WO2018004327A1 - Proceso de tratamiento ácido en fase de gas de materiales lignocelulosicos - Google Patents

Proceso de tratamiento ácido en fase de gas de materiales lignocelulosicos Download PDF

Info

Publication number
WO2018004327A1
WO2018004327A1 PCT/MX2017/000067 MX2017000067W WO2018004327A1 WO 2018004327 A1 WO2018004327 A1 WO 2018004327A1 MX 2017000067 W MX2017000067 W MX 2017000067W WO 2018004327 A1 WO2018004327 A1 WO 2018004327A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
materials
dry
aqueous dispersion
acid treatment
Prior art date
Application number
PCT/MX2017/000067
Other languages
English (en)
French (fr)
Inventor
Martín Guillermo HERNÁNDEZ LUNA
Eduardo VIVALDO LIMA
Jorge ALCARAZ CIENFUEGOS
María De Los Ángeles VALDIVIA LÓPEZ
Original Assignee
Universidad Nacional Autónoma de México
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autónoma de México filed Critical Universidad Nacional Autónoma de México
Publication of WO2018004327A1 publication Critical patent/WO2018004327A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/04Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
    • D21C3/06Pulping cellulose-containing materials with acids, acid salts or acid anhydrides sulfur dioxide; sulfurous acid; bisulfites sulfites

Definitions

  • the present invention relates to a process for obtaining different products such as sugars, fibers, cellulose, alcohol, from lignocellulosic materials; and the integral use of lignocellulosic biomass, and more particularly in a gas phase acid treatment process of lignocellulosic materials for obtaining mainly glucose, Cs monosaccharides and lignosulfonates.
  • Lignocellulose is the main element present in the cell wall of plants, said biomass is produced by photosynthesis and is the source of renewable carbon that is currently used, applied and studied more to give solution or alternatives to the present energy problems.
  • Biomass is the biological material derived from living, such biomass is often used in the material sense based on plants, but in the same way it can be applied to both animals and plant material. Simply put, it refers to plants or materials of plant origin that are known as lignocellulosic biomass.
  • biomass is generally based on carbon and organic molecules that contain hydrogen, nitrogen and often alkaline, alkaline earth and heavy metals.
  • metals are often found in functional molecules, such as porphyrins, which include chlorophyll containing magnesium.
  • Biomass can be used either directly through combustion to produce heat, or indirectly after converting to the various forms of biofuels, Biomass.
  • Biomass conversion into biofuel can be achieved using different methods that are classified as: thermal, chemical, and biochemical methods.
  • thermal, chemical, and biochemical methods Currently, wood is the largest source of biomass energy, Among the numerous examples we can mention forest residues such as dead trees, branches and trunks.
  • biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels.
  • Vegetable biomass can also be useful in degrading cellulose into glucose through a series of chemical treatments, and the resulting sugar can then also be used as a biocombusible.
  • Biomass can be converted into other useful forms of energy such as gaseous or methane transport fuels such as ethanol and biodiesel.
  • Corn and sugarcane can be fermented to produce fuel, ethanol and / or biodiesel.
  • This process requires two reactors, one for each of the stages and two liquid-solid separation equipment installed before each of them.
  • an aqueous solution containing mainly hemicellulose is removed and cellulose is obtained from the second stage when separated from! water vapor by using a cyclone.
  • These two streams containing cellulose and hemicellulose can be transformed to produce ethanol by hydrolysis and fermentation.
  • This process of pretreatment of lignocellulosic materials requires a good number of equipment to be carried out.
  • the process requires a total conditioning time and two pretreatment stages of the order of 3 hours, significant mechanical energy consumption of the liquid-solid separators and thermal energy to reach temperatures above 200 ° C.
  • the present invention seeks to mitigate the aforementioned drawbacks to! propose a process of deconstruction of lignocellulosic materials that allows the production of a solid-liquid suspension that can be hydrated enzymatically.
  • lignocellulosic biornase is treated with an aqueous solution containing sulphite or bisulfite in a temperature range between 150 and 200 ° C and for a time of 45 to 90 minutes.
  • an acid either sulfuric acid or sulfur dioxide, is added in order to lower the pH to 1.2 to 2. This stage occurs at 165 ° C for 75 minutes.
  • the solid-liquid suspension passes to a disk mill to decrease the size of the solid particles, and then be sent to the enzymatic hydrolysis and fermentation stages.
  • a further object of the present invention is to provide a gas phase acid treatment process of lignocellulosic materials that includes a treatment stage of lignocellulosic materials that allow their subsequent enzymatic hydrolysis using treatment temperatures not greater than 180 * 0. by use of a single stirred reactor, without the need to carry out liquid-solid separations.
  • An object adds! According to the present invention, it is to provide a gas phase acid treatment process of Ino-cellulosic materials through simple operation stages and a small number of equipment and low operating costs.
  • Another object of the present invention is to provide a gas phase acid treatment process of Ino-cellulosic materials that generates a very small amount of solid waste.
  • a further object of the present invention is to provide a gas phase acid treatment process of ignocellulosic materials that produces sodium and calcium lignosulfonates with high yields.
  • the present invention consists of a process of treatment of ignocellulosic materials for obtaining an aqueous solution containing Cs, C 6 monosaccharides and lignosulfonic acid.
  • the invention also consists of the use of this process for the production of ethanol, pentoses xylose and arabinose, as well as lignosulfonates.
  • This process can transform plant wastes from agriculture, agro-industrial processes, agro-food industries and the timber industry.
  • the process of the present invention consists of a first stage of deconstruction of lignocellulosic fibers by a gas-liquid system constituted of SO2 and water, followed by enzymatic hydrolysis and subsequent separation of Signosulfonates.
  • the present invention relates to a process for the gas phase acid treatment process of lignocellulosic materials for obtaining mainly glucose, Cs monosaccharides and liposuifonates, which is characterized by the following
  • lignocellulosic materials including cellulose mass, hemicellulose mass and lignin mass, to limit the fibers to a length not exceeding 1 cm, the mass proportion of cellulose, expressed as mass of dry cellulose and mass of the cellulose.
  • dry ignocellularosic matter preferably between 20% and 90% and in particular between 25% and 60%;
  • ucosidases in a mass proportion of between 0.5% and 2% with respect to the aqueous dispersion of lignocellulosic materials; k) Maintain the enzymatic hydrolysis by the isothermal operation of the reactor, at a temperature between 30 ° and 70 ° C, preferably 45 ° C and 55 ° C, for periods of time between 16 hr and 48 hr. From the present stage, mainly glucose and Cosa monosaccharide transformation products are obtained.
  • the filtered aqueous solution containing the main products of the process, glucose and xiiosa is capable of being used in different ways.
  • the process of treating lignoceluiosis materials, object of the present invention, are the monosacchards dissolved in water: nexose, mainly glucose and pentoses, mainly xylose.
  • the yields of these monosaccharides, based on the cellulose and hemicellulose contents of the lignoceluiosic materials initially treated are higher than 97%,
  • the set of these high yields of cellulose, xylose and lignosulfonates production show the high efficiency of the deconstruction of the lignocellulosic material, achieved by the treatment process of this invention.
  • aqueous solution containing mainly glucose and xylose found in the same reactor for treating lignocellulosic material is capable of being used in different ways.
  • a yeast can be added to be carried out to glucose fermentation for ethane production.
  • microorganisms suitable for ethane production can be added by fermentation of the xylose.
  • the xylose can also eventually be separated from the aqueous solution by a selective adsorption process, for the subsequent production of a solution of high concentration of xüosa or even the production of solid xiiosa or the reduction of this for the production of xilito ⁇ .
  • the material obtained from the pretreatment, prior to enzymatic hydrolysis, can undergo a cellulose separation process and use this material for chemical modification of the biopolymer.
  • the same goes for lignin-rich materials (lignosulfonates or other lignin derivatives), which can undergo alternate chemical modification processes to obtain hybrid materials with higher added value.
  • the process for obtaining glucose, monosacral two Cs and lignosulfonates of the present invention proposes the gas phase acid treatment of lignocellulosic materials using treatment temperatures not exceeding 160 ° C and does not require rectification of the produced cellulose, before transformation into soluble oligosaccharides and glucose, in addition to that it does not generate reaction by-products that can interfere and inhibit subsequent stages of enzymatic hydrolysis and alcoholic fermentation.
  • the gas phase acid treatment process of lignocellulosic materials is carried out with low production costs through simple operation stages and a small number of equipment, however with high yields in obtaining monosaccharides C «. and lignosuifonates, and cellulose and xylose that allows the production of ethanol, with greater efficiency than existing commercial processes and independently of the lignin content of the treated biomass, EXAMPLES
  • bagasse from the agave tequilana or "Blue agave bagasse” waste from the production of tequila, corn husk, waste from the industrial production of corn grain, sawdust from pine wood and sawdust from Teak wood, waste from industrial wood production.
  • the lignoceiulosic material is crushed in a hammer mill, equipped with 2 mm gratings.
  • 1 kg of dry agave material contains 0.97 kg of organic matter, of which 0.39 kg of cellulose, 0.18 kg of hemicellulose, 0.19 kg of lignin and 0.21 kg of organic matter soluble in hot water.
  • Agave bagasse is dispersed in water at a rate ta! of the mass suspension of matter! dry lignocellulosic.
  • Sulfur dioxide gas is added to the aqueous dispersion in an amount equivalent to 4.3% of! tota! of the mass of the dispersion.
  • This heterogeneous liquid-solid-gas mixture is heated to a temperature of 150 ° C and is isothermally maintained for 90 minutes.
  • the reactor temperature is lowered to a temperature of 40 ° C and calcium hydroxide is added to the suspension to reach a pH of 5.
  • a solution containing enzymes is then added to the aqueous dispersion, Enmex mixes Celuzyme XB and Zymafiit L-300 with cellulose activity, xiyanase and B-glucanase in a ratio of 9 to 1, with a 200 mM citrate buffer solution .
  • the amount of enzymes corresponds to 2.4% by mass of dried bagasse.
  • Enzymatic hydrolysis is carried out for 24 hrs. at a constant temperature of 50 ° C, at the end of which the remaining solids are separated by filtration.
  • the solution free of solids is determined by its glucose and pentoses content.
  • This solution containing the monosaccharides is subjected to an alcoholic glucose fermentation, with Saccharomyces c & revisiae, Thermosacc, using 9.6 mg of yeast per 100 g of hydrolyzate, for 48 hrs. at 30 ° C.
  • the liquid product of the fermentation is determined ethane content !. From the solids obtained, after enzymatic hydrolysis, lignosulfonates produced during the treatment process are separated, dried and finally their weight is determined.
  • the present invention consists of a process with a smaller number of stages and does not employ solutions with sulphites to treat the Ignothoceiulosic materials. It has the advantages of being carried out in a single stage, using only S02 and water for a period of 60 to 120 minutes and do not use a grinding treatment of treated lignocellulosic material.
  • the present invention in addition to being a process with fewer stages and using fewer reactive inputs, allows to obtain higher yields of saccharification and fermentation and therefore of alcohol production.
  • yields of the order of 336 to 356L / ton of biomass are obtained, accompanied by productions of iignosulfonates corresponding to conversions exceeding 60% of the lignin contained in the wood treated as raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

La presente invención se refiere a un proceso de tratamiento ácido en fase de gas de materiales lignocelulósicos que incluye masa de celulosa, masa de hemicelulosa y masa de lignina, para la obtención con altos rendimientos de glucosa, monosacáridos C5 y lignosulfonatos. Dicho proceso incluye una etapa de tratamiento de materiales lignocelulósicos que permitan su posterior hidrólisis enzimática empleando temperaturas de tratamiento no mayores a 160°C mediante el empleo de un reducido número de equipos tal como un solo reactor agitado, y bajos costos de operación.

Description

PROCESO DE TRATAMIENTO ACIDO EN FASE DE GAS DE
MATERIALES LIGNOCELULOSICOS
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con un proceso ele obtención de diferentes productos tales como azúcares, fibras, celulosa, alcohol, a partir de materiales lignocelulósicos; y el aprovechamiento integral de la biomasa lignocelulósica, y más particularmente en un proceso de tratamiento acido en fase de gas de materiales lignocelulósicos para la obtención principalmente de glucosa, monosacáridos Cs y lignosulfonatos.
ANTECEDENTES DE LA INVENCION
La lignocelulosa es el principal elemento presente en la pared celular de las plantas, dicha biomasa se produce por la fotosíntesis y es la fuente de carbono renovable que actualmente se usa, aplica y estudia más para dar solución o alternativas a los problemas presentes de energía.
La biomasa es el material biológico derivado de vivir, dicha biomasa se utiliza a menudo en el sentido material a base de plantas, pero de igual manera puede aplicarse tanto a los animales y el material de origen vegetal. En pocas palabras, se refiere a las plantas o los materiales de origen vegetal que se conocen como la biomasa lignocelulósica.
En cuanto a su composición química, de manera general la biomasa es a base de carbono y moléculas orgánicas que contienen hidrógeno, nitrógeno y a menudo alcalinos, alcalinotérreos y metales pesados. Dichos metales se encuentran a menudo en las moléculas funcionales, tales como las porfirinas, que incluyen clorofila que contiene magnesio.
Actualmente, uno de los principales impedimentos tecnológicos para el uso y explotación eficiente de la biomasa, es la ausencia de una tecnología de bajo costo dirigida a la recalcitrancia de la lignocelulosa, procedimientos con una cantidad importante de operaciones unitarias, etc. Se han desarrollado diversos métodos que mejoran la hidrólisis de la lignocelulosa, como los pretratamientos fisicoquímicos y biológicos. La finalidad del pretratamiento es remover la lignina, hidrolizar la hemicelulosa a azúcares fermentables, y reducir la cristalinidad de la celulosa para liberar la glucosa.
Se han investigado un número considerable de pretratamientos de materiales lignocelulósicos con el fin de producir etanol. Etapas de pretratamiento que son indispensables en todos ios procesos industriales de producción de etanol de segunda generación. De ellos el pretratamiento "steam explosión" forma parte de buen número de procesos industriales y consiste en hacer una mezcla del material lignocelulósico en agua a alta temperatura y presión y permitir una súbita depresurización para lograr la fragmentación de las fibras. Todas las plantas industriales de las compañías Abengoa, BioGasol y Beta Renewables tienen integrado a sus procesos un pretratamiento del material lignocelulósico por "steam explosión".
La biomasa puede ser utilizada ya sea directamente a través de la combustión para producir calor, o indirectamente después de convertir a las diversas formas de biocornbustibles, Biomasa. Conversión de biomasa en biocombustible puede lograrse mediante diferentes métodos que se clasifica en: térmica, química, y los métodos bioquímicos. En la actualidad la madera es la mayor fuente de energía de biomasa, entre los numerosos ejemplos podemos mencionar los residuos forestales como los árboles muertos, ramas y troncos. Además de lo anterior, ¡a biomasa incluye materia vegetal o animal que se puede convertir en fibras u otros productos químicos industriales, incluidos los biocombustibles.
Además de ios residuos forestales, existen los residuos vegetales y granos que se pueden utilizar para producir combustibles, o que al quemarse producen calor o electricidad. La biomasa vegetal también puede ser útil en el degradado de la celulosa en glucosa a través de una serie de tratamientos químicos, y el azúcar resultante entonces se puede utilizar también como un bíocombusíible.
La biomasa puede ser convertida en otras formas útiles de energía como los combustibles gaseosos o de transporte de metano como el etanol y el biodiesel. El maíz y caña de azúcar, pueden fermentarse para producir combustible, etanol y/o biodiesel.
En la actualidad existe mucha investigación en la generación de producios a partir de biomasa específicamente de algas marinas o de cuerpos de agua y derivado de las mismas. Lo anterior se debe a que dichas algas consisten de un recurso no alimentario y su producción es a tasas superiores que la agricultura con base en tierra. Una vez cosechadas ¡as algas, también pueden ser fermentadas para producir biocombustibles, como el etanol, butano!, y el metano, así como el biodiesel y el hidrógeno.
La patente de reciente publicación "Two-stage continuos pre-treatment of iignocelluiosic biomass" (US20130029406) describe un acondicionamiento de la biomasa mediante calentamiento con vapor de agua durante un tiempo de 10 a 80 minutos seguido de una compresión mecánica para la remoción de una parte líquida del material conteniendo de 85% a 80% de agua. Continúa una primera etapa de pretratamiento a! calentar ¡a bíomasa a temperaturas entre 140" y 180°C, por un tiempo entre 30 minutos y 2 horas y una presión de 105 a 150 psig. incluyendo ia adición de agua y algún ácido como sulfúrico, acético, dióxido de azufre o algún otro y una segunda etapa a una temperatura de 190° a 210°C durante 2 a 10 minutos y una presión de 167 a 282 psíg.
Este proceso requiere de dos reactores, uno para cada una de ¡as etapas y de dos equipos de separación líquido-sólido instalados antes de cada una de ellas.
Después de la primera etapa del pretratamiento, se remueve una solución acuosa conteniendo principalmente la hemicelulosa y de la segunda etapa se obtiene celulosa al separarse de! vapor de agua mediante el empleo de un ciclón. Estas dos corrientes conteniendo celulosa y hemicelulosa pueden ser transformadas para producir etanol mediante hidrólisis y fermentación.
Este proceso de pretratamiento de materiales lignocelulósicos requiere de un buen número de equipos para llevarse a cabo. Dos reactores para operar, uno hasta 150 psig y otro a 262 psig de presión, dos separadores por compresión líquido-sólido y un tercer equipo de separación gas-sólido.
E! proceso requiere de un tiempo total de acondicionamiento y de dos etapas de pretratamiento del orden de 3 horas, consumos significativos de energía mecánica de los separadores líquido-sólido y de energía térmica para alcanzar temperaturas arriba de los 200°C. La presente invención persigue atenuar los inconvenientes antes señalados a! proponer un proceso de deconstrucción de materiales lignocelulósicos que permita la producción de una suspensión sólido-líquido que pueda ser hídroüzada por vía enzimátíca.
Es de particular importancia señalar la eficiente producción de lignosulfonatos a partir de materiales lignocelulósicos de la presente invención, al compararse con los procesos que emplean "steam explosión". En estos procesos la lignina no transformada se encuentra mezclada con otros componentes, formando parte de! principal efluente sólido. En los procesos con "steam explosión" este efluente sólido es empleado como combustible para generación de energía dentro del mismo proceso o para incorporarse en la formulación de fertilizantes. Además de lo anterior, a ios procesos de tratamiento de materiales lignocelulósicos que emplean solventes orgánicos, no les distingue una alta producción de lignosulfonatos.
Uno de estos procesos que emplea un solvente orgánico se describe en la patente "Alcohol Sulfite Biorefinery Process" (US201210202253A1 ). El material lignocelulósico se trata con una solución conteniendo agua, etanol y dióxido de azufre a temperaturas entre 85 y 160°C. En una etapa del proceso la lignina se convierte en lignosulfonato de sodio, calcio, amonio o magnesio, el cual se trata como un residuo orgánico para quemarse y producir energía para el proceso.
En este grupo de procesos denominados Solvent process, tales como ALCELL y Organosolv no se producen lignosulfonatos con el rendimiento y Sa pureza propios de un producto comercial utilizable a nivel industrial. Otro proceso de preíraíamiento de materiales ¡ignocelulósicos para la producción de etano! es el llamado SPORL (Sulfite Pretreatment to Overeóme Recalcitrance of Lígnoceflulose). En la patente de reciente publicación Meíhods of pretreating lignocellulosic biomass wiíh reduced formation of fermentation inhibitors (US20150354141 A1) se describen las principales etapas en las que está constituido dicho proceso.
En una primera etapa ¡a biornasa lignocelulósica es tratada con una solución acuosa conteniendo sulfito o bisulfito en un intervalo de temperaturas entre 150 y 200°C y durante un tiempo de 45 a 90 minutos. En una segunda etapa se agrega un ácido, sea ácido sulfúrico o dióxido de azufre, con la finalidad de bajar el pH a valores de 1.2 a 2. Esta etapa ocurre a 165°C durante 75 minutos. A continuación la suspensión sólido- líquida pasa a un molino de discos para disminuir el tamaño de las partículas sólidas, para luego ser enviada a las etapas de hidrólisis enzimáíica y fermentación.
En la publicación Using sulfite chemistry for robust bioconversion of Douglas-fir foresí residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation, Bioresour Technol 2015,179:390-7, se muestran resultados obtenidos con el proceso SPORL. Se reporta un rendimiento de etanol de 282L ton de biomasa y una producción de lignosulfonato, correspondiente al 45% de la lignina contenida en ¡a madera originalmente tratada.
Algunos de los métodos del estado del arte, también son difíciles de adaptarse a procesos industriales y tienen requerimientos especiales. Como puede apreciarse de lo anteriormente descrito, existen una gran diversidad de documentos relacionados con la materia de la presente invención; sin embargo, todos ellos presenta desventajas, tales como: la eficiencia en la obtención del producto fina!, tiempos del procedimiento, pureza de los productos obtenidos, costos, limitaciones a cierto tipo de biomasa; entre otras desventajas.
Teniendo en cuenta los defectos de la técnica anterior, es un objeto de la presente invención proveer un proceso de tratamiento acido en fase de gas de materiales lignocelulósicos para la obtención con altos rendimientos de glucosa, monosacáridos Cs y lignosuífonatos con una mayor eficiencia que los procesos comerciales existentes.
Un objeto más de la presente invención es proveer un proceso de tratamiento acido en fase de gas de materiales lignocelulósicos que incluye una etapa de tratamiento de materiales lignocelulósicos que permitan su posterior hidrólisis enzimáíica empleando temperaturas de tratamiento no mayores a 180*0. mediante el empleo de un solo reactor agitado, sin necesidad de llevar a cabo separaciones líquido-sólido.
Sigue siendo un objeto más de la presente invención proveer un proceso de tratamiento acido en fase de gas de materiales lignocelulósicos que no necesite rectificación de la celulosa producida, antes de su transformación en oiigosacáridos y glucosa solubles.
Es todavía más otro objeto de la presente invención proveer un proceso de tratamiento acido en fase de gas de materiales lignocelulósicos que no genere subproductos de reacción que pueden interferir e inhibir etapas subsecuentes de hidrólisis enzimática y fermentación alcohólica. Un objeto adiciona! de !a presente invención es proveer un proceso de tratamiento acido en fase de gas de materiales Iignocelulósicos mediante etapas de operación simpies y un reducido número de equipos y bajos costos de operación. Otro de objeto de ¡a presente invención es proveer un proceso de tratamiento acido en fase de gas de materiales Iignocelulósicos que genera una muy pequeña cantidad de desechos sólidos.
Es aún otro de objeto de la presente invención proveer un proceso de tratamiento acido en fase de gas de materiales Iignocelulósicos que genera altos rendimientos de hexosa, pentosas y lignosulfonatos obtenidos independientemente del contenido de lignina de la biornasa tratada.
Un objeto más de la presente invención es proveer un proceso de tratamiento acido en fase de gas de materiales Iignocelulósicos que produce lignosulfonatos de sodio y calcio con altos rendimientos.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención consiste de un proceso de tratamiento de materiales Iignocelulósicos para la obtención de una solución acuosa conteniendo monosacáridos Cs, C6 y de ácido lignosulfónico. La invención consiste también de la utilización de este proceso para la producción de etanol, de pentosas xilosa y arabinosa, así como lignosulfonatos. Este proceso puede transformar desechos vegetales provenientes de la agricultura, de procesos agroíndustriales, de industrias agroaiimeníarías y de la industria maderera. El proceso de la presente invención consta de una primera etapa de deconstrucción de ¡as fibras lignocelulósicas mediante un sistema gas-líquido constituido de SO2 y agua, seguida de una hidrólisis enzimática y una posterior separación de Signosulfonatos.
En particular, con esta invención se busca una separación química entre celulosa, hemicelulosa y lignina que permita mediante hidrólisis enzimática, muy altas conversiones a glucosa y monosacáridos Cs.
La presente invención se refiere a un proceso para proceso de tratamiento acido en fase de gas de materiales lignocelulósicos para la obtención principalmente de glucosa, monosacáridos Cs y lígnosuifonatos, el cual se caracteriza por las siguientes
a) Moler materiales lignocelulosicos que incluyen masa de celulosa, masa de hemicelulosa y masa de lignina, para limitar las fibras a una longitud no mayor de 1 cm, la proporción en masa de celulosa, expresada como masa de celulosa seca y en masa de la materia ¡ignocelulósica seca, comprendida de preferencia entre 20% y 90% y en particular comprendida entre 25% y 60%;
la proporción en masa de hemicelulosa expresada como masa de hemicelulosa seca y en masa de la materia lignoceíuoiósica seca, comprendida entre 8% y 50%; la proporción en masa de lignina expresada como masa de lignina seca y en masa de materia lignocelulósica seca, comprendida entre 5% y 40%. b) Alimentar agua y el material lignocelulosico molido en un reactor de tanque con agitación, formando una dispersión acuosa que presenta una relación entre la masa total de la dispersión y la masa de los materiales lignoceiulósicos seca comprendida entre 1 y 8; c) Alimentar SO2 al reactor de tanque en una relación entre la masa total de la dispersión acuosa y la masa del SO2 comprendida entre 9 y 40; d) Calentar e¡ reactor de tanque con agitación a una temperatura de entre 120° y 160°C. y permitir la operación isotérmica del reactor durante un tiempo de entre
60 min y 120 min; e) Eliminar de la dispersión acuosa el S02 mediante degasificación; f) Enviar el SO2 eliminado de la etapa previa a un recipiente acumulador para ser empleado en forma cíclica en un siguiente lote de tratamiento de la dispersión acuosa de materiales lignoceiulósicos;
g) Enviar el S02 del recipiente acumulador reactor de tanque con agitación que contiene la dispersión acuosa de materiales lignoceiulósicos para iniciar otro lote de tratamiento del material lignocelulosico; h) neutralizar la dispersión acuosa de materiales lignoceiulósicos, a un pH comprendido entre 4 y 6, mediante la adición al reactor de tanque con agitación de una solución de hidróxido de sodio, o de hidróxido de calcio u óxido de calcio; i) Enfriar el reactor de tanque con agitación a una temperatura de entre 30° y 70°C; j) Someter a hidrólisis enzimática, adicionando al reactor de tanque con agitación una solución de enzimas seleccionadas del grupo que comprende enzimas hidrolílicas del grupo eelulasas, hemicelulasas y β-g!ucosidasas, en una proporción másica de entre 0.5% y 2% respecto a la dispersión acuosa de materiales lignocelulósicos; k) Mantener ia hidrólisis enzimática mediante la operación isotérmica del reactor, a una temperatura de entre 30° y 70°C, preferiblemente 45°C y 55°C, durante períodos de tiempo de entre 16 hr y 48 hr. De la presente etapa se obtienen principalmente productos de transformación glucosa y monosacáridos Cs.
Al término de este tratamiento enzimátsco la dispersión acuosa de materiales lignocelulósicos, se encuentra disuelta en agua la mayor parte de la materia seca inicial, conservándose en fase sólida suspendida cantidades comprendidas entre 10% y 25% de la biomasa seca inicialmente cargada al reactor;
I) Extraer de la parte inferior del reactor la dispersión acuosa de materiales lignocelulósicos, y enviar dicha dispersión a un filtro de separación sólido-líquido: m) Separar los sólidos de la dispersión acuosa de materiales lignocelulósicos y reingresar la corriente líquida a la parte superior del reactor.
La solución acuosa filtrada, conteniendo los principales productos del proceso, glucosa y xiiosa es susceptible de ser utilizada en diferentes formas. Los sólidos retenidos en el filtro, conteniendo otros productos del proceso, los lignosulfonatos, se recuperan para una posterior purificación. Los dos principales productos obtenidos de! proceso de tratamiento de los materiales lignoceluiósicos, objeto de la presente invención, son los monosacárldos disueitos en agua: nexosas, principalmente glucosa y pentosas, principalmente xilosa. Los rendimientos que se alcanzan de estos monosacáridos, basados en los contenidos de celulosa y hemicelulosa de los materiales lignoceluiósicos inicialmeníe tratados son superiores al 97%,
El conjunto de estos altos rendimientos de producción de celulosa, xilosa y lignosulfonatos, muestran la alta eficiencia de la deconstruccíón del material lignocelulósico, lograda por el proceso de tratamiento propio de esta invención.
Los productos resultantes del proceso de ¡a presente invención también pueden considerar diferentes usos y aplicaciones, por ejemplo;
La solución acuosa conteniendo principalmente glucosa y xilosa que se encuentra en el mismo reactor de tratamiento del material lignocelulósico es susceptible de ser utilizada de diferentes formas.
Al reactor conteniendo esta solución acuosa puede añadirse una levadura para ¡levarse a cabo ¡a fermentación de la glucosa para la producción de etanoi.
A ¡a solución acuosa conteniendo los monosacáridos pueden añadirse microorganismos idóneos para la producción de etanoi mediante la fermentación de la xilosa. La xilosa eventualmente también puede ser separada de la solución acuosa mediante un proceso de adsorción selectiva, para la posterior producción de una solución de alta concentración de xüosa o inclusive la producción de xiiosa sólida o la reducción de ésta para la producción de xilitoí.
Eí material obtenido dei pretratamiento, previo a la hidrólisis enzimática, puede someterse a un proceso de separación de celulosa y usar este material para modificación química del biopolímero. Lo mismo sucede con los materiales ricos en lignina (lignosulfonatos u otros derivados de la lignina), los cuales pueden someterse a procesos alternos de modificación química para obtener materiales híbridos de mayor valor agregado.
Como se podrá observar del proceso de la presente invención, se propone un proceso de pretratamiento de materiaies lignocelulósicos que permitan su posterior hidrólisis enzimática mediante ei empleo de un solo reactor agitado, sin necesidad de llevar a cabo separaciones líquido-sólido, donde dicha separación corresponde a ias últimas etapas del proceso.
El proceso para la obtención de glucosa, monosacá dos Cs y lignosulfonatos de la presente invención propone el tratamiento acido en fase de gas de materiales lignocelulósicos empleando temperaturas de tratamiento no mayores a 160°C y no requiere rectificación de la celulosa producida, antes de su transformación en oligosacáridos y glucosa solubles, además de que no genera sub-productos de reacción que pueden interferir e inhibir etapas subsecuentes de hidrólisis enzimática y fermentación alcohólica.
El proceso de tratamiento acido en fase de gas de materiales lignocelulósicos se lleva a cabo con bajos costo de producción mediante etapas de operación simples y un reducido número de equipos, sin embargo con altos rendimientos en la obtención de monosacáridos C«. y lignosuifonatos, y celulosa y xilosa que permite la producción de etanol, con una mayor eficiencia que los procesos comerciales existentes y de manera independiente deí contenido de lignina de la biomasa tratada, EJEMPLOS
La presente invención será mejor entendida a partir de los ejemplos que a continuación se describen, ¡os cuales se presentan únicamente con fines ilustrativos, más no limitativos, sino para permitir la comprensión cabal de las modalidades de ia presente invención, sin que ello implique que no existan otras modalidades que no fueron descritas aquí y que puedan ser llevadas a la práctica con base en la descripción detallada de dichas modalidades de la descripción de la presente invención. Los siguientes ejemplos muestran los rendimientos obtenidos en la producción de monosacáridos glucosa, pentosas y ¡ignosulfonatos, así como la producción de etanol proveniente de la fermentación de ia glucosa.
EJEMPLO 1
Se sometieron ai proceso de tratamiento 4 materiales iignocelulósicos: bagazo del agave tequilana o "Blue agave bagasse", desecho de ía producción deí tequila, olote de maíz, desecho de la producción industrial de maíz en grano, aserrín de madera de pino y aserrín de madera de teka, desechos de ia producción industrial de madera.
En el caso particular del bagazo de agave azul, el material lignoceiulósico es triturado en molino de martillos, equipado de rejillas de selección de 2 mm.
1 kg de material seco del agave contiene 0.97 kg de materia orgánica, de la cual 0.39 kg de celulosa, 0.18 kg de hemicelulosa, 0.19 kg de lignina y 0.21 kg de materia orgánica soluble en agua caliente. Se dispersa el bagazo de agave en agua en una proporción ta! de la suspensión a masa de materia! lignocelulósico seco.
Se agrega a ía dispersión acuosa dióxido de azufre gaseoso en una cantidad equivalente al 4.3% de! tota! de la masa de la dispersión. Se calienta esta mezcla heterogénea líquido-sólido-gas a una temperatura de 150°C y se mantiene isotérmicamente durante 90 minutos.
Se enfría después el reactor y en un intervalo de temperatura de 120X a 80eC se permite la salida del S02 gaseoso, el cual es enviado a un recipiente acumulador.
Se disminuye la temperatura del reactor hasta una temperatura de 40°C y se agrega a la suspensión hidróxido de calcio para alcanzar un pH de 5.
A continuación se agrega a la dispersión acuosa una solución conteniendo enzimas, Enmex mezcla Celuzyme XB y Zymafiit L-300 con actividad celu!asa, xiianasa y B~gíucanasa en una proporción de 9 a 1 , con una solución buffer de citrato de 200 mM. La cantidad de enzimas corresponde al 2.4% en masa del bagazo seco.
Se lleva a cabo la hidrólisis enzimática durante 24 hrs. a una temperatura constante de 50°C, al término de la cual se separan los sólidos restantes por filtración.
A la solución exenta de sólidos se le determina su contenido de glucosa y pentosas. Esta solución conteniendo los monosacáridos es sometida a una fermentación alcohólica de la glucosa, con Saccharomyces c&revisiae, Thermosacc, empleando 9.6 mg de levadura por 100 g de hidrolizado, durante 48 hrs. a 30°C. Al producto líquido de la fermentación se le determina contenido de etano!. De los sólidos obtenidos, después de la hidrólisis enzimática, se separan los lignosulfonatos producidos durante el proceso de tratamiento, se someten a secado y finalmente se determina su peso. Resultados
Figure imgf000017_0001
De conformidad con lo antes descrito se observa que la presente invención consiste de un proceso con menor número de etapas y no emplea soluciones con sulfitos para tratar los materiales Iignoceiulósicos. Presenta las ventajas de llevarse a cabo en una sola etapa, empleando solamente S02 y agua durante un tiempo de 60 a 120 minutos y de no utilizar un tratamiento de molienda del material lignocelulósicos tratado.
La presente invención, además de consistir de un proceso con menor número de etapas y de emplear menor cantidad de insumas reactivos, permite la obtención de mayores rendimientos de sacarificación y fermentación y por ende de producción de alcohol. Para materiales provenientes de desechos de la industria maderera, como el pino y ia teka, se obtienen rendimientos del orden de 336 a 356L/ton de biomasa, acompañados de producciones de iignosulfonatos correspondientes a conversiones superiores al 60% de la lignina contenida en la madera tratada como materia prima.
Por So tanto, será evidente para cualquier experto en la materia que las modalidades del proceso de conservación del producto son únicamente ilustrativas más no ¡imitativas de la presente invención, ya que son posibles numerosos cambios de consideración en sus detalles, pero sin apartarse del alcance de la invención.
Aún cuando se han ilustrado y descrito ciertas modalidades de la invención debe hacerse hincapié en que son posibles numerosas modificaciones a la misma, pero tales modificaciones no representan un alejamiento del verdadero alcance de la invención. Por lo tanto, la presente invención no deberá considerarse como restringida excepto por lo establecido en el estado de ia técnica, así como por el alcance de las reivindicaciones anexas.

Claims

1.- Un proceso de tratamiento ácido en fase de gas de materiales lignocelulósicos, caracterizado porque comprende las etapas de:
(a) moler material lignoceSulósico que incluye masa de celulosa, masa de hemicelulosa y masa de lignina, para ¡imitar ¡as fibras a una longitud no mayor de 1 cm.; la masa de celulosa, expresada como masa de celulosa seca y masa de la materia lignoceíulósica seca; la masa de hemicelulosa expresada como masa de hemicelulosa seca y masa de la materia lignoceluolósica seca; y ¡a masa de lignina expresada como masa de lignina seca y masa de materia lignoceíulósica seca;
(b) alimentar agua y el material lignoceluiósico molido en un reactor de tanque con agitación, formando una dispersión acuosa que presenta una relación entre Sa masa total de la dispersión y la masa de los materiales lignocelulósicos seca comprendida entre 1 y 8;
(c) alimentar S02 ai reactor de tanque en una relación entre la masa total de la dispersión acuosa y la masa del SO2 comprendida entre 9 y 40;
(d) calentar el reactor de tanque con agitación a una temperatura que va desde 120° hasta 180°C, y permitir la operación isotérmica del reactor durante un tiempo de entre 60 min y 120 min;
(e) eliminar de la dispersión acuosa el SO2, mediante degasificación;
(f) enviar el SO2 eliminado de la etapa previa a un recipiente acumulador para ser empleado en forma cíclica en un siguiente ¡ote de tratamiento de la dispersión acuosa de materiales lignocelulósicos;
(g) enviar el SO2 del recipiente acumulador al reactor de tanque con agitación que contiene la dispersión acuosa de materiales lignocelulósicos para iniciar otro lote de tratamiento del material lignoceluiósico; (h) neutralizar ia dispersión acuosa de materiales Iignocelulósicos, a un H comprendido entre 4 y 6;
(i) enfriar e! reactor de tanque con agitación a una temperatura de entre 30° y
70°C;
(j) Someter a hidrólisis enzimática, adicionando ai reactor de tanque con agitación una sofución de enzimas en una proporción rnásica de entre 0.5% y 2% respecto a la dispersión acuosa de materiales Iignocelulósicos;
(k) Mantener la hidrólisis enzimática mediante la operación isotérmica del reactor, a una temperatura de entre 30° y 70X, preferiblemente 45X y 55X, durante períodos de tiempo de entre 16 hr y 48 hr. De !a presente etapa se obtienen principalmente productos de transformación glucosa y monosacáridos Cs;
Ai término de este tratamiento enzimático la dispersión acuosa de materiales Iignocelulósicos, se encuentra disuelta en agua ía mayor parte de la materia seca inicial, conservándose en fase sólida suspendida cantidades comprendidas entre 10% y 25% de la biomasa seca iniciaimente cargada al reactor;
(I) Extraer de ía parte inferior del reactor la dispersión acuosa de materiales Iignocelulósicos, y enviar dicha dispersión a un filtro de separación sólido-líquido; y
(m) Separar ios sólidos retenidos en el filtro de la dispersión acuosa de materiales ¡ignoceluiósicos y reingresar la corriente líquida a la parte superior del reactor.
2.- El proceso de tratamiento ácido en fase de gas de materiales Iignocelulósicos de conformidad con ia reivindicación 1 , caracterizado porque e! material lignoceíulósico contiene una proporción en masa de celulosa, definida en peso de celulosa seca y en peso de materia lignocelulósica seca, comprendida entre 20% y 99%.
3. - El proceso de tratamiento ácido en fase de gas de materiales iignocelulósicos de conformidad con la reivindicación 1 , caracterizado porque el material lignocelulósico contiene una proporción en masa de hemiceluiosa, definida en peso de hemicelulosa seca y en peso de materia lignoceluSósica seca, comprendida entre 8% y 50%.
4. - El proceso de tratamiento ácido en fase de gas de materiales Iignocelulósicos de conformidad con la reivindicación 1 , caracterizado porque el material lignocelulósico contiene una proporción en masa de lignina, definida en peso de lignina seca y en peso de materia lígnocelulósica seca, comprendida entre 1% y 35%.
5 - El proceso de tratamiento ácido en fase de gas de materiales Iignocelulósicos de conformidad con la reivindicación 1 , caracterizado porque la neutralización de la dispersión acuosa de materiales Iignocelulósicos, a un pH comprendido entre 4 y 8, se lleva a cabo mediante la adición al reactor de tanque con agitación de una solución de hidróxido de sodio.
6. - El proceso de tratamiento ácido en fase de gas de materiales Iignocelulósicos de conformidad con la reivindicación 1 , caracterizado porque la neutralización de la dispersión acuosa de materiales Iignocelulósicos, a un pH comprendido entre 4 y 6, se lleva a cabo mediante la adición al reactor de tanque con agitación de una solución de hidróxido de calcio.
7. - El proceso de tratamiento ácido en fase de gas de materiales Iignocelulósicos de conformidad con la reivindicación 1 , caracterizado porque la neutralización de la dispersión acuosa de materiales Iignocelulósicos, a un pH comprendido entre 4 y 6, se lleva a cabo mediante la adición al reactor de tanque con agitación de una solución de óxido de calcio.
8, - E¡ proceso de tratamiento ácido en fase de gas de materiales ¡ignocelulósicos de conformidad con la reivindicación 1 , caracterizado porque en la etapa de hidrólisis enzimática se adicionan al reactor una solución de enzimas seleccionadas del grupo que comprende enzimas hidrolíticas del grupo celuiasas, hemicelulasas y β-giucosidasas.
9, - El proceso de tratamiento ácido en fase de gas de materiales íignoceluíósieos de conformidad con la reivindicación 1 , caracterizado porque ai término de la etapa de hidrólisis enzimática, se separa la fase sólida de la suspensión acuosa mediante filtración
10, - E! proceso de tratamiento ácido en fase de gas de materiales Iignoceluíósieos de conformidad con la reivindicación 1 , caracterizado porque la dispersión acuosa filtrada, contiene glucosa, xilosa y pentosas.
1 1 .- El proceso de tratamiento ácido en fase de gas de materiales
Iignoceluíósieos de conformidad con la reivindicación 1 , caracterizado porque sólidos retenidos en el filtro son lignosulfonatos.
12.- E! proceso de tratamiento ácido en fase de gas de materiales iignoceluíósieos de conformidad con la reivindicación 10. caracterizado porque la dispersión acuosa puede emplearse para la fermentación alcohólica de la glucosa, la fermentación alcohólica de la xifosa o también para una separación selectiva de las pentosas presentes.
PCT/MX2017/000067 2016-06-29 2017-06-19 Proceso de tratamiento ácido en fase de gas de materiales lignocelulosicos WO2018004327A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2016008612A MX2016008612A (es) 2016-06-29 2016-06-29 Proceso de tratamiento acido en face de gas de materiales lignocelulosicos.
MXMX/A/2016/008612 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018004327A1 true WO2018004327A1 (es) 2018-01-04

Family

ID=60786409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000067 WO2018004327A1 (es) 2016-06-29 2017-06-19 Proceso de tratamiento ácido en fase de gas de materiales lignocelulosicos

Country Status (2)

Country Link
MX (1) MX2016008612A (es)
WO (1) WO2018004327A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540833A1 (en) * 2011-06-30 2013-01-02 Sekab E-Technology AB Methods for improvement of enzymatic hydrolysis of lignocellullosic material
WO2015077294A1 (en) * 2013-11-19 2015-05-28 Api Intellectual Property Holdings, Llc Methods of washing cellulose-rich solids from biomass fractionation to reduce lignin and ash content
US20150246978A1 (en) * 2014-02-28 2015-09-03 Api Intellectual Property Holdings, Llc Processes and apparatus for managing and recycling sulfur dioxide in biorefineries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540833A1 (en) * 2011-06-30 2013-01-02 Sekab E-Technology AB Methods for improvement of enzymatic hydrolysis of lignocellullosic material
WO2015077294A1 (en) * 2013-11-19 2015-05-28 Api Intellectual Property Holdings, Llc Methods of washing cellulose-rich solids from biomass fractionation to reduce lignin and ash content
US20150246978A1 (en) * 2014-02-28 2015-09-03 Api Intellectual Property Holdings, Llc Processes and apparatus for managing and recycling sulfur dioxide in biorefineries

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARLES E WYMAN ET AL.: "Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources", BIORESOURCE TECHNOLOGY, vol. 102, no. 24, 30 November 2002 (2002-11-30), GB, pages 11052 - 11062, XP028108821, ISSN: 0960-8524, [retrieved on 20171010] *
JIAN SHI ET AL.: "Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass", BIORESOURCE TECHNOLOGY, vol. 102, no. 19, 15 July 2011 (2011-07-15), GB, pages 8930 - 8938, XP028276291, ISSN: 0960-8524, [retrieved on 20171010] *

Also Published As

Publication number Publication date
MX2016008612A (es) 2017-12-28

Similar Documents

Publication Publication Date Title
US8980599B2 (en) Method for the production of alcohol from a pretreated lignocellulosic feedstock
ES2401730T3 (es) Pretratamiento de biomasa con disolvente orgánico para mejorar la sacarificación enzimática
ES2499490T3 (es) Pretratamiento de biomasa lignocelulósica para eliminación de compuestos inhibidores
ES2930659T3 (es) Procedimiento para la preparación de ácido láctico
BRPI0709137A2 (pt) métodos de sìnteses de combustìvel de biomassa para eficiência de energia aumentada
BR122018010009B1 (pt) Métodos de preparo de um material
BRPI0904538A2 (pt) processo de tratamento de biomassa vegetal
BRPI0722418A2 (pt) processo para o tratamento de biomassa lignocelulàsica, e sistema de prÉ-tratamento
Singh et al. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol
Hong et al. Optimization of dilute sulfuric acid pretreatment of corn stover for enhanced xylose recovery and xylitol production
Xie et al. Pretreatment of quinoa straw with 1-butyl-3-methylimidazolium chloride and physiochemical characterization of biomass
BR112014021929B1 (pt) Processo para a produção de uma composição para uso na aplicação ao solo e processo para condicionamento do solo
CN106574278B (zh) 通过分开的糖化和发酵步骤从木质纤维素材料制备乳酸和/或乳酸盐
BR112016012273B1 (pt) Método de processamento de material lignocelulósico ao usar um composto catiônico
AU2011355013B2 (en) Device for producing sugar solution, fermentation system, method for producing sugar solution and fermentation method
ES2701504T3 (es) Procedimiento para la producción de azúcares solubles a partir de biomasa
CA3114830A1 (en) Pretreatment of softwood
ES2382001T3 (es) Proceso para la producción fermentativa de etanol a partir de un hidrolizado de hemicelulosa derivado del bagazo de la caña de azúcar empleando Pichai stipitis
WO2012129622A1 (pt) Utilização de vinhaça no processo de sacarificação de biomassas lignocelulósicas
WO2018004327A1 (es) Proceso de tratamiento ácido en fase de gas de materiales lignocelulosicos
KR20150006696A (ko) 목질계 바이오매스로부터 바이오에탄올을 제조하는 방법
CN111172217A (zh) 生物质的糖化方法及其应用
WO2012049531A1 (ru) Способ получения сахаров ферментативным гидролизом обработанных пустых фруктовых гроздей-отходов масличной пальмы
WO2015172220A1 (pt) Processo de produção de um ou mais alcoóis a partir de matéria-prima lignocelulósica
Semwal et al. Balancing a Trade-Off between Chemical and Biological Catalyst to Reduce Ethanol Cost Using Steam Exploded Rice Straw

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820603

Country of ref document: EP

Kind code of ref document: A1