WO2018004120A1 - 이물질 검출 방법 및 그를 위한 장치 및 시스템 - Google Patents

이물질 검출 방법 및 그를 위한 장치 및 시스템 Download PDF

Info

Publication number
WO2018004120A1
WO2018004120A1 PCT/KR2017/004318 KR2017004318W WO2018004120A1 WO 2018004120 A1 WO2018004120 A1 WO 2018004120A1 KR 2017004318 W KR2017004318 W KR 2017004318W WO 2018004120 A1 WO2018004120 A1 WO 2018004120A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
input voltage
inverter input
current
change
Prior art date
Application number
PCT/KR2017/004318
Other languages
English (en)
French (fr)
Inventor
채용석
권용일
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Publication of WO2018004120A1 publication Critical patent/WO2018004120A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to wireless power transmission technology, and more particularly, to a foreign material detection method on a wireless charging system, and an apparatus and system therefor.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as high frequency, microwaves, and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
  • the FO may include a coin, a clip, a pin, a ballpoint pen, and the like.
  • the wireless charging efficiency is significantly lowered but also the temperature of the wireless power receiver and the wireless power transmitter may rise together due to an increase in the ambient temperature of the FO. If the FO located in the charging area is not removed, not only power is wasted but also overheating may cause damage to the wireless power transmitter and the wireless power receiver.
  • the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for detecting foreign matter for wireless charging and an apparatus and system therefor.
  • Another object of the present invention is to provide a foreign matter detection method and apparatus for detecting foreign matter located in a charging region based on a change in voltage applied to an inverter and / or a current flowing in a transmission coil.
  • Still another object of the present invention is to detect the foreign matter located in the charging region based on the change amount or rate of change of the inverter input voltage and the transmitter coil current calculated relative to the reference inverter input voltage and the reference transmitter coil current corresponding to the wireless power transmitter. It is possible to provide a method for detecting foreign matter and a device therefor.
  • the present invention can provide a foreign matter detection method and apparatus and system therefor.
  • the foreign material detection method in a wireless power transmitter comprises the steps of measuring the inverter input voltage and the transmission coil current at a predetermined period and the reference inverter input voltage and the reference transmission coil current and the measured inverter input voltage and the transmission coil Calculating a rate of change of the inverter input voltage and a rate of change of the transmit coil current by using a current, calculating a rate of change by using the rate of change of the transmit coil current and a rate of change of the inverter input voltage, and comparing whether the change rate exceeds a predetermined third threshold value;
  • the method may include determining whether foreign matter exists in the charging region.
  • the foreign matter detection method may further include receiving a Foreign Object Detection (FOD) status packet including information about the reference inverter input voltage and information about the reference transmission coil current in a cooperative step.
  • FOD Foreign Object Detection
  • the FOD status packet may include a mode field having a length of 2 bits, and the value of the mode field may be set to a value other than binary “00”.
  • the foreign matter detection method further includes the step of outputting a predetermined alarm signal indicating that the foreign matter is detected, if there is a foreign material as a result of the determination, may enter the selection step after outputting the alarm signal.
  • the foreign matter detection method may further include determining whether the transmit / receive coil is aligned by comparing the change ratio with a fourth threshold when the change ratio is less than or equal to the third threshold. If greater than the third threshold and the rate of change exceeds the fourth threshold, it may be determined that the transmit / receive coils are not aligned.
  • the inverter input voltage change rate may be calculated by dividing a difference value between the measured inverter input voltage and the reference inverter input voltage by the reference inverter input voltage.
  • the transmission coil current change rate may be calculated by dividing a difference value between the measured transmission coil current and the reference transmission coil current by the reference transmission coil current.
  • a method for detecting a foreign substance in a wireless power transmitter includes measuring an inverter input voltage at a predetermined period and calculating an inverter input voltage change rate using a reference inverter input voltage and the measured inverter input voltage. And determining whether a foreign material exists in the charging area by checking whether the inverter input voltage change rate exceeds a first threshold.
  • a foreign material detection method in a wireless power transmitter comprising: measuring a transmission coil current at a predetermined period and calculating a transmission coil current change rate using a reference transmission coil current and the measured transmission coil current; And determining whether the foreign material exists in the charging area by checking whether the transmission coil current change rate exceeds a predetermined second threshold.
  • an apparatus for detecting a foreign substance may include a sensing unit measuring an inverter input voltage and a transmitting coil current at a predetermined period, and a reference inverter input voltage and a reference transmitting coil current, and the measured inverter input voltage and transmitting coil current.
  • the foreign matter detection apparatus may further include a communication unit configured to receive a Foreign Object Detection (FOD) status packet including information about the reference inverter input voltage and information about the reference transmission coil current in a cooperative step.
  • FOD Foreign Object Detection
  • the FOD status packet includes a mode field having a length of 2 bits, and the value of the mode field is set to a value other than binary “00” and may be received.
  • the foreign matter detection apparatus further includes an alarm unit for outputting a predetermined alarm signal indicating that the foreign matter is detected, if there is a foreign matter as a result of the determination, it may be entered into the selection step after outputting the alarm signal.
  • the detector determines whether the transmit / receive coil is aligned by comparing the change rate with a predetermined fourth threshold when the change rate is less than or equal to the third threshold, and when the change rate exceeds the fourth threshold, the transmit / receive coil It is determined that the misalignment, the fourth threshold may be set larger than the third threshold.
  • the inverter input voltage change rate may be calculated by dividing a difference value between the measured inverter input voltage and the reference inverter input voltage by the reference inverter input voltage.
  • the transmission coil current change rate may be calculated by dividing a difference value between the measured transmission coil current and the reference transmission coil current by the reference transmission coil current.
  • the foreign matter detection apparatus is a sensing unit for measuring the inverter input voltage at a predetermined period and a change amount calculating unit for calculating the inverter input voltage change rate using the reference inverter input voltage and the measured inverter input voltage;
  • the controller may include a detector configured to determine whether the inverter input voltage change rate exceeds a predetermined first threshold to determine whether a foreign material exists in the charging region.
  • the foreign matter detection apparatus includes a sensing unit for measuring a transmission coil current at a predetermined period, a change amount calculating unit for calculating a transmission coil current change rate using the reference transmission coil current and the measured transmission coil current;
  • the detection unit may include a detector configured to determine whether a foreign material exists in the charging region by checking whether the transmission coil current change rate exceeds a predetermined second threshold.
  • a computer-readable recording medium may be provided that records a program for executing any one of the foreign matter detection methods.
  • the present invention has an advantage of providing a foreign matter detection method for wireless charging and an apparatus and system therefor.
  • the present invention has the advantage of providing a wireless power transmitter capable of more accurately detecting the foreign matter by distinguishing between the transmission and reception coil alignment problem and the foreign matter problem.
  • the present invention has the advantage of minimizing unnecessary power waste and heat generation by foreign matter.
  • the present invention has an advantage of providing a foreign matter detection method and a device and system using the same by determining a threshold for dynamically determining whether there is a foreign matter according to the type of the wireless power transmission apparatus.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to another embodiment of the present invention.
  • FIG 3 is a view for explaining a detection signal transmission procedure in a wireless charging system according to an embodiment of the present invention.
  • FIG. 4 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC (Qi) standard.
  • FIG. 6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 6.
  • FIG. 8 is a diagram for describing a method of modulating and demodulating a wireless power signal according to an embodiment of the present invention.
  • FIG. 9 is a diagram for describing a packet format according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining the types of packets defined in the WPC (Qi) standard according to an embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a structure of a foreign matter detection apparatus according to an embodiment of the present invention.
  • 12A and 12B illustrate a message structure of a FOD status packet according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a message structure of a configuration packet according to an embodiment of the present invention.
  • a receiver type identifier mapping table in which a current change threshold corresponding to a receiver type identifier is defined according to an embodiment of the present invention.
  • 15 is a receiver type identifier mapping table in which a current change threshold ratio corresponding to a receiver type identifier is defined according to another embodiment of the present invention.
  • 16 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 17 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • 19 is an embodiment of a transmitting coil mounted to a wireless power transmitting apparatus according to an embodiment of the present invention.
  • 20A and 20B are graphs illustrating measurement results of inductor input current intensity and transmit coil input current intensity for each position of a transmitting coil according to FIG. 19.
  • 21 and 22 show a change pattern of the coil current and the inverter input current when the foreign matter is located in the charging region in the ping step of Position 1 of FIG. 19.
  • FIG. 23 is an experimental result table showing a ratio of change of the transmit coil current and the inverter input voltage to the reference transmit coil current and the reference inverter input voltage according to the presence of foreign substances and the alignment state of the transmit and receive coils.
  • 24 to 26 are flowcharts illustrating a foreign material detection and alignment confirmation method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 27 is a block diagram illustrating a structure of a foreign substance detection apparatus according to an embodiment of the present invention.
  • 28 to 30 are flowcharts for explaining foreign object detection in the wireless power transmission apparatus according to an embodiment of the present invention.
  • the foreign material detection method in a wireless power transmitter comprises the steps of measuring the inverter input voltage and the transmission coil current at a predetermined period and the reference inverter input voltage and the reference transmission coil current and the measured inverter input voltage and the transmission coil Calculating a rate of change of the inverter input voltage and a rate of change of the transmit coil current by using a current, calculating a rate of change by using the rate of change of the transmit coil current and a rate of change of the inverter input voltage, and comparing whether the change rate exceeds a predetermined third threshold value;
  • the method may include determining whether foreign matter exists in the charging region.
  • the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) may include the meaning of the down direction as well as the up direction based on one component.
  • a device equipped with a function for transmitting wireless power on the wireless charging system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter for convenience of description.
  • a transmitter side, a wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, Receivers, receivers and the like can be used interchangeably.
  • the transmitter according to the present invention may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling buried form, a wall hanging form, and the like. You can also transfer power.
  • the transmitter may comprise at least one wireless power transmission means.
  • the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
  • the wireless power transmission means may include a wireless charging technology of the electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which is a wireless charging technology standard apparatus.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to an embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
  • the wireless power receiving means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are wireless charging technology standard organizations.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in a small electronic device such as a toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, a wearable device such as a smart watch, but is not limited thereto. If the device is equipped with a wireless power receiver according to the present invention, the battery can be charged. It is enough.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
  • a wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 30 that receives the received power. Can be configured.
  • the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission.
  • the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
  • the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other.
  • the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
  • the in-band communication and the out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, the in-band communication and the out-of-band communication may provide one-way communication or half-duplex communication.
  • the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto.
  • the wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
  • bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
  • the wireless power receiver 20 may obtain various state information of the electronic device 30.
  • the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like.
  • the information may be obtained from the electronic device 30 and may be utilized for wireless power control.
  • the wireless power transmitter 10 may transmit a predetermined packet indicating whether to support fast charging to the wireless power receiver 20.
  • the wireless power receiver 20 may notify the electronic device 30 when it is determined that the connected wireless power transmitter 10 supports the fast charging mode.
  • the electronic device 30 may indicate that fast charging is possible through predetermined display means provided, for example, it may be a liquid crystal display.
  • the user of the electronic device 30 may control the wireless power transmitter 10 to operate in the fast charge mode by selecting a predetermined fast charge request button displayed on the liquid crystal display.
  • the electronic device 30 may transmit a predetermined quick charge request signal to the wireless power receiver 20.
  • the wireless power receiver 20 may convert the normal low power charging mode into the fast charging mode by generating a charging mode packet corresponding to the received fast charging request signal to the wireless power transmitter 10.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to another embodiment of the present invention.
  • the wireless power receiver 20 may be configured with a plurality of wireless power receivers, and a plurality of wireless power receivers are connected to one wireless power transmitter 10 so that the wireless Charging may also be performed.
  • the wireless power transmitter 10 may distribute and transmit power to the plurality of wireless power receivers in a time division manner, but is not limited thereto.
  • the wireless power transmitter 10 may distribute and transmit power to a plurality of wireless power receivers by using different frequency bands allocated for each wireless power receiver.
  • the number of wireless power receivers that can be connected to one wireless power transmitter 10 may include at least one of a required power amount for each wireless power receiver, a battery charge state, power consumption of an electronic device, and available power amount of the wireless power transmitter. Can be adaptively determined based on the
  • the wireless power transmitter 10 may be configured with a plurality of wireless power transmitters.
  • the wireless power receiver 20 may be connected to a plurality of wireless power transmitters at the same time, and may simultaneously receive power from the connected wireless power transmitters and perform charging.
  • the number of wireless power transmitters connected to the wireless power receiver 20 may be adaptively based on the required power of the wireless power receiver 20, the state of charge of the battery, the power consumption of the electronic device, and the available power of the wireless power transmitter. Can be determined.
  • FIG 3 is a view for explaining a detection signal transmission procedure in a wireless charging system according to an embodiment of the present invention.
  • the wireless power transmitter may be equipped with three transmitting coils 111, 112, and 113. Each transmission coil may overlap some other area with another transmission coil, and the wireless power transmitter may detect a predetermined detection signal 117, 127 for detecting the presence of the wireless power receiver through each transmission coil, for example, Digital ping signals are sent sequentially in a predefined order.
  • the wireless power transmitter sequentially transmits the detection signal 117 through the primary detection signal transmission procedure illustrated in FIG. 110, and receives a signal strength indicator from the wireless power receiver 115.
  • the strength indicator 116 can identify the received transmission coils 111, 112.
  • the wireless power transmitter sequentially transmits the detection signal 127 through the secondary detection signal transmission procedure shown in FIG. 120, and transmits power among the transmission coils 111 and 112 where the signal strength indicator 126 is received.
  • the reason why the wireless power transmitter performs two sensing signal transmission procedures is to more accurately identify which transmitting coil is well aligned with the receiving coil of the wireless power receiver.
  • the wireless power transmitter Based on the signal strength indicator 126 received at each of the first transmitting coil 111 and the second transmitting coil 112 selects the best-aligned transmitting coil and performs wireless charging using the selected transmitting coil. .
  • FIG. 4 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
  • power transmission from a transmitter to a receiver according to the WPC standard is largely selected from a selection phase 410, a ping phase 420, an identification and configuration phase 430, It may be divided into a power transfer phase 440.
  • the selection step 410 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining the power transmission.
  • the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, it may transition to the ping step 420 (S401).
  • the transmitter transmits a very short pulse of an analog ping signal, and may detect whether an object exists in an active area of the interface surface based on a change in current of a transmitting coil.
  • ping step 420 when an object is detected, the transmitter activates the receiver and sends a digital ping to identify whether the receiver is a receiver that is compliant with the WPC standard. If the transmitter does not receive a response signal (for example, a signal strength indicator) from the receiver in response to the digital ping in step 420, it may transition back to the selection step 410 (S402). In addition, in the ping step 420, when the transmitter receives a signal indicating that power transmission is completed, that is, a charging completion signal, from the receiver, the transmitter may transition to the selection step 410 (S403).
  • a response signal for example, a signal strength indicator
  • the transmitter may transition to the identification and configuration step 430 for collecting receiver identification and receiver configuration and status information (S404).
  • the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to the selection step (410) (S405).
  • the transmitter may transition to a power transmission step 440 for transmitting wireless power (S406).
  • the transmitter receives an unexpected packet, the desired packet has not been received for a predefined time, or a violation of a preset power transfer contract occurs. transfer contract violation), if the filling is completed, the transition to the selection step (410) (S407).
  • the transmitter may transition to the identification and configuration step 430 (S408).
  • the power transmission contract may be set based on state and characteristic information of the transmitter and the receiver.
  • the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC (Qi) standard.
  • power transmission from a transmitter to a receiver according to the WPC (Qi) standard is largely selected as a selection phase 510, a ping phase 520, an identification and configuration phase, and so on. 530, a negotiation phase 540, a calibration phase 550, a power transfer phase 560, and a renegotiation phase 570.
  • the selection step 510 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining power transmission.
  • specific errors and specific events will be apparent from the following description.
  • the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, it may transition to ping step 520.
  • analog pings can be replaced by other alternative means.
  • Another alternative means may be at least one of proximity sensor, Hall sensor for detecting magnetic field change, pressure sensor or omission.
  • the transmitter transmits a very short pulse of an analog ping signal and an object in the active area of the interface surface based on the current change of the transmitting coil or the primary coil. Can detect the presence of
  • the transmitter activates the receiver and sends a digital ping to identify whether the receiver is a receiver that is compliant with the WPC standard. If in ping step 520 the transmitter does not receive a response signal (eg, a signal strength packet) to the digital ping from the receiver, it may transition back to selection step 510. Further, in ping step 520, the transmitter may transition to selection step 510 when it receives a signal from the receiver indicating that power transmission is complete, i.e., a charge complete packet.
  • a response signal eg, a signal strength packet
  • the transmitter may transition to identification and configuration step 530 to identify the receiver and collect receiver configuration and status information.
  • the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to selection step 510.
  • the transmitter may determine whether entry into the negotiation step 540 is necessary based on a negotiation field value of the configuration packet received in the identification and configuration step 530.
  • the transmitter may enter a negotiation step 540 and perform a predetermined FOD detection procedure.
  • the transmitter may directly enter the power transmission step 560.
  • the transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
  • FOD Foreign Object Detection
  • the transmitter may determine a threshold for FO detection based on the reference quality factor value.
  • the transmitter may detect whether the FO exists in the charging region by using the determined threshold value and the currently measured quality factor value, and may control power transmission in the FO detection result.
  • the transmitter may return to selection step 510.
  • the transmitter may enter the power transmission step 560 via the correction step 550.
  • the transmitter measures the power loss at the receiver and the transmitter to determine the strength of the power received at the receiver and to determine the strength of the power transmitted by the transmitter at calibration step 550 if no FO is detected. can do. That is, the transmitter may predict power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550.
  • the transmitter may correct the threshold for FOD detection by reflecting the predicted power loss.
  • the transmitter receives an unexpected packet, an outgoing desired packet for a predefined time, or a violation of a preset power transfer contract. transfer contract violation), if the filling is complete, transition to selection step 510.
  • the transmitter may transition to renegotiation step 570 if it is necessary to reconfigure the power transmission contract in accordance with a change in transmitter status. At this time, if the renegotiation is normally completed, the transmitter may return to the power transmission step (560).
  • the power transmission contract may be set based on state and characteristic information of the transmitter and the receiver.
  • the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • FIG. 6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment of the present invention.
  • the wireless power transmitter 600 may largely include a power converter 610, a power transmitter 620, a communication unit 630, a controller 640, and a sensor 650.
  • the configuration of the wireless power transmitter 600 is not necessarily an essential configuration, and may include more or fewer components.
  • the power converter 610 may perform a function of converting the power into power of a predetermined intensity.
  • the power converter 610 may include a DC / DC converter 611 and an amplifier 612.
  • the DC / DC converter 611 may perform a function of converting DC power supplied from the power supply unit 650 into DC power of a specific intensity according to a control signal of the controller 640.
  • the sensing unit 650 may measure the voltage / current of the DC-converted power and provide the same to the control unit 640. In addition, the sensing unit 650 may measure the internal temperature of the wireless power transmitter 600 to determine whether overheating occurs, and provide the measurement result to the controller 640. For example, the controller 640 may adaptively block power supply from the power supply unit 650 or block power supply to the amplifier 612 based on the voltage / current value measured by the sensing unit 650. Can be. To this end, one side of the power converter 610 may be further provided with a predetermined power cut-off circuit for cutting off the power supplied from the power supply unit 650, or cut off the power supplied to the amplifier 612.
  • the amplifier 612 may adjust the intensity of the DC / DC converted power according to the control signal of the controller 640.
  • the controller 640 may receive power reception state information or (and) power control signal of the wireless power receiver through the communication unit 630, and may be based on the received power reception state information or (and) power control signal.
  • the amplification factor of the amplifier 612 can be dynamically adjusted.
  • the power reception state information may include, but is not limited to, strength information of the rectifier output voltage and strength information of a current applied to the receiving coil.
  • the power control signal may include a signal for requesting power increase, a signal for requesting power reduction, and the like.
  • the power transmitter 620 may include a multiplexer 621 (or a multiplexer) and a transmission coil 622.
  • the power transmitter 620 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
  • the carrier generator may generate a specific frequency for converting the output DC power of the amplifier 612 received through the multiplexer 621 into AC power having a specific frequency.
  • the AC signal generated by the carrier generator is mixed with the output terminal of the multiplexer 621 to generate AC power.
  • AC power may be generated through an inverter provided in place of, or after, or instead of the amplifier 612.
  • the inverter may include at least one of a half bridge inverter and a full bridge inverter.
  • the frequencies of AC power delivered to each transmitting coil in accordance with one embodiment of the present invention may be different.
  • the resonance frequency of each transmission coil may be set differently by using a predetermined frequency controller having a function of differently adjusting the LC resonance characteristics for each transmission coil.
  • the power transmitter 620 includes a multiplexer 621 and a plurality of transmit coils 622—that is, a first to control the output power of the amplifier 612 to be transmitted to the transmit coil. To n-th transmission coils.
  • the controller 640 may transmit power through time division multiplexing for each transmission coil.
  • three wireless power receivers i.e., the first to third wireless power receivers, are each identified through three different transmitting coils, i.e., the first to third transmitting coils.
  • the controller 640 may control the multiplexer 621 to control power to be transmitted to a specific transmission coil in a specific time slot.
  • the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the time slot allocated to each transmitting coil, but this is only one embodiment.
  • By controlling the amplification factor of the amplifier 612 of the wireless power receiver may be controlled to transmit power.
  • the controller 640 may control the multiplexer 621 to sequentially transmit the sensing signals through the first to nth transmitting coils 622 during the first sensing signal transmission procedure. At this time, the control unit 640 may identify the time when the detection signal is transmitted using the timer 655. When the transmission signal transmission time arrives, the control unit 640 controls the multiplexer 621 to detect the detection signal through the corresponding transmission coil. Can be controlled to be sent. For example, the timer 655 may transmit a specific event signal to the controller 640 at a predetermined period during the ping transmission step. When the corresponding event signal is detected, the controller 640 controls the multiplexer 621 to transmit the specific event signal. The digital ping can be sent through the coil.
  • control unit 640 stores a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 632 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 640 controls the multiplexer 621 so that the detection signal may be transmitted only through the transmission coil (s) in which the signal strength indicator was received during the first detection signal transmission procedure. You may. As another example, the controller 640 transmits the second sensed signal to the transmit coil in which the signal strength indicator having the largest value is received when there are a plurality of transmit coils in which the signal intensity indicator is received during the first sensed signal transmit procedure. In the procedure, the sensing signal may be determined as the transmitting coil to be transmitted first, and the multiplexer 621 may be controlled according to the determination result.
  • the power transmitter 620 may be configured to include one transmission coil.
  • the modulator 631 may modulate the control signal generated by the controller 640 and transmit the modulated control signal to the multiplexer 621.
  • the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
  • the demodulator 632 may demodulate the detected signal and transmit the demodulated signal to the controller 640.
  • the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like.
  • EC error correction
  • EOC end of charge
  • the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
  • the demodulator 632 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 640 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
  • the demodulator 632 may demodulate a signal received through the transmission coil 623 and transmit the demodulated signal to the controller 640.
  • the demodulated signal may include a signal strength indicator, but is not limited thereto.
  • the demodulated signal may include various state information of the wireless power receiver.
  • the wireless power transmitter 600 may obtain the signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
  • the wireless power transmitter 600 may not only transmit wireless power using the transmission coil 622 but also exchange various information with the wireless power receiver through the transmission coil 622.
  • the wireless power transmitter 600 further includes a separate coil corresponding to each of the transmission coils 622 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
  • the wireless power transmitter 600 and the wireless power receiver perform in-band communication by way of example.
  • this is only one embodiment, and is a frequency band used for wireless power signal transmission.
  • Short-range bidirectional communication may be performed through a frequency band different from that of FIG.
  • the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
  • the wireless power transmitter 600 may adaptively provide a fast charging mode and a general low power charging mode according to a request of the wireless power receiver.
  • the wireless power transmitter 600 may transmit a signal of a predetermined pattern-a business card called a first packet-for convenience of description.
  • the wireless power receiver 600 may identify that the wireless power transmitter 600 being connected is capable of fast charging.
  • the wireless power receiver may transmit a predetermined first response packet to the wireless power transmitter 600 requesting fast charging.
  • the wireless power transmitter 600 may automatically switch to the fast charging mode and start fast charging.
  • the first packet is transmitted through the transmission coil 622.
  • the first packet may be sent in the identification and configuration step 430 of FIG. 4 or the identification step 530 of FIG. 5.
  • information for identifying whether fast charging is supported may be encoded and transmitted in the digital ping signal transmitted by the wireless power transmitter 600.
  • the wireless power receiver may transmit a predetermined charging mode packet to the wireless power transmitter 600 in which the charging mode is set to fast charging.
  • the wireless power transmitter 600 and the wireless power receiver may control an internal operation so that power corresponding to the fast charging mode may be transmitted and received.
  • the over voltage judgment criteria, the over temperature judgment criteria, the low voltage / high voltage judgment criteria, the optimum voltage Values such as level (Optimum Voltage Level), power control offset, etc. may be changed and set.
  • the threshold voltage for determining the overvoltage may be set to be high to enable fast charging.
  • the threshold temperature may be set to be high in consideration of the temperature rise due to the fast charging.
  • the power control offset value which means the minimum level at which power is controlled at the transmitting end, may be set to a larger value than the general low power charging mode so as to quickly converge to a desired target power level in the fast charging mode.
  • FIG. 7 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 6.
  • the wireless power receiver 700 includes a receiving coil 710, a rectifying unit 720, a DC / DC converter 730, a load 740, a sensing unit 750, and a communication unit ( 760), and may include a main controller 770.
  • the communication unit 760 may include a demodulator 761 and a modulator 762.
  • the wireless power receiver 700 illustrated in the example of FIG. 7 is illustrated as being capable of exchanging information with the wireless power transmitter 600 through in-band communication, this is only one embodiment.
  • the communication unit 760 may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
  • the AC power received through the receiving coil 710 may be transferred to the rectifier 720.
  • the rectifier 720 may convert AC power into DC power and transmit the DC power to the DC / DC converter 730.
  • the DC / DC converter 730 may convert the strength of the rectifier output DC power into a specific intensity required by the load 740 and then transfer it to the load 740.
  • the sensing unit 750 may measure the intensity of the rectifier 720 output DC power and provide the same to the main controller 770. In addition, the sensing unit 750 may measure the strength of the current applied to the receiving coil 710 according to the wireless power reception, and may transmit the measurement result to the main controller 770. In addition, the sensing unit 750 may measure the internal temperature of the wireless power receiver 700 and provide the measured temperature value to the main controller 770.
  • the main controller 770 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 762.
  • the signal modulated by the modulator 762 may be transmitted to the wireless power transmitter 600 through the receiving coil 710 or a separate coil (not shown).
  • the main controller 770 may determine that a sensing signal has been received. When the sensing signal is received, a signal strength indicator corresponding to the sensing signal may be modulated.
  • the demodulator 761 demodulates an AC power signal or a rectifier 720 output DC power signal between the receiving coil 710 and the rectifier 720, identifies whether a detection signal is received, and then identifies the identification result. It may be provided to the unit 770. In this case, the main controller 770 may control the signal strength indicator corresponding to the sensing signal to be transmitted through the modulator 762.
  • FIG. 8 is a diagram for describing a method of modulating and demodulating a wireless power signal according to an embodiment of the present invention.
  • the wireless power transmitter 10 and the wireless power receiver 20 may encode or decode a transmission target packet based on an internal clock signal having the same period.
  • the wireless power signal when the wireless power transmitter 10 or the wireless power receiver 20 does not transmit a specific packet, the wireless power signal is modulated with a specific frequency, as shown by reference numeral 41 of FIG. 1. AC signal may not be.
  • the wireless power transmitter 10 or the wireless power receiver 20 transmits a specific packet the wireless power signal may be an AC signal modulated by a specific modulation scheme as shown in FIG.
  • the modulation scheme may include, but is not limited to, an amplitude modulation scheme, a frequency modulation scheme, a frequency and amplitude modulation scheme, a phase modulation scheme, and the like.
  • Differential bi-phase encoding may be applied to binary data of a packet generated by the wireless power transmitter 10 or the wireless power receiver 20 as shown in FIG.
  • differential two-stage encoding allows two state transitions to encode data bit 1 and one state transition to encode data bit zero. That is, data bit 1 is encoded such that a transition between a HI state and a LO state occurs at a rising edge and a falling edge of the clock signal, and data bit 0 is HI at the rising edge of the clock signal.
  • the transition between state and LO state may be encoded to occur.
  • the encoded binary data may be applied with a byte encoding scheme, as shown at 830.
  • the byte encoding scheme includes a start bit and a stop bit for identifying a start and type of a corresponding bit stream for an 8-bit encoded binary bit stream.
  • the method may be a method of inserting a parity bit for detecting whether an error of a corresponding bit stream (byte) occurs.
  • FIG. 9 is a diagram for describing a packet format according to an embodiment of the present invention.
  • a packet format 900 used for information exchange between the wireless power transmitter 10 and the wireless power receiver 20 may be used for acquiring synchronization for demodulating the packet and identifying the correct start bit of the packet.
  • the packet receiving end may identify the size of the message 930 included in the packet based on the header 920 value.
  • the header 920 may be defined in each step of the wireless power transfer procedure, and in some, the same value may be defined in different steps of the header 920.
  • the header values corresponding to the end power transfer of the ping step and the end of the power transfer of the power transfer step may be equal to 0x02.
  • the message 930 includes data to be transmitted at the transmitting end of the packet.
  • the data included in the message 930 field may be a report, a request, or a response to the counterpart, but is not limited thereto.
  • the packet 900 may further include at least one of a transmitter identification information for identifying a transmitter that transmitted the packet and a receiver identification information for identifying a receiver for receiving the packet.
  • the transmitter identification information and the receiver identification information may include IP address information, MAC address information, product identification information, and the like, but are not limited thereto and may be information capable of distinguishing a receiver and a transmitter from a wireless charging system.
  • the packet 900 may further include predetermined group identification information for identifying the corresponding reception group when the packet is to be received by a plurality of devices.
  • FIG. 10 is a diagram for describing types of packets transmitted from a wireless power receiver to a wireless power transmitter according to an embodiment of the present invention.
  • a packet transmitted from a wireless power receiver to a wireless power transmitter includes a signal strength packet for transmitting strength information of a detected ping signal, and a type of power transmission for requesting the transmitter to stop power transmission.
  • End Power Transfer a power control hold-off packet for transmitting time information waiting to adjust the actual power after receiving a control error packet for control control
  • a configuration for transmitting the configuration information of the receiver Packet, identification packet and extended identification packet for transmitting receiver identification information general request packet for sending general request message, special request packet for sending special request message, reference quality factor value for FO detection FOD status packet, control error packet for controlling the transmitter power of the transmitter, renegotiation packet for initiation of renegotiation,
  • a 24-bit received power packet and 8-bit received power packet for transmitting strength information of the received power, and a charging state packet for transmitting charge state information of a current load may be included.
  • Packets transmitted from the wireless power receiver to the wireless power transmitter may be transmitted using in-band communication using the same frequency band as the frequency band used for wireless power transmission.
  • FIG. 11 is a block diagram illustrating a structure of a wireless power transmission apparatus according to an embodiment of the present invention.
  • the wireless power transmitter 1100 includes a power supply 1101, a DC-DC converter 1102, an inverter 1103, a resonant capacitor 1104, and a transmission coil 1105.
  • the quality factor measuring unit 1106, the demodulator 1107, the modulator 1108, the sensing unit 1109, and the controller 1110 may be configured.
  • the power supply 1101 may receive DC power through an external power supply terminal and transmit the DC power to the DC-DC converter 1102.
  • the DC-DC converter 1102 may convert the intensity of the DC power received from the power supply unit 1101 into the DC power of a specific intensity under the control of the controller 1110.
  • the DC-DC converter 1102 may be configured as a variable voltage device capable of adjusting the strength of the voltage, but is not limited thereto.
  • the inverter 1103 may convert the converted DC power into AC power.
  • the inverter 1103 may convert a DC power signal input through a plurality of switch controls provided into an AC power signal and output the converted AC power signal.
  • the inverter 1103 may be configured to include a full bridge circuit, but is not limited thereto.
  • the inverter 1103 may be configured to include a half bridge.
  • the inverter 1103 may include both a half bridge circuit and a full bridge circuit.
  • the controller 1110 may dynamically operate the inverter 1103 as a half bridge or a full bridge. You can also decide.
  • the wireless power transmission apparatus may adaptively control the bridge mode of the inverter 1103 according to the strength of power required by the wireless power receiver. For example, when the wireless power receiver requires 5W of low power, the controller 1110 may control the half bridge circuit of the inverter 1103 to be driven.
  • the controller 1110 may control the full bridge circuit to be driven.
  • the wireless power transmitter may adaptively drive the full bridge circuit or the half bridge circuit according to the sensed temperature. For example, when the temperature of the wireless power transmitter exceeds a predetermined reference value while transmitting wireless power using the half bridge circuit, the controller 1110 may deactivate the half bridge circuit and activate the full bridge circuit. That is, the wireless power transmitter lowers the temperature of the wireless power transmitter below a reference value by increasing the voltage through the full bridge circuit and decreasing the strength of the current flowing through the transmission coil 1105 for power transmission of the same intensity. have.
  • the amount of heat generated in an electronic component mounted on an electronic device may be more sensitive to the strength of the current than the strength of the voltage applied to the electronic component.
  • the inverter 1103 may not only convert DC power into AC power, but also change the strength of AC power.
  • the inverter 1103 adjusts the frequency of a reference alternating current signal used for generating alternating current power according to the control of the controller 1110 or a circuit design provided by the controller 1110, and outputs the intensity of the alternating current power. You can also adjust.
  • the inverter 1103 may be configured to include a frequency oscillator for generating a reference AC signal having a specific frequency, but this is only one embodiment, another example is that the frequency oscillator is separate from the inverter 1103 It may be configured to be mounted on one side of the wireless power transmission device.
  • the inverter 1103 may control the duty cycle of the reference AC signal or the duty cycle of the converted AC signal to adjust the intensity of the output power.
  • Wireless power transmission apparatus 1100 is the output DC voltage of the DC-DC converter 1102, the operating frequency applied to the inverter 1103, the duty of the AC signal converted by the inverter 1103 At least one of the cycles may be controlled to adjust the intensity of the output power.
  • the quality factor measuring unit 1106 may measure a quality factor value of the transmission coil of the wireless power transmitter by monitoring a change in inductance (or voltage or current) value across the resonance capacitor 1104. In this case, the measured current quality factor value may be transferred to the controller 1110, and the controller 1110 may store the measured current quality factor value received from the quality factor measurement unit 1106 in a predetermined recording area.
  • the controller 1110 may measure the quality factor values in the selection steps 410 and 510 of FIGS. 4 to 5.
  • the controller 1110 is a foreign object detection quality factor threshold value (FOD_QFT_Value) for determining whether there is a foreign matter based on a reference quality factor value (RQF_Value) received from the wireless power receiver. ) Can be determined.
  • the controller 1110 may perform a foreign matter detection procedure based on the quality factor value to determine whether there is a foreign matter by comparing the measured quality factor values (Measured_Quality_Factor_Value, MQF_Value) and FOD_QFT_Value.
  • the RQF_Value may be determined as a value having the smallest value among the quality factor values measured at a plurality of points on the charging region of the specific wireless power transmitter designated for the performance test.
  • FOD_QFT_Value can be determined by subtracting RQF_Value from reference quality factor accuracy and production and measurement errors.
  • the reference quality factor accuracy may be an allowable range of an error for the reference quality factor value measured when no foreign matter is present.
  • the reference quality factor value to which the tolerance range is applied may be set at a rate that increases or decreases with respect to the reference quality factor value received from the wireless power receiver, but is not limited thereto.
  • the current WPC Qi standard is defined to apply the same reference quality factor accuracy for all products.
  • the reference quality factor accuracy may have different values depending on the manufacturer of the product and the type of product.
  • the wireless power receiver of A company and the wireless power receiver of B company may measure a reference quality factor value in association with the same wireless power transmitter.
  • the accuracy of the reference quality factor values measured for the two products may differ. Therefore, the FOD_QFT_Value for determining whether there is a foreign matter determined based on different reference quality factor accuracy for each wireless power receiver may not be an accurate threshold for determining whether there is a foreign matter.
  • the test result of the same wireless power transmitter the reference quality factor value measured for the wireless power receiver of Company A is 100
  • the reference quality factor value measured for the wireless power receiver of Company B may be 70
  • the reference quality factor accuracy corresponding to company B's wireless power receiver is set to +/- 7%
  • the reference quality factor accuracy corresponding to company A's wireless power receiver is set to +/- 10%.
  • the probability of detecting foreign matter more accurately can be increased.
  • the same reference quality factor accuracy is applied to all wireless power receivers in the FOD certification test according to the WPC Qi standard, there is a problem in that the accurate FOD certification test cannot be performed.
  • the demodulator 1107 demodulates the in-band signal received from the wireless power receiver and transmits the demodulated in-band signal to the controller 1110.
  • the demodulator 1107 may demodulate and transmit the FOD status packet of FIG. 12 and the configuration packet of FIG. 13 to the controller 1110.
  • the FOD status packet or the configuration packet may include a predetermined receiver type identifier for identifying the type and type of the wireless power receiver.
  • the controller 1110 may determine a predetermined current change threshold (Delta_Current_Threshold) for determining whether a foreign substance exists based on the received receiver type identifier. The controller 1110 may determine whether there is a foreign substance by comparing the change amount Delta_RAIL_Current of the I_rail measured in the ping step with the determined current change threshold.
  • Delta_Current_Threshold a predetermined current change threshold for determining whether a foreign substance exists based on the received receiver type identifier.
  • the controller 1110 may determine whether there is a foreign substance by comparing the change amount Delta_RAIL_Current of the I_rail measured in the ping step with the determined current change threshold.
  • the controller 1110 may determine whether there is a foreign substance in the identification and configuration step 530 of FIG. 5.
  • the controller 1110 may determine whether a foreign object exists in the negotiation step 540 of FIG. 5.
  • the controller 1110 may transition the state of the wireless power transmitter to the selection step 510.
  • the controller 1110 may enter the selection step 510 without entering the power transmission step 560.
  • the modulator 1108 modulates the control packet received from the controller 1110 and transmits the modulated control packet through the transmission coil 1105. For example, when the FOD status packet including the receiver type identifier is received, the controller 1110 determines a current change threshold corresponding to the corresponding receiver type identifier, and determines the current change amount of the inverter 1103 in the previously measured ping step. By comparing Delta_Rail_Current- with the determined current change threshold, it is possible to finally determine the presence of foreign substances. According to the determination result of the presence of the foreign matter, the controller 1110 may generate an ACK packet or a NACK packet and transmit the generated ACK packet or the NACK packet to the modulator 1108.
  • the ACK packet may mean that the foreign matter was not detected, and the NACK packet may mean that the foreign matter was detected.
  • the controller 1110 may determine whether a foreign matter exists by comparing Delta_Rail_Current and Delta_Current_Threshold, and then perform a foreign matter detection procedure based on a quality factor value.
  • a procedure of determining whether there is a foreign matter by comparing Delta_Rail_Current and Delta_Current_Threshold will be referred to as a foreign matter detection procedure based on a current change amount.
  • the controller 1110 may determine that there is a foreign substance when it is determined that the foreign substance exists by performing the foreign substance detection procedure based on the current change amount and the foreign substance detection procedure based on the quality factor value.
  • the controller 1110 may finally determine that the foreign matter exists. have.
  • the controller 1110 may control to perform the foreign matter detection procedure based on the current change amount when it is determined that the foreign matter exists through the foreign matter detection procedure based on the quality factor value. In this case, the controller 1110 may finally determine that the foreign substance exists only when it is determined that the foreign substance exists through the foreign substance detection procedure based on the amount of current change.
  • the controller 1110 may finally determine whether the foreign substance exists by performing only the foreign substance detection procedure based on the current change amount. Note that it may.
  • the controller 1110 notifies the user of the presence of the foreign matter in the charging region without entering the power transmission step 560 in the negotiation step 540 of FIG. 5.
  • the means can be controlled.
  • the notifying means may include, but is not limited to, a beeper, an LED lamp, a vibrating element, a liquid crystal display, and the like.
  • the sensing unit 1109 may measure voltage, current, power, temperature, etc. at a specific node, a specific component, a specific location, etc. of the wireless power transmitter.
  • the sensing unit 1109 measures the intensity change of the current / voltage / power or the intensity of the current / voltage / power between the DC-DC converter 1102 and the inverter 1103 and controls the measurement result. 1110.
  • the current flowing between the DC-DC converter 1102 and the inverter 1103 is I_rail, and the voltage applied to the DC-DC converter 1102 output terminal or the inverter 1103 input terminal is V_rail, DC-DC. Power transmitted from the converter 1102 to the inverter 1103 will be referred to as P_rail.
  • the sensing unit 1109 measures the strength of the current flowing through the transmitting coil 1105, that is, the inductor, and the voltage applied to both ends of the transmitting coil 1105, and measures the measurement result in the control unit 1110. You can also pass it on.
  • the control unit 1110 calculates the change amount of the intensity I_rail of the current applied to the inverter 1103 based on the sensing information received from the sensing unit 1109 in the ping step, and the calculated current intensity The amount of change can be stored in a predetermined recording area.
  • the controller 1110 may determine the possibility of the presence of foreign substances (that is, the probability) by comparing the amount of change of the current intensity previously stored with the predetermined current change threshold in the identification and configuration steps.
  • the controller 1110 may adjust the reference quality factor accuracy to a lower level. For example, when it is determined that there is a high possibility of the presence of foreign substances, the controller 1110 may determine the FOD_QFT_Value by adjusting the reference quality factor accuracy from +/- 10% to +/- 5%. Through this, the controller 1110 may improve the foreign matter detection accuracy when determining the presence of the foreign matter based on the quality factor value. On the other hand, if it is determined that the foreign matter is less likely to exist, the controller 1110 may determine the FOD_QFT_Value based on a predefined reference quality factor accuracy.
  • the controller 1110 may determine that a foreign matter exists. If a foreign object exists, the controller 1110 may not enter the power transmission step 560 in the negotiation step 540 of FIG. 5. In this case, the controller 1110 may control a predetermined notification means provided in the wireless power transmission apparatus so that the user recognizes that the foreign matter exists in the charging region.
  • the notification means may include, but is not limited to, a beeper, an LED lamp, a vibrating element, a liquid crystal display, and the like.
  • the controller 1110 may determine that no foreign matter exists in the charging region. If there is no foreign matter, the controller 1110 may enter the power transmission step and control the power required by the wireless power transmission apparatus to be transmitted.
  • control unit 1110 is a current value measured in the ping step, for example, the output current (I_rail) of the DC-DC converter or the current (I_coil) applied to the transmitting coil (1105). May be compared to a predetermined reference current value. As a result of the comparison, when the measured current value is larger than the reference current value, it may be determined that the presence of foreign matter is low. In this case, even when the FOD status packet is received in the negotiation step, the controller 1110 may enter the power transmission step without proceeding with the foreign material determination procedure based on the quality factor value.
  • the inverter input current I_rail is DC power, and the current flowing through the transmitting coil 1105 is AC current.
  • the current input to the inverter 1103 in the ping step is DC power having a constant level, but the output power of the inverter 1103 is AC power transmitted discontinuously at a constant cycle. Therefore, the time average value of I_rail may be relatively larger than the time average value of I_coil. Therefore, determining the possibility of the presence of foreign objects based on the change in I_rail can significantly reduce the probability of determination error.
  • the controller 1110 may determine the presence of foreign substances by monitoring the change in the intensity of the current I_rail applied to the inverter 1103 in the ping step.
  • the wireless power transmission apparatus determines whether there is a foreign matter based on the amount of change of the current applied to the inductor in the ping step, and adaptively blocks power transmission according to the determination result, There is an advantage to minimize equipment damage and waste of power.
  • the foreign matter detection apparatus can increase the detection accuracy of the foreign matter by dynamically determining the current change threshold based on the receiver type identifier corresponding to the corresponding wireless power receiver when performing the foreign matter detection procedure based on the current intensity change. There is an advantage.
  • 12A is a diagram for explaining a message structure of a FOD status packet according to an embodiment of the present invention.
  • the FOD status packet message 1200 has a length of 2 bytes, a 6-bit receiver type identifier (1201) field, a 2-bit mode (mode, 1202) field, and 1. It may be configured to include a reference quality factor value (203) field of the byte length.
  • FIG. 12A illustrates that the length of the receiver type identifier 1201 field is 6 bits, this is only one embodiment, and it should be noted that the size of the receiver type identifier 1201 may be smaller than 6 bits according to the design of a person skilled in the art. .
  • the reference quality factor value determined while the wireless power receiver is powered off is recorded in the reference quality factor value 1203 field. It can mean that there is.
  • 12B is a diagram for explaining a message structure of a FOD status packet according to another embodiment of the present invention.
  • the FOD status packet message 1210 has a length of 2 bytes, a first information field 1211 having a length of 6 bits, a mode 1212 field having a length of 2 bits, and 1 byte. It may be configured to include a second information (1213) field of the length.
  • each bit of the first information 1211 field may be all set to 0, or the receiver type identifier 1201 may be recorded as in the embodiment of FIG. 12A.
  • reference inverter output voltage Reference V_rail when the mode 1212 field is set to binary '01', information about the reference inverter output voltage Reference V_rail is recorded in the first information 1211 field, and the second information ( 1213) field, information about the reference transmission coil current (Reference I_coil) may be recorded, but this is only one embodiment, information recorded in the first information 1211 field and the second information 1213 field It may also be information about Reference I_coil and Reference V_rail, respectively.
  • the reference inverter output voltage and the reference transmission coil current may be values measured when the power of the wireless power receiver is turned on.
  • the reference inverter output voltage and the reference transmission coil current may be values measured in the ping step, but are not limited thereto, and may be measured in any one of an identification and configuration step, a negotiation step, a renegotiation step, and a power transmission step. It may be a value.
  • the mode 1212 field when the mode 1212 field is set to binary '01', information about Reference V_rail and Reference I_coil is recorded in the first information 1211 field and the second information 1213, respectively.
  • the mode 1212 may be defined such that a binary number '10' or a binary number '11' is set for transmission of the corresponding information.
  • the reference inverter output voltage and the reference transmit coil current may have different values depending on the configuration aspect, design, power class, guaranteed power, and the like of the wireless power transmitter.
  • the wireless power receiver may maintain information about a reference inverter output voltage and a reference transmission coil current corresponding to the connected wireless power transmitter. In this case, the wireless power receiver may transmit information about the corresponding reference inverter output voltage and the reference transmission coil current through the FOD status packet to the corresponding wireless power transmitter through in-band communication in the negotiation step.
  • the wireless power receiver may identify the type of the wireless power transmitter in the identification and configuration stages, and determine whether information on the reference inverter output voltage and the reference transmission coil current corresponding to the identified type exists in the internal recording area. . As a result of the check, the wireless power receiver may transmit a FOD status packet including information about the reference inverter output voltage and the reference transmission coil current corresponding to the identified type, to the corresponding wireless power transmitter.
  • a wireless power transmitter includes a foreign material in a charging region based on information about a reference inverter output voltage and a reference transmission coil current received through a FOD status packet, and an inverter output voltage and a transmission coil current measured in real time. You can determine if this exists.
  • the wireless power transmitter may determine whether there is a foreign substance in the charging region based on the current change amount or change rate of the current transmission coil compared to the reference transmission coil current received through the FOD status packet. have.
  • the FOD status packet message may include only information about the reference transmit coil current.
  • the apparatus for transmitting power wirelessly may determine whether there is a foreign substance in the charging region based on the information on the reference inverter output voltage received through the FOD status packet and the inverter output voltage measured in real time.
  • the FOD status packet message may include only information about the reference inverter output voltage.
  • the apparatus for transmitting power wirelessly may determine whether there is a foreign substance in the charging region based on the change amount or change rate of the inverter output current currently measured with respect to the reference inverter output current. For example, when the reference inverter output current is a and the currently measured inverter output current is b, the change ratio r of the inverter output current may be calculated as (b-a) / a. In this case, when r exceeds a predetermined reference value t, the wireless power transmitter may determine that the foreign matter exists in the charging region.
  • FIG. 13 is a diagram illustrating a structure of a configuration packet according to an embodiment of the present invention.
  • a message format of a configuration packet may have a length of 5 bytes, and includes a power class field, a maximum power field, and a power control field. , A count field, a window size field, a window offset field, and first to third reserved fields 1301 to 1303.
  • the power class assigned to the wireless power receiver may be recorded in the power class field.
  • the strength value of the maximum power that can be provided by the rectifier output of the wireless power receiver may be recorded.
  • the maximum power amount Pmax desired to be provided at the rectifier output of the wireless power receiver may be calculated as (b / 2) * 10 a .
  • the power control field may be used to indicate according to which algorithm the power control in the wireless power transmitter should be made. For example, if the power control field value is 0, this means that the power control algorithm is defined in the standard, and if the power control field value is 1, it may mean that power control is performed according to an algorithm defined by the manufacturer.
  • the count field may be used to record the number of option configuration packets to be transmitted by the wireless power receiver in the identification and configuration steps.
  • the window size field may be used to record the window size for calculating the average received power.
  • the window size may be a positive integer value greater than 0 and having a unit of 4 ms.
  • the window offset field may record information for identifying the time from the end of the average received power calculation window to the start of the transmission of the next received power packet.
  • the window offset may be a positive integer value greater than 0 and having a unit of 4 ms.
  • the receiver type identifier described with reference to FIGS. 11 through 12A may be recorded in at least one reserved field of the first through third reserved fields 1301 through 1303 of FIG. 13 and transmitted to the wireless power transmitter.
  • the number of bits allocated for the receiver type identifier may have a different length according to the design of a person skilled in the art, and does not limit the number of bits.
  • a receiver type identifier mapping table in which a current change threshold corresponding to a receiver type identifier is defined according to an embodiment of the present invention.
  • the receiver type identifier field has a length of 6 bits and may range from 0 to 63.
  • the current change threshold has a unit of mA and may be defined such that 100 mA is increased as the type identifier is increased by 1, but this is only one embodiment, and is a current change corresponding to the type identifier. It should be noted that the threshold may be defined differently according to the design of those skilled in the art. For example, the current change threshold may be defined such that 50 mA increases as the type identifier increases by one.
  • receiver type identifier field has been described as having a length of 6 bits, the embodiment of FIG. 13 is only one embodiment, and the length of the receiver type identifier field may be configured to be larger or smaller than 6 bits. Note that it may.
  • the receiver type identifier corresponding to the wireless power receiver A is binary “000101”. May be assigned.
  • the wireless power receiver may transmit a receiver type identifier assigned to the wireless power transmitter through a configuration packet in a configuration and identification step.
  • the wireless power receiver may transmit the receiver type identifier assigned to the wireless power transmitter to the wireless power transmitter through the FOD status packet in the negotiation step.
  • 15 is a receiver type identifier mapping table in which a current change threshold ratio corresponding to a receiver type identifier is defined according to another embodiment of the present invention.
  • the receiver type identifier has a length of 2 bits, and the current change threshold ratio is a current value of the digital ping signal measured when the wireless power receiver is not placed in the charging region, hereinafter, for convenience of description.
  • the initial inverter input current value (Initial_Inverter_Input_Current_Value) may be defined as the rate of change of the current value of the digital ping signal (Measured_Inverter_Inpurt_Current_Value)-that is, the inverter input current strength value-measured after the wireless power receiver is placed in the charging region. .
  • the rate of change of current in the ping step is
  • the receiver type identifier corresponding to the corresponding wireless power receiver may be defined as binary “10”, as shown in FIG. 15.
  • the receiver type identifier has a length of 2 bits, and the current change threshold ratio corresponding to each receiver type identifier is shown to have a range of 20%.
  • 16 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may measure the strength of the current applied to the inverter in the ping step and store information about the measured inverter input current strength in a predetermined recording area (S1601).
  • the apparatus for transmitting power wirelessly may receive a packet including a receiver type identifier (S1602).
  • the receiver type identifier may be received through the configuration packet in the configuration and identification phase, but this is only one embodiment, and in another embodiment, the receiver type identifier may be received through the FOD status packet in the negotiation phase. .
  • the apparatus for transmitting power wirelessly may determine a current intensity threshold corresponding to the receiver type identifier in operation S1603.
  • the current intensity threshold may be determined with reference to the receiver type identifier mapping table described with reference to FIG. 14, but is not limited thereto.
  • the apparatus for transmitting power may compare the inverter input current intensity and the current intensity threshold stored in operation 1601 to determine whether a foreign substance exists in the charging region (S1604). For example, when the inverter input current intensity exceeds the current intensity threshold, the wireless power transmitter may determine that foreign matter exists in the charging region. On the other hand, if the inverter input current intensity is less than or equal to the current intensity threshold, it may be determined that no foreign matter exists in the charging region.
  • the wireless power transmission apparatus may output a predetermined alarm signal indicating that the foreign substance is detected, and then enter the selection step 510 (S1605).
  • the wireless power transmitter may enter the negotiation step or the power transmission step (S1606).
  • FIG. 17 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may measure the strength of the current input to the inverter in the ping step and store information about the measured inverter input current strength (Measured_I_Rail) in a predetermined recording area (S1701).
  • the wireless power transmitter transmits information about the strength of the current input to the inverter when no object is detected, that is, information on the initial inverter input current value (Initial_Inverter_Input_Current_Value), and the inverter input current value (Measured_Inverter_Input_Current_Value) measured at the ping step.
  • the rate of change of the inverter input current I_rail may be calculated using the information (S1702).
  • the apparatus for transmitting power wirelessly may receive a packet including a receiver type identifier (S1703).
  • the receiver type identifier may be received through the configuration packet in the configuration and identification phase, but this is only one embodiment, and in another embodiment, the receiver type identifier may be received through the FOD status packet in the negotiation phase. .
  • the apparatus for transmitting power wirelessly may determine a current intensity threshold ratio corresponding to the receiver type identifier (S1704).
  • the current intensity threshold ratio may be determined with reference to the receiver type identifier mapping table described with reference to FIG. 15, but is not limited thereto.
  • the apparatus for transmitting power wirelessly may compare the change ratio of the inverter input current calculated in operation 1702 with the current intensity threshold ratio determined in operation 1704 to determine whether a foreign substance exists in the charging region (S1705). For example, when the rate of change of the inverter input current exceeds the current intensity threshold ratio, the wireless power transmitter may determine that the foreign matter exists in the charging region. On the other hand, if the rate of change of the inverter input current is less than or equal to the current intensity threshold ratio, the wireless power transmitter may determine that there is no foreign matter in the charging region.
  • the wireless power transmission apparatus If it is determined that the foreign substance exists, the wireless power transmission apparatus outputs a predetermined alarm signal indicating that the foreign substance is detected, and then may enter the selection step 510 (S1706).
  • the wireless power transmitter may enter the negotiation step or the power transmission step (S1707).
  • FIG. 18 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may perform a foreign matter detection procedure based on the change of the inverter input current intensity in the ping step (S1801).
  • the apparatus for transmitting power wirelessly may determine whether there is a foreign matter through a foreign matter detection procedure based on the change of the inverter input current strength (S1802). As a result of the determination, when it is determined that the foreign matter exists, the foreign matter detection procedure based on the quality factor value may be performed in the negotiation step (S1803). At this time, the wireless power transmitter may correct the reference quality factor accuracy used to determine the quality factor threshold. For example, the reference quality factor accuracy may be adjusted from +/- 10% to +/- 5% so that foreign matter can be detected more accurately.
  • the reference quality factor accuracy may be expressed as a Q FACTOR Threshold adjustment value.
  • the apparatus for transmitting power wirelessly may determine whether a foreign substance exists by performing a foreign substance detection procedure based on the quality factor value in the negotiation step (S1804). As a result of the determination, when the foreign material exists, the wireless power transmitter may enter the selection step 510 after transmitting the NACK packet (S1805). On the other hand, when the foreign matter does not exist as a result of the determination in step 1804, the wireless power transmission apparatus may enter the power transmission step after the transmission of the ACK packet (S1806) (S1807).
  • the wireless power transmitter may perform step 1806 without performing a foreign matter detection procedure based on the quality factor value.
  • the apparatus for transmitting wireless power may generate an ACK packet and transmit the ACK packet to the corresponding wireless power receiver after the FOD status packet is received in the negotiation step.
  • 19 is an embodiment of a transmitting coil mounted to a wireless power transmitting apparatus according to an embodiment of the present invention.
  • the wireless power transmission apparatus may be arranged such that three transmission coils overlap a predetermined area.
  • Position 1 which is the center of the transmission coil block
  • Position 2 which is 20 mm away from it
  • FIGS. 20A to 20B the intensity of the inverter input current
  • Position 3 which is 40mm away from the center of the transmitting coil block, is characterized by a small change in the inverter input current for all foreign materials.
  • 20A to 20B are graphs illustrating measurement results of inductor input current intensity and transmit coil input current intensity for each position of a transmitting coil according to FIG. 19.
  • FIG. 20A illustrates a measurement result of an inverter input current intensity and a transmission coil input current intensity according to a foreign material type at position 1 of FIG. 19.
  • FIG. 20B illustrates measurement results of an inductor input current intensity and a transmission coil input current intensity according to a foreign material type at position 2 of FIG. 19.
  • the intensity of the current measured at Position 1 is greater than the intensity of the current measured at Position 2 as a whole.
  • the intensity of the current measured in the absence of the foreign matter during the ping transmission is greater than the strength of the current measured in the presence of the foreign matter.
  • the intensity change of the inverter input current is greater than the change of the intensity of the transmission coil current.
  • 21 to 22 show a change pattern of the coil current and the inverter input current when the foreign matter is located in the charging region in the ping step at position 1 of FIG. 19.
  • FIG. 21 shows a case where the foreign material is a 10 won coin
  • FIG. 22 shows an experimental result when the foreign matter is a 500 won coin.
  • the graph shown in FIG. 21 shows that the amount of change in the coil current and the inverter input current at the first ping transmission point when the foreign material is not located in the charging region is several tens of mA, but at the second ping transmission point when the foreign material is located in the charging region.
  • the change in coil current and inverter input current shows several hundred mA.
  • the amount of change in the coil current and the inverter input current at the second ping transmission point in which the foreign material is located in the charging region is thousands of mA.
  • FIG. 23 is an experimental result table showing a ratio of change of the transmit coil current and the inverter input voltage to the reference transmit coil current and the reference inverter input voltage according to the presence of foreign substances and the alignment state of the transmit and receive coils.
  • the inverter input voltage V_rail and the transmission coil current I_coil measured when the foreign material does not exist in the charging region and the receiver is disposed in the center of the charging region are respectively referred to the reference inverter input voltage Reference_V_rail, It may be defined as a reference transmission coil current (Reference_I_coil).
  • the rate of change of the inverter input voltage and the transmission coil current when the wireless power receiver is moved from the center of the charging area to the upper left and the lower right in the state where no foreign matter is present in the charging area is the same position ( In the middle), it can be seen that the foreign matter is lower than the rate of change of the inverter input voltage and the transmission coil current calculated when the foreign matter is disposed in the charging region.
  • the change rate of the measured inverter input voltage (Measured_V_rail) compared to the reference inverter input voltage (Reference_V_rail) is ⁇ V
  • the change rate of the measured transmit coil current (Measured_I_coil) compared to the reference transmit coil current (Reference_I_coil) is ⁇ I. Let's do it.
  • ⁇ V may be calculated as (Measured_V_rail-Reference_V_rail) / Reference_V_rail
  • ⁇ I may be calculated as (Measured_I_coil-Reference_I_coil) / Reference_I_coil.
  • the change ratio ⁇ I / ⁇ V has a larger value when foreign matter is present in the charging region than when the wireless power receiver is moved in the charging region in the state where no foreign matter is present in the charging region. It can be seen that.
  • the apparatus for transmitting power wirelessly may determine whether foreign matter exists in the charging region based on the change ratio ⁇ I / ⁇ V.
  • the change ratio threshold for determining whether there is a foreign matter based on the experiment result table of FIG. 23 may be defined as 1.5, but is not limited thereto. In this case, when the rate of change exceeds 1.5, the wireless power transmitter may determine that the foreign matter exists in the charging region. On the other hand, if ⁇ I and / or ⁇ V are within a predetermined threshold range and the rate of change is 1.5 or less, the wireless power transmitter may determine that there is an alignment problem between the transmitting and receiving coils.
  • the wireless power transmission apparatus may determine whether there is a foreign substance based on ⁇ I and / or ⁇ V.
  • the wireless power transmitter may determine that a foreign material exists in the charging region.
  • the ⁇ V threshold (0.4) and ⁇ I threshold (0.6) for determining the presence of foreign matter is just one embodiment, different values may be applied according to the type and configuration of the product to be applied.
  • FIG. 24 is a flowchart illustrating a foreign material detection and alignment confirmation method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may measure an inverter input voltage at predetermined cycles (S2401).
  • the inverter input voltage measured at a certain period will be referred to as Measured_V_rail.
  • the apparatus for transmitting power wirelessly may calculate the inverter input voltage change rate ⁇ V using the pre-stored reference inverter input voltage Reference_V_rail and Measured_V_rail (S2402).
  • the inverter input voltage change rate may be calculated as (Measured_V_rail-Reference_V_rail) / Reference_V_rail.
  • the apparatus for transmitting power wirelessly may determine whether the inverter input voltage change rate ⁇ V exceeds a predetermined inverter input voltage change rate threshold ⁇ V_FO_threshold for determining whether there is a foreign substance (S2403).
  • the wireless power transmitter may enter a selection step after outputting a predetermined alarm signal indicating that a foreign matter is detected (S2404).
  • the wireless power transmitter may check whether the inverter input voltage change rate ( ⁇ V) exceeds a predetermined inverter input voltage change rate threshold ( ⁇ V_Alignment_threshold) for determining the transmission / reception coil alignment state ( S2405).
  • ⁇ V inverter input voltage change rate
  • ⁇ V_Alignment_threshold predetermined inverter input voltage change rate threshold
  • the wireless power transmitter may output a predetermined alarm signal indicating that a transmission / reception coil alignment problem is detected (S2406).
  • 25 is a flowchart illustrating a foreign material detection and alignment confirmation method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may measure a transmission coil current at a predetermined period (S2501).
  • the transmission coil current measured at a predetermined period will be referred to as Measured_I_coil.
  • the apparatus for transmitting power wirelessly may calculate a transmission coil current change rate ⁇ I by using the reference transmission coil current Reference_I_coil and Measured_I_coil stored in advance (S2502).
  • the transmission coil current change rate may be calculated as (Measured_I_coil-Reference_I_coil) / Reference_I_coil.
  • the apparatus for transmitting power wirelessly may determine whether the transmission coil current change rate ⁇ I exceeds a predetermined transmission coil current change rate threshold ⁇ I_FO_threshold for determining whether there is a foreign substance (S2503).
  • the wireless power transmitter may enter a selection step after outputting a predetermined alarm signal indicating that a foreign matter is detected (S2504).
  • the wireless power transmitter may check whether the transmission coil current change rate ⁇ I exceeds a predetermined transmission coil current change rate threshold ⁇ I_Alignment_threshold for determining the transmission / reception coil alignment state (S2505).
  • the wireless power transmitter may output a predetermined alarm signal indicating that a transmission / reception coil alignment problem is detected (S2506).
  • FIG. 26 is a flowchart illustrating a foreign material detection and alignment confirmation method in a wireless power transmitter according to another embodiment of the present invention.
  • the wireless power transmission apparatus may measure a transmission coil current and an inverter input voltage at predetermined cycles (S2601).
  • the transmitter coil current and the inverter input voltage measured at regular intervals will be referred to as Measured_I_coil and Measured_V_rail, respectively.
  • the apparatus for transmitting power wirelessly may calculate a change ratio ⁇ I / ⁇ V using the pre-stored reference transmission coil current Reference_I_coil and the reference inverter input voltage Reference_V_rail, and Measured_I_coil and Measured_V_rail (S2602).
  • ⁇ I may be calculated as (Measured_I_coil-Reference_I_coil) / Reference_I_coil
  • ⁇ V may be calculated as (Measured_V_rail-Reference_V_rail) / Reference_V_rail.
  • the apparatus for transmitting power wirelessly may determine whether the change ratio ⁇ I / ⁇ V exceeds a predetermined change ratio threshold ⁇ I / ⁇ V_FO_threshold for determining whether a foreign substance exists (S2603).
  • the wireless power transmitter may enter a selection step after outputting a predetermined alarm signal indicating that a foreign matter is detected (S2604).
  • the wireless power transmitter determines whether the change ratio ⁇ I / ⁇ V exceeds a predetermined predetermined change ratio threshold ⁇ I / ⁇ V_Alignment_threshold for determining the transmission / reception coil alignment state. It may be (S2605).
  • the wireless power transmitter may output a predetermined alarm signal indicating that a transmission / reception coil alignment problem is detected (S2606).
  • FIG. 27 is a block diagram illustrating a structure of a foreign substance detection apparatus according to an embodiment of the present invention.
  • the foreign matter detection device 2700 includes a communication unit 2710, a sensing unit 2720, a change amount calculating unit 2730, a change ratio calculating unit 2740, a detection unit 2750, an alarm unit 2760, and the like. It may be configured to include a control unit 2770.
  • the foreign matter detection apparatus 2700 according to an embodiment of the present invention may be mounted or mounted on a wireless power transmitter, and may operate in conjunction with other components included in the wireless power transmitter.
  • the communication unit 2710 may perform communication with a wireless power receiver.
  • in-band communication may be used, but the present invention is not limited thereto, and it should be noted that out-of-band communication may be used using a frequency different from an operating frequency used for wireless power transmission.
  • the out-of-band communication may include short range wireless communication such as low power Bluetooth communication.
  • the communication unit 2710 may transmit or (and) receive the packet defined in FIG. 10.
  • the sensing unit 2720 may measure the strength of the voltage or (and) current or (and) power input to the inverter. In addition, the sensing unit 2710 may measure the strength of the current flowing through the inductor of the LC circuit, that is, the transmitting coil.
  • the change amount calculator 2730 may calculate a change amount ⁇ V of the current V_rail flowing through the current inverter relative to the reference inverter input voltage Reference_V_rail. In addition, the change calculator 2730 may calculate a change amount ⁇ I of the current I_coil flowing in the current transmission coil relative to the reference transmission coil current Reference_I_coil.
  • ⁇ I may be calculated as (Measured_I_coil-Reference_I_coil) / Reference_I_coil
  • ⁇ V may be calculated as (Measured_V_rail-Reference_V_rail) / Reference_V_rail.
  • the change calculator 2730 may calculate ⁇ V and ⁇ I at regular intervals.
  • information about the reference inverter input voltage Reference_V_rail and the reference transmission coil current Reference_I_coil may be stored in advance in a predetermined recording area of the wireless power transmission apparatus.
  • information about the reference inverter input voltage Reference_V_rail and the reference transmit coil current Reference_I_coil may be received from the wireless power receiver through the FO status packet in the cooperative step, but is not limited thereto. It may also be received from the wireless power receiver via another packet defined in step. .
  • the change ratio calculator 2740 may calculate ⁇ I / ⁇ V. As another example, the change ratio calculator 2740 may calculate ⁇ V / ⁇ I.
  • the detector 2750 may determine whether foreign matter exists in the charging area by comparing ⁇ I / ⁇ V with a predetermined change ratio threshold ⁇ I / ⁇ V_FO_threshold to determine whether the foreign substance exists. In addition, the detector 2750 may determine whether an alignment problem occurs by comparing ⁇ I / ⁇ V with a predetermined change ratio threshold ⁇ I / ⁇ V_Alignment_threshold for determining whether the transmission / reception coil is normally aligned.
  • the detector 2750 may determine whether the foreign material exists and whether the transmission / reception coil is aligned by comparing ⁇ I or ( ⁇ ) V with a predetermined threshold value (s) for determining whether the foreign material exists and determining whether the transmission / reception coil is aligned. have.
  • the alarm unit 2760 may output a predetermined alarm signal indicating that the foreign matter is detected in the charging area according to the determination result of the detection unit 2750. In addition, the alarm unit 2760 may output a predetermined alarm signal indicating that an alignment problem occurs when an alignment problem between the transmission and reception coils is detected according to the determination result of the detection unit 2750.
  • the controller 2770 may control the overall operation of the foreign matter detection apparatus 2700.
  • FIG. 28 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may measure an inverter input voltage at a predetermined cycle in operation S2801.
  • the inverter input voltage measured at a certain period will be referred to as Measured_V_rail.
  • the apparatus for transmitting power wirelessly may calculate the inverter input voltage change rate ⁇ V using the pre-stored reference inverter input voltage Reference_V_rail and Measured_V_rail in operation S2802.
  • the inverter input voltage change rate may be calculated as (Measured_V_rail-Reference_V_rail) / Reference_V_rail.
  • the apparatus for transmitting power wirelessly may determine whether the inverter input voltage change rate ⁇ V exceeds a predetermined inverter input voltage change rate threshold ⁇ V_FO_threshold for determining whether there is a foreign substance (S2803).
  • the wireless power transmitter may enter a selection step after outputting a predetermined alarm signal indicating that the foreign matter is detected (S2804).
  • step 2803 As a result of checking in step 2803, if it does not exceed, the wireless power transmitter can return to step 2801.
  • 29 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • the apparatus for transmitting power wirelessly may measure a transmission coil current at a predetermined period (S2901).
  • the transmission coil current measured at a predetermined period will be referred to as Measured_I_coil.
  • the apparatus for transmitting power wirelessly may calculate a transmission coil current change rate ⁇ I using the reference transmission coil current Reference_I_coil and Measured_I_coil stored in advance (S2902).
  • the transmission coil current change rate may be calculated as (Measured_I_coil-Reference_I_coil) / Reference_I_coil.
  • the apparatus for transmitting power wirelessly may determine whether the transmission coil current change rate ⁇ I exceeds a predetermined transmission coil current change rate threshold ⁇ I_FO_threshold for determining whether a foreign substance exists (S2903).
  • the wireless power transmitter may enter a selection step after outputting a predetermined alarm signal indicating that a foreign matter is detected (S2904).
  • the wireless power transmitter may perform step 2901.
  • FIG. 30 is a flowchart illustrating a foreign material detection method in a wireless power transmission apparatus according to another embodiment of the present invention.
  • the wireless power transmission apparatus may measure a transmission coil current and an inverter input voltage at predetermined cycles (S3001).
  • the transmitter coil current and the inverter input voltage measured at regular intervals will be referred to as Measured_I_coil and Measured_V_rail, respectively.
  • the apparatus for transmitting power wirelessly may calculate a change ratio ⁇ I / ⁇ V using the prestored reference transmission coil current Reference_I_coil and the reference inverter input voltage Reference_V_rail and Measured_I_coil and Measured_V_rail (S3002).
  • ⁇ I may be calculated as (Measured_I_coil-Reference_I_coil) / Reference_I_coil
  • ⁇ V may be calculated as (Measured_V_rail-Reference_V_rail) / Reference_V_rail.
  • the apparatus for transmitting power wirelessly may determine whether the change ratio ⁇ I / ⁇ V exceeds a predetermined change ratio threshold ⁇ I / ⁇ V_FO_threshold for determining whether a foreign substance exists (S3003).
  • the wireless power transmitter may enter a selection step after outputting a predetermined alarm signal indicating that a foreign matter is detected (S3004).
  • the wireless power transmitter may perform step 3001.
  • the methods according to the embodiments described above may be stored in a computer-readable recording medium that is produced as a program for execution in a computer, and examples of the computer-readable recording medium may include ROM, RAM, CD-ROM, and magnetic tape. , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
  • the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the above-described method may be easily inferred by programmers in the art to which the embodiments belong.
  • the present invention can be used in the field of wireless charging, and in particular, it can be applied to devices and systems for detecting foreign matter on the wireless charging system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 이물질 검출 방법 및 그를 위한 장치 및 시스템에 관한 것으로서, 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 이물질 검출 방법은 소정 주기로 인버터 입력 전압 및 송신 코일 전류를 측정하는 단계와 기준 인버터 입력 전압 및 기준 송신 코일 전류와 상기 측정된 인버터 입력 전압 및 송신 코일 전류를 이용하여 인버터 입력 전압 변화율 및 송신 코일 전류 변화율을 산출하는 단계와 상기 송신 코일 전류 변화율과 인버터 입력 전압 변화율을 이용하여 변화 비율을 산출하는 단계와 상기 변화 비율의 소정 제3 임계치 초과 여부를 비교하여 충전 영역에 이물질이 존재하는지 판단하는 단계를 포함할 수 있다. 따라서, 본 발명은 보다 효과적으로 FO를 검출할 수 있는 장점이 있다.

Description

이물질 검출 방법 및 그를 위한 장치 및 시스템
본 발명은 무선 전력 전송 기술에 관한 것으로서, 상세하게, 무선 충전 시스템상에서의 이물질 검출 방법 및 그를 위한 장치 및 시스템에 관한 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 고주파, Microwave, 레이저 등과 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
무선 충전 가능 영역에 무선 전력 수신기가 아닌 전도체-즉, FO(Foreign Object)가 존재하는 경우, FO에는 무선 전력 송신기로부터 송출된 전자기 신호가 유도되어 온도가 상승할 수 있다. 일 예로, FO는 동전, 클립, 핀, 볼펜 등을 포함할 수 있다.
만약, 무선 전력 수신기와 무선 전력 송신기 사이에 FO가 존재하는 경우, 무선 충전 효율이 현저히 떨어질 뿐만 아니라 FO 주변 온도 상승으로 인해 무선 전력 수신기와 무선 전력 송신기의 온도가 함께 상승할 수 있다. 만약, 충전 영역에 위치한 FO가 제거되지 않는 경우, 전력 낭비가 초래될 뿐만 아니라 과열로 인해 무선 전력 송신기 및 무선 전력 수신기의 손상이 야기될 수 있다.
따라서, 충전 영역에 위치한 이물질을 정확하게 검출하는 것은 무선 충전 기술 분야에서 중요한 이슈로 부각되고 있다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치 및 시스템을 제공하는 것이다.
본 발명의 다른 목적은 인버터에 인가되는 전압의 변화 및(또는) 송신 코일에 흐르는 전류의 변화에 기반하여 충전 영역에 위치한 이물질을 검출하는 것이 가능한 이물질 검출 방법 및 그를 위한 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 무선 전력 송신 장치에 대응되는 기준 인버터 입력 전압 및 기준 송신 코일 전류 대비 산출된 인버터 입력 전압 및 송신 코일 전류의 변화량 또는 변화 비율에 기반하여 충전 영역에 위치한 이물질을 검출하는 것이 가능한 이물질 검출 방법 및 그를 위한 장치를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 이물질 검출 방법 및 그를 위한 장치 및 시스템을 제공할 수 있다.
본 발명의 일 실시예에 따른 무선 전력 송신기에서의 이물질 검출 방법은 소정 주기로 인버터 입력 전압 및 송신 코일 전류를 측정하는 단계와 기준 인버터 입력 전압 및 기준 송신 코일 전류와 상기 측정된 인버터 입력 전압 및 송신 코일 전류를 이용하여 인버터 입력 전압 변화율 및 송신 코일 전류 변화율을 산출하는 단계와 상기 송신 코일 전류 변화율과 인버터 입력 전압 변화율을 이용하여 변화 비율을 산출하는 단계와 상기 변화 비율의 소정 제3 임계치 초과 여부를 비교하여 충전 영역에 이물질이 존재하는지 판단하는 단계를 포함할 수 있다.
또한, 상기 이물질 검출 방법은 협력 단계에서 상기 기준 인버터 입력 전압에 대한 정보 및 상기 기준 송신 코일 전류에 대한 정보가 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신하는 단계를 더 포함할 수 있다.
여기서, 상기 FOD 상태 패킷은 2비트 길이의 모드 필드를 포함하되, 상기 모드 필드의 값이 이진수 “00”이 아닌 값으로 설정될 수 있다.
또한, 상기 이물질 검출 방법은 상기 판단 결과, 이물질이 존재하면, 이물질이 감지되었음을 알리는 소정 알람 신호를 출력하는 단계를 더 포함하되, 상기 알람 신호 출력 후 선택 단계로 진입할 수 있다.
또한, 상기 이물질 검출 방법은 상기 변화 비율이 상기 제3 임계치보다 작거나 같으면, 상기 변화 비율을 소정 제4 임계치와 비교하여 송수신 코일 정렬 여부를 판단하는 단계를 더 포함하고, 상기 제4 임계치는 상기 제3 임계치보다 크고, 상기 변화 비율이 제4 임계치를 초과하면, 송수신 코일이 정렬되지 않은 것으로 판단될 수 있다.
또한, 상기 인버터 입력 전압 변화율은 상기 측정된 인버터 입력 전압과 상기 기준 인버터 입력 전압과의 차이 값을 상기 기준 인버터 입력 전압으로 나누어 산출될 수 있다.
또한, 상기 송신 코일 전류 변화율은 상기 측정된 송신 코일 전류와 상기 기준 송신 코일 전류와의 차이 값을 상기 기준 송신 코일 전류로 나누어 산출될 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신기에서의 이물질 검출 방법은 소정 주기로 인버터 입력 전압을 측정하는 단계와 기준 인버터 입력 전압과 상기 측정된 인버터 입력 전압을 이용하여 인버터 입력 전압 변화율을 산출하는 단계와 상기 인버터 입력 전압 변화율의 소정 제1 임계치 초과 여부를 확인하여 충전 영역에 이물질이 존재하는지 판단하는 단계를 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 송신기에서의 이물질 검출 방법은 소정 주기로 송신 코일 전류를 측정하는 단계와 기준 송신 코일 전류와 상기 측정된 송신 코일 전류를 이용하여 송신 코일 전류 변화율을 산출하는 단계와 상기 송신 코일 전류 변화율의 소정 제2 임계치 초과 여부를 확인하여 충전 영역에 이물질이 존재하는지 판단하는 단계를 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 이물질 검출 장치는 소정 주기로 인버터 입력 전압 및 송신 코일 전류를 측정하는 센싱부와 기준 인버터 입력 전압 및 기준 송신 코일 전류와 상기 측정된 인버터 입력 전압 및 송신 코일 전류를 이용하여 인버터 입력 전압 변화율 및 송신 코일 전류 변화율을 산출하는 변화량 산출부와 상기 송신 코일 전류 변화율과 인버터 입력 전압 변화율을 이용하여 변화 비율을 산출하는 변화 비율 산출부와 상기 변화 비율의 소정 제3 임계치 초과 여부를 비교하여 충전 영역에 이물질이 존재하는지 판단하는 검출부를 포함할 수 있다.
또한, 상기 이물질 검출 장치는 협력 단계에서 상기 기준 인버터 입력 전압에 대한 정보 및 상기 기준 송신 코일 전류에 대한 정보가 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신하는 통신부를 더 포함할 수 있다.
여기서, 상기 FOD 상태 패킷은 2비트 길이의 모드 필드를 포함하되, 상기 모드 필드의 값이 이진수 “00”이 아닌 값으로 설정되어 수신될 수 있다.
또한, 상기 이물질 검출 장치는 상기 판단 결과, 이물질이 존재하면, 이물질이 감지되었음을 알리는 소정 알람 신호를 출력하는 알람부를 더 포함하되, 상기 알람 신호 출력 후 선택 단계로 진입될 수 있다.
또한, 상기 검출부가 상기 변화 비율이 상기 제3 임계치보다 작거나 같으면, 상기 변화 비율을 소정 제4 임계치와 비교하여 송수신 코일 정렬 여부를 판단하고, 상기 변화 비율이 제4 임계치를 초과하면, 송수신 코일이 정렬되지 않은 것으로 판단하되, 상기 제4 임계치는 상기 제3 임계치보다 크게 설정될 수 있다.
여기서, 상기 인버터 입력 전압 변화율은 상기 측정된 인버터 입력 전압과 상기 기준 인버터 입력 전압과의 차이 값을 상기 기준 인버터 입력 전압으로 나누어 산출될 수 있다.
또한, 상기 송신 코일 전류 변화율은 상기 측정된 송신 코일 전류와 상기 기준 송신 코일 전류와의 차이 값을 상기 기준 송신 코일 전류로 나누어 산출될 수 있다.
본 발명의 또 다른 일 실시예에 따른 이물질 검출 장치는 소정 주기로 인버터 입력 전압을 측정하는 센싱부와 기준 인버터 입력 전압과 상기 측정된 인버터 입력 전압을 이용하여 인버터 입력 전압 변화율을 산출하는 변화량 산출부와 상기 인버터 입력 전압 변화율의 소정 제1 임계치 초과 여부를 확인하여 충전 영역에 이물질이 존재하는지 판단하는 검출부를 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 이물질 검출 장치는 소정 주기로 송신 코일 전류를 측정하는 센싱부와 기준 송신 코일 전류와 상기 측정된 송신 코일 전류를 이용하여 송신 코일 전류 변화율을 산출하는 변화량 산출부와 상기 송신 코일 전류 변화율의 소정 제2 임계치 초과 여부를 확인하여 충전 영역에 이물질이 존재하는지 판단하는 검출부를 포함할 수 있다.
본 발명의 또 다른 일 실시예는 상기 이물질 검출 방법들 중 어느 하나의 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체가 제공될 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법, 장치 및 시스템에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치 및 시스템을 제공하는 장점이 있다.
또한, 본 발명은 송수신 코일 정렬 문제와 이물질 문제를 구별함으로써, 보다 정확하게 이물질을 검출하는 것이 가능한 무선 전력 송신기를 제공하는 장점이 있다.
또한, 본 발명은 불필요한 전력 낭비 및 이물질에 의한 발열 현상을 최소화시킬 수 있는 장점이 있다.
또한, 본 발명은 무선 전력 송신 장치의 타입에 따라 동적으로 이물질 존재 여부를 판단하기 위한 임계치를 결정함으로써, 보다 정확한 이물질 검출이 가능한 이물질 검출 방법 및 그를 이용한 장치 및 시스템을 제공하는 장점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.
도 4는 WPC 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5는 WPC(Qi) 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 송신기의 구조를 설명하기 위한 블록도이다.
도 7은 상기 도 6에 따른 무선 전력 송신기와 연동되는 무선 전력 수신기의 구조를 설명하기 위한 블록도이다.
도 8은 본 발명의 일 실시예에 따른 무선 전력 신호의 변조 및 복조 방법을 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시예에 따른, 패킷 포맷을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 WPC(Qi) 표준에 정의된 패킷의 종류를 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 따른 이물질 검출 장치의 구조를 설명하기 위한 블록도이다.
도 12a 및 12b는 본 발명에 일 실시예에 따른 FOD 상태 패킷의 메시지 구조를 설명하기 위한 도면이다.
도 13은 본 발명의 일 실시예에 따른 구성 패킷의 메시지 구조를 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시예에 따른 수신기 타입 식별자에 대응되는 전류 변화 임계치가 정의된 수신기 타입 식별자 매핑 테이블이다.
도 15는 본 발명의 다른 일 실시예에 따른 수신기 타입 식별자에 대응되는 전류 변화 임계 비율이 정의된 수신기 타입 식별자 매핑 테이블이다.
도 16은 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 감지 방법을 설명하기 위한 순서도이다.
도 17은 본 발명의 다른 실시예에 따른 무선 전력 송신 장치에서의 이물질 감지 방법을 설명하기 위한 순서도이다.
도 18은 본 발명의 또 다른 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 방법을 설명하기 위한 순서도이다.
도 19는 본 발명의 일 실시예에 따른 무선 전력 송신 장치에 장착되는 송신 코일의 일 실시 형태이다.
도 20a 및 도 20b는 도 19에 따른 송신 코일의 위치 별 인덕터 입력 전류 세기와 송신 코일 입력 전류 세기의 측정 결과를 보여주는 그래프이다.
도 21 및 22는 상기 도 19의 Position 1의 핑 단계에서 이물질이 충전 영역에 위치된 경우의 코일 전류 및 인버터 입력 전류의 변화 패턴을 보여준다.
도 23은 이물질 존재 여부 및 송수신 코일 정렬 상태에 따라 기준 송신 코일 전류 및 기준 인버터 입력 전압 대비 송신 코일 전류와 인버터 입력 전압의 변화 비율을 보여주는 실험 결과 테이블이다.
도 24 내지 도 26은 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 및 정렬 확인 방법을 설명하기 위한 순서도이다.
도 27은 본 발명의 일 실시예에 따른 이물질 검출 장치의 구조를 설명하기 위한 블록도이다.
도 28 내지 30은 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출을 설명하기 위한 순서도이다.
본 발명의 일 실시예에 따른 무선 전력 송신기에서의 이물질 검출 방법은 소정 주기로 인버터 입력 전압 및 송신 코일 전류를 측정하는 단계와 기준 인버터 입력 전압 및 기준 송신 코일 전류와 상기 측정된 인버터 입력 전압 및 송신 코일 전류를 이용하여 인버터 입력 전압 변화율 및 송신 코일 전류 변화율을 산출하는 단계와 상기 송신 코일 전류 변화율과 인버터 입력 전압 변화율을 이용하여 변화 비율을 산출하는 단계와 상기 변화 비율의 소정 제3 임계치 초과 여부를 비교하여 충전 영역에 이물질이 존재하는지 판단하는 단계를 포함할 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
실시예의 설명에 있어서, 무선 충전 시스템상에서 무선 전력을 송신하는 기능이 탑재된 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 기능이 탑재된 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 무선파워 전송 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 파워를 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
본 발명에 따른 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌, 스마트 워치와 같은 웨어러블 디바이스 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 1을 참조하면, 무선 충전 시스템은 크게 무선으로 전력을 송출하는 무선 전력 송신단(10), 상기 송출된 전력을 수신하는 무선 전력 수신단(20) 및 수신된 전력을 공급 받는 전자기기(30)로 구성될 수 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 동일한 주파수 대역을 이용하여 정보를 교환하는 인밴드(In-band) 통신을 수행할 수 있다. 다른 일예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 상이한 별도의 주파수 대역을 이용하여 정보를 교환하는 대역외(Out-of-band) 통신을 수행할 수도 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이에 교환되는 정보는 서로의 상태 정보뿐만 아니라 제어 정보도 포함될 수 있다. 여기서, 송수신단 사이에 교환되는 상태 정보 및 제어 정보는 후술할 실시예들의 설명을 통해 보다 명확해질 것이다.
상기 인밴드 통신 및 대역외 통신은 양방향 통신을 제공할 수 있으나, 이에 한정되지는 않으며, 다른 실시예에 있어서는 단방향 통신 또는 반이중 방식의 통신을 제공할 수도 있다.
일 예로, 단방향 통신은 무선 전력 수신단(20)이 무선 전력 송신단(10)으로만 정보를 전송하는 것일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신단(10)이 무선 전력 수신단(20)으로 정보를 전송하는 것일 수도 있다.
반이중 통신 방식은 무선 전력 수신단(20)과 무선 전력 송신단(10) 사이의 양방향 통신은 가능하나, 어느 한 시점에 어느 하나의 장치에 의해서만 정보 전송이 가능한 특징이 있다.
본 발명의 일 실시예에 따른 무선 전력 수신단(20)은 전자 기기(30)의 각종 상태 정보를 획득할 수도 있다. 일 예로, 전자 기기(30)의 상태 정보는 현재 전력 사용량 정보, 실행중인 응용을 식별하기 위한 정보, CPU 사용량 정보, 배터리 충전 상태 정보, 배터리 출력 전압/전류 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 전자 기기(30)로부터 획득 가능하고, 무선 전력 제어에 활용 가능한 정보이면 족하다.
특히, 본 발명의 일 실시예에 따른 무선 전력 송신단(10)은 고속 충전 지원 여부를 지시하는 소정 패킷을 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 접속된 무선 전력 송신단(10)이 고속 충전 모드를 지원하는 것으로 확인된 경우, 이를 전자 기기(30)에 알릴 수 있다. 전자 기기(30)는 구비된 소정 표시 수단-예를 들면, 액정 디스플레이일 수 있음-을 통해 고속 충전이 가능함을 표시할 수 있다.
또한, 전자 기기(30) 사용자는 액정 표시 수단에 표시된 소정 고속 충전 요청 버튼을 선택하여 무선 전력 송신단(10)이 고속 충전 모드로 동작하도록 제어할 수도 있다. 이 경우, 전자 기기(30)는 사용자에 의해 고속 충전 요청 버튼이 선택되면, 소정 고속 충전 요청 신호를 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 수신된 고속 충전 요청 신호에 상응하는 충전 모드 패킷을 생성하여 무선 전력 송신단(10)에 전송함으로써, 일반 저전력 충전 모드를 고속 충전 모드로 전환시킬 수 있다.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
일 예로, 도면 부호 200a에 도시된 바와 같이, 무선 전력 수신단(20)은 복수의 무선 전력 수신 장치로 구성될 수 있으며, 하나의 무선 전력 송신단(10)에 복수의 무선 전력 수신 장치가 연결되어 무선 충전을 수행할 수도 있다. 이때, 무선 전력 송신단(10)은 시분할 방식으로 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있으나, 이에 한정되지는 않으며. 다른 일 예로, 무선 전력 송신단(10)은 무선 전력 수신 장치 별 할당된 상이한 주파수 대역을 이용하여 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있다.
이때, 하나의 무선 전력 송신 장치(10)에 연결 가능한 무선 전력 수신 장치의 개수는 무선 전력 수신 장치 별 요구 전력량, 배터리 충전 상태, 전자 기기의 전력 소비량 및 무선 전력 송신 장치의 가용 전력량 중 적어도 하나에 기반하여 적응적으로 결정될 수 있다.
다른 일 예로, 도면 부호 200b에 도시된 바와 같이, 무선 전력 송신단(10)은 복수의 무선 전력 송신 장치로 구성될 수도 있다. 이 경우, 무선 전력 수신단(20)은 복수의 무선 전력 송신 장치와 동시에 연결될 수 있으며, 연결된 무선 전력 송신 장치들로부터 동시에 전력을 수신하여 충전을 수행할 수도 있다. 이때, 무선 전력 수신단(20)과 연결된 무선 전력 송신 장치의 개수는 무선 전력 수신단(20)의 요구 전력량, 배터리 충전 상태, 전자 기기의 전력 소비량, 무선 전력 송신 장치의 가용 전력량 등에 기반하여 적응적으로 결정될 수 있다.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.
일 예로, 무선 전력 송신기는 3개의 송신 코일(111, 112, 113)이 장착될 수 있다. 각각의 송신 코일은 일부 영역이 다른 송신 코일과 서로 중첩될 수 있으며, 무선 전력 송신기는 각각의 송신 코일을 통해 무선 전력 수신기의 존재를 감지하기 위한 소정 감지 신호(117, 127)-예를 들면, 디지털 핑 신호-를 미리 정의된 순서로 순차적으로 송출한다.
상기 도 3에 도시된 바와 같이, 무선 전력 송신기는 도면 번호 110에 도시된 1차 감지 신호 송출 절차를 통해 감지 신호(117)를 순차적으로 송출하고, 무선 전력 수신기(115)로부터 신호 세기 지시자(Signal Strength Indicator, 116)가 수신된 송신 코일(111, 112)을 식별할 수 있다. 연이어, 무선 전력 송신기는 도면 번호 120에 도시된 2차 감지 신호 송출 절차를 통해 감지 신호(127)를 순차적으로 송출하고, 신호 세기 지시자(126)가 수신된 송신 코일(111, 112) 중 전력 전송 효율(또는 충전 효율)-즉, 송신 코일과 수신 코일 사이의 정렬 상태-이 좋은 송신 코일을 식별하고, 식별된 송신 코일을 통해 전력이 송출되도록-즉, 무선 충전이 이루어지도록- 제어할 수 있다.
상기의 도 3에서 보여지는 바와 같이, 무선 전력 송신기가 2회의 감지 신호 송출 절차를 수행하는 이유는 어느 송신 코일에 무선 전력 수신기의 수신 코일이 잘 정렬되어 있는지를 보다 정확하게 식별하기 위함이다.
만약, 상기한 도 3의 도면 번호 110 및 120에 도시된 바와 같이, 제1 송신 코일(111), 제2 송신 코일(112)에 신호 세기 지시자(116, 126)가 수신된 경우, 무선 전력 송신기는 제1 송신 코일(111)과 제2 송신 코일(112) 각각에 수신된 신호 세기 지시자(126)에 기반하여 가장 정렬이 잘된 송신 코일을 선택하고, 선택된 송신 코일을 이용하여 무선 충전을 수행한다.
도 4는 WPC 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 4를 참조하면, WPC 표준에 따른 송신기로부터 수신기로의 파워 전송은 크게 선택 단계(Selection Phase, 410), 핑 단계(Ping Phase, 420), 식별 및 구성 단계(Identification and Configuration Phase, 430), 전력 전송 단계(Power Transfer Phase, 440) 단계로 구분될 수 있다.
선택 단계(410)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(410)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(420)로 천이할 수 있다(S401). 선택 단계(410)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
핑 단계(420)에서 송신기는 물체가 감지되면, 수신기를 활성화시키고, 수신기가 WPC 표준이 호환되는 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(420)에서 송신기는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 지시자-을 수신기로부터 수신하지 못하면, 다시 선택 단계(410)로 천이할 수 있다(S402). 또한, 핑 단계(420)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 신호-를 수신하면, 선택 단계(410)로 천이할 수도 있다(S403).
핑 단계(420)가 완료되면, 송신기는 수신기 식별 및 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(430)로 천이할 수 있다(S404).
식별 및 구성 단계(430)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(410)로 천이할 수 있다(S405).
수신기에 대한 식별 및 구성이 완료되면, 송신기는 무선 전력을 전송하는 전력 전송 단계(440)로 천이할 수 있다(S406).
전력 전송 단계(440)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(410)로 천이할 수 있다(S407).
또한, 전력 전송 단계(440)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 식별 및 구성 단계(430)로 천이할 수 있다(S408).
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 5는 WPC(Qi) 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, WPC(Qi) 표준에 따른 송신기로부터 수신기로의 파워 전송은 크게 선택 단계(Selection Phase, 510), 핑 단계(Ping Phase, 520), 식별 및 구성 단계(Identification and Configuration Phase, 530), 협상 단계(Negotiation Phase, 540), 보정 단계(Calibration Phase, 550), 전력 전송 단계(Power Transfer Phase, 560) 단계 및 재협상 단계(Renegotiation Phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 그러나 아날로그 핑은 다른 대체 수단으로 대체될 수 있다. 다른 대체 수단은 근접센서, 자기장 변화를 감지하는 홀센서, 압력센서 또는 생략 중 적어도 하나의 수단일 수 있다. 선택 단계(510)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
핑 단계(520)에서 송신기는 물체가 감지되면, 수신기를 활성화시키고, 수신기가 WPC 표준이 호환되는 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 송신기는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 송신기는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
송신기는 식별 및 구성 단계(530)에서 수시된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다.
확인 결과, 협상이 필요하면, 송신기는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다.
반면, 확인 결과, 협상이 필요하지 않은 경우, 송신기는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 송신기는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 이때, 송신기는 기준 품질 인자 값에 기반하여 FO 검출을 위한 임계치를 결정할 수 있다.
송신기가 기준 품질 인자 값에 기반하여 FO 검출을 위한 임계치를 결정하는 다양한 방법들에 대해서는 후술할 도면의 설명을 통해 상세히 설명하기로 한다.
송신기는 결정된 임계치 및 현재 측정된 품질 인자 값을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 전력 전송을 제어할 수 있다.
일 예로, FO가 검출된 경우, 송신기는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 송신기는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 송신기는 FO가 검출되지 않은 경우, 보정 단계(550)에서 송신기는 수신기에 수신된 전력의 세기를 결정하고, 송신기에서 전송한 전력의 세기를 결정하기 위해 수신기과 송신기에서의 전력 손실을 측정할 수 있다. 즉, 송신기는 보정 단계(550)에서 송신기의 송신 파워와 수신기의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 송신기는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 송신기는 전력 전송 단계(560)로 회귀할 수 있다.
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 송신기의 구조를 설명하기 위한 블록도이다.
도 6을 참조하면 무선 전력 송신기(600)는 크게, 전력 변환부(610), 전력 전송부(620), 통신부(630), 제어부(640), 센싱부(650)를 포함하여 구성될 수 있다. 상기한 무선 전력 송신기(600)의 구성은 반드시 필수적인 구성은 아니어서, 그보다 많거나 적은 구성 요소를 포함하여 구성될 수도 있음을 주의해야 한다.
도 6에 도시된 바와 같이, 전력 변환부(610)는 전원부(660)로부터 전원이 공급되면, 이를 소정 세기의 전력으로 변환하는 기능을 수행할 수 있다.
이를 위해, 전력 변환부(610)는 DC/DC 변환부(611), 증폭기(612)를 포함하여 구성될 수 있다.
DC/DC 변환부(611)는 전원부(650)로부터 공급된 DC 전력을 제어부(640)의 제어 신호에 따라 특정 세기의 DC 전력으로 변환하는 기능을 수행할 수 있다.
이때, 센싱부(650)는 DC 변환된 전력의 전압/전류 등을 측정하여 제어부(640)에 제공할 수 있다. 또한, 센싱부(650)는 과열 발생 여부 판단을 위해 무선 전력 송신기(600)의 내부 온도를 측정하고, 측정 결과를 제어부(640)에 제공할 수도 있다. 일 예로, 제어부(640)는 센싱부(650)에 의해 측정된 전압/전류 값에 기반하여 적응적으로 전원부(650)로부터의 전원 공급을 차단하거나, 증폭기(612)에 전력이 공급되는 것을 차단할 수 있다. 이를 위해, 전력 변환부(610)의 일측에는 전원부(650)로부터 공급되는 전원을 차단하거나, 증폭기(612)에 공급되는 전력을 차단하기 위한 소정 전력 차단 회로가 가 더 구비될 수도 있다.
증폭기(612)는 DC/DC 변환된 전력의 세기를 제어부(640)의 제어 신호에 따라 조정할 수 있다. 일 예로, 제어부(640)는 통신부(630)를 통해 무선 전력 수신기의 전력 수신 상태 정보 또는(및) 전력 제어 신호를 수신할 수 있으며, 수신된 전력 수신 상태 정보 또는(및) 전력 제어 신호에 기반하여 증폭기(612)의 증폭률을 동적으로 조정할 수 있다. 일 예로, 전력 수신 상태 정보는 정류기 출력 전압의 세기 정보, 수신 코일에 인가되는 전류의 세기 정보 등을 포함할 수 있으나, 이에 한정되지는 않는다. 전력 제어 신호는 전력 증가를 요청하기 위한 신호, 전력 감소를 요청하기 위한 신호 등을 포함할 수 있다.
전력 전송부(620)는 다중화기(621)(또는 멀티플렉서), 송신 코일(622)을 포함하여 구성될 수 있다. 또한, 전력 전송부(620)는 전력 전송을 위한 특정 동작 주파수를 생성하기 위한 반송파 생성기(미도시)를 더 포함할 수도 있다.
반송파 생성기는 다중화기(621)를 통해 전달 받은 증폭기(612)의 출력 DC 전력을 특정 주파수를 갖는 AC 전력으로 변환하기 위한 특정 주파수를 생성할 수 있다. 이상의 설명에서는 반송파 생성기에 의해 생성된 교류 신호가 다중화기(621)의 출력단에 믹싱되어 교류 전력이 생성되는 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 증폭기(612) 이전단 또는 이후단 또는 증폭기(612)를 대신하여 구비되는 인버터를 통해 AC 전력이 생성될 수도 있음을 주의해야 한다. 여기서, 인버터는 하프 브릿지(Half Bridge) 인버터, 풀 브릿지(Full Bridge) 인버터 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따른각각의 송신 코일에 전달되는 AC 전력의 주파수가 서로 상이할 수도 있음을 주의해야 한다. 본 발명의 다른 일 실시예는 LC 공진 특성을 송신 코일마다 상이하게 조절하는 기능이 구비된 소정 주파수 제어기를 이용하여 각각의 송신 코일 별 공진주파수를 상이하게 설정할 수도 있다.
도 6에 도시된 바와 같이, 전력 전송부(620)는 증폭기(612)의 출력 전력이 송신 코일에 전달되는 것을 제어하기 위한 다중화기(621)와 복수의 송신 코일(622)-즉, 제1 내지 제n 송신 코일-을 포함하여 구성될 수 있다.
본 발명의 일 실시예에 따른 제어부(640)는 복수의 무선 전력 수신기가 연결된 경우, 송신 코일 별 시분할 다중화를 통해 전력을 전송할 수도 있다. 예를 들어, 무선 전력 송신기(600)에 3개의 무선 전력 수신기-즉, 제1 내지 3 무선 전력 수신기-가 각각 3개의 서로 다른 송신 코일-즉, 제1 내지 3 송신 코일-을 통해 식별된 경우, 제어부(640)는 다중화기(621)를 제어하여, 특정 타임 슬롯에 특정 송신 코일을 전력이 송출될 수 있도록 제어할 수 있다. 이때, 송신 코일 별 할당된 타임 슬롯의 길이에 따라 해당 무선 전력 수신기로 전송되는 전력의 양이 제어될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 송신 코일 별 할당된 타일 슬롯 동안의 증폭기(612) 증폭률을 제어하여 무선 전력 수신기 별 송출 전력을 제어할 수도 있다.
제어부(640)는 제1차 감지 신호 송출 절차 동안 제1 내지 제n 송신 코일(622)을 통해 감지 신호가 순차적으로 송출될 수 있도록 다중화기(621)를 제어할 수 있다. 이때, 제어부(640)는 감지 신호가 전송될 시점을 타이머(655)를 이용하여 식별할 수 있으며, 감신 신호 전송 시점이 도래하면, 다중화기(621)를 제어하여 해당 송신 코일을 통해 감지 신호가 송출될 수 있도록 제어할 수 있다. 일 예로, 타이머(655)는 핑 전송 단계 동안 소정 주기로 특정 이벤트 신호를 제어부(640)에 송출할 수 있으며, 제어부(640)는 해당 이벤트 신호가 감지되면, 다중화기(621)를 제어하여 해당 송신 코일을 통해 디지털 핑이 송출될 수 있도록 제어할 수 있다.
또한, 제어부(640)는 제1차 감지 신호 송출 절차 동안 복조부(632)로부터 어느 송신 코일을 통해 신호 세기 지시자(Signal Strength Indicator)가 수신되었는지를 식별하기 위한 소정 송신 코일 식별자 및 해당 송신 코일을 통해 수신된 신호 세기 지시자를 수신할 수 있다. 연이어, 제2차 감지 신호 송출 절차에서 제어부(640)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일(들)을 통해서만 감지 신호가 송출될 수 있도록 다중화기(621)를 제어할 수도 있다. 다른 일 예로, 제어부(640)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일이 복수개인 경우, 가장 큰 값을 갖는 신호 세기 지시자가 수신된 송신 코일을 제2차 감지 신호 송출 절차에서 감지 신호를 가장 먼저 송출할 송신 코일로 결정하고, 결정 결과에 따라 다중화기(621)를 제어할 수도 있다.
본 발명의 또 다른 실시예는 전력 전송부(620)는 하나의 송신코일을 포함하는 구성일 수 있다.
변조부(631)는 제어부(640)에 의해 생성된 제어 신호를 변조하여 다중화기(621)에 전달할 수 있다. 여기서, 제어 신호를 변조하기 위한 변조 방식은 FSK(Frequency Shift Keying) 변조 방식, 맨체스터 코딩(Manchester Coding) 변조 방식, PSK(Phase Shift Keying) 변조 방식, 펄스 폭 변조(Pulse Width Modulation) 방식, 차등 2단계(Differential bi-phase) 변조 방식 등을 포함할 수 있으나, 이에 한정되지는 않는다.
복조부(632)는 송신 코일을 통해 수신되는 신호가 감지되면, 감지된 신호를 복조하여 제어부(640)에 전송할 수 있다. 여기서, 복조된 신호에는 신호 세기 지시자, 무선 전력 전송 중 전력 제어를 위한 오류 정정(EC:Error Correction) 지시자, 충전 완료(EOC: End Of Charge) 지시자, 과전압/과전류/과열 지시자 등이 포함될 수 있으나, 이에 한정되지는 않으며, 무선 전력 수신기의 상태를 식별하기 위한 각종 상태 정보가 포함될 수 있다.
또한, 복조부(632)는 복조된 신호가 어느 송신 코일로부터 수신된 신호인지를 식별할 수 있으며, 식별된 송신 코일에 상응하는 소정 송신 코일 식별자를 제어부(640)에 제공할 수도 있다.
또한, 복조부(632)는 송신 코일(623)을 통해 수신된 신호를 복조하여 제어부(640)에 전달할 수 있다. 일 예로, 복조된 신호는 신호 세기 지시자를 포함할 수 있으나, 이에 한정되지는 않으며, 복조 신호는 무선 전력 수신기의 각종 상태 정보를 포함할 수 있다.
일 예로, 무선 전력 송신기(600)는 무선 전력 전송에 사용되는 동일한 주파수를 이용하여 무선 전력 수신기와 통신을 수행하는 인밴드(In-Band) 통신을 통해 상기 신호 세기 지시자를 획득할 수 있다.
또한, 무선 전력 송신기(600)는 송신 코일(622)을 이용하여 무선 전력을 송출할 수 있을 뿐만 아니라 송신 코일(622)을 통해 무선 전력 수신기와 각종 정보를 교환할 수도 있다. 다른 일 예로, 무선 전력 송신기(600)는 송신 코일(622)-즉, 제1 내지 제n 송신 코일)에 각각 대응되는 별도의 코일을 추가로 구비하고, 구비된 별도의 코일을 이용하여 무선 전력 수신기와 인밴드 통신을 수행할 수도 있음을 주의해야 한다.
이상이 도 6의 설명에서는 무선 전력 송신기(600)와 무선 전력 수신기가 인밴드 통신을 수행하는 것을 예를 들어 설명하고 있으나, 이는 하나의 실시예에 불과하며, 무선 전력 신호 전송에 사용되는 주파수 대역과 상이한 주파수 대역을 통해 근거리 양방향 통신을 수행할 수 있다. 일 예로, 근거리 양방향 통신은 저전력 블루투스 통신, RFID 통신, UWB 통신, 지그비 통신 중 어느 하나일 수 있다.
특히, 본 발명의 일 실시예에 따른 무선 전력 송신기(600)는 무선 전력 수신기의 요청에 따라 고속 충전 모드 및 일반 저전력 충전 모드를 적응적으로 제공할할 수도 있다.
무선 전력 송신기(600)는 고속 충전 모드가 지원 가능한 경우, 소정 패턴의 신호-이하 설명의 편의를 위해, 제1 패킷이라 명함-를 송출할 수 있다. 무선 전력 수신기(600)는 제1 패킷이 수신되면, 접속중인 무선 전력 송신기(600)가 고속 충전이 가능함을 식별할 수 있다.
특히, 무선 전력 수신기는 고속 충전이 필요한 경우, 고속 충전을 요청하는 소정 제1 응답 패킷을 무선 전력 송신기(600)에 전송할 수 있다.
특히, 무선 전력 송신기(600)는 상기 제1 응답 패킷이 수신 후 소정 시간이 경과하면, 자동으로 고속 충전 모드로 전환하여 고속 충전을 개시할 수 있다.
일 예로, 무선 전력 송신기(600)의 제어부(640)는 상기한 도 4 내지 도 5의 전력 전송 단계(440 또는 560)로 천이한 경우, 제1 패킷이 송신 코일(622)을 통해 송출되도록 제어할 수 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 예는 상기 도 4의 식별 및 구성 단계(430) 또는 도 5의 식별 단계(530)에서 제1 패킷이 송출될 수도 있다.
본 발명의 또 다른 일 실시예는 무선 전력 송신기(600)가 송출하는 디지털 핑 신호에 고속 충전 지원 가능 여부를 식별할 수 있는 정보가 인코딩되어 전송될 수도 있음을 주의해야 한다.
무선 전력 수신기는 전력 전송 단계의 어느 시점에서든 고속 충전이 필요하면, 충전 모드가 고속 충전으로 설정된 소정 충전 모드 패킷을 무선 전력 송신기(600)에 전송할 수도 있다. 여기서, 충전 모드 패킷의 세부 구성은 후술할 도 8 내지 12의 설명을 통해 보다 명확히 하도록 한다. 물론, 무선 전력 송신기(600)와 무선 전력 수신기는 충전 모드가 고속 충전 모드로 변경된 경우, 고속 충전 모드에 상응하는 전력이 송출 및 수신 가능할 수 있도록 내부 동작을 제어할 수 있다. 일 예로, 충전 모드가 일반 저전력 충전 모드에서 고속 충전 모드로 변경된 경우, 과전압(Over Voltage) 판단 기준, 과열(Over Temperature) 판단 기준, 저전압(Low Voltage)/고전압(High Voltage) 판단 기준, 최적 전압 레벨(Optimum Voltage Level), 전력 제어 옵셋 등의 값이 변경 설정될 수 있다.
일 예로, 충전 모드가 일반 저전력 충전 모드에서 고속 충전 모드로 변경된 경우, 과전압(Over Voltage) 판단을 위한 임계 전압이 고속 충전이 가능하도록 높게 설정될 수 있다. 또 다른 일 예로, 과열 발생 여부를 판단하기 임계 온도가 고속 충전에 따른 온도 상승을 고려하여 높게 설정될 수 있다. 또 다른 일 예로, 송신단에서의 전력이 제어되는 최소 레벨을 의미하는 전력 제어 옵셋 값은 고속 충전 모드에서 빠르게 원하는 목표 전력 레벨로 수렴 가능하도록 일반 저전력 충전 모드에 비해 큰 값으로 설정될 수도 있다.
도 7은 상기 도 6에 따른 무선 전력 송신기와 연동되는 무선 전력 수신기의 구조를 설명하기 위한 블록도이다.
도 7을 참조하면, 무선 전력 수신기(700)는 수신 코일(710), 정류부(720), 직류/직류 변환기(DC/DC Converter, 730), 부하(740), 센싱부(750), 통신부(760), 주제어부(770)를 포함하여 구성될 수 있다. 여기서, 통신부(760)는 복조부(761) 및 변조부(762)를 포함하여 구성될 수 있다.
상기한 도 7의 예에 도시된 무선 전력 수신기(700)는 인밴드 통신을 통해 무선 전력 송신기(600)와 정보를 교환할 수 있는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 통신부(760)는 무선 전력 신호 전송에 사용되는 주파수 대역과는 상이한 주파수 대역을 통해 근거리 양방향 통신을 제공할 수도 있다.
수신 코일(710)을 통해 수신된 AC 전력은 정류부(720)에 전달할 수 있다. 정류기(720)는 AC 전력을 DC 전력으로 변환하여 직류/직류 변환기(730)에 전송할 수 있다. 직류/직류 변환기(730)는 정류기 출력 DC 전력의 세기를 부하(740)에 의해 요구되는 특정 세기로 변환한 후 부하(740)에 전달할 수 있다.
센싱부(750)는 정류기(720) 출력 DC 전력의 세기를 측정하고, 이를 주제어부(770)에 제공할 수 있다. 또한, 센싱부(750)는 무선 전력 수신에 따라 수신 코일(710)에 인가되는 전류의 세기를 측정하고, 측정 결과를 주제어부(770)에 전송할 수도 있다. 또한, 센싱부(750)는 무선 전력 수신기(700)의 내부 온도를 측정하고, 측정된 온도 값을 주제어부(770)에 제공할 수도 있다.
일 예로, 주제어부(770)는 측정된 정류기 출력 DC 전력의 세기가 소정 기준치 와 비교하여 과전압 발생 여부를 판단할 수 있다. 판단 결과, 과전압이 발생된 경우, 과전압이 발생되었음을 알리는 소정 패킷을 생성하여 변조부(762)에 전송할 수 있다. 여기서, 변조부(762)에 의해 변조된 신호는 수신 코일(710) 또는 별도의 코일(미도시)을 통해 무선 전력 송신기(600)에 전송될 수 있다. 또한, 주제어부(770)는 정류기 출력 DC 전력의 세기가 소정 기준치 이상인 경우, 감지 신호가 수신된 것으로 판단할 수 있으며, 감지 신호 수신 시, 해당 감지 신호에 대응되는 신호 세기 지시자가 변조부(762)를 통해 무선 전력 송신기(600)에 전송될 수 있도록 제어할 수 있다. 다른 일 예로, 복조부(761)는 수신 코일(710)과 정류기(720) 사이의AC 전력 신호 또는 정류기(720) 출력 DC 전력 신호를 복조하여 감지 신호의 수신 여부를 식별한 후 식별 결과를 주제어부(770)에 제공할 수 있다. 이때, 주제어부(770)는 감지 신호에 대응되는 신호 세기 지시자가 변조부(762)를 통해 전송될 수 있도록 제어할 수 있다.
도 8은 본 발명의 일 실시예에 따른 무선 전력 신호의 변조 및 복조 방법을 설명하기 위한 도면이다.
도 8의 도면 번호 810에 도시된 바와 같이, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 동일한 주기를 가지는 내부 클락 시그널에 기반하여 전송 대상 패킷을 인코딩하거나 디코딩할 수 있다.
이하에서는 상기 도 1 내지 도 8을 참조하여, 전송 대상 패킷의 인코딩 방법을 상세히 설명하기로 한다.
상기 도 1을 참조하면, 무선 전력 송신단(10) 또는 무선 전력 수신단(20)가 특정 패킷을 전송하지 않는 경우, 무선 전력 신호는 도 1의 도면 번호 41에 도시된 바와 같이, 특정 주파수를 가진 변조되지 않은 교류 신호일 수 있다. 반면, 무선 전력 송신단(10) 또는 무선 전력 수신단(20)이 특정 패킷을 전송하는 경우, 무선 전력 신호는 도 1의 도면 번호 42에 도시된 바와 같이, 특정 변조 방식으로 변조된 교류 신호일 수 있다. 일 예로, 변조 방식은 진폭 변조 방식, 주파수 변조 방식, 주파수 및 진폭 변조 방식, 위상 변조 방식 등을 포함할 수 있으나, 이에 한정되지는 않는다.
무선 전력 송신단(10) 또는 무선 전력 수신단(20)에 의해 생성된 패킷의 이진 데이터는 도면 번호 820과 같이 차등 2단계 인코딩(Differential bi-phase encoding) 이 적용될 수 있다. 상세하게, 차등 2단계 인코딩은 데이터 비트 1을 인코딩하기 위하여 두 번의 상태 전이(transitions)를 갖도록 하고, 데이터 비트 0을 인코딩하기 위하여 한 번의 상태 전이를 갖도록 한다. 즉, 데이터 비트 1은 상기 클럭 신호의 상승 에지(rising edge) 및 하강 에지(falling edge)에서 HI 상태 및 LO 상태간의 전이가 발생하도록 인코딩된 것이고, 데이터 비트 0은 상기 클럭 신호의 상승 에지에서 HI 상태 및 LO 상태간의 전이가 발생하도록 인코딩된 것일 수 있다.
인코딩된 이진 데이터는 상기 도면 번호 830에 도시된 바와 같은, 바이트 인코딩 기법이 적용될 수 있다. 도면 번호 830을 참조하면, 일 실시예에 따른 바이트 인코딩 기법은 8비트의 인코딩된 이진 비트 스트림에 대해 해당 비트 스트림의 시작과 종류를 식별하기 위한 시작 비트(Start Bit) 및 종료 비트(Stop Bit), 해당 비트 스트림(바이트)의 오류 발생 여부를 감지하기 위한 페리티 비트(Parity Bit)가 삽입하는 방법일 수 있다.
도 9는 본 발명의 일 실시예에 따른, 패킷 포맷을 설명하기 위한 도면이다.
도 9를 참조하면, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이의 정보 교환에 사용되는 패킷 포맷(900)은 해당 패킷의 복조를 위한 동기 획득 및 해당 패킷의 정확한 시작 비트를 식별하기 위한 프리엠블(Preamble, 910) 필드, 해당 패킷에 포함된 메시지의 종류를 식별하기 위한 헤더(Header, 920) 필드, 해당 패킷의 내용(또는 페이로드(Payload))를 전송하기 위한 메시지(Message, 930) 필드 및 해당 패킷에 오류가 발생되었는지 여부를 식별하기 위한 체크썸(Checksum, 940) 필드를 포함하여 구성될 수 있다.
도 9에 도시된 바와 같이, 패킷 수신단은 헤더(920) 값에 기반하여 해당 패킷에 포함된 메시지(930)의 크기를 식별할 수도 있다.
또한, 헤더(920)는 무선 전력 전송 절차의 각 단계별로 정의될 수 있으며, 일부, 헤더(920) 값은 서로 다른 단계에서 동일한 값이 정의될 수도 있다. 일 예로, 도 9를 참조하면, 핑 단계의 전력 전송 종료(End Power Transfer) 및 전력 전송 단계의 전력 전송 종료에 대응되는 헤더 값은 0x02로 동일할 수 있음을 주의해야 한다.
메시지(930)는 해당 패킷의 송신단에서 전송하고자 하는 데이터를 포함한다. 일 예로, 메시지(930) 필드에 포함되는 데이터는 상대방에 대한 보고 사항(report), 요청 사항(request) 또는 응답 사항(response)일 수 있으나, 이에 한정되지는 않는다.
본 발명의 다른 일 실시예에 따른 패킷(900)은 해당 패킷을 전송한 송신단을 식별하기 위한 송신단 식별 정보, 해당 패킷을 수신할 수신단을 식별하기 위한 수신단 식별 정보 중 적어도 하나가 더 포함될 수도 있다. 여기서, 송신단 식별 정보 및 수신단 식별 정보는 IP 주소 정보, MAC 주소 정보, 제품 식별 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 무선 충전 시스템상에서 수신단 및 송신단을 구분할 수 있는 정보이면 족하다.
본 발명의 또 다른 일 실시예에 따른 패킷(900)은 해당 패킷이 복수의 장치에 의해 수신되어야 하는 경우, 해당 수신 그룹을 식별하기 위한 소정 그룹 식별 정보가 더 포함될 수도 있다.
도 10은 본 발명의 일 실시예에 따른 무선 전력 수신기에서 무선 전력 송신기로 전송되는 패킷의 종류를 설명하기 위한 도면이다.
도 10을 참조하면, 무선 전력 수신기에서 무선 전력 송신기로 전송하는 패킷은 감지된 핑 신호의 세기 정보를 전송하기 위한 신호 세기(Signal Strength) 패킷, 송신기가 전력 전송을 중단하도록 요청하기 위한 전력 전송 종류(End Power Transfer), 제어 제어를 위한 제어 오류 패킷 수신 후 실제 전력을 조정하기까지 대기하는 시간 정보를 전송하기 위한 전력 제어 보류(Power Control Hold-off) 패킷, 수신기의 구성 정보를 전송하기 위한 구성 패킷, 수신기 식별 정보를 전송하기 위한 식별 패킷 및 확장 식별 패킷, 일반 요구 메시지를 전송하기 위한 일반 요구 패킷, 특별 요구 메시지를 전송하기 위한 특별 요구 패킷, FO 검출을 위한 기준 품질 인자 값을 전송하기 위한 FOD 상태 패킷, 송신기의 송출 전력을 제어하기 위한 제어 오류 패킷, 재협상 개시를 위한 재협상 패킷, 수신 전력의 세기 정보를 전송하기 위한 24비트 수신 전력 패킷 및 8비트 수신 전력 패킷 및 현재 부하의 충전 상태 정보를 전송하기 위한 충전 상태 패킷을 포함할 수 있다.
상기한 무선 전력 수신기에서 무선 전력 송신기로 전송하는 패킷들은 무선 전력 전송에 사용되는 주파수 대역과 동일한 주파수 대역을 이용한 인밴드 통신을 이용하여 전송될 수 있다.
도 11은 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 구조를 설명하기 위한 블록도이다.
도 11을 참조하면, 무선 전력 송신 장치(1100)는 전원부(1101), 직류-직류 변환기(DC-DC Converter, 1102), 인버터(Inverter, 1103), 공진 캐패시터(1104), 송신 코일(1105), 품질 인자 측정부(1106), 복조부(1107), 변조부(1108), 센싱부(1109) 및 제어부(1110)를 포함하여 구성될 수 있다.
전원부(1101)는 외부 전원 단자를 통해 DC 전력을 인가 받아 직류-직류 변환기(1102)에 전달할 수 있다.
직류-직류 변환기(1102)는 제어부(1110)의 제어에 따라 전원부(1101)로부터 수신되는 직류 전력의 세기를 특정 세기의 직류 전력으로 변환할 수 있다. 일 예로, 직류-직류 변환기(1102)는 전압의 세기 조절이 가능한 가변 전압기로 구성될 수 있으나 이에 한정되지는 않는다.
인버터(1103)는 변환된 직류 전력을 교류 전력으로 변환할 수 있다. 인버터(1103)는 구비된 복수의 스위치 제어를 통해 입력되는 직류 전력 신호를 교류 전력 신호로 변환하여 출력할 수 있다.
일 예로, 인버터(1103)는 풀 브릿지(Full Bridge) 회로를 포함하여 구성될 수 있으나, 이에 한정되지는 않으며, 하프 브리지(Half Bridge)를 포함하여 구성될 수도 있다.
다른 일 예로, 인버터(1103)는 하프 브릿지 회로와 풀 브릿지 회로를 모두 포함하여 구성될 수도 있으며, 이 경우, 제어부(1110)는 인버터(1103)를 하프 브릿지로 동작시킬지 풀 브릿지로 동작시킬지 동적으로 결정할 수도 있다.
본 발명의 일 실시예에 따른 무선 전력 송신 장치는 무선 전력 수신 장치에 의해 요구되는 전력의 세기에 따라 적응적으로 인버터(1103)의 브릿지 모드를 제어할 수도 있다. 일 예로, 무선 전력 수신 장치가 5W의 저전력을 요구하는 경우, 제어부(1110)는 인버터(1103)의 하프 브릿지 회로가 구동되도록 제어할 수 있다.
반면, 무선 전력 수신 장치가 15W의 높은 전력을 요구하는 경우, 제어부(1110)는 풀 브릿지 회로가 구동되도록 제어할 수 있다.
다른 일 예로, 무선 전력 송신 장치는 감지된 온도에 따라 적응적으로 풀 브리지 회로 또는 하프 브리지 회로를 선택 구동시킬 수도 있다. 일 예로, 하프 브리지 회로를 이용하여 무선 전력을 전송하는 중 무선 전력 송신 장치의 온도가 소정 기준치를 초과하는 경우, 제어부(1110)는 하프 브리지 회로를 비활성화시키고 풀 브릿지 회로를 활성화시킬 수 있다. 즉, 무선 전력 송신 장치는 동일 세기의 전력 전송을 위해 풀 브릿지 회로를 통해 전압은 상승시키고, 송신 코일(1105)에 흐르는 전류의 세기는 감소시킴으로써, 무선 전력 송신 장치의 온도를 기준치 이하로 낮출 수 있다. 일반적으로, 전자 기기에 장착되는 전자 부품에 발생되는 열의 양은 해당 전자 부품에 인가되는 전압의 세기보다 전류의 세기에 보다 민감할 수 있다.
또한, 인버터(1103)는 직류 전력을 교류 전력으로 변환할 수 있을 뿐만 아니라 교류 전력의 세기를 변경시킬 수도 있다.
일 예로, 인버터(1103)는 제어부(1110)의 제어에 따라 또는 자체 구비된 회로 설계에 따라 교류 전력 생성에 사용되는 기준 교류 신호(Reference Alternating Current Signal)의 주파수를 조절하여 출력되는 교류 전력의 세기를 조절할 수도 있다. 이를 위해, 인버터(1103)는 특정 주파수를 가지는 기준 교류 신호를 생성하는 주파수 발진기를 포함하여 구성될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 주파수 발진기가 인버터(1103)와는 별개로 구성되어 무선 전력 송신 장치의 일측에 장착될 수도 있다.
또한, 인버터(1103)는 기준 교류 신호의 듀티 사이클 또는 변환된 교류 신호의 듀티 사이클을 제어하여 출력되는 전력의 세기를 조절할 수도 있다.
본 발명의 일 실시예에 따른 무선 전력 송신 장치(1100)는 직류-직류 변환기(1102)의 출력 DC 전압, 인버터(1103)에 인가되는 동작 주파수, 인버터(1103)에 의해 변환된 교류 신호의 듀티 사이클 중 적어도 하나를 제어하여 송출 전력의 세기를 조절할 수 있다.
품질 인자 측정부(1106)는 공진 캐패시터(1104) 양단의 인덕턴스(또는 전압, 또는 전류) 값의 변화를 모니터링하여 해당 무선 전력 송신 장치의 송신 코일에 대한 품질 인자 값을 측정할 수 있다. 이때, 측정된 현재 품질 인자 값은 제어부(1110)에 전달되고, 제어부(1110)는 품질 인자 측정부(1106)로부터 전달 받은 측정된 현재 품질 인자 값을 소정 기록 영역에 저장할 수 있다.
일 예로, 제어부(1110)는 상기한 도 4 내지 5의 선택 단계(410, 510)에서 품질 인자 값을 측정할 수 있다. 제어부(1110)는 무선 전력 수신기로부터 수신된 기준 품질 인자 기준 값(Reference Quality Factor Value, RQF_Value)에 기반하여 이물질 존재 여부를 판단하기 위한 이물질 감지 품질 인자 임계 값(Foreign Object Detection Quality Factor Threshold Value, FOD_QFT_Value)을 결정할 수 있다. 제어부(1110)는 측정된 품질 인자 값(Measured_Quality_Factor_Value, MQF_Value)과 FOD_QFT_Value를 비교하여 이물질 존재 여부를 판단하는 품질 인자 값에 기반한 이물질 감지 절차를 수행할 수 있다.
여기서, RQF_Value는 성능 테스트를 위해 지정된 특정 무선 전력 송신기의 충전 영역상의 복수의 지점에서 측정된 품질 인자 값 중 가장 작은 값을 갖는 값으로 결정될 수 있다.
FOD_QFT_Value는 RQF_Value에서 기준 품질 인자 정확도와 생산 및 측정 오차를 뺀 값으로 결정될 수 있다.
여기서, 기준 품질 인자 정확도는 이물질이 존재하지 않을 때 측정된 기준 품질 인자 값에 대한 오차의 허용 범위일 수 있다. 일 예로, 오차의 허용 범위가 적용된 기준 품질 인자 값은 무선 전력 수신 장치로부터 수신된 기준 품질 인자 값 대비 증가하거나 감소되는 비율로 설정될 수 있으나 이에 한정되지는 않는다.
현재 WPC Qi 표준에서는 모든 제품에 대해 동일한 기준 품질 인자 정확도를 적용하도록 정의되어 있다.
하지만, 기준 품질 인자 정확도는 해당 제품의 제조사 및 제품의 종류에 따라 상이한 값을 가질 수 있다. 일 예로, A사의 무선 전력 수신기와 B사의 무선 전력 수신기는 동일한 무선 전력 송신기와 연동하여 기준 품질 인자 값이 측정될 수 있다. 하지만 두 제품에 대해 측정된 기준 품질 인자 값의 정확도는 서로 상이할 수 있다. 따라서, 무선 전력 수신기 별 상이한 기준 품질 인자 정확도에 기반하여 결정되는 이물질 존재 여부를 판단하기 위한 FOD_QFT_Value는 이물질 존재 여부 판단을 위한 정확한 임계값이 아닐 수 있다.
일 예로, 동일 무선 전력 송신기에 대한 테스트 결과, A사의 무선 전력 수신기에 대해 측정된 기준 품질 인자 값은 100이고, B사의 무선 전력 수신기에 대해 측정된 기준 품질 인자 값은 70일 수 있다. 이 경우, B사의 무선 전력 수신기에 대응되는 기준 품질 인자 정확도는 +/- 7%, A사의 무선 전력 수신기에 대응되는 기준 품질 인자 정확도는 +/- 10%로 설정되는 것이 양사 모두 +/- 10%로 설정하는 것에 비해 보다 정확하게 이물질 감지할 확률이 높아질 수 있다. 하지만, 현재 WPC Qi 표준에 따른 FOD 인증 테스트 시 모든 무선 전력 수신기에 대해 동일한 기준 품질 인자 정확도를 적용하므로, 정확한 FOD 인증 테스트가 이루어지지 못하는 문제점이 있었다.
복조부(1107)는 무선 전력 수신기로부터 수신되는 인밴드 신호를 복조하여 제어부(1110)에 전달한다. 일 예로, 복조부(1107)는 후술할 도 12의 FOD 상태 패킷 및 도 13의 구성 패킷을 복조하여 제어부(1110)에 전달할 수 있다. 여기서, FOD 상태 패킷 또는 구성 패킷에는 무선 전력 수신기의 종류 및 타입을 식별하기 위한 소정 수신기 타입 식별자가 포함될 수 있다.
제어부(1110)는 수신된 수신기 타입 식별자에 기반하여 이물질 존재 여부를 판단하기 위한 소정 전류 변화 임계치(Delta_Current_Threshold)를 결정할 수 있다. 제어부(1110)는 핑 단계에서 측정된 I_rail의 변화량(Delta_RAIL_Current)와 결정된 전류 변화 임계치를 비교하여 이물질의 존재 여부를 판단할 수 있다.
일 실시예로, 수신기 타입 식별자가 구성 패킷에 포함되어 수신되는 경우, 제어부(1110)는 상기 도 5의 식별 및 구성 단계(530)에서 이물질의 존재 여부를 판단할 수 있다.
다른 일 실시예로, 수신기 타입 식별자가 FOD 상태 패킷에 포함되어 수신되는 경우, 제어부(1110)는 상기 도 5의 협상 단계(540)에서 이물질의 존재 여부를 판단할 수 있다.
만약, 식별 및 구성 단계(530)에서 이물질이 존재하는 것으로 판단된 경우, 제어부(1110)는 무선 전력 송신기의 상태를 선택 단계(510)로 천이시킬 수 있다.
만약, 협상 단계(540)에서 이물질이 존재하는 것으로 판단된 경우, 제어부(1110)는 전력 전송 단계(560)로 진입시키지 않고, 선택 단계(510)로 진입시킬 수 있다.
변조부(1108)는 제어부(1110)로부터 수신된 제어 패킷을 변조하여 송신 코일(1105)을 통해 전송한다. 일 예로, 제어부(1110)는 수신기 타입 식별자가 포함된 FOD 상태 패킷이 수신되면, 해당 수신기 타입 식별자에 대응되는 전류 변화 임계치를 결정하고, 기 측정된 핑 단계에서의 인버터(1103) 전류 변화량-즉, Delta_Rail_Current-과 결정된 전류 변화 임계치를 비교하여 이물질의 존재 여부를 최종적으로 판단할 수 있다. 이물질 존재 여부에 대한 판단 결과에 따라, 제어부(1110)는 ACK 패킷 또는 NACK 패킷을 생성하여 변조부(1108)에 전달할 수도 있다.
여기서, ACK 패킷은 이물질 감지되지 않았음을 의미하고, NACK 패킷은 이물질이 감지되었음을 의미할 수 있다.
본 발명의 다른 일 실시예에 따른 제어부(1110)는 Delta_Rail_Current와 Delta_Current_Threshold의 비교하여 이물질 존재 여부를 판단한 후, 품질 인자 값에 기반한 이물질 감지 절차를 수행할 수 있다. 이하 설명의 편의를 위해, Delta_Rail_Current와 Delta_Current_Threshold의 비교하여 이물질 존재 여부를 판단하는 절차를 전류 변화량에 기반한 이물질 감지 절차라 명하기로 한다.
일 예로, 제어부(1110)는 전류 변화량에 기반한 이물질 감지 절차와 품질 인자 값에 기반한 이물질 감지 절차의 수행을 통해 모두 이물질이 존재하는 것으로 판단된 경우, 최종적으로 이물질이 존재하는 것으로 판단할 수 있다.
다른 일 예로, 제어부(1110)는 전류 변화량에 기반한 이물질 감지 절차와 품질 인자 값에 기반한 이물질 감지 절차 중 적어도 하나의 절차에서 이물질이 존재하는 것으로 판단된 경우, 최종적으로 이물질이 존재하는 것으로 판단할 수도 있다.
또 다른 일 예로, 제어부(1110)는 품질 인자 값에 기반한 이물질 감지 절차를 통해 이물질이 존재하는 것으로 판단된 경우, 전류 변화량에 기반한 이물질 감지 절차를 수행하도록 제어할 수 있다. 이 경우, 제어부(1110)는 전류 변화량에 기반한 이물질 감지 절차를 통해 이물질이 존재하는 것으로 판단된 경우에만, 최종적으로 이물질이 존재하는 것으로 판단할 수 있다.
또 다른 일 예로, 제어부(1110)는 FOD 상태 패킷 수신 시 자신이 품질 인자 값에 기반한 이물질 감지 절차 수행이 불가한 경우, 전류 변화량에 기반한 이물질 감지 절차만을 수행하여 이물질의 존재 여부를 최종적으로 판단할 수도 있음을 주의해야 한다. 이때, 이물질이 존재하는 것으로 판단된 경우, 제어부(1110)는 상기 도 5의 협상 단계(540)에서 전력 전송 단계(560)로 진입하지 않고 충전 영역에 이물질이 존재함이 사용자 인지 가능하도록 특정 알림 수단을 제어할 수 있다. 일 예로, 알림 수단은 비퍼, LED 램프, 진동 소자, 액정 디스플레이 등을 포함할 수 있으나, 이에 한정되지는 않는다.
센싱부(1109)는 무선 전력 송신 장치의 특정 노드, 특정 부품, 특정 위치 등에서의 전압, 전류, 전력 및 온도 등을 측정할 수 있다.
일 예로, 센싱부(1109)는 직류-직류 컨버터(1102)와 인버터(1103) 사이의 전류/전압/전력의 세기 또는(및) 전류/전압/전력의 세기 변화량을 측정하고, 측정 결과를 제어부(1110)에 전달할 수 있다.
이하 설명의 편의를 위해, 직류-직류 컨버터(1102)와 인버터(1103) 사이에 흐르는 전류를 I_rail, 직류-직류 컨버터(1102) 출력단 또는 인버터(1103) 입력단에 인가되는 전압을 V_rail, 직류-직류 컨버터(1102)에서 인버터(1103)에 전달되는 전력을 P_rail이라 명하기로 한다.
다른 일 예로, 센싱부(1109)는 송신 코일(1105)-즉, 인덕터-에 흐르는 전류의 세기와 송신 코일(1105)의 양단에 인가되는 전압의 세기를 측정하고, 측정 결과를 제어부(1110)에 전달할 수도 있다.
본 발명의 일 실시예에 따른 제어부(1110)는 핑 단계에서 센싱부(1109)로부터 수신되는 센싱 정보에 기반하여 인버터(1103)에 인가되는 전류의 세기(I_rail) 변화량를 산출하고, 산출된 전류 세기 변화량을 소정 기록 영역에 저장할 수 있다.
제어부(1110)는 식별 및 구성 단계에서 기 저장된 전류 세기 변화량과 소정 전류 변화 임계치를 비교하여 이물질 존재 가능성-즉, 확률-을 판단할 수 있다.
판단 결과, 이물질 존재 가능성이 높은 것으로 판단되면, 제어부(1110)는 기준 품질 인자 정확도를 일정 수준 낮게 조정할 수 있다. 일 예로, 이물질 존재 가능성이 높은 것으로 판단된 경우, 제어부(1110)는 기준 품질 인자 정확도를 +/-10%에서 +/-5%로 조정하여 FOD_QFT_Value를 결정할 수 있다. 이를 통해, 제어부(1110)는 품질 인자 값에 기반한 이물질 존재 여부 판단 시 이물질 검출 정확도를 향상시킬 수 있다. 반면, 판단 결과, 이물질 존재 가능성이 낮으면, 제어부(1110)는 미리 정의된 기준 품질 인자 정확도에 기반하여 FOD_QFT_Value를 결정할 수 있다.
제어부(1110)는 MQF_Value가 FOD_QFT_Value보다 작은 경우, 이물질이 존재하는 것으로 판단할 수 있다. 이물질이 존재하는 경우, 제어부(1110)는 상기 도 5의 협상 단계(540)에서 전력 전송 단계(560)으로 진입하지 않을 수 있다. 이때, 제어부(1110)는 충전 영역에 이물질이 존재함을 사용자가 인지하도록 무선 전력 송신 장치에 구비된 소정 알림 수단을 제어할 수 있다. 여기서, 알림 수단은 비퍼, LED 램프, 진동 소자, 액정 디스플레이 등을 포함할 수 있으나, 이에 한정되지는 않는다.
제어부(1110)는 MQF_Value가 FOD_QFT_Value보다 크거나 같은 경우, 충전 영역에 이물질이 존재하지 않는 것으로 판단할 수 있다. 이물질이 존재하지 않는 경우, 제어부(1110)는 전력 전송 단계로 진입하여 해당 무선 전력 송신 장치에 의해 요구되는 전력이 전송되도록 제어할 수 있다.
또한, 본 발명의 다른 일 실시예에 따른 제어부(1110)는 핑 단계에서 측정된 전류 값-예를 들면, 직류-직류 컨버터의 출력 전류(I_rail) 또는 송신 코일(1105)에 인가되는 전류(I_coil)일 수 있음-을 소정 기준 전류 값과 비교할 수 있다. 비교 결과, 측정된 전류 값이 기준 전류 값 보다 크면, 이물질의 존재 가능성이 낮은 것으로 판단할 수 있다. 이 경우, 제어부(1110)는 협상 단계에서 FOD 상태 패킷이 수신되어도 품질 인자 값에 기반한 이물질 판단 절차를 진행하지 않고, 전력 전송 단계로 진입할 수 있다.
상기 도 11을 참조하면, 인버터 입력 전류(I_rail)은 DC 전력이고, 송신 코일(1105)에 흐르는 전류는 AC 전류이다. 특히, 핑 단계에서 인버터(1103)에 입력되는 전류는 일정한 레벨을 가지는 DC 전력이나, 인버터(1103) 출력 전력은 일정한 주기로 비연속적으로 전송되는 AC 전력이다. 따라서, I_rail의 시간 평균 값은 I_coil의 시간 평균 값에 비해 상대적으로 클 수 있다. 따라서, I_rail의 변화를 기반으로 이물질의 존재 가능성을 판단하는 것이 판단 오류 확률을 현저히 줄일 수 있다.
무선 전력 송신 장치의 충전 영역에 정상적인 무선 전력 수신 장치가 아닌 전도성 이물질이 위치하는 경우, 송신 코일과 이물질 사이의 상호 임피던스(Mutual Impedance) 값은 거의 0에 가까워진다. 이때, 인버터(1103)에 인가되는 전류(I_rail)의 세기는 급격히 증가된다. 따라서, 제어부(1110)는 핑 단계에서 인버터(1103)에 인가되는 전류(I_rail)의 세기 변화를 모니터링함으로써, 이물질의 존재 가능성을 판단할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 무선 전력 송신 장치는 핑 단계에서의 인덕터에 인가되는 전류의 변화량에 기반하여 이물질의 존재 여부를 판단하고, 판단 결과에 따라 전력 전송을 적응적으로 차단함으로써, 장비 손상 및 전력 낭비를 최소화시킬 수 있는 장점이 있다. 또한, 본 발명에 따른 이물질 검출 장치는 전류 세기 변화에 기반한 이물질 검출 절차 수행 시 해당 무선 전력 수신기에 대응되는 수신기 타입 식별자에 기반하여 동적으로 전류 변화 임계치를 결정함으로써, 이물질에 대한 검출 정확도를 높일 수 있는 장점이 있다.
도 12a는 본 발명의 일 실시예에 따른 FOD 상태 패킷의 메시지 구조를 설명하기 위한 도면이다.
도 12a를 참조하면, FOD 상태 패킷 메시지(1200)는 2바이트의 길이를 가지며, 6비트 길이의 수신기 타입 식별자(Receiver Type Identifier, 1201) 필드, 2비트 길이의 모드(Mode, 1202) 필드 및 1바이트 길이의 기준 품질 인자 값(Reference Quality Factor Value, 1203) 필드를 포함하여 구성될 수 있다. 상기 도 12a에는 수신기 타입 식별자(1201) 필드의 길이가 6비트인 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 당업자의 설계에 따라 6비트보다 작은 크기로 구성될 수도 있음을 주의해야 한다.
도면 번호 1204에 보여지는 바와 같이, 모드(1202) 필드가 이진수 '00'로 설정되면, 기준 품질 인자 값(1203) 필드에 무선 전력 수신기의 전원이 OFF된 상태에서 결정된 기준 품질 인자 값이 기록되어 있음을 의미할 수 있다.
도 12b는 본 발명의 다른 일 실시예에 따른 FOD 상태 패킷의 메시지 구조를 설명하기 위한 도면이다.
도 12a를 참조하면, FOD 상태 패킷 메시지(1210)는 2바이트의 길이를 가지며, 6비트 길이의 제1 정보(First Information, 1211) 필드, 2비트 길이의 모드(Mode, 1212) 필드 및 1바이트 길이의 제2 정보(Second Information, 1213) 필드를 포함하여 구성될 수 있다.
도면 번호 1214를 참조하면, 모드(1212) 필드가 이진수 '00'로 설정되면, 제2 정보(1213) 필드에 무선 전력 수신기의 전원이 오프(OFF)된 상태에서 결정된 기준 품질 인자 값이 기록되어 있음을 의미할 수 있다. 이때, 제1 정보(1211) 필드의 각 비트는 모두 0으로 설정되거나, 상기한 도 12a의 실시예와 같이, 수신기 타입 식별자(1201)가 기록될 수도 있다.
또한, 도면 번호 1214를 참조하면, 모드(1212) 필드가 이진수 '01'로 설정되면, 제1 정보(1211) 필드에는 기준 인버터 출력 전압(Reference V_rail)에 관한 정보가 기록되고, 제2 정보(1213) 필드에는 기준 송신 코일 전류(Reference I_coil)에 대한 정보가 기록될 수 있으나, 이는 하나의 실시예에 불과하며, 제1 정보(1211) 필드와 제2 정보(1213) 필드에 기록되는 정보가 각각 Reference I_coil과 Reference V_rail에 관한 정보일 수도 있다. 여기서, 기준 인버터 출력 전압 및 기준 송신 코일 전류는 무선 전력 수신기의 전원이 온(ON)된 상태에서 측정된 값일 수 있다. 일 예로, 기준 인버터 출력 전압 및 기준 송신 코일 전류는 핑 단계에서 측정된 값일 수 있으나, 이에 한정되지는 않으며, 식별 및 구성 단계, 협상 단계, 재협상 단계 및 전력 전송 단계 중 어느 하나의 단계에서 측정된 값일 수도 있다.
상기한 도 12b의 실시예는 모드(1212) 필드가 이진수 '01'로 설정되면, 제1 정보(1211) 필드 및 제2 정보(1213)에 각각 Reference V_rail과 Reference I_coil에 관한 정보가 기록되는 것으로 정의되어 있으나, 이는 하나의 실시예에 불과하며, 해당 정보 전송을 위해 모드(1212) 값이 이진수 '10' 또는 이진수 '11'이 설정되도록 정의될 수 있다.
기준 인버터 출력 전압과 기준 송신 코일 전류는 무선 전력 송신 장치의 구성 태양, 디자인, 전력 등급(Power Class), 보장된 전력(Guaranteed Power) 등에 따라 상이한 값을 가질 수 있다. 일 실시예에 따른 무선 전력 수신 장치는 접속된 무선 전력 송신 장치에 대응되는 기준 인버터 출력 전압 및 기준 송신 코일 전류에 관한 정보를 유지할 수 있다. 이 경우, 무선 전력 수신 장치는 협상 단계에서 FOD 상태 패킷을 통해 해당 기준 인버터 출력 전압 및 기준 송신 코일 전류에 관한 정보를 인밴드 통신을 통해 해당 무선 전력 송신 장치에 전송할 수 있다.
무선 전력 수신 장치는 식별 및 구성 단계에서 무선 전력 송신 장치의 타입을 식별할 수 있으며, 식별된 타입에 대응되는 기준 인버터 출력 전압 및 기준 송신 코일 전류에 관한 정보가 내부 기록 영역에 존재하는지 확인할 수 있다. 확인 결과, 존재하면, 무선 전력 수신 장치는 식별된 타입에 대응되는 기준 인버터 출력 전압 및 기준 송신 코일 전류에 관한 정보가 포함된 FOD 상태 패킷을 해당 무선 전력 송신 장치에 송신할 수 있다.
본 발명의 일 실시예에 따른 무선 전력 송신 장치는 FOD 상태 패킷을 통해 수신된 기준 인버터 출력 전압 및 기준 송신 코일 전류에 대한 정보와 실시간 측정된 인버터 출력 전압 및 송신 코일 전류에 기반하여 충전 영역에 이물질이 존재하는지 판단할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신 장치는 FOD 상태 패킷을 통해 수신된 기준 송신 코일 전류 대비 현재 측정된 송신 코일의 전류 변화량 또는 변화 비율에 기반하여 충전 영역에 이물질이 존재하는지 판단할 수도 있다. 이 경우, FOD 상태 패킷 메시지는 기준 송신 코일 전류에 관한 정보만이 포함될 수도 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 송신 장치는 FOD 상태 패킷 을 통해 수신된 기준 인버터 출력 전압에 대한 정보와 실시간 측정된 인버터 출력 전압에 기반하여 충전 영역에 이물질이 존재하는지 판단할 수도 있다. 이 경우, FOD 상태 패킷 메시지는 기준 인버터 출력 전압에 관한 정보만이 포함될 수도 있다.
본 발명의 또 다른 일 실시예에 따른 FOD 상태 패킷 메시지는 제1 정보(1211) 필드, 제2 정보(1213) 필드 중 어느 하나의 필드에 기준 인버터 출력 전류에 관한 정보가 기록될 수도 있다. 이 경우, 무선 전력 송신 장치는 기준 인버터 출력 전류 대비 현재 측정된 인버터 출력 전류의 변화량 또는 변화 비율에 기반하여 충전 영역에 이물질이 존재하는지 판단할 수도 있다. 일 예로, 기준 인버터 출력 전류가 a이고 현재 측정된 인버터 출력 전류가 b인 경우, 인버터 출력 전류의 변화 비율(r)은 (b-a)/a로 계산될 수 있다. 이때, r이 소정 기준치(t)를 초과하는 경우, 무선 전력 송신 장치는 충전 영역에 이물질이 존재하는 것으로 판단할 수 있다.
도 13은 본 발명의 일 실시예에 따른 구성 패킷의 구조를 설명하기 위한 도면이다.
도 13의 도면 번호 1301에 도시된 바와 같이, 구성 패킷의 메시지 포맷은 5바이트의 길이를 가질 수 있으며, 전력 등급(Power Class) 필드, 최대 전력(Maximum Power) 필드, 전력 제어(Power Control) 필드, 카운트(Count) 필드, 윈도우 사이즈(Window Size) 필드, 윈도우 옵셋(Window Offset) 필드 및 제1 내지 제3 예약 필드(1301 내지 1303) 등을 포함하여 구성될 수 있다.
전력 등급 필드에는 해당 무선 전력 수신기에 할당된 전력 등급이 기록될 수 있다.
최대 전력 필드에는 무선 전력 수신기의 정류기 출력단에서 제공할 수 있는 최대 전력의 세기 값이 기록될 수 있다.
일 예로, 전력 등급이 a이고 최대 전력이 b인 경우에 있어서, 무선 전력 수신 장치의 정류기 출력단에서 제공되길 바라는 최대 전력량(Pmax)는 (b/2)*10a로 산출될 수 있다.
전력 제어 필드에는 무선 전력 송신기에서의 전력 제어가 어떤 알고리즘에 따라 이루어져야 하는지를 지시하기 위해 사용될 수 있다. 일 예로, 전력 제어 필드 값이 0이면, 표준에 정의된 전력 제어 알고리즘 적용을 의미하고, 전력 제어 필드 값이 1이면, 제조사에 의해 정의된 알고리즘에 따라 전력 제어가 이루어지는 것을 의미할 수 있다.
카운트 필드는 무선 전력 수신 장치가 식별 및 구성 단계에서 전송할 옵션 구성 패킷의 개수를 기록하기 위해 사용될 수 있다.
윈도우 사이즈 필드는 평균 수신 파워 산출을 위한 윈도우 크기를 기록하기 위해 사용될 수 있다. 일 예로, 윈도우 사이즈는 0보다 크고, 4ms 단위를 가지는 양의 정수 값일 수 있다.
윈도우 옵셋 필드는 평균 수신 파워 산출 윈도우 종료 시점부터 다음 수신 전력 패킷의 전송 시작 시점까지의 시간을 식별하기 위한 정보가 기록될 수 있다. 일 예로, 윈도우 옵셋은 0보다 크고, 4ms 단위를 가지는 양의 정수 값일 수 있다.
상기한 도 11 내지 12a에서 설명된 수신기 타입 식별자는 상기한 도 13의 제1 내지 제3 예약 필드(1301 내지 1303) 중 적어도 하나의 예약 필드에 기록되어 무선 전력 송신기에 전송될 수도 있다.
여기서, 수신기 타입 식별자를 위해 할당되는 비트 수는 당업자의 설계에 따라 상이한 길이를 가질 수 있으며, 그 비트 수를 한정하지는 않는다.
도 14는 본 발명의 일 실시예에 따른 수신기 타입 식별자에 대응되는 전류 변화 임계치가 정의된 수신기 타입 식별자 매핑 테이블이다.
도 14를 참조하면, 수신기 타입 식별자 필드는 6비트의 길이를 가지며, 0에서 63까지의 범위를 가질 수 있다.
도 14에 도시된 바와 같이, 전류 변화 임계치는 mA 단위를 가지고, 타입 식별자가 1씩 증가됨에 따라 100mA가 증가되도록 정의될 수 있으나, 이는 하나의 실시예에 불과하며, 타입 식별자에 대응되는 전류 변화 임계치는 당업자의 설계에 따라 상이하게 정의될 수 있음을 주의해야 한다. 일 예로, 전류 변화 임계치는 타입 식별자가 1씩 증가됨에 따라 50mA가 증가되도록 정의될 수 있다.
또한, 상기한 도 13의 실시예는 수신기 타입 식별자 필드는 6비트의 길이를 가지는 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 수신기 타입 식별자 필드의 길이는 6비트보다 크거나 작게 구성될 수도 있음을 주의해야 한다.
만약, 무선 전력 수신기 A에 대한 사전 실험 결과, 핑 단계에서 무선 전력 수신기 A가 충전 영역에 위치되는 시점에 측정된 전류 변화량이 600mA인 경우, 무선 전력 수신기 A에 대응되는 수신기 타입 식별자는 이진수 “000101”이 할당될 수 있다. 일 예로, 무선 전력 수신기는 자신에 할당된 수신기 타입 식별자를 구성 및 식별 단계에서 구성 패킷을 통해 무선 전력 송신기에 전송할 수 있다. 다른 일 예로, 무선 전력 수신기는 자신에 할당된 수신기 타입 식별자를 협상 단계에서 FOD 상태 패킷을 통해 무선 전력 송신기에 전송할 수도 있다.
도 15는 본 발명의 다른 일 실시예에 따른 수신기 타입 식별자에 대응되는 전류 변화 임계 비율이 정의된 수신기 타입 식별자 매핑 테이블이다.
도 15를 참조하면, 수신기 타입 식별자는 2비트의 길이를 가지며, 전류 변화 임계 비율은 무선 전력 수신기가 충전 영역에 올려지지 않았을 때 측정된 디지털 핑 신호의 전류 값-이하, 설명의 편의를 위해, 초기 인버터 입력 전류 값(Initial_Inverter_Input_Current_Value)이라 명함- 대비 무선 전력 수신기가 충전 영역에 올려진 후 측정된 디지털 핑 신호의 전류 값(Measured_Inverter_Inpurt_Current_Value)-즉, 인버터 입력 전류 세기 값-의 변화 비율로 정의될 수 있다.
일 예로, 핑 단계에서의 전류 변화 비율은
{(Measured_Inverter_Inpurt_Current_Value-Initial_Inverter_Input_Current_Value)/(Initial_Inverter_Input_Current_Value)}*100
으로 계산될 수 있다. 만약, 특정 무선 전력 수신기에 상응하는 전류 변화 비율이 80인 경우, 해당 무선 전력 수신기에 대응되는 수신기 타입 식별자는 도 15에 도시된 바와 같이, 이진수 “10”으로 정의될 수 있다.
상기한 도 15의 실시예에서는 수신기 타입 식별자가 2비트의 길이를 가지고, 각각의 수신기 타입 식별자에 대응되는 전류 변화 임계 비율이 20% 범위를 가지는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 수신기 타입 식별자의 길이 및 각각의 수신기 타입 식별자에 대응되는 전류 변화 임계 비율의 할당 범위는 당업자의 설계 및 적용되는 장비 및 시스템에 따라 상이하게 정의될 수 있음을 주의해야 한다.
도 16은 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 감지 방법을 설명하기 위한 순서도이다.
도 16을 참조하면, 무선 전력 송신 장치는 핑 단계에서 인버터에 인가되는 전류의 세기를 측정하고, 측정된 인버터 입력 전류 세기에 관한 정보를 소정 기록 영역에 저장할 수 있다(S1601).
무선 전력 송신 장치는 수신기 타입 식별자가 포함된 패킷을 수신할 수 있다(S1602). 여기서, 수신기 타입 식별자는 구성 및 식별 단계에서 구성 패킷을 통해 수신될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 실시예는 협상 단계에서 FOD 상태 패킷을 통해 수신기 타입 식별자가 수신될 수도 있다.
무선 전력 송신 장치는 수신기 타입 식별자에 대응되는 전류 세기 임계치를 결정할 수 있다(S1603). 여기서, 전류 세기 임계치는 상기 도 14에서 설명된 수신기 타입 식별자 매핑 테이블을 참조하여 결정될 수 있으나, 이에 한정되지는 않는다.
무선 전력 송신 장치는 상기 1601 단계에서 저장된 인버터 입력 전류 세기와 전류 세기 임계치를 비교하여 충전 영역에 이물질이 존재하는지 여부를 판단할 수 있다(S1604). 일 예로, 무선 전력 송신 장치는 인버터 입력 전류 세기가 전류 세기 임계치를 초과하는 경우, 충전 영역에 이물질이 존재하는 것으로 판단할 수 있다. 반면, 인버터 입력 전류 세기가 전류 세기 임계치보다 작거나 같으면, 충전 영역에 이물질이 존재하지 않는 것으로 판단할 수 있다.
무선 전력 송신 장치는 이물질이 존재하는 것으로 판단하면, 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계(510)로 진입할 수 있다(S1605).
무선 전력 송신 장치는 상기한 1604 단계의 판단 결과, 이물질이 존재하지 않는 것으로 판단되면, 협상 단계 또는 전력 전송 단계로 진입할 수 있다(S1606).
도 17은 본 발명의 다른 실시예에 따른 무선 전력 송신 장치에서의 이물질 감지 방법을 설명하기 위한 순서도이다.
도 17을 참조하면, 무선 전력 송신 장치는 핑 단계에서 인버터에 입력되는 전류의 세기를 측정하고, 측정된 인버터 입력 전류 세기(Measured_I_Rail)에 관한 정보를 소정 기록 영역에 저장할 수 있다(S1701).
무선 전력 송신 장치는 물체가 감지되지 않은 상태에서 인버터에 입력되는 전류의 세기 정보-즉, 초기 인버터 입력 전류 값(Initial_Inverter_Input_Current_Value)에 대한 정보- 및 핑 단계에서 측정된 인버터 입력 전류 값(Measured_Inverter_Input_Current_Value)에 대한 정보를 이용하여 인버터 입력 전류(I_rail)의 변화 비율을 산출할 수 있다(S1702). 여기서, 인터버 입력 전류의 변화 비율은 {(Measured_Inverter_Inpurt_Current_Value-Initial_Inverter_Input_Current_Value)/(Initial_Inverter_Input_Current_Value)}으로 계산될 수 있다. 무선 전력 송신 장치는 수신기 타입 식별자가 포함된 패킷을 수신할 수 있다(S1703). 여기서, 수신기 타입 식별자는 구성 및 식별 단계에서 구성 패킷을 통해 수신될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 실시예는 협상 단계에서 FOD 상태 패킷을 통해 수신기 타입 식별자가 수신될 수도 있다.
무선 전력 송신 장치는 수신기 타입 식별자에 대응되는 전류 세기 임계 비율을 결정할 수 있다(S1704). 여기서, 전류 세기 임계 비율은 상기 도 15에서 설명된 수신기 타입 식별자 매핑 테이블을 참조하여 결정될 수 있으나, 이에 한정되지는 않는다.
무선 전력 송신 장치는 상기 1702 단계에서 산출된 인버터 입력 전류의 변화 비율과 상기 1704 단계에서 결정된 전류 세기 임계 비율을 비교하여 충전 영역에 이물질이 존재하는지 여부를 판단할 수 있다(S1705). 일 예로, 무선 전력 송신 장치는 인버터 입력 전류의 변화 비율이 전류 세기 임계 비율을 초과하는 경우, 충전 영역에 이물질이 존재하는 것으로 판단할 수 있다. 반면, 무선 전력 송신 장치는 인버터 입력 전류의 변화 비율이 전류 세기 임계 비율보다 작거나 같으면, 충전 영역에 이물질이 존재하지 않는 것으로 판단할 수 있다.
무선 전력 송신 장치는 이물질이 존재하는 것으로 판단하면, 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계(510)로 진입할 수 있다(S1706).
무선 전력 송신 장치는 상기한 1705 단계의 판단 결과, 이물질이 존재하지 않는 것으로 판단되면, 협상 단계 또는 전력 전송 단계로 진입할 수 있다(S1707).
도 18은 본 발명의 또 다른 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 방법을 설명하기 위한 순서도이다.
도 18을 참조하면, 무선 전력 송신 장치는 핑 단계에서의 인버터 입력 전류 세기 변화에 기반한 이물질 감지 절차 수행할 수 있다(S1801).
무선 전력 송신 장치는 인버터 입력 전류 세기 변화에 기반한 이물질 감지 절차를 통해 이물질이 존재 여부를 판단할 수 있다(S1802). 판단 결과, 이물질이 존재하는 것으로 판단된 경우, 협상 단계에서 품질 인자 값에 기반한 이물질 감지 절차 수행할 수 있다(S1803). 이때, 무선 전력 송신 장치는 품질 인자 임계 값을 결정하기 위해 사용되는 기준 품질 인자 정확도를 보정할 수 있다. 일 예로, 기준 품질 인자 정확도는 +/- 10%에서 +/- 5%로 조정되어 보다 정확하게 이물질이 감지되도록 제어될 수 있다.
본 발명의 전체 실시예에서 상기 기준 품질 인자 정확도는, Q FACTOR Threshold 조정(보정)치라고 표현할 수도 있다.
무선 전력 송신 장치는 협상 단계에서의 품질 인자 값에 기반한 이물질 감지 절차를 수행하여 이물질이 존재하는지를 판단할 수 있다(S1804). 판단 결과, 이물질이 존재하는 경우, 무선 전력 송신 장치는 NACK 패킷을 전송 후 선택 단계(510)로 진입할 수 있다(S1805). 반면, 상기한 1804 단계의 판단 결과, 이물질이 존재하지 않는 경우, 무선 전력 송신 장치는 ACK 패킷 전송 후(S1806) 전력 전송 단계로 진입하여 충전을 개시할 수 있다(S1807).
또한, 상기한 1802 단계의 판단 결과, 이물질이 존재하지 않는 경우, 무선 전력 송신 장치는 품질 인자 값에 기반한 이물질 감지 절차를 수행하지 않고 상기한 1806 단계를 수행할 수 있다. 이때, 무선 전력 송신 장치는 협상 단계에서 FOD 상태 패킷이 수신된 이후에 ACK 패킷을 생성하여 해당 무선 전력 수신기에 전송할 수도 있다.
도 19는 본 발명의 일 실시예에 따른 무선 전력 송신 장치에 장착되는 송신 코일의 일 실시 형태이다.
도 19를 참조하면, 무선 전력 송신 장치는 3개의 송신 코일이 일정 영역 중첩되도록 배치될 수 있다. 도 19에 도시된 바와 같이, 송신 코일 블록의 중심인 Position 1과 그로부터 20mm 이격된 Position 2에 이물질이 위치되는 경우, 후술할 도 20a 내지 도 20b에 도시된 바와 같이, 인버터 입력 전류의 세기가 변경될 수 있다. 송신 코일 블록의 중심으로부터 40mm 이격된 위치인 Position 3에서는 모든 이물질에 대해 인버터 입력 전류의 변화가 크지 않은 특징이 있다.
도 20a 내지 도 20b는 도 19에 따른 송신 코일의 위치 별 인덕터 입력 전류 세기와 송신 코일 입력 전류 세기의 측정 결과를 보여주는 그래프이다.
도 20a는 상기 도 19의 Position 1에서의 이물질 종류에 따른 인버터 입력 전류 세기와 송신 코일 입력 전류 세기의 측정 결과를 보여준다.
도 20b는 상기 도 19의 Position 2에서의 이물질 종류에 따른 인덕터 입력 전류 세기와 송신 코일 입력 전류 세기의 측정 결과를 보여준다.
도 20a 및 도 20b를 참조하면, Position 1에서 측정된 전류의 세기가 전체적으로 Position 2에서 측정된 전류의 세기보다 큰 것을 알 수 있다.
또한, 도 20a 및 도 20b를 참조하면, 핑 전송 시 이물질이 없는 상태에서 측정된 전류의 세기가 이물질이 존재하는 상태에서 측정된 전류의 세기보다 큰 것을 알 수 있다.
특히, 이물질이 없는 상태에서 이물질이 존재하는 상태로 변경된 경우, 인버터 입력 전류의 세기 변화가 송신 코일 전류의 세기 변화보다 큰 것을 알 수 있다.
도 21 내지 22는 상기 도 19의 Position 1에서 핑 단계에서 이물질이 충전 영역에 위치된 경우의 코일 전류 및 인버터 입력 전류의 변화 패턴을 보여준다.
도 21은 이물질이 10원짜리 동전인 경우이고, 도 22는 이물질이 500원짜리 동전인 경우에 있어서의 실험 결과를 보여준다.
상기 도 21에 도시된 그래프는 이물질이 충전 영역에 위치되지 않은 제1 핑 전송 시점에서의 코일 전류 및 인버터 입력 전류의 변화량은 수십 mA이나, 이물질이 충전 영역에 위치된 제2 핑 전송 시점에서의 코일 전류 및 인버터 입력 전류의 변화량은 수백 mA인 것을 보여준다.
도 22을 참조하면, 이물질이 500원짜리인 경우, 이물질이 충전 영역에 위치된 제2 핑 전송 시점에서의 코일 전류 및 인버터 입력 전류의 변화량은 수천 mA인 것을 보여준다.
도 23은 이물질 존재 여부 및 송수신 코일 정렬 상태에 따라 기준 송신 코일 전류 및 기준 인버터 입력 전압 대비 송신 코일 전류와 인버터 입력 전압의 변화 비율을 보여주는 실험 결과 테이블이다.
도 23을 참조하면, 이물질이 충전 영역에 존재하지 않고 수신기가 충전 영역의 가운데에 배치된 상태에서 측정된 인버터 입력 전압(V_rail) 및 송신 코일 전류(I_coil)이 각각 기준 인버터 입력 전압(Reference_V_rail), 기준 송신 코일 전류((Reference_I_coil)로 정의될 수 있다.
도 23을 참조하면, 이물질이 충전영역에 존재하지 않는 상태에서 무선 전력 수신 장치를 충전 영역의 가운데로부터 좌측 상단 및 우측 하단으로 각각 이동하였을 때의 인버터 입력 전압 및 송신 코일 전류의 변화율은 동일 위치(가운데)에서 별도 이동 없이 이물질이 충전 영역에 배치되었을 때 산출된 인버터 입력 전압 및 송신 코일 전류의 변화율에 비해 낮은 것을 알 수 있다.
이하 설명의 편의를 위해, 기준 인버터 입력 전압(Reference_V_rail) 대비 측정된 인버터 입력 전압(Measured_V_rail)의 변화율은 ΔV, 기준 송신 코일 전류(Reference_I_coil) 대비 측정된 송신 코일 전류(Measured_I_coil)의 변화율은 ΔI라 명하기로 한다.
이때, ΔV는 (Measured_V_rail - Reference_V_rail)/Reference_V_rail로 계산되고, ΔI는 (Measured_I_coil - Reference_I_coil)/Reference_I_coil로 계산될 수 있다.
특히, 도 23을 참조하면 변화 비율인 ΔI/ΔV는 이물질이 충전영역에 존재하지 않는 상태에서 무선 전력 수신 장치를 충전 영역상에서 이동하는 것에 비해 이물질이 충전영역에 존재하는 경우가 보다 큰 값을 가지는 것을 알 수 있다.
본 발명의 일 실시예에 따른 무선 전력 송신 장치는 변화 비율인 ΔI/ΔV에 기반하여 충전 영역에 이물질이 존재하는지를 판단할 수 있다.
일 예로, 상기 도 23의 실험 결과 테이블에 기반한 이물질 존재 여부를 판단하기 위한 변화 비율 임계치는 1.5로 정의될 수 있으나, 이에 한정되지는 않는다. 이 경우, 변화 비율이 1.5를 초과하면, 무선 전력 송신 장치는 충전 영역에 이물질이 존재하는 것으로 판단할 수 있다. 반면, ΔI 및(또는) ΔV가 소정 임계 범위내이고, 변화 비율이 1.5이하 이면, 무선 전력 송신 장치는 송수신 코일 사이의 정렬 문제가 존재하는 것으로 판단할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신 장치는 ΔI 및(또는) ΔV에 기반하여 이물질 존재 여부를 판단할 수도 있다. 상기 도 23의 실험 결과 테이블을 참조하며, ΔV가 0.4이상이고, ΔI가 0.6이상인 경우, 무선 전력 송신 장치는 충전 영역에 이물질이 존재하는 것으로 판단할 수 있다. 여기서, 이물질 존재 여부를 판단하기 위한 ΔV 임계치(0.4) 및 ΔI 임계치(0.6)은 하나의 실시예에 불과하며, 적용되는 제품의 형태 및 구성 태양에 따라 상이한 값이 적용될 수도 있다.
도 24는 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 및 정렬 확인 방법을 설명하기 위한 순서도이다.
도 24를 참조하면, 무선 전력 송신 장치는 소정 주기로 인버터 입력 전압을 측정할 수 있다(S2401). 이하 설명의 편의를 위해 일정 주기로 측정되는 인버터 입력 전압을 Measured_V_rail이라 명하기로 한다.
무선 전력 송신 장치는 미리 저장된 기준 인버터 입력 전압(Reference_V_rail)과 Measured_V_rail을 이용하여 인버터 입력 전압 변화율(ΔV)을 산출할 수 있다(S2402). 여기서, 인버터 입력 전압 변화율은 (Measured_V_rail - Reference_V_rail)/Reference_V_rail로 계산될 수 있다.
무선 전력 송신 장치는 인버터 입력 전압 변화률((ΔV)이 이물질 존재 여부 판단을 위한 소정 인버터 입력 전압 변화률 임계치(ΔV_FO_threshold)를 초과하는지 확인할 수 있다(S2403).
확인 결과, ΔV_FO_threshold를 초과하면, 무선 전력 송신 장치는 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계로 진입할 수 있다(S2404).
상기 2403 단계의 확인 결과, 초과하지 않으면, 무선 전력 송신 장치는 인버터 입력 전압 변화률((ΔV)이 송수신 코일 정렬 상태 판단을 위한 소정 인버터 입력 전압 변화률 임계치(ΔV_Alignment_threshold)를 초과하는지 확인할 수 있다(S2405).
확인 결과, ΔV_Alignment_threshold를 초과하면, 무선 전력 송신 장치는 송수신 코일 정렬 문제가 감지되었음을 지시하는 소정 알람 신호를 출력할 수 있다(S2406).
도 25는 본 발명의 다른 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 및 정렬 확인 방법을 설명하기 위한 순서도이다.
도 25를 참조하면, 무선 전력 송신 장치는 소정 주기로 송신 코일 전류를 측정할 수 있다(S2501). 이하 설명의 편의를 위해 일정 주기로 측정되는 송신 코일 전류를 Measured_I_coil이라 명하기로 한다.
무선 전력 송신 장치는 미리 저장된 기준 송신 코일 전류 (Reference_I_coil)과 Measured_I_coil을 이용하여 송신 코일 전류 변화율(ΔI)를 산출할 수 있다(S2502). 여기서, 송신 코일 전류 변화율은 (Measured_I_coil - Reference_I_coil)/Reference_I_coil로 계산될 수 있다.
무선 전력 송신 장치는 송신 코일 전류 변화율(ΔI)이 이물질 존재 여부 판단을 위한 소정 송신 코일 전류 변화율 임계치(ΔI_FO_threshold)를 초과하는지 확인할 수 있다(S2503).
확인 결과, ΔI_FO_threshold를 초과하면, 무선 전력 송신 장치는 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계로 진입할 수 있다(S2504).
상기 2503 단계의 확인 결과, 초과하지 않으면, 무선 전력 송신 장치는 송신 코일 전류 변화율(ΔI)이 송수신 코일 정렬 상태 판단을 위한 소정 송신 코일 전류 변화율 임계치(ΔI_Alignment_threshold)를 초과하는지 확인할 수 있다(S2505).
확인 결과, ΔI_Alignment_threshold를 초과하면, 무선 전력 송신 장치는 송수신 코일 정렬 문제가 감지되었음을 지시하는 소정 알람 신호를 출력할 수 있다(S2506).
도 26은 본 발명의 또 다른 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 및 정렬 확인 방법을 설명하기 위한 순서도이다.
도 26을 참조하면, 무선 전력 송신 장치는 소정 주기로 송신 코일 전류 및 인버터 입력 전압을 측정할 수 있다(S2601). 이하 설명의 편의를 위해 일정 주기로 측정되는 송신 코일 전류와 인버터 입력 전압을 각각 Measured_I_coil과 Measured_V_rail이라 명하기로 한다.
무선 전력 송신 장치는 미리 저장된 기준 송신 코일 전류 (Reference_I_coil) 및 기준 인버터 입력 전압(Reference_V_rail)과 Measured_I_coil 및 Measured_V_rail을 이용하여 변화 비율(ΔI/ ΔV) 산출할 수 있다(S2602). 여기서, ΔI는 (Measured_I_coil - Reference_I_coil)/Reference_I_coil로 계산되고, ΔV는 (Measured_V_rail - Reference_V_rail)/Reference_V_rail로 계산될 수 있다.
무선 전력 송신 장치는 변화 비율(ΔI/ΔV)이 이물질 존재 여부 판단을 위한 소정 변화 비율 임계치(ΔI/ΔV_FO_threshold)를 초과하는지 확인할 수 있다(S2603).
확인 결과, ΔI/ΔV_FO_threshold를 초과하면, 무선 전력 송신 장치는 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계로 진입할 수 있다(S2604).
상기 2603 단계의 확인 결과, 초과하지 않으면, 무선 전력 송신 장치는 무선 전력 송신 장치는 변화 비율(ΔI/ΔV)이 송수신 코일 정렬 상태 판단을 위한 소정 소정 변화 비율 임계치(ΔI/ΔV_Alignment_threshold)를 초과하는지 확인할 수 있다(S2605).
확인 결과, ΔI/ΔV_Alignment_threshold를 초과하면, 무선 전력 송신 장치는 송수신 코일 정렬 문제가 감지되었음을 지시하는 소정 알람 신호를 출력할 수 있다(S2606).
도 27은 본 발명의 일 실시예에 따른 이물질 검출 장치의 구조를 설명하기 위한 블록도이다.
도 27을 참조하면, 이물질 검출 장치(2700)는 통신부(2710), 센싱부(2720), 변화량 산출부(2730), 변화 비율 산출부(2740), 검출부(2750), 알람부(2760) 및 제어부(2770)를 포함하여 구성될 수 있다. 본 발명의 일 실시예에 따른 이물질 검출 장치(2700)는 무선 전력 송신 장치에 장착 또는 탑재될 수 있으며, 무선 전력 송신 장치에 구비되는 다른 구성 요소들과 상호 연동되어 동작될 수도 있다.
통신부(2710)는 무선 전력 수신 장치와의 통신을 수행할 수 있다. 여기서, 통신은 인밴드 통신이 사용될 수 있으나, 이에 한정되지는 않으며, 무선 전력 전송에 사용되는 동작 주파수와는 상이한 주파수를 사용하여 대역외 통신이 사용될 수도 있음을 주의해야 한다. 일 예로, 대역외 통신은 저전력 블루투스 통신과 같은 근거리 무선 통신을 포함할 수 있다.
일 예로, 통신부(2710)는 상기한 도 10에 정의된 패킷을 송신 또는(및) 수신할 수 있다.
센싱부(2720)는 인버터에 입력되는 전압 또는(및) 전류 또는(및) 전력의 세기를 측정할 수 있다. 또한, 센싱부(2710)는 LC 회로의 인덕터-즉, 송신 코일-에 흐르는 전류의 세기를 측정할 수도 있다.
변화량 산출부(2730)는 기준 인버터 입력 전압(Reference_V_rail) 대비 현재 인버터에 흐르는 전류(V_rail)의 변화량(ΔV)를 산출할 수 있다. 또한 변화량 산출부(2730)는 기준 송신 코일 전류(Reference_I_coil) 대비 현재 송신 코일에 흐르는 전류(I_coil)의 변화량(ΔI)를 산출할 수 있다. 여기서, ΔI는 (Measured_I_coil - Reference_I_coil)/Reference_I_coil로 산출되고, ΔV는 (Measured_V_rail - Reference_V_rail)/Reference_V_rail로 산출될 수 있다.
또한, 변화량 산출부(2730)는 일정 주기로 ΔV 및 ΔI를 산출할 수 있다.
일 예로, 기준 인버터 입력 전압(Reference_V_rail)과 기준 송신 코일 전류(Reference_I_coil)에 관한 정보는 무선 전력 송신 장치의 소정 기록 영역에 미리 저장되어 유지될 수 있다. 다른 일 예로, 기준 인버터 입력 전압(Reference_V_rail)과 기준 송신 코일 전류(Reference_I_coil)에 관한 정보는 협력 단계에서 FO 상태 패킷을 통해 무선 전력 수신 장치로부터 수신될 수 있으나, 이에 한정되지는 않으며, 식별 및 구성 단계에 정의된 다른 패킷을 통해 무선 전력 수신 장치로부터 수신될 수도 있다. .
변화 비율 산출부(2740)는 ΔI/ΔV를 산출할 수 있다. 다른 일 예로, 변화 비율 산출부(2740)는 ΔV/ΔI를 산출할 수도 있다.
검출부(2750)는 ΔI/ΔV를 이물질 존재 여부 판단을 위해 미리 정의된 변화 비율 임계치(ΔI/ΔV_FO_threshold)와 비교하여 충전 영역에 이물질이 존재하는지 판단할 수 있다. 또한, 검출부(2750)는 ΔI/ΔV를 송수신 코일이 정상적으로 정렬되었는지를 판단하기 위한 소정 변화 비율 임계치(ΔI/ΔV_Alignment_threshold)와 비교하여 정렬 문제가 발생되었는지 여부를 판단할 수도 있다.
실시예에 따라, 검출부(2750)는 ΔI 또는(및) ΔV를 이물질 존재 여부 판단 및 송수신 코일 정렬 여부 판단을 위한 소정 임계치(들)과 비교하여 이물질의 존재 여부 및 송수신 코일 정렬 여부를 판단할 수도 있다.
알람부(2760)는 검출부(2750)의 판단 결과에 따라, 충전 영역에 이물질이 감지되었음을 지시하는 소정 알람 신호를 출력할 수 있다. 또한, 알람부(2760)는 검출부(2750)의 판단 결과에 따라, 송수신 코일간의 정렬 문제가 감지된 경우, 정렬 문제가 발생되었음을 지시하는 소정 알람 신호를 출력할 수도 있다.
제어부(2770)는 이물질 검출 장치(2700)의 전체적인 동작을 제어할 수 있다.
도 28는 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 방법을 설명하기 위한 순서도이다.
도 28를 참조하면, 무선 전력 송신 장치는 소정 주기로 인버터 입력 전압을 측정할 수 있다(S2801). 이하 설명의 편의를 위해 일정 주기로 측정되는 인버터 입력 전압을 Measured_V_rail이라 명하기로 한다.
무선 전력 송신 장치는 미리 저장된 기준 인버터 입력 전압(Reference_V_rail)과 Measured_V_rail을 이용하여 인버터 입력 전압 변화율(ΔV)을 산출할 수 있다(S2802). 여기서, 인버터 입력 전압 변화율은 (Measured_V_rail - Reference_V_rail)/Reference_V_rail로 계산될 수 있다.
무선 전력 송신 장치는 인버터 입력 전압 변화률((ΔV)이 이물질 존재 여부 판단을 위한 소정 인버터 입력 전압 변화률 임계치(ΔV_FO_threshold)를 초과하는지 확인할 수 있다(S2803).
확인 결과, ΔV_FO_threshold를 초과하면, 무선 전력 송신 장치는 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계로 진입할 수 있다(S2804).
상기 2803 단계의 확인 결과, 초과하지 않으면, 무선 전력 송신 장치는 상기한 2801 단계로 회귀할 수 있다.
도 29는 본 발명의 다른 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 방법을 설명하기 위한 순서도이다.
도 29를 참조하면, 무선 전력 송신 장치는 소정 주기로 송신 코일 전류를 측정할 수 있다(S2901). 이하 설명의 편의를 위해 일정 주기로 측정되는 송신 코일 전류를 Measured_I_coil이라 명하기로 한다.
무선 전력 송신 장치는 미리 저장된 기준 송신 코일 전류 (Reference_I_coil)과 Measured_I_coil을 이용하여 송신 코일 전류 변화율(ΔI)를 산출할 수 있다(S2902). 여기서, 송신 코일 전류 변화율은 (Measured_I_coil - Reference_I_coil)/Reference_I_coil로 계산될 수 있다.
무선 전력 송신 장치는 송신 코일 전류 변화율(ΔI)이 이물질 존재 여부 판단을 위한 소정 송신 코일 전류 변화율 임계치(ΔI_FO_threshold)를 초과하는지 확인할 수 있다(S2903).
확인 결과, ΔI_FO_threshold를 초과하면, 무선 전력 송신 장치는 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계로 진입할 수 있다(S2904).
상기 2903 단계의 확인 결과, ΔI_FO_threshold를 초과하지 않으면, 무선 전력 송신 장치는 상기한 2901 단계를 수행할 수 있다.
도 30은 본 발명의 또 다른 일 실시예에 따른 무선 전력 송신 장치에서의 이물질 검출 방법을 설명하기 위한 순서도이다.
도 30을 참조하면, 무선 전력 송신 장치는 소정 주기로 송신 코일 전류 및 인버터 입력 전압을 측정할 수 있다(S3001). 이하 설명의 편의를 위해 일정 주기로 측정되는 송신 코일 전류와 인버터 입력 전압을 각각 Measured_I_coil과 Measured_V_rail이라 명하기로 한다.
무선 전력 송신 장치는 미리 저장된 기준 송신 코일 전류 (Reference_I_coil) 및 기준 인버터 입력 전압(Reference_V_rail)과 Measured_I_coil 및 Measured_V_rail을 이용하여 변화 비율(ΔI/ ΔV) 산출할 수 있다(S3002). 여기서, ΔI는 (Measured_I_coil - Reference_I_coil)/Reference_I_coil로 계산되고, ΔV는 (Measured_V_rail - Reference_V_rail)/Reference_V_rail로 계산될 수 있다.
무선 전력 송신 장치는 변화 비율(ΔI/ΔV)이 이물질 존재 여부 판단을 위한 소정 변화 비율 임계치(ΔI/ΔV_FO_threshold)를 초과하는지 확인할 수 있다(S3003).
확인 결과, ΔI/ΔV_FO_threshold를 초과하면, 무선 전력 송신 장치는 이물질이 감지되었음을 알리는 소정 알람 신호를 출력한 후 선택 단계로 진입할 수 있다(S3004).
상기 3003 단계의 확인 결과, ΔI/ΔV_FO_threshold를 초과하지 않으면, 무선 전력 송신 장치는 상기한 3001 단계를 수행할 수 있다.
상술한 실시예에 따른 방법들은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상술한 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 충전 분야에 이용될 수 있으며, 특히, 무선 충전 시스템상에서 이물질을 검출하기 위한 장치 및 시스템에 적용될 수 있다.

Claims (11)

  1. 무선 전력 송신기에서의 이물질 검출 방법에 있어서,
    소정 주기로 인버터 입력 전압 및 송신 코일 전류를 측정하는 단계;
    기준 인버터 입력 전압 및 기준 송신 코일 전류와 상기 측정된 인버터 입력 전압 및 송신 코일 전류를 이용하여 인버터 입력 전압 변화율 및 송신 코일 전류 변화율을 산출하는 단계;
    상기 송신 코일 전류 변화율과 인버터 입력 전압 변화율을 이용하여 변화 비율을 산출하는 단계; 및
    상기 변화 비율의 소정 제3 임계치 초과 여부를 비교하여 충전 영역에 이물질이 존재하는지 판단하는 단계
    를 포함하는, 이물질 검출 방법.
  2. 제1항에 있어서,
    협력 단계에서 상기 기준 인버터 입력 전압에 대한 정보 및 상기 기준 송신 코일 전류에 대한 정보가 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신하는 단계를 더 포함하고, 상기 FOD 상태 패킷은 2비트 길이의 모드 필드를 포함하되, 상기 모드 필드의 값은 이진수 “00”이 아닌 값으로 설정되는, 이물질 검출 방법.
  3. 제1항에 있어서,
    상기 판단 결과, 이물질이 존재하면, 이물질이 감지되었음을 알리는 소정 알람 신호를 출력하는 단계를 더 포함하고, 상기 알람 신호 출력 후 선택 단계로 진입하는, 이물질 검출 방법.
  4. 제1항에 있어서,
    상기 변화 비율이 상기 제3 임계치보다 작거나 같으면, 상기 변화 비율을 소정 제4 임계치와 비교하여 송수신 코일 정렬 여부를 판단하는 단계
    를 더 포함하고, 상기 제4 임계치는 상기 제3 임계치보다 크고, 상기 변화 비율이 제4 임계치를 초과하면, 송수신 코일이 정렬되지 않은 것으로 판단하는, 이물질 검출 방법.
  5. 제1항에 있어서,
    상기 인버터 입력 전압 변화율은 상기 측정된 인버터 입력 전압과 상기 기준 인버터 입력 전압과의 차이 값을 상기 기준 인버터 입력 전압으로 나누어 산출되고, 상기 송신 코일 전류 변화율은 상기 측정된 송신 코일 전류와 상기 기준 송신 코일 전류와의 차이 값을 상기 기준 송신 코일 전류로 나누어 산출되는, 이물질 검출 방법.
  6. 무선 전력 송신기에서의 이물질 검출 방법에 있어서,
    소정 주기로 인버터 입력 전압을 측정하는 단계;
    기준 인버터 입력 전압과 상기 측정된 인버터 입력 전압을 이용하여 인버터 입력 전압 변화율을 산출하는 단계; 및
    상기 인버터 입력 전압 변화율의 소정 제1 임계치 초과 여부를 확인하여 충전 영역에 이물질이 존재하는지 판단하는 단계
    를 포함하는, 이물질 검출 방법.
  7. 무선 전력 송신기에서의 이물질 검출 방법에 있어서,
    소정 주기로 송신 코일 전류를 측정하는 단계;
    기준 송신 코일 전류와 상기 측정된 송신 코일 전류를 이용하여 송신 코일 전류 변화율을 산출하는 단계; 및
    상기 송신 코일 전류 변화율의 소정 제2 임계치 초과 여부를 확인하여 충전 영역에 이물질이 존재하는지 판단하는 단계
    를 포함하는, 이물질 검출 방법.
  8. 이물질 검출 장치에 있어서,
    소정 주기로 인버터 입력 전압 및 송신 코일 전류를 측정하는 센싱부;
    기준 인버터 입력 전압 및 기준 송신 코일 전류와 상기 측정된 인버터 입력 전압 및 송신 코일 전류를 이용하여 인버터 입력 전압 변화율 및 송신 코일 전류 변화율을 산출하는 변화량 산출부;
    상기 송신 코일 전류 변화율과 인버터 입력 전압 변화율을 이용하여 변화 비율을 산출하는 변화 비율 산출부; 및
    상기 변화 비율의 소정 제3 임계치 초과 여부를 비교하여 충전 영역에 이물질이 존재하는지 판단하는 검출부
    를 포함하는, 이물질 검출 장치.
  9. 제8항에 있어서,
    협력 단계에서 상기 기준 인버터 입력 전압에 대한 정보 및 상기 기준 송신 코일 전류에 대한 정보가 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신하는 통신부를 더 포함하고, 상기 FOD 상태 패킷은 2비트 길이의 모드 필드를 포함하되, 상기 모드 필드의 값이 이진수 “00”이 아닌 값으로 설정되어 수신되는 이물질 검출 장치.
  10. 제8항에 있어서,
    상기 검출부가
    상기 변화 비율이 상기 제3 임계치보다 작거나 같으면, 상기 변화 비율을 소정 제4 임계치와 비교하여 송수신 코일 정렬 여부를 판단하고, 상기 변화 비율이 제4 임계치를 초과하면, 송수신 코일이 정렬되지 않은 것으로 판단하되, 상기 제4 임계치는 상기 제3 임계치보다 크게 설정되는, 이물질 검출 장치.
  11. 제8항에 있어서,
    상기 인버터 입력 전압 변화율은 상기 측정된 인버터 입력 전압과 상기 기준 인버터 입력 전압과의 차이 값을 상기 기준 인버터 입력 전압으로 나누어 산출되고, 상기 송신 코일 전류 변화율은 상기 측정된 송신 코일 전류와 상기 기준 송신 코일 전류와의 차이 값을 상기 기준 송신 코일 전류로 나누어 산출되는, 이물질 검출 장치.
PCT/KR2017/004318 2016-06-29 2017-04-24 이물질 검출 방법 및 그를 위한 장치 및 시스템 WO2018004120A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0081387 2016-06-29
KR1020160081387A KR20180002206A (ko) 2016-06-29 2016-06-29 이물질 검출 방법 및 그를 위한 장치 및 시스템

Publications (1)

Publication Number Publication Date
WO2018004120A1 true WO2018004120A1 (ko) 2018-01-04

Family

ID=60787197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004318 WO2018004120A1 (ko) 2016-06-29 2017-04-24 이물질 검출 방법 및 그를 위한 장치 및 시스템

Country Status (2)

Country Link
KR (1) KR20180002206A (ko)
WO (1) WO2018004120A1 (ko)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110843561A (zh) * 2019-12-18 2020-02-28 吉林大学 一种磁谐振式电动汽车无线充电集成装置及其控制方法
CN111989238A (zh) * 2018-04-19 2020-11-24 通用电气公司 用于检测无线电力传输系统中的异物的装置和方法
CN112701808A (zh) * 2020-12-21 2021-04-23 歌尔股份有限公司 异物检测电路、无线充电系统及异物检测方法
TWI738029B (zh) * 2018-07-19 2021-09-01 新加坡商聯發科技(新加坡)私人有限公司 無線功率傳輸系統之異物偵測技術
US11277035B1 (en) 2021-02-01 2022-03-15 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11277034B1 (en) 2021-02-01 2022-03-15 Nucurrent, Inc. Systems and methods for receiver beaconing in wireless power systems
US11277031B1 (en) 2021-02-01 2022-03-15 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11303164B2 (en) 2020-07-24 2022-04-12 Nucurrent, Inc. Low cost communications demodulation for wireless power transmission system
US11303165B2 (en) 2020-07-24 2022-04-12 Nucurrent, Inc. Low cost communications demodulation for wireless power receiver system
US11374621B2 (en) 2020-01-06 2022-06-28 Nucurrent, Inc. Systems and methods for pulse width encoded data communications
US11398752B2 (en) * 2020-06-04 2022-07-26 Aira, Inc. Zero-crossing slotted foreign object detection
US20220247238A1 (en) * 2021-02-01 2022-08-04 Nucurrent, Inc. Automatic Gain Control For Communications Demodulation In Wireless Power Transmitters
US11431205B2 (en) 2021-02-01 2022-08-30 Nucurrent, Inc. Systems and methods for receiver beaconing in wireless power systems
US11431204B2 (en) 2021-02-01 2022-08-30 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transfer systems
US11569694B2 (en) 2021-02-01 2023-01-31 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power receivers
US11984736B2 (en) 2018-07-19 2024-05-14 Mediatek Singapore Pte. Ltd. Detecting foreign objects in wireless power transfer systems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530347B1 (ko) 2018-01-08 2023-05-08 삼성전자주식회사 반도체 장치 및 반도체 시스템
KR20190090918A (ko) * 2018-01-26 2019-08-05 엘지이노텍 주식회사 적응적 무선 전력 송신 방법 및 장치
KR102509314B1 (ko) * 2018-05-16 2023-03-14 엘지이노텍 주식회사 무선 전력 전송 제어 방법 및 장치
WO2020060140A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
KR102688106B1 (ko) 2019-07-31 2024-07-25 삼성전자주식회사 무선 전송 전력을 제어하는 방법 및 이를 구현한 전자 장치
WO2021201413A1 (ko) * 2020-04-01 2021-10-07 엘지전자 주식회사 무선전력 전송장치 및 무선전력 전송방법
KR20230025044A (ko) * 2021-08-13 2023-02-21 삼성전자주식회사 이물질 감지 방법 및 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077448A (ko) * 2010-12-30 2012-07-10 전자부품연구원 이물질을 감지할 수 있는 자기공진유도 방식을 이용한 무선 전력공급 장치
US20130181724A1 (en) * 2012-01-17 2013-07-18 Triune Ip, Llc Method and system of wireless power transfer foreign object detection
KR20150059069A (ko) * 2013-11-21 2015-05-29 엘지전자 주식회사 무선 전력 전송 장치 및 그 제어 방법
WO2016072709A1 (ko) * 2014-11-03 2016-05-12 주식회사 한림포스텍 무선 전력 전송 및 충전 시스템
WO2016080751A1 (ko) * 2014-11-21 2016-05-26 엘지이노텍 주식회사 무선 전력 송신 장치 및 그의 이물질 검출 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077448A (ko) * 2010-12-30 2012-07-10 전자부품연구원 이물질을 감지할 수 있는 자기공진유도 방식을 이용한 무선 전력공급 장치
US20130181724A1 (en) * 2012-01-17 2013-07-18 Triune Ip, Llc Method and system of wireless power transfer foreign object detection
KR20150059069A (ko) * 2013-11-21 2015-05-29 엘지전자 주식회사 무선 전력 전송 장치 및 그 제어 방법
WO2016072709A1 (ko) * 2014-11-03 2016-05-12 주식회사 한림포스텍 무선 전력 전송 및 충전 시스템
WO2016080751A1 (ko) * 2014-11-21 2016-05-26 엘지이노텍 주식회사 무선 전력 송신 장치 및 그의 이물질 검출 방법

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989238A (zh) * 2018-04-19 2020-11-24 通用电气公司 用于检测无线电力传输系统中的异物的装置和方法
US11496000B2 (en) 2018-07-19 2022-11-08 Mediatek Singapore Pte. Ltd. Detecting foreign objects in wireless power transfer systems
US11984736B2 (en) 2018-07-19 2024-05-14 Mediatek Singapore Pte. Ltd. Detecting foreign objects in wireless power transfer systems
TWI738029B (zh) * 2018-07-19 2021-09-01 新加坡商聯發科技(新加坡)私人有限公司 無線功率傳輸系統之異物偵測技術
CN110843561B (zh) * 2019-12-18 2023-07-25 吉林大学 一种磁谐振式电动汽车无线充电集成装置及其控制方法
CN110843561A (zh) * 2019-12-18 2020-02-28 吉林大学 一种磁谐振式电动汽车无线充电集成装置及其控制方法
US11863249B2 (en) 2020-01-06 2024-01-02 Nucurrent, Inc. Systems and methods for pulse width encoded data communications
US11374621B2 (en) 2020-01-06 2022-06-28 Nucurrent, Inc. Systems and methods for pulse width encoded data communications
KR102593546B1 (ko) 2020-06-04 2023-10-23 아이라, 인크. 제로 크로싱 슬롯 이물질 검출
KR20230035568A (ko) * 2020-06-04 2023-03-14 아이라, 인크. 제로 크로싱 슬롯 이물질 검출
US11398752B2 (en) * 2020-06-04 2022-07-26 Aira, Inc. Zero-crossing slotted foreign object detection
US11303164B2 (en) 2020-07-24 2022-04-12 Nucurrent, Inc. Low cost communications demodulation for wireless power transmission system
US11862994B2 (en) 2020-07-24 2024-01-02 Nucurrent, Inc. Low cost communications demodulation for wireless power transmission system
US11791669B2 (en) 2020-07-24 2023-10-17 Nucurrent, Inc. Low cost communications demodulation for wireless power receiver system
US11303165B2 (en) 2020-07-24 2022-04-12 Nucurrent, Inc. Low cost communications demodulation for wireless power receiver system
CN112701808B (zh) * 2020-12-21 2023-06-09 歌尔股份有限公司 异物检测电路、无线充电系统及异物检测方法
CN112701808A (zh) * 2020-12-21 2021-04-23 歌尔股份有限公司 异物检测电路、无线充电系统及异物检测方法
US11277031B1 (en) 2021-02-01 2022-03-15 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11682926B2 (en) 2021-02-01 2023-06-20 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11682928B2 (en) 2021-02-01 2023-06-20 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11431205B2 (en) 2021-02-01 2022-08-30 Nucurrent, Inc. Systems and methods for receiver beaconing in wireless power systems
US11722011B2 (en) 2021-02-01 2023-08-08 Nucurrent, Inc. Systems and methods for receiver beaconing in wireless power systems
US11569694B2 (en) 2021-02-01 2023-01-31 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power receivers
US11277034B1 (en) 2021-02-01 2022-03-15 Nucurrent, Inc. Systems and methods for receiver beaconing in wireless power systems
US11811244B2 (en) * 2021-02-01 2023-11-07 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11848574B2 (en) 2021-02-01 2023-12-19 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transfer systems
US11848575B2 (en) 2021-02-01 2023-12-19 Nucurrent, Inc. Systems and methods for receiver beaconing in wireless power systems
US20220247238A1 (en) * 2021-02-01 2022-08-04 Nucurrent, Inc. Automatic Gain Control For Communications Demodulation In Wireless Power Transmitters
US11277035B1 (en) 2021-02-01 2022-03-15 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transmitters
US11431204B2 (en) 2021-02-01 2022-08-30 Nucurrent, Inc. Automatic gain control for communications demodulation in wireless power transfer systems

Also Published As

Publication number Publication date
KR20180002206A (ko) 2018-01-08

Similar Documents

Publication Publication Date Title
WO2018004120A1 (ko) 이물질 검출 방법 및 그를 위한 장치 및 시스템
WO2018105915A1 (ko) 이물질 검출 방법 및 그를 위한 장치
WO2018004117A1 (ko) 무선 충전을 위한 무선 전력 제어 방법 및 장치
WO2017217663A1 (ko) 이물질 검출 방법 및 그를 위한 장치 및 시스템
WO2018124669A1 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2018106072A1 (ko) 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
WO2016182208A1 (ko) 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치
WO2017209381A1 (ko) 무선 전력 송신 방법 및 그를 위한 장치
WO2017003117A1 (ko) 다중 모드 무선 전력 송신 방법 및 그를 위한 장치
WO2018093099A1 (ko) 무선 전력 전달 방법 및 이를 위한 장치
WO2017217662A1 (ko) 이물질 검출 방법 및 그를 위한 장치 및 시스템
WO2017030354A1 (ko) 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛
WO2017111369A1 (ko) 다중 모드를 지원하는 무선 전력 송신기
WO2018080049A1 (ko) 무선 전력 송수신 장치의 무선 충전 코일 및 그의 제조 방법.
WO2018093041A1 (ko) 멀티 모드 안테나 및 그것을 이용한 무선 전력 수신 장치
WO2017018668A1 (ko) 무선 전력 수신기 식별 방법 및 장치
WO2018008841A1 (ko) 무선 충전을 위한 무선 전력 제어 방법 및 장치
WO2018021665A1 (ko) 무선 전력 수신기의 위치 확인 방법 및 장치
WO2016080594A1 (ko) 무선 전력 전송장치, 무선 전력 수신장치 및 무선 충전 시스템
WO2019031748A1 (ko) 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
WO2017034134A1 (ko) 무선 충전 배터리 및 무선 충전 제어 방법
WO2017142234A1 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2018004116A1 (ko) 무선 충전 시스템에서의 무선 전력 송신 방법 및 장치
WO2018038531A1 (ko) 이물질 검출 방법 및 그를 위한 장치 및 시스템
WO2017179826A1 (ko) Fo 검출 방법 및 그를 위한 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820397

Country of ref document: EP

Kind code of ref document: A1