WO2018004147A1 - Method for manufacturing phase change memory by using laser - Google Patents

Method for manufacturing phase change memory by using laser Download PDF

Info

Publication number
WO2018004147A1
WO2018004147A1 PCT/KR2017/005992 KR2017005992W WO2018004147A1 WO 2018004147 A1 WO2018004147 A1 WO 2018004147A1 KR 2017005992 W KR2017005992 W KR 2017005992W WO 2018004147 A1 WO2018004147 A1 WO 2018004147A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
laser beam
laser
energy intensity
Prior art date
Application number
PCT/KR2017/005992
Other languages
French (fr)
Korean (ko)
Inventor
박홍진
최기철
김민호
Original Assignee
주식회사 비에스피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비에스피 filed Critical 주식회사 비에스피
Publication of WO2018004147A1 publication Critical patent/WO2018004147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching

Definitions

  • the present invention relates to a method for manufacturing a phase change memory using a laser, and more particularly, to a method for manufacturing a phase change memory using a laser for melting and filling a phase change material in a trench formed in a substrate by irradiating a laser beam on the phase change material.
  • Phase-change random access memory is a next-generation memory semiconductor that stores data by determining a phase change of a specific material. Phase change memory has both the advantages of flash memory, which does not erase stored information even when power is lost, and the advantages of DRAM, which has a high processing speed.
  • Phase change memory includes phase change materials exhibiting two or more different states, where the phase change materials have amorphous and crystalline states.
  • the crystalline state has an ordered lattice structure while the amorphous state has a more misaligned structure. Since the amorphous state and the crystalline state have different resistances and state transitions occur in response to temperature changes, they can be used to store data bits.
  • 1 is a view for explaining a problem in manufacturing a phase change memory using a laser.
  • the phase change memory includes a phase change material 10, an electrode part 20, and a switch element 30, and the phase change material 10, the electrode part 20, and a switch from an upper side to a lower side.
  • the elements 30 are arranged in order.
  • the phase change material 10 is changed in phase by a power applied to the electrode part 20, and the resistance is changed.
  • the electrode part 20 causes a phase change of the phase change material 10, and the phase change material 10 Is disposed on the lower side.
  • the switch element 30 is disposed below the electrode portion 20.
  • the phase change material 10 is deposited on the trench 2 formed on the substrate 1, and then the laser beam L is irradiated onto the phase change material 10 to obtain an image.
  • the change material 10 is melted so that the phase change material 10 is evenly filled in the trench 2.
  • the problem to be solved by the present invention is to solve such a conventional problem, by controlling the energy intensity of the laser beam irradiated to the phase change material to maintain a temperature condition suitable for melting the phase change material, Phase change using a laser that allows materials to be efficiently reflowed into the trench to prevent the formation of empty spaces and changes in the composition of the phase change material and to prevent thermal damage to the switch elements formed under the electrode.
  • a memory manufacturing method is provided.
  • Phase change memory manufacturing method using a laser of the present invention to achieve the above object, the phase change of the phase change material and the electrode portion disposed under the phase change material, and the phase change by the electrode A method of manufacturing a phase change memory including a phase change material, the resistance of which is changed, wherein the electrode is disposed under a trench formed in a substrate, and the deposition step of depositing the phase change material on the substrate; A first irradiation step of irradiating the phase change material with a first laser beam having a first energy intensity higher than a melting point of the phase change material; And a second irradiation step of irradiating the phase change material with a second laser beam having a second energy intensity lower than the first energy intensity and lower than a melting point of the phase change material.
  • the second laser beam may be followed by a predetermined time after the first laser beam irradiated in the first irradiation step, and the phase change material is melted and introduced into the trench by the first irradiation step, and the second irradiation step is performed.
  • the temperature at which the phase change material is allowed to flow into the trench is maintained.
  • the preceding first laser beam and the following second laser beam may overlap a predetermined period.
  • the electrode part comprises titanium nitride (TiN), and the phase change material is chalcogenide-based germanium (Ge) -antimony (Sb) -teleul. It may include a ride (Te) metal alloy (GST).
  • the first laser beam includes a laser beam in an ultraviolet wavelength band having a relatively low absorption rate of the electrode portion among an ultraviolet wavelength band and a visible light wavelength band
  • the second laser beam May include a laser beam in a visible light wavelength band having a relatively high absorption rate of the phase change material among the ultraviolet light wavelength band and the visible light wavelength band.
  • the first laser beam and the second laser beam are formed in a rectangular shape and irradiated at the same position of the phase change material, and have a top hat shape. It may have an energy intensity distribution of.
  • the heat applied to the entire irradiated portion can be made uniform.
  • 1 is a view for explaining a problem in manufacturing a phase change memory using a laser
  • FIG. 2 is a view schematically showing an example of laser equipment for implementing a method of manufacturing a phase change memory using a laser of the present invention
  • FIG. 3 is a diagram illustrating a method of manufacturing a phase change memory using a laser according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating energy intensities of a first laser beam and a second laser beam used in the method of manufacturing a phase change memory using the laser of FIG. 3.
  • FIG. 5 is a diagram illustrating absorption rates of a phase change material and an electrode part in the method of manufacturing a phase change memory using the laser of FIG. 3.
  • FIG. 2 is a view schematically showing an example of laser equipment for implementing a method of manufacturing a phase change memory using a laser of the present invention
  • FIG. 3 is a method of manufacturing a phase change memory using a laser according to an embodiment of the present invention.
  • 4 is a diagram illustrating energy intensities of a first laser beam and a second laser beam used in the method of manufacturing a phase change memory using the laser of FIG. 3
  • FIG. 5 is a view of the image using the laser of FIG. 3.
  • the absorption rate of the phase change material and the electrode portion is shown.
  • a phase change is formed in the trench 2 formed in the substrate 1 by irradiating the phase change material 10 with a laser beam.
  • Melting and filling the material 10 includes a deposition step S10, a first irradiation step S20, and a second irradiation step S30.
  • FIG. 2 a laser apparatus for implementing a method of manufacturing a phase change memory using a laser of the present invention will be described.
  • the laser device 100 for manufacturing a phase change memory includes a first laser output unit 110, a first power adjuster 111, a second laser output unit 120, a second power adjuster 121, and a delay generator. And a homogenizer 130.
  • the phase change memory manufactured by the laser device 100 for manufacturing the phase change memory of the present embodiment includes a phase change material 10, an electrode unit 20, and a switch element 30.
  • the phase change material 10, the electrode part 20, and the switch element 30 are disposed in an order from an upper side to a lower side.
  • the phase change material 10 is changed in phase by a power applied to the electrode part 20, and the resistance is changed.
  • the electrode part 20 causes a phase change of the phase change material 10, and the phase change material 10 Is disposed on the lower side.
  • the switch element 30 is disposed below the electrode portion 20.
  • the first laser output unit 110 outputs the first laser beam L1 irradiated to the phase change material 10.
  • the first laser beam L1 output from the first laser output unit 110 is preferably a laser beam in an ultraviolet wavelength band, and in particular, may be a laser beam having a wavelength of about 266 nm.
  • the first power adjusting unit 111 adjusts the energy intensity of the first laser beam L1 output from the first laser output unit 110.
  • the first laser beam L1 whose energy intensity is adjusted by the first power adjusting unit 111 has a first energy intensity higher than the melting point of the phase change material 10.
  • the second laser output unit 120 outputs a second laser beam L2 irradiated to the phase change material 10.
  • the second laser beam L2 output from the second laser output unit 120 is preferably a laser beam in the visible wavelength range, and may be a laser beam having a wavelength of about 532 nm.
  • the second power adjusting unit 121 adjusts the energy intensity of the second laser beam L2 output from the second laser output unit 120.
  • the second laser beam L2 whose energy intensity is adjusted by the second power adjusting unit 121 is lower than the first energy intensity of the first laser beam L1 and lower than the melting point of the phase change material 10. You have strength.
  • the delay generator 122 trails the second laser beam L2 irradiated onto the phase change material 10 after the predetermined time from the first laser beam L1.
  • the first laser beam L1 and the second laser beam L2 are irradiated at the same position of the phase change material 10.
  • the first laser beam L1 having a relatively high energy intensity is irradiated first, and is relatively
  • the second laser beam L2 having a low energy intensity is irradiated by the delay generator 122 to be delayed by a predetermined time.
  • the first laser beam L1 whose energy intensity is adjusted by the first power adjusting unit 111 and the second laser beam L2 whose energy intensity is adjusted by the second power adjusting unit 121 are respectively reflected by a reflecting mirror.
  • the reflection is input to the homogenizer 130.
  • the homogenizer 130 is formed such that the first laser beam L1 and the second laser beam L2 have an energy intensity distribution in the form of a top hat.
  • the first laser beam L1 and the second laser beam L2 may overlap each other to be irradiated at the same position of the phase change material 10, and a cross section may be formed in a square shape.
  • the homogenizer 130 When irradiating the first laser beam L1 and the second laser beam L2 to the phase change material 10, the homogenizer 130 first laser beam so that uniform heat is applied to the entire irradiated portion.
  • the energy intensity of the L1 and the second laser beam L2 is molded to have an energy intensity distribution in the form of a top hat.
  • the first laser beam L1 and the second laser beam L2 finally formed by the homogenizer 130 have a phase change material 10 stacked on the substrate 1 with a difference in energy intensity and a time difference. ) And the phase change material 10 irradiated with the first laser beam L1 and the second laser beam L2 are melted and flow into the trench 2 formed in the substrate 1 to be filled.
  • the phase change material 10 is deposited on the trench 2 formed on the substrate 1 and the upper surface of the substrate 1.
  • An electrode portion 20 is disposed below the trench 2 formed in the substrate 1, and a switch element 30 is disposed below the electrode portion 20.
  • the phase change material 10 to be deposited is preferably a chalcogenide-based germanium (Ge) -antimony (Sb)-telluride (Te) metal alloy (GST), and is located below the phase change material 10. It is preferable that the electrode portion 20 to be arranged is titanium nitride (TiN), and the switch element 30 disposed below the electrode portion 20 is preferably a germanium (Ge) -selenium (Se) metal alloy.
  • the first irradiation step S20 irradiates the phase change material 10 deposited on the substrate 1 with the first laser beam L1 having a first energy intensity higher than the melting point of the phase change material 10.
  • the energy intensity of the first laser beam L1 output from the first laser output unit 110 is adjusted by the first power adjusting unit 111, so that the first laser beam L1 is a melting point of the phase change material 10. It will have a higher first energy intensity.
  • the second irradiation step S30 may include a phase change material in which a second laser beam L2 having a second energy intensity lower than the first energy intensity and lower than the melting point of the phase change material 10 is deposited on the substrate 1. Investigate in 10).
  • the energy intensity of the second laser beam L2 output from the second laser output unit 120 is adjusted by the second power adjusting unit 121 so that the second laser beam L2 is lower than the first energy intensity and has a phase change. It has a second energy intensity lower than the melting point of the material 10.
  • the second laser beam L2 irradiated in the second irradiation step S30 is fixed for a predetermined time than the first laser beam L1 irradiated in the first irradiation step S20.
  • the preceding first laser beam L1 and the following second laser beam L2 may overlap each other for a predetermined period.
  • the second laser beam L2 irradiated to the phase change material 10 may be trailed after the predetermined time from the first laser beam L1.
  • the temperature of the surface of the phase change material 10 to which the laser beam is irradiated is about 630 degrees or more. It is desirable to maintain a very narrow temperature range of 700 degrees.
  • phase change material 10 When the energy intensity of the irradiated laser beam is insufficient, a problem arises in that the phase change material 10 is not properly filled in the trench 2 and an empty space 11 is formed in the trench 2, and the irradiated laser When the energy intensity of the beam is excessive, the composition of the phase change material 10 may change due to volatilization of telluride Te having a low melting point among the materials constituting the phase change material 10 or heat damage to the switch element 30. This happens a problem occurs.
  • the above-described problems can be solved by irradiating two laser beams having different energy intensities over time.
  • the phase change material 10 is irradiated with a first laser beam L1 having a first energy intensity higher than the melting point of the phase change material 10.
  • the energy intensity of the first laser beam L1 is an energy intensity such that the temperature of the surface of the phase change material 10 is maintained at about 630 to 700 degrees, and the first laser beam irradiated in the first irradiation step S20.
  • the phase change material 10 may be melted and introduced into the trench 2 by L1.
  • the second laser beam L2 is lower than the first energy intensity of the first laser beam L1 and has a second energy intensity lower than the melting point of the phase change material 10 and is delayed by the delay generator 122 for a predetermined time. Irradiate to the phase change material (10).
  • the energy intensity of the second laser beam L2 is not an energy intensity enough to melt the phase change material 10, and the phase change material (2) is caused by the second laser beam L2 irradiated in the second irradiation step S30.
  • the temperature at which 10) can flow into the trench 2 can be maintained.
  • the molten phase change material 10 is formed in the trench 2. There is a risk that the empty space 11 is formed inside the trench 2 because there is not enough time to flow into the trench 2.
  • the composition change of the phase change material 10 or the switch element 30 is performed.
  • the molten phase change material 10 may be sufficiently secured to allow time to flow into the trench 2.
  • the first laser beam L1 and the second laser beam L2 having different energy intensities may be irradiated with a time difference while overlapping a predetermined portion of the pulse width, and the pair of pulses may be repeatedly changed by the phase change material 10. Is investigated.
  • the 1st laser beam L1 is a laser beam of an ultraviolet wavelength range
  • the 2nd laser beam L2 is a laser beam of a visible wavelength range.
  • the absorption rate 52 of the electrode unit is relatively low in the ultraviolet wavelength range, and relatively high in the visible wavelength range. Since the first laser beam L1 has a first energy intensity higher than the melting point of the phase change material 10, the energy of the first laser beam L1 is transmitted through the phase change material 10 and the electrode part 20. Penetration to the switch element 30 may cause thermal damage to the switch element 30. Accordingly, the first laser beam L1 is preferably a laser beam having a relatively low absorption rate 52 in the electrode portion, and may be a laser beam having a wavelength of about 266 nm.
  • the absorption rate 51 of the phase change material is relatively low in the ultraviolet wavelength range, and relatively high in the visible wavelength range.
  • the second laser beam L2 has a second energy intensity lower than the melting point of the phase change material 10, and the second laser beam L2 is applied to the phase change material 10 that is already melted by the first laser beam L1.
  • the second laser beam L2 is preferably a laser beam having a relatively high absorption wavelength 51 of the phase change material, and may be a laser beam having a wavelength of about 532 nm.
  • the homogenizer 130 in the homogenizer 130 when irradiating the first laser beam (L1) and the second laser beam (L2) to the phase change material 10, the homogenizer 130 in the homogenizer 130 so that uniform heat is applied to the entire irradiated portion
  • the energy intensity of the laser beam (L1) and the second laser beam (L2) is molded so as to have an energy intensity distribution in the form of a top hat, the cross section is formed in a square shape to the same position of the phase change material 10 Is investigated.
  • Phase change memory manufacturing method using a laser of the present invention configured as described above by controlling the energy intensity of the laser beam irradiated to the phase change material by allowing the phase change material to be effectively reflowed into the trench, It is possible to prevent the occurrence of the empty space and the change of the composition of the phase change material in the trench, and to prevent the thermal damage of the switch element formed under the electrode portion.
  • phase change memory manufacturing method using the laser of the present invention configured as described above by selecting the wavelength band of the first laser beam and the second laser beam in consideration of the absorption rate of the electrode portion and the absorption rate of the phase change material, It is possible to block the thermal penetration of and to achieve an effect of smoothing the reflow of the phase change material.
  • phase change memory manufacturing method using the laser of the present invention configured as described above by forming a laser beam to have a top hat energy intensity distribution, thereby uniformly applying heat to the entire irradiated portion. The effect can be obtained.
  • the present invention is industrially applicable to the technical field of melting and filling a phase change material in a trench formed in a substrate by irradiating a laser beam to the phase change material.

Abstract

The present invention relates to a method for manufacturing a phase change memory including an electrode unit, which causes a phase change in a phase change material and is disposed at the lower side of the phase change material, and the phase change material, which has a resistance that changes while the phase change material is being phase-changed by the electrode unit, the method comprising a deposition step, a first emission step, and a second emission step. In the deposition step, the electrode unit is disposed at the lower side of a trench formed in a substrate and the phase change material is deposited on the substrate. In the first emission step a first laser beam having a first energy intensity higher than that of a melting point of the phase change material is emitted at the phase change material. In the second emission step, a second laser beam having a second energy intensity lower than the first energy intensity and lower than that of the melting point of the phase change material is emitted at the phase change material. The second laser beam emitted in the second emission step is emitted at a set time later than that of the first laser beam emitted in the first emission step, the phase change material is melted by the first emission step and introduced into the trench, and the temperature enabling the phase change material to flow into the trench is maintained by the second emission step.

Description

레이저를 이용한 상변화 메모리 제조방법Phase change memory manufacturing method using laser
본 발명은 레이저를 이용한 상변화 메모리 제조방법에 관한 것으로서, 상변화 물질에 레이저빔을 조사하여 기판에 형성된 트렌치 내부에 상변화 물질을 용융시켜 채워넣는 레이저를 이용한 상변화 메모리 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a phase change memory using a laser, and more particularly, to a method for manufacturing a phase change memory using a laser for melting and filling a phase change material in a trench formed in a substrate by irradiating a laser beam on the phase change material.
상변화 메모리(Phase-change Random Access Memory; PRAM)는 특정 물질의 상(相) 변화를 판단하여 데이터를 저장하는 차세대 메모리 반도체이다. 상변화 메모리는 전원이 끊겨도 저장된 정보가 지워지지 않는 플래시 메모리(flash memory)의 장점과, 빠른 처리 속도를 자랑하는 디램(DRAM)의 장점을 모두 지니고 있다.Phase-change random access memory (PRAM) is a next-generation memory semiconductor that stores data by determining a phase change of a specific material. Phase change memory has both the advantages of flash memory, which does not erase stored information even when power is lost, and the advantages of DRAM, which has a high processing speed.
상변화 메모리는 두 가지 이상의 상이한 상태들을 나타내는 상변화 물질들을 포함하는데, 상변화 물질의 상태들은 비결정(amorphous) 및 결정(crystalline) 상태를 가진다. 대체로, 결정 상태는 정렬된 격자구조를 가지는 반면 비결정 상태는 보다 정렬되지 않은 구조를 가진다. 비결정 상태와 결정 상태는 상이한 저항을 가지며 온도 변화에 반응하여 상태 변환이 일어나므로, 데이터 비트들을 저장하는데 사용될 수 있다.Phase change memory includes phase change materials exhibiting two or more different states, where the phase change materials have amorphous and crystalline states. In general, the crystalline state has an ordered lattice structure while the amorphous state has a more misaligned structure. Since the amorphous state and the crystalline state have different resistances and state transitions occur in response to temperature changes, they can be used to store data bits.
도 1은 레이저를 이용하여 상변화 메모리의 제조시 문제점을 설명하기 위한 도면이다.1 is a view for explaining a problem in manufacturing a phase change memory using a laser.
도 1을 참조하면, 상변화 메모리는 상변화 물질(10), 전극부(20), 스위치 소자(30)를 포함하며, 상측에서 하측으로 상변화 물질(10), 전극부(20), 스위치 소자(30) 순으로 배치된다.Referring to FIG. 1, the phase change memory includes a phase change material 10, an electrode part 20, and a switch element 30, and the phase change material 10, the electrode part 20, and a switch from an upper side to a lower side. The elements 30 are arranged in order.
상변화 물질(10)은 전극부(20)에 인가되는 전원에 의해 상변화되면서 저항이 변경되고, 전극부(20)는 상변화 물질(10)의 상변화를 유발시키고, 상변화 물질(10)의 하측에 배치된다. 스위치 소자(30)는 전극부(20)의 하측에 배치된다.The phase change material 10 is changed in phase by a power applied to the electrode part 20, and the resistance is changed. The electrode part 20 causes a phase change of the phase change material 10, and the phase change material 10 Is disposed on the lower side. The switch element 30 is disposed below the electrode portion 20.
상변화 메모리를 제조하는 과정을 살펴보면, 우선 기판(1)에 형성된 트렌치(2) 부분에 상변화 물질(10)을 증착하고, 이후 상변화 물질(10)에 레이저빔(L)을 조사하여 상변화 물질(10)을 용융시켜 트렌치(2) 내부에 상변화 물질(10)이 고르게 채워지도록 한다.Referring to the process of manufacturing the phase change memory, first, the phase change material 10 is deposited on the trench 2 formed on the substrate 1, and then the laser beam L is irradiated onto the phase change material 10 to obtain an image. The change material 10 is melted so that the phase change material 10 is evenly filled in the trench 2.
그러나, 도 1의 (a)에 도시된 바와 같이 최근 트렌치(2)의 종횡비(aspect ratio)가 증가하면서, 조사되는 레이저빔(L)의 에너지 강도가 부족한 경우 증착된 상변화 물질(10)이 트렌치(2) 내부에 제대로 채워지지 못하고 트렌치(2) 내부에 빈 공간(11)이 형성되는 문제가 발생한다. 이와 같이 형성된 빈 공간(11)은 최종적으로 상변화 메모리의 저항을 현저히 증가시키는 원인이 된다.However, as shown in (a) of FIG. 1, when the aspect ratio of the trench 2 is recently increased, when the energy intensity of the irradiated laser beam L is insufficient, the deposited phase change material 10 is formed. There is a problem that the empty space 11 is formed inside the trench 2 without filling properly in the trench 2. The empty space 11 formed as described above finally causes a significant increase in the resistance of the phase change memory.
또한, 도 1의 (b)에 도시된 바와 같이, 조사되는 레이저빔(L)의 에너지 강도가 과다한 경우, 상변화 물질(10)을 구성하는 재료 중 용융점이 낮은 재료가 휘발되면서 상변화 물질(10)의 조성 변화가 발생한다. 이와 같이 조성 변화된 물질(12)은 물리적 특성이 변경되면서 상변화 메모리의 기본적인 기능을 수행하기 힘들게 된다.In addition, as shown in FIG. 1B, when the energy intensity of the irradiated laser beam L is excessive, a material having a low melting point is volatilized out of the material constituting the phase change material 10. The composition change of 10 occurs. As such, the material 12 having the composition change is difficult to perform the basic functions of the phase change memory as physical properties are changed.
또한, 조사되는 레이저빔(L)의 에너지 강도가 과다한 경우, 열에 의해 스위치 소자(30)에 열 손상이 발생하면서 상변화 메모리의 불량을 초래하게 되는 문제점이 있다.In addition, when the energy intensity of the irradiated laser beam L is excessive, there is a problem that heat damage occurs in the switch element 30 due to heat, resulting in a failure of the phase change memory.
따라서, 본 발명이 해결하고자 하는 과제는 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 상변화 물질에 조사되는 레이저빔의 에너지 강도를 제어하여 상변화 물질의 용융에 적합한 온도 조건을 유지함으로써, 상변화 물질이 트렌치 내부로 효과적으로 리플로우될 수 있도록 하여 트렌치 내부에 빈 공간의 발생 및 상변화 물질의 조성 변화를 방지하고, 전극부 하측에 형성된 스위치 소자의 열손상을 방지할 수 있는 레이저를 이용한 상변화 메모리 제조방법을 제공함에 있다.Therefore, the problem to be solved by the present invention is to solve such a conventional problem, by controlling the energy intensity of the laser beam irradiated to the phase change material to maintain a temperature condition suitable for melting the phase change material, Phase change using a laser that allows materials to be efficiently reflowed into the trench to prevent the formation of empty spaces and changes in the composition of the phase change material and to prevent thermal damage to the switch elements formed under the electrode. A memory manufacturing method is provided.
상기와 같은 목적을 달성하기 위하여 본 발명의 레이저를 이용한 상변화 메모리 제조방법은, 상변화 물질의 상변화를 유발시키고 상기 상변화 물질의 하측에 배치되는 전극부와, 상기 전극부에 의해 상변화되면서 저항이 변경되는 상변화 물질을 포함하는 상변화 메모리를 제조하는 방법이며, 기판에 형성된 트렌치 하측에 상기 전극부가 배치되고, 상기 기판에 상기 상변화 물질을 증착하는 증착단계; 상기 상변화 물질의 용융점보다 높은 제1에너지 강도를 가지는 제1레이저빔을 상기 상변화 물질에 조사하는 제1조사단계; 및 상기 제1에너지 강도보다 낮고 상기 상변화 물질의 용융점보다 낮은 제2에너지 강도를 가지는 제2레이저빔을 상기 상변화 물질에 조사하는 제2조사단계;를 포함하고, 상기 제2조사단계에서 조사되는 제2레이저빔은 상기 제1조사단계에서 조사되는 제1레이저빔보다 일정 시간 후행되며, 상기 제1조사단계에 의해 상기 상변화 물질이 용융되어 상기 트렌치 내부로 유입되고, 상기 제2조사단계에 의해 상기 상변화 물질이 상기 트렌치 내부로 유동될 수 있는 온도가 유지되는 것을 특징으로 한다.Phase change memory manufacturing method using a laser of the present invention to achieve the above object, the phase change of the phase change material and the electrode portion disposed under the phase change material, and the phase change by the electrode A method of manufacturing a phase change memory including a phase change material, the resistance of which is changed, wherein the electrode is disposed under a trench formed in a substrate, and the deposition step of depositing the phase change material on the substrate; A first irradiation step of irradiating the phase change material with a first laser beam having a first energy intensity higher than a melting point of the phase change material; And a second irradiation step of irradiating the phase change material with a second laser beam having a second energy intensity lower than the first energy intensity and lower than a melting point of the phase change material. The second laser beam may be followed by a predetermined time after the first laser beam irradiated in the first irradiation step, and the phase change material is melted and introduced into the trench by the first irradiation step, and the second irradiation step is performed. The temperature at which the phase change material is allowed to flow into the trench is maintained.
본 발명에 따른 레이저를 이용한 상변화 메모리 제조방법에 있어서, 선행하는 제1레이저빔과 후행하는 제2레이저빔은 일정 구간 중첩될 수 있다.In the method of manufacturing a phase change memory using a laser according to the present invention, the preceding first laser beam and the following second laser beam may overlap a predetermined period.
본 발명에 따른 레이저를 이용한 상변화 메모리 제조방법에 있어서, 상기 전극부는 질화티타늄(TiN)을 포함하며, 상기 상변화 물질은 칼코지나이드(chalcogenide)계 게르마늄(Ge)-안티몬(Sb)-텔룰라이드(Te) 금속합금(GST)을 포함할 수 있다.In the method of manufacturing a phase change memory using a laser according to the present invention, the electrode part comprises titanium nitride (TiN), and the phase change material is chalcogenide-based germanium (Ge) -antimony (Sb) -teleul. It may include a ride (Te) metal alloy (GST).
본 발명에 따른 레이저를 이용한 상변화 메모리 제조방법에 있어서, 상기 제1레이저빔은 자외선 파장대와 가시광선 파장대 중 상기 전극부의 흡수율이 상대적으로 낮은 자외선 파장대의 레이저빔을 포함하고, 상기 제2레이저빔은 자외선 파장대와 가시광선 파장대 중 상기 상변화 물질의 흡수율이 상대적으로 높은 가시광선 파장대의 레이저빔을 포함할 수 있다.In the method of manufacturing a phase change memory using a laser according to the present invention, the first laser beam includes a laser beam in an ultraviolet wavelength band having a relatively low absorption rate of the electrode portion among an ultraviolet wavelength band and a visible light wavelength band, and the second laser beam. May include a laser beam in a visible light wavelength band having a relatively high absorption rate of the phase change material among the ultraviolet light wavelength band and the visible light wavelength band.
본 발명에 따른 레이저를 이용한 상변화 메모리 제조방법에 있어서, 상기 제1레이저빔 및 상기 제2레이저빔은, 사각 형상으로 성형되어 상기 상변화 물질의 동일한 위치에 조사되며, 탑햇(top hat) 형태의 에너지 강도 분포를 가질 수 있다.In the method of manufacturing a phase change memory using a laser according to the present invention, the first laser beam and the second laser beam are formed in a rectangular shape and irradiated at the same position of the phase change material, and have a top hat shape. It may have an energy intensity distribution of.
본 발명의 레이저를 이용한 상변화 메모리 제조방법에 따르면, 트렌치 내부에 빈 공간의 발생 및 상변화 물질의 조성 변화를 방지하고, 전극부 하측에 형성된 스위치 소자의 열손상을 방지할 수 있다.According to the method of manufacturing a phase change memory using the laser of the present invention, it is possible to prevent generation of empty spaces in the trench and composition change of the phase change material, and to prevent thermal damage of the switch element formed under the electrode.
또한, 본 발명의 레이저를 이용한 상변화 메모리 제조방법에 따르면, 스위치 소자로의 열침투를 차단하고, 상변화 물질의 리플로우를 원활하게 할 수 있다.In addition, according to the method of manufacturing a phase change memory using the laser of the present invention, it is possible to block the thermal penetration to the switch element and to smoothly reflow the phase change material.
또한, 본 발명의 레이저를 이용한 상변화 메모리 제조방법에 따르면, 조사되는 부분 전체에 가해지는 열을 균일하게 할 수 있다.Further, according to the method of manufacturing a phase change memory using the laser of the present invention, the heat applied to the entire irradiated portion can be made uniform.
도 1은 레이저를 이용하여 상변화 메모리의 제조시 문제점을 설명하기 위한 도면이고,1 is a view for explaining a problem in manufacturing a phase change memory using a laser,
도 2는 본 발명의 레이저를 이용한 상변화 메모리 제조방법을 구현하기 위한 레이저 장비의 일례를 개략적으로 도시한 도면이고,2 is a view schematically showing an example of laser equipment for implementing a method of manufacturing a phase change memory using a laser of the present invention;
도 3은 본 발명의 일 실시예에 따른 레이저를 이용한 상변화 메모리 제조방법을 도시한 도면이고,3 is a diagram illustrating a method of manufacturing a phase change memory using a laser according to an embodiment of the present invention.
도 4는 도 3의 레이저를 이용한 상변화 메모리 제조방법에 이용되는 제1레이저빔과 제2레이저빔의 에너지 강도를 도시한 도면이고,4 is a diagram illustrating energy intensities of a first laser beam and a second laser beam used in the method of manufacturing a phase change memory using the laser of FIG. 3.
도 5는 도 3의 레이저를 이용한 상변화 메모리 제조방법에 있어서 상변화 물질과 전극부의 흡수율을 도시한 도면이다.FIG. 5 is a diagram illustrating absorption rates of a phase change material and an electrode part in the method of manufacturing a phase change memory using the laser of FIG. 3.
이하, 본 발명에 따른 레이저를 이용한 상변화 메모리 제조방법의 실시예들을 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of a method of manufacturing a phase change memory using a laser according to the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 레이저를 이용한 상변화 메모리 제조방법을 구현하기 위한 레이저 장비의 일례를 개략적으로 도시한 도면이고, 도 3은 본 발명의 일 실시예에 따른 레이저를 이용한 상변화 메모리 제조방법을 도시한 도면이고, 도 4는 도 3의 레이저를 이용한 상변화 메모리 제조방법에 이용되는 제1레이저빔과 제2레이저빔의 에너지 강도를 도시한 도면이고, 도 5는 도 3의 레이저를 이용한 상변화 메모리 제조방법에 있어서 상변화 물질과 전극부의 흡수율을 도시한 도면이다.2 is a view schematically showing an example of laser equipment for implementing a method of manufacturing a phase change memory using a laser of the present invention, and FIG. 3 is a method of manufacturing a phase change memory using a laser according to an embodiment of the present invention. 4 is a diagram illustrating energy intensities of a first laser beam and a second laser beam used in the method of manufacturing a phase change memory using the laser of FIG. 3, and FIG. 5 is a view of the image using the laser of FIG. 3. In the manufacturing method of the change memory, the absorption rate of the phase change material and the electrode portion is shown.
도 2 내지 도 5를 참조하면, 본 실시예에 따른 레이저를 이용한 상변화 메모리 제조방법은, 상변화 물질(10)에 레이저빔을 조사하여 기판(1)에 형성된 트렌치(2) 내부에 상변화 물질(10)을 용융시켜 채워넣는 것으로서, 증착단계(S10)와, 제1조사단계(S20)와, 제2조사단계(S30)를 포함한다.2 to 5, in the method of manufacturing a phase change memory using a laser according to the present embodiment, a phase change is formed in the trench 2 formed in the substrate 1 by irradiating the phase change material 10 with a laser beam. Melting and filling the material 10 includes a deposition step S10, a first irradiation step S20, and a second irradiation step S30.
우선 도 2를 참조하면서, 본 발명의 레이저를 이용한 상변화 메모리 제조방법을 구현하기 위한 레이저 장비를 설명하기로 한다.First, referring to FIG. 2, a laser apparatus for implementing a method of manufacturing a phase change memory using a laser of the present invention will be described.
상변화 메모리 제조용 레이저 장비(100)는 제1레이저 출력부(110)와, 제1파워조정부(111)와, 제2레이저 출력부(120)와, 제2파워조정부(121)와, 딜레이 제너레이터(122)와, 호모지나이저(130)를 포함한다.The laser device 100 for manufacturing a phase change memory includes a first laser output unit 110, a first power adjuster 111, a second laser output unit 120, a second power adjuster 121, and a delay generator. And a homogenizer 130.
도 1에 도시된 바와 같이, 본 실시예의 상변화 메모리 제조용 레이저 장비(100)에 의해 제조되는 상변화 메모리는 상변화 물질(10), 전극부(20), 스위치 소자(30)를 포함하며, 상측에서 하측으로 상변화 물질(10), 전극부(20), 스위치 소자(30) 순으로 배치된다. 상변화 물질(10)은 전극부(20)에 인가되는 전원에 의해 상변화되면서 저항이 변경되고, 전극부(20)는 상변화 물질(10)의 상변화를 유발시키고, 상변화 물질(10)의 하측에 배치된다. 스위치 소자(30)는 전극부(20)의 하측에 배치된다.As shown in FIG. 1, the phase change memory manufactured by the laser device 100 for manufacturing the phase change memory of the present embodiment includes a phase change material 10, an electrode unit 20, and a switch element 30. The phase change material 10, the electrode part 20, and the switch element 30 are disposed in an order from an upper side to a lower side. The phase change material 10 is changed in phase by a power applied to the electrode part 20, and the resistance is changed. The electrode part 20 causes a phase change of the phase change material 10, and the phase change material 10 Is disposed on the lower side. The switch element 30 is disposed below the electrode portion 20.
상기 제1레이저 출력부(110)는 상변화 물질(10)에 조사되는 제1레이저빔(L1)을 출력한다. 제1레이저 출력부(110)에서 출력되는 제1레이저빔(L1)은 자외선 파장대의 레이저빔인 것이 바람직하고, 특히 약 266nm 파장의 레이저빔일 수 있다.The first laser output unit 110 outputs the first laser beam L1 irradiated to the phase change material 10. The first laser beam L1 output from the first laser output unit 110 is preferably a laser beam in an ultraviolet wavelength band, and in particular, may be a laser beam having a wavelength of about 266 nm.
상기 제1파워조정부(111)는 제1레이저 출력부(110)에서 출력되는 제1레이저빔(L1)의 에너지 강도(intensity)를 조정한다. 제1파워조정부(111)에 의해 에너지 강도가 조정된 제1레이저빔(L1)은 상변화 물질(10)의 용융점보다 높은 제1에너지 강도를 가지게 된다.The first power adjusting unit 111 adjusts the energy intensity of the first laser beam L1 output from the first laser output unit 110. The first laser beam L1 whose energy intensity is adjusted by the first power adjusting unit 111 has a first energy intensity higher than the melting point of the phase change material 10.
상기 제2레이저 출력부(120)는 상변화 물질(10)에 조사되는 제2레이저빔(L2)을 출력한다. 제2레이저 출력부(120)에서 출력되는 제2레이저빔(L2)은 가시광선 파장대의 레이저빔인 것이 바람직하고, 특히 약 532nm 파장의 레이저빔일 수 있다.The second laser output unit 120 outputs a second laser beam L2 irradiated to the phase change material 10. The second laser beam L2 output from the second laser output unit 120 is preferably a laser beam in the visible wavelength range, and may be a laser beam having a wavelength of about 532 nm.
상기 제2파워조정부(121)는 제2레이저 출력부(120)에서 출력되는 제2레이저빔(L2)의 에너지 강도를 조정한다. 제2파워조정부(121)에 의해 에너지 강도가 조정된 제2레이저빔(L2)은 제1레이저빔(L1)의 제1에너지 강도보다 낮고, 상변화 물질(10)의 용융점보다 낮은 제2에너지 강도를 가지게 된다.The second power adjusting unit 121 adjusts the energy intensity of the second laser beam L2 output from the second laser output unit 120. The second laser beam L2 whose energy intensity is adjusted by the second power adjusting unit 121 is lower than the first energy intensity of the first laser beam L1 and lower than the melting point of the phase change material 10. You have strength.
상기 딜레이 제너레이터(122)는 상변화 물질(10)에 조사되는 제2레이저빔(L2)을 제1레이저빔(L1)보다 일정 시간 후행시킨다.The delay generator 122 trails the second laser beam L2 irradiated onto the phase change material 10 after the predetermined time from the first laser beam L1.
제1레이저빔(L1)과 제2레이저빔(L2)은 상변화 물질(10)의 동일한 위치에 조사되는데, 상대적으로 높은 에너지 강도를 가지는 제1레이저빔(L1)이 먼저 조사되고, 상대적으로 낮은 에너지 강도를 가지는 제2레이저빔(L2)이 딜레이 제너레이터(122)에 의해 일정 시간차 지연되게 조사된다.The first laser beam L1 and the second laser beam L2 are irradiated at the same position of the phase change material 10. The first laser beam L1 having a relatively high energy intensity is irradiated first, and is relatively The second laser beam L2 having a low energy intensity is irradiated by the delay generator 122 to be delayed by a predetermined time.
제1파워조정부(111)에 의해 에너지 강도가 조정된 제1레이저빔(L1)과, 제2파워조정부(121)에 의해 에너지 강도가 조정된 제2레이저빔(L2)은 각각 반사미러에 의해 반사되어 호모지나이저(130)로 입력된다.The first laser beam L1 whose energy intensity is adjusted by the first power adjusting unit 111 and the second laser beam L2 whose energy intensity is adjusted by the second power adjusting unit 121 are respectively reflected by a reflecting mirror. The reflection is input to the homogenizer 130.
상기 호모지나이저(130)는 제1레이저빔(L1)과 제2레이저빔(L2)이 탑햇(top hat) 형태의 에너지 강도 분포를 가지도록 성형한다. 호모지나이저(130)에서 제1레이저빔(L1)과 제2레이저빔(L2)은 상변화 물질(10)의 동일한 위치에 조사되도록 중첩되고, 단면은 사각 형상으로 성형될 수 있다.The homogenizer 130 is formed such that the first laser beam L1 and the second laser beam L2 have an energy intensity distribution in the form of a top hat. In the homogenizer 130, the first laser beam L1 and the second laser beam L2 may overlap each other to be irradiated at the same position of the phase change material 10, and a cross section may be formed in a square shape.
제1레이저빔(L1)과 제2레이저빔(L2)을 상변화 물질(10)에 조사할 때, 조사되는 부분 전체에 균일한 열이 가해질 수 있도록 호모지나이저(130)에서는 제1레이저빔(L1)과 제2레이저빔(L2)의 에너지 강도가 탑햇(top hat) 형태의 에너지 강도 분포를 가질 수 있도록 성형한다.When irradiating the first laser beam L1 and the second laser beam L2 to the phase change material 10, the homogenizer 130 first laser beam so that uniform heat is applied to the entire irradiated portion. The energy intensity of the L1 and the second laser beam L2 is molded to have an energy intensity distribution in the form of a top hat.
이와 같이 호모지나이저(130)에서 최종적으로 성형된 제1레이저빔(L1)과 제2레이저빔(L2)은 에너지 강도 차이와 시간차를 가지면서 기판(1) 상에 적층된 상변화 물질(10)에 조사되고, 제1레이저빔(L1)과 제2레이저빔(L2)이 조사된 상변화 물질(10)은 용융되면서 기판(1)에 형성된 트렌치(2) 내부로 흘러들어가 채워지게 된다.As described above, the first laser beam L1 and the second laser beam L2 finally formed by the homogenizer 130 have a phase change material 10 stacked on the substrate 1 with a difference in energy intensity and a time difference. ) And the phase change material 10 irradiated with the first laser beam L1 and the second laser beam L2 are melted and flow into the trench 2 formed in the substrate 1 to be filled.
이후, 도 3 내지 도 5를 참조하면서, 상술한 상변화 메모리 제조용 레이저 장비(100)를 이용하여 본 실시예의 레이저를 이용한 상변화 메모리 제조방법에 대해 설명하기로 한다.3 to 5, a method of manufacturing a phase change memory using the laser of the present embodiment will be described using the laser device 100 for manufacturing the phase change memory described above.
상기 증착단계(S10)는 기판(1)에 형성된 트렌치(2) 부분 및 기판(1)의 상면에 상변화 물질(10)을 증착한다. 기판(1)에 형성된 트렌치(2) 하측에는 전극부(20)가 배치되고, 전극부(20)의 하측에는 스위치 소자(30)가 배치된다.In the deposition step S10, the phase change material 10 is deposited on the trench 2 formed on the substrate 1 and the upper surface of the substrate 1. An electrode portion 20 is disposed below the trench 2 formed in the substrate 1, and a switch element 30 is disposed below the electrode portion 20.
증착되는 상변화 물질(10)은 칼코지나이드(chalcogenide)계 게르마늄(Ge)-안티몬(Sb)-텔룰라이드(Te) 금속합금(GST)인 것이 바람직하고, 상변화 물질(10)의 하측에 배치되는 전극부(20)는 질화티타늄(TiN)인 것이 바람직하며, 전극부(20)의 하측에 배치되는 스위치 소자(30)는 게르마늄(Ge)-셀레늄(Se) 금속합금인 것이 바람직하다.The phase change material 10 to be deposited is preferably a chalcogenide-based germanium (Ge) -antimony (Sb)-telluride (Te) metal alloy (GST), and is located below the phase change material 10. It is preferable that the electrode portion 20 to be arranged is titanium nitride (TiN), and the switch element 30 disposed below the electrode portion 20 is preferably a germanium (Ge) -selenium (Se) metal alloy.
상기 제1조사단계(S20)는 상변화 물질(10)의 용융점보다 높은 제1에너지 강도를 가지는 제1레이저빔(L1)을 기판(1)에 증착된 상변화 물질(10)에 조사한다.The first irradiation step S20 irradiates the phase change material 10 deposited on the substrate 1 with the first laser beam L1 having a first energy intensity higher than the melting point of the phase change material 10.
제1파워조정부(111)에 의해 제1레이저 출력부(110)에서 출력되는 제1레이저빔(L1)의 에너지 강도가 조정되어, 제1레이저빔(L1)은 상변화 물질(10)의 용융점보다 높은 제1에너지 강도를 가지게 된다.The energy intensity of the first laser beam L1 output from the first laser output unit 110 is adjusted by the first power adjusting unit 111, so that the first laser beam L1 is a melting point of the phase change material 10. It will have a higher first energy intensity.
상기 제2조사단계(S30)는 제1에너지 강도보다 낮고 상변화 물질(10)의 용융점보다 낮은 제2에너지 강도를 가지는 제2레이저빔(L2)을 기판(1)에 증착된 상변화 물질(10)에 조사한다.The second irradiation step S30 may include a phase change material in which a second laser beam L2 having a second energy intensity lower than the first energy intensity and lower than the melting point of the phase change material 10 is deposited on the substrate 1. Investigate in 10).
제2레이저 출력부(120)에서 출력되는 제2레이저빔(L2)은 제2파워조정부(121)에 의해 에너지 강도가 조정되어, 제2레이저빔(L2)은 제1에너지 강도보다 낮고 상변화 물질(10)의 용융점보다 낮은 제2에너지 강도를 가지게 된다.The energy intensity of the second laser beam L2 output from the second laser output unit 120 is adjusted by the second power adjusting unit 121 so that the second laser beam L2 is lower than the first energy intensity and has a phase change. It has a second energy intensity lower than the melting point of the material 10.
도 4에 도시된 바와 같이, 본 실시예에서는 제2조사단계(S30)에 조사되는 제2레이저빔(L2)이 제1조사단계(S20)에서 조사되는 제1레이저빔(L1)보다 일정 시간 후행되며, 선행하는 제1레이저빔(L1)과 후행하는 제2레이저빔(L2)은 시간적으로 일정 구간 중첩될 수 있다. 도 2에 도시된 딜레이 제너레이터(122)를 이용하여 상변화 물질(10)에 조사되는 제2레이저빔(L2)을 제1레이저빔(L1)보다 일정 시간 후행시킬 수 있다.As shown in FIG. 4, in the present embodiment, the second laser beam L2 irradiated in the second irradiation step S30 is fixed for a predetermined time than the first laser beam L1 irradiated in the first irradiation step S20. The preceding first laser beam L1 and the following second laser beam L2 may overlap each other for a predetermined period. Using the delay generator 122 shown in FIG. 2, the second laser beam L2 irradiated to the phase change material 10 may be trailed after the predetermined time from the first laser beam L1.
기판(1)과 트렌치(2) 부분에 증착된 상변화 물질(10)을 용융시키기 위하여 레이저빔을 조사할 때, 레이저빔이 조사되는 상변화 물질(10)의 표면의 온도는 약 630도 내지 700도의 매우 좁은 온도 구간을 유지하는 것이 바람직하다.When irradiating a laser beam to melt the phase change material 10 deposited on the substrate 1 and the trench 2 portion, the temperature of the surface of the phase change material 10 to which the laser beam is irradiated is about 630 degrees or more. It is desirable to maintain a very narrow temperature range of 700 degrees.
조사되는 레이저빔의 에너지 강도가 부족한 경우에는 상변화 물질(10)이 트렌치(2) 내부에 제대로 채워지지 못하고 트렌치(2) 내부에 빈 공간(11)이 형성되는 문제가 발생하고, 조사되는 레이저빔의 에너지 강도가 과다한 경우에는 상변화 물질(10)을 구성하는 재료 중 용융점이 낮은 텔룰라이드(Te)가 휘발되면서 상변화 물질(10)의 조성 변화가 발생하거나 스위치 소자(30)에 열 손상이 발생하는 문제가 발생한다.When the energy intensity of the irradiated laser beam is insufficient, a problem arises in that the phase change material 10 is not properly filled in the trench 2 and an empty space 11 is formed in the trench 2, and the irradiated laser When the energy intensity of the beam is excessive, the composition of the phase change material 10 may change due to volatilization of telluride Te having a low melting point among the materials constituting the phase change material 10 or heat damage to the switch element 30. This happens a problem occurs.
따라서, 본 실시예에서는 에너지 강도가 서로 다른 2개의 레이저빔을 시간차를 두고 조사하여 상술한 문제점을 해결할 수 있다.Therefore, in the present embodiment, the above-described problems can be solved by irradiating two laser beams having different energy intensities over time.
우선, 상변화 물질(10)의 용융점보다 높은 제1에너지 강도를 가지는 제1레이저빔(L1)을 상변화 물질(10)에 조사한다. 제1레이저빔(L1)의 에너지 강도는 상변화 물질(10)의 표면의 온도가 약 630도 내지 700도로 유지될 정도의 에너지 강도이며, 제1조사단계(S20)에서 조사되는 제1레이저빔(L1)에 의해 상변화 물질(10)이 용융되어 트렌치(2) 내부로 유입될 수 있다.First, the phase change material 10 is irradiated with a first laser beam L1 having a first energy intensity higher than the melting point of the phase change material 10. The energy intensity of the first laser beam L1 is an energy intensity such that the temperature of the surface of the phase change material 10 is maintained at about 630 to 700 degrees, and the first laser beam irradiated in the first irradiation step S20. The phase change material 10 may be melted and introduced into the trench 2 by L1.
이후, 제1레이저빔(L1)의 제1에너지 강도보다 낮고 상변화 물질(10)의 용융점보다 낮은 제2에너지 강도를 가지며, 딜레이 제너레이터(122)에 의해 일정 시간 지연된 제2레이저빔(L2)을 상변화 물질(10)에 조사한다. 제2레이저빔(L2)의 에너지 강도는 상변화 물질(10)을 용융시킬 정도의 에너지 강도는 아니며, 제2조사단계(S30)에서 조사되는 제2레이저빔(L2)에 의해 상변화 물질(10)이 트렌치(2) 내부로 유동될 수 있는 온도가 유지될 수 있다.Subsequently, the second laser beam L2 is lower than the first energy intensity of the first laser beam L1 and has a second energy intensity lower than the melting point of the phase change material 10 and is delayed by the delay generator 122 for a predetermined time. Irradiate to the phase change material (10). The energy intensity of the second laser beam L2 is not an energy intensity enough to melt the phase change material 10, and the phase change material (2) is caused by the second laser beam L2 irradiated in the second irradiation step S30. The temperature at which 10) can flow into the trench 2 can be maintained.
상변화 물질(10)의 조성 변화 또는 스위치 소자(30)의 열 손상이 염려되어 제1레이저빔(L1)을 너무 짧게 조사할 경우에는, 용융된 상변화 물질(10)이 트렌치(2) 내부로 유동될 수 있는 시간적 여유가 충분치 않아 트렌치(2) 내부에 빈 공간(11)이 형성될 위험이 있다.When the first laser beam L1 is irradiated too short due to a change in the composition of the phase change material 10 or a heat damage of the switch element 30, the molten phase change material 10 is formed in the trench 2. There is a risk that the empty space 11 is formed inside the trench 2 because there is not enough time to flow into the trench 2.
따라서 상변화 물질(10)의 용융점보다 낮은 제2에너지 강도를 가지는 제2레이저빔(L2)을 상변화 물질(10)에 조사함으로써, 상변화 물질(10)의 조성 변화 또는 스위치 소자(30)의 열 손상을 방지할 뿐만 아니라, 용융된 상변화 물질(10)이 트렌치(2) 내부로 유동될 수 있는 시간적 여유를 충분히 확보할 수 있다.Accordingly, by irradiating the phase change material 10 with the second laser beam L2 having a second energy intensity lower than the melting point of the phase change material 10, the composition change of the phase change material 10 or the switch element 30 is performed. In addition to preventing thermal damage, the molten phase change material 10 may be sufficiently secured to allow time to flow into the trench 2.
이러한 서로 다른 에너지 강도를 가지는 제1레이저빔(L1)과 제2레이저빔(L2)은 펄스폭의 일정 부분이 겹치면서 시간차를 두고 조사될 수 있고, 이러한 펄스의 쌍이 반복적으로 상변화 물질(10)에 조사된다.The first laser beam L1 and the second laser beam L2 having different energy intensities may be irradiated with a time difference while overlapping a predetermined portion of the pulse width, and the pair of pulses may be repeatedly changed by the phase change material 10. Is investigated.
한편, 제1레이저빔(L1)은 자외선 파장대의 레이저빔인 것이 바람직하고, 제2레이저빔(L2)은 가시광선 파장대의 레이저빔인 것이 바람직하다.On the other hand, it is preferable that the 1st laser beam L1 is a laser beam of an ultraviolet wavelength range, and it is preferable that the 2nd laser beam L2 is a laser beam of a visible wavelength range.
도 5를 참조하면, 전극부의 흡수율(52)은 자외선 파장대에서 상대적으로 낮고, 가시광선 파장대에서 상대적으로 높다. 제1레이저빔(L1)은 상변화 물질(10)의 용융점보다 높은 제1에너지 강도를 가지므로, 제1레이저빔(L1)의 에너지는 상변화 물질(10), 전극부(20)를 통해 스위치 소자(30)까지 침투하여 스위치 소자(30)의 열 손상을 불러올 수 있다. 따라서, 제1레이저빔(L1)은 전극부의 흡수율(52)이 상대적으로 낮은 자외선 파장대의 레이저빔인 것이 바람직하고, 약 266nm 파장의 레이저빔일 수 있다.Referring to FIG. 5, the absorption rate 52 of the electrode unit is relatively low in the ultraviolet wavelength range, and relatively high in the visible wavelength range. Since the first laser beam L1 has a first energy intensity higher than the melting point of the phase change material 10, the energy of the first laser beam L1 is transmitted through the phase change material 10 and the electrode part 20. Penetration to the switch element 30 may cause thermal damage to the switch element 30. Accordingly, the first laser beam L1 is preferably a laser beam having a relatively low absorption rate 52 in the electrode portion, and may be a laser beam having a wavelength of about 266 nm.
상변화 물질의 흡수율(51)은 자외선 파장대에서 상대적으로 낮고, 가시광선 파장대에서 상대적으로 높다. 제2레이저빔(L2)은 상변화 물질(10)의 용융점보다 낮은 제2에너지 강도를 가지며, 제1레이저빔(L1)에 의해 이미 용융된 상변화 물질(10)에 제2레이저빔(L2)이 조사될 경우 상변화 물질(10)이 트렌치(2) 내부로 매끄럽게 유동되는 것이 바람직하므로, 상변화 물질의 흡수율(51)이 높은 파장대의 레이저빔을 제2레이저빔(L2)으로 이용하는 것이 바람직하다.The absorption rate 51 of the phase change material is relatively low in the ultraviolet wavelength range, and relatively high in the visible wavelength range. The second laser beam L2 has a second energy intensity lower than the melting point of the phase change material 10, and the second laser beam L2 is applied to the phase change material 10 that is already melted by the first laser beam L1. When the phase change material 10 is smoothly flowed into the trench 2 when irradiated), it is preferable to use a laser beam having a high absorption rate 51 of the phase change material as the second laser beam L2. desirable.
따라서, 제2레이저빔(L2)은 상변화 물질의 흡수율(51)이 상대적으로 높은 가시광선 파장대의 레이저빔인 것이 바람직하고, 약 532nm 파장의 레이저빔일 수 있다.Accordingly, the second laser beam L2 is preferably a laser beam having a relatively high absorption wavelength 51 of the phase change material, and may be a laser beam having a wavelength of about 532 nm.
또한, 제1레이저빔(L1)과 제2레이저빔(L2)을 상변화 물질(10)에 조사할 때, 조사되는 부분 전체에 균일한 열이 가해질 수 있도록 호모지나이저(130)에서는 제1레이저빔(L1)과 제2레이저빔(L2)의 에너지 강도가 탑햇(top hat) 형태의 에너지 강도 분포를 가질 수 있도록 성형하고, 단면은 사각 형상으로 성형하여 상변화 물질(10)의 동일한 위치에 조사된다.In addition, when irradiating the first laser beam (L1) and the second laser beam (L2) to the phase change material 10, the homogenizer 130 in the homogenizer 130 so that uniform heat is applied to the entire irradiated portion The energy intensity of the laser beam (L1) and the second laser beam (L2) is molded so as to have an energy intensity distribution in the form of a top hat, the cross section is formed in a square shape to the same position of the phase change material 10 Is investigated.
상술한 바와 같이 구성된 본 발명의 레이저를 이용한 상변화 메모리 제조방법은, 상변화 물질에 조사되는 레이저빔의 에너지 강도를 제어하여 상변화 물질이 트렌치 내부로 효과적으로 리플로우(reflow)될 수 있도록 함으로써, 트렌치 내부에 빈 공간의 발생 및 상변화 물질의 조성 변화를 방지하고, 전극부 하측에 형성된 스위치 소자의 열손상을 방지할 수 있는 효과를 얻을 수 있다.Phase change memory manufacturing method using a laser of the present invention configured as described above, by controlling the energy intensity of the laser beam irradiated to the phase change material by allowing the phase change material to be effectively reflowed into the trench, It is possible to prevent the occurrence of the empty space and the change of the composition of the phase change material in the trench, and to prevent the thermal damage of the switch element formed under the electrode portion.
또한, 상술한 바와 같이 구성된 본 발명의 레이저를 이용한 상변화 메모리 제조방법은, 전극부의 흡수율과 상변화 물질의 흡수율을 고려하여 제1레이저빔과 제2레이저빔의 파장대를 선택함으로써, 스위치 소자로의 열침투를 차단하고, 상변화 물질의 리플로우를 원활하게 할 수 있는 효과를 얻을 수 있다.In addition, the phase change memory manufacturing method using the laser of the present invention configured as described above, by selecting the wavelength band of the first laser beam and the second laser beam in consideration of the absorption rate of the electrode portion and the absorption rate of the phase change material, It is possible to block the thermal penetration of and to achieve an effect of smoothing the reflow of the phase change material.
또한, 상술한 바와 같이 구성된 본 발명의 레이저를 이용한 상변화 메모리 제조방법은, 탑햇(top hat) 형태의 에너지 강도 분포를 가지도록 레이저빔을 성형함으로써, 조사되는 부분 전체에 가해지는 열을 균일하게 할 수 있는 효과를 얻을 수 있다.In addition, the phase change memory manufacturing method using the laser of the present invention configured as described above, by forming a laser beam to have a top hat energy intensity distribution, thereby uniformly applying heat to the entire irradiated portion. The effect can be obtained.
본 발명의 권리범위는 상술한 실시예 및 변형례에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiments and modifications, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.
본 발명은 상변화 물질에 레이저빔을 조사하여 기판에 형성된 트렌치 내부에 상변화 물질을 용융시켜 채워넣는 기술 분야에 산업상 이용가능하다.The present invention is industrially applicable to the technical field of melting and filling a phase change material in a trench formed in a substrate by irradiating a laser beam to the phase change material.

Claims (5)

  1. 상변화 물질의 상변화를 유발시키고 상기 상변화 물질의 하측에 배치되는 전극부와, 상기 전극부에 의해 상변화되면서 저항이 변경되는 상변화 물질을 포함하는 상변화 메모리를 제조하는 방법이며,A method of manufacturing a phase change memory including an electrode portion which causes a phase change of a phase change material and is disposed below the phase change material, and a phase change material whose resistance changes as the phase changes by the electrode part,
    기판에 형성된 트렌치 하측에 상기 전극부가 배치되고, 상기 기판에 상기 상변화 물질을 증착하는 증착단계;A deposition step of depositing the phase change material on the substrate, wherein the electrode part is disposed under the trench formed in the substrate;
    상기 상변화 물질의 용융점보다 높은 제1에너지 강도를 가지는 제1레이저빔을 상기 상변화 물질에 조사하는 제1조사단계; 및A first irradiation step of irradiating the phase change material with a first laser beam having a first energy intensity higher than a melting point of the phase change material; And
    상기 제1에너지 강도보다 낮고 상기 상변화 물질의 용융점보다 낮은 제2에너지 강도를 가지는 제2레이저빔을 상기 상변화 물질에 조사하는 제2조사단계;를 포함하고,And irradiating the phase change material with a second laser beam having a second energy intensity lower than the first energy intensity and lower than a melting point of the phase change material.
    상기 제2조사단계에서 조사되는 제2레이저빔은 상기 제1조사단계에서 조사되는 제1레이저빔보다 일정 시간 후행되며,The second laser beam irradiated in the second irradiation step is followed by a predetermined time after the first laser beam irradiated in the first irradiation step,
    상기 제1조사단계에 의해 상기 상변화 물질이 용융되어 상기 트렌치 내부로 유입되고, 상기 제2조사단계에 의해 상기 상변화 물질이 상기 트렌치 내부로 유동될 수 있는 온도가 유지되는 것을 특징으로 하는 레이저를 이용한 상변화 메모리 제조방법.The phase change material is melted and introduced into the trench by the first irradiation step, and the laser is characterized in that the temperature at which the phase change material flows into the trench is maintained by the second irradiation step. Phase change memory manufacturing method using.
  2. 제1항에 있어서,The method of claim 1,
    선행하는 제1레이저빔과 후행하는 제2레이저빔은 일정 구간 중첩되는 것을 특징으로 하는 레이저를 이용한 상변화 메모리 제조방법.A method of manufacturing a phase change memory using a laser, characterized in that the preceding first laser beam and the following second laser beam overlap a predetermined period.
  3. 제1항에 있어서,The method of claim 1,
    상기 전극부는 질화티타늄(TiN)을 포함하며,The electrode portion includes titanium nitride (TiN),
    상기 상변화 물질은 칼코지나이드(chalcogenide)계 게르마늄(Ge)-안티몬(Sb)-텔룰라이드(Te) 금속합금(GST)을 포함하는 것을 특징으로 하는 레이저를 이용한 상변화 메모리 제조방법.The phase change material includes a chalcogenide-based germanium (Ge) -antimony (Sb) -telluride (Te) metal alloy (GST).
  4. 제3항에 있어서,The method of claim 3,
    상기 제1레이저빔은 자외선 파장대와 가시광선 파장대 중 상기 전극부의 흡수율이 상대적으로 낮은 자외선 파장대의 레이저빔을 포함하고,The first laser beam includes a laser beam in the ultraviolet wavelength range of which the absorption rate of the electrode portion is relatively low among the ultraviolet wavelength band and visible light wavelength band,
    상기 제2레이저빔은 자외선 파장대와 가시광선 파장대 중 상기 상변화 물질의 흡수율이 상대적으로 높은 가시광선 파장대의 레이저빔을 포함하는 것을 특징으로 하는 레이저를 이용한 상변화 메모리 제조방법.And the second laser beam comprises a laser beam in a visible light wavelength band having a relatively high absorption rate of the phase change material among an ultraviolet wavelength band and a visible light wavelength band.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1레이저빔 및 상기 제2레이저빔은, 사각 형상으로 성형되어 상기 상변화 물질의 동일한 위치에 조사되며, 탑햇(top hat) 형태의 에너지 강도 분포를 가지는 것을 특징으로 하는 레이저를 이용한 상변화 메모리 제조방법.The first laser beam and the second laser beam are formed in a rectangular shape and irradiated at the same position of the phase change material and have a top hat shape energy intensity distribution. Memory manufacturing method.
PCT/KR2017/005992 2016-06-28 2017-06-09 Method for manufacturing phase change memory by using laser WO2018004147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160081125A KR101727960B1 (en) 2016-06-28 2016-06-28 Method of manufacturing phase change memory using laser
KR10-2016-0081125 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018004147A1 true WO2018004147A1 (en) 2018-01-04

Family

ID=58705954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005992 WO2018004147A1 (en) 2016-06-28 2017-06-09 Method for manufacturing phase change memory by using laser

Country Status (2)

Country Link
KR (1) KR101727960B1 (en)
WO (1) WO2018004147A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040824A (en) * 2006-11-06 2008-05-09 삼성전자주식회사 Method of isolation in a semiconductor device
KR20100063937A (en) * 2008-12-04 2010-06-14 삼성전자주식회사 Phase changable memory unit, method of manufacturing the same, and method of manufacturing of phase changable memory device
US20110168966A1 (en) * 2010-01-08 2011-07-14 International Business Machines Corporation Deposition of amorphous phase change material
KR20130007759A (en) * 2011-07-11 2013-01-21 삼성전자주식회사 Method of manufacturing a phase change memory device
KR20150127367A (en) * 2014-05-07 2015-11-17 삼성전자주식회사 Method of filling an opening and method of manufacturing a phase-change memory device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040824A (en) * 2006-11-06 2008-05-09 삼성전자주식회사 Method of isolation in a semiconductor device
KR20100063937A (en) * 2008-12-04 2010-06-14 삼성전자주식회사 Phase changable memory unit, method of manufacturing the same, and method of manufacturing of phase changable memory device
US20110168966A1 (en) * 2010-01-08 2011-07-14 International Business Machines Corporation Deposition of amorphous phase change material
KR20130007759A (en) * 2011-07-11 2013-01-21 삼성전자주식회사 Method of manufacturing a phase change memory device
KR20150127367A (en) * 2014-05-07 2015-11-17 삼성전자주식회사 Method of filling an opening and method of manufacturing a phase-change memory device using the same

Also Published As

Publication number Publication date
KR101727960B1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
KR100612906B1 (en) Methods of forming phase change memory devices
ES2806849T3 (en) Optical device with thermal switching phase change material
EP1780814B1 (en) Phase change memory cell
Terao et al. Electrical phase-change memory: fundamentals and state of the art
DE69931953T2 (en) METHOD FOR RECORDING AND REPRODUCING ADDITIONAL DIGITAL SIGNALS AND ADDITIONAL MEDIA OF THE PHASE CHANGE TYPE
KR940006610B1 (en) Data storage device having a state changeable material
KR101844083B1 (en) Glass welding method and glass layer fixing method
Kolobov et al. Chalcogenide glasses as prospective materials for optical memories and optical data storage
MXPA02005590A (en) Method and apparatus for processing thin metal layers.
CN86107003A (en) Reversible optical recording information dielectrical
TW200807706A (en) Phase change memory cell having a step-like programming characteristic
DE112009001456T5 (en) Glass fusing method
WO2018004147A1 (en) Method for manufacturing phase change memory by using laser
KR101794209B1 (en) Method of manufacturing phase change memory using laser
Guo et al. Microstructure evolution of the crystallization of amorphous Ge2Sb2Te5 thin films induced by single picosecond pulsed laser
AU772621B2 (en) Optical shutter
Han et al. Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation
Kuypers et al. Electron microscopic study of the homologous series of mixed layer compounds R2Te3 (GeTe) n (R= Sb, Bi)
Zhao et al. Morphology and crystalline phase characteristics of α-GST films irradiated by a picosecond laser
CN105916696A (en) Method and system for forming patterned structure on substrate
CN103765564B (en) The method of crystallization
DE10237732A1 (en) Laser marking by transferring marking material from carrier to surface includes second radiation phase to attach material to surface
Zhai et al. Laser-induced phase transition processes of amorphous Ge2Sb2Te5 films
JP2017508276A (en) Method for forming polysilicon
Yamada et al. Phase‐Change Nanodot Material for an Optical Memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820424

Country of ref document: EP

Kind code of ref document: A1