony J Tool positioning system
US20030066160A1 (en) * 2001-10-05 2003-04-10 Moshe Meller Self-propelled washing device using reduced internal pressure for adhering to a vertical or inclined surface
US6691881B1 (en) * 2002-01-16 2004-02-17 Aaron A. Masse Combined locomotive and crane construction
US7520356B2 (en) * 2006-04-07 2009-04-21 Research Foundation Of The City University Of New York Modular wall climbing robot with transition capability
US20150059120A1 (en) * 2013-08-30 2015-03-05 Klaus-Dieter Riehl Vacuum-cleaning robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798061A (zh) * 2018-07-09 2018-11-13 四川农业大学 一种适用于传统瓦屋面防滑网加固装置套装
CN108798061B (zh) * 2018-07-09 2023-08-15 四川农业大学 一种适用于传统瓦屋面防滑网加固装置套装
CN110261849A (zh) * 2019-07-24 2019-09-20 长江师范学院 隧道衬砌结构检测装置
CN110261849B (zh) * 2019-07-24 2021-11-02 长江师范学院 隧道衬砌结构检测装置

Also Published As

Publication number Publication date
CN110072764B (zh) 2021-08-24
US10532781B2 (en) 2020-01-14
US20190337579A1 (en) 2019-11-07
CN110072764A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
US10532781B2 (en) Robotic device for providing vertical mobility
US11029692B2 (en) Robotic device for providing vertical mobility
US9033079B2 (en) Wheel assembly of mobile robot
JP6678352B2 (ja) 自律走行型掃除機
Kalantari et al. Modeling and performance assessment of the HyTAQ, a hybrid terrestrial/aerial quadrotor
US9050888B2 (en) Robotic system and methods of use
US20170113800A1 (en) Unmanned aerial vehicle protective frame configuration
JP5837032B2 (ja) 地上走行可能な飛行体
KR20210110301A (ko) 해제식 크롤러를 구비한 착지 uav
US11009878B2 (en) Autonomously navigating vehicle
US20160176452A1 (en) Robotic system and methods of use
JP2013523527A (ja) ロボットシステムおよび使用方法
JP2021165142A (ja) 無人航空機、無人航空機の飛行制御機構、及びこれらを用いる方法
EP2969717A1 (fr) Dispositif robotisé pour naviguer sur des surfaces inclinées
JP2009526557A (ja) ロボット掃除機
WO2015163375A1 (fr) Aspirateur électrique
WO2008126087A3 (fr) Robot chenille vibrant
GB2502250A (en) Unmanned vehicle variable surface pressure device
US11981428B2 (en) Unmanned aerial vehicle with suction device mountable to a wall surface
EP2243412B1 (fr) Robot nettoyeur
WO2018186256A1 (fr) Véhicule aérien sans pilote et son procédé d'utilisation
EP2151380A3 (fr) Conception de conduit intégré pour un véhicule aérien sans pilote
JP2020077586A5 (fr)
US20230011410A1 (en) Methods and apparatus for clearing surfaces of sensors
CN207020532U (zh) 一种自主式视觉检测机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17821449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17821449

Country of ref document: EP

Kind code of ref document: A1