WO2018004088A1 - Vacuum degree measurement sensor using graphene nanoribbon - Google Patents

Vacuum degree measurement sensor using graphene nanoribbon Download PDF

Info

Publication number
WO2018004088A1
WO2018004088A1 PCT/KR2016/014801 KR2016014801W WO2018004088A1 WO 2018004088 A1 WO2018004088 A1 WO 2018004088A1 KR 2016014801 W KR2016014801 W KR 2016014801W WO 2018004088 A1 WO2018004088 A1 WO 2018004088A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
graphene
graphene nanoribbon
torr
nanoribbon
Prior art date
Application number
PCT/KR2016/014801
Other languages
French (fr)
Korean (ko)
Inventor
안성일
조황덕
노태화
김동규
이창희
손재홍
Original Assignee
신라대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신라대학교 산학협력단 filed Critical 신라대학교 산학협력단
Publication of WO2018004088A1 publication Critical patent/WO2018004088A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/10Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured
    • G01L21/12Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured measuring changes in electric resistance of measuring members, e.g. of filaments; Vacuum gauges of the Pirani type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/06Graphene nanoribbons

Definitions

  • the present invention relates to a vacuum measuring sensor, and more particularly, to a vacuum measuring sensor using a graphene nanoribbon that detects a vacuum pressure by using a phenomenon in which the bending of the graphene nanoribbons and the resistance value change according to the vacuum degree. It is about.
  • Gauges for measuring vacuum are classified into direct and indirect measuring gauges, and direct gauges are liquid-type barometers, McLeod gauges, Bourdon gauges, diaphragm gauges, and capacitive types, which are mainly used in low vacuum (1 to 10 torr at normal pressure).
  • Indirect measuring gauges use the thermal characteristics of the gas, including thermocouple gauges, pyrani gauges, and convection gauges.
  • thermocouple gauges pyrani gauges
  • convection gauges there are hot cathode ion gauges and the like using gauges of gas ions.
  • the resistance or current change value is very small depending on the degree of vacuum, so that it is difficult to measure precisely. If the precision is severe from 10% or more, there may be an error of 30% or more depending on the vacuum range. In addition, in order to detect minute resistance or change in current value, a complicated system configuration is often used, and a large system is often configured.
  • Graphite one of the most well-known structures of carbon, is a structure in which two-dimensional graphene sheets of plate-like carbon atoms are stacked in a hexagonal shape with only sp2 hybrids. Recently, one or more layers of graphene sheets have been peeled off from graphite, and the properties of the sheets have been investigated and found to have very high conductivity.
  • the mobility of the graphene sheet known to date is known to have a high value of about 20,000 to 50,000 cm 2 / Vs.
  • the graphene sheet has a certain space between the upper and lower layers during film formation.
  • an interlayer that is, a gap between carbons, and an empty space of one or two carbons exists between the graphene pieces and the pieces stacked.
  • the intermolecular attraction commonly called van der Waals forces, begins at about 2.5 times the diameter of carbon in the case of graphene, so the attraction between the layers of graphene is at work. At atmospheric pressure, however, the presence of air molecules between the graphene layers prevents deformation due to attraction. When under vacuum, most of the air molecules are released, which greatly increases the intermolecular attraction. In this case, attractive force is generated around the empty space and deformation of the graphene fragments in the thin film may occur.
  • Patent Document 1 Korean Registered Patent No. 10-1391158
  • Patent Document 2 Korean Patent Publication No. 10-2012-0111607
  • the technical problem of the present invention is to provide a vacuum measurement sensor using a graphene nanoribbons to detect the vacuum pressure by using the phenomenon that the bend of the graphene nanoribbons change according to the vacuum degree and the resistance value changes. have.
  • the object is to provide a vacuum measuring sensor that can increase the response speed.
  • Vacuum measurement sensor using the graphene nanoribbons includes a graphene nanoribbon thin film consisting of two or more graphene nanoribbons layer, the graphene nanoribbon layer of The resistance value can detect the degree of vacuum.
  • the resistance value may vary depending on the bending state of the graphene nanoribbon layer.
  • the graphene nanoribbon thin film may have an interlayer spacing (d002) of greater than 0.335 nm and less than 10 nm.
  • the bent state in the atmospheric pressure to high vacuum (10 -4 torr to 10 -7 torr) section may be caused by the amount of air and the intermolecular attraction between the graphene nanoribbon layer.
  • the amount of graphene nanoribbon interlayer air decreases as the degree of vacuum increases between atmospheric pressure and high vacuum (10 ⁇ 4 torr to 10 ⁇ 7 torr).
  • the degree of vacuum can be detected by detecting a resistance value that decreases as the attractive force acts on the entire layer.
  • the amount of air between the graphene nanoribbon layers decreases as the degree of vacuum increases in a range of atmospheric pressure to low vacuum (1 to 10 torr at normal pressure), thereby reducing the resistance value.
  • the resistance value that increases with the bending caused by the nano-ribbon attraction of the graphene nanoribbon layer By detecting the degree of vacuum can be detected.
  • the graphene nanoribbon thin film may be a film made of graphene nanoribbons or a composite film made of graphene nanoribbons and a polymer.
  • the composite film may include 100 parts by weight of the graphene nanoribbons and 1 to 100 parts by weight of the polymer.
  • Vacuum gauge using a graphene nanoribbon may include a heating means connected to one surface of the vacuum sensor and the vacuum sensor.
  • the degree of vacuum may be measured according to the temperature through the heating means.
  • the apparatus may further include a vacuum connection unit connected to a vacuum chamber provided with a vacuum, a signal conversion unit converting the measured resistance into a vacuum degree, and a display unit displaying measurement information.
  • the vacuum sensor may detect the vacuum pressure by using a phenomenon in which the bend of the graphene nanoribbon is changed and the resistance value is changed according to the vacuum degree.
  • the vacuum sensor according to the technical concept of the present invention is very large resistance value change depending on the bending state using a graphene nanoribbon with a short cross-sectional distance, thereby increasing the sensitivity of the sensor at the same time between the graphene nanoribbon layer Diffusion of trapped gas molecules occurs in a short distance, which can increase the response speed according to the degree of vacuum.
  • the vacuum gauge including the graphene nanoribbon thin film is simple and small in size, the electrical resistance value is large, it is possible to measure the precision vacuum degree.
  • FIG. 1 is a view showing the graphene surface bending in the normal pressure to high vacuum section of the vacuum sensor using a graphene nanoribbon according to an embodiment of the present invention.
  • Figure 2 is a graph showing the X-ray diffraction pattern of graphite, reduced graphene and graphene oxide.
  • Figure 3 is a vacuum-resistance graph measured in the normal pressure to low vacuum section at 30 °C using a vacuum measuring sensor using a graphene nanoribbon according to an embodiment of the present invention.
  • Figure 4 is a sheet resistance graph measured at 30 °C, 50 °C, 75 °C and 100 °C using a vacuum measuring sensor using a graphene nanoribbon according to an embodiment of the present invention.
  • FIG. 5 is a view showing a laminated structure of a vacuum gauge using a graphene nanoribbon according to an embodiment of the present invention.
  • FIG. 6 is a view showing the configuration of a vacuum gauge using a graphene nanoribbon according to an embodiment of the present invention.
  • Vacuum measurement sensor using a graphene nanoribbon according to the present invention includes a graphene nanoribbon thin film consisting of two or more graphene nanoribbon layer, it can detect the vacuum degree by the resistance value of the graphene nanoribbon layer, The resistance value may vary depending on the bending state of the graphene nanoribbon layer.
  • the graphene nanoribbons have high shape anisotropy due to increased length to width ratio.
  • the aromatic base of graphene nanoribbons is typically in the form of a strip having a width of less than 50 nm, and the aspect ratio (ie, length to width ratio) of graphene nanoribbons is at least 10. It may preferably have an aspect ratio of 10 to 1000. If the aspect ratio is 1000 or more, it is difficult to form a uniform thin film due to the high aspect ratio, and thus the sensitivity may be lower than that of the sensor including the graphene nanoribbons having an appropriate aspect ratio of 10 to 1000.
  • FIG. 1 is a view showing the graphene surface bending in the normal pressure to high vacuum section of the vacuum sensor using a graphene nanoribbon according to an embodiment of the present invention.
  • Graphene nanoribbons can reduce one side more than 100 times compared to the size of normal oxidized or reduced graphene, facilitating the diffusion of gas molecules trapped in layers under high vacuum, and the small channel of charge transfer involved in electrical conduction. If there is a sharp drop in conductivity can be produced a very sensitive sensor.
  • the graphene nanoribbon thin film may have an interlayer spacing (d002) calculated from X-ray diffraction measurements in a range larger than 0.335 nm and smaller than 10 nm.
  • Figure 2 is a graph showing the X-ray diffraction pattern of graphite, reduced graphene and graphene oxide.
  • the average interlayer spacing of graphene calculated from 002 diffraction lines measured by X-ray diffraction was measured by using an X-ray diffractometer (RINT3000, manufactured by Rigak Co., Ltd.), and the sample was placed in air (X-ray: CuK ⁇ rays, targets). It is the value measured in: Cu).
  • the graphene layer When the interlayer spacing of the (002) plane is included in the above range during X-ray diffraction measurement, the graphene layer is bent due to the amount of air and intermolecular attraction between the graphene layers by maintaining an appropriate interlayer spacing.
  • the degree of vacuum can be detected by detecting a resistance value that varies depending on the state of bending.
  • the calculated average interlayer distance is 0.3354 nm in the case of single crystal graphite, and the closer to this value, the more favorable graphite is considered. In this case, it has low resistance and low precision, so it does not have meaning as a vacuum measurement sensor.
  • the interlayer spacing of the conventional graphene oxide is 10 nm, and the vacuum is measured using the resistance value change while using a graphene thin film having an interlayer spacing (d002) of more than 0.335 nm and less than 10 nm. It is possible to manufacture a vacuum measuring sensor having a response speed.
  • the interlayer spacing of the graphene nanoribbons may be 0.35 to 0.85 nm.
  • the spacing of Van der Waals attraction force of 2.5 ⁇ or more is about 85 nm when calculated based on a 2.5 mm * 3.5 mm size plane, and the interlayer spacing of the graphene nanoribbons may be 0.35 to 0.85 nm.
  • FIG 3 is a sheet resistance graph measured in a high vacuum section from the atmospheric pressure at 30 °C using a vacuum sensor using a graphene nanoribbon according to an embodiment of the present invention.
  • the bending state may be generated by the amount of air between the graphene nanoribbon layers and the intermolecular attraction in the normal pressure to high vacuum (10 ⁇ 4 torr to 10 ⁇ 7 torr).
  • the low vacuum is 1 to 10 torr at normal pressure
  • the medium vacuum is 1 to 10 torr to 10 -4 torr
  • the high vacuum is 10 to 4 torr to 10 -7 torr.
  • Figure 4 is a sheet resistance graph measured at 30 °C, 50 °C, 75 °C and 100 °C using a vacuum measuring sensor using a graphene nanoribbon according to an embodiment of the present invention.
  • the degree of vacuum can be detected.
  • the degree of vacuum increases between atmospheric pressure and high vacuum (10 -4 torr to 10 -7 torr)
  • the distance between the graphene nanoribbons is reduced by the attractive force acting on the entire graphene nanoribbon thin film. Therefore, it was confirmed that the degree of vacuum can be detected by detecting the decreasing resistance value.
  • the degree of vacuum increase in the interval graphene nanoribbons interlayer air to decrease the resistance value, and the Medium vacuum (1 ⁇ 10torr 10 - 4 torr) to high vacuum (10 -4 torr to 10 -7 torr) the vacuum degree can be detected by detecting a resistance value that increases with the bending caused by the nano-ribbon attraction of the graphene nanoribbon layer .
  • the resistance value decreases due to the decrease of the amount of air between the graphene nanoribbons as the degree of vacuum increases in the range from normal pressure to low vacuum (1 ⁇ 10 torr at normal pressure).
  • the degree of vacuum increases in the range of 10 -4 torr) to high vacuum (10 -4 torr to 10 -7 torr)
  • the bending state of the reduced graphene layer is generated by the intermolecular attraction between the reduced graphene layers, and the reduced graphene It was confirmed that the degree of vacuum can be detected by detecting the resistance value increasing with the bending state of the layer.
  • the electrical resistance generated by the air layer disappears to have an inflection point of the resistance at 1 to 10 torr.
  • the inflection point of the resistance between 1 to 10 torr of vacuum degree it is necessary to distinguish between normal pressure, low vacuum and medium vacuum and high vacuum section, and the low pressure and high vacuum parts are switched to normal pressure. To vacuum in the high vacuum region can be measured.
  • the graphene nanoribbons thin film may be a film made of graphene nanoribbons or a composite film made of graphene nanoribbons and a polymer.
  • the polymer is a polymer that can be dissolved in an aqueous solution, it may be a vinyl-based polymer.
  • the vinyl polymer is a compound having a different chain of atoms or atoms (X) as a side chain on a hydrocarbon chain (-CH2CH-) as a main chain, and polyvinylchloride, polyvinylfluoride, and polyvinylacetate.
  • Polyvinylalcohol, polyacrylic acid, polyacrylamide, polyacrylonitrile, polystyrene, polyacrylates, and the like may be used.
  • Power (P) is a relationship proportional to the square of the current (I 2 ) and the resistance (R), when the polymer is included, the sensitivity can be increased by increasing the size of the resistance value in a certain range during device cleaning This has the advantage of reducing the amount of current consumed during measurement.
  • the composite membrane may include 100 parts by weight of the graphene nanoribbons and 1 to 100 parts by weight of the polymer in order to satisfy a sheet resistance of 100 ⁇ s / sq to 1 M ⁇ / sq.
  • the vacuum gauge using the graphene nanoribbons according to the present invention may include a heating means 130 connected to the vacuum degree measuring sensor 110 and one surface of the vacuum degree measuring sensor 110.
  • the heating means 130 removes the gas remaining in the middle portion of the graphene nanoribbon thin film layer is difficult to escape gas by heating the graphene nanoribbon thin film layer, in this case the residual gas between the middle portion and the edge of the graphene nanoribbon thin film layer It is possible to reduce the error of vacuum measurement by reducing the resistance difference, and to reduce the time for data stabilization to enable rapid vacuum measurement.
  • the degree of vacuum may be measured according to the temperature through the heating means 130. As shown in FIG. 4, in the medium vacuum (1-10 tor to 10 -4 torr) to the high vacuum (10 -4 torr to 10 -7 torr), the change in the resistance value tends to increase with increasing temperature, so that the higher the temperature, the more accurate measurement This is possible.
  • the vacuum gauge 100 may further include a vacuum connection unit 160, a signal conversion unit 170, and a display unit 180.
  • the vacuum connection unit 160 may be connected to a vacuum chamber provided with a vacuum, and the display unit 180 may display measurement information.
  • the signal converter 170 may convert the measured resistance into a vacuum degree.
  • Vacuum measuring sensor manufacturing method using a graphene nanoribbon includes a carbon nanotube providing step, graphene nanoribbon solution manufacturing step, graphene nanoribbon thin film forming step, reduction step.
  • the carbon nanotube providing step is a step of providing a plurality of carbon nanotubes
  • the graphene nanoribbon solution manufacturing step is to prepare a oxidized graphene nanoribbon solution by reacting the plurality of carbon nanotubes and an oxidant.
  • the graphene nanoribbons may be prepared by oxidizing carbon nanotubes, but may be prepared using other conventional graphene nanoribbons.
  • the graphene nanoribbon thin film forming step is a step of forming a graphene nanoribbon thin film by coating the graphene nanoribbon solution on the electrode layer capable of measuring resistance, the reduction step is vacuum heat treatment of the graphene nanoribbon thin film It is a step of reducing.
  • distilled water is diluted to an amount of 100 ml / 1 g of carbon, placed in a dialysis membrane, and dialyzed for one week using distilled water flowing. Then, the dialysis membrane is removed, the obtained solution is centrifuged to separate the residues, and a solution containing the graphene nanoribbons dispersed in the upper layer is obtained.
  • Ethyl alcohol is mixed at a ratio of 1: 1 by volume to the graphene nanoribbon-dispersed solution, followed by spin coating on a glass substrate to obtain a graphene nanoribbon film with an appropriate thickness. After drying for 1 hour at 100 °C, heat treatment for 1 hour in the temperature range of 200 °C ⁇ 250 °C after the vacuum heat treatment at 400 °C or more, vacuum degree 0.001 torr or less 1 hour or more to reduce the graphene nanoribbon film.
  • solvents such as dimethylformamide, ethylene glycol monomethyl ether and the like other than ethyl alcohol may be added and used.
  • a film using the solution can be obtained using any one of spin coating, inkjet printing, spray coating, dispenser method, and the like, and is not limited to the spin coating method.
  • FIG 3 shows the operation characteristics of the vacuum sensor using the graphene nanoribbon prepared according to the embodiment.
  • the data measured from the normal pressure to the range of 10 -7 torr shows that the degree of vacuum can be measured even at higher vacuum pressures.
  • a solution in which the polymer having a vinyl group is dissolved at 0.01 wt% to 3 wt% in an aqueous solution containing 0.01 wt% to 3 wt% or an organic solvent mixed with water is prepared.
  • the graphene nanoribbon dispersed solution and the polymer solution having a vinyl group are mixed by ratio so as to have a viscosity required by the coating method, thereby obtaining a final mixed solution.
  • the polymer content of the graphene nanoribbons is made by the ratio of graphene nanoribbons 1: polymer 1 to graphene nanoribbons 1: polymer 0.01 by weight.
  • the polymer is added, the magnitude of the resistance value increases and the sensitivity increases. In addition, the amount of current consumed during the measurement is reduced.
  • too many polymers are contained, a large amount of polymer residues are left between the final graphene layers, and a precise device is required to measure the change in resistance value.
  • Ethyl alcohol was mixed in a 1: 1 ratio of the graphene nanoribbon / polymer composite solution volume to the solution, followed by spin coating on a glass substrate to obtain a graphene oxide film having an appropriate thickness. After drying for 1 hour at 100 °C, 30 minutes heat treatment at 200 °C to 250 °C temperature section after 400 °C or more, vacuum heat treatment at a vacuum degree of 0.001 torr or less for 1 hour to reduce the graphene nanoribbon film.
  • solvents such as dimethylformamide, ethylene glycol monomethyl ether and the like other than ethyl alcohol may be added and used.
  • the film using the said solution can be obtained using one of methods, such as spin coating, inkjet printing, spray coating, and the dispenser method, and is not limited to a spin coating method.
  • the graphene nanoribbon solution or the graphene nanoribbon / polymer composite coating solution is coated on the patterned electrode layer by performing at least one pattern printing or spin coating, as shown in FIG. 5, and dried at 100 ° C. for 1 hour and then at 200 ° C. After heat treatment for 30 minutes in the temperature section of ⁇ 250 °C temperature is vacuum treated at least 400 °C, vacuum degree 0.001 torr or less for 1 hour to reduce the graphene nanoribbon film.
  • a glass plate cap or an alumina plate cap or a quartz plate cap may be put on the reduced film to avoid external contamination.
  • the material of the protective film 140 is not important, and can be used as long as the substrate can be protected from a general external scratch.
  • the line width of the electrode, the number of electrodes, the shape, etc. in the structure is not important, the structure of the device can be a vacuum pressure measuring device if the shape can simply measure the resistance.
  • a heating means 130 which may be heated between 100 ° C. and 250 ° C. under the sensor may be included as shown in FIG. 5.
  • the heating means 130 can be configured to measure the vacuum pressure according to the temperature up to 200 °C as well as room temperature.
  • the vacuum measurement sensor using graphene nanoribbons uses a graphene nanoribbon that has a shorter cross-sectional distance than graphene, and thus has a large change in resistance value due to a bent state.
  • the diffusion of gas molecules trapped in the gas can be produced in a short distance to increase the response speed according to the degree of vacuum.
  • heating means 140 protective film
  • signal conversion unit 180 display unit

Abstract

The present invention relates to a vacuum degree measurement sensor using a graphene nanoribbon, which comprises a thin graphene nanoribbon film configured by at least two graphene nanoribbon layers and senses the degree of a vacuum by using a resistance value of each of the graphene nanoribbon layers. A vacuum degree measurement sensor using a graphene nanoribbon according to the present invention uses a graphene nanoribbon and thus has a short cross-sectional distance and a resistance value that significantly changes according to a curved state thereof. Therefore, the vacuum degree measurement sensor has increased sensitivity and allows gas molecules trapped between graphene layers to be diffused in a short distance, so that the sensor can have an increased response speed according to the degree of a vacuum.

Description

그래핀 나노리본을 이용한 진공도 측정 센서Vacuum measurement sensor using graphene nanoribbons
본 발명은 진공도 측정 센서에 관한 것으로서, 더욱 상세하게는 진공도에 따라 그래핀 나노리본의 굴곡이 변화하고 저항값이 변화하는 현상을 이용하여 진공압력을 감지하는 그래핀 나노리본을 이용한 진공도 측정 센서에 관한 것이다.The present invention relates to a vacuum measuring sensor, and more particularly, to a vacuum measuring sensor using a graphene nanoribbon that detects a vacuum pressure by using a phenomenon in which the bending of the graphene nanoribbons and the resistance value change according to the vacuum degree. It is about.
진공을 측정하는 게이지는 직접 및 간접 측정 게이지로 분류되며, 직접 게이이지에는 주로 저진공(상압에서 1~10 torr)에서 사용되는 액주형 기압계, McLeod 게이지, Bourdon 게이지, 격막식 게이지, 축전 용량식 게이지 등이 있다. 간접 측정 게이지는 기체의 열 특성을 이용한 게이지로 열전쌍 게이지, 피라니 게이지, 컨벡션 게이지 등 열적인 대류 현상과 저항과의 관계를 이용한 게이지 등이 있다. 이 이외에 기체의 이온을 이용한 게이지로 열음극 이온 게이지 등이 있다.Gauges for measuring vacuum are classified into direct and indirect measuring gauges, and direct gauges are liquid-type barometers, McLeod gauges, Bourdon gauges, diaphragm gauges, and capacitive types, which are mainly used in low vacuum (1 to 10 torr at normal pressure). Gauges. Indirect measuring gauges use the thermal characteristics of the gas, including thermocouple gauges, pyrani gauges, and convection gauges. In addition, there are hot cathode ion gauges and the like using gauges of gas ions.
대체적으로 진공도에 따라서 저항 혹은 전류 변화 값이 매우 적어 정밀한 측정이 어려워 정밀도가 10% 이상에서 심한 경우 진공도 범위에 따라 30% 이상의 오차를 가질 수 있다. 또한, 미세한 저항 혹은 전류값 변화를 감지하기 위해서 복잡한 시스템 구성을 가지고 있는 경우가 대부분이며, 덩치가 큰 시스템으로 구성되는 예가 많다.In general, the resistance or current change value is very small depending on the degree of vacuum, so that it is difficult to measure precisely. If the precision is severe from 10% or more, there may be an error of 30% or more depending on the vacuum range. In addition, in order to detect minute resistance or change in current value, a complicated system configuration is often used, and a large system is often configured.
탄소의 구조 중 가장 잘 알려진 구조 중 한가지인 그래파이트(graphite)는 탄소 원자가 sp2 혼성만을 가지고 6각형 모양만으로 연결된 판상의 2차원 그래핀 시트(graphene sheet)가 적층되어 있는 구조이다. 최근 그래파이트로부터 한층 또는 수층의 그래핀 시트를 벗겨 내어, 상기 시트의 특성을 조사한 결과 매우 높은 전도 특성을 지닌다는 것이 알려졌다. 현재까지 알려진 상기 그래핀 시트의 이동도는 약 20,000 내지 50,000 cm2/Vs의 높은 값을 가진다고 알려져 있다.Graphite, one of the most well-known structures of carbon, is a structure in which two-dimensional graphene sheets of plate-like carbon atoms are stacked in a hexagonal shape with only sp2 hybrids. Recently, one or more layers of graphene sheets have been peeled off from graphite, and the properties of the sheets have been investigated and found to have very high conductivity. The mobility of the graphene sheet known to date is known to have a high value of about 20,000 to 50,000 cm 2 / Vs.
그래핀 시트는 막 형성 시 상하 층간에 어느 정도 공간이 존재하게 된다. 불완전 환원된 그래핀이 층간에 존재할 경우 층간, 즉 탄소 간 간격이 존재하며, 그래핀 조각과 조각이 적층된 사이에 탄소 한 두 개 크기의 빈 공간이 존재하게 된다.The graphene sheet has a certain space between the upper and lower layers during film formation. When incompletely reduced graphene is present between layers, there is an interlayer, that is, a gap between carbons, and an empty space of one or two carbons exists between the graphene pieces and the pieces stacked.
통상적으로 반데르발스 힘이라 불리는 분자간 인력은 그래핀의 경우 탄소 지름의 2.5배 사이에서 시작되기 때문에 그래핀 층간에는 인력이 작용하고 있다. 그러나 상압에서는 그래핀 층간에 공기 분자가 존재하여 인력에 의한 변형이 일어나지 않는다. 진공 하에 있을 경우 공기 분자가 대부분 빠져 나가게 되어 분자 간 인력이 크게 작용한다. 이 경우 빈 공간을 중심으로 인력이 크게 발생하게 되고 박막 내부의 그래핀 조각들의 변형이 발생할 수 있다.The intermolecular attraction, commonly called van der Waals forces, begins at about 2.5 times the diameter of carbon in the case of graphene, so the attraction between the layers of graphene is at work. At atmospheric pressure, however, the presence of air molecules between the graphene layers prevents deformation due to attraction. When under vacuum, most of the air molecules are released, which greatly increases the intermolecular attraction. In this case, attractive force is generated around the empty space and deformation of the graphene fragments in the thin film may occur.
전도도는 전자의 이동도가 클 경우 커지게 되므로, 굴곡이 있을 경우 전자의 이동도가 방해를 받아 전기전도도가 크게 감소하거나 저항값이 증가하는 현상이 발생한다. 이를 이용하여 진공 센서 혹은 진공 게이지에 적용할 경우 저항값 변화만으로 매우 정밀한 진공압을 측정할 수 있다. 그러나 고진공으로 갈수록 그래핀 층간에 갇혀 있는 분자의 확산이 느려지고 변화 값이 적어져 센서의 민감도가 떨어지는 현상이 발생하는 문제점이 있다.Since conductivity becomes large when the mobility of electrons is large, the mobility of the electrons is disturbed when there is a bend, so that the conductivity is greatly reduced or the resistance value increases. When applied to a vacuum sensor or a vacuum gauge, it is possible to measure a very precise vacuum pressure only by changing the resistance value. However, the higher the vacuum, the slower the diffusion of molecules trapped in the graphene layer and the smaller the change value, so there is a problem that the sensitivity of the sensor is reduced.
따라서 전기 저항 값의 변화가 커서 정밀 진공도 측정이 가능한 동시에 센서의 민감도가 우수한 진공도 측정 센서 및 진공게이지가 요구된다.Therefore, a large change in the electric resistance value is required to measure the precision vacuum, and at the same time, there is a need for a vacuum sensor and a vacuum gauge excellent in the sensitivity of the sensor.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 1. 한국 등록특허 제10-1391158호(Patent Document 1) 1. Korean Registered Patent No. 10-1391158
(특허문헌 2) 2. 한국 공개특허 제10-2012-0111607호(Patent Document 2) 2. Korean Patent Publication No. 10-2012-0111607
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는, 진공도에 따라 그래핀 나노리본의 굴곡이 변화하고 저항값이 변화하는 현상을 이용하여 진공압력을 감지하는 그래핀 나노리본을 이용한 진공도 측정 센서를 제공하는데 있다.The technical problem of the present invention is to provide a vacuum measurement sensor using a graphene nanoribbons to detect the vacuum pressure by using the phenomenon that the bend of the graphene nanoribbons change according to the vacuum degree and the resistance value changes. have.
특히, 단면 거리가 짧은 그래핀 나노리본을 사용하여 굴곡 상태에 따른 저항값 변화가 크고, 이에 따라 센서의 민감도가 증가하는 동시에 그래핀 층간에 갇혀있는 가스 분자의 확산이 짧은 거리에서 일어나 진공도에 따른 응답속도를 높일 수 있는 진공도 측정 센서를 제공하는 데 그 목적이 있다.In particular, using graphene nanoribbons with a short cross-sectional distance, the resistance value is large due to the bending state. Accordingly, the sensitivity of the sensor increases, and the diffusion of gas molecules trapped between the graphene layers occurs at a short distance. The object is to provide a vacuum measuring sensor that can increase the response speed.
그러나 이러한 과제는 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.However, these problems are exemplary, and the technical idea of the present invention is not limited thereto.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 그래핀 나노리본을 이용한 진공도 측정 센서는 2층 이상의 그래핀 나노리본 층으로 이루어진 그래핀 나노리본 박막을 포함하여, 상기 그래핀 나노리본 층의 저항값으로 진공도를 감지할 수 있다.Vacuum measurement sensor using the graphene nanoribbons according to the technical idea of the present invention for achieving the technical problem includes a graphene nanoribbon thin film consisting of two or more graphene nanoribbons layer, the graphene nanoribbon layer of The resistance value can detect the degree of vacuum.
본 발명의 일부 실시예들에 있어서, 상기 저항값은 그래핀 나노리본 층의 굴곡상태에 따라 변할 수 있다.In some embodiments of the present invention, the resistance value may vary depending on the bending state of the graphene nanoribbon layer.
본 발명의 일부 실시예들에 있어서, 상기 그래핀 나노리본 박막은 층간간격(interlayer spacing, d002)이 0.335nm 보다 크고 10nm 보다 작은 범위에 있을 수 있다.In some embodiments of the present invention, the graphene nanoribbon thin film may have an interlayer spacing (d002) of greater than 0.335 nm and less than 10 nm.
본 발명의 일부 실시예들에 있어서, 상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 상기 굴곡 상태는 상기 그래핀 나노리본 층간의 공기의 양 및 분자간 인력에 의해 발생할 수 있다.In some embodiments of the present invention, the bent state in the atmospheric pressure to high vacuum (10 -4 torr to 10 -7 torr) section may be caused by the amount of air and the intermolecular attraction between the graphene nanoribbon layer.
본 발명의 일부 실시예들에 있어서, 45℃ 미만의 저온에서는 상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하고 나노그래핀 층 전체에 작용하는 인력이 증가함에 따라 감소하는 저항값을 검출함으로써 진공도를 감지할 수 있다.In some embodiments of the present invention, at low temperatures below 45 ° C., the amount of graphene nanoribbon interlayer air decreases as the degree of vacuum increases between atmospheric pressure and high vacuum (10 −4 torr to 10 −7 torr). The degree of vacuum can be detected by detecting a resistance value that decreases as the attractive force acts on the entire layer.
본 발명의 일부 실시예들에 있어서, 45℃ 이상의 고온에서는 상압 내지 저진공(상압에서 1~10 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하여 저항값이 감소하고, 중진공(1~10torr 부터 10-4 torr) 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 상기 그래핀 나노리본층의 나노리본 조각간 인력에 의해 발생하는 굴곡에 따라 증가하는 저항값을 검출함으로써 진공도를 감지할 수 있다.In some embodiments of the present invention, at a high temperature of 45 ° C. or higher, the amount of air between the graphene nanoribbon layers decreases as the degree of vacuum increases in a range of atmospheric pressure to low vacuum (1 to 10 torr at normal pressure), thereby reducing the resistance value. In the medium vacuum (1 ~ 10torr to 10 -4 torr) to high vacuum (10 -4 torr to 10 -7 torr) the resistance value that increases with the bending caused by the nano-ribbon attraction of the graphene nanoribbon layer By detecting the degree of vacuum can be detected.
본 발명의 일부 실시예들에 있어서, 상기 그래핀 나노리본 박막은 그래핀 나노리본으로 이루어지는 막 또는 그래핀 나노리본 및 고분자로 이루어진 복합막일 수 있다.In some embodiments of the present invention, the graphene nanoribbon thin film may be a film made of graphene nanoribbons or a composite film made of graphene nanoribbons and a polymer.
본 발명의 일부 실시예들에 있어서, 상기 복합막은 상기 그래핀 나노리본 100 중량부와, 상기 고분자 1 내지 100 중량부를 포함할 수 있다.In some embodiments of the present invention, the composite film may include 100 parts by weight of the graphene nanoribbons and 1 to 100 parts by weight of the polymer.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 그래핀 나노리본을 이용한 진공게이지는 상기 진공도 측정 센서와 상기 진공도 측정 센서의 일 표면에 연결되는 가열 수단을 포함할 수 있다.Vacuum gauge using a graphene nanoribbon according to the technical idea of the present invention for achieving the technical problem may include a heating means connected to one surface of the vacuum sensor and the vacuum sensor.
본 발명의 일부 실시예들에 있어서, 상기 가열 수단을 통해 온도에 따라 진공도를 측정할 수 있다.In some embodiments of the present invention, the degree of vacuum may be measured according to the temperature through the heating means.
본 발명의 일부 실시예들에 있어서, 진공이 제공되는 진공 챔버와 연결되는 진공연결부, 측정된 저항을 진공도로 변환하는 신호변환부 및 측정 정보를 표시하는 표시부를 더 포함할 수 있다.In some embodiments of the present disclosure, the apparatus may further include a vacuum connection unit connected to a vacuum chamber provided with a vacuum, a signal conversion unit converting the measured resistance into a vacuum degree, and a display unit displaying measurement information.
본 발명의 기술적 사상에 따른 진공도 측정 센서는 진공도에 따라 그래핀 나노리본의 굴곡이 변화하고 저항값이 변화하는 현상을 이용하여 진공압력을 감지할 수 있다.According to the technical spirit of the present invention, the vacuum sensor may detect the vacuum pressure by using a phenomenon in which the bend of the graphene nanoribbon is changed and the resistance value is changed according to the vacuum degree.
특히, 본 발명의 기술적 사상에 따른 진공도 측정 센서는 단면 거리가 짧은 그래핀 나노리본을 사용하여 굴곡 상태에 따라 저항값 변화가 매우 크고, 이에 따라 센서의 민감도가 증가하는 동시에 그래핀 나노리본 층간에 갇혀있는 가스 분자의 확산이 짧은 거리에서 일어나 진공도에 따른 응답속도를 높일 수 있는 장점이 있다.In particular, the vacuum sensor according to the technical concept of the present invention is very large resistance value change depending on the bending state using a graphene nanoribbon with a short cross-sectional distance, thereby increasing the sensitivity of the sensor at the same time between the graphene nanoribbon layer Diffusion of trapped gas molecules occurs in a short distance, which can increase the response speed according to the degree of vacuum.
또한, 그래핀 나노리본 박막을 포함하는 진공게이지는 간단하고 작은 사이즈로 전기 저항 값의 변화가 커서 정밀 진공도 측정이 가능하다.In addition, the vacuum gauge including the graphene nanoribbon thin film is simple and small in size, the electrical resistance value is large, it is possible to measure the precision vacuum degree.
상술한 본 발명의 효과들은 예시적으로 기재되었고, 이러한 효과들에 의해 본 발명의 범위가 한정되는 것은 아니다.The effects of the present invention described above have been described by way of example, and the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공도 측정 센서의 상압 내지 고진공 구간에서의 그래핀 표면 굴곡을 나타낸 도면이다.1 is a view showing the graphene surface bending in the normal pressure to high vacuum section of the vacuum sensor using a graphene nanoribbon according to an embodiment of the present invention.
도 2는 흑연, 환원그래핀 및 산화그래핀의 X-선 회절 패턴을 나타낸 그래프이다.Figure 2 is a graph showing the X-ray diffraction pattern of graphite, reduced graphene and graphene oxide.
도 3은 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공도 측정 센서를 이용하여 30℃에서 상압 내지 저진공 구간에서 측정한 진공-저항 그래프이다.Figure 3 is a vacuum-resistance graph measured in the normal pressure to low vacuum section at 30 ℃ using a vacuum measuring sensor using a graphene nanoribbon according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공도 측정 센서를 이용하여 30℃, 50℃, 75℃ 및 100℃에서 측정한 면저항 그래프이다.Figure 4 is a sheet resistance graph measured at 30 ℃, 50 ℃, 75 ℃ and 100 ℃ using a vacuum measuring sensor using a graphene nanoribbon according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공게이지의 적층 구조를 나타낸 도면이다.5 is a view showing a laminated structure of a vacuum gauge using a graphene nanoribbon according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공게이지의 구성을 나타낸 도면이다.6 is a view showing the configuration of a vacuum gauge using a graphene nanoribbon according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서 본 발명의 기술적 사상은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Embodiments of the present invention are provided to more fully explain the technical idea of the present invention to those skilled in the art, and the following embodiments may be modified in many different forms, and The scope of the technical idea is not limited to the following examples. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items. Like numbers refer to like elements all the time. Furthermore, various elements and regions in the drawings are schematically drawn. Therefore, the technical idea of the present invention is not limited by the relative size or spacing drawn in the accompanying drawings.
본 발명에 따른 그래핀 나노리본을 이용한 진공도 측정 센서는 2층 이상의 그래핀 나노리본 층으로 이루어진 그래핀 나노리본 박막을 포함하여, 상기 그래핀 나노리본 층의 저항값으로 진공도를 감지할 수 있으며, 상기 저항값은 그래핀 나노리본 층의 굴곡 상태에 따라 변할 수 있다.Vacuum measurement sensor using a graphene nanoribbon according to the present invention includes a graphene nanoribbon thin film consisting of two or more graphene nanoribbon layer, it can detect the vacuum degree by the resistance value of the graphene nanoribbon layer, The resistance value may vary depending on the bending state of the graphene nanoribbon layer.
상기 그래핀 나노리본은 증가된 길이 대 폭 비로 인한 높은 형상 이방성을 가진다. 전형적으로, 그래핀 나노리본들의 방향족 기저면은 전형적으로 50 ㎚ 미만의 폭을 가지는 스트립의 형태이며, 그래핀 나노리본들의 종횡비(즉, 길이 대 폭의 비) 는 적어도 10 이다. 바람직하게는 10 내지 1000의 종횡비를 가질 수 있다. 종횡비가 1000 이상에서는 높은 종횡비로 인하여 균일한 박막 형성이 어렵고 이에 따라 10 내지 1000의 적정 종횡비를 가지는 그래핀 나노리본을 포함한 센서에 비하여 민감도가 떨어 질 수 있다.The graphene nanoribbons have high shape anisotropy due to increased length to width ratio. Typically, the aromatic base of graphene nanoribbons is typically in the form of a strip having a width of less than 50 nm, and the aspect ratio (ie, length to width ratio) of graphene nanoribbons is at least 10. It may preferably have an aspect ratio of 10 to 1000. If the aspect ratio is 1000 or more, it is difficult to form a uniform thin film due to the high aspect ratio, and thus the sensitivity may be lower than that of the sensor including the graphene nanoribbons having an appropriate aspect ratio of 10 to 1000.
도 1은 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공도 측정 센서의 상압 내지 고진공 구간에서의 그래핀 표면 굴곡을 나타낸 도면이다. 그래핀 나노리본은 통상의 산화 혹은 환원 그래핀 크기에 비해서 한 변을 100배 이상 줄일 수 있어 고진공 하에서 층간 갇혀 있는 가스분자의 확산을 용이하게 하고, 전기전도에 관여하는 전하의 이동 통로가 작아 굴곡이 있을 경우 전도도가 급격히 떨어지게 되어 민감도가 매우 우수한 센서를 제조할 수 있다. 1 is a view showing the graphene surface bending in the normal pressure to high vacuum section of the vacuum sensor using a graphene nanoribbon according to an embodiment of the present invention. Graphene nanoribbons can reduce one side more than 100 times compared to the size of normal oxidized or reduced graphene, facilitating the diffusion of gas molecules trapped in layers under high vacuum, and the small channel of charge transfer involved in electrical conduction. If there is a sharp drop in conductivity can be produced a very sensitive sensor.
상기 그래핀 나노리본 박막은 X-선 회절 측정으로부터 산출된 층간간격(interlayer spacing, d002)이 0.335nm 보다 크고 10nm 보다 작은 범위에 있을 수 있다. 도 2는 흑연, 환원그래핀 및 산화그래핀의 X-선 회절 패턴을 나타낸 그래프이다. X선 회절에 의해서 측정된 002 회절선으로부터 산출된 그래핀의 평균 층간간격은, X선 회절 장치((주) 리가크제·RINT3000)를 이용하고, 시료를 공기중(X선:CuKα선, 타겟:Cu)에서 측정한 값이다. 덧붙여 평균 층간간격은 2 dsinθ=λ의 Bragg의 식에 의해 산출하였다.The graphene nanoribbon thin film may have an interlayer spacing (d002) calculated from X-ray diffraction measurements in a range larger than 0.335 nm and smaller than 10 nm. Figure 2 is a graph showing the X-ray diffraction pattern of graphite, reduced graphene and graphene oxide. The average interlayer spacing of graphene calculated from 002 diffraction lines measured by X-ray diffraction was measured by using an X-ray diffractometer (RINT3000, manufactured by Rigak Co., Ltd.), and the sample was placed in air (X-ray: CuKα rays, targets). It is the value measured in: Cu). In addition, the average interlayer spacing was computed by Bragg's formula of 2 dsin (theta) = (lambda).
X-선 회절 측정시 (002)면의 층간간격이 상기 범위에 포함되는 경우, 적절한 층간간격을 유지하여 상기 그래핀 층간의 공기의 양 및 분자간 인력에 의해 그래핀 층의 굴곡이 발생하고, 상기 굴곡의 상태에 따라는 변하는 저항값을 검출하여 진공도를 감지할 수 있다.When the interlayer spacing of the (002) plane is included in the above range during X-ray diffraction measurement, the graphene layer is bent due to the amount of air and intermolecular attraction between the graphene layers by maintaining an appropriate interlayer spacing. The degree of vacuum can be detected by detecting a resistance value that varies depending on the state of bending.
산출된 평균 층간 거리가 단결정 graphite의 경우 0.3354nm이며, 이 값에 가까울수록 양질의 graphite라고 생각된다. 이 경우, 낮은 저항을 가져 정밀도가 낮아 진공도 측정 센서로서 의미를 가지지 못한다. 또한 통상의 산화그래핀의 층간간격은 10nm으로, 층간간격(interlayer spacing, d002)이 0.335nm 보다 크고 10nm 보다 작은 범위에 있는 그래핀 박막을 사용하여 저항값 변화를 이용하여 진공도 측정하는 동시에, 우수한 응답속도를 가지는 진공도 측정 센서를 제조할 수 있다. The calculated average interlayer distance is 0.3354 nm in the case of single crystal graphite, and the closer to this value, the more favorable graphite is considered. In this case, it has low resistance and low precision, so it does not have meaning as a vacuum measurement sensor. In addition, the interlayer spacing of the conventional graphene oxide is 10 nm, and the vacuum is measured using the resistance value change while using a graphene thin film having an interlayer spacing (d002) of more than 0.335 nm and less than 10 nm. It is possible to manufacture a vacuum measuring sensor having a response speed.
특히, 상기 그래핀 나노리본의 상기 층간간격은 0.35 내지 0.85nm일 수 있다. 2.5 σ 이상의 반데르발스 인력이 미치는 간격은 2.5mm * 3.5mm 크기의 면을 기준으로 계산하였을 경우 85nm 정도로서, 상기 그래핀 나노리본의 상기 층간간격은 0.35 내지 0.85nm일 수 있다.In particular, the interlayer spacing of the graphene nanoribbons may be 0.35 to 0.85 nm. The spacing of Van der Waals attraction force of 2.5 σ or more is about 85 nm when calculated based on a 2.5 mm * 3.5 mm size plane, and the interlayer spacing of the graphene nanoribbons may be 0.35 to 0.85 nm.
도 3은 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공도 측정 센서를 이용하여 30℃에서 상압으로부터 고진공 구간에서 측정한 면저항 그래프이다. 상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 상기 굴곡 상태는 상기 그래핀 나노리본 층간의 공기의 양 및 분자간 인력에 의해 발생할 수 있다. 본 발명에서 저진공은 상압에서 1~10 torr, 중진공은 1~10torr 부터 10-4 torr, 고진공은 10-4 torr 부터 10-7 torr 의 진공도를 나타낸다.3 is a sheet resistance graph measured in a high vacuum section from the atmospheric pressure at 30 ℃ using a vacuum sensor using a graphene nanoribbon according to an embodiment of the present invention. The bending state may be generated by the amount of air between the graphene nanoribbon layers and the intermolecular attraction in the normal pressure to high vacuum (10 −4 torr to 10 −7 torr). In the present invention, the low vacuum is 1 to 10 torr at normal pressure, the medium vacuum is 1 to 10 torr to 10 -4 torr, and the high vacuum is 10 to 4 torr to 10 -7 torr.
도 4는 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공도 측정 센서를 이용하여 30℃, 50℃, 75℃ 및 100℃에서 측정한 면저항 그래프이다. Figure 4 is a sheet resistance graph measured at 30 ℃, 50 ℃, 75 ℃ and 100 ℃ using a vacuum measuring sensor using a graphene nanoribbon according to an embodiment of the present invention.
45℃ 미만의 저온에서는 상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하고 나노그래핀 층 전체에 작용하는 인력이 증가함에 따라 감소하는 저항값을 검출함으로써 진공도를 감지할 수 있다. 실험적으로 45℃ 미만의 저온에서는 상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간으로 진공도가 증가할수록 상기 그래핀 나노리본 층간 거리가 그래핀 나노리본 박막 전체에 작용하는 인력에 의해 줄어듦에 따라서 감소하는 저항값을 검출함으로써 진공도를 감지할 수 있음을 확인하였다.At low temperatures below 45 ° C, the amount of air between the graphene nanoribbons decreases as the degree of vacuum increases between atmospheric pressure and high vacuum (10 -4 torr to 10 -7 torr), and as the attraction force throughout the nanographene layer increases. By detecting the decreasing resistance value, the degree of vacuum can be detected. Experimentally, at low temperatures below 45 ° C, as the degree of vacuum increases from normal pressure to high vacuum (10 -4 torr to 10 -7 torr), the distance between the graphene nanoribbons is reduced by the attractive force acting on the entire graphene nanoribbon thin film. Therefore, it was confirmed that the degree of vacuum can be detected by detecting the decreasing resistance value.
또한, 45℃ 이상의 고온에서는 상압 내지 저진공(상압에서 1~10 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하여 저항값이 감소하고, 중진공(1~10torr 부터 10-4 torr) 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 상기 그래핀 나노리본 층의 나노리본 조각간 인력에 의해 발생하는 굴곡에 따라 증가하는 저항값을 검출함으로써 진공도를 감지할 수 있다. Further, in the above 45 ℃ temperature from atmospheric pressure to low vacuum reducing the amount of according to (1 ~ 10 torr (normal pressure)), the degree of vacuum increase in the interval graphene nanoribbons interlayer air to decrease the resistance value, and the Medium vacuum (1 ~ 10torr 10 - 4 torr) to high vacuum (10 -4 torr to 10 -7 torr) the vacuum degree can be detected by detecting a resistance value that increases with the bending caused by the nano-ribbon attraction of the graphene nanoribbon layer .
실험적으로 45℃ 부근 보다 높은 온도에서는 상압 내지 저진공(상압에서 1~10 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하여 저항값이 감소하고, 중진공(1~10torr 부터 10-4 torr) 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 진공도가 증가할수록 상기 환원그래핀 층간의 분자간 인력에 의해 상기 환원그래핀 층의 굴곡 상태가 발생하고, 상기 환원그래핀 층의 굴곡 상태에 따라 증가하는 저항값을 검출함으로써 진공도를 감지할 수 있음을 확인하였다. Experimentally, when the temperature is higher than 45 ℃, the resistance value decreases due to the decrease of the amount of air between the graphene nanoribbons as the degree of vacuum increases in the range from normal pressure to low vacuum (1 ~ 10 torr at normal pressure). As the degree of vacuum increases in the range of 10 -4 torr) to high vacuum (10 -4 torr to 10 -7 torr), the bending state of the reduced graphene layer is generated by the intermolecular attraction between the reduced graphene layers, and the reduced graphene It was confirmed that the degree of vacuum can be detected by detecting the resistance value increasing with the bending state of the layer.
이와 같이, 공기층에 의해서 발생하는 전기저항이 사라지게 되어 1~10 torr에서 저항의 변곡점을 가지게 된다. 진공도 1 ~ 10 torr 사이에서 저항의 변곡점을 가짐으로써 전 영역에 대한 진공도를 측정하기 위하여 상압-저진공과 중진공-고진공 구간의 구분을 필요로 하여, 저진공부과 고진공부를 스위칭을 하는 방법으로 상압 내지 고진공 영역의 진공도를 측정할 수 있다. As such, the electrical resistance generated by the air layer disappears to have an inflection point of the resistance at 1 to 10 torr. In order to measure the degree of vacuum for the whole area by having the inflection point of the resistance between 1 to 10 torr of vacuum degree, it is necessary to distinguish between normal pressure, low vacuum and medium vacuum and high vacuum section, and the low pressure and high vacuum parts are switched to normal pressure. To vacuum in the high vacuum region can be measured.
특히, 중진공(1~10torr 부터 10-4 torr) 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 온도 증가에 따라서 저항값의 변화량이 커지는 경향을 가져 온도가 높을수록 정밀한 측정이 가능함을 확인하였다.In particular, in the medium vacuum (1 ~ 10torr to 10 -4 torr) to high vacuum (10 -4 torr to 10 -7 torr) section, the change of resistance value tends to increase according to the temperature increase, so precise measurement is possible at higher temperature. Confirmed.
상기 그래핀 나노리본 박막은 그래핀 나노리본으로 이루어지는 막 또는 그래핀 나노리본 및 고분자로 이루어진 복합막일 수 있다. 상기 고분자는 수용액 잘 녹을 수 있는 고분자로, 비닐기 고분자일 수 있다. 상기 비닐기 고분자는 주쇄로 탄화수소 사슬(-CH2CH-)에 측쇄로 다른 원자나 원자단(X)이 달려있는 화합물로서 폴리비닐클로라이드(Polyvinylchloride), 폴리비닐플루오라이드(Polyvinylfluoride), 폴리비닐아세테이트(Polyvinylacetate), 폴리비닐알코올(Polyvinylalcohol), 폴리아크릴릭에시드(Polyacrylicacid), 폴리아크릴아마이드(Polyacrylamide), 폴리아크릴로니트릴(Polyacrylonitrile), 폴리스틸렌(Polystyrene), 폴리아크릴레이트(Polyacrylates) 등을 이용할 수 있다. The graphene nanoribbons thin film may be a film made of graphene nanoribbons or a composite film made of graphene nanoribbons and a polymer. The polymer is a polymer that can be dissolved in an aqueous solution, it may be a vinyl-based polymer. The vinyl polymer is a compound having a different chain of atoms or atoms (X) as a side chain on a hydrocarbon chain (-CH2CH-) as a main chain, and polyvinylchloride, polyvinylfluoride, and polyvinylacetate. , Polyvinylalcohol, polyacrylic acid, polyacrylamide, polyacrylonitrile, polystyrene, polyacrylates, and the like may be used.
전력(P)는 전류의 제곱(I2) 및 저항(R)에 비례하는 관계로서, 상기 고분자를 포함하는 경우, 소자 제소 시에 일정 범위에서 저항값의 크기를 증가시켜 민감도를 상승시킬 수 있으며, 측정 시 소모되는 전류량이 감소시킬 수 있는 장점이 있다. Power (P) is a relationship proportional to the square of the current (I 2 ) and the resistance (R), when the polymer is included, the sensitivity can be increased by increasing the size of the resistance value in a certain range during device cleaning This has the advantage of reducing the amount of current consumed during measurement.
또한, 100 Ω/sq 내지 1 MΩ/sq 의 면저항을 가지는 경우, 그래핀 나노리본을 이용한 진공도 측정 센서의 출력 신호가 안정될 수 있다. 100 Ω/sq 내지 1 MΩ/sq 의 면저항을 만족하기 위하여 상기 복합막은 상기 그래핀 나노리본 100 중량부 및 상기 고분자 1 내지 100 중량부를 포함할 수 있다. In addition, when the sheet resistance of 100 kW / sq to 1 MΩ / sq, the output signal of the vacuum measuring sensor using the graphene nanoribbons can be stabilized. The composite membrane may include 100 parts by weight of the graphene nanoribbons and 1 to 100 parts by weight of the polymer in order to satisfy a sheet resistance of 100 μs / sq to 1 MΩ / sq.
그래핀 나노리본 100 중량부 일 때, 상기 고분자가 100 중량부를 초과하는 경우, 그래핀 나노리본 층간에 고분자 잔류물이 많이 남게 되어 저항값의 변화를 측정하는데 정밀한 장치가 요구되며, 그 이상 첨가 되는 경우 저항이 너무 커 전기가 통하지 않아 저항값 측정이 불가능하다.When 100 parts by weight of graphene nanoribbons, when the polymer exceeds 100 parts by weight, a large amount of polymer residues remain between the graphene nanoribbons layer, a precise device is required to measure the change in resistance value, which is added more than In this case, the resistance is so large that it is not energized and resistance measurement is impossible.
그래핀 나노리본 100 중량부 일 때, 상기 고분자 1 중량부 미만인 경우, 고분자 첨가에 의한 효과가 나타나지 않으며, 100 Ω/sq 이하의 면저항을 가져 민감도가 매우 떨어지는 문제가 있다.When the graphene nanoribbons 100 parts by weight, less than 1 part by weight of the polymer, the effect of the addition of the polymer does not appear, there is a problem that the sensitivity is very low due to the sheet resistance of less than 100 s / sq.
도 5는 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공게이지의 적층 구조를 나타낸 도면이다. 본 발명에 따른 그래핀 나노리본을 이용한 진공게이지는 상기 진공도 측정 센서(110)와 상기 진공도 측정 센서(110)의 일 표면에 연결되는 가열 수단(130)을 포함할 수 있다. 상기 가열 수단(130)는 그래핀 나노리본 박막층을 가열함으로써 기체가 빠지기 어려운 그래핀 나노리본 박막층 중간부에 잔류한 기체를 제거하고, 이 경우 그래핀 나노리본 박막층의 중간부와 가장자리와의 잔류 기체에 따른 저항 차이를 줄여 진공도 측정의 오차를 줄일 수 있으며, 데이터가 안정화되는 시간을 감소시켜 빠른 진공도 측정이 가능하다.5 is a view showing a laminated structure of a vacuum gauge using a graphene nanoribbon according to an embodiment of the present invention. The vacuum gauge using the graphene nanoribbons according to the present invention may include a heating means 130 connected to the vacuum degree measuring sensor 110 and one surface of the vacuum degree measuring sensor 110. The heating means 130 removes the gas remaining in the middle portion of the graphene nanoribbon thin film layer is difficult to escape gas by heating the graphene nanoribbon thin film layer, in this case the residual gas between the middle portion and the edge of the graphene nanoribbon thin film layer It is possible to reduce the error of vacuum measurement by reducing the resistance difference, and to reduce the time for data stabilization to enable rapid vacuum measurement.
또한 상기 가열 수단(130)을 통해 온도에 따라 진공도를 측정할 수 있다. 도 4와 같이, 중진공(1~10torr 부터 10-4 torr) 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 온도 증가에 따라서 저항값의 변화량이 커지는 경향을 가져 온도가 높을수록 정밀한 측정이 가능하다.In addition, the degree of vacuum may be measured according to the temperature through the heating means 130. As shown in FIG. 4, in the medium vacuum (1-10 tor to 10 -4 torr) to the high vacuum (10 -4 torr to 10 -7 torr), the change in the resistance value tends to increase with increasing temperature, so that the higher the temperature, the more accurate measurement This is possible.
도 6은 본 발명의 일 실시예에 따른 그래핀 나노리본을 이용한 진공게이지의 구성을 나타낸 도면이다. 본 발명에 따른 진공게이지(100)는 진공연결부(160), 신호변환부(170), 표시부(180)를 더 포함할 수 있다. 상기 진공연결부(160)는 진공이 제공되는 진공 챔버와 연결되고 표시부(180)는 측정 정보를 표시할 수 있다. 상기 신호변환부(170)는 측정된 저항을 진공도로 변환할 수 있다.6 is a view showing the configuration of a vacuum gauge using a graphene nanoribbon according to an embodiment of the present invention. The vacuum gauge 100 according to the present invention may further include a vacuum connection unit 160, a signal conversion unit 170, and a display unit 180. The vacuum connection unit 160 may be connected to a vacuum chamber provided with a vacuum, and the display unit 180 may display measurement information. The signal converter 170 may convert the measured resistance into a vacuum degree.
본 발명에 따른 그래핀 나노리본을 이용한 진공도 측정 센서 제조방법은 탄소나노튜브 제공 단계, 그래핀 나노리본 용액 제조 단계, 그래핀 나노리본 박막 형성 단계, 환원 단계를 포함한다.Vacuum measuring sensor manufacturing method using a graphene nanoribbon according to the present invention includes a carbon nanotube providing step, graphene nanoribbon solution manufacturing step, graphene nanoribbon thin film forming step, reduction step.
상기 탄소나노튜브 제공 단계는 복수개의 탄소나노튜브를 제공하는 단계이고, 상기 그래핀 나노리본 용액 제조 단계는 상기 복수개의 탄소나노튜브와 산화제를 반응시켜 산화된 그래핀 나노리본 용액을 제조하는 단계이다. 상기 그래핀 나노리본의 제조는 탄소나노튜브를 산화하여 얻을 수 있으나, 이와 다른 통상적인 그래핀 나노리본의 제조 방법을 이용하여 제조할 수 있다.The carbon nanotube providing step is a step of providing a plurality of carbon nanotubes, the graphene nanoribbon solution manufacturing step is to prepare a oxidized graphene nanoribbon solution by reacting the plurality of carbon nanotubes and an oxidant. . The graphene nanoribbons may be prepared by oxidizing carbon nanotubes, but may be prepared using other conventional graphene nanoribbons.
상기 그래핀 나노리본 박막 형성 단계는 상기 그래핀 나노리본 용액을 저항 측정이 가능한 전극막 상부에 코팅하여 그래핀 나노리본 박막을 형성하는 단계이며, 상기 환원 단계는 상기 그래핀 나노리본 박막을 진공 열처리 하여 환원하는 단계이다.The graphene nanoribbon thin film forming step is a step of forming a graphene nanoribbon thin film by coating the graphene nanoribbon solution on the electrode layer capable of measuring resistance, the reduction step is vacuum heat treatment of the graphene nanoribbon thin film It is a step of reducing.
이하, 실시예 및 실험예를 통하여 본 발명 과정의 세부 사항을 설명하고자 한다.Hereinafter, the details of the process of the present invention through the Examples and Experimental Examples.
1. 그래핀 나노리본 제조1. Graphene Nano Ribbon Manufacturing
탄소나노튜브에 인산 10%와 진한 황산에 넣고 잘 섞어준다. 이 용액을 얼음물을 이용하여 저온으로(약 5℃ 이하) 맞추고, 과망간산 칼륨을 천천히 분말 상태로 넣어준다. 이 후 ice bath를 빼고, 상온으로 맞추어 주며, 탄소나노튜브의 종류에 따라서 온도를 50℃ ~ 80℃까지 올려줄 수 있다. 이 반응을 24시간 유지시킨 후 증류수를 천천히 가하여 묽혀준다. 상기 반응 시간은 산화 정도를 조절하기 위하여 반응 시간을 줄이거나 늘릴 수 있다. 반응하지 않고 남아있는 KMnO4를 제거하기 위하여 과산화수소수를 첨가한다. 합성된 산화 탄소나노튜브 및 그래핀 나노리본을 함유한 용액을 원심 분리하여 황산과 망간 잔류물을 들어 있는 용액을 제거한다. 이후 10% 염산을 넣고 잘 흔든 후 원심 분리하여 상부 용액을 제거 한다. 이 후 증류수를 100 ml/탄소1g 의 양으로 희석시켜 투석막에 넣고 흐르는 증류수를 이용하여 1 주일간 투석을 실시한다. 이후 투석 막을 제거하고 얻은 용액을 원심 분리하여 찌꺼기를 분리해 내고 상부층인 그래핀 나노리본이 분산되어 들어 있는 용액을 얻는다. Add 10% phosphoric acid and concentrated sulfuric acid to the carbon nanotube and mix well. The solution is cooled to low temperature (about 5 ° C or less) with ice water, and potassium permanganate is slowly added to the powder. After that, remove the ice bath, adjust to room temperature, depending on the type of carbon nanotubes can raise the temperature from 50 ℃ to 80 ℃. After maintaining this reaction for 24 hours, distilled water is slowly added to dilute. The reaction time can be reduced or increased in order to control the degree of oxidation. Hydrogen peroxide solution is added to remove KMnO 4 that remains unreacted. The solution containing the synthesized carbon nanotubes and graphene nanoribbons is centrifuged to remove the solution containing sulfuric acid and manganese residue. Then add 10% hydrochloric acid, shake well, and centrifuge to remove the upper solution. Thereafter, distilled water is diluted to an amount of 100 ml / 1 g of carbon, placed in a dialysis membrane, and dialyzed for one week using distilled water flowing. Then, the dialysis membrane is removed, the obtained solution is centrifuged to separate the residues, and a solution containing the graphene nanoribbons dispersed in the upper layer is obtained.
2. 그래핀 나노리본 막 제조 2. Graphene Nanoribbon Membrane Manufacturing
상기 그래핀 나노리본이 분산된 용액에 에틸알콜을 부피 대비 1:1 비율로 섞은 후 유리 기판에 스핀 코팅하여 적절한 두께로 그래핀 나노리본 막을 얻는다. 이 후 100℃에서 1시간 말리고, 200℃ ~ 250℃ 온도 구간에서 1시간 가열 처리 후 필요에 따라서 400℃ 이상, 진공도 0.001 torr 이하에서 1시간 이상 진공 열처리 하여 그래핀 나노리본 막을 환원 처리한다. Ethyl alcohol is mixed at a ratio of 1: 1 by volume to the graphene nanoribbon-dispersed solution, followed by spin coating on a glass substrate to obtain a graphene nanoribbon film with an appropriate thickness. After drying for 1 hour at 100 ℃, heat treatment for 1 hour in the temperature range of 200 ℃ ~ 250 ℃ after the vacuum heat treatment at 400 ℃ or more, vacuum degree 0.001 torr or less 1 hour or more to reduce the graphene nanoribbon film.
스핀 코팅 용액의 제조에서 균질한 막을 얻기 위해 에틸 알콜 이외의 디메틸포름아마이드, 에틸렌글리콜모노메틸 에테르 등과 같은 용매를 첨가하여 사용할 수 있다. 코팅 방법으로서 스핀 코팅, 잉크젯 인쇄, 스프레이 코팅, 디스펜서 방법, 등의 방법 중 한 가지를 이용하여 상기 용액을 이용한 막을 얻을 수 있어 스핀 코팅 방법에 한정하지 않는다.In order to obtain a homogeneous membrane in the preparation of the spin coating solution, solvents such as dimethylformamide, ethylene glycol monomethyl ether and the like other than ethyl alcohol may be added and used. As the coating method, a film using the solution can be obtained using any one of spin coating, inkjet printing, spray coating, dispenser method, and the like, and is not limited to the spin coating method.
상기 실시예에 따라 제작된 그래핀 나노리본을 이용한 진공센서의 동작 특성을 도 3에 나타내었다. 상압에서부터 10-7 torr 영역까지 측정된 데이터로 이 이상의 진공압력에서도 진공도 측정이 가능함을 보여 주고 있다.3 shows the operation characteristics of the vacuum sensor using the graphene nanoribbon prepared according to the embodiment. The data measured from the normal pressure to the range of 10 -7 torr shows that the degree of vacuum can be measured even at higher vacuum pressures.
3. 그래핀 나노리본/고분자 복합막 제조3. Graphene Nanoribbon / Polymer Composite Membrane Manufacturing
비닐기를 가지는 고분자가 0.01 wt% ~ 3 wt% 내외로 함유된 수용액 혹은 물과 섞이는 유기용매에 0.01 wt% ~ 3 wt% 로 녹인 용액을 만든다. 코팅 방법에 따라 요구되는 점성을 갖도록 상기 그래핀 나노리본이 분산된 용액과 비닐기를 가지는 고분자 용액을 비율별로 혼합하여 최종 혼합 용액을 얻는다. A solution in which the polymer having a vinyl group is dissolved at 0.01 wt% to 3 wt% in an aqueous solution containing 0.01 wt% to 3 wt% or an organic solvent mixed with water is prepared. The graphene nanoribbon dispersed solution and the polymer solution having a vinyl group are mixed by ratio so as to have a viscosity required by the coating method, thereby obtaining a final mixed solution.
이 때 그래핀 나노리본 대비 고분자 함량은 무게 비율로 그래핀 나노리본 1 : 고분자 1 ~ 그래핀 나노리본 1 : 고분자 0.01 의 비율로 만든다. 고분자가 첨가되면 저항값의 크기가 증가하고 민감도가 상승한다. 또한, 측정시 소모되는 전류량이 감소한다. 반면, 너무 많은 고분자가 함유될 경우 최종적으로 만들어지는 그래핀 층간에 고분자 잔류물이 많이 남게 되어 저항값의 변화를 측정하는데 정밀한 장치가 요구되며, 너무 적을 경우 고분자 첨가물에 의한 효과가 나타나지 않는다.In this case, the polymer content of the graphene nanoribbons is made by the ratio of graphene nanoribbons 1: polymer 1 to graphene nanoribbons 1: polymer 0.01 by weight. When the polymer is added, the magnitude of the resistance value increases and the sensitivity increases. In addition, the amount of current consumed during the measurement is reduced. On the other hand, if too many polymers are contained, a large amount of polymer residues are left between the final graphene layers, and a precise device is required to measure the change in resistance value.
이 용액에 에틸알콜을 그래핀 나노리본/고분자 복합 용액 부피 대비 1:1 비율로 섞은 후 유리 기판에 스핀 코팅하여 적절한 두께로 산화 그래핀 막을 얻는다. 이 후 100℃에서 1시간 말리고, 200℃ ~ 250℃ 온도 구간에서 30분 가열 처리 후 400℃ 이상, 진공도 0.001 torr 이하에서 1시간 이상 진공 열처리 하여 그래핀 나노리본 막을 환원 처리한다.  Ethyl alcohol was mixed in a 1: 1 ratio of the graphene nanoribbon / polymer composite solution volume to the solution, followed by spin coating on a glass substrate to obtain a graphene oxide film having an appropriate thickness. After drying for 1 hour at 100 ℃, 30 minutes heat treatment at 200 ℃ to 250 ℃ temperature section after 400 ℃ or more, vacuum heat treatment at a vacuum degree of 0.001 torr or less for 1 hour to reduce the graphene nanoribbon film.
스핀 코팅 용액의 제조에서 균질한 막을 얻기 위해 에틸 알콜 이외의 디메틸포름아마이드, 에틸렌글리콜모노메틸 에테르 등과 같은 용매를 첨가하여 사용할 수 있다. 코팅 방법으로서 스핀 코팅, 잉크젯 인쇄, 스프레이 코팅, 디스펜서 방법 등의 방법 중 한 가지를 이용하여 상기 용액을 이용한 막을 얻을 수 있어 스핀 코팅 방법에 한정하지 않는다.In order to obtain a homogeneous membrane in the preparation of the spin coating solution, solvents such as dimethylformamide, ethylene glycol monomethyl ether and the like other than ethyl alcohol may be added and used. As a coating method, the film using the said solution can be obtained using one of methods, such as spin coating, inkjet printing, spray coating, and the dispenser method, and is not limited to a spin coating method.
4. 진공도 측정 센서 소자 제조 4. Manufacturing of vacuum measuring sensor element
상기 그래핀 나노리본 용액 또는 상기 그래핀 나노리본/고분자 복합 코팅 용액을 도 5와 같이 패턴된 전극막 상부에 패턴 인쇄 또는 스핀 코팅을 1 회 이상 실시하여 코팅하고, 100℃에서 1시간 말리고 200℃ ~ 250℃ 온도 구간에서 30분 가열 처리 후 400℃ 이상, 진공도 0.001 torr 이하에서 1시간 이상 진공 열처리 하여 그래핀 나노리본 막을 환원 처리한다. The graphene nanoribbon solution or the graphene nanoribbon / polymer composite coating solution is coated on the patterned electrode layer by performing at least one pattern printing or spin coating, as shown in FIG. 5, and dried at 100 ° C. for 1 hour and then at 200 ° C. After heat treatment for 30 minutes in the temperature section of ~ 250 ℃ temperature is vacuum treated at least 400 ℃, vacuum degree 0.001 torr or less for 1 hour to reduce the graphene nanoribbon film.
도 5의 진공게이지의 적층 구조와 같이, 환원된 막 상부에 외부 오염을 피하기 위해 유리 판형 캡 혹은 알루미나 판형 캡, 수정 판형 캡을 씌울 수 있다. 이때 보호막(140) 재질은 중요하지 않으며, 일반적인 외부 스크래치로 부터 보호할 수 있는 기판이면 사용 가능하다. 또한, 상기 구조물에서 전극의 선폭, 전극의 개수, 혹은 모양 등은 중요하지 않으며, 소자의 구조는 단순히 저항을 측정할 수 있는 형태면 진공압력 측정 소자가 가능하다. As in the laminated structure of the vacuum gauge of FIG. 5, a glass plate cap or an alumina plate cap or a quartz plate cap may be put on the reduced film to avoid external contamination. At this time, the material of the protective film 140 is not important, and can be used as long as the substrate can be protected from a general external scratch. In addition, the line width of the electrode, the number of electrodes, the shape, etc. in the structure is not important, the structure of the device can be a vacuum pressure measuring device if the shape can simply measure the resistance.
상기 진공도 측정 센서의 그래핀 나노리본 층간에 존재할 수 있는 잔류 기체를 효과적으로 제거하기 위해서 센서 하부에 100℃ ~ 250℃ 사이에서 가열처리할 수 있는 가열 수단(130)을 도 5와 같이, 포함할 수 있다. 또한 가열 수단(130)을 이용하여 상온뿐만 아니라 200℃까지 온도에 따른 진공 압력을 잴 수 있도록 구성할 수 있다. In order to effectively remove residual gas that may be present between the graphene nanoribbon layers of the vacuum measurement sensor, a heating means 130 which may be heated between 100 ° C. and 250 ° C. under the sensor may be included as shown in FIG. 5. have. In addition, by using the heating means 130 can be configured to measure the vacuum pressure according to the temperature up to 200 ℃ as well as room temperature.
본 발명에 따른 그래핀 나노리본을 이용한 진공도 측정 센서는 그래핀 보다 단면 거리가 짧은 그래핀 나노리본을 사용하여 굴곡 상태에 따른 저항값 변화가 크고, 이에 따라 센서의 민감도가 증가하는 동시에 그래핀 층간에 갇혀있는 가스 분자의 확산이 짧은 거리에서 일어나 진공도에 따른 응답속도를 높일 수 있는 진공도 측정 센서를 제조 할 수 있다. The vacuum measurement sensor using graphene nanoribbons according to the present invention uses a graphene nanoribbon that has a shorter cross-sectional distance than graphene, and thus has a large change in resistance value due to a bent state. The diffusion of gas molecules trapped in the gas can be produced in a short distance to increase the response speed according to the degree of vacuum.
또한, 통상의 진공게이지에 비해 극단적으로 센서 부분이 줄어들어 초소형 진공게이지 제작이 가능하며, 전기 저항 값의 변화가 커서 정밀 진공도 측정이 가능한 진공게이지를 제공할 수 있다. In addition, it is possible to manufacture a very small vacuum gauge by reducing the sensor portion extremely compared to the conventional vacuum gauge, it is possible to provide a vacuum gauge that can measure the precision vacuum degree large change in the electrical resistance value.
이상에서 설명한 본 발명의 기술적 사상이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명의 기술적 사상이 속하는 기술 분야 에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The technical spirit of the present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be apparent to those of ordinary skill in the art.
[부호의 설명][Description of the code]
10: 그래핀 나노리본 박막10: graphene nanoribbon thin film
20: 전극 100: 진공게이지20: electrode 100: vacuum gauge
110: 진공도 측정 센서 120: 지지 기판110: vacuum degree measuring sensor 120: support substrate
130: 가열 수단 140: 보호막 130: heating means 140: protective film
150: 고정 나사 160: 진공연결부150: fixing screw 160: vacuum connection
170: 신호변환부 180: 표시부170: signal conversion unit 180: display unit

Claims (11)

  1. 2층 이상의 그래핀 나노리본 층으로 이루어진 그래핀 나노리본 박막을 포함하여, 상기 그래핀 나노리본 층의 저항값으로 진공도를 감지하는 그래핀 나노리본을 이용한 진공도 측정 센서.Including a graphene nanoribbon thin film consisting of two or more graphene nanoribbon layer, the vacuum measurement sensor using a graphene nanoribbon to detect the vacuum degree by the resistance value of the graphene nanoribbon layer.
  2. 제1항에 있어서, The method of claim 1,
    상기 저항값은 그래핀 나노리본 층의 굴곡상태에 따라 변하는 것에 특징이 있는 그래핀 나노리본을 이용한 진공도 측정 센서.The resistance value is a vacuum measurement sensor using a graphene nanoribbon characterized in that it changes according to the bending state of the graphene nanoribbon layer.
  3. 제1항에 있어서, The method of claim 1,
    상기 그래핀 나노리본 박막은 층간간격(interlayer spacing, d002)이 0.335nm 보다 크고 10nm 보다 작은 범위에 있는 그래핀 나노리본을 이용한 진공도 측정 센서.The graphene nanoribbons thin film is an interlayer spacing (d002) vacuum sensor using a graphene nanoribbon in the range of more than 0.335nm and less than 10nm.
  4. 제2항에 있어서, The method of claim 2,
    상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 상기 굴곡 상태는 상기 그래핀 나노리본 층간의 공기의 양 및 분자간 인력에 의해 발생하는 그래핀 나노리본을 이용한 진공도 측정 센서.The curved state in the normal pressure to high vacuum (10 -4 torr to 10 -7 torr) section is a vacuum measurement sensor using the graphene nanoribbons generated by the amount of air between the graphene nanoribbon layer and the intermolecular attraction.
  5. 제4항에 있어서,The method of claim 4, wherein
    45℃ 미만의 저온에서는 상압 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하고 나노그래핀 층 전체에 작용하는 인력이 증가함에 따라 감소하는 저항값을 검출함으로써 진공도를 감지하는 그래핀 나노리본을 이용한 진공도 측정 센서.At low temperatures below 45 ° C, the amount of air between the graphene nanoribbons decreases as the degree of vacuum increases between atmospheric pressure and high vacuum (10 -4 torr to 10 -7 torr), and as the attraction force throughout the nanographene layer increases. Vacuum measurement sensor using graphene nanoribbons to detect the degree of vacuum by detecting a decreasing resistance value.
  6. 제4항에 있어서, The method of claim 4, wherein
    45℃ 이상의 고온에서는 상압 내지 저진공(상압에서 1~10 torr) 구간에서 진공도 증가에 따라 그래핀 나노리본 층간 공기의 양이 감소하여 저항값이 감소하고, 중진공(1~10torr 부터 10-4 torr) 내지 고진공(10-4 torr 부터 10-7 torr) 구간에서 상기 그래핀 나노리본층의 나노리본 조각간 인력에 의해 발생하는 굴곡에 따라 증가하는 저항값을 검출함으로써 진공도를 감지하는 그래핀 나노리본을 이용한 진공도 측정 센서.In the above 45 ℃ temperature from atmospheric pressure to low vacuum reducing the amount of according to (1 ~ 10 torr (normal pressure)) increase the degree of vacuum in the interval of graphene nanoribbons interlayer air to decrease the resistance value, and the Medium vacuum (1 ~ 10torr 10 -4 torr ) Graphene nanoribbons to detect the degree of vacuum by detecting an increase in resistance caused by the attraction between the nanoribbons of the graphene nanoribbon layer in the high vacuum (10 -4 torr to 10 -7 torr) interval Vacuum sensor using the sensor.
  7. 제1항에 있어서, The method of claim 1,
    상기 그래핀 나노리본 박막은 그래핀 나노리본으로 이루어지는 막 또는 그래핀 나노리본 및 고분자로 이루어진 복합막인 그래핀 나노리본을 이용한 진공도 측정 센서.The graphene nanoribbons thin film is a vacuum measurement sensor using a graphene nanoribbon or a composite film consisting of graphene nanoribbons and a composite film made of graphene nanoribbons and polymers.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 복합막은 상기 그래핀 나노리본 100 중량부와, 상기 고분자 1 내지 100 중량부를 포함하는 그래핀 나노리본을 이용한 진공도 측정 센서.The composite membrane is a vacuum measurement sensor using a graphene nanoribbon including 100 parts by weight of the graphene nanoribbon, 1 to 100 parts by weight of the polymer.
  9. 제1항의 진공도 측정 센서와 상기 진공도 측정 센서의 일 표면에 연결되는 가열 수단을 포함하는 그래핀 나노리본을 이용한 진공게이지.The vacuum gauge using the graphene nanoribbon comprising a vacuum measuring sensor of claim 1 and heating means connected to one surface of the vacuum measuring sensor.
  10. 제9항에 있어서, The method of claim 9,
    상기 가열 수단을 통해 온도에 따라 진공도를 측정하는 그래핀 나노리본을 이용한 진공게이지.Vacuum gauge using a graphene nanoribbon to measure the degree of vacuum in accordance with the temperature through the heating means.
  11. 제9항에 있어서,The method of claim 9,
    진공이 제공되는 진공 챔버와 연결되는 진공연결부;A vacuum connection unit connected to a vacuum chamber in which a vacuum is provided;
    측정된 저항을 진공도로 변환하는 신호변환부 및A signal conversion unit for converting the measured resistance into a vacuum;
    측정 정보를 표시하는 표시부를 더 포함하는 그래핀 나노리본을 이용한 진공게이지.Vacuum gauge using a graphene nanoribbon further comprises a display for displaying the measurement information.
PCT/KR2016/014801 2016-06-27 2016-12-16 Vacuum degree measurement sensor using graphene nanoribbon WO2018004088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0080093 2016-06-27
KR1020160080093A KR101847269B1 (en) 2016-06-27 2016-06-27 A vacuum sensor using graphene nanoribbons and a vacuum gauge with the same

Publications (1)

Publication Number Publication Date
WO2018004088A1 true WO2018004088A1 (en) 2018-01-04

Family

ID=60786389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014801 WO2018004088A1 (en) 2016-06-27 2016-12-16 Vacuum degree measurement sensor using graphene nanoribbon

Country Status (2)

Country Link
KR (1) KR101847269B1 (en)
WO (1) WO2018004088A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080043045A (en) * 2006-11-13 2008-05-16 (주) 케이브이씨 Vacuum sensing system and method thereof
KR20120029270A (en) * 2010-09-16 2012-03-26 삼성엘이디 주식회사 Light emitting device including graphene layer
KR20120111607A (en) * 2011-04-01 2012-10-10 광주과학기술원 Graphene touch sensor using piezoelectric effect
US20130273682A1 (en) * 2012-04-12 2013-10-17 International Business Machines Corporation Graphene pressure sensors
KR101449410B1 (en) * 2012-12-10 2014-10-15 한국기계연구원 Highly Sensitive Tactile Sensor using Interlocking of Conducting nano or micro pillars

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105573A1 (en) 2014-12-24 2016-06-30 Massachusetts Institute Of Technology Compact modular cathode
KR101655033B1 (en) * 2015-06-03 2016-09-06 신라대학교 산학협력단 A vacuum sensor using graphene and a vacuum gauge using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080043045A (en) * 2006-11-13 2008-05-16 (주) 케이브이씨 Vacuum sensing system and method thereof
KR20120029270A (en) * 2010-09-16 2012-03-26 삼성엘이디 주식회사 Light emitting device including graphene layer
KR20120111607A (en) * 2011-04-01 2012-10-10 광주과학기술원 Graphene touch sensor using piezoelectric effect
US20130273682A1 (en) * 2012-04-12 2013-10-17 International Business Machines Corporation Graphene pressure sensors
KR101449410B1 (en) * 2012-12-10 2014-10-15 한국기계연구원 Highly Sensitive Tactile Sensor using Interlocking of Conducting nano or micro pillars

Also Published As

Publication number Publication date
KR20180001225A (en) 2018-01-04
KR101847269B1 (en) 2018-04-09

Similar Documents

Publication Publication Date Title
WO2011046415A2 (en) Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll transfer equipment for graphene
WO2011081440A2 (en) Roll-to-roll doping method of graphene film, and doped graphene film
KR101295664B1 (en) Stable graphene film and preparing method of the same
WO2016006943A1 (en) Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
Cheng et al. Copper nanowire based transparent conductive films with high stability and superior stretchability
WO2011025216A2 (en) Photodetector using a graphene thin film and nanoparticles, and method for producing same
WO2011087301A2 (en) Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
WO2013094824A1 (en) Stacked-type transparent electrode comprising metal nanowire and carbon nanotubes 메탈나노와이어 및 탄소나노튜브를 포함하는 적층형 투명전극
WO2013137673A1 (en) Heating paste and heating element comprising same
WO2013062246A1 (en) Gas barrier film including graphene layer, flexible substrate including same, and manufacturing method thereof
CN103930367B (en) The Graphene manufacture manufacture method of Copper Foil and Graphene
WO2017115921A1 (en) Graphene dispersion, method for preparing graphene-polymer composite, and method for manufacturing barrier film using same
WO2014126298A1 (en) Method of manufacturing graphene film and graphene film manufactured thereby
Kostogrud et al. The main sources of graphene damage at transfer from copper to PET/EVA polymer
WO2017065530A1 (en) Low-temperature graphene transfer method
KR101655033B1 (en) A vacuum sensor using graphene and a vacuum gauge using the same
WO2014148705A1 (en) Method for producing carbon nanotube composite
WO2018004088A1 (en) Vacuum degree measurement sensor using graphene nanoribbon
WO2020138679A1 (en) Heater integrated gas chromatography column device
WO2016171466A1 (en) Graphene oxide and method for manufacturing same
CN105910737B (en) A kind of stress alignment sensor and preparation method thereof, stress localization method
WO2017122985A1 (en) Method for preparing oxide thin film, oxide thin film, and electronic device manufactured therewith
KR102451716B1 (en) Compound, Graphene Channel Member and Sensor Comprising the Same
WO2013058559A1 (en) Method of obtaining graphene
WO2020111631A1 (en) Method for manufacturing reduced graphene oxide of which element composition ratio is adjusted

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907453

Country of ref document: EP

Kind code of ref document: A1