WO2018004185A1 - Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby - Google Patents

Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby Download PDF

Info

Publication number
WO2018004185A1
WO2018004185A1 PCT/KR2017/006524 KR2017006524W WO2018004185A1 WO 2018004185 A1 WO2018004185 A1 WO 2018004185A1 KR 2017006524 W KR2017006524 W KR 2017006524W WO 2018004185 A1 WO2018004185 A1 WO 2018004185A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
electrode
coating part
coating
folding
Prior art date
Application number
PCT/KR2017/006524
Other languages
French (fr)
Korean (ko)
Inventor
조재경
주현상
최찬진
허경헌
기대욱
김기성
Original Assignee
삼성에스디아이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170076751A external-priority patent/KR20180001458A/en
Application filed by 삼성에스디아이(주) filed Critical 삼성에스디아이(주)
Priority to PL17820462T priority Critical patent/PL3477755T3/en
Priority to EP17820462.4A priority patent/EP3477755B1/en
Priority to US16/313,118 priority patent/US20190237797A1/en
Priority to CN201780050081.8A priority patent/CN109643820A/en
Publication of WO2018004185A1 publication Critical patent/WO2018004185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Various embodiments of the present invention relate to a stacking device for a secondary battery, a stacking method using the same, and a secondary battery accordingly.
  • a secondary battery is a battery that can be charged and discharged unlike a primary battery that cannot be charged.
  • a secondary battery is used in portable electronic devices such as mobile phones and camcorders. Large capacity batteries with dozens of cells connected are used as motor power sources for electric bicycles, electric scooters, hybrid cars, and electric cars.
  • the secondary battery is configured to accommodate an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator are sequentially stacked together with an electrolyte solution or a solid electrolyte in a case.
  • Such an electrode assembly has a jelly-rool type (winding type) electrode assembly having a structure in which a long sheet-shaped positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, and a plurality of positive electrode plates and negative electrode plates with a separator interposed therebetween. It can be divided into stack (stacked) electrode assembly sequentially stacked in the (stacked) form. Jellyroll type electrode assemblies are mainly used for small secondary batteries, and stack type electrode assemblies are used for medium and large secondary batteries with more electric capacity.
  • Various embodiments of the present invention provide a stacking device for a secondary battery stacking an electrode plate at a high speed, a stacking method using the same, and a secondary battery according thereto.
  • a stacking device for a secondary battery includes a first electrode plate and a first electrode including a first electrode first coating part and a first electrode second coating part spaced apart from the first electrode first coating part.
  • a first electrode plate assembly supply unit for supplying a first electrode plate assembly in which separators are stacked on both surfaces of the first electrode plate;
  • a second electrode plate supply unit which forms a unit cell by disposing a second electrode first coating portion and a second electrode second coating portion of the second electrode plate on both surfaces of the first electrode plate assembly, respectively. ; And folding the first electrode plate assembly in which the unit cell is formed, so that the second electrode first coating portion or the second electrode second coating portion of the second electrode plate is the first electrode second of the first electrode plate. And a folding portion that faces the coating portion to form a stack.
  • a first electrode plate supply unit supplying the first electrode plate to the first electrode plate assembly supply unit; And a separator supply unit configured to supply the separators to the first electrode plate assembly supply unit, wherein the first electrode plate assembly supply unit may arrange and stack the first electrode plate and the separators.
  • the first electrode plate of the first electrode plate assembly may be supplied in a continuous form, and the second electrode plate may be cut to a predetermined length and disposed on both sides of the first electrode plate assembly.
  • the first electrode plate may be cut to a predetermined length and supplied in an independent form, and the second electrode plate may be cut to a predetermined length and disposed on both sides of the first electrode plate assembly.
  • the separator junction part may further include a separator junction portion that joins the region of the separator corresponding to the circumferential area of the first electrode plate.
  • the folding unit includes a gripper for pressing the second electrode plate disposed on both surfaces of the first electrode plate assembly to fix the first electrode plate assembly to the first electrode plate assembly, and to be fixed to the unit cell to fold the first electrode plate assembly. can do.
  • the folding unit may include a first folding unit and a second folding unit, and the first folding unit and the second folding unit may form the cell stack by folding the first electrode plate assembly in which the unit cells are alternately formed.
  • the folding unit may further include a fixing unit configured to press and fix the cell stack in a folding operation.
  • an active material in a region forming a curved portion of the cell stack may be removed.
  • a stacking method for a secondary battery includes a first electrode plate and a first electrode including a first electrode first coating part and a first electrode second coating part spaced apart from the first electrode first coating part.
  • the first electrode plate assembly supplying step may include a first electrode plate supplying step of supplying the first electrode plate; A separator supplying step of supplying separators to both surfaces of the first electrode plate; And forming a first electrode plate assembly by stacking separators supplied on both sides of the first electrode plate to form a first electrode plate assembly.
  • the first electrode plate In the supplying of the first electrode plate assembly, the first electrode plate is supplied in a continuous form, and in the supplying of the second electrode plate, the second electrode plate is cut to a predetermined length so that both surfaces of the first electrode plate assembly are provided. Can be placed in.
  • the first electrode plate is cut into a predetermined length and supplied in an independent form.
  • the second electrode plate is cut into a predetermined length and the first electrode plate is cut. It may be disposed on both sides of the electrode plate assembly.
  • a separator bonding step of bonding the region of the separator corresponding to the circumferential region of the first electrode plate among the separators located on both sides of the first electrode plate may further include. have.
  • the first electrode plate of the first electrode plate supplying step may remove an active material in a region forming a curved portion of the cell stack.
  • a secondary battery may include a first coating part of a first electrode plate; A first electrode plate second coating part; Separators surrounding the first electrode plate first coating part and the first electrode plate second coating part at upper and lower parts thereof; A second electrode plate first coating part stacked to face the first electrode plate first coating part; And a first folding area in which the first electrode plate between the first coating part and the first electrode plate second coating part is folded in a first direction, and wherein the first electrode plate second coating part is folded.
  • the electrode plate is laminated facing the first coating portion.
  • the separator may further include a first junction region formed by bonding the separators between the first electrode plate first coating part and the first electrode plate second coating part.
  • the second electrode plate may further include a second coating part stacked to face the second electrode coating part.
  • the first electrode plate may further include a third coating part stacked to face the second electrode plate second coating part, and the first electrode plate may be disposed between the second coating part and the first electrode plate third coating part.
  • the display device may further include a second folding area folded in two directions, and the folded first electrode plate third coating part may be stacked to face the second electrode plate second coating part.
  • the separator may further include a second junction region formed by bonding the separators between the first electrode plate second coating part and the first electrode plate third coating part to each other.
  • the first direction and the second direction may be different directions.
  • the second electrode plate may further include a third coating part stacked to face the third electrode coating part.
  • a first electrode plate assembly including a separator stacked on a bottom surface and an upper surface of the first electrode plate may be used, and the folding unit may be used in a state in which the second electrode plate is disposed on the bottom surface and the top surface of the assembly, respectively.
  • the present invention provides a stacking apparatus for a secondary battery, a stacking method using the same, and a secondary battery, which can stack four electrode plates in a single folding operation without changing a substrate or adding a method.
  • the first electrode plate and the second electrode plate which are individually cut may be supplied, and in particular, the peripheral region of the first electrode plate may be selected from the separators located on both sides of the first electrode plate.
  • the first electrode plate does not flow between the two separators, thereby providing a stack device for a secondary battery having excellent safety and reliability, a stacking method using the same, and a secondary battery accordingly.
  • FIG. 1 is a perspective view of a stack device for a secondary battery according to various embodiments of the present disclosure.
  • FIG. 2 is an enlarged view of portion A of FIG. 1.
  • FIG 3 illustrates a first electrode plate of a stack device for a secondary battery according to various embodiments of the present disclosure.
  • FIG. 4A to 4H sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
  • 5A is a flowchart illustrating a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
  • 5B is a flowchart of a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
  • 6A and 6B are plan and side views of a stack device for a secondary battery according to various embodiments of the present disclosure.
  • FIG. 7A to 7F sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
  • FIG. 8 is a flowchart illustrating a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
  • FIG. 9 is a schematic view illustrating a rechargeable battery according to various embodiments of the present disclosure.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Accordingly, the first member, part, region, layer or portion, which will be described below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • the first electrode plate may include a first electrode first coating part or a first electrode plate first coating part, a first electrode second coating part, or a first electrode plate second coating part, and a first electrode third coating part.
  • the first electrode plate may be referred to as a third coating part.
  • the second electrode plate may include a second electrode first coating part or a second electrode plate first coating part, a second electrode second coating part, or a second electrode plate second coating part, and a second electrode third coating part.
  • the second electrode plate may be referred to as a third coating part.
  • a first electrode (plate) first coating part is interposed between the second electrode (plate) first coating part and the second electrode (plate) second coating part, or the second electrode (plate) first coating
  • the first electrode (plate) and the second coating portion may be interposed between the portion and the second electrode (plate) second coating portion.
  • the positional relationship between the first and second electrode plates may be interpreted as described in the specification and / or drawings, or may be modified and interpreted.
  • FIG. 1 is a perspective view of a stack device for a secondary battery according to various embodiments of the present disclosure.
  • FIG. 2 is an enlarged view of portion A of FIG. 1.
  • 3 illustrates a first electrode plate of a stack device for a secondary battery according to various embodiments of the present disclosure.
  • the stack apparatus 100 for a secondary battery may include a first electrode plate supply unit 110, a first separator supply unit 120, a second separator supply unit 130, and a first electrode.
  • the plate assembly supply part 140, the second electrode plate supply part 150, the stack part 160, the folding part 170, and the fixing part 180 are included.
  • the first electrode plate supply unit 110 may include a first electrode plate supply roll.
  • the first electrode plate 10 is wound around the first electrode plate supply roll.
  • the first electrode plate 10 is unwound and supplied to the first electrode plate supply unit 140. Therefore, the first electrode plate 10 is supplied in a continuous form.
  • the first electrode plate 10 may function as an anode or a cathode.
  • the active material layer may be formed on both surfaces of the first electrode plate 10 according to its polarity.
  • the first electrode plate 10 is supplied in a continuous form, thereby forming a bent portion 1 of the cell stack 70.
  • the active material layers on both sides of the portions constituting the bent portion 1 of the first electrode plate 10 may be dropped from the first electrode plate 10.
  • the first electrode plate 10 may have active material coating portions 10a and active material uncoated portions (uncoated portions) 10b formed on both surfaces thereof.
  • the active material uncoated portion 10b may be positioned at the bent portion 1 of the cell stack 70 when the first electrode plate 10 is folded and stacked. That is, the plurality of active material uncoated portions 10b are formed at predetermined intervals with respect to both surfaces of the first electrode plate 10, and the remaining curved portions of the entire cell stack 70 including the curved portion 1 shown in FIG. 2. It can also be located at The bent portion 1 of the cell stack 70 is a portion in which the second electrode plate 50 is not stacked, and even if the active material of the first electrode plate 10 is not formed, the performance of the electrode assembly made of the cell stack 70 is achieved. Does not degrade.
  • the width of the active material uncoated portion 10b may be formed longer than the circumferential length of the curved portion 1, so that the active material coating portion 10a may not be positioned on the curved portion 1 even in a mechanical error or the like.
  • the active material uncoated portion 10b may be formed by forming the active material coating portion 10a on both sides of the first electrode plate 10 and not being formed on the active material uncoated portion 10b or by removing a portion thereof. have.
  • the curved portion 1 of the cell stack 70 can be removed from the curved portion 1 of the cell stack 70 without degrading the performance of the secondary battery including the cell stack 70. By preventing the active material from falling off, it is possible to increase safety / reliability.
  • an electrode tab 1 may be formed at an upper end of the first electrode plate 10 to electrically connect the first electrode plate 10 to the outside.
  • the first separator supply unit 120 may include a first separator supply roll.
  • the first separator 20 is wound around the first separator feed roll.
  • the first separator 20 is unwound and supplied to the first electrode plate assembly supply unit 140. Therefore, the first separator 20 is supplied in a continuous form and stacked.
  • the second separator supply unit 130 may include a second separator supply roll.
  • the second separator 30 is wound around the second separator supply roll.
  • the second separator 30 is unwound and supplied to the first electrode plate assembly supply unit 140. Therefore, the second separators 30 are supplied and stacked in a continuous form.
  • the first electrode plate assembly supply unit 140 may include a first guide roll 141 and a second guide roll 142.
  • the first electrode plate 10, the first separator 20, and the second separator 30 supplied from the first electrode plate supply unit 110, the first separator supply unit 120, and the second separator supply unit 130, respectively. It is inserted between the first guide roll 141 and the second guide roll 142. That is, based on the first electrode plate 10 inserted between the first guide roll 141 and the second guide roll 142, the first separator 20 includes the first electrode plate 10 and the first guide roll. The second separator 30 is inserted between the first electrode plate 10 and the second guide roll 142. The first separator 20 and the second separator 30 are disposed and stacked on the lower surface and the upper surface of the first electrode plate 10 to form the first electrode plate assembly 40. In addition, the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150 as the first guide roll 141 and the second guide roll 142 rotate.
  • the second electrode plate supply unit 150 may include a pick and place device.
  • the second electrode plate 50 cut to a predetermined length is disposed on the lower surface and the upper surface of the first electrode plate assembly 40, which is supplied from the first electrode plate assembly supply unit 140, respectively. 60).
  • the second electrode plate 50 may be disposed on both surfaces of the first electrode plate assembly 40 simultaneously or sequentially on one surface thereof.
  • the unit cell 60 is stacked on the stack 160 by the folding unit 170.
  • the second electrode plate 50 has a polarity opposite to that of the first electrode plate 10.
  • the active material layer may be formed on both surfaces of the second electrode plate 50 according to its polarity.
  • the first electrode plate assembly 40 is folded to stack the unit cells 60.
  • the stacked unit cells 60 form a cell stack 70.
  • the cell stack 70 is stacked in such a manner that separators 20 and 30 are interposed between the first electrode plate 10 and the second electrode plate 50.
  • the folding unit 170 may include a gripper.
  • the gripper may press the second electrode plate 50 disposed on the lower surface and the upper surface of the first electrode plate assembly 40 to fix the gripper to the first electrode plate assembly 40.
  • the gripper may be fixed to the unit cell 60 to move to the stack 160, thereby folding the first electrode plate assembly 40 to form the cell stack 70.
  • the gripper may fold the first electrode plate assembly 40 in a Z or S shape.
  • the folding unit 170 may include two grippers so that the two grippers may alternately fold the first electrode plate assembly 40. That is, while one gripper folds the first electrode plate assembly 40, the other gripper may prepare for the next folding.
  • the fixing unit 180 presses the upper end of the cell stack 70 stacked on the stack unit 160, and when the folding unit 170 folds the first electrode plate assembly 40, the first electrode plate assembly ( 40 may be laminated without wrinkles.
  • FIG. 4A to 4H sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
  • the first separator plate assembly in which the second separator 30 is supplied to the first electrode plate assembly supply unit 140 and the first separator 20 and the second separator 30 are stacked on both surfaces of the first electrode plate 10 is provided. 40 is formed. Subsequently, the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150.
  • the second electrode plate supply unit 150 supplies the second electrode plate 50 to both surfaces of the first electrode plate assembly 40 to form the unit cell 60.
  • the folding unit 170 presses the second electrode plate 50 of the unit cell 60 to be fixed to the first electrode plate assembly 40.
  • the fixing unit 180 may press the upper end of the cell stack 70a stacked on the stack 160.
  • the unit cell 60 moves to the stack 160 and is stacked without the folding operation of the folding unit 170, thereby stacking the cell stack 70a.
  • the unit cells 60 may be formed in a form in which the second electrode plate 50 is disposed only on the upper surface of the first electrode plate assembly 40. Can be.
  • the folding unit 170 is fixed to the unit cell 60 and moves to the stack unit 160.
  • the first folding unit 2 is formed at one end of the unit cell 60 in the direction in which the folding unit 170 moves, and the first electrode plate assembly 40 is supplied.
  • a second folding part 3 is formed at one end of the cell stack 70a in the direction.
  • the folding unit 170 stacks the unit cells 60 on the stack 160 to form a cell stack 70b.
  • the first folding portion 2 and the second folding portion 3 are the first bent portion 4 and the second bent portion 5 of the cell stack 70b when the first electrode plate assembly 40 is folded and stacked. Form each.
  • this process is similar to the process shown in FIG. 4A.
  • the first electrode plate assembly 40 in which the first separator 20 and the second separator 30 are stacked is formed on both surfaces of the first electrode plate 10 in the first electrode plate assembly supply unit 140.
  • the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150.
  • the second electrode plate supply unit 150 supplies the second electrode plate 50 to both surfaces of the first electrode plate assembly 40 to form the unit cell 60.
  • this process is similar to the process shown in FIG. 4B.
  • the folding unit 170 presses the second electrode plate 50 of the unit cell 60 to be fixed to the first electrode plate assembly 40.
  • the fixing unit 180 may press the upper end of the cell stack 70b to the stack 160.
  • this process is similar to the process shown in FIG. 4C.
  • the folding unit 170 is fixed to the unit cell 60 and moves to the stack unit 160.
  • a third folding unit 6 is formed at one end of the unit cell 60 in the direction in which the folding unit 170 moves, and the first electrode plate assembly 40 is supplied.
  • a fourth folding part 7 is formed at one end of the cell stack 70b in the direction.
  • this process is similar to the process shown in FIG. 4D.
  • the folding unit 170 stacks the unit cells 60 on the stack 160 to form a cell stack 70c.
  • the third folded portion (6) and the fourth folded portion (7) are the third bent portion (8) and the fourth bent portion (9) of the cell stack 70c when the first electrode plate assembly 40 is folded and stacked. Form each.
  • the outer surface of the cell stack 70 completed by this process may be wrapped with the separators 20 and 30.
  • the first electrode plate 10 is, for example, spaced apart from the first electrode first coating part 11 and the first electrode first coating part 11.
  • the first electrode second coating part 12 and the first electrode third coating part 13 spaced apart from the first electrode second coating part 12.
  • the second electrode plate 50 may also include a second electrode first coating part 51 and a second electrode second coating part 52.
  • the second electrode first coating part 51 and the second electrode second coating part (1) below and above the first electrode first coating part 11 respectively. 52 may be located.
  • a second electrode second coating part 52 and a second electrode third coating part (not shown) may be positioned below the first electrode second coating part 12.
  • the first electrode third coating part 13 may be positioned on the second electrode third coating part. The stack structure of the secondary battery will be described later.
  • 5A is a flowchart illustrating a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
  • 5B is a flowchart of a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
  • the stacking method for a secondary battery may include a first electrode plate assembly supplying step S100, a second electrode plate supplying step S200, and a folding step S300.
  • the first electrode plate assembly supplying step (S100) is to supply the first electrode plate assembly 40, and the first electrode plate supplying step (S110), the separator supplying step (S120), and the first electrode plate assembly forming step (S130). ) May be included.
  • the first electrode plate 10 is supplied.
  • the separator supplying step S120 the first separator 20 and the second separator 30 are supplied to the lower surface and the upper surface of the first electrode plate 10.
  • the first electrode plate assembly 40 is formed by the first separator 20 and the second separator 30 supplied to the bottom surface and the top surface of the first electrode plate 10. ) Is formed.
  • the second electrode plate 50 is disposed on the lower surface and the upper surface of the first electrode plate assembly 40 to form a unit cell 60.
  • the first electrode plate assembly 40 is folded so that the separators 20 and 30 are interposed between the first electrode plate 10 and the second electrode plate 50 so that the unit cell 60 is folded.
  • the cell stack 70 is formed by stacking.
  • a stacking device 100 for a secondary battery and a stacking method using the same may include a first electrode plate assembly 40 in which separators 20 and 30 are stacked on a bottom surface and a top surface of a first electrode plate 10.
  • the folding unit 170 By laminating using the folding unit 170 in a state in which the second electrode plate 50 is disposed on the lower surface and the upper surface of the joined body, the four pieces can be elaborated in one folding operation without changing the substrate or adding the method. The same effect as that of stacking electrode plates can be achieved.
  • 6A and 6B are plan and side views of a stack device for a secondary battery according to various embodiments of the present disclosure.
  • the secondary battery stack device 200 further includes a first electrode plate cutout 210 and a separator junction 220 in addition to the components of the secondary battery stack device 100 described above. can do.
  • the rest of the configuration and operation of the secondary battery stack device 200 may share both the configuration and operation of the above-described secondary battery stack device 100.
  • the first electrode plate cutting unit 210 cuts the first electrode plate 10 continuously supplied from the first electrode plate supply unit 110 to a predetermined predetermined width, thereby cutting the independent first electrode plate 10. It serves to supply to the electrode plate assembly supply unit 140. That is, the first electrode plate cut part 210 serves to supply the independent first electrode plate 10 between the first separator 20 and the second separator 30.
  • the first electrode plate cutout 210 may be, for example, but not limited to, a cutter form facing each other, or a press form facing each other.
  • first guide roll 141 and the second guide roll 142 are shown as being spaced apart from each other by a predetermined distance in the horizontal direction in which the first electrode plate 10 is transported, but the present invention is not limited thereto.
  • the first guide roll 141 and the second guide roll 142 may be installed in the same position in the up and down direction.
  • the separator junction portion 220 corresponds to the circumference of the first electrode plate 10 among the first and second separators 20 and 30 located on both surfaces of the first electrode plate 10 (eg, upper and lower surfaces). It serves to join the regions of the first and second separators 20 and 30.
  • the separator bonding part 220 partially melts the regions of the first and second separators 20 and 30 so that the first and second separators 20 and 30 are bonded to each other, or the first and second separators 20,
  • the adhesive may be applied in advance between 30) and cured to allow the first and second separators 20 and 30 to be bonded to each other.
  • the separator junction part 220 may be, for example, but not limited to, heater types facing each other, or press types facing each other.
  • the junction region 23 is formed in the regions of the separators 20 and 30, and the junction region 23 may completely surround four sides of the first electrode plate 10 or partially surround the four sides.
  • the junction region 23 partially surrounds the four sides of the first electrode plate 10 so that the electrolyte solution can be easily injected into the first electrode plate 10. That is, as shown in FIG. 6A, the junction region 23 may have an open shape at approximately the upper side, the lower side, the left side, and the right side of the first electrode plate 10, respectively.
  • FIGS. 7A to 7F sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
  • the folding operation of the stacking apparatus for secondary batteries may further include a first electrode plate cutting operation and a separator bonding operation in addition to the folding method of the stacking apparatus for secondary batteries.
  • the remaining configuration and operation of the folding operation of the stacking device for secondary batteries may share the configuration and operation of the folding operation of the stacking device for secondary batteries.
  • the first separator plate assembly in which the second separator 30 is supplied to the first electrode plate assembly supply unit 140 and the first separator 20 and the second separator 30 are stacked on both surfaces of the first electrode plate 10 is provided. 40 is formed.
  • the first electrode plate 10 from the first electrode plate supply unit 110 is cut to a predetermined length by the first electrode plate cutting unit 210 to the first electrode plate assembly supply unit 140 in an independent form.
  • the first electrode plate assembly 40 has a first electrode plate 10 of an independent type rather than a continuous form. That is, before the first electrode plate 10 is supplied to the first electrode plate assembly supply unit 140, the first electrode plate 10 that is separated / independent by the cutting operation of the first electrode plate is provided. It is supplied to the one electrode plate assembly supply unit 140.
  • the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150.
  • the second electrode plate supply unit 150 supplies the independent second electrode plate 50 to both surfaces of the first electrode plate assembly 40 to form the unit cell 60.
  • the separator bonding operation is further performed before or after the formation of the unit cell 60.
  • the first and second separators 20 and 30 positioned on both surfaces (eg, upper and lower surfaces) of the first electrode plate 10 may be used before or after the formation of the unit cell 60.
  • the separator bonding region 23 is formed by joining regions of the first and second separators 20 and 30 corresponding to the circumference of the electrode plate 10.
  • reference numeral 111 is a fixing part which stably fixes the position of the first electrode plate 10 when the first electrode plate 10 is cut by the first electrode plate cutting part 210.
  • FIGS. 7B to 7F are substantially the same as the operations illustrated in FIGS. 4C to 4H, the description of the operations illustrated in FIGS.
  • FIG. 8 is a flowchart illustrating a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
  • the first electrode plate assembly supplying step (S100A) is to supply the first electrode plate assembly 40, and the first electrode plate cutting step (S101) and the first electrode are provided. It may include a plate supply step (S110), a separator supply step (S120), a separator bonding step (S121) and the first electrode plate assembly forming step (S130).
  • the first electrode plate 10 unwound from the first electrode plate supply unit 110 is cut by the first electrode plate cutting unit 210 by a predetermined width and supplied.
  • the electrode plate 10 cut by the predetermined width as described above is supplied to the first electrode plate assembly supply unit 140.
  • the separator supplying step S120 the first separator 20 and the second separator 30 are supplied to the lower surface and the upper surface of the first electrode plate 10.
  • the peripheral area of the first electrode plate 10 corresponds to the peripheral area.
  • the junction regions 23 are formed in the first and second separators 120 and 130 corresponding to the circumference of the first electrode plate 10.
  • the first separator 20 and the second separator 30 supplied to the lower surface and the upper surface of the first electrode plate 10 are stacked to form the first electrode plate assembly 40. Is completed.
  • the stack device 200 and the method using the same supply the first electrode plate 10 and the second electrode plate 50 which are individually cut, and particularly, Two separators 20 and 30 are formed by joining the regions of the separators 20 and 30 corresponding to the circumferential region of the first electrode plate 10 among the separators 20 and 30 located on both surfaces of the one electrode plate 10.
  • the secondary battery having excellent safety / reliability is manufactured.
  • FIG. 9 is a schematic diagram illustrating a rechargeable battery 300 according to various embodiments of the present disclosure.
  • the secondary battery 300 is shown during the lamination process for easy understanding of the present invention.
  • the secondary battery 300 may include a first electrode plate 10, separators 20 and 30, and a second electrode plate 50.
  • the first electrode plate 10 is a first electrode plate second coating portion 12 formed spaced apart from the first electrode plate first coating portion 11 and the first electrode plate first coating portion 11 in the vertical direction. It may include. In addition, the first electrode plate 10 may further include a first electrode plate third coating part 13 spaced apart from the first electrode plate second coating part 12 in a vertical direction.
  • the separators 20 and 30 surround the first electrode plate 10 at the top and bottom thereof.
  • the separators 20 and 30 may respectively cover the first electrode plate first coating part 11, the first electrode plate second coating part 12, and the first electrode plate third coating part 13, respectively. It can be wrapped in the bottom.
  • the second electrode plate 50 has a second electrode plate second coating portion 52 formed spaced apart from the second electrode plate first coating portion 51 in a vertical direction from the second electrode plate first coating portion 51. It may include. In addition, the second electrode plate 50 may further include a second electrode plate third coating part 53 spaced apart from the second electrode plate second coating part 52 in the vertical direction.
  • the first electrode plate 10 and the separators 20 and 30 surrounding the upper and lower portions may be formed in a meander shape. That is, in the secondary battery 300 according to the embodiment of the present invention, the first electrode plate 10 of the first electrode plate 10 is disposed between the first coating part 11 and the first electrode plate second coating part 12.
  • the apparatus may further include a first folding area 231 formed by folding in one direction.
  • the first electrode plate 10 of the first electrode plate 10 is disposed between the second coating portion 12 and the first electrode plate third coating portion 13.
  • the display device may further include a second folding area 232 formed by folding in two directions. Here, the first direction and the second direction may be opposite to each other.
  • the regions of the separators 20 and 30 corresponding to the space between the first electrode plate first coating portion 11 and the first electrode plate second coating portion 12 of the first electrode plate 10 may be formed.
  • the first folding area 231 may be formed by folding in one direction.
  • an area of the separators 20 and 30 corresponding to the first electrode plate between the second coating part 12 and the first electrode plate third coating part 13 of the first electrode plate 10 is first.
  • the second folding area 232 may be formed by folding in a second direction opposite to the direction.
  • the second electrode plate first coating part 51 of the second electrode plate 50 may be positioned above the first electrode plate first coating part 11, and the second electrode plate agent may be formed.
  • the second coating part 52 may be positioned on the first electrode plate second coating part 12, respectively. That is, the second electrode plate first coating part 51 and the second electrode plate second coating part 52 are respectively the first electrode plate first coating part 11 and the first electrode plate second coating part 12. It can be stacked facing.
  • the first electrode plate second coating part 12 is interposed between the second electrode plate first coating part 51 and the second electrode plate second coating part 52, and the first electrode plate first The first coating part 11 is positioned under the first coating part 51 of the second electrode plate.
  • the second electrode plate first coating part 51 is formed around the first folding area 231 and / or the first bonding area 221 to be described below. And the first electrode plate between the second coating part 12.
  • the second electrode plate second coating portion 52 of the second electrode plate 50 is positioned under the first electrode third coating portion 13, and the second electrode plate third coating portion 53 is The first electrode may be positioned above the third coating part 13. That is, the second electrode plate second coating part 52 and the second electrode plate third coating part 53 are respectively the first electrode plate second coating part 12 and the first electrode plate third coating part 13. It can be stacked facing.
  • the first electrode plate third coating part 13 is interposed between the second electrode plate second coating part 52 and the second electrode plate third coating part 53, and the first electrode plate.
  • the second coating part 12 is positioned under the second electrode plate second coating part 52.
  • the second electrode plate second coating part 52 may be formed of the first electrode plate second coating part 12 and the second electrode around the second folding area 232 and / or the second bonding area 222. It is interposed between the first electrode plate third coating portion 13.
  • lithium ions move between the first electrode plate 10 and the second electrode plate 50 with a separator therebetween to operate as a secondary battery.
  • the separators 20 and 30 between the first electrode plate first coating part 11 and the first electrode plate second coating part 12 are formed. It may further include a first junction region 221 formed by bonding to each other.
  • the separators 20 and 30 between the first electrode plate second coating part 12 and the first electrode plate third coating part 13 are bonded to each other. And may further include a second junction region 222 formed.
  • the first electrode plate 10 is constrained inside the separators 20 and 30 by the first junction region 221 and the second junction region 222 of the separators 20 and 30.
  • the plate 10 and the second electrode plate 50 are not electrically shorted with each other.
  • the junction regions 221 and 222 may include a separator region and / or a first portion between the first electrode plate first coating portion 11 and the first electrode plate second coating portion 12.
  • the region of the separator corresponding to the four sides of the first electrode plate first coating portion 11 and / or The separator may be formed in the separator region corresponding to the four sides of the first electrode plate second coating part 12. Therefore, the first electrode plate 10 may be more stably positioned in the separators 20 and 30. That is, the first electrode plate 10 may be restrained without being separated out of four directions of the separators 20 and 30.
  • the first and second folding regions 231 and 232 are formed in the separators 20 and 30, and the first and second folding regions 231 and 232 are respectively formed in the first and second folding regions 231 and 232.
  • the first electrode plate 10 is stably positioned inside the separators 20 and 30 without flowing. Therefore, the electrical short phenomenon between the first electrode plate 10 and the second electrode plate 50 is suppressed.
  • the first and second junction regions 221 and 222 are discontinuously formed in the separators 20 and 30, the electrolyte may easily reach the first electrode plate 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

Various embodiments of the present invention provide a stacking device for a secondary battery configured to stack electrode plates at a high rate, a stacking method using the same, and a secondary battery obtained thereby. As an example, disclosed are a stacking device for a secondary battery, a stacking method using the same, and a secondary battery obtained thereby, the stacking device comprising: a first electrode plate bonded body supply portion for supplying a first electrode plate bonded body comprising a first electrode plate, which comprises a first electrode first coating portion and a first electrode second coating portion positioned to be spaced from the first electrode first coating portion, and separators stacked on both surfaces of the first electrode plate; a second electrode plate supply portion for arranging a second electrode first coating portion and a second electrode second coating portion of a second electrode on both surfaces of the first electrode first coating portion of the first electrode plate bonded body, respectively, thereby forming a unit cell; and a folding portion for folding the first electrode plate bonded body, which has the unit cell formed thereon, such that the second electrode first coating portion or the second electrode second coating portion of the second electrode plate faces the first electrode second coating portion of the first electrode plate, thereby forming a stack.

Description

이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지Stacking device for secondary batteries, stacking method using same and secondary battery accordingly
본 발명의 다양한 실시예는 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지에 관한 것이다.Various embodiments of the present invention relate to a stacking device for a secondary battery, a stacking method using the same, and a secondary battery accordingly.
일반적으로 이차 전지는 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 전지로서, 하나의 배터리 셀이 팩 형태로 포장된 저용량 전지의 경우 휴대폰 및 캠코더와 같은 휴대가 가능한 소형 전자기기에 사용되고, 배터리 셀이 수십 개 연결된 대용량 전지의 경우 전기 자전거, 전기 스쿠터, 하이브리드 자동차, 전기 자동차 등의 모터 구동용 전원으로 사용되고 있다.In general, a secondary battery is a battery that can be charged and discharged unlike a primary battery that cannot be charged. In the case of a low-capacity battery in which one battery cell is packed in a pack form, a secondary battery is used in portable electronic devices such as mobile phones and camcorders. Large capacity batteries with dozens of cells connected are used as motor power sources for electric bicycles, electric scooters, hybrid cars, and electric cars.
이차 전지는 양극판, 음극판, 세퍼레이터가 순차적으로 적층된 전극 조립체를 전해액 또는 고체 전해질과 함께 케이스에 내부에 수용하는 형태로 이루어진다. 이와 같은 전극 조립체는 긴 시트형의 양극판과 음극판을 세퍼레이터가 개재된 상태에서 권취한 구조로 이루어진 젤리롤(Jelly-rool) 형태(권취 형태)의 전극 조립체와 다수의 양극판 및 음극판을 세퍼레이터가 개재된 상태에서 순차적으로 적층한 스택(Stack) 형태(적층 형태) 전극 조립체로 크게 나눌 수 있다. 젤리롤 형태 전극 조립체는 소형 이차 전지에 주로 사용되고, 스택 형태 전극 조립체는 보다 많은 전기 용량을 가지는 중대형 이차 전지에 사용된다.The secondary battery is configured to accommodate an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator are sequentially stacked together with an electrolyte solution or a solid electrolyte in a case. Such an electrode assembly has a jelly-rool type (winding type) electrode assembly having a structure in which a long sheet-shaped positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, and a plurality of positive electrode plates and negative electrode plates with a separator interposed therebetween. It can be divided into stack (stacked) electrode assembly sequentially stacked in the (stacked) form. Jellyroll type electrode assemblies are mainly used for small secondary batteries, and stack type electrode assemblies are used for medium and large secondary batteries with more electric capacity.
본 발명의 다양한 실시예는 고속으로 전극판을 적층하는 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지를 제공한다.Various embodiments of the present invention provide a stacking device for a secondary battery stacking an electrode plate at a high speed, a stacking method using the same, and a secondary battery according thereto.
본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치는 제1전극 제1코팅부와 상기 제1전극 제1코팅부로부터 이격되어 위치된 제1전극 제2코팅부를 포함하는 제1전극판 및 상기 제1전극판의 양면에 세퍼레이터들이 적층된 제1전극판 접합체를 공급하는 제1전극판 접합체 공급부; 상기 제1전극판 접합체 중 상기 제1전극 제1코팅부의 양면에 제2전극판의 제2전극 제1코팅부와 제2전극 제2코팅부를 각각 배치하여 단위 셀을 형성하는 제2전극판 공급부; 및 상기 단위 셀이 형성된 상기 제1전극판 접합체를 폴딩하여 상기 제2전극판의 상기 제2전극 제1코팅부 또는 상기 제2전극 제2코팅부가 상기 제1전극판의 상기 제1전극 제2코팅부와 대면하여 스택을 형성하도록 하는 폴딩부를 포함할 수 있다.According to various embodiments of the present disclosure, a stacking device for a secondary battery includes a first electrode plate and a first electrode including a first electrode first coating part and a first electrode second coating part spaced apart from the first electrode first coating part. A first electrode plate assembly supply unit for supplying a first electrode plate assembly in which separators are stacked on both surfaces of the first electrode plate; A second electrode plate supply unit which forms a unit cell by disposing a second electrode first coating portion and a second electrode second coating portion of the second electrode plate on both surfaces of the first electrode plate assembly, respectively. ; And folding the first electrode plate assembly in which the unit cell is formed, so that the second electrode first coating portion or the second electrode second coating portion of the second electrode plate is the first electrode second of the first electrode plate. And a folding portion that faces the coating portion to form a stack.
상기 제1전극판을 상기 제1전극판 접합체 공급부에 공급하는 제1전극판 공급부; 및 상기 세퍼레이터들을 상기 제1전극판 접합체 공급부에 공급하는 세퍼레이터 공급부를 더 포함하고, 상기 제1전극판 접합체 공급부는 상기 제1전극판 및 세퍼레이터들을 배치하여 적층시킬 수 있다.A first electrode plate supply unit supplying the first electrode plate to the first electrode plate assembly supply unit; And a separator supply unit configured to supply the separators to the first electrode plate assembly supply unit, wherein the first electrode plate assembly supply unit may arrange and stack the first electrode plate and the separators.
상기 제1전극판 접합체의 제1전극판은 연속된 형태로 공급되고, 상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치될 수 있다.The first electrode plate of the first electrode plate assembly may be supplied in a continuous form, and the second electrode plate may be cut to a predetermined length and disposed on both sides of the first electrode plate assembly.
상기 제1전극판은 기설정된 길이로 절단되어 독립된 형태로 공급되고, 상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치될 수 있다.The first electrode plate may be cut to a predetermined length and supplied in an independent form, and the second electrode plate may be cut to a predetermined length and disposed on both sides of the first electrode plate assembly.
상기 제1전극판의 양면에 위치된 세퍼레이터들 중에서, 상기 제1전극판의 둘레 영역과 대응되는 세퍼레이터의 영역을 접합하는 세퍼레이터 접합부를 더 포함할 수 있다.Among the separators positioned on both surfaces of the first electrode plate, the separator junction part may further include a separator junction portion that joins the region of the separator corresponding to the circumferential area of the first electrode plate.
상기 폴딩부는 상기 제1전극판 접합체의 양면에 배치된 상기 제2전극판을 가압하여 상기 제1전극판 접합체에 고정시키고, 상기 단위 셀에 고정되어 상기 제1전극판 접합체를 폴딩하는 그리퍼를 포함할 수 있다.The folding unit includes a gripper for pressing the second electrode plate disposed on both surfaces of the first electrode plate assembly to fix the first electrode plate assembly to the first electrode plate assembly, and to be fixed to the unit cell to fold the first electrode plate assembly. can do.
상기 폴딩부는 제1폴딩부 및 제2폴딩부를 포함하고, 상기 제1폴딩부 및 제2폴딩부가 교대로 상기 단위 셀이 형성된 상기 제1전극판 접합체를 폴딩하여 상기 셀 스택을 형성할 수 있다.The folding unit may include a first folding unit and a second folding unit, and the first folding unit and the second folding unit may form the cell stack by folding the first electrode plate assembly in which the unit cells are alternately formed.
상기 폴딩부의 폴딩 동작시 상기 셀 스택을 가압하여 고정시키는 고정부를 더 포함할 수 있다.The folding unit may further include a fixing unit configured to press and fix the cell stack in a folding operation.
상기 제1전극판은 상기 셀 스택의 굴곡된 부분을 형성하는 영역의 활물질이 제거될 수 있다.In the first electrode plate, an active material in a region forming a curved portion of the cell stack may be removed.
본 발명의 다양한 실시예에 따른 이차 전지용 스택 방법은 제1전극 제1코팅부와 상기 제1전극 제1코팅부로부터 이격되어 위치된 제1전극 제2코팅부를 포함하는 제1전극판 및 상기 제1전극판의 양면에 세퍼레이터들이 적층된 제1전극판 접합체를 공급하는 제1전극판 접합체 공급 단계; 상기 제1전극판 접합체 중 상기 제1전극 제1코팅부의 양면에 제2전극판의 제2전극 제1코팅부와 제2전극 제2코팅부를 각각 배치하여 단위 셀을 형성하는 제2전극판 공급 단계; 및 상기 단위 셀이 형성된 상기 제1전극판 접합체를 폴딩하여 상기 제2전극판의 상기 제2전극 제1코팅부 또는 상기 제2전극 제2코팅부가 상기 제1전극판의 상기 제1전극 제2코팅부와 대면하여 셀 스택을 형성하도록 하는 폴딩 단계를 포함할 수 있다.According to various embodiments of the present disclosure, a stacking method for a secondary battery includes a first electrode plate and a first electrode including a first electrode first coating part and a first electrode second coating part spaced apart from the first electrode first coating part. A first electrode plate assembly supplying step of supplying a first electrode plate assembly in which separators are stacked on both surfaces of the first electrode plate; Supplying a second electrode plate to form a unit cell by disposing the second electrode first coating portion and the second electrode second coating portion of the second electrode plate on both surfaces of the first electrode plate assembly of the first electrode plate assembly step; And folding the first electrode plate assembly in which the unit cell is formed, so that the second electrode first coating portion or the second electrode second coating portion of the second electrode plate is the first electrode second of the first electrode plate. And folding to face the coating to form the cell stack.
상기 제1전극판 접합체 공급 단계는 상기 제1전극판을 공급하는 제1전극판 공급 단계; 상기 제1전극판의 양면에 세퍼레이터들을 공급하는 세퍼레이터 공급 단계; 및 상기 제1전극판의 양면에 공급된 세퍼레이터들을 적층하여 제1전극판 접합체를 형성하는 제1전극판 접합체 형성 단계를 포함할 수 있다.The first electrode plate assembly supplying step may include a first electrode plate supplying step of supplying the first electrode plate; A separator supplying step of supplying separators to both surfaces of the first electrode plate; And forming a first electrode plate assembly by stacking separators supplied on both sides of the first electrode plate to form a first electrode plate assembly.
상기 제1전극판 접합체 공급 단계에서 상기 제1전극판은 연속된 형태로 공급되고, 상기 제2전극판 공급 단계에서 상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치될 수 있다.In the supplying of the first electrode plate assembly, the first electrode plate is supplied in a continuous form, and in the supplying of the second electrode plate, the second electrode plate is cut to a predetermined length so that both surfaces of the first electrode plate assembly are provided. Can be placed in.
상기 제1전극판 접합체 공급 단계에서 상기 제1전극판은 기설정된 길이로 절단되어 독립된 형태로 공급되고, 상기 제2전극판 공급 단계에서 상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치될 수 있다.In the supplying of the first electrode plate assembly, the first electrode plate is cut into a predetermined length and supplied in an independent form. In the supplying of the second electrode plate, the second electrode plate is cut into a predetermined length and the first electrode plate is cut. It may be disposed on both sides of the electrode plate assembly.
상기 제1전극판 접합체 공급 단계 이후에, 상기 제1전극판의 양면에 위치된 세퍼레이터들 중에서, 상기 제1전극판의 둘레 영역과 대응되는 세퍼레이터들의 영역을 접합하는 세퍼레이터 접합 단계를 더 포함할 수 있다.After the supplying of the first electrode plate assembly, a separator bonding step of bonding the region of the separator corresponding to the circumferential region of the first electrode plate among the separators located on both sides of the first electrode plate may further include. have.
상기 제1전극판 공급 단계의 상기 제1전극판은 상기 셀 스택의 굴곡된 부분을 형성하는 영역의 활물질이 제거될 수 있다.The first electrode plate of the first electrode plate supplying step may remove an active material in a region forming a curved portion of the cell stack.
본 발명의 다양한 실시예에 따른 이차 전지는 제1전극판 제1코팅부; 제1전극판 제2코팅부; 상기 제1전극판 제1코팅부 및 상기 제1전극판 제2코팅부를 상,하부에서 감싸는 세퍼레이터들; 상기 제1전극판 제1코팅부와 대면하여 적층되는 제2전극판 제1코팅부; 및 상기 제1전극판 제1코팅부와 상기 제1전극판 제2코팅부의 사이가 제1방향으로 폴딩되는 제1폴딩 영역을 포함하고, 폴딩된 상기 제1전극판 제2코팅부가 상기 제2전극판 제1코팅부에 대면하여 적층된다.A secondary battery according to various embodiments of the present disclosure may include a first coating part of a first electrode plate; A first electrode plate second coating part; Separators surrounding the first electrode plate first coating part and the first electrode plate second coating part at upper and lower parts thereof; A second electrode plate first coating part stacked to face the first electrode plate first coating part; And a first folding area in which the first electrode plate between the first coating part and the first electrode plate second coating part is folded in a first direction, and wherein the first electrode plate second coating part is folded. The electrode plate is laminated facing the first coating portion.
상기 제1전극판 제1코팅부와 상기 제1전극판 제2코팅부의 사이의 상기 세퍼레이터들이 상호간 접합되어 형성된 제1접합 영역을 더 포함할 수 있다.The separator may further include a first junction region formed by bonding the separators between the first electrode plate first coating part and the first electrode plate second coating part.
상기 제1전극판 제2코팅부에 대면하여 적층되는 제2전극판 제2코팅부를 더 포함할 수 있다.The second electrode plate may further include a second coating part stacked to face the second electrode coating part.
상기 제2전극판 제2코팅부에 대면하여 적층되는 제1전극판 제3코팅부를 더 포함할 수 있고, 상기 제1전극판 제2코팅부와 상기 제1전극판 제3코팅부의 사이가 제2방향으로 폴딩되는 제2폴딩 영역을 더 포함할 수 있으며, 상기 폴딩된 상기 제1전극판 제3코팅부가 상기 제2전극판 제2코팅부에 대면하여 적층될 수 있다.The first electrode plate may further include a third coating part stacked to face the second electrode plate second coating part, and the first electrode plate may be disposed between the second coating part and the first electrode plate third coating part. The display device may further include a second folding area folded in two directions, and the folded first electrode plate third coating part may be stacked to face the second electrode plate second coating part.
상기 제1전극판 제2코팅부와 상기 제1전극판 제3코팅부 사이의 상기 세퍼레이터들이 상호간 접합되어 형성된 제2접합 영역을 더 포함할 수 있다.The separator may further include a second junction region formed by bonding the separators between the first electrode plate second coating part and the first electrode plate third coating part to each other.
상기 제1방향과 상기 제2방향은 서로 다른 방향일 수 있다.The first direction and the second direction may be different directions.
상기 제1전극판 제3코팅부와 대면하여 적층되는 제2전극판 제3코팅부를 더 포함할 수 있다.The second electrode plate may further include a third coating part stacked to face the third electrode coating part.
본 발명의 다양한 실시예에 따르면, 제1전극판의 하면과 상면에 세퍼레이터를 적층한 제1전극판 접합체를 구성하고, 접합체의 하면과 상면에 제2전극판을 각각 배치한 상태에서 폴딩부를 이용하여 적층함으로써, 기재의 변경이나 공법의 추가 없이 정교하면서도 한번의 폴딩 동작으로 4장의 전극판을 적층할 수 있는 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지를 제공한다.According to various embodiments of the present disclosure, a first electrode plate assembly including a separator stacked on a bottom surface and an upper surface of the first electrode plate may be used, and the folding unit may be used in a state in which the second electrode plate is disposed on the bottom surface and the top surface of the assembly, respectively. The present invention provides a stacking apparatus for a secondary battery, a stacking method using the same, and a secondary battery, which can stack four electrode plates in a single folding operation without changing a substrate or adding a method.
또한, 본 발명의 다양한 실시이예에 따르면, 낱개로 절단된 제1전극판 및 제2전극판을 공급하고, 특히, 제1전극판의 양면에 위치된 세퍼레이터들 중에서 제1전극판의 둘레 영역과 대응되는 세퍼레이터들의 영역을 접합함으로써, 2장의 세퍼레이터 사이에서 제1전극판이 유동하지 않도록 하고, 이에 따라 안전성/신뢰성이 우수한 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지를 제공한다.In addition, according to various embodiments of the present disclosure, the first electrode plate and the second electrode plate which are individually cut may be supplied, and in particular, the peripheral region of the first electrode plate may be selected from the separators located on both sides of the first electrode plate. By bonding the regions of the corresponding separators, the first electrode plate does not flow between the two separators, thereby providing a stack device for a secondary battery having excellent safety and reliability, a stacking method using the same, and a secondary battery accordingly.
도 1은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 사시도이다.1 is a perspective view of a stack device for a secondary battery according to various embodiments of the present disclosure.
도 2는 도 1의 A부분을 확대하여 도시한 것이다.FIG. 2 is an enlarged view of portion A of FIG. 1.
도 3은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 제1전극판을 도시한 것이다.3 illustrates a first electrode plate of a stack device for a secondary battery according to various embodiments of the present disclosure.
도 4a 내지 도 4h는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 폴딩 동작을 순차적으로 도시한 것이다.4A to 4H sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
도 5a는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법의 순서도이다.5A is a flowchart illustrating a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
도 5b는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법의 제1전극판 접합체 공급 단계의 순서도이다.5B is a flowchart of a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
도 6a 및 도 6b는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 평면도 및 측면도이다.6A and 6B are plan and side views of a stack device for a secondary battery according to various embodiments of the present disclosure.
도 7a 내지 도 7f는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 폴딩 동작을 순차적으로 도시한 것이다.7A to 7F sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
도 8은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법의 제1전극판 접합체 공급 단계의 순서도이다.8 is a flowchart illustrating a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
도 9는 본 발명의 다양한 실시예에 따른 이차 전지를 도시한 개략도이다. 9 is a schematic view illustrating a rechargeable battery according to various embodiments of the present disclosure.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 다양한 실시예를 상세히 설명하기로 한다.Hereinafter, various exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 다양한 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 다양한 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 다양한 실시예에 한정되는 것은 아니다. 오히려, 이들 다양한 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.Various embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following various embodiments may be modified in various other forms, and the scope of the present invention. Is not limited to the following various examples. Rather, these various embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 A 부재와 B 부재가 직접 연결되는 경우뿐만 아니라, A 부재와 B 부재의 사이에 C 부재가 개재되어 A 부재와 B 부재가 간접 연결되는 경우도 의미한다.In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, the same reference numerals in the drawings refer to the same elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items. In addition, the term "connected" in this specification means not only the case where the A member and the B member are directly connected, but also the case where the A member and the B member are indirectly connected by interposing the C member between the A member and the B member. do.
본 명세서에서 사용된 용어는 특정 다양한 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular various embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise, include" and / or "comprising, including" means that the features, numbers, steps, actions, members, elements, and / or groups thereof mentioned. It is intended to specify the existence and not to exclude the presence or addition of one or more other shapes, numbers, operations, members, elements and / or groups.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Accordingly, the first member, part, region, layer or portion, which will be described below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
"하부(beneath)", "아래(below)", "낮은(lower)", "상부(above)", "위(upper)"와 같은 공간에 관련된 용어가 도면에 도시된 한 요소 또는 특징과 다른 요소 또는 특징의 용이한 이해를 위해 이용될 수 있다. 이러한 공간에 관련된 용어는 본 발명의 다양한 공정 상태 또는 사용 상태에 따라 본 발명의 용이한 이해를 위한 것이며, 본 발명을 한정하기 위한 것은 아니다. 예를 들어, 도면의 요소 또는 특징이 뒤집어지면, "하부" 또는 "아래"로 설명된 요소 또는 특징은 "상부" 또는 "위에"로 된다. 따라서, "하부"는 "상부" 또는 "아래"를 포괄하는 개념이다.Terms relating to spaces such as "beneath", "below", "lower", "above", and "upper" are associated with one element or feature shown in the figures. It can be used for easy understanding of other elements or features. Terms related to this space are for easy understanding of the present invention according to various process conditions or use conditions of the present invention, and are not intended to limit the present invention. For example, if an element or feature in the figures is inverted, the element or feature described as "bottom" or "bottom" will be "top" or "top". Thus, "bottom" is a concept encompassing "top" or "bottom".
더불어, 명세서 중 제1전극판은 제1전극 제1코팅부 또는 제1전극판 제1코팅부, 제1전극 제2코팅부 또는 제1전극판 제2코팅부, 제1전극 제3코팅부 또는 제1전극판 제3코팅부로 지칭될 수 있다. 더욱이, 명세서 중 제2전극판은 제2전극 제1코팅부 또는 제2전극판 제1코팅부, 제2전극 제2코팅부 또는 제2전극판 제2코팅부, 제2전극 제3코팅부 또는 제2전극판 제3코팅부로 지칭될 수 있다. In addition, in the specification, the first electrode plate may include a first electrode first coating part or a first electrode plate first coating part, a first electrode second coating part, or a first electrode plate second coating part, and a first electrode third coating part. Alternatively, the first electrode plate may be referred to as a third coating part. Further, in the specification, the second electrode plate may include a second electrode first coating part or a second electrode plate first coating part, a second electrode second coating part, or a second electrode plate second coating part, and a second electrode third coating part. Alternatively, the second electrode plate may be referred to as a third coating part.
또한, 명세서 중 제2전극(판) 제1코팅부와 제2전극(판) 제2코팅부의 사이에 제1전극(판) 제1코팅부가 개재되거나, 또는 제2전극(판) 제1코팅부와 제2전극(판) 제2코팅부의 사이에 제1전극(판) 제2코팅부가 개재된 것으로 설명될 수 있다. 이러한 제1,2전극판 사이의 위치 관계는 명세서 및/또는 도면에 기재된 대로 해석되거나, 또는 변형되어 해석될 수 있다.Further, in the specification, a first electrode (plate) first coating part is interposed between the second electrode (plate) first coating part and the second electrode (plate) second coating part, or the second electrode (plate) first coating The first electrode (plate) and the second coating portion may be interposed between the portion and the second electrode (plate) second coating portion. The positional relationship between the first and second electrode plates may be interpreted as described in the specification and / or drawings, or may be modified and interpreted.
도 1은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 사시도이다. 도 2는 도 1의 A부분을 확대하여 도시한 것이다. 도 3은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 제1전극판을 도시한 것이다.1 is a perspective view of a stack device for a secondary battery according to various embodiments of the present disclosure. FIG. 2 is an enlarged view of portion A of FIG. 1. 3 illustrates a first electrode plate of a stack device for a secondary battery according to various embodiments of the present disclosure.
도 1에 도시된 바와 같이 본 발명의 실시예에 따른 이차 전지용 스택 장치(100)는 제1전극판 공급부(110), 제1세퍼레이터 공급부(120), 제2세퍼레이터 공급부(130), 제1전극판 접합체 공급부(140), 제2전극판 공급부(150), 스택부(160), 폴딩부(170) 및 고정부(180)를 포함한다.As shown in FIG. 1, the stack apparatus 100 for a secondary battery according to an exemplary embodiment of the present invention may include a first electrode plate supply unit 110, a first separator supply unit 120, a second separator supply unit 130, and a first electrode. The plate assembly supply part 140, the second electrode plate supply part 150, the stack part 160, the folding part 170, and the fixing part 180 are included.
제1전극판 공급부(110)는 제1전극판 공급롤을 포함할 수 있다. 제1전극판 공급롤에는 제1전극판(10)이 권취되어 있다. 또한, 제1전극판 공급롤이 회전함에 따라 제1전극판(10)이 권출되어, 제1전극판 공급부(140)에 공급된다. 따라서, 제1전극판(10)은 연속된 형태로 공급된다. The first electrode plate supply unit 110 may include a first electrode plate supply roll. The first electrode plate 10 is wound around the first electrode plate supply roll. In addition, as the first electrode plate supply roll rotates, the first electrode plate 10 is unwound and supplied to the first electrode plate supply unit 140. Therefore, the first electrode plate 10 is supplied in a continuous form.
또한, 제1전극판(10)은 양극 또는 음극으로 작용할 수 있다. 또한, 제1전극판(10)은 그 극성에 따라 양면에 활물질층이 형성될 수 있다.In addition, the first electrode plate 10 may function as an anode or a cathode. In addition, the active material layer may be formed on both surfaces of the first electrode plate 10 according to its polarity.
도 2 및 도 3에 도시된 바와 같이, 제1전극판(10)은 연속된 형태로 공급되므로, 셀 스택(70)의 굴곡부(①)를 구성한다. 제1전극판(10)의 굴곡부(①)를 구성하는 부분의 양면의 활물질층은 제1전극판(10)로부터 탈락될 수 있다.As shown in FIGS. 2 and 3, the first electrode plate 10 is supplied in a continuous form, thereby forming a bent portion ① of the cell stack 70. The active material layers on both sides of the portions constituting the bent portion ① of the first electrode plate 10 may be dropped from the first electrode plate 10.
제1전극판(10)은 그 양면에 활물질 코팅부(10a) 및 활물질 미코팅부(무지부)(10b)가 형성될 수 있다. 활물질 미코팅부(10b)는 제1전극판(10)이 폴딩되어 적층되었을 때, 셀 스택(70)의 굴곡부(①)에 위치할 수 있다. 즉, 복수의 활물질 미코팅부(10b)가 제1전극판(10)의 양면에 대해 각각 정해진 간격으로 형성되어, 도 2에 도시된 굴곡부(①)를 포함한 전체 셀 스택(70)의 나머지 굴곡부에도 위치할 수 있다. 셀 스택(70)의 굴곡부(①)는 제2전극판(50)이 적층되지 않는 부분으로서, 제1전극판(10)의 활물질이 형성되지 않는다고 하더라도 셀 스택(70)으로 이루어진 전극조립체의 성능을 저하시키지 않는다.The first electrode plate 10 may have active material coating portions 10a and active material uncoated portions (uncoated portions) 10b formed on both surfaces thereof. The active material uncoated portion 10b may be positioned at the bent portion ① of the cell stack 70 when the first electrode plate 10 is folded and stacked. That is, the plurality of active material uncoated portions 10b are formed at predetermined intervals with respect to both surfaces of the first electrode plate 10, and the remaining curved portions of the entire cell stack 70 including the curved portion ① shown in FIG. 2. It can also be located at The bent portion ① of the cell stack 70 is a portion in which the second electrode plate 50 is not stacked, and even if the active material of the first electrode plate 10 is not formed, the performance of the electrode assembly made of the cell stack 70 is achieved. Does not degrade.
그리고 활물질 미코팅부(10b)의 폭을 굴곡부(①)의 둘레 길이보다 길게 형성하여, 기계적인 오차 등 에도 굴곡부(①)에 활물질 코팅부(10a)가 위치하지 않도록 할 수 있다.In addition, the width of the active material uncoated portion 10b may be formed longer than the circumferential length of the curved portion ①, so that the active material coating portion 10a may not be positioned on the curved portion ① even in a mechanical error or the like.
또한, 활물질 미코팅부(10b)는 활물질 코팅부(10a)가 제1전극판(10)의 양면에 형성되고, 활물질 미코팅부(10b)에 형성되지 않거나, 또는 일부가 제거되어 형성될 수 있다.In addition, the active material uncoated portion 10b may be formed by forming the active material coating portion 10a on both sides of the first electrode plate 10 and not being formed on the active material uncoated portion 10b or by removing a portion thereof. have.
따라서, 제1전극판(10)에 활물질 미코팅부(10b)를 형성함으로써, 셀 스택(70)을 포함하는 이차 전지의 성능을 저하시키지 않으면서, 셀 스택(70)의 굴곡부(①)로부터 활물질이 탈락되는 것을 방지하여 안전성/신뢰성을 높일 수 있다.Therefore, by forming the active material uncoated portion 10b on the first electrode plate 10, the curved portion ① of the cell stack 70 can be removed from the curved portion ① of the cell stack 70 without degrading the performance of the secondary battery including the cell stack 70. By preventing the active material from falling off, it is possible to increase safety / reliability.
한편, 제1전극판(10)의 상단에는 제1전극판(10)을 외부와 전기적으로 연결시키기 위한 전극탭(1)이 형성될 수 있다.Meanwhile, an electrode tab 1 may be formed at an upper end of the first electrode plate 10 to electrically connect the first electrode plate 10 to the outside.
제1세퍼레이터 공급부(120)는 제1세퍼레이터 공급롤을 포함할 수 있다. 제1세퍼레이터 공급롤에는 제1세퍼레이터(20)가 권취되어 있다. 또한, 제1세퍼레이터 공급롤이 회전함에 따라 제1세퍼레이터(20)가 권출되어 제1전극판 접합체 공급부(140)에 공급된다. 따라서, 제1세퍼레이터(20)는 연속된 형태로 공급되어 적층된다. The first separator supply unit 120 may include a first separator supply roll. The first separator 20 is wound around the first separator feed roll. In addition, as the first separator supply roll rotates, the first separator 20 is unwound and supplied to the first electrode plate assembly supply unit 140. Therefore, the first separator 20 is supplied in a continuous form and stacked.
제2세퍼레이터 공급부(130)는 제2세퍼레이터 공급롤을 포함할 수 있다. 제2세퍼레이터 공급롤에는 제2세퍼레이터(30)가 권취되어 있다. 또한, 제2세퍼레이터 공급롤이 회전함에 따라 제2세퍼레이터(30)가 권출되어 제1전극판 접합체 공급부(140)에 공급된다. 따라서, 제2세퍼레이터(30)는 연속된 형태로 공급되어 적층된다.The second separator supply unit 130 may include a second separator supply roll. The second separator 30 is wound around the second separator supply roll. In addition, as the second separator supply roll rotates, the second separator 30 is unwound and supplied to the first electrode plate assembly supply unit 140. Therefore, the second separators 30 are supplied and stacked in a continuous form.
제1전극판 접합체 공급부(140)는 제1가이드롤(141) 및 제2가이드롤(142)을 포함할 수 있다.The first electrode plate assembly supply unit 140 may include a first guide roll 141 and a second guide roll 142.
제1전극판 공급부(110), 제1세퍼레이터 공급부(120) 및 제2세퍼레이터 공급부(130)에서 각각 공급된 제1전극판(10), 제1세퍼레이터(20) 및 제2세퍼레이터(30)는 제1가이드롤(141)과 제2가이드롤(142) 사이로 삽입된다. 즉, 제1가이드롤(141)과 제2가이드롤(142) 사이로 삽입되는 제1전극판(10)을 기준으로, 제1세퍼레이터(20)는 제1전극판(10)과 제1가이드롤(141) 사이로 삽입되고, 제2세퍼레이터(30)는 제1전극판(10)과 제2가이드롤(142) 사이로 삽입된다. 그리고 제1전극판(10)의 하면과 상면에 제1세퍼레이터(20)와 제2세퍼레이터(30)가 배치되어 적층됨으로써, 제1전극판 접합체(40)를 형성한다. 또한, 제1전극판 접합체(40)는 제1가이드롤(141) 및 제2가이드롤(142)이 회전함에 따라 제2전극판 공급부(150)로 공급된다.The first electrode plate 10, the first separator 20, and the second separator 30 supplied from the first electrode plate supply unit 110, the first separator supply unit 120, and the second separator supply unit 130, respectively. It is inserted between the first guide roll 141 and the second guide roll 142. That is, based on the first electrode plate 10 inserted between the first guide roll 141 and the second guide roll 142, the first separator 20 includes the first electrode plate 10 and the first guide roll. The second separator 30 is inserted between the first electrode plate 10 and the second guide roll 142. The first separator 20 and the second separator 30 are disposed and stacked on the lower surface and the upper surface of the first electrode plate 10 to form the first electrode plate assembly 40. In addition, the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150 as the first guide roll 141 and the second guide roll 142 rotate.
제2전극판 공급부(150)는 픽앤플래이스(Pick and Place) 장치를 포함할 수 있다. 픽앤플래이스 장치는 일정한 길이로 절단된 제2전극판(50)을 제1전극판 접합체 공급부(140)에서 공급되는 제1전극판 접합체(40)의 하면과 상면에 각각 배치하여, 단위 셀(60)을 형성할 수 있다. 그리고 픽앤플래이스 장치는 제2전극판(50)을 제1전극판 접합체(40)의 양면에 동시에, 또는 일면에 순차적으로 배치할 수 있다. 또한, 단위 셀(60)은 폴딩부(170)에 의하여 스택부(160)에 적층된다. The second electrode plate supply unit 150 may include a pick and place device. In the pick and place device, the second electrode plate 50 cut to a predetermined length is disposed on the lower surface and the upper surface of the first electrode plate assembly 40, which is supplied from the first electrode plate assembly supply unit 140, respectively. 60). In the pick and place device, the second electrode plate 50 may be disposed on both surfaces of the first electrode plate assembly 40 simultaneously or sequentially on one surface thereof. In addition, the unit cell 60 is stacked on the stack 160 by the folding unit 170.
또한, 제2전극판(50)은 제1전극판(10)과 반대의 극성을 갖는다. 또한, 제2전극판(50)은 그 극성에 따라 양면에 활물질층이 형성될 수 있다.In addition, the second electrode plate 50 has a polarity opposite to that of the first electrode plate 10. In addition, the active material layer may be formed on both surfaces of the second electrode plate 50 according to its polarity.
스택부(160)에는 제1전극판 접합체(40)가 폴딩되어 단위 셀(60)이 적층된다. 적층된 단위 셀(60)은 셀 스택(70)을 형성한다. 셀 스택(70)은 제1전극판(10)과 제2전극판(50) 사이에 세퍼레이터(20,30)가 개재된 형태로 적층된다.In the stack 160, the first electrode plate assembly 40 is folded to stack the unit cells 60. The stacked unit cells 60 form a cell stack 70. The cell stack 70 is stacked in such a manner that separators 20 and 30 are interposed between the first electrode plate 10 and the second electrode plate 50.
폴딩부(170)는 그리퍼(Gripper)를 포함할 수 있다. 그리퍼는 제1전극판 접합체(40)의 하면과 상면에 각각 배치된 제2전극판(50)을 가압하여 제1전극판 접합체(40)에 고정시킬 수 있다. 그리고 그리퍼는 단위 셀(60)에 고정되어 스택부(160)로 이동함으로써, 제1전극판 접합체(40)를 폴딩하여 셀 스택(70)을 형성할 수 있다. 또한, 그리퍼는 제1전극판 접합체(40)를 대략 Z자 또는 S자 형태로 폴딩할 수 있다.The folding unit 170 may include a gripper. The gripper may press the second electrode plate 50 disposed on the lower surface and the upper surface of the first electrode plate assembly 40 to fix the gripper to the first electrode plate assembly 40. The gripper may be fixed to the unit cell 60 to move to the stack 160, thereby folding the first electrode plate assembly 40 to form the cell stack 70. In addition, the gripper may fold the first electrode plate assembly 40 in a Z or S shape.
한편, 폴딩부(170)는 두개의 그리퍼를 포함하여, 두개의 그리퍼가 교대로 제1전극판 접합체(40)를 폴딩할 수 있다. 즉, 한개의 그리퍼가 제1전극판 접합체(40)를 폴딩하는 동안 나머지 한개의 그리퍼는 그 다음의 폴딩을 준비할 수 있다.Meanwhile, the folding unit 170 may include two grippers so that the two grippers may alternately fold the first electrode plate assembly 40. That is, while one gripper folds the first electrode plate assembly 40, the other gripper may prepare for the next folding.
고정부(180)는 스택부(160)에 적층된 셀 스택(70)의 상단을 가압하여, 폴딩부(170)가 제1전극판 접합체(40)를 폴딩할 때, 제1전극판 접합체(40)가 구겨지지 않고 적층될 수 있다.The fixing unit 180 presses the upper end of the cell stack 70 stacked on the stack unit 160, and when the folding unit 170 folds the first electrode plate assembly 40, the first electrode plate assembly ( 40 may be laminated without wrinkles.
이하에서는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 폴딩 동작을 설명하도록 한다.Hereinafter, a folding operation of a stack device for a secondary battery according to various embodiments of the present disclosure will be described.
도 4a 내지 도 4h는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 폴딩 동작을 순차적으로 도시한 것이다.4A to 4H sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure.
도 4a에 도시된 바와 같이, 제1전극판 공급부(110), 제1세퍼레이터 공급부(120) 및 제2세퍼레이터 공급부(130)에서 각각 제1전극판(10), 제1세퍼레이터(20), 제2세퍼레이터(30)가 제1전극판 접합체 공급부(140)로 공급되어, 제1전극판(10)의 양면에 제1세퍼레이터(20) 및 제2세퍼레이터(30)가 적층된 제1전극판 접합체(40)가 형성된다. 이어서 제1전극판 접합체(40)는 제2전극판 공급부(150)로 공급된다.As shown in FIG. 4A, each of the first electrode plate 10, the first separator 20, and the first electrode plate supply unit 110, the first separator supply unit 120, and the second separator supply unit 130, respectively. The first separator plate assembly in which the second separator 30 is supplied to the first electrode plate assembly supply unit 140 and the first separator 20 and the second separator 30 are stacked on both surfaces of the first electrode plate 10 is provided. 40 is formed. Subsequently, the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150.
또한, 제2전극판 공급부(150)는 제1전극판 접합체(40)의 양면에 제2전극판(50)을 공급하여 단위 셀(60)을 형성한다.In addition, the second electrode plate supply unit 150 supplies the second electrode plate 50 to both surfaces of the first electrode plate assembly 40 to form the unit cell 60.
도 4b에 도시된 바와 같이, 폴딩부(170)는 단위셀(60)의 제2전극판(50)을 가압하여 제1전극판 접합체(40)에 고정시킨다.As shown in FIG. 4B, the folding unit 170 presses the second electrode plate 50 of the unit cell 60 to be fixed to the first electrode plate assembly 40.
또한, 고정부(180)는 스택부(160)에 적층된 셀 스택(70a)의 상단부를 가압할 수 있다.In addition, the fixing unit 180 may press the upper end of the cell stack 70a stacked on the stack 160.
한편, 스택부(160)에 적층된 셀 스택(70a)이 존재하지 않을 때, 단위 셀(60)은 폴딩부(170)의 폴딩 동작 없이 스택부(160)로 이동하여 적층됨으로써 셀 스택(70a)을 형성한다. 또한, 스택부(160)에 단위 셀(60)이 처음 적층될 때, 단위 셀(60)은 제1전극판 접합체(40)의 상면에만 제2전극판(50)이 배치된 형태로 형성될 수 있다.On the other hand, when the cell stack 70a stacked on the stack 160 does not exist, the unit cell 60 moves to the stack 160 and is stacked without the folding operation of the folding unit 170, thereby stacking the cell stack 70a. ). In addition, when the unit cells 60 are first stacked on the stack 160, the unit cells 60 may be formed in a form in which the second electrode plate 50 is disposed only on the upper surface of the first electrode plate assembly 40. Can be.
도 4c에 도시된 바와 같이, 폴딩부(170)는 단위 셀(60)에 고정되어 스택부(160)로 이동한다. 폴딩부(170)가 이동할 때, 폴딩부(170)가 이동하는 방향의 단위 셀(60)의 일단부에 제1폴딩부(②)가 형성되고, 제1전극판 접합체(40)가 공급되는 방향의 셀 스택(70a)의 일단부에 제2폴딩부(③)가 형성된다.As shown in FIG. 4C, the folding unit 170 is fixed to the unit cell 60 and moves to the stack unit 160. When the folding unit 170 moves, the first folding unit ② is formed at one end of the unit cell 60 in the direction in which the folding unit 170 moves, and the first electrode plate assembly 40 is supplied. A second folding part ③ is formed at one end of the cell stack 70a in the direction.
도 4d에 도시된 바와 같이, 폴딩부(170)는 단위 셀(60)을 스택부(160)에 적층시켜 셀 스택(70b)을 형성한다. 제1폴딩부(②) 및 제2폴딩부(③)는 제1전극판 접합체(40)가 폴딩되어 적층되었을 때, 셀 스택(70b)의 제1굴곡부(④) 및 제2굴곡부(⑤)를 각각 형성한다.As shown in FIG. 4D, the folding unit 170 stacks the unit cells 60 on the stack 160 to form a cell stack 70b. The first folding portion ② and the second folding portion ③ are the first bent portion ④ and the second bent portion ⑤ of the cell stack 70b when the first electrode plate assembly 40 is folded and stacked. Form each.
도 4e에 도시된 바와 같이, 이 과정은 도 4a에 나타난 과정과 유사하다.As shown in FIG. 4E, this process is similar to the process shown in FIG. 4A.
제1전극판 접합체 공급부(140)에서 제1전극판(10)의 양면에 제1세퍼레이터(20) 및 제2세퍼레이터(30)가 적층된 제1전극판 접합체(40)가 형성된다. 제1전극판 접합체(40)는 제2전극판 공급부(150)로 공급된다. 또한, 제2전극판 공급부(150)는 제1전극판 접합체(40)의 양면에 제2전극판(50)을 공급하여 단위 셀(60)을 형성한다.The first electrode plate assembly 40 in which the first separator 20 and the second separator 30 are stacked is formed on both surfaces of the first electrode plate 10 in the first electrode plate assembly supply unit 140. The first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150. In addition, the second electrode plate supply unit 150 supplies the second electrode plate 50 to both surfaces of the first electrode plate assembly 40 to form the unit cell 60.
도 4f에 도시된 바와 같이, 이 과정은 도 4b에 나타난 과정과 유사하다.As shown in FIG. 4F, this process is similar to the process shown in FIG. 4B.
폴딩부(170)는 단위셀(60)의 제2전극판(50)을 가압하여 제1전극판 접합체(40)에 고정시킨다.The folding unit 170 presses the second electrode plate 50 of the unit cell 60 to be fixed to the first electrode plate assembly 40.
또한, 고정부(180)는 스택부(160)에 셀 스택(70b)의 상단부를 가압할 수 있다.In addition, the fixing unit 180 may press the upper end of the cell stack 70b to the stack 160.
도 4g에 도시된 바와 같이, 이 과정은 도 4c에 나타난 과정과 유사하다.As shown in FIG. 4G, this process is similar to the process shown in FIG. 4C.
폴딩부(170)는 단위 셀(60)에 고정되어 스택부(160)로 이동한다. 폴딩부(170)가 이동할 때, 폴딩부(170)가 이동하는 방향의 단위 셀(60)의 일단부에 제3폴딩부(⑥)가 형성되고, 제1전극판 접합체(40)가 공급되는 방향의 셀 스택(70b)의 일단부에 제4폴딩부(⑦)가 형성된다.The folding unit 170 is fixed to the unit cell 60 and moves to the stack unit 160. When the folding unit 170 moves, a third folding unit ⑥ is formed at one end of the unit cell 60 in the direction in which the folding unit 170 moves, and the first electrode plate assembly 40 is supplied. A fourth folding part ⑦ is formed at one end of the cell stack 70b in the direction.
도 4h에 도시된 바와 같이, 이 과정은 도 4d에 나타난 과정과 유사하다.As shown in FIG. 4H, this process is similar to the process shown in FIG. 4D.
폴딩부(170)는 단위 셀(60)을 스택부(160)에 적층시켜 셀 스택(70c)을 형성한다. 제3폴딩부(⑥) 및 제4폴딩부(⑦)는 제1전극판 접합체(40)가 폴딩되어 적층되었을 때, 셀 스택(70c)의 제3굴곡부(⑧) 및 제4굴곡부(⑨)를 각각 형성한다.The folding unit 170 stacks the unit cells 60 on the stack 160 to form a cell stack 70c. The third folded portion (⑥) and the fourth folded portion (⑦) are the third bent portion (⑧) and the fourth bent portion (⑨) of the cell stack 70c when the first electrode plate assembly 40 is folded and stacked. Form each.
한편, 이러한 과정으로 완성된 셀 스택(70)의 외면은 세퍼레이터(20,30)로 감싸질 수 있다.Meanwhile, the outer surface of the cell stack 70 completed by this process may be wrapped with the separators 20 and 30.
여기서, 다시 도 3 및 도 4a를 다시 참조하면, 제1전극판(10)은, 예를 들면, 제1전극 제1코팅부(11)와, 제1전극 제1코팅부(11)로부터 이격되어 형성된 제1전극 제2코팅부(12)와, 제1전극 제2코팅부(12)로부터 이격되어 형성된 제1전극 제3코팅부(13)를 포함할 수 있다. 또한, 제2전극판(50) 역시 제2전극 제1코팅부(51)와 제2전극 제2코팅부(52)를 포함할 수 있다. 여기서, 상술한 스택 장치(100)에 의해, 제1전극 제1코팅부(11)를 중심으로 그 하부 및 상부에 각각 제2전극 제1코팅부(51) 및 제2전극 제2코팅부(52)가 위치될 수 있다. 더불어, 제1전극 제2코팅부(12)를 중심으로 그 하부에 제2전극 제2코팅부(52) 및 제2전극 제3코팅부(미도시됨)가 위치될 수 있다. 또한, 제2전극 제3코팅부 위에 제1전극 제3코팅부(13)가 위치될 수 있다. 이러한 이차 전지의 스택 구조는 아래에서 다시 설명하기로 한다.3 and 4A, the first electrode plate 10 is, for example, spaced apart from the first electrode first coating part 11 and the first electrode first coating part 11. And the first electrode second coating part 12 and the first electrode third coating part 13 spaced apart from the first electrode second coating part 12. In addition, the second electrode plate 50 may also include a second electrode first coating part 51 and a second electrode second coating part 52. Here, by the stack apparatus 100 described above, the second electrode first coating part 51 and the second electrode second coating part (1) below and above the first electrode first coating part 11 respectively. 52 may be located. In addition, a second electrode second coating part 52 and a second electrode third coating part (not shown) may be positioned below the first electrode second coating part 12. In addition, the first electrode third coating part 13 may be positioned on the second electrode third coating part. The stack structure of the secondary battery will be described later.
이하에서는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법을 설명하도록 한다.Hereinafter, a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure will be described.
도 5a는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법의 순서도이다. 도 5b는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법의 제1전극판 접합체 공급 단계의 순서도이다.5A is a flowchart illustrating a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure. 5B is a flowchart of a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
도 5a 및 도 5b에 도시된 바와 같이, 이차 전지용 스택 방법은 제1전극판 접합체 공급 단계(S100), 제2전극판 공급 단계(S200) 및 폴딩 단계(S300)를 포함할 수 있다.As illustrated in FIGS. 5A and 5B, the stacking method for a secondary battery may include a first electrode plate assembly supplying step S100, a second electrode plate supplying step S200, and a folding step S300.
제1전극판 접합체 공급 단계(S100)는 제1전극판 접합체(40)를 공급하는 것으로서, 제1전극판 공급 단계(S110), 세퍼레이터 공급 단계(S120) 및 제1전극판 접합체 형성 단계(S130)를 포함할 수 있다.The first electrode plate assembly supplying step (S100) is to supply the first electrode plate assembly 40, and the first electrode plate supplying step (S110), the separator supplying step (S120), and the first electrode plate assembly forming step (S130). ) May be included.
제1전극판 공급 단계(S110)에서, 제1전극판(10)이 공급된다. 그리고 세퍼레이터 공급 단계(S120)에서, 제1전극판(10)의 하면과 상면에 제1세퍼레이터(20) 및 제2세퍼레이터(30)가 공급된다. 또한, 제1전극판 접합체 형성 단계(S130)에서, 제1전극판(10)의 하면과 상면에 공급된 제1세퍼레이터(20) 및 제2세퍼레이터(30)에 의해 제1전극판 접합체(40)가 형성된다. In the first electrode plate supply step (S110), the first electrode plate 10 is supplied. In the separator supplying step S120, the first separator 20 and the second separator 30 are supplied to the lower surface and the upper surface of the first electrode plate 10. Further, in the step of forming the first electrode plate assembly S130, the first electrode plate assembly 40 is formed by the first separator 20 and the second separator 30 supplied to the bottom surface and the top surface of the first electrode plate 10. ) Is formed.
제2전극판 공급 단계(S200)에서, 제1전극판 접합체(40)의 하면과 상면에 제2전극판(50)이 배치되어 단위 셀(60)이 형성된다.In the second electrode plate supplying step (S200), the second electrode plate 50 is disposed on the lower surface and the upper surface of the first electrode plate assembly 40 to form a unit cell 60.
폴딩 단계(S300)에서, 제1전극판(10)과 제2전극판(50) 사이에 세퍼레이터(20,30)가 개재되도록 제1전극판 접합체(40)가 폴딩되어 단위 셀(60)이 적층됨으로써 셀 스택(70)이 형성된다.In the folding step S300, the first electrode plate assembly 40 is folded so that the separators 20 and 30 are interposed between the first electrode plate 10 and the second electrode plate 50 so that the unit cell 60 is folded. The cell stack 70 is formed by stacking.
본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치(100) 및 이를 이용한 스택 방법은 제1전극판(10)의 하면과 상면에 세퍼레이터(20,30)를 적층한 제1전극판 접합체(40)를 구성하고, 접합체의 하면과 상면에 제2전극판(50)을 배치한 상태에서 폴딩부(170)를 이용하여 적층함으로써, 기재의 변경이나 공법의 추가 없이 정교하면서도 한번의 폴딩 동작으로 4장의 전극판을 적층하는 것과 같은 효과를 낼 수 있다.According to various embodiments of the present disclosure, a stacking device 100 for a secondary battery and a stacking method using the same may include a first electrode plate assembly 40 in which separators 20 and 30 are stacked on a bottom surface and a top surface of a first electrode plate 10. By laminating using the folding unit 170 in a state in which the second electrode plate 50 is disposed on the lower surface and the upper surface of the joined body, the four pieces can be elaborated in one folding operation without changing the substrate or adding the method. The same effect as that of stacking electrode plates can be achieved.
도 6a 및 도 6b는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 평면도 및 측면도이다.6A and 6B are plan and side views of a stack device for a secondary battery according to various embodiments of the present disclosure.
도 6a 및 도 6b에 도시된 바와 같이, 이차 전지용 스택 장치(200)는 상술한 이차 전지용 스택 장치(100)의 구성 요소 외에 추가적으로 제1전극판 절단부(210) 및 세퍼레이터 접합부(220)를 더 포함할 수 있다. 물론, 이차 전지용 스택 장치(200)의 나머지 구성 및 작용은 상술한 이차 전지용 스택 장치(100)의 구성 및 작용을 모두 공유할 수 있다.As shown in FIGS. 6A and 6B, the secondary battery stack device 200 further includes a first electrode plate cutout 210 and a separator junction 220 in addition to the components of the secondary battery stack device 100 described above. can do. Of course, the rest of the configuration and operation of the secondary battery stack device 200 may share both the configuration and operation of the above-described secondary battery stack device 100.
제1전극판 절단부(210)는 제1전극판 공급부(110)로부터 연속적으로 공급되는 제1전극판(10)을 미리 설정된 일정한 폭으로 절단하여, 독립된 낱개의 제1전극판(10)을 제1전극판 접합체 공급부(140)에 공급하는 역할을 한다. 즉, 제1전극판 절단부(210)는 독립된 형태의 제1전극판(10)을 제1세퍼레이터(20)와 제2세퍼레이터(30)의 사이에 공급하는 역할을 한다. 이러한 제1전극판 절단부(210)는, 예를 들면, 한정하는 것은 아니지만, 상호간 마주보는 컷터 형태이거나, 또는 상호간 마주보는 프레스 형태일 수 있다.The first electrode plate cutting unit 210 cuts the first electrode plate 10 continuously supplied from the first electrode plate supply unit 110 to a predetermined predetermined width, thereby cutting the independent first electrode plate 10. It serves to supply to the electrode plate assembly supply unit 140. That is, the first electrode plate cut part 210 serves to supply the independent first electrode plate 10 between the first separator 20 and the second separator 30. The first electrode plate cutout 210 may be, for example, but not limited to, a cutter form facing each other, or a press form facing each other.
여기서, 제1가이드롤(141) 및 제2가이드롤(142)은 상호간 제1전극판(10)이 이송되는 수평 방향으로 일정 거리 이격된 것으로 도시되어 있으나, 이로서 본 발명이 한정되지 않으며, 도 1에서와 같이 제1가이드롤(141) 및 제2가이드롤(142)은 동일한 위치에 상,하 방향으로 중복해서 설치될 수도 있다.Here, the first guide roll 141 and the second guide roll 142 are shown as being spaced apart from each other by a predetermined distance in the horizontal direction in which the first electrode plate 10 is transported, but the present invention is not limited thereto. As in 1, the first guide roll 141 and the second guide roll 142 may be installed in the same position in the up and down direction.
세퍼레이터 접합부(220)는 제1전극판(10)의 양면(예를 들면, 상면과 하면)에 위치된 제1,2세퍼레이터(20,30) 중에서, 제1전극판(10)의 둘레와 대응되는 제1,2세퍼레이터(20,30)의 영역을 접합하는 역할을 한다. 여기서, 세퍼레이터 접합부(220)는 제1,2세퍼레이터(20,30)의 영역을 부분적으로 용융시켜 제1,2세퍼레이터(20,30)가 상호간 접합되도록 하거나, 또는 제1,2세퍼레이터(20,30)의 사이에 미리 접착제를 도포하고 이를 경화시켜 제1,2세퍼레이터(20,30)가 상호간 접합되도록 할 수 있다. 세퍼레이터 접합부(220)는, 예를 들면, 한정하는 것은 아니지만, 상호간 마주보는 히터 형태이거나, 또는 상호간 마주보는 프레스 형태일 수 있다.The separator junction portion 220 corresponds to the circumference of the first electrode plate 10 among the first and second separators 20 and 30 located on both surfaces of the first electrode plate 10 (eg, upper and lower surfaces). It serves to join the regions of the first and second separators 20 and 30. Here, the separator bonding part 220 partially melts the regions of the first and second separators 20 and 30 so that the first and second separators 20 and 30 are bonded to each other, or the first and second separators 20, The adhesive may be applied in advance between 30) and cured to allow the first and second separators 20 and 30 to be bonded to each other. The separator junction part 220 may be, for example, but not limited to, heater types facing each other, or press types facing each other.
한편, 이러한 세퍼레이터 접합부(220)에 의해 제1전극판(10)의 양면에 위치된 제1,2세퍼레이터(20,30) 중에서, 제1전극판(10)의 둘레와 대응되는 제1,2세퍼레이터(20,30)의 영역에 접합 영역(23)이 형성되는데, 이러한 접합 영역(23)은 제1전극판(10)의 네변을 완전히 둘러싸거나 또는 네변을 부분적으로 둘러싸는 형태일 수 있다. 바람직하기로, 접합 영역(23)은 제1전극판(10)의 네변을 부분적으로 둘러싸도록 함으로써, 전해액이 제1전극판(10) 쪽으로 용이하게 주입되도록 한다. 즉, 도 6a에 도시된 바와 같이, 접합 영역(23)은 제1전극판(10)의 대략 상변, 하변, 좌측변 및 우측변에서 각각 개방된 형태일 수 있다.Meanwhile, among the first and second separators 20 and 30 positioned on both surfaces of the first electrode plate 10 by the separator bonding part 220, the first and second parts corresponding to the circumference of the first electrode plate 10 are provided. The junction region 23 is formed in the regions of the separators 20 and 30, and the junction region 23 may completely surround four sides of the first electrode plate 10 or partially surround the four sides. Preferably, the junction region 23 partially surrounds the four sides of the first electrode plate 10 so that the electrolyte solution can be easily injected into the first electrode plate 10. That is, as shown in FIG. 6A, the junction region 23 may have an open shape at approximately the upper side, the lower side, the left side, and the right side of the first electrode plate 10, respectively.
도 7a 내지 도 7f는 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치의 폴딩 동작을 순차적으로 도시한 것이다. 도 7a 내지 도 7f에 도시된 바와 같이, 이차 전지용 스택 장치의 폴딩 동작은 상술한 이차 전지용 스택 장치의 폴딩 방법 외에 추가적으로 제1전극판 절단 동작 및 세퍼레이터 접합 동작을 더 포함할 수 있다. 물론, 이차 전지용 스택 장치의 폴딩 동작의 나머지 구성 및 작용은 상술한 이차 전지용 스택 장치의 폴딩 동작의 구성 및 작용을 공유할 수 있다.7A to 7F sequentially illustrate folding operations of the stack device for a secondary battery according to various embodiments of the present disclosure. As shown in FIGS. 7A to 7F, the folding operation of the stacking apparatus for secondary batteries may further include a first electrode plate cutting operation and a separator bonding operation in addition to the folding method of the stacking apparatus for secondary batteries. Of course, the remaining configuration and operation of the folding operation of the stacking device for secondary batteries may share the configuration and operation of the folding operation of the stacking device for secondary batteries.
도 7a에 도시된 바와 같이, 제1전극판 공급부(110), 제1세퍼레이터 공급부(120) 및 제2세퍼레이터 공급부(130)에서 각각 제1전극판(10), 제1세퍼레이터(20), 제2세퍼레이터(30)가 제1전극판 접합체 공급부(140)로 공급되어, 제1전극판(10)의 양면에 제1세퍼레이터(20) 및 제2세퍼레이터(30)가 적층된 제1전극판 접합체(40)가 형성된다.As shown in FIG. 7A, each of the first electrode plate 10, the first separator 20, and the first electrode plate supply unit 110, the first separator supply unit 120, and the second separator supply unit 130, respectively. The first separator plate assembly in which the second separator 30 is supplied to the first electrode plate assembly supply unit 140 and the first separator 20 and the second separator 30 are stacked on both surfaces of the first electrode plate 10 is provided. 40 is formed.
여기서, 제1전극판 공급부(110)로부터의 제1전극판(10)은 제1전극판 절단부(210)에 의해 기설정된 길이로 절단된 채 독립된 형태로 제1전극판 접합체 공급부(140)에 공급됨으로써, 제1전극판 접합체(40)는 연속된 형태가 아닌 독립된 형태의 제1전극판(10)을 갖게 된다. 즉, 제1전극판 접합체 공급부(140)에 제1전극판(10)이 공급되기 이전에, 제1전극판 절단 동작에 의해 낱개로 분리된/독립된 제1전극판(10)이 구비되어 제1전극판 접합체 공급부(140)에 공급된다.Here, the first electrode plate 10 from the first electrode plate supply unit 110 is cut to a predetermined length by the first electrode plate cutting unit 210 to the first electrode plate assembly supply unit 140 in an independent form. By being supplied, the first electrode plate assembly 40 has a first electrode plate 10 of an independent type rather than a continuous form. That is, before the first electrode plate 10 is supplied to the first electrode plate assembly supply unit 140, the first electrode plate 10 that is separated / independent by the cutting operation of the first electrode plate is provided. It is supplied to the one electrode plate assembly supply unit 140.
이어서, 제1전극판 접합체(40)는 제2전극판 공급부(150)로 공급된다. 또한, 제2전극판 공급부(150)는 제1전극판 접합체(40)의 양면에 독립된 제2전극판(50)을 공급하여 단위 셀(60)을 형성한다.Subsequently, the first electrode plate assembly 40 is supplied to the second electrode plate supply unit 150. In addition, the second electrode plate supply unit 150 supplies the independent second electrode plate 50 to both surfaces of the first electrode plate assembly 40 to form the unit cell 60.
제2전극판(50)이 공급되기 전 또는 공급된 후에, 세퍼레이터 접합 동작이 더 수행된다. 즉, 단위 셀(60)의 형성 전 또는 형성 이후에, 제1전극판(10)의 양면(예를 들면, 상면과 하면)에 위치된 제1,2세퍼레이터(20,30) 중에서, 제1전극판(10)의 둘레와 대응되는 제1,2세퍼레이터(20,30)의 영역을 접합하여 세퍼레이터 접합 영역(23)을 형성한다.Before or after the second electrode plate 50 is supplied, the separator bonding operation is further performed. In other words, before or after the formation of the unit cell 60, the first and second separators 20 and 30 positioned on both surfaces (eg, upper and lower surfaces) of the first electrode plate 10 may be used. The separator bonding region 23 is formed by joining regions of the first and second separators 20 and 30 corresponding to the circumference of the electrode plate 10.
도면 중 미설명 부호 111은 제1전극판 절단부(210)에 의해 제1전극판(10)이 절단될 때, 제1전극판(10)의 위치를 안정적으로 고정시켜주는 고정부이다.In the drawing, reference numeral 111 is a fixing part which stably fixes the position of the first electrode plate 10 when the first electrode plate 10 is cut by the first electrode plate cutting part 210.
한편, 도 7b 내지 도 7f에 도시된 동작은 도 4c 내지 4h에 도시된 동작과 거의 동일하므로, 도 7b 내지 도 7f에 도시된 동작의 설명은 생략하도록 한다.Meanwhile, since the operations illustrated in FIGS. 7B to 7F are substantially the same as the operations illustrated in FIGS. 4C to 4H, the description of the operations illustrated in FIGS.
도 8은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치를 이용한 스택 방법의 제1전극판 접합체 공급 단계의 순서도이다.8 is a flowchart illustrating a first electrode plate assembly supplying step of a stacking method using a stacking device for a secondary battery according to various embodiments of the present disclosure.
도 8에 도시된 바와 같이, 이차 전지용 스택 방법 중에서 제1전극판 접합체 공급 단계(S100A)는 제1전극판 접합체(40)를 공급하는 것으로서, 제1전극판 절단 단계(S101), 제1전극판 공급 단계(S110), 세퍼레이터 공급 단계(S120), 세퍼레이터 접합 단계(S121) 및 제1전극판 접합체 형성 단계(S130)를 포함할 수 있다.As shown in FIG. 8, in the stacking method for secondary batteries, the first electrode plate assembly supplying step (S100A) is to supply the first electrode plate assembly 40, and the first electrode plate cutting step (S101) and the first electrode are provided. It may include a plate supply step (S110), a separator supply step (S120), a separator bonding step (S121) and the first electrode plate assembly forming step (S130).
제1전극판 절단 단계(S101)에서, 제1전극판 절단부(210)에 의해 제1전극판 공급부(110)로부터 권출되는 제1전극판(10)이 미리 설정된 폭만큼 절단되어 공급된다.In the first electrode plate cutting step S101, the first electrode plate 10 unwound from the first electrode plate supply unit 110 is cut by the first electrode plate cutting unit 210 by a predetermined width and supplied.
제1전극판 공급 단계(S110)에서, 상술한 바와 같이 미리 설정된 폭만큼 절단된 전극판(10)이 제1전극판 접합체 공급부(140)에 공급된다.In the first electrode plate supplying step S110, the electrode plate 10 cut by the predetermined width as described above is supplied to the first electrode plate assembly supply unit 140.
세퍼레이터 공급 단계(S120)에서, 제1전극판(10)의 하면과 상면에 제1세퍼레이터(20) 및 제2세퍼레이터(30)가 공급된다.In the separator supplying step S120, the first separator 20 and the second separator 30 are supplied to the lower surface and the upper surface of the first electrode plate 10.
세퍼레이터 접합 단계(S121)에서, 세퍼레이터 접합부(220)에 의해 제1전극판(10)의 양면에 위치된 제1,2세퍼레이터(120,130) 중에서, 상기 제1전극판(10)의 둘레 영역과 대응되는 제1,2세퍼레이터(120,130)의 영역이 접합됨으로써, 제1전극판(10)의 둘레와 대응되는 제1,2세퍼레이터(120,130)에 접합 영역(23)이 형성된다.In the separator bonding step (S121), among the first and second separators 120 and 130 positioned on both surfaces of the first electrode plate 10 by the separator bonding unit 220, the peripheral area of the first electrode plate 10 corresponds to the peripheral area. By joining the regions of the first and second separators 120 and 130, the junction regions 23 are formed in the first and second separators 120 and 130 corresponding to the circumference of the first electrode plate 10.
제1전극판 접합체 형성 단계(S130)에서, 제1전극판(10)의 하면과 상면에 공급된 제1세퍼레이터(20) 및 제2세퍼레이터(30)를 적층하여 제1전극판 접합체(40)가 완성된다.In the first electrode plate assembly forming step (S130), the first separator 20 and the second separator 30 supplied to the lower surface and the upper surface of the first electrode plate 10 are stacked to form the first electrode plate assembly 40. Is completed.
이와 같이 하여, 본 발명의 다양한 실시이예에 따른 이차 전지용 스택 장치(200) 및 이를 이용한 방법은 낱개로 절단된 제1전극판(10) 및 제2전극판(50)을 공급하고, 특히, 제1전극판(10)의 양면에 위치된 세퍼레이터(20,30) 중에서 제1전극판(10)의 둘레 영역과 대응되는 세퍼레이터(20,30)의 영역을 접합함으로써, 2장의 세퍼레이터(20,30) 사이에서 제1전극판(10)이 유동하지 않도록 하고, 이에 따라 안전성/신뢰성이 우수한 이차 전지를 제조하도록 한다.As such, the stack device 200 and the method using the same according to various embodiments of the present disclosure supply the first electrode plate 10 and the second electrode plate 50 which are individually cut, and particularly, Two separators 20 and 30 are formed by joining the regions of the separators 20 and 30 corresponding to the circumferential region of the first electrode plate 10 among the separators 20 and 30 located on both surfaces of the one electrode plate 10. In order to prevent the first electrode plate 10 from flowing, the secondary battery having excellent safety / reliability is manufactured.
도 9는 본 발명의 다양한 실시예에 따른 이차 전지(300)를 도시한 개략도이다. 여기서, 본 발명의 용이한 이해를 위해 적층이 진행되는 도중의 이차 전지(300)가 도시되어 있다.9 is a schematic diagram illustrating a rechargeable battery 300 according to various embodiments of the present disclosure. Here, the secondary battery 300 is shown during the lamination process for easy understanding of the present invention.
도 9에 도시된 바와 같이, 본 발명의 실시예에 따른 이차 전지(300)는 제1전극판(10), 세퍼레이터들(20,30) 및 제2전극판(50)을 포함할 수 있다.As illustrated in FIG. 9, the secondary battery 300 according to the embodiment of the present invention may include a first electrode plate 10, separators 20 and 30, and a second electrode plate 50.
제1전극판(10)은 제1전극판 제1코팅부(11)와, 제1전극판 제1코팅부(11)로부터 수직 방향으로 이격되어 형성된 제1전극판 제2코팅부(12)를 포함할 수 있다. 또한, 제1전극판(10)은 제1전극판 제2코팅부(12)로부터 수직 방향으로 이격되어 형성된 제1전극판 제3코팅부(13)를 더 포함할 수 있다.The first electrode plate 10 is a first electrode plate second coating portion 12 formed spaced apart from the first electrode plate first coating portion 11 and the first electrode plate first coating portion 11 in the vertical direction. It may include. In addition, the first electrode plate 10 may further include a first electrode plate third coating part 13 spaced apart from the first electrode plate second coating part 12 in a vertical direction.
세퍼레이터들(20,30)은 제1전극판(10)을 상부 및 하부에서 감싼다. 예를 들면, 세퍼레이터들(20,30)은 제1전극판 제1코팅부(11), 제1전극판 제2코팅부(12) 및 제1전극판 제3코팅부(13)를 각각 상부와 하부에서 감쌀 수 있다.The separators 20 and 30 surround the first electrode plate 10 at the top and bottom thereof. For example, the separators 20 and 30 may respectively cover the first electrode plate first coating part 11, the first electrode plate second coating part 12, and the first electrode plate third coating part 13, respectively. It can be wrapped in the bottom.
제2전극판(50)은 제2전극판 제1코팅부(51)와, 제2전극판 제1코팅부(51)로부터 수직 방향으로 이격되어 형성된 제2전극판 제2코팅부(52)를 포함할 수 있다. 또한, 제2전극판(50)은 제2전극판 제2코팅부(52)로부터 수직 방향으로 이격되어 형성된 제2전극판 제3코팅부(53)를 더 포함할 수 있다.The second electrode plate 50 has a second electrode plate second coating portion 52 formed spaced apart from the second electrode plate first coating portion 51 in a vertical direction from the second electrode plate first coating portion 51. It may include. In addition, the second electrode plate 50 may further include a second electrode plate third coating part 53 spaced apart from the second electrode plate second coating part 52 in the vertical direction.
한편, 상술한 스택 장치 및 스택 방법에 의해, 제1전극판(10) 및 이를 상,하부에서 감싸는 세퍼레이터들(20,30)은 대략 미앤더(meander) 형태로 형성될 수 있다. 즉, 본 발명의 실시예에 따른 이차 전지(300)는 제1전극판(10)의 제1전극판 제1코팅부(11)와 제1전극판 제2코팅부(12)의 사이가 제1방향으로 폴딩되어 형성된 제1폴딩 영역(231)을 더 포함할 수 있다. 또한, 본 발명의 실시예에 따른 이차 전지(300)는 제1전극판(10)의 제1전극판 제2코팅부(12)와 제1전극판 제3코팅부(13)의 사이가 제2방향으로 폴딩되어 형성된 제2폴딩 영역(232)을 더 포함할 수 있다. 여기서, 제1방향 및 제2방향은 상호간 반대 방향일 수 있다. 엄밀히 말하면, 제1전극판(10)의 제1전극판 제1코팅부(11)와 제1전극판 제2코팅부(12)의 사이에 대응하는 세퍼레이터들(20,30)의 영역이 제1방향으로 폴딩되어 제1폴딩 영역(231)을 형성할 수 있다. 또한, 제1전극판(10)의 제1전극판 제2코팅부(12)와 제1전극판 제3코팅부(13)의 사이에 대응하는 세퍼레이터들(20,30)의 영역이 제1방향의 반대 방향인 제2방향으로 폴딩되어 제2폴딩 영역(232)을 형성할 수 있다.Meanwhile, according to the stacking device and the stacking method described above, the first electrode plate 10 and the separators 20 and 30 surrounding the upper and lower portions may be formed in a meander shape. That is, in the secondary battery 300 according to the embodiment of the present invention, the first electrode plate 10 of the first electrode plate 10 is disposed between the first coating part 11 and the first electrode plate second coating part 12. The apparatus may further include a first folding area 231 formed by folding in one direction. In addition, in the secondary battery 300 according to the embodiment of the present invention, the first electrode plate 10 of the first electrode plate 10 is disposed between the second coating portion 12 and the first electrode plate third coating portion 13. The display device may further include a second folding area 232 formed by folding in two directions. Here, the first direction and the second direction may be opposite to each other. Strictly speaking, the regions of the separators 20 and 30 corresponding to the space between the first electrode plate first coating portion 11 and the first electrode plate second coating portion 12 of the first electrode plate 10 may be formed. The first folding area 231 may be formed by folding in one direction. In addition, an area of the separators 20 and 30 corresponding to the first electrode plate between the second coating part 12 and the first electrode plate third coating part 13 of the first electrode plate 10 is first. The second folding area 232 may be formed by folding in a second direction opposite to the direction.
더불어, 이러한 구조하에서, 제2전극판(50)의 제2전극판 제1코팅부(51)는 제1전극판 제1코팅부(11)의 상부에 위치될 수 있고, 제2전극판 제2코팅부(52)는 제1전극판 제2코팅부(12)의 상부에 각각 위치될 수 있다. 즉, 제2전극판 제1코팅부(51) 및 제2전극판 제2코팅부(52)는 각각 제1전극판 제1코팅부(11) 및 제1전극판 제2코팅부(12)에 대면하여 적층될 수 있다.In addition, under this structure, the second electrode plate first coating part 51 of the second electrode plate 50 may be positioned above the first electrode plate first coating part 11, and the second electrode plate agent may be formed. The second coating part 52 may be positioned on the first electrode plate second coating part 12, respectively. That is, the second electrode plate first coating part 51 and the second electrode plate second coating part 52 are respectively the first electrode plate first coating part 11 and the first electrode plate second coating part 12. It can be stacked facing.
다르게 설명하면, 제1전극판 제2코팅부(12)가 제2전극판 제1코팅부(51)와 제2전극판 제2코팅부(52)의 사이에 개재되고, 제1전극판 제1코팅부(11)는 제2전극판 제1코팅부(51)의 하부에 위치되어 있다. 또 다르게 설명하면, 제2전극판 제1코팅부(51)가 제1폴딩 영역(231) 및/또는 하기할 제1접합 영역(221)을 중심으로 제1전극판 제1코팅부(11)와 제1전극판 제2코팅부(12)의 사이에 개재된다.In other words, the first electrode plate second coating part 12 is interposed between the second electrode plate first coating part 51 and the second electrode plate second coating part 52, and the first electrode plate first The first coating part 11 is positioned under the first coating part 51 of the second electrode plate. In other words, the second electrode plate first coating part 51 is formed around the first folding area 231 and / or the first bonding area 221 to be described below. And the first electrode plate between the second coating part 12.
또한, 제2전극판(50)의 제2전극판 제2코팅부(52)는 제1전극 제3코팅부(13)의 하부에 위치되고, 제2전극판 제3코팅부(53)는 제1전극 제3코팅부(13)의 상부에 위치될 수 있다. 즉, 제2전극판 제2코팅부(52) 및 제2전극판 제3코팅부(53)는 각각 제1전극판 제2코팅부(12) 및 제1전극판 제3코팅부(13)에 대면하여 적층될 수 있다.In addition, the second electrode plate second coating portion 52 of the second electrode plate 50 is positioned under the first electrode third coating portion 13, and the second electrode plate third coating portion 53 is The first electrode may be positioned above the third coating part 13. That is, the second electrode plate second coating part 52 and the second electrode plate third coating part 53 are respectively the first electrode plate second coating part 12 and the first electrode plate third coating part 13. It can be stacked facing.
다르게 설명하면, 제1전극판 제3코팅부(13)가 제2전극판 제2코팅부(52)와 제2전극판 제3코팅부(53)의 사이에 개재되어 있고, 제1전극판 제2코팅부(12)는 제2전극판 제2코팅부(52)의 하부에 위치되어 있다. 또 다르게 설명하면, 제2전극판 제2코팅부(52)가 제2폴딩 영역(232) 및/또는 제2접합 영역(222)을 중심으로 제1전극판 제2코팅부(12)와 제1전극판 제3코팅부(13)의 사이에 개재된다.In other words, the first electrode plate third coating part 13 is interposed between the second electrode plate second coating part 52 and the second electrode plate third coating part 53, and the first electrode plate. The second coating part 12 is positioned under the second electrode plate second coating part 52. In other words, the second electrode plate second coating part 52 may be formed of the first electrode plate second coating part 12 and the second electrode around the second folding area 232 and / or the second bonding area 222. It is interposed between the first electrode plate third coating portion 13.
이러한 스택 구조에 의해, 본 발명에 따른 이차 전지(300)는 세퍼레이터를 사이에 두고 제1전극판(10)과 제2전극판(50) 사이에 리튬 이온이 이동하여, 이차 전지로서 동작하게 된다.With this stack structure, in the secondary battery 300 according to the present invention, lithium ions move between the first electrode plate 10 and the second electrode plate 50 with a separator therebetween to operate as a secondary battery. .
계속해서, 본 발명의 실시예에 따른 이차 전지(300)는 제1전극판 제1코팅부(11)와 제1전극판 제2코팅부(12)의 사이의 세퍼레이터들(20,30)이 상호간 접합되어 형성된 제1접합 영역(221)을 더 포함할 수 있다. 더욱이, 본 발명의 실시예에 따른 이차 전지(300)는 제1전극판 제2코팅부(12)와 제1전극판 제3코팅부(13) 사이의 세퍼레이터들(20,30)이 상호간 접합되어 형성된 제2접합 영역(222)을 더 포함할 수 있다. 이러한 세퍼레이터들(20,30)의 제1접합 영역(221) 및 제2접합 영역(222)에 의해 제1전극판(10)이 세퍼레이터들(20,30)의 내부에 구속됨으로써, 제1전극판(10)과 제2전극판(50)이 상호간 전기적으로 쇼트되지 않게 된다.Subsequently, in the secondary battery 300 according to the embodiment of the present invention, the separators 20 and 30 between the first electrode plate first coating part 11 and the first electrode plate second coating part 12 are formed. It may further include a first junction region 221 formed by bonding to each other. In addition, in the rechargeable battery 300 according to the exemplary embodiment, the separators 20 and 30 between the first electrode plate second coating part 12 and the first electrode plate third coating part 13 are bonded to each other. And may further include a second junction region 222 formed. The first electrode plate 10 is constrained inside the separators 20 and 30 by the first junction region 221 and the second junction region 222 of the separators 20 and 30. The plate 10 and the second electrode plate 50 are not electrically shorted with each other.
더불어, 이러한 접합 영역(221,222)은, 도 6a에 도시된 바와 같이, 제1전극판 제1코팅부(11)와 제1전극판 제2코팅부(12) 사이의 세퍼레이터 영역 및/또는 제1전극판 제2코팅부(12)와 제1전극판 제3코팅부(13) 사이의 세퍼레이터 영역뿐만 아니라, 제1전극판 제1코팅부(11)의 네변과 대응하는 세퍼레이터의 영역 및/또는 제1전극판 제2코팅부(12)의 네변과 대응하는 세퍼레이터 영역에도 형성될 수 있다. 따라서, 제1전극판(10)은 세퍼레이터들(20,30)의 내부에서 더욱 안정적으로 위치될 수 있다. 즉, 제1전극판(10)이 세퍼레이터들(20,30)의 네방향 외측으로 이탈되지 않고 구속될 수 있다.In addition, as shown in FIG. 6A, the junction regions 221 and 222 may include a separator region and / or a first portion between the first electrode plate first coating portion 11 and the first electrode plate second coating portion 12. In addition to the separator region between the electrode plate second coating portion 12 and the first electrode plate third coating portion 13, the region of the separator corresponding to the four sides of the first electrode plate first coating portion 11 and / or The separator may be formed in the separator region corresponding to the four sides of the first electrode plate second coating part 12. Therefore, the first electrode plate 10 may be more stably positioned in the separators 20 and 30. That is, the first electrode plate 10 may be restrained without being separated out of four directions of the separators 20 and 30.
이와 같이 하여, 본 발명에 따른 이차 전지(300)는 세퍼레이터들(20,30)에 제1,2폴딩 영역(231,232)이 형성되고, 또한 제1,2폴딩 영역(231,232)에 각각 제1,2접합 영역(221,222)이 형성됨으로써, 세퍼레이터들(20,30)의 내측에 제1전극판(10)이 유동하지 않고 안정적으로 위치된다. 따라서, 제1전극판(10)과 제2전극판(50) 사이의 전기적 쇼트 현상이 억제된다. 더불어, 제1,2접합 영역(221,222)은 세퍼레이터들(20,30)에 불연속적으로 형성됨으로써, 전해액이 용이하게 제1전극판(10)에 도달할 수 있다.In this manner, in the secondary battery 300 according to the present invention, the first and second folding regions 231 and 232 are formed in the separators 20 and 30, and the first and second folding regions 231 and 232 are respectively formed in the first and second folding regions 231 and 232. By forming the two junction regions 221 and 222, the first electrode plate 10 is stably positioned inside the separators 20 and 30 without flowing. Therefore, the electrical short phenomenon between the first electrode plate 10 and the second electrode plate 50 is suppressed. In addition, since the first and second junction regions 221 and 222 are discontinuously formed in the separators 20 and 30, the electrolyte may easily reach the first electrode plate 10.
이상에서 설명한 것은 본 발명의 다양한 실시예에 따른 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지를 실시하기 위한 하나의 다양한 실시예에 불과한 것으로서, 본 발명의 다양한 실시예는 상기한 다양한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is merely one of various embodiments for implementing a stacking device for a secondary battery, a stacking method using the same, and a secondary battery according to the various embodiments of the present invention. Not limited to the examples, as claimed in the claims below, those skilled in the art to which the invention belongs without departing from the gist of the invention to the extent that various changes can be made It will be said to have a spirit.

Claims (22)

  1. 제1전극 제1코팅부와 상기 제1전극 제1코팅부로부터 이격되어 위치된 제1전극 제2코팅부를 포함하는 제1전극판 및 상기 제1전극판의 양면에 세퍼레이터들이 적층된 제1전극판 접합체를 공급하는 제1전극판 접합체 공급부;A first electrode plate including a first electrode first coating part and a first electrode second coating part spaced apart from the first electrode first coating part, and a first electrode having separators stacked on both surfaces of the first electrode plate. A first electrode plate assembly supply unit for supplying a plate assembly;
    상기 제1전극판 접합체 중 상기 제1전극 제1코팅부의 양면에 제2전극판의 제2전극 제1코팅부와 제2전극 제2코팅부를 각각 배치하여 단위 셀을 형성하는 제2전극판 공급부; 및A second electrode plate supply unit which forms a unit cell by disposing a second electrode first coating portion and a second electrode second coating portion of the second electrode plate on both surfaces of the first electrode plate assembly, respectively. ; And
    상기 단위 셀이 형성된 상기 제1전극판 접합체를 폴딩하여 상기 제2전극판의 상기 제2전극 제1코팅부 또는 상기 제2전극 제2코팅부가 상기 제1전극판의 상기 제1전극 제2코팅부와 대면하여 스택을 형성하도록 하는 폴딩부를 포함하는 이차 전지용 스택 장치.By folding the first electrode plate assembly on which the unit cell is formed, the second electrode first coating part or the second electrode second coating part of the second electrode plate is coated on the first electrode of the first electrode plate. A stacking device for a secondary battery comprising a folding portion to face a portion to form a stack.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1전극판을 상기 제1전극판 접합체 공급부에 공급하는 제1전극판 공급부; 및A first electrode plate supply unit supplying the first electrode plate to the first electrode plate assembly supply unit; And
    상기 세퍼레이터들을 상기 제1전극판 접합체 공급부에 공급하는 세퍼레이터 공급부를 더 포함하고,A separator supply unit for supplying the separators to the first electrode plate assembly supply unit,
    상기 제1전극판 접합체 공급부는 상기 제1전극판 및 세퍼레이터들을 배치하여 적층시키는 이차 전지용 스택 장치.The first electrode plate assembly supply unit stacks and stacks the first electrode plate and the separators.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1전극판 접합체의 제1전극판은 연속된 형태로 공급되고,The first electrode plate of the first electrode plate assembly is supplied in a continuous form,
    상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치되는 이차 전지용 스택 장치.The second electrode plate is cut to a predetermined length is disposed on both sides of the first electrode plate assembly for stacking device for a secondary battery.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제1전극판은 기설정된 길이로 절단되어 독립된 형태로 공급되고,The first electrode plate is cut into a predetermined length and supplied in an independent form,
    상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치되는 이차 전지용 스택 장치.The second electrode plate is cut to a predetermined length is disposed on both sides of the first electrode plate assembly for stacking device for a secondary battery.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제1전극판의 양면에 위치된 세퍼레이터들 중에서, 상기 제1전극판의 둘레 영역과 대응되는 세퍼레이터의 영역을 접합하는 세퍼레이터 접합부를 더 포함하는 이차 전지용 스택 장치.And a separator bonding unit configured to bond regions of the separator corresponding to the circumferential region of the first electrode plate among the separators positioned on both surfaces of the first electrode plate.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 폴딩부는 상기 제1전극판 접합체의 양면에 배치된 상기 제2전극판을 가압하여 상기 제1전극판 접합체에 고정시키고, 상기 단위 셀에 고정되어 상기 제1전극판 접합체를 폴딩하는 그리퍼를 포함하는 이차 전지용 스택 장치.The folding unit includes a gripper for pressing the second electrode plate disposed on both surfaces of the first electrode plate assembly to fix the first electrode plate assembly to the first electrode plate assembly, and to be fixed to the unit cell to fold the first electrode plate assembly. Stack device for secondary batteries.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 폴딩부는 제1폴딩부 및 제2폴딩부를 포함하고,The folding part includes a first folding part and a second folding part,
    상기 제1폴딩부 및 제2폴딩부가 교대로 상기 단위 셀이 형성된 상기 제1전극판 접합체를 폴딩하여 상기 셀 스택을 형성하는 이차 전지용 스택 장치.And stacking the first electrode plate assembly, in which the first and second folding portions alternately form the unit cells, to form the cell stack.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 폴딩부의 폴딩 동작시 상기 셀 스택을 가압하여 고정시키는 고정부를 더 포함하는 이차 전지용 스택 장치.And a fixing unit configured to press and fix the cell stack during the folding operation of the folding unit.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제1전극판은 상기 셀 스택의 굴곡된 부분을 형성하는 영역의 활물질이 제거된 이차 전지용 스택 장치.The first electrode plate is a secondary battery stack device, the active material is removed in the region forming the curved portion of the cell stack.
  10. 제1전극 제1코팅부와 상기 제1전극 제1코팅부로부터 이격되어 위치된 제1전극 제2코팅부를 포함하는 제1전극판 및 상기 제1전극판의 양면에 세퍼레이터들이 적층된 제1전극판 접합체를 공급하는 제1전극판 접합체 공급 단계;A first electrode plate including a first electrode first coating part and a first electrode second coating part spaced apart from the first electrode first coating part, and a first electrode having separators stacked on both surfaces of the first electrode plate. A first electrode plate assembly supplying step of supplying a plate assembly;
    상기 제1전극판 접합체 중 상기 제1전극 제1코팅부의 양면에 제2전극판의 제2전극 제1코팅부와 제2전극 제2코팅부를 각각 배치하여 단위 셀을 형성하는 제2전극판 공급 단계; 및Supplying a second electrode plate to form a unit cell by disposing the second electrode first coating portion and the second electrode second coating portion of the second electrode plate on both surfaces of the first electrode plate assembly of the first electrode plate assembly step; And
    상기 단위 셀이 형성된 상기 제1전극판 접합체를 폴딩하여 상기 제2전극판의 상기 제2전극 제1코팅부 또는 상기 제2전극 제2코팅부가 상기 제1전극판의 상기 제1전극 제2코팅부와 대면하여 셀 스택을 형성하도록 하는 폴딩 단계를 포함하는 이차 전지용 스택 방법.By folding the first electrode plate assembly on which the unit cell is formed, the second electrode first coating part or the second electrode second coating part of the second electrode plate is coated on the first electrode of the first electrode plate. A stacking method for a secondary battery comprising a folding step of forming a cell stack facing a portion.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제1전극판 접합체 공급 단계는The first electrode plate assembly supplying step
    상기 제1전극판을 공급하는 제1전극판 공급 단계;A first electrode plate supplying step of supplying the first electrode plate;
    상기 제1전극판의 양면에 세퍼레이터들을 공급하는 세퍼레이터 공급 단계; 및A separator supplying step of supplying separators to both surfaces of the first electrode plate; And
    상기 제1전극판의 양면에 공급된 세퍼레이터들을 적층하여 제1전극판 접합체를 형성하는 제1전극판 접합체 형성 단계를 포함하는 이차 전지용 스택 방법.And stacking separators supplied on both sides of the first electrode plate to form a first electrode plate assembly.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 제1전극판 접합체 공급 단계에서 상기 제1전극판은 연속된 형태로 공급되고,In the supplying step of the first electrode plate assembly, the first electrode plate is supplied in a continuous form,
    상기 제2전극판 공급 단계에서 상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치되는 이차 전지용 스택 방법.In the second electrode plate supplying step, the second electrode plate is cut to a predetermined length and disposed on both sides of the first electrode plate assembly.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 제1전극판 접합체 공급 단계에서 상기 제1전극판은 기설정된 길이로 절단되어 독립된 형태로 공급되고,In the step of supplying the first electrode plate assembly, the first electrode plate is cut into a predetermined length and supplied in an independent form.
    상기 제2전극판 공급 단계에서 상기 제2전극판은 기설정된 길이로 절단되어 상기 제1전극판 접합체의 양면에 배치되는 이차 전지용 스택 방법.In the second electrode plate supplying step, the second electrode plate is cut to a predetermined length and disposed on both sides of the first electrode plate assembly.
  14. 제 10 항에 있어서,The method of claim 10,
    상기 제1전극판 접합체 공급 단계 이후에,After the step of supplying the first electrode plate assembly,
    상기 제1전극판의 양면에 위치된 세퍼레이터들 중에서, 상기 제1전극판의 둘레 영역과 대응되는 세퍼레이터들의 영역을 접합하는 세퍼레이터 접합 단계를 더 포함하는 이차 전지용 스택 방법.Separator bonding step of bonding a region of the separator corresponding to the circumferential region of the first electrode plate of the separators located on both sides of the first electrode plate.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 제1전극판 공급 단계의 상기 제1전극판은 상기 셀 스택의 굴곡된 부분을 형성하는 영역의 활물질이 제거된 이차 전지용 스택 방법.The first electrode plate of the first electrode plate supplying step is a stacking method for a secondary battery in which the active material in the region forming the curved portion of the cell stack is removed.
  16. 제1전극판 제1코팅부;A first electrode plate first coating part;
    제1전극판 제2코팅부;A first electrode plate second coating part;
    상기 제1전극판 제1코팅부 및 상기 제1전극판 제2코팅부를 상,하부에서 감싸는 세퍼레이터들;Separators surrounding the first electrode plate first coating part and the first electrode plate second coating part at upper and lower parts thereof;
    상기 제1전극판 제1코팅부와 대면하여 적층되는 제2전극판 제1코팅부; 및A second electrode plate first coating part stacked to face the first electrode plate first coating part; And
    상기 제1전극판 제1코팅부와 상기 제1전극판 제2코팅부의 사이가 제1방향으로 폴딩되는 제1폴딩 영역을 포함하고,And a first folding area in which the first electrode part between the first coating part and the first electrode plate second coating part is folded in a first direction.
    폴딩된 상기 제1전극판 제2코팅부가 상기 제2전극판 제1코팅부에 대면하여 적층된 것을 특징으로 하는 이차 전지.And the folded first electrode plate second coating part is laminated to face the second electrode plate first coating part.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 제1전극판 제1코팅부와 상기 제1전극판 제2코팅부의 사이의 상기 세퍼레이터들이 상호간 접합되어 형성된 제1접합 영역을 더 포함함을 특징으로 하는 이차 전지.And a first junction region formed by bonding the separators between the first electrode plate first coating portion and the first electrode plate second coating portion to each other.
  18. 제 16 항에 있어서,The method of claim 16,
    상기 제1전극판 제2코팅부에 대면하여 적층되는 제2전극판 제2코팅부를 더 포함함을 특징으로 하는 이차 전지.The secondary battery further comprises a second electrode plate second coating portion which is stacked facing the first electrode plate second coating portion.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 제2전극판 제2코팅부에 대면하여 적층되는 제1전극판 제3코팅부를 더 포함하고,Further comprising a third coating part of the first electrode plate laminated to face the second coating part of the second electrode plate,
    상기 제1전극판 제2코팅부와 상기 제1전극판 제3코팅부의 사이가 제2방향으로 폴딩되는 제2폴딩 영역을 더 포함하며,And a second folding area in which a space between the first electrode plate second coating part and the first electrode plate third coating part is folded in a second direction.
    상기 폴딩된 상기 제1전극판 제3코팅부가 상기 제2전극판 제2코팅부에 대면하여 적층된 것을 특징으로 하는 이차 전지.And the folded first electrode plate third coating part is laminated to face the second electrode plate second coating part.
  20. 제 19 항에 있어서,The method of claim 19,
    상기 제1전극판 제2코팅부와 상기 제1전극판 제3코팅부 사이의 상기 세퍼레이터들이 상호간 접합되어 형성된 제2접합 영역을 더 포함함을 특징으로 하는 이차 전지.And a second bonding region formed by bonding the separators between the first electrode plate second coating portion and the first electrode plate third coating portion to each other.
  21. 제 19 항에 있어서,The method of claim 19,
    상기 제1방향과 상기 제2방향은 서로 다른 방향인 것을 특징으로 하는 이차 전지. The secondary battery is characterized in that the first direction and the second direction are different directions.
  22. 제 20 항에 있어서,The method of claim 20,
    상기 제1전극판 제3코팅부와 대면하여 적층되는 제2전극판 제3코팅부를 더 포함함을 특징으로 하는 이차 전지.The secondary battery further comprises a second electrode plate third coating portion which is stacked facing the first electrode plate third coating portion.
PCT/KR2017/006524 2016-06-27 2017-06-21 Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby WO2018004185A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL17820462T PL3477755T3 (en) 2016-06-27 2017-06-21 Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby
EP17820462.4A EP3477755B1 (en) 2016-06-27 2017-06-21 Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby
US16/313,118 US20190237797A1 (en) 2016-06-27 2017-06-21 Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby
CN201780050081.8A CN109643820A (en) 2016-06-27 2017-06-21 Stack equipment for secondary cell, the stacking method using the stack equipment and thus obtained secondary cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0080100 2016-06-27
KR20160080100 2016-06-27
KR10-2017-0076751 2017-06-16
KR1020170076751A KR20180001458A (en) 2016-06-27 2017-06-16 Stacking Apparatus for Secondary Battery, Stacking Method of The Same and Secondary Battery thereof

Publications (1)

Publication Number Publication Date
WO2018004185A1 true WO2018004185A1 (en) 2018-01-04

Family

ID=60786144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006524 WO2018004185A1 (en) 2016-06-27 2017-06-21 Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby

Country Status (3)

Country Link
HU (1) HUE056648T2 (en)
PL (1) PL3477755T3 (en)
WO (1) WO2018004185A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391446A (en) * 2018-04-20 2019-10-29 罗伯特·博世有限公司 Method and battery unit of the manufacture for the electrode assembly of battery unit
CN110459793A (en) * 2019-07-12 2019-11-15 江苏安纳金机械有限公司 A kind of lithium battery production swing lamination device of pole piece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110048839A (en) * 2009-11-03 2011-05-12 삼성에스디아이 주식회사 Rechargeable battery and manufacturing method of the same
US20110143189A1 (en) * 2009-12-07 2011-06-16 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
KR20120099345A (en) * 2011-01-26 2012-09-10 삼성에스디아이 주식회사 Electrode unit and method of manufacturing the same, secondary battery having the same
JP2014067542A (en) * 2012-09-25 2014-04-17 Toyota Industries Corp Power storage device and method for manufacturing electrode assembly
KR20150021069A (en) * 2012-05-24 2015-02-27 소베마 에스.피.에이. Machine and process for obtaining cells for electric storage batteries and cell for electric storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110048839A (en) * 2009-11-03 2011-05-12 삼성에스디아이 주식회사 Rechargeable battery and manufacturing method of the same
US20110143189A1 (en) * 2009-12-07 2011-06-16 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
KR20120099345A (en) * 2011-01-26 2012-09-10 삼성에스디아이 주식회사 Electrode unit and method of manufacturing the same, secondary battery having the same
KR20150021069A (en) * 2012-05-24 2015-02-27 소베마 에스.피.에이. Machine and process for obtaining cells for electric storage batteries and cell for electric storage battery
JP2014067542A (en) * 2012-09-25 2014-04-17 Toyota Industries Corp Power storage device and method for manufacturing electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391446A (en) * 2018-04-20 2019-10-29 罗伯特·博世有限公司 Method and battery unit of the manufacture for the electrode assembly of battery unit
US11302902B2 (en) * 2018-04-20 2022-04-12 Robert Bosch Gmbh Method for manufacturing an electrode assembly for a battery cell and battery cell
CN110459793A (en) * 2019-07-12 2019-11-15 江苏安纳金机械有限公司 A kind of lithium battery production swing lamination device of pole piece

Also Published As

Publication number Publication date
HUE056648T2 (en) 2022-02-28
PL3477755T3 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
WO2015046803A1 (en) Method for manufacturing electrode assembly and secondary battery
WO2013137693A1 (en) Battery cell having asymmetric structure and battery pack comprising same
WO2015046703A1 (en) Method for securing electrode assembly using tape
WO2015046894A1 (en) Method for manufacturing electrode assembly
WO2013151249A1 (en) Battery cell having stair-like structure
WO2014109481A1 (en) Secondary battery comprising integrated anode lead and cathode lead, and manufacturing method therefor
WO2014126432A1 (en) Electrode assembly having improved safety and production method therefor
WO2014073751A1 (en) Stepped electrode assembly, and secondary battery, battery pack and device comprising same and method for manufacturing same
WO2013180449A1 (en) Electrode assembly, battery cell, manufacturing method for electrode assembly and manufacturing method for battery cell
WO2021194285A1 (en) Cell manufacturing device and method
WO2021025374A1 (en) Battery pack having movable busbar assembly, and secondary battery comprising same
WO2022030839A1 (en) Electrode assembly comprising disconnection prevention layer, and preparation method thereof
WO2015152527A1 (en) Battery module and battery pack comprising same
WO2019050147A1 (en) Electrode having improved electrode tab welding characteristic and secondary battery comprising same
WO2022124802A1 (en) Secondary battery and battery module including same
WO2018004185A1 (en) Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby
WO2020060022A1 (en) Electrode assembly
WO2022191612A1 (en) Battery cell and battery cell manufacturing apparatus
WO2022169292A1 (en) Apparatus for adhering tape for secondary battery and adhering method using same
WO2022191613A1 (en) Battery cell and battery module comprising same
WO2021080239A1 (en) Electrode assembly manufacturing method and electrode assembly manufactured thereby
WO2014137018A1 (en) Laminate of electrode groups having stepped structure
WO2022092616A1 (en) Apparatus for generating plasma for secondary batteries and lamination system comprising same
WO2018012789A1 (en) Secondary battery
WO2015005697A1 (en) Stepped electrode assembly having excellent stacked shape stability and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820462

Country of ref document: EP

Effective date: 20190128