WO2018003960A1 - Thermoelectric conversion sheet - Google Patents

Thermoelectric conversion sheet Download PDF

Info

Publication number
WO2018003960A1
WO2018003960A1 PCT/JP2017/024073 JP2017024073W WO2018003960A1 WO 2018003960 A1 WO2018003960 A1 WO 2018003960A1 JP 2017024073 W JP2017024073 W JP 2017024073W WO 2018003960 A1 WO2018003960 A1 WO 2018003960A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
sheet
thermal resistance
resistance region
conversion elements
Prior art date
Application number
PCT/JP2017/024073
Other languages
French (fr)
Japanese (ja)
Inventor
直人 竹村
恒彦 寺田
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Publication of WO2018003960A1 publication Critical patent/WO2018003960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion sheet on which thermoelectric conversion is performed.
  • thermoelectric conversion devices using thermoelectric conversion elements capable of converting thermal energy into electrical energy have been used for various purposes. Since the thermoelectric conversion element can convert heat energy into electric energy, it is used as a main member of a power generation device or a temperature measurement device, for example. Moreover, since the thermoelectric conversion element can directly convert thermal energy into electrical energy, the configuration of the device as described above can be simplified. This type of thermoelectric conversion element generates a voltage by causing a bias in the distribution of charges due to a temperature difference in the element. Since this voltage is relatively small, usually, a plurality of such thermoelectric conversion elements are connected in series.
  • Patent Document 1 columnar thermoelectric conversion elements formed of an inorganic sintered body are arranged on a substrate, and the bottom portions or the top portions of adjacent thermoelectric conversion elements are electrically connected to form a single conduction. It is shown that a route is configured (see FIG. 1 of Patent Document 1). Incidentally, in recent years, the use of a flexible sheet-like thermoelectric conversion element such as a resin sheet instead of such an inorganic sintered body has been studied (see Patent Document 2 below).
  • thermoelectric conversion element Compared to inorganic sintered bodies, the sheet-like thermoelectric conversion element is superior in flexibility, so if a thermoelectric conversion sheet is prepared by arranging a plurality of such thermoelectric conversion elements, it is excellent in conformity to curved surfaces. It is thought that it will become a thing.
  • this type of thermoelectric conversion sheet is expected to generate a large voltage in each thermoelectric conversion element because the entire sheet becomes a relatively uniform temperature when one surface is brought into contact with the heating element. difficult. That is, a thermoelectric conversion sheet using a sheet-like thermoelectric conversion element has a problem that it is difficult to expect high thermoelectric conversion efficiency. Then, this invention makes it a subject to solve such a problem, and aims at the improvement of the thermoelectric conversion efficiency in a thermoelectric conversion sheet.
  • thermoelectric conversion sheet using a sheet-like thermoelectric conversion element the one side is the heat receiving side and the other side is the heat radiating side.
  • regions having different thermal resistances on the heat receiving side or the heat radiating side in one thermoelectric conversion element a high temperature difference can be generated in the thermoelectric conversion element, and this temperature difference can be generated in the conduction path. It has been found that the voltage generated by the thermoelectric conversion element can be increased by causing the thermoelectric conversion element to occur in the direction, and the present invention has been completed.
  • the present inventor also provides a difference in thermal resistance on the heat receiving side, although it is effective to create a temperature difference in the element of the thermoelectric conversion element.
  • the present invention has been found to be particularly effective in producing a temperature difference in the interior of the present invention.
  • thermoelectric conversion sheet used for thermoelectric conversion, comprising a sheet body that receives heat from one side and radiates heat from the other side to perform the thermoelectric conversion,
  • the sheet body is provided with a plurality of sheet-like thermoelectric conversion elements having a smaller area than the sheet body, and the plurality of thermoelectric conversion elements are electrically connected to form a series to form at least one conduction path.
  • the sheet body has a reference surface on the heat receiving side, and the one or more thermoelectric conversion elements include a high heat resistance region having a relatively high thermal resistance from the reference surface to the thermoelectric conversion element, and the high heat resistance.
  • thermoelectric conversion sheet having a low thermal resistance region whose thermal resistance is lower than that of the region, and wherein the low thermal resistance region and the high thermal resistance region are arranged in the direction of the conduction path.
  • thermoelectric conversion sheet of the present invention has a sheet-like thermoelectric conversion element, but can generate a high temperature difference in the thermoelectric conversion element when receiving heat from one side. Therefore, according to the present invention, a thermoelectric conversion sheet having improved thermoelectric conversion efficiency can be provided.
  • FIG. 2 is a cross-sectional view taken along line II-II ′ in FIG. 1.
  • the schematic plan view of a unileg type thermoelectric conversion sheet The figure which showed the electromotive force measuring method in an Example.
  • thermoelectric conversion sheet of the present invention is a sheet body used for conversion between thermal energy and electrical energy.
  • thermoelectric conversion sheet 100 First, as a first embodiment of the thermoelectric conversion sheet of the present invention, a p-type thermoelectric conversion element (hereinafter also referred to as “p-type thermoelectric conversion element”) and an n-type thermoelectric conversion element (hereinafter referred to as “n-type thermoelectric conversion”).
  • p-type thermoelectric conversion element p-type thermoelectric conversion element
  • n-type thermoelectric conversion n-type thermoelectric conversion element
  • a bipolar thermoelectric conversion sheet provided with a “conversion element” will be described. 1 and 2 in the thermoelectric conversion sheet 100 according to the first embodiment, the horizontal direction is the longitudinal direction (hereinafter also referred to as “length direction L”), and the vertical direction is the short direction (hereinafter referred to as “width direction”).
  • the rectangular sheet body 1 is also provided.
  • the sheet body 1 is provided with a plurality of sheet-like thermoelectric conversion elements 10 having an area smaller than that of the sheet body, and the sheet body 1 of the present embodiment includes a p-type thermoelectric conversion element 10p and an n-type thermoelectric conversion element 10n. There are several each.
  • the sheet body 1 is further provided with a base sheet 20 that defines the overall shape of the sheet body 1. That is, the shape of the base material sheet 20 is a horizontally long rectangle like the sheet body 1.
  • the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are disposed on the upper surface of the base sheet 20.
  • the sheet body 1 electrically connects the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n arranged on the base sheet, and transmits the electric power generated in these thermoelectric conversion elements 10p and 10n outside the sheet body.
  • a wiring 30 for taking out is provided.
  • the wiring 30 is provided on the base material sheet.
  • the said wiring 30 forms the conduction
  • the conduction path is formed such that a plurality of thermoelectric conversion elements 10p and 10n are arranged in series along the direction of the current I generated when the sheet body 1 receives heat on one side. That is, the plurality of thermoelectric conversion elements in the present embodiment are electrically connected to form a single conduction path in series.
  • the sheet main body 1 of the present embodiment further includes a laminate sheet 40 having a shape corresponding to the base sheet 20.
  • the laminate sheet 40 constitutes the uppermost portion in the thickness direction of the sheet body 1 with the p-type thermoelectric conversion element 10p, the n-type thermoelectric conversion element 10n and the wiring 30 mounted on the base sheet covered from above. ing.
  • the sheet body 1 includes p-type thermoelectric conversion elements 10p and n-type thermoelectric conversion elements 10n alternately in the length direction L.
  • the p-type thermoelectric conversion elements 10p and the n-type thermoelectric conversion elements 10n are The sheet main body 1 is arranged at a predetermined interval in the length direction L.
  • Each of the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n in the present embodiment is a vertically long rectangle, and has a shape that extends long along the width direction W of the sheet body 1.
  • the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are arranged so as to cross through the central portion in the width direction of the sheet body 1.
  • the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are arranged so as to extend from one end side in the width direction of the sheet body 1 to the other end side.
  • the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are bonded to the upper surface of the base sheet 20 by a bonding sheet 50.
  • thermoelectric conversion sheet of this embodiment is used, for example, in contact with a heating element having a surface temperature higher than the ambient temperature.
  • seat main body has the reference surface S containing the surface contact
  • the sheet body 1 is hung from the widthwise center of the sheet body 1 to one end so as to generate the temperature difference as described above in the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n.
  • a fiber sheet 60 that covers approximately half from the lower surface side of the base sheet 20 is further provided. That is, the sheet main body 1 has a heat insulating layer formed by the fiber sheet 60 between the heat receiving side reference surface S (hereinafter also referred to as “heat receiving reference surface”) and the thermoelectric conversion elements 10p and 10n.
  • the p-type thermoelectric conversion element 10p provided in the sheet main body 1 is provided with a heat insulating layer between the heat receiving reference surface S, so that one side is the reference surface with the central portion in the width direction of the sheet main body 1 as a boundary.
  • the high thermal resistance region PH has a relatively high thermal resistance from S, and the other is the low thermal resistance region PL in which the thermal resistance is lower than that of the high thermal resistance region PH.
  • one is a high thermal resistance region NH having a relatively high thermal resistance from the heat receiving reference surface S, with the other being the center of the sheet body 1 in the width direction.
  • the low thermal resistance region NL has a lower thermal resistance than the high thermal resistance region NH.
  • the heat receiving reference surface S coincides with the surface of the heating element. Therefore, in other words, the high thermal resistance regions PH and NH are regions where the thermal resistance from the surface of the heating element to the thermoelectric conversion elements 10p and 10n is relatively high, and the low thermal resistance regions PL and NL are from the surface of the heating element. This is a region where the thermal resistance to the thermoelectric conversion elements 10p and 10n is relatively low.
  • the thermoelectric conversion sheet 100 in the present embodiment is configured to form the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL by forming a heat insulating layer with the fiber sheet 60 as shown in FIG.
  • a heat insulating layer may be formed by an air layer, thereby forming the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL. That is, the thermoelectric conversion sheet 100 in the present embodiment is such that the lower surface of the base sheet 20 is lifted from the heat receiving reference plane S in approximately half the width direction of the sheet body 1, and the heat receiving reference plane S, the base sheet 20, An air layer may be provided between the two.
  • the air layer can be formed by providing a spacer on the lower surface of the base sheet 20 for providing a gap between the air layer and the heating element.
  • the high thermal resistance region PH and the low thermal resistance region PL of the p-type thermoelectric conversion element 10p are directed toward the conduction path direction (current I direction) in all the p-type thermoelectric conversion elements 10p.
  • a low thermal resistance region PL is disposed on the upstream side
  • a high thermal resistance region PH is disposed on the downstream side.
  • the high thermal resistance region NH and the low thermal resistance region NL of the n-type thermoelectric conversion element 10n are arranged such that the high thermal resistance region NH is arranged on the upstream side and the low thermal resistance region NL is arranged on the downstream side, and the p-type thermoelectric conversion element 10p Are in reverse order.
  • thermoelectric conversion element 10p, In 10n when an object having a higher temperature than the upper surface side is brought into contact with the lower surface side of the sheet body 1, each thermoelectric conversion element 10p, In 10n, a temperature difference is generated between the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL. Moreover, the temperature difference occurs along the direction of the conduction path, and the direction in which the temperature difference occurs between the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n is reversed.
  • thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n the direction of the voltage generated by the temperature difference is reversed, so that the direction of the voltage in these elements is aligned with the direction of the conduction path. That is, in the sheet main body 1 of the present embodiment, the generated voltages of the thermoelectric conversion elements 10p and 10n are accumulated when receiving heat from the lower surface side. Therefore, in the sheet body 1 of the present embodiment, a high voltage is generated between both ends of the conduction path even if the heat received from the lower surface side is slight.
  • the low thermal resistance regions PL and NL have the same or different heat insulation properties as the fiber sheet 60 as shown in FIG.
  • the sheet 70 may be covered from the upper side.
  • the thermoelectric conversion elements 10p, 10n of the sheet body 1 have a high heat dissipation resistance region having a relatively high thermal resistance from the surface on the heat dissipation side to the thermoelectric conversion elements 10p, 10n, and the high heat dissipation resistance.
  • a low heat radiation resistance region having a lower thermal resistance than the region is formed. Further, as shown in FIG.
  • the thermoelectric conversion sheet 100 of the present embodiment has a heat dissipation member 80 such as a heat sink in contact with the low thermal resistance regions PL and NL so as to cover the high thermal resistance regions PH and NH. A higher temperature difference may be generated.
  • the heat radiating member 80 does not have to be an air-cooled type such as a heat sink, and may be a forced cooling type of a type in which a refrigerant is circulated.
  • thermoelectric conversion elements 10p and 10n a large temperature difference can be generated in the thermoelectric conversion elements 10p and 10n by arranging the high heat dissipation resistance region and the low heat dissipation resistance region side by side in the direction of the conduction path.
  • at least a part of the low heat radiation resistance region overlaps the high heat resistance regions PH and NH.
  • thermoelectric conversion sheet of the present embodiment includes a sheet body that receives heat from one side and radiates heat from the other side to perform the thermoelectric conversion, and the sheet body has a sheet-like thermoelectric device that is smaller than the sheet body.
  • a plurality of conversion elements may be arranged, and the plurality of thermoelectric conversion elements may be electrically connected to form a single conduction path in series.
  • the one or more thermoelectric conversion elements include a high heat dissipation resistance region having a relatively high thermal resistance from the thermoelectric conversion element to the heat dissipation surface of the sheet body, and a low heat resistance lower than the high heat dissipation resistance region. And a low heat dissipation resistance region and the high heat dissipation resistance region may be arranged in the direction of the conduction path.
  • thermoelectric conversion sheet When producing a thermoelectric conversion sheet in which a low heat dissipation resistance region and a high heat dissipation resistance region are aligned in the direction of the conduction path, a heat insulating layer is not provided between the heat receiving reference surface and the thermoelectric conversion element (high heat resistance region). And a low thermal resistance region), a temperature difference is formed between the high thermal resistance region and the low thermal resistance region when receiving heat from the heating element.
  • a sheet 70 is provided only on the heat radiation side, and the p-type thermoelectric conversion elements and A high heat dissipation resistance region having a high thermal resistance to the heat dissipation surface and a low heat dissipation resistance region having a thermal resistance lower than that of the high heat dissipation resistance region are formed in each one or more of the n-type thermoelectric conversion elements,
  • the heat dissipation resistance region is arranged in the direction of the conduction path and the order of arrangement is reversed between the p-type thermoelectric conversion element and the n-type thermoelectric conversion element, the high heat dissipation resistance region and the low heat dissipation resistance are received when receiving heat.
  • thermoelectric conversion element A voltage is generated between the region and the temperature difference. Since the temperature rise in the high heat radiation resistance region immediately after receiving heat becomes steeper than that in the low heat radiation resistance region, a voltage is generated in the thermoelectric conversion element immediately. However, it is preferable that the thermal resistance from the heat receiving reference surface to the thermoelectric conversion element is small. If the thermal resistance from the heat receiving reference surface to the thermoelectric conversion element is low, the temperature of the heat radiating surface is hardly different from the temperature on the heat receiving side even in the low heat radiating resistance region.
  • thermoelectric conversion sheet when such a thermoelectric conversion sheet is brought into contact with a human body surface, the temperature of the high heat dissipation resistance region quickly rises to the body surface temperature, and a temperature difference is generated between the temperature of the low heat dissipation resistance region.
  • the low heat dissipation resistance region eventually becomes a temperature close to the body surface temperature. For this reason, even if a temperature difference occurs temporarily between the high heat dissipation resistance region and the low heat dissipation resistance region, the temperature difference between the high heat dissipation resistance region and the low heat dissipation resistance region is considered to be small after a certain period of time. .
  • thermoelectric conversion sheet which is not provided with a heat insulating layer between the heat receiving reference plane and the thermoelectric conversion element and is provided only on the heat radiating side, can be used effectively for detection of heat reception, but long-term sustainability of the generated voltage. From this point of view, it is considered to be inferior to a thermoelectric conversion sheet in which a heat insulating layer is provided between the heat receiving reference surface and the thermoelectric conversion element.
  • the fiber sheet 60 for forming the heat insulating layer as described above is excellent in heat insulating properties such as airgel in generating a high temperature difference between the high heat resistance regions PH and NH and the low heat resistance regions PL and NL. It is preferable to contain the components.
  • airgel silica airgel, carbon airgel, alumina airgel, or the like can be employed.
  • the fibers constituting the fiber sheet 60 include natural fibers such as pulp, cotton and hemp, polyester fibers, vinylon fibers, polyolefin fibers, polyurethane fibers, aramid fibers, acrylic fibers, polylactic acid fibers, polyvinyl chloride fibers, and vinylidene fibers. And synthetic resin fibers such as polyphenylene sulfide fibers.
  • the fibers may be inorganic fibers such as ceramic fibers, alumina fibers, glass fibers, and carbon fibers.
  • the fiber sheet in the present embodiment can be a woven fabric, a nonwoven fabric or a knitted fabric containing one or more of the above fibers.
  • the fiber sheet 60 preferably has an average thickness of 0.1 mm to 5 mm, and more preferably 0.5 mm to 2 mm.
  • the heat insulating layer formed by the fiber sheet 60 is preferably formed so as to cover a range of 10% to 90% with respect to the dimensions of the thermoelectric conversion elements 10p and 10n in the direction of the conduction path. It is more preferable that it falls within the following range. That is, when the heat insulating layer is projected onto the plane on which the thermoelectric conversion elements 10p and 10n are arranged, the dimensions of the portion where the thermoelectric conversion elements 10p and 10n are covered from the lower surface side by the heat insulating layer ("" in FIG.
  • the ratio (W2 / W1) of the W2 ") to the dimension (W1) of the thermoelectric conversion elements 10p, 10n is preferably 0.1 to 0.9, more preferably 0.15 to 0.6. .
  • the heat insulating layer may be formed by other than the fiber sheet, and may be an air layer as described above.
  • Examples of the material that can form the heat insulating layer instead of the fiber sheet 60 include porous sheets such as foam sheets and sponge sheets.
  • the thermoelectric conversion element 10 of this embodiment has a softness
  • the sheet forming the heat insulating layer When the thermoelectric conversion element 10 is used for measuring a human body temperature, if the sheet forming the heat insulating layer exhibits water absorption, the heat insulating property is likely to be impaired by sweat or the like. Therefore, it is preferable that the sheet
  • the heat insulating layer is composed of a fiber sheet as described above, a fiber sheet that is water-repellent coated or a fiber sheet that is entirely covered at least on one side (reference surface S side) with a water-impervious resin film. It is preferable to adopt. More preferably, both sides of the fiber sheet are entirely covered with a resin film having water shielding properties.
  • the fiber sheet is also covered with a resin film at the side edge. Moreover, even if it forms a heat insulation layer with the thin resin foam sheet excellent in closed cell property instead of the fiber sheet covered with the resin film, water cannot penetrate
  • thermoelectric conversion element 10 and the fiber sheet 60 of the present embodiment have a flexibility that can be wound around a round bar having a diameter of 50 mm or less for one or more rounds. That is, it is preferable that the thermoelectric conversion element 10 and the fiber sheet 60 of the present embodiment do not cause problems such as cracking and tearing even when they are wound around a round bar having a diameter of 50 mm or less.
  • the thermoelectric conversion element 10 and the fiber sheet 60 of the present embodiment are more preferably flexible enough to be wound around a round bar having a diameter of 20 mm or less and having a diameter of 10 mm or less.
  • the round bar has flexibility so that it can be wound around one round or more.
  • thermoelectric conversion elements 10p and 10n can be sheets made of a resin composition including a base resin, an inorganic thermoelectric conversion material, and a charge transport material, for example.
  • the resin composition that forms the thermoelectric conversion elements 10p and 10n may include additives conventionally blended in various resin compositions as other components.
  • the base resin of the thermoelectric conversion elements 10p and 10n is preferably an easily formed film, and can be appropriately selected from those conventionally used as a sheet forming material.
  • the resin preferably has electrical insulation and preferably has an electrical conductivity of 1 S / cm or less.
  • Suitable examples of the base resin include polypropylene resin, high density polyethylene resin, low density polyethylene resin, linear low density polyethylene resin, crosslinked polyethylene resin, ultrahigh molecular weight polyethylene resin, polybutene-1, poly-3-methylpentene, Polyolefin resin such as poly-4-methylpentene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, copolymer of polyethylene and cycloolefin such as norbornene; Vinyl resin, polyvinylidene chloride resin, chlorinated polyethylene resin, chlorinated polypropylene resin, polyvinylidene fluoride resin, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer Coalescence, vinyl chloride Halogenated polyolefin resins such as vinylidene chloride-viny
  • polyolefin resins and halogenated polyolefin resins are preferable from the viewpoint of film forming properties of the resin composition, and polyvinyl chloride resins are particularly preferable.
  • the content of the base resin in the soot resin composition is preferably 1% by mass or more and 80% by mass or less, and more preferably 10% by mass or more and 30% by mass or less.
  • the resin composition may be a polymer material in which part or all of the base resin functions as an organic thermoelectric conversion material.
  • the polymer material is selected from the group consisting of thiophene compounds, pyrrole compounds, aniline compounds, acetylene compounds, p-phenylene compounds, p-phenylene vinylene compounds, p-phenylene ethynylene compounds, fluorene compounds, and arylamine compounds. It is preferable to contain a constituent component corresponding to at least one compound as a repeating structure.
  • polymer materials include polythiophene polymers, polypyrrole polymers, poly-p-phenylene polymers, poly-p-phenylene vinylene polymers, poly-p-phenylene ethylenes.
  • a nylene-based polymer is preferable.
  • the polythiophene polymer and the polypyrrole polymer those obtained by bonding the thiophene ring and the pyrrole ring at the 2,5-positions are preferable.
  • Poly-p-phenylene polymers, poly-p-phenylene vinylene polymers, and poly-p-phenylene ethynylene polymers are obtained by bonding phenylene groups in the para position (1, 4 position). Is preferred.
  • thermoelectric conversion material A conventionally known inorganic thermoelectric conversion material can be used.
  • specific examples of such materials include single-walled carbon nanotubes; zinc oxide, tin oxide, strontium titanate, barium titanate, (Zn, Al) O, NaCo 2 O 4 , Ca 3 Co 4 O 9 , Bi. 2 Sr 2 Co 2 O y , and metal oxides and sulfides such as silver sulfide; Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, and Si Examples thereof include metal element composite materials containing at least two or more selected elements.
  • metal element composite material examples include BiTe, BiSb, BiSbTe, BiSbSe, CoSb, PbTe, TeSe, and SiGe materials and magnesium silicide materials (Mg 2 Si materials). Is mentioned.
  • the form of the inorganic thermoelectric conversion material is preferably in the form of particles, tubes, or wires, and more preferably in the form of tubes or wires. Since the tube-shaped or wire-shaped inorganic thermoelectric conversion material is easily point-contacted in the sheet formed using the resin composition, when the tube-shaped or wire-shaped inorganic thermoelectric conversion material is used, it is formed into a sheet. In particular, there is an advantage that carriers (charges) easily move in the sheet (thermoelectric conversion element).
  • the average particle size of the inorganic thermoelectric conversion material is preferably 2 nm or more and 100 ⁇ m or less, and more preferably 2 nm or more and 10 ⁇ m or less.
  • the average diameter (average length in the uniaxial direction) of the tube or wire is preferably 0.5 nm or more and 3000 nm or less, and 0.5 nm or more. More preferably, it is 2000 nm or less.
  • the aspect ratio (average length / average diameter, average length is the average length in the major axis direction) of the tube or wire is preferably 10 or more, and preferably 10 or more and 2000 or less.
  • Said average particle diameter, average length, and average diameter are the number average values calculated
  • the content of the inorganic thermoelectric conversion material in the resin composition is preferably 4% by mass or more and 70% by mass or less, and more preferably 10% by mass or more and 40% by mass or less.
  • the charge transport material is a substance that transports or promotes electrons or holes, and has an effect of increasing the thermoelectric conversion efficiency of the sheet-like thermoelectric conversion element formed using the resin composition.
  • the charge transport material various substances that are used to promote transport of electrons or holes in various applications can be used.
  • the charge transporting material used in the present embodiment may be a constituent material of an organic electroluminescent element, a constituent material of a photoelectric conversion element, or a charge transport material used as a constituent material of a photosensitive layer provided in an electrophotographic photosensitive member used in an electrophotographic apparatus. It can be suitably used as a transport material.
  • Preferred examples of the charge transport material include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-bis (3-methylphenyl)- [1,1′-biphenyl] -4,4′-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolyl) Aminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane Bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane,
  • the content of the charge transport material in the resin composition is preferably 15% by mass or more and 95% by mass or less, and more preferably 30% by mass or more and 70% by mass or less.
  • tackifiers antioxidants, pigments, dyes, plasticizers, UV absorbers, antifoaming agents, leveling agents, fillers, flame retardants, viscosity modifiers, etc.
  • An agent can be included.
  • the resin composition can be formed into a thermoelectric conversion element by forming a film by a casting method or an extrusion method using a solvent.
  • the base sheet 20 can be, for example, a resin film, a fiber sheet, or the like, and if it is a resin film, a polyolefin resin film, a polyester resin film, a polyamide resin film, a polyimide resin film, a fluororesin film, a polyvinyl chloride It can be a resin film or the like.
  • the base sheet 20 is a fiber sheet such as a nonwoven fabric, it can be a polypropylene resin nonwoven fabric, a polyester resin nonwoven fabric, or the like.
  • the base sheet 20 may be aromatic polyamide paper (aramid paper) or the like.
  • the base sheet 20 preferably has an average thickness of 1 ⁇ m to 500 ⁇ m, and more preferably 5 ⁇ m to 100 ⁇ m.
  • the wiring 30 may be formed of a metal foil, a conductive paste, a metal vapor deposition film, or the like, and the laminate sheet 40 may be a resin sheet that is the same as or different from the base sheet 20. Can do.
  • the bonding sheet 50 may be a sheet formed of an adhesive resin composition containing a tacky resin and an inorganic filler.
  • the inorganic filler to be included in the adhesive resin composition for example, metal oxides such as silica, boron oxide, alumina, titania, zirconia, metal carbides such as silicon carbide, boron carbide, titanium carbide, aluminum nitride, boron nitride, Examples thereof include metal nitrides such as titanium nitride, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, and carbonates such as calcium carbonate and magnesium carbonate.
  • the inorganic filler may be a conductive material such as carbon black, graphite, or metal particles.
  • the resin serving as the base of the adhesive resin composition include a silicone resin, an acrylic resin, and a polyurethane resin.
  • thermoelectric conversion sheet 100 can generate electricity using the heat generated by the heat generating element that is brought into contact with the heat generating element having a curved surface.
  • the atmosphere be a heat dissipation target. Therefore, the thermoelectric conversion sheet 100 of the present embodiment is preferably used in contact with a heating element having a temperature higher than a general atmospheric temperature, and the heating element has a surface temperature of 25 ° C. or higher and the surface is not flat. It is preferable to use it in contact with.
  • the thermoelectric conversion sheet 100 of this embodiment is suitable for measuring body temperature of a human body, for example.
  • thermoelectric conversion sheet 100 according to the second embodiment is different from the thermoelectric conversion sheet of the first embodiment in that the base sheet 20 constituting the sheet body 1 is provided on the heat dissipation side. That is, in the sheet body 1 according to the second embodiment, the thermoelectric conversion element 10 is bonded to the lower surface of the base sheet 20 by the bonding sheet 50. And although the thermoelectric conversion sheet 1 of 1st Embodiment is comprised so that the low thermal resistance area
  • thermoelectric conversion sheet 1 according to the second embodiment has a portion of the thermoelectric conversion element 10 that is in direct contact with the heating element when being brought into contact with the heating element, so that the thermoelectric conversion sheet 1 is more thermoelectric than the thermoelectric conversion sheet according to the first embodiment. Excellent conversion responsiveness. Moreover, the thermoelectric conversion sheet 1 of 2nd Embodiment makes the sheet
  • the base material sheet is a rectangle corresponding to the planar shape of the thermoelectric conversion element. It is assumed that the hole has a plurality of holes, and the thermoelectric conversion element is accommodated in the hole, and the outer edge of the thermoelectric conversion element and the peripheral edge of the hole of the base sheet are bonded to each other so that the base sheet and the thermoelectric conversion element are integrated.
  • a sheet body may be provided. As a result, the sheet body can be made even thinner than the thermoelectric conversion sheet of the second embodiment.
  • thermoelectric conversion sheet does not need to be a bipolar type, and may be a unileg type as illustrated in FIG. That is, the thermoelectric conversion sheet of the present invention includes a plurality of n-type thermoelectric conversion elements 10n as the thermoelectric conversion elements 10 and is configured by a plurality of n-type thermoelectric conversion elements 10n electrically connected in series.
  • a single conductive path is disposed in the sheet body 1, and includes a plurality of n-type thermoelectric conversion elements 10n having the high heat resistance region NH and the low heat resistance region NL, and the high heat resistance region NH and the low heat resistance are provided.
  • a plurality of n-type thermoelectric conversion elements 10n having a common order in which the resistance region NL is arranged in the direction of the conduction path may be provided.
  • thermoelectric conversion sheet of the present invention may have a unileg structure as illustrated in FIG. 8. That is, the thermoelectric conversion sheet of the present invention includes a plurality of p-type thermoelectric conversion elements 10p provided as the thermoelectric conversion elements 10 and electrically connected in series. A single conductive path is disposed in the sheet body 1, and includes a plurality of p-type thermoelectric conversion elements 10p having the high thermal resistance region PH and the low thermal resistance region PL, and the high thermal resistance region PH and the low heat resistance are provided. A plurality of p-type thermoelectric conversion elements 10p having a common order in which the resistance region PL is arranged in the direction of the conduction path may be provided.
  • thermoelectric conversion elements can add various changes other than the above to said illustration, and is not limited to the said illustration at all.
  • FIGS. 1, 7, and 8 illustrate an embodiment in which the thermoelectric conversion elements are arranged in a line, but a plurality of thermoelectric conversion elements may be arranged vertically and horizontally.
  • thermoelectric conversion sheet provided for the module was designed on the assumption that a module that converts thermal energy due to a temperature difference between the body surface temperature of the human body and ambient air temperature into electrical energy was formed.
  • a rectangular polyimide resin film (thickness: 50 ⁇ m) having a long side dimension of 18 cm and a short side dimension of 6 cm was prepared as a base sheet.
  • 10 sheet-shaped p-type thermoelectric conversion elements having a width of 5 mm and a length of 4 cm and 10 n-type thermoelectric conversion elements having the same shape were prepared.
  • thermoelectric conversion element p-type single-walled carbon nanotubes and n-type single-walled carbon nanotubes were used as materials for forming the p-type thermoelectric conversion element and the n-type thermoelectric conversion element, respectively.
  • a fiber sheet (trade name “DEXPAPER”, thermal conductivity of 0.1 W / m ⁇ K or less, thickness: 0.7 mm) having substantially the same size as the base sheet was prepared for forming the heat insulating layer.
  • bonding sheets thickness: 25 ⁇ m
  • the test body is arranged so that a predetermined gap is provided in the long side direction of the base sheet 20 and the p-type thermoelectric conversion elements 10p and the n-type thermoelectric conversion elements 10n are alternately arranged.
  • the conduction path in the test body was configured by electrically connecting the thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n so as to be arranged in series.
  • the test body X is superimposed on the fiber sheet 60, set on a hot platen HT set to a temperature of 37 ° C., and a voltage generated between thermoelectric conversion elements located at both ends of the test body X. (Electromotive voltage) was measured.
  • the measurement was carried out in a room where the temperature was set to 23 ° C., and was carried out in an almost windless environment.
  • the ratio of the area in which the fiber sheet 60 is interposed between the hot platen HT and the total area of the thermoelectric conversion elements 10p and 10n was changed.
  • the lower surface of the base material sheet 20 was made to contact
  • step difference by the fiber sheet 60 is formed in the boundary of the part (high heat resistance area
  • the above measurement was carried out with as few voids as possible. The measurement was performed in two ways, with and without a heat sink. That is, the measurement was also performed in the case where the heat sink was brought into contact with the upper surface of the test body X at the portion where the fiber sheet 60 was interposed between the hot platen HT and the shape illustrated in FIG. The results are shown in FIG.
  • thermoelectric conversion sheet with improved thermoelectric conversion efficiency was provided. Moreover, in this invention, it has confirmed that utilization of a heat sink was effective in obtaining a high electromotive voltage.
  • FIG. 10 shows that voltage is generated even when the shielding rate is 0%, and no voltage is generated even when the shielding rate is not 100% but about 95%, but these are formed by the fiber sheet 60. It is thought that the level difference is influenced. For example, in the case where the shielding rate is 0%, the fiber sheet 60 does not exist at all directly below the thermoelectric conversion element, but the fiber sheet 60 exists at a position slightly away from the thermoelectric conversion element.
  • the base sheet In the vicinity of the sheet, the base sheet was not sufficiently in contact with the hot platen, and it was considered that the voltage was generated because the heat transfer to the thermoelectric conversion element was not sufficient. Further, in the region where the shielding rate is over 95% and less than 100%, the hot platen HT is also formed in the region where a gap is formed by the step generated by the fiber sheet 60 and the fiber sheet 60 does not exist immediately below the thermoelectric conversion element. It is thought that it was difficult to transmit heat from.
  • FIG. 11 shows the result of measuring the electromotive current in the same manner as the above electromotive voltage measurement method. Moreover, the result of having calculated the electromotive force with the obtained electric current value and voltage value is shown in FIG. From the examination results shown in FIG. 10, it was confirmed that it is preferable to obtain a high electromotive voltage when the shielding rate is 10% or more and 90% or less. On the other hand, as shown in FIG. 11, it was confirmed by this evaluation that when the shielding rate is gradually decreased from 100%, the current value rapidly increases near the shielding rate of 60%. Further, as shown in FIG. 11, it was found that when the shielding rate was further reduced, the current value showed a tendency to decrease when the shielding rate was less than 15%. That is, it was confirmed from these results that the shielding rate is preferably 15% or more and 60% or less in order to obtain a high electromotive force.
  • thermoelectric conversion element 10n n-type thermoelectric conversion element 10p p-type thermoelectric conversion element NL low thermal resistance area NH (n-type thermoelectric conversion element) high thermal resistance area PL (p-type thermoelectric conversion element) Of) low thermal resistance region PH (for p-type thermoelectric conversion element) high thermal resistance region 60 fiber sheet (heat insulation layer) 100 Thermoelectric conversion sheet

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention addresses the problem of providing a thermoelectric conversion sheet in which the thermoelectric conversion efficiency is improved. In the present invention, in order to solve this problem, heat resistance from a heat reception reference surface is made to differ between a part and the remainder of a thermoelectric conversion element.

Description

熱電変換シートThermoelectric conversion sheet 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2016-131933号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2016-131933, and is incorporated herein by reference.
 本発明は熱電変換が行われる熱電変換シートに関する。 The present invention relates to a thermoelectric conversion sheet on which thermoelectric conversion is performed.
 近年、熱エネルギーを電気エネルギーに変換可能な熱電変換素子を利用した熱電変換装置が各種用途に利用されている。熱電変換素子は、熱エネルギーを電気エネルギーに変換することができるため、例えば、発電装置や温度計測装置の主要部材として利用されている。また、熱電変換素子は、熱エネルギーを直接電気エネルギーに変換することができるため、前記のような装置の構成を簡素化することができる。この種の熱電変換素子は、素子内で温度差が生じることにより電荷の分布に偏りが生じて電圧を発生するものである。この電圧は、比較的小さなものであるため、通常、この種の熱電変換素子は、複数のものを直列に接続して用いられる。例えば、下記特許文献1においては、無機焼結体で形成された柱状の熱電変換素子を基板上に配列し、隣り合う熱電変換素子の底部どうし又は頂部どうしを電気的に接続して一つの導通経路を構成することが示されている(特許文献1の図1など参照)。ところで、近年、このような無機焼結体に代えて樹脂シートのような柔軟なシート状の熱電変換素子の利用が検討されている(下記特許文献2参照)。 In recent years, thermoelectric conversion devices using thermoelectric conversion elements capable of converting thermal energy into electrical energy have been used for various purposes. Since the thermoelectric conversion element can convert heat energy into electric energy, it is used as a main member of a power generation device or a temperature measurement device, for example. Moreover, since the thermoelectric conversion element can directly convert thermal energy into electrical energy, the configuration of the device as described above can be simplified. This type of thermoelectric conversion element generates a voltage by causing a bias in the distribution of charges due to a temperature difference in the element. Since this voltage is relatively small, usually, a plurality of such thermoelectric conversion elements are connected in series. For example, in Patent Document 1 below, columnar thermoelectric conversion elements formed of an inorganic sintered body are arranged on a substrate, and the bottom portions or the top portions of adjacent thermoelectric conversion elements are electrically connected to form a single conduction. It is shown that a route is configured (see FIG. 1 of Patent Document 1). Incidentally, in recent years, the use of a flexible sheet-like thermoelectric conversion element such as a resin sheet instead of such an inorganic sintered body has been studied (see Patent Document 2 below).
日本国特開2015-192084号公報Japanese Unexamined Patent Publication No. 2015-192084 日本国特開2015-170766号公報Japanese Unexamined Patent Publication No. 2015-170766
 無機焼結体に比べて前記のようなシート状の熱電変換素子は柔軟性に優れるため、このような熱電変換素子を複数配列して熱電変換シートを作製すれば曲面などへの追従性に優れたものになると考えられる。しかしながら、この種の熱電変換シートは、発熱体に片面を接触させた時点でシート全体が比較的均一な温度になってしまうためそれぞれの熱電変換素子に大きな電圧が発生することを期待することが難しい。即ち、シート状の熱電変換素子を利用した熱電変換シートでは高い熱電変換効率が発揮されることを期待することが難しいという問題を有している。そこで、本発明はこのような問題を解決することを課題とし、熱電変換シートにおける熱電変換効率の向上を目的としている。 Compared to inorganic sintered bodies, the sheet-like thermoelectric conversion element is superior in flexibility, so if a thermoelectric conversion sheet is prepared by arranging a plurality of such thermoelectric conversion elements, it is excellent in conformity to curved surfaces. It is thought that it will become a thing. However, this type of thermoelectric conversion sheet is expected to generate a large voltage in each thermoelectric conversion element because the entire sheet becomes a relatively uniform temperature when one surface is brought into contact with the heating element. difficult. That is, a thermoelectric conversion sheet using a sheet-like thermoelectric conversion element has a problem that it is difficult to expect high thermoelectric conversion efficiency. Then, this invention makes it a subject to solve such a problem, and aims at the improvement of the thermoelectric conversion efficiency in a thermoelectric conversion sheet.
 本発明者は、上記のような問題を解決すべく鋭意検討を行った結果、シート状の熱電変換素子を利用した熱電変換シートにおいては、その片面側を受熱側、他面側を放熱側とし、受熱側又は放熱側の熱抵抗が異なる領域を1つの熱電変換素子の中に形成させることで当該熱電変換素子内に高い温度差を生じさせることができ、且つ、この温度差を導通経路の方向に生じさせることで熱電変換素子が発生する電圧を増大させ得ることを見出して本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the inventor of the present invention, in a thermoelectric conversion sheet using a sheet-like thermoelectric conversion element, the one side is the heat receiving side and the other side is the heat radiating side. By forming regions having different thermal resistances on the heat receiving side or the heat radiating side in one thermoelectric conversion element, a high temperature difference can be generated in the thermoelectric conversion element, and this temperature difference can be generated in the conduction path. It has been found that the voltage generated by the thermoelectric conversion element can be increased by causing the thermoelectric conversion element to occur in the direction, and the present invention has been completed.
 本発明者は、また、放熱側において熱抵抗の差異を設けることも熱電変換素子の素子内に温度差を生じさせるのに有効ではあるものの受熱側において熱抵抗の差異を設けることが熱電変換素子内に温度差を生じさせるのに特に有効であることを見出して本発明を完成させるに至った。 The present inventor also provides a difference in thermal resistance on the heat receiving side, although it is effective to create a temperature difference in the element of the thermoelectric conversion element. The present invention has been found to be particularly effective in producing a temperature difference in the interior of the present invention.
 即ち、上記課題を解決するための本発明は、熱電変換に用いられる熱電変換シートであって、一面側から受熱し、他面側から放熱して前記熱電変換が行われるシート本体を備え、前記シート本体には該シート本体よりも面積の小さなシート状の熱電変換素子が複数配され、複数の前記熱電変換素子は直列となるように電気的に接続されて少なくとも一つの導通経路を構成しており、前記シート本体は、受熱側に基準面を有し、1以上の前記熱電変換素子は、前記基準面から該熱電変換素子までの熱抵抗が相対的に高い高熱抵抗領域と、該高熱抵抗領域よりも前記熱抵抗が低い低熱抵抗領域とを有し、且つ、該低熱抵抗領域と前記高熱抵抗領域とが前記導通経路の方向に並んでいる熱電変換シートを提供する。 That is, the present invention for solving the above problems is a thermoelectric conversion sheet used for thermoelectric conversion, comprising a sheet body that receives heat from one side and radiates heat from the other side to perform the thermoelectric conversion, The sheet body is provided with a plurality of sheet-like thermoelectric conversion elements having a smaller area than the sheet body, and the plurality of thermoelectric conversion elements are electrically connected to form a series to form at least one conduction path. The sheet body has a reference surface on the heat receiving side, and the one or more thermoelectric conversion elements include a high heat resistance region having a relatively high thermal resistance from the reference surface to the thermoelectric conversion element, and the high heat resistance. There is provided a thermoelectric conversion sheet having a low thermal resistance region whose thermal resistance is lower than that of the region, and wherein the low thermal resistance region and the high thermal resistance region are arranged in the direction of the conduction path.
 本発明の熱電変換シートは、シート状の熱電変換素子を有しながらも片面側から熱を受けた際に熱電変換素子に高い温度差を発生させ得る。従って、本発明によれば、熱電変換効率の向上した熱電変換シートを提供することができる。 The thermoelectric conversion sheet of the present invention has a sheet-like thermoelectric conversion element, but can generate a high temperature difference in the thermoelectric conversion element when receiving heat from one side. Therefore, according to the present invention, a thermoelectric conversion sheet having improved thermoelectric conversion efficiency can be provided.
第1実施形態に係る熱電変換シート(バイポーラ型)の概略平面図。The schematic plan view of the thermoelectric conversion sheet | seat (bipolar type) which concerns on 1st Embodiment. 図1におけるII-II’線矢視断面図。FIG. 2 is a cross-sectional view taken along line II-II ′ in FIG. 1. 第1実施形態に係る熱電変換シートの変更事例を示した図。The figure which showed the example of a change of the thermoelectric conversion sheet which concerns on 1st Embodiment. 第1実施形態に係る熱電変換シートの変更事例(放熱側の熱抵抗調整事例)を示した図。The figure which showed the example of a change (thermal resistance adjustment example of the thermal radiation side) of the thermoelectric conversion sheet which concerns on 1st Embodiment. 第1実施形態に係る熱電変換シートの変更事例(ヒートシンク取付事例)を示した図。The figure which showed the example of a change (heat sink attachment example) of the thermoelectric conversion sheet which concerns on 1st Embodiment. 第2実施形態に係る熱電変換シートの断面図。Sectional drawing of the thermoelectric conversion sheet which concerns on 2nd Embodiment. ユニレグ型の熱電変換シートの概略平面図。The schematic plan view of a unileg type thermoelectric conversion sheet. ユニレグ型の熱電変換シートの概略平面図。The schematic plan view of a unileg type thermoelectric conversion sheet. 実施例での起電圧測定方法を示した図。(a)平面図、(b)側面図、(c)正面図。The figure which showed the electromotive force measuring method in an Example. (A) Top view, (b) Side view, (c) Front view. 実施例での起電圧測定結果を示した図(グラフ)。The figure (graph) which showed the electromotive force measurement result in the Example. 実施例での起電流測定結果を示した図(グラフ)。The figure (graph) which showed the electromotive force measurement result in the Example. 実施例での起電力測定結果を示した図(グラフ)。The figure (graph) which showed the electromotive force measurement result in the Example.
 本発明の熱電変換シートに係る実施の形態について説明する。本実施形態の熱電変換シートは、熱エネルギーと電気エネルギーとの変換に用いられるシート体である。 Embodiments according to the thermoelectric conversion sheet of the present invention will be described. The thermoelectric conversion sheet of this embodiment is a sheet body used for conversion between thermal energy and electrical energy.
(第1実施形態)
 まず、本発明の熱電変換シートに係る第1の実施形態として、p型の熱電変換素子(以下、「p型熱電変換素子」ともいう)とn型の熱電変換素子(以下、「n型熱電変換素子」ともいう)とを備えたバイポーラ型の熱電変換シートについて説明する。図1、2に示すように第1実施形態に係る熱電変換シート100は、横方向が長手方向(以下、「長さ方向L」ともいう)、縦方向が短手方向(以下、「幅方向W」ともいう)となる長方形のシート本体1を備えている。
(First embodiment)
First, as a first embodiment of the thermoelectric conversion sheet of the present invention, a p-type thermoelectric conversion element (hereinafter also referred to as “p-type thermoelectric conversion element”) and an n-type thermoelectric conversion element (hereinafter referred to as “n-type thermoelectric conversion”). A bipolar thermoelectric conversion sheet provided with a “conversion element”) will be described. 1 and 2, in the thermoelectric conversion sheet 100 according to the first embodiment, the horizontal direction is the longitudinal direction (hereinafter also referred to as “length direction L”), and the vertical direction is the short direction (hereinafter referred to as “width direction”). The rectangular sheet body 1 is also provided.
 前記シート本体1にはシート本体よりも面積が小さなシート状の熱電変換素子10が複数配されており、本実施形態のシート本体1にはp型熱電変換素子10pとn型熱電変換素子10nとがそれぞれ複数ずつ備えられている。該シート本体1には、シート本体1の全体形状を画定する基材シート20がさらに備えられている。即ち、該基材シート20の形状は、シート本体1と同様に横長な長方形である。 The sheet body 1 is provided with a plurality of sheet-like thermoelectric conversion elements 10 having an area smaller than that of the sheet body, and the sheet body 1 of the present embodiment includes a p-type thermoelectric conversion element 10p and an n-type thermoelectric conversion element 10n. There are several each. The sheet body 1 is further provided with a base sheet 20 that defines the overall shape of the sheet body 1. That is, the shape of the base material sheet 20 is a horizontally long rectangle like the sheet body 1.
 前記のp型熱電変換素子10p及びn型熱電変換素子10nは、該基材シート20の上面に配されている。シート本体1は、基材シート上に配されたp型熱電変換素子10pとn型熱電変換素子10nとを電気的に接続するとともにこれらの熱電変換素子10p,10nにおいて生じた電力をシート本体外に取り出すための配線30がさらに備えられている。該配線30は、基材シート上に設けられている。前記配線30は、熱電変換素子10p,10nとともに熱電変換シート100の導通経路を形成するものである。該導通経路は、シート本体1が片面において熱を受けた際に発生する電流Iの方向に沿って複数の熱電変換素子10p,10nが直列に並ぶように配されて形成されている。即ち、本実施形態における複数の前記熱電変換素子は直列となるように電気的に接続されて一つの導通経路を構成している。 The p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are disposed on the upper surface of the base sheet 20. The sheet body 1 electrically connects the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n arranged on the base sheet, and transmits the electric power generated in these thermoelectric conversion elements 10p and 10n outside the sheet body. Further, a wiring 30 for taking out is provided. The wiring 30 is provided on the base material sheet. The said wiring 30 forms the conduction | electrical_connection path | route of the thermoelectric conversion sheet 100 with the thermoelectric conversion elements 10p and 10n. The conduction path is formed such that a plurality of thermoelectric conversion elements 10p and 10n are arranged in series along the direction of the current I generated when the sheet body 1 receives heat on one side. That is, the plurality of thermoelectric conversion elements in the present embodiment are electrically connected to form a single conduction path in series.
 本実施形態のシート本体1は、前記基材シート20に対応した形状を有するラミネートシート40をさらに備えている。該ラミネートシート40は、基材シート上に搭載されたp型熱電変換素子10p、n型熱電変換素子10n、及び、配線30を上から覆った状態でシート本体1の厚み方向最上部を構成している。 The sheet main body 1 of the present embodiment further includes a laminate sheet 40 having a shape corresponding to the base sheet 20. The laminate sheet 40 constitutes the uppermost portion in the thickness direction of the sheet body 1 with the p-type thermoelectric conversion element 10p, the n-type thermoelectric conversion element 10n and the wiring 30 mounted on the base sheet covered from above. ing.
 シート本体1には、長さ方向Lに向かってp型熱電変換素子10pとn型熱電変換素子10nとが交互に備えられており、p型熱電変換素子10p及びn型熱電変換素子10nは、シート本体1の長さ方向Lに所定の間隔を設けて配されている。本実施形態におけるp型熱電変換素子10p及びn型熱電変換素子10nは、何れも縦長な長方形となっており、シート本体1の幅方向Wに沿って長く延びる形状を有している。このp型熱電変換素子10p及びn型熱電変換素子10nは、シート本体1の幅方向中央部を通って横断するように配されている。即ち、p型熱電変換素子10p及びn型熱電変換素子10nは、シート本体1の幅方向一端側から他端側へと延在するように配されている。p型熱電変換素子10p及びn型熱電変換素子10nは、ボンディングシート50によって基材シート20の上面に接着されている。 The sheet body 1 includes p-type thermoelectric conversion elements 10p and n-type thermoelectric conversion elements 10n alternately in the length direction L. The p-type thermoelectric conversion elements 10p and the n-type thermoelectric conversion elements 10n are The sheet main body 1 is arranged at a predetermined interval in the length direction L. Each of the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n in the present embodiment is a vertically long rectangle, and has a shape that extends long along the width direction W of the sheet body 1. The p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are arranged so as to cross through the central portion in the width direction of the sheet body 1. That is, the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are arranged so as to extend from one end side in the width direction of the sheet body 1 to the other end side. The p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n are bonded to the upper surface of the base sheet 20 by a bonding sheet 50.
 シート本体1では、一面側から受熱し、他面側から放熱することによってp型熱電変換素子10pの素子内、並びに、n型熱電変換素子10nの素子内に温度差が生じて熱電変換が行われる。本実施形態のシート本体1は、図2正面視下側が受熱側で上側が放熱側となっている。本実施形態の熱電変換シートは、例えば、周辺の気温よりも表面温度が高い発熱体に当接させて用いられる。そして、前記シート本体は、発熱体に当接される面を含む基準面Sを受熱側に有している。該シート本体1は、p型熱電変換素子10pやn型熱電変換素子10nに上記のような温度差を発生させるべくシート本体1の幅方向中央部から一方の端に掛けて基材シート20の略半分を基材シート20の下面側から覆う繊維シート60をさらに備えている。即ち、シート本体1は、受熱側の基準面S(以下「受熱基準面」ともいう)から熱電変換素子10p,10nまでの間に該繊維シート60によって形成された断熱層を有している。 In the sheet body 1, heat is received from one side and radiated from the other side, thereby causing a temperature difference in the element of the p-type thermoelectric conversion element 10 p and in the element of the n-type thermoelectric conversion element 10 n. Is called. In the sheet main body 1 of the present embodiment, the lower side in front view of FIG. 2 is the heat receiving side and the upper side is the heat radiating side. The thermoelectric conversion sheet of this embodiment is used, for example, in contact with a heating element having a surface temperature higher than the ambient temperature. And the said sheet | seat main body has the reference surface S containing the surface contact | abutted by a heat generating body in the heat receiving side. The sheet body 1 is hung from the widthwise center of the sheet body 1 to one end so as to generate the temperature difference as described above in the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n. A fiber sheet 60 that covers approximately half from the lower surface side of the base sheet 20 is further provided. That is, the sheet main body 1 has a heat insulating layer formed by the fiber sheet 60 between the heat receiving side reference surface S (hereinafter also referred to as “heat receiving reference surface”) and the thermoelectric conversion elements 10p and 10n.
 シート本体1に備えられたp型熱電変換素子10pは、前記受熱基準面Sとの間に断熱層が設けられたことでシート本体1の幅方向中央部を境にして、一方が前記基準面Sからの熱抵抗が相対的に高い高熱抵抗領域PHとなっており、他方が高熱抵抗領域PHよりも前記熱抵抗が低い低熱抵抗領域PLとなっている。同様にn型熱電変換素子10nは、シート本体1の幅方向中央部を境にして、一方が前記受熱基準面Sからの熱抵抗が相対的に高い高熱抵抗領域NHとなっており、他方が高熱抵抗領域NHよりも前記熱抵抗が低い低熱抵抗領域NLとなっている。本実施形態においては、前記受熱基準面Sは発熱体の表面と一致している。従って、言い換えれば、高熱抵抗領域PH,NHとは発熱体の表面から熱電変換素子10p,10nまでの熱抵抗が相対的に高い領域であり、低熱抵抗領域PL,NLとは発熱体の表面から熱電変換素子10p,10nまでの熱抵抗が相対的に低い領域である。 The p-type thermoelectric conversion element 10p provided in the sheet main body 1 is provided with a heat insulating layer between the heat receiving reference surface S, so that one side is the reference surface with the central portion in the width direction of the sheet main body 1 as a boundary. The high thermal resistance region PH has a relatively high thermal resistance from S, and the other is the low thermal resistance region PL in which the thermal resistance is lower than that of the high thermal resistance region PH. Similarly, in the n-type thermoelectric conversion element 10n, one is a high thermal resistance region NH having a relatively high thermal resistance from the heat receiving reference surface S, with the other being the center of the sheet body 1 in the width direction. The low thermal resistance region NL has a lower thermal resistance than the high thermal resistance region NH. In the present embodiment, the heat receiving reference surface S coincides with the surface of the heating element. Therefore, in other words, the high thermal resistance regions PH and NH are regions where the thermal resistance from the surface of the heating element to the thermoelectric conversion elements 10p and 10n is relatively high, and the low thermal resistance regions PL and NL are from the surface of the heating element. This is a region where the thermal resistance to the thermoelectric conversion elements 10p and 10n is relatively low.
 本実施形態における熱電変換シート100は、図2に示すように繊維シート60で断熱層を形成することによって高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとを形成させるようにしているが、例えば、これに代えて図3に示すように空気層で断熱層を形成し、それによって高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとを形成させてもよい。即ち、本実施形態における熱電変換シート100は、シート本体1の幅方向略半分において基材シート20の下面を受熱基準面Sよりも持ち上げた状態にし、当該受熱基準面Sと基材シート20との間に空気層を設けるようにしてもよい。前記空気層は、発熱体との間に隙間を設けるためのスペーサーを前記基材シート20の下面に設けることで形成させることができる。 The thermoelectric conversion sheet 100 in the present embodiment is configured to form the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL by forming a heat insulating layer with the fiber sheet 60 as shown in FIG. For example, instead of this, as shown in FIG. 3, a heat insulating layer may be formed by an air layer, thereby forming the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL. That is, the thermoelectric conversion sheet 100 in the present embodiment is such that the lower surface of the base sheet 20 is lifted from the heat receiving reference plane S in approximately half the width direction of the sheet body 1, and the heat receiving reference plane S, the base sheet 20, An air layer may be provided between the two. The air layer can be formed by providing a spacer on the lower surface of the base sheet 20 for providing a gap between the air layer and the heating element.
 図にも示されているようにp型熱電変換素子10pの高熱抵抗領域PHと低熱抵抗領域PLとは、全てのp型熱電変換素子10pにおいて、導通経路の方向(電流I方向)に向かって上流側に低熱抵抗領域PLが配され、下流側に高熱抵抗領域PHが配されている。一方でn型熱電変換素子10nの高熱抵抗領域NHと低熱抵抗領域NLとは、上流側に高熱抵抗領域NHが配され、下流側に低熱抵抗領域NLが配されてp型熱電変換素子10pとは並びが逆になっている。高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとでは熱貫流率が異なるためシート本体1の下面側に上面側よりも高温の物体を当接させた際には、各熱電変換素子10p,10nにおいて高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとの間に温度差が生じることになる。しかも、温度差は導通経路の方向に沿って生じ、p型熱電変換素子10pとn型熱電変換素子10nとで温度差の生じる向きが逆になる。p型熱電変換素子10pとn型熱電変換素子10nとでは、温度差によって生じる電圧の向きが逆になるため、これらの素子における電圧の向きは導通経路の方向に揃った形になる。即ち、本実施形態のシート本体1では、下面側から受熱した際にそれぞれの熱電変換素子10p,10nの発生電圧が累積されることになる。従って、本実施形態のシート本体1では、下面側から受ける熱が僅かでも導通経路の両末端の間には高い電圧が発生する。 As shown in the figure, the high thermal resistance region PH and the low thermal resistance region PL of the p-type thermoelectric conversion element 10p are directed toward the conduction path direction (current I direction) in all the p-type thermoelectric conversion elements 10p. A low thermal resistance region PL is disposed on the upstream side, and a high thermal resistance region PH is disposed on the downstream side. On the other hand, the high thermal resistance region NH and the low thermal resistance region NL of the n-type thermoelectric conversion element 10n are arranged such that the high thermal resistance region NH is arranged on the upstream side and the low thermal resistance region NL is arranged on the downstream side, and the p-type thermoelectric conversion element 10p Are in reverse order. Since the high heat resistance regions PH and NH and the low heat resistance regions PL and NL have different heat transmissivity, when an object having a higher temperature than the upper surface side is brought into contact with the lower surface side of the sheet body 1, each thermoelectric conversion element 10p, In 10n, a temperature difference is generated between the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL. Moreover, the temperature difference occurs along the direction of the conduction path, and the direction in which the temperature difference occurs between the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n is reversed. In the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n, the direction of the voltage generated by the temperature difference is reversed, so that the direction of the voltage in these elements is aligned with the direction of the conduction path. That is, in the sheet main body 1 of the present embodiment, the generated voltages of the thermoelectric conversion elements 10p and 10n are accumulated when receiving heat from the lower surface side. Therefore, in the sheet body 1 of the present embodiment, a high voltage is generated between both ends of the conduction path even if the heat received from the lower surface side is slight.
 高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとの間に高い温度差を発生させる上において、図4に示すように低熱抵抗領域PL,NLを繊維シート60と同じか又は異なる断熱性のシート70で上側から覆ってもよい。このシート70をさらに備えることでシート本体1の熱電変換素子10p,10nには放熱側の表面から熱電変換素子10p,10nまでの熱抵抗が相対的に高い高放熱抵抗領域と、該高放熱抵抗領域よりも熱抵抗の低い低放熱抵抗領域が形成されることになる。また、本実施形態の熱電変換シート100は、図5に示すようにヒートシンクなどの放熱用部材80を高熱抵抗領域PH,NHを覆うように当接させて低熱抵抗領域PL,NLとの間により一層高い温度差を発生させるようにしてもよい。該放熱用部材80は、ヒートシンクなどの空冷式のものである必要はなく、冷媒を循環させるタイプの強制冷却式のものであってもよい。 In generating a high temperature difference between the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL, the low thermal resistance regions PL and NL have the same or different heat insulation properties as the fiber sheet 60 as shown in FIG. The sheet 70 may be covered from the upper side. By further including this sheet 70, the thermoelectric conversion elements 10p, 10n of the sheet body 1 have a high heat dissipation resistance region having a relatively high thermal resistance from the surface on the heat dissipation side to the thermoelectric conversion elements 10p, 10n, and the high heat dissipation resistance. A low heat radiation resistance region having a lower thermal resistance than the region is formed. Further, as shown in FIG. 5, the thermoelectric conversion sheet 100 of the present embodiment has a heat dissipation member 80 such as a heat sink in contact with the low thermal resistance regions PL and NL so as to cover the high thermal resistance regions PH and NH. A higher temperature difference may be generated. The heat radiating member 80 does not have to be an air-cooled type such as a heat sink, and may be a forced cooling type of a type in which a refrigerant is circulated.
 図4に示したような態様においては、高放熱抵抗領域と低放熱抵抗領域とを導通経路の方向に並べて配置することで熱電変換素子10p,10nにより大きな温度差を発生させ得る。高放熱抵抗領域と低放熱抵抗領域とを設ける際は、高放熱抵抗領域の少なくとも一部を低熱抵抗領域PL,NLと重複させることが好ましい。また、低放熱抵抗領域の少なくとも一部を高熱抵抗領域PH,NHと重複させることが好ましい。なお、高放熱抵抗領域と低放熱抵抗領域との並ぶ順をp型熱電変換素子10pとn型熱電変換素子10nとで逆にする点については高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとの関係と同じである。即ち、本実施形態の熱電変換シートは、一面側から受熱し、他面側から放熱して前記熱電変換が行われるシート本体を備え、前記シート本体には該シート本体よりも小さなシート状の熱電変換素子が複数配され、複数の前記熱電変換素子は直列となるように電気的に接続されて一つの導通経路を構成しているものであってもよい。このとき1以上の前記熱電変換素子は、当該熱電変換素子から前記シート本体の放熱面までの熱抵抗が相対的に高い高放熱抵抗領域と、該高放熱抵抗領域よりも前記熱抵抗が低い低放熱抵抗領域とを有し、且つ、該低放熱抵抗領域と前記高放熱抵抗領域とが前記導通経路の方向に並んでいてもよい。 In the embodiment as shown in FIG. 4, a large temperature difference can be generated in the thermoelectric conversion elements 10p and 10n by arranging the high heat dissipation resistance region and the low heat dissipation resistance region side by side in the direction of the conduction path. When providing the high heat radiation resistance region and the low heat radiation resistance region, it is preferable to overlap at least a part of the high heat radiation resistance region with the low heat resistance regions PL and NL. In addition, it is preferable that at least a part of the low heat radiation resistance region overlaps the high heat resistance regions PH and NH. It should be noted that the high thermal resistance regions PH and NH and the low thermal resistance regions PL and NL are different in that the order in which the high heat radiation resistance region and the low heat radiation resistance region are arranged is reversed between the p-type thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n. It is the same as the relationship. That is, the thermoelectric conversion sheet of the present embodiment includes a sheet body that receives heat from one side and radiates heat from the other side to perform the thermoelectric conversion, and the sheet body has a sheet-like thermoelectric device that is smaller than the sheet body. A plurality of conversion elements may be arranged, and the plurality of thermoelectric conversion elements may be electrically connected to form a single conduction path in series. At this time, the one or more thermoelectric conversion elements include a high heat dissipation resistance region having a relatively high thermal resistance from the thermoelectric conversion element to the heat dissipation surface of the sheet body, and a low heat resistance lower than the high heat dissipation resistance region. And a low heat dissipation resistance region and the high heat dissipation resistance region may be arranged in the direction of the conduction path.
 低放熱抵抗領域と高放熱抵抗領域とが前記導通経路の方向に並んでいる熱電変換シートを作製する場合、受熱基準面から熱電変換素子までの間には断熱層を設けずに(高熱抵抗領域と低熱抵抗領域とを形成させずに)いたとしても発熱体から熱を受けた際に高放熱抵抗領域と低放熱抵抗領域との間に温度差が形成される。例えば、p型熱電変換素子10pとn型熱電変換素子10nとが前記導通経路に沿って交互に配された前記シート本体1において、放熱側にのみにシート70を設けてp型熱電変換素子及びn型熱電変換素子のそれぞれ1以上に放熱面までの熱抵抗が高い高放熱抵抗領域と該高放熱抵抗領域よりも熱抵抗の低い低放熱抵抗領域とを形成し、該低放熱抵抗領域と前記高放熱抵抗領域とを導通経路の方向に並べ、しかも、これらの並ぶ順をp型熱電変換素子とn型熱電変換素子とで逆にすると熱を受けた際に高放熱抵抗領域と低放熱抵抗領域との間に温度差による電圧が生じる。受熱直後における高放熱抵抗領域の温度上昇は低放熱抵抗領域に比べて急峻になるため、いち早く熱電変換素子に電圧が生じる。但し、受熱基準面から熱電変換素子までの熱抵抗は小さい方が好ましい。受熱基準面から熱電変換素子までの熱抵抗が低いと低放熱抵抗領域といえども放熱面の温度は受熱側の温度と差が付き難い。例えば、このような熱電変換シートを人の体表面に当接させた場合、高放熱抵抗領域の温度はいち早く体表面温度にまで上昇し、低放熱抵抗領域との間に温度差が生じる。しかしながら、やがては低放熱抵抗領域も体表面温度に近い温度になってしまう。そのため一時的には高放熱抵抗領域と低放熱抵抗領域との間に温度差が生じたとしても一定時間経過後は高放熱抵抗領域と低放熱抵抗領域との間の温度差は小さくなると考えられる。そのため、受熱基準面から熱電変換素子までの間には断熱層を設けずに放熱側にのみシートを設けた熱電変換シートは、受熱の検知に有効利用可能ではあるものの発生した電圧の長期持続性という観点では受熱基準面から熱電変換素子までの間に断熱層を設けた熱電変換シートよりも劣ると考えられる。 When producing a thermoelectric conversion sheet in which a low heat dissipation resistance region and a high heat dissipation resistance region are aligned in the direction of the conduction path, a heat insulating layer is not provided between the heat receiving reference surface and the thermoelectric conversion element (high heat resistance region). And a low thermal resistance region), a temperature difference is formed between the high thermal resistance region and the low thermal resistance region when receiving heat from the heating element. For example, in the sheet body 1 in which p-type thermoelectric conversion elements 10p and n-type thermoelectric conversion elements 10n are alternately arranged along the conduction path, a sheet 70 is provided only on the heat radiation side, and the p-type thermoelectric conversion elements and A high heat dissipation resistance region having a high thermal resistance to the heat dissipation surface and a low heat dissipation resistance region having a thermal resistance lower than that of the high heat dissipation resistance region are formed in each one or more of the n-type thermoelectric conversion elements, When the heat dissipation resistance region is arranged in the direction of the conduction path and the order of arrangement is reversed between the p-type thermoelectric conversion element and the n-type thermoelectric conversion element, the high heat dissipation resistance region and the low heat dissipation resistance are received when receiving heat. A voltage is generated between the region and the temperature difference. Since the temperature rise in the high heat radiation resistance region immediately after receiving heat becomes steeper than that in the low heat radiation resistance region, a voltage is generated in the thermoelectric conversion element immediately. However, it is preferable that the thermal resistance from the heat receiving reference surface to the thermoelectric conversion element is small. If the thermal resistance from the heat receiving reference surface to the thermoelectric conversion element is low, the temperature of the heat radiating surface is hardly different from the temperature on the heat receiving side even in the low heat radiating resistance region. For example, when such a thermoelectric conversion sheet is brought into contact with a human body surface, the temperature of the high heat dissipation resistance region quickly rises to the body surface temperature, and a temperature difference is generated between the temperature of the low heat dissipation resistance region. However, the low heat dissipation resistance region eventually becomes a temperature close to the body surface temperature. For this reason, even if a temperature difference occurs temporarily between the high heat dissipation resistance region and the low heat dissipation resistance region, the temperature difference between the high heat dissipation resistance region and the low heat dissipation resistance region is considered to be small after a certain period of time. . Therefore, the thermoelectric conversion sheet, which is not provided with a heat insulating layer between the heat receiving reference plane and the thermoelectric conversion element and is provided only on the heat radiating side, can be used effectively for detection of heat reception, but long-term sustainability of the generated voltage. From this point of view, it is considered to be inferior to a thermoelectric conversion sheet in which a heat insulating layer is provided between the heat receiving reference surface and the thermoelectric conversion element.
 上記のような断熱層を形成させるための前記繊維シート60は、高熱抵抗領域PH,NHと低熱抵抗領域PL,NLとの間に高い温度差を発生させる上において、エアロゲルなどの断熱性に優れた成分を含有することが好ましい。該エアロゲルとしては、シリカエアロゲル、カーボンエアロゲル、アルミナエアロゲルなどを採用することができる。 The fiber sheet 60 for forming the heat insulating layer as described above is excellent in heat insulating properties such as airgel in generating a high temperature difference between the high heat resistance regions PH and NH and the low heat resistance regions PL and NL. It is preferable to contain the components. As the airgel, silica airgel, carbon airgel, alumina airgel, or the like can be employed.
 該繊維シート60を構成する繊維としては、パルプ、綿、麻などの天然繊維、ポリエステル繊維、ビニロン繊維、ポリオレフィン繊維、ポリウレタン繊維、アラミド繊維、アクリル繊維、ポリ乳酸繊維、ポリ塩化ビニル繊維、ビニリデン繊維、ポリフェニレンサルファイド繊維などの合成樹脂繊維が挙げられる。前記繊維としては、セラミック繊維、アルミナ繊維、ガラス繊維、カーボンファイバーなどの無機繊維であってもよい。本実施形態における繊維シートは、上記繊維の1以上を含む織布、不織布、或いは、編地などとすることができる。該繊維シート60は、通常、平均厚みが0.1mm以上5mm以下であることが好ましく、0.5mm以上2mm以下であることがより好ましい。 The fibers constituting the fiber sheet 60 include natural fibers such as pulp, cotton and hemp, polyester fibers, vinylon fibers, polyolefin fibers, polyurethane fibers, aramid fibers, acrylic fibers, polylactic acid fibers, polyvinyl chloride fibers, and vinylidene fibers. And synthetic resin fibers such as polyphenylene sulfide fibers. The fibers may be inorganic fibers such as ceramic fibers, alumina fibers, glass fibers, and carbon fibers. The fiber sheet in the present embodiment can be a woven fabric, a nonwoven fabric or a knitted fabric containing one or more of the above fibers. In general, the fiber sheet 60 preferably has an average thickness of 0.1 mm to 5 mm, and more preferably 0.5 mm to 2 mm.
 上記の繊維シート60によって形成する断熱層は、導通経路の方向における熱電変換素子10p,10nの寸法に対し10%以上90%以下の範囲に及ぶように形成されることが好ましく15%以上60%以下の範囲に及ぶものであることがより好ましい。即ち、熱電変換素子10p,10nが配されている平面に断熱層を投影した際に熱電変換素子10p,10nが断熱層によって下面側から覆われている状態になる部分の寸法(図1の「W2」)の熱電変換素子10p,10nの寸法(W1)に対する割合(W2/W1)は、0.1~0.9であることが好ましく、0.15~0.6であることがより好ましい。 The heat insulating layer formed by the fiber sheet 60 is preferably formed so as to cover a range of 10% to 90% with respect to the dimensions of the thermoelectric conversion elements 10p and 10n in the direction of the conduction path. It is more preferable that it falls within the following range. That is, when the heat insulating layer is projected onto the plane on which the thermoelectric conversion elements 10p and 10n are arranged, the dimensions of the portion where the thermoelectric conversion elements 10p and 10n are covered from the lower surface side by the heat insulating layer ("" in FIG. The ratio (W2 / W1) of the W2 ") to the dimension (W1) of the thermoelectric conversion elements 10p, 10n is preferably 0.1 to 0.9, more preferably 0.15 to 0.6. .
 断熱層は、繊維シート以外によって形成させても良く、前述のように空気層としてもよい。繊維シート60に代えて断熱層を形成させ得る材料としては、例えば、発泡シートやスポンジシートなどの多孔体シートが挙げられる。無機多孔質体で形成された従来の熱電変換素子に比べ本実施形態の熱電変換素子10は、柔軟性を有しており、シート本体1に可とう性を発揮させうるものである。そこで、熱電変換素子10の柔軟性をシート本体1の特性に十分反映させるためには、繊維シートや多孔体シートは柔軟性に優れたものの中から選択することが好ましい。 The heat insulating layer may be formed by other than the fiber sheet, and may be an air layer as described above. Examples of the material that can form the heat insulating layer instead of the fiber sheet 60 include porous sheets such as foam sheets and sponge sheets. Compared with the conventional thermoelectric conversion element formed with the inorganic porous body, the thermoelectric conversion element 10 of this embodiment has a softness | flexibility and can make the sheet | seat main body 1 exhibit flexibility. Therefore, in order to sufficiently reflect the flexibility of the thermoelectric conversion element 10 in the characteristics of the sheet body 1, it is preferable to select the fiber sheet or the porous sheet from those excellent in flexibility.
 熱電変換素子10を人の体温測定に利用する場合、断熱層を形成するシートが吸水性を示すと汗などによって断熱性が損なわれ易くなる。従って、断熱層を形成するシートは、遮水性を有することが好ましい。例えば、断熱層を前記のような繊維シートで構成させる場合、撥水コートされた繊維シートか、遮水性を有する樹脂フィルムで少なくとも片側(基準面S側)が全面的に覆われた繊維シートを採用することが好ましい。繊維シートは、遮水性を有する樹脂フィルムで両面が全面的に覆われていることがより好ましい。繊維シートは、側縁部も樹脂フィルムで覆われていることがさらに好ましい。また、樹脂フィルムで覆われた繊維シートに代えて独立気泡性に優れた薄手の樹脂発泡シートで断熱層を形成させても水が侵入し難く安定した断熱性が発揮され得る。 When the thermoelectric conversion element 10 is used for measuring a human body temperature, if the sheet forming the heat insulating layer exhibits water absorption, the heat insulating property is likely to be impaired by sweat or the like. Therefore, it is preferable that the sheet | seat which forms a heat insulation layer has water-blocking property. For example, when the heat insulating layer is composed of a fiber sheet as described above, a fiber sheet that is water-repellent coated or a fiber sheet that is entirely covered at least on one side (reference surface S side) with a water-impervious resin film. It is preferable to adopt. More preferably, both sides of the fiber sheet are entirely covered with a resin film having water shielding properties. More preferably, the fiber sheet is also covered with a resin film at the side edge. Moreover, even if it forms a heat insulation layer with the thin resin foam sheet excellent in closed cell property instead of the fiber sheet covered with the resin film, water cannot penetrate | invade stably and stable heat insulation can be exhibited.
 本実施形態の熱電変換素子10や繊維シート60は、直径50mm以下の丸棒に1周以上巻き付け可能な可とう性を有していることが好ましい。即ち、本実施形態の熱電変換素子10や繊維シート60は、直径50mm以下の丸棒に1周以上巻き付けた場合でも、割れや裂けといった問題が生じないことが好ましい。このような点に関し、本実施形態の熱電変換素子10や繊維シート60は、直径20mm以下の丸棒に1周以上巻き付け可能な可とう性を有していることがより好ましく、直径10mm以下の丸棒に1周以上巻き付け可能な可とう性を有していることが特に好ましい。なお、シート本体1を構成するその他の部材についても柔軟性に優れたものの中から選択することが好ましい点については同様であり、シート本体全体として上記のような可とう性を有していることが好ましい。 It is preferable that the thermoelectric conversion element 10 and the fiber sheet 60 of the present embodiment have a flexibility that can be wound around a round bar having a diameter of 50 mm or less for one or more rounds. That is, it is preferable that the thermoelectric conversion element 10 and the fiber sheet 60 of the present embodiment do not cause problems such as cracking and tearing even when they are wound around a round bar having a diameter of 50 mm or less. In this regard, the thermoelectric conversion element 10 and the fiber sheet 60 of the present embodiment are more preferably flexible enough to be wound around a round bar having a diameter of 20 mm or less and having a diameter of 10 mm or less. It is particularly preferable that the round bar has flexibility so that it can be wound around one round or more. In addition, it is the same about the point which it is preferable to select from the thing excellent in flexibility also about the other member which comprises the sheet | seat main body 1, and it has the above flexibility as the whole sheet | seat main body. Is preferred.
 前記熱電変換素子10p,10nは、例えば、ベース樹脂と、無機熱電変換材料と、電荷輸送材料とを含む樹脂組成物で作製したシートとすることができる。熱電変換素子10p,10nを形成する樹脂組成物は、他の成分として、従来から種々の樹脂組成物に配合されている添加剤を含んでいてもよい。 The thermoelectric conversion elements 10p and 10n can be sheets made of a resin composition including a base resin, an inorganic thermoelectric conversion material, and a charge transport material, for example. The resin composition that forms the thermoelectric conversion elements 10p and 10n may include additives conventionally blended in various resin compositions as other components.
 前記熱電変換素子10p,10nのベース樹脂は、製膜容易なものが好ましく、従来、シート形成材として用いられているものから適宜選択することができる。該樹脂は、電気絶縁性を有することが好ましく電導率が1S/cm以下であることが好ましい。 The base resin of the thermoelectric conversion elements 10p and 10n is preferably an easily formed film, and can be appropriately selected from those conventionally used as a sheet forming material. The resin preferably has electrical insulation and preferably has an electrical conductivity of 1 S / cm or less.
 ベース樹脂の好適な例としては、ポリプロピレン樹脂、高密度ポリエチレン樹脂、低密度ポリエチレン樹脂、直鎖低密度ポリエチレン樹脂、架橋ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体、ポリエチレンとノルボルネン等のシクロオレフィンとの共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、ポリフッ化ビニリデン樹脂、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等のハロゲン化ポリオレフィン樹脂;石油樹脂;クマロン樹脂;ポリスチレン樹脂;ポリ酢酸ビニル樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリアクリロニトリル樹脂;AS樹脂、ABS樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等のスチレン系共重合体樹脂;ポリビニルアルコール樹脂;ポリビニルホルマール樹脂;ポリビニルブチラール樹脂;ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリシクロヘキサンジメチレンテレフタレート樹脂等のポリアルキレンテレフタレート樹脂;ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂等のポリアルキレンナフタレート樹脂;液晶ポリエステル(LCP);ポリヒドロキシブチレート樹脂、ポリカプロラクトン樹脂、ポリブチレンサクシネート樹脂、ポリエチレンサクシネート樹脂、ポリ乳酸樹脂、ポリリンゴ酸樹脂、ポリグリコール酸樹脂、ポリジオキサン樹脂、ポリ(2-オキセタノン)樹脂等の分解性脂肪族ポリエステル樹脂;ポリフェニレンオキサイド樹脂;ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド6,12、ポリアミドMXD6、パラ系アラミド、メタ系アラミド等のポリアミド系樹脂;ポリカーボネート樹脂;ポリアセタール樹脂;ポリフェニレンサルファイド樹脂;ポリウレタン樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;ポリエーテルケトン樹脂;ポリエーテルエーテルケトン樹脂が挙げられる。これらの樹脂は2種以上を組み合わせて用いることができる。 Suitable examples of the base resin include polypropylene resin, high density polyethylene resin, low density polyethylene resin, linear low density polyethylene resin, crosslinked polyethylene resin, ultrahigh molecular weight polyethylene resin, polybutene-1, poly-3-methylpentene, Polyolefin resin such as poly-4-methylpentene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, copolymer of polyethylene and cycloolefin such as norbornene; Vinyl resin, polyvinylidene chloride resin, chlorinated polyethylene resin, chlorinated polypropylene resin, polyvinylidene fluoride resin, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer Coalescence, vinyl chloride Halogenated polyolefin resins such as vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-cyclohexyl maleimide copolymer; petroleum resin; coumarone Resin; polystyrene resin; polyvinyl acetate resin; acrylic resin such as polymethyl methacrylate; polyacrylonitrile resin; styrene copolymer resin such as AS resin, ABS resin, ACS resin, SBS resin, MBS resin, heat-resistant ABS resin; Polyvinyl alcohol resin; Polyvinyl formal resin; Polyvinyl butyral resin; Polyethylene such as polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polycyclohexanedimethylene terephthalate resin Xylene terephthalate resin; polyalkylene naphthalate resin such as polyethylene naphthalate resin and polybutylene naphthalate resin; liquid crystal polyester (LCP); polyhydroxybutyrate resin, polycaprolactone resin, polybutylene succinate resin, polyethylene succinate resin, poly Degradable aliphatic polyester resins such as lactic acid resin, polymalic acid resin, polyglycolic acid resin, polydioxane resin, poly (2-oxetanone) resin; polyphenylene oxide resin; polyamide 6, polyamide 11, polyamide 12, polyamide 6, 6, Polyamide-based trees such as polyamide 6,10, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 6,12, polyamide MXD6, para-aramid, meta-aramid Polycarbonate resin; Polyacetal resin; Polyphenylene sulfide resin; Polyurethane resin; Polyimide resin; Polyamideimide resin; Polyetherketone resin; These resins can be used in combination of two or more.
  以上例示した樹脂の中では、樹脂組成物の製膜性の点からポリオレフィン系樹脂、及びハロゲン化ポリオレフィン系樹脂が好ましく、ポリ塩化ビニル樹脂が特に好ましい。 Among the resins exemplified above, polyolefin resins and halogenated polyolefin resins are preferable from the viewpoint of film forming properties of the resin composition, and polyvinyl chloride resins are particularly preferable.
  樹脂組成物中のベース樹脂の含有量は、1質量%以上80質量%以下であることが好ましく、10質量%以上30質量%以下であることがより好ましい。樹脂組成物は、該ベース樹脂の一部又は全部が有機熱電変換材料として機能する高分子材料であってもよい。該高分子材料としては、チオフェン化合物、ピロール化合物、アニリン化合物、アセチレン化合物、p-フェニレン化合物、p-フェニレンビニレン化合物、p-フェニレンエチニレン化合物、フルオレン化合物およびアリールアミン化合物からなる群より選択される少なくとも1種の化合物に対応する構成成分を繰り返し構造として含むものが好ましい。より具体的には、このような高分子材料としては、ポリチオフェン系高分子、ポリピロール系高分子、ポリ-p-フェニレン系高分子、ポリ-p-フェニレンビニレン系高分子、ポリ-p-フェニレンエチニレン系高分子であることが好ましい。ポリチオフェン系高分子、ポリピロール系高分子は、チオフェン環やピロール環が、それぞれ2,5位で結合することにより得られるものが好ましい。ポリ-p-フェニレン系高分子、ポリ-p-フェニレンビニレン系高分子、ポリ-p-フェニレンエチニレン系高分子は、フェニレン基がパラ位(1,4位)で結合することにより得られるものが好ましい。 The content of the base resin in the soot resin composition is preferably 1% by mass or more and 80% by mass or less, and more preferably 10% by mass or more and 30% by mass or less. The resin composition may be a polymer material in which part or all of the base resin functions as an organic thermoelectric conversion material. The polymer material is selected from the group consisting of thiophene compounds, pyrrole compounds, aniline compounds, acetylene compounds, p-phenylene compounds, p-phenylene vinylene compounds, p-phenylene ethynylene compounds, fluorene compounds, and arylamine compounds. It is preferable to contain a constituent component corresponding to at least one compound as a repeating structure. More specifically, such polymer materials include polythiophene polymers, polypyrrole polymers, poly-p-phenylene polymers, poly-p-phenylene vinylene polymers, poly-p-phenylene ethylenes. A nylene-based polymer is preferable. As the polythiophene polymer and the polypyrrole polymer, those obtained by bonding the thiophene ring and the pyrrole ring at the 2,5-positions are preferable. Poly-p-phenylene polymers, poly-p-phenylene vinylene polymers, and poly-p-phenylene ethynylene polymers are obtained by bonding phenylene groups in the para position (1, 4 position). Is preferred.
 無機熱電変換材料は、従来知られているものを用いることができる。このような、材料の具体例としては、単層カーボンナノチューブ;酸化亜鉛、酸化スズ、チタン酸ストロンチウム、チタン酸バリウム、(Zn,Al)O、NaCo、CaCo、BiSrCo、及び硫化銀等の金属の酸化物や硫化物;Bi、Sb、Ag、Pb、Ge、Cu、Sn、As、Se、Te、Fe、Mn、Co、及びSiから選択される少なくとも2種以上の元素を含む金属元素複合材料が挙げられる。金属元素複合材料の好適な例としては、BiTe系、BiSb系、BiSbTe系、BiSbSe系、CoSb系、PbTe系、TeSe系、及び、SiGe系の材料やマグネシウムシリサイド系材料(MgSi系材料)が挙げられる。 A conventionally known inorganic thermoelectric conversion material can be used. Specific examples of such materials include single-walled carbon nanotubes; zinc oxide, tin oxide, strontium titanate, barium titanate, (Zn, Al) O, NaCo 2 O 4 , Ca 3 Co 4 O 9 , Bi. 2 Sr 2 Co 2 O y , and metal oxides and sulfides such as silver sulfide; Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, and Si Examples thereof include metal element composite materials containing at least two or more selected elements. Preferred examples of the metal element composite material include BiTe, BiSb, BiSbTe, BiSbSe, CoSb, PbTe, TeSe, and SiGe materials and magnesium silicide materials (Mg 2 Si materials). Is mentioned.
 無機熱電変換材料の形態は、粒子状、チューブ状、又はワイヤー状であるのが好ましく、チューブ状、又はワイヤー状であるのがより好ましい。チューブ状、又はワイヤー状の無機熱電変換材料は、樹脂組成物を用いて形成されたシート中で点接触しやすいため、チューブ状、又はワイヤー状の無機熱電変換材料を用いる場合、シート化された際に当該シート(熱電変換素子)中でキャリア(電荷)が移動しやすいという利点を有する。 The form of the inorganic thermoelectric conversion material is preferably in the form of particles, tubes, or wires, and more preferably in the form of tubes or wires. Since the tube-shaped or wire-shaped inorganic thermoelectric conversion material is easily point-contacted in the sheet formed using the resin composition, when the tube-shaped or wire-shaped inorganic thermoelectric conversion material is used, it is formed into a sheet. In particular, there is an advantage that carriers (charges) easily move in the sheet (thermoelectric conversion element).
 無機熱電変換材料の形態が粒子状である場合、無機熱電変換材料の平均粒子径は、2nm以上100μm以下であることが好ましく、2nm以上10μm以下であることがより好ましい。無機熱電変換材料の形態がチューブ状、又はワイヤー状である場合、当該チューブ又はワイヤーの平均径(単軸方向の平均長)は、0.5nm以上3000nm以下であることが好ましく、0.5nm以上2000nm以下であることがより好ましい。また、当該チューブ又はワイヤーのアスペクト比(平均長/平均径、平均長は長軸方向の平均長)は10以上が好ましく、10以上2000以下であることが好ましい。上記の平均粒子径、平均長、及び平均径は、粒子状の無機変換材料の電子顕微鏡観察画像から求められる数平均値である。 When the form of the inorganic thermoelectric conversion material is particulate, the average particle size of the inorganic thermoelectric conversion material is preferably 2 nm or more and 100 μm or less, and more preferably 2 nm or more and 10 μm or less. When the form of the inorganic thermoelectric conversion material is a tube shape or a wire shape, the average diameter (average length in the uniaxial direction) of the tube or wire is preferably 0.5 nm or more and 3000 nm or less, and 0.5 nm or more. More preferably, it is 2000 nm or less. Further, the aspect ratio (average length / average diameter, average length is the average length in the major axis direction) of the tube or wire is preferably 10 or more, and preferably 10 or more and 2000 or less. Said average particle diameter, average length, and average diameter are the number average values calculated | required from the electron microscope observation image of a particulate inorganic conversion material.
 樹脂組成物中の無機熱電変換材料の含有量は、4質量%以上70質量%以下であることが好ましく、10質量%以上40質量%以下であることがより好ましい。 The content of the inorganic thermoelectric conversion material in the resin composition is preferably 4% by mass or more and 70% by mass or less, and more preferably 10% by mass or more and 40% by mass or less.
 電荷輸送材料は、電子又は正孔を輸送するか、輸送を促進させる物質であって、樹脂組成物を用いて形成されるシート状の熱電変換素子の熱電変換効率を高める作用を有する。電荷輸送材料は、種々の用途において、電子又は正孔の輸送を促進させるために使用されている種々の物質を用いることができる。例えば、有機電界発光素子の構成材料や、光電変換素子の構成材料や、電子写真装置に使用される電子写真感光体が備える感光層の構成材料として使用される電荷輸送材料を本実施形態の電荷輸送材料として好適に使用することができる。 The charge transport material is a substance that transports or promotes electrons or holes, and has an effect of increasing the thermoelectric conversion efficiency of the sheet-like thermoelectric conversion element formed using the resin composition. As the charge transport material, various substances that are used to promote transport of electrons or holes in various applications can be used. For example, the charge transporting material used in the present embodiment may be a constituent material of an organic electroluminescent element, a constituent material of a photoelectric conversion element, or a charge transport material used as a constituent material of a photosensitive layer provided in an electrophotographic photosensitive member used in an electrophotographic apparatus. It can be suitably used as a transport material.
 電荷輸送材料の好ましい例としては、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、及び4,4’,4”-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等の芳香族アミン化合物;アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、及びアントラジチオフェン、並びにこれらの誘導体等の縮合多環芳香族化合物;テトラチアフルバレン化合物、キノン化合物、及びテトラシアノキノジメタン等のシアノ化合物等の共役系化合物;テトラチアフルバレン-テトラシアノキノジメタン錯体、及びポリ(ニッケル  1,1,2,2-エテンテトラチオラート)等のポリ(金属  1,1,2,2-エテンテトラチオラート)のドデシルトリメチルアンモニウム塩、テトラメチルアンモニウム塩、テトラジメチルアンモノプロパスルホナート塩等の錯体が挙げられる。これらの電荷輸送材料は、2種以上を組み合わせて用いてもよい。 Preferred examples of the charge transport material include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-bis (3-methylphenyl)- [1,1′-biphenyl] -4,4′-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolyl) Aminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane Bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4 4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl, N, N, N-tri (p -Tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3 -Methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), and 4,4 ' , 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) and the like; anthracene, tetra , Pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, obalene, circumcamanthracene, bisanthene, zestrene, heptazesulene, pyranthrene, violanthene, isoviolanthene, sacobiphenyl, and Condensed compounds such as anthradithiophene and condensed polycyclic aromatic compounds such as derivatives thereof; tetrathiafulvalene compounds, quinone compounds, and cyano compounds such as tetracyanoquinodimethane; tetrathiafulvalene-tetracyanoquinodimethane Complexes, and dodecyltrimethylammonium salts of poly (metal 1,1,2,2-ethenetetrathiolate) such as poly (nickel 1,1,2,2-ethenetetrathiolate), tetramethylammonium Moniumu salts, complexes such as tetra dimethylammonio mono prop sulfonate salt. These charge transport materials may be used in combination of two or more.
 電荷輸送材料の具体例の中では、熱電変換特性に優れるシートを形成できる樹脂組成物を得やすいことから、ポリ(ニッケル  1,1,2,2-エテンテトラチオラート)のドデシルトリメチルアンモニウム塩、ポリ(ニッケル  1,1,2,2-エテンテトラチオラート)のテトラメチルアンモニウム塩、ポリ(ニッケル  1,1,2,2-エテンテトラチオラート)のテトラジメチルアンモノプロパスルホナート塩、テトラチアフルバレン、及び、テトラチアフルバレン-テトラシアノキノジメタン錯体からなる群より選択される1種以上が好ましい。 Among the specific examples of the charge transport material, since it is easy to obtain a resin composition capable of forming a sheet having excellent thermoelectric conversion characteristics, a poly ( nickel 1,1,2,2-ethenetetrathiolate) dodecyltrimethylammonium salt, poly Tetramethylammonium salt of ( nickel 1,1,2,2-ethenetetrathiolate), tetradimethylanmonopropasulfonate salt of poly ( nickel 1,1,2,2-ethenetetrathiolate), tetrathiafulvalene, and One or more selected from the group consisting of a tetrathiafulvalene-tetracyanoquinodimethane complex is preferred.
 樹脂組成物中の電荷輸送材料の含有量は、15質量%以上95質量%以下であることが好ましく、30質量%以上70質量%以下であることがより好ましい。 The content of the charge transport material in the resin composition is preferably 15% by mass or more and 95% by mass or less, and more preferably 30% by mass or more and 70% by mass or less.
 樹脂組成物には、必要に応じて、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤等の添加剤を含有させることができる。 Addition of tackifiers, antioxidants, pigments, dyes, plasticizers, UV absorbers, antifoaming agents, leveling agents, fillers, flame retardants, viscosity modifiers, etc., to the resin composition as necessary An agent can be included.
 該樹脂組成物は、溶媒を用いたキャスト法や押出法などによって製膜し熱電変換素子とすることができる。 The resin composition can be formed into a thermoelectric conversion element by forming a film by a casting method or an extrusion method using a solvent.
 前記基材シート20は、例えば、樹脂フィルムや繊維シートなどとすることができ、樹脂フィルムであれば、ポリオレフィン樹脂フィルム、ポリエステル樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、フッ素樹脂フィルム、ポリ塩化ビニル樹脂フィルムなどとすることができる。前記基材シート20を不織布などの繊維シートとする場合、ポリプロピレン樹脂不織布、ポリエステル樹脂不織布などとすることができる。さらに、基材シート20は、芳香族ポリアミド紙(アラミドペーパー)などであってもよい。前記基材シート20は、通常、平均厚みが1μm以上500μm以下であることが好ましく、5μm以上100μm以下であることがより好ましい。 The base sheet 20 can be, for example, a resin film, a fiber sheet, or the like, and if it is a resin film, a polyolefin resin film, a polyester resin film, a polyamide resin film, a polyimide resin film, a fluororesin film, a polyvinyl chloride It can be a resin film or the like. When the base sheet 20 is a fiber sheet such as a nonwoven fabric, it can be a polypropylene resin nonwoven fabric, a polyester resin nonwoven fabric, or the like. Further, the base sheet 20 may be aromatic polyamide paper (aramid paper) or the like. In general, the base sheet 20 preferably has an average thickness of 1 μm to 500 μm, and more preferably 5 μm to 100 μm.
 前記配線30は、例えば、金属箔、導電性ペースト、金属蒸着膜などによって形成されたものを採用することができ、前記ラミネートシート40は、基材シート20と同じか異なる樹脂シートを採用することができる。 For example, the wiring 30 may be formed of a metal foil, a conductive paste, a metal vapor deposition film, or the like, and the laminate sheet 40 may be a resin sheet that is the same as or different from the base sheet 20. Can do.
 前記ボンディングシート50は、タック性を有する樹脂と無機フィラーとを含む粘着性樹脂組成物で形成されたシートを採用することができる。粘着性樹脂組成物に含有させる無機フィラーとしては、例えば、シリカ、酸化ホウ素、アルミナ、チタニア、ジルコニアなどの金属酸化物、炭化珪素、炭化ホウ素、炭化チタンなどの金属炭化物、窒化アルミニウム、窒化ホウ素、窒化チタンなどの金属窒化物、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物、炭酸カルシウム、炭酸マグネシウムなどの炭酸塩が挙げられる。無機フィラーは、カーボンブラック、グラファイト、金属粒子などの導電性のものであってもよい。粘着性樹脂組成物のベースとなる樹脂は、例えば、シリコーン樹脂、アクリル樹脂、ポリウレタン樹脂などが挙げられる。 The bonding sheet 50 may be a sheet formed of an adhesive resin composition containing a tacky resin and an inorganic filler. As the inorganic filler to be included in the adhesive resin composition, for example, metal oxides such as silica, boron oxide, alumina, titania, zirconia, metal carbides such as silicon carbide, boron carbide, titanium carbide, aluminum nitride, boron nitride, Examples thereof include metal nitrides such as titanium nitride, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, and carbonates such as calcium carbonate and magnesium carbonate. The inorganic filler may be a conductive material such as carbon black, graphite, or metal particles. Examples of the resin serving as the base of the adhesive resin composition include a silicone resin, an acrylic resin, and a polyurethane resin.
 上記のような部材によって構成されるシート本体1は、柔軟性を有し、易変形性を有する。従って、本実施形態の熱電変換シート100は、表面が曲面となった発熱体に当接させて該発熱体が発する熱を使って電気を発生させることができる。本実施形態の熱電変換シート100は、一般的な生活環境で用いる場合、大気を放熱対象とすることが好ましい。そのため本実施形態の熱電変換シート100は、一般的な大気温度よりも高温の発熱体に当接させて用いることが好ましく、表面温度が25℃以上の発熱体で表面が平面的ではない発熱体に当接させて用いることが好ましい。本実施形態の熱電変換シート100は、例えば、人体の体温測定などに好適である。 The sheet body 1 constituted by the members as described above is flexible and easily deformable. Therefore, the thermoelectric conversion sheet 100 according to the present embodiment can generate electricity using the heat generated by the heat generating element that is brought into contact with the heat generating element having a curved surface. When the thermoelectric conversion sheet 100 of the present embodiment is used in a general living environment, it is preferable that the atmosphere be a heat dissipation target. Therefore, the thermoelectric conversion sheet 100 of the present embodiment is preferably used in contact with a heating element having a temperature higher than a general atmospheric temperature, and the heating element has a surface temperature of 25 ° C. or higher and the surface is not flat. It is preferable to use it in contact with. The thermoelectric conversion sheet 100 of this embodiment is suitable for measuring body temperature of a human body, for example.
(第2の実施形態)
 次に、図6を参照しつつ第2実施形態の熱電変換シートについて説明する。第2実施形態に係る熱電変換シート100は、シート本体1を構成する基材シート20が放熱側に設けられている点において第1実施形態の熱電変換シートと相違する。即ち、第2実施形態に係るシート本体1においては、熱電変換素子10がボンディングシート50によって基材シート20の下面に接着されている。そして、第1実施形態の熱電変換シート1は、発熱体に当接させた際に低熱抵抗領域PL,NLが基材シート20を介して発熱体から熱を受けるように構成されているが第2実施形態においては熱電変換素子10の一部が受熱側に表面露出しており、該露出部分が低熱抵抗領域となっている。
(Second Embodiment)
Next, the thermoelectric conversion sheet of the second embodiment will be described with reference to FIG. The thermoelectric conversion sheet 100 according to the second embodiment is different from the thermoelectric conversion sheet of the first embodiment in that the base sheet 20 constituting the sheet body 1 is provided on the heat dissipation side. That is, in the sheet body 1 according to the second embodiment, the thermoelectric conversion element 10 is bonded to the lower surface of the base sheet 20 by the bonding sheet 50. And although the thermoelectric conversion sheet 1 of 1st Embodiment is comprised so that the low thermal resistance area | regions PL and NL receive heat from a heat generating body via the base material sheet 20, when making it contact | abut to a heat generating body, it is the 1st. In the second embodiment, a part of the thermoelectric conversion element 10 is exposed on the heat receiving side, and the exposed portion is a low thermal resistance region.
 第2実施形態の熱電変換シート1は、発熱体に当接させた際に熱電変換素子10の一部が直接発熱体に当接されることから第1実施形態の熱電変換シートに比べて熱電変換の応答性に優れている。また、第2実施形態の熱電変換シート1は、基材シート20が第1実施形態でのラミネートシート40としても機能することから第1実施形態の熱電変換シートに比べてシート本体1を薄くすることができる点においても優れている。この第2実施形態の熱電変換シート1にも第1実施形態で説明した各種の変更を加えることができる。 The thermoelectric conversion sheet 1 according to the second embodiment has a portion of the thermoelectric conversion element 10 that is in direct contact with the heating element when being brought into contact with the heating element, so that the thermoelectric conversion sheet 1 is more thermoelectric than the thermoelectric conversion sheet according to the first embodiment. Excellent conversion responsiveness. Moreover, the thermoelectric conversion sheet 1 of 2nd Embodiment makes the sheet | seat main body 1 thin compared with the thermoelectric conversion sheet of 1st Embodiment, since the base material sheet 20 functions also as the laminate sheet 40 in 1st Embodiment. It is also excellent in that it can be used. Various modifications described in the first embodiment can be applied to the thermoelectric conversion sheet 1 of the second embodiment.
(その他の変更事例)
 第1実施形態や第2実施形態においては、基材シート20にシート状の熱電変換素子10を積層する態様を例示しているが、基材シートを熱電変換素子の平面形状に対応した長方形の穴を複数有するものとし、この穴に熱電変換素子を収容させ、熱電変換素子の外縁と基材シートの穴の周縁とを接着させて基材シートと熱電変換素子とが一体化した1枚のシート体を備えさせるようにしてもよい。このことにより第2実施形態の熱電変換シートに比べてシート本体をより一層薄くすることができる。
(Other changes)
In 1st Embodiment and 2nd Embodiment, although the aspect which laminates | stacks the sheet-like thermoelectric conversion element 10 on the base material sheet 20 is illustrated, the base material sheet is a rectangle corresponding to the planar shape of the thermoelectric conversion element. It is assumed that the hole has a plurality of holes, and the thermoelectric conversion element is accommodated in the hole, and the outer edge of the thermoelectric conversion element and the peripheral edge of the hole of the base sheet are bonded to each other so that the base sheet and the thermoelectric conversion element are integrated. A sheet body may be provided. As a result, the sheet body can be made even thinner than the thermoelectric conversion sheet of the second embodiment.
 熱電変換シートは、また、バイポーラ型である必要はなく、図7に例示するようなユニレグ型であってもよい。即ち、本発明の熱電変換シートは、前記熱電変換素子10として複数のn型熱電変換素子10nが備えられ、直列となるように電気的に接続された複数のn型熱電変換素子10nで構成された一つの導電経路が前記シート本体1に配されており、前記高熱抵抗領域NHと前記低熱抵抗領域NLとを有するn型熱電変換素子10nを複数備え、且つ、前記高熱抵抗領域NHと前記低熱抵抗領域NLとが導通経路の方向に並ぶ順が共通するn型熱電変換素子10nを複数備えているものであってもよい。 The thermoelectric conversion sheet does not need to be a bipolar type, and may be a unileg type as illustrated in FIG. That is, the thermoelectric conversion sheet of the present invention includes a plurality of n-type thermoelectric conversion elements 10n as the thermoelectric conversion elements 10 and is configured by a plurality of n-type thermoelectric conversion elements 10n electrically connected in series. A single conductive path is disposed in the sheet body 1, and includes a plurality of n-type thermoelectric conversion elements 10n having the high heat resistance region NH and the low heat resistance region NL, and the high heat resistance region NH and the low heat resistance are provided. A plurality of n-type thermoelectric conversion elements 10n having a common order in which the resistance region NL is arranged in the direction of the conduction path may be provided.
 図7に例示した熱電変換シートと同様に、本発明の熱電変換シートは、図8に例示するようなユニレグ構造であってもよい。即ち、本発明の熱電変換シートは、前記熱電変換素子10として複数のp型熱電変換素子10pが備えられ、直列となるように電気的に接続された複数のp型熱電変換素子10pで構成された一つの導電経路が前記シート本体1に配されており、前記高熱抵抗領域PHと前記低熱抵抗領域PLとを有するp型熱電変換素子10pを複数備え、且つ、前記高熱抵抗領域PHと前記低熱抵抗領域PLとが導通経路の方向に並ぶ順が共通するp型熱電変換素子10pを複数備えているものであってもよい。 As with the thermoelectric conversion sheet illustrated in FIG. 7, the thermoelectric conversion sheet of the present invention may have a unileg structure as illustrated in FIG. 8. That is, the thermoelectric conversion sheet of the present invention includes a plurality of p-type thermoelectric conversion elements 10p provided as the thermoelectric conversion elements 10 and electrically connected in series. A single conductive path is disposed in the sheet body 1, and includes a plurality of p-type thermoelectric conversion elements 10p having the high thermal resistance region PH and the low thermal resistance region PL, and the high thermal resistance region PH and the low heat resistance are provided. A plurality of p-type thermoelectric conversion elements 10p having a common order in which the resistance region PL is arranged in the direction of the conduction path may be provided.
 なお、本発明は上記以外の変更を上記の例示に各種加え得るものであり、上記例示に何等限定されるものではない。例えば、図1、7、8においては、熱電変換素子が一列に並んだ態様を例示しているが、熱電変換素子を縦横に複数ずつ配するようにしてもよい。 In addition, this invention can add various changes other than the above to said illustration, and is not limited to the said illustration at all. For example, FIGS. 1, 7, and 8 illustrate an embodiment in which the thermoelectric conversion elements are arranged in a line, but a plurality of thermoelectric conversion elements may be arranged vertically and horizontally.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(実施例)
 人体の体表面温度と、周囲の気温との温度差による熱エネルギーを電気エネルギーに変換するモジュールを形成させることを想定し、該モジュールに備えさせる熱電変換シートを設計した。
(起電圧の測定)
 まず、基材シートとして長辺の寸法が18cmで短辺の寸法が6cmの長方形のポリイミド樹脂フィルム(厚み:50μm)を用意した。
 次いで、幅5mm、長さ4cmのシート状のp型熱電変換素子10枚と、同形状のn型熱電変換素子10枚とを用意した。
 なお、p型熱電変換素子とn型熱電変換素子の形成材料には、それぞれp型単層カーボンナノチューブとn型単層カーボンナノチューブとを用いた。
 さらに、基材シートと略同じ大きさの繊維シート(商品名「DEXPAPER」、熱伝導率0.1W/m・K以下、厚み:0.7mm)を断熱層形成用に用意した。
 p型熱電変換素子やn型熱電変換素子と同形状に切断したボンディングシート(厚み:25μm)を20枚用意し、該ボンディングシートで各熱電変換素子を基材シート上に貼り合せて試験体を作製した。
 試験体は図9(a)に示すように基材シート20の長辺方向に所定の間隙を設けてp型熱電変換素子10pとn型熱電変換素子10nとが交互に並ぶように配置して作製した。試験体における導通経路は、熱電変換素子10pとn型熱電変換素子10nとが直列に並ぶように電気的に接続して構成させた。
 繊維シート60の上にこの試験体Xを重ね合せ、温度が37℃となるように設定された熱盤HTの上にセットし試験体Xの両端に位置する熱電変換素子の間に発生する電圧(起電圧)を測定した。
 測定は、気温が23℃となるように設定された室内で実施し、ほぼ無風状態の環境下にて実施した。
 測定に際しては、試験体Xの短辺方向に繊維シート60をスライドさせることによって、熱電変換素子10p,10nの全面積の内、熱盤HTとの間に繊維シート60が介在する面積の割合(遮蔽率)を変化させた。
 繊維シート60が介在しない部分については、基材シート20の下面を熱盤HT表面に当接させて上記測定を実施した。
 なお、繊維シート60が介在する部分(高熱抵抗領域)と 繊維シート60が介在しない部分(低熱抵抗領域)との境界には、繊維シート60による段差が形成され、基材シート20と熱盤HTとの間に空隙が形成され易い状態になるが、上記測定は出来る限りこの空隙が少なくなるようにして実施した。
 また、測定は、ヒートシンクを利用した場合と利用しない場合の2通りで実施した。
 即ち、測定は、熱盤HTとの間に繊維シート60が介在する部分において試験体Xの上面に図5に例示したような形でヒートシンクを当接させた場合についても実施した。
 結果を図10に示す。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.
(Example)
A thermoelectric conversion sheet provided for the module was designed on the assumption that a module that converts thermal energy due to a temperature difference between the body surface temperature of the human body and ambient air temperature into electrical energy was formed.
(Measurement of electromotive voltage)
First, a rectangular polyimide resin film (thickness: 50 μm) having a long side dimension of 18 cm and a short side dimension of 6 cm was prepared as a base sheet.
Next, 10 sheet-shaped p-type thermoelectric conversion elements having a width of 5 mm and a length of 4 cm and 10 n-type thermoelectric conversion elements having the same shape were prepared.
Note that p-type single-walled carbon nanotubes and n-type single-walled carbon nanotubes were used as materials for forming the p-type thermoelectric conversion element and the n-type thermoelectric conversion element, respectively.
Furthermore, a fiber sheet (trade name “DEXPAPER”, thermal conductivity of 0.1 W / m · K or less, thickness: 0.7 mm) having substantially the same size as the base sheet was prepared for forming the heat insulating layer.
Prepare 20 bonding sheets (thickness: 25 μm) cut in the same shape as p-type thermoelectric conversion elements and n-type thermoelectric conversion elements, and bond each thermoelectric conversion element on the base sheet with the bonding sheet. Produced.
As shown in FIG. 9A, the test body is arranged so that a predetermined gap is provided in the long side direction of the base sheet 20 and the p-type thermoelectric conversion elements 10p and the n-type thermoelectric conversion elements 10n are alternately arranged. Produced. The conduction path in the test body was configured by electrically connecting the thermoelectric conversion element 10p and the n-type thermoelectric conversion element 10n so as to be arranged in series.
The test body X is superimposed on the fiber sheet 60, set on a hot platen HT set to a temperature of 37 ° C., and a voltage generated between thermoelectric conversion elements located at both ends of the test body X. (Electromotive voltage) was measured.
The measurement was carried out in a room where the temperature was set to 23 ° C., and was carried out in an almost windless environment.
At the time of measurement, by sliding the fiber sheet 60 in the short side direction of the test body X, the ratio of the area in which the fiber sheet 60 is interposed between the hot platen HT and the total area of the thermoelectric conversion elements 10p and 10n ( The shielding rate was changed.
About the part which the fiber sheet 60 does not interpose, the lower surface of the base material sheet 20 was made to contact | abut to the hot-plate HT surface, and the said measurement was implemented.
In addition, the level | step difference by the fiber sheet 60 is formed in the boundary of the part (high heat resistance area | region) in which the fiber sheet 60 interposes, and the part (low heat resistance area | region) in which the fiber sheet 60 does not intervene, and the base material sheet 20 and hot plate | board HT However, the above measurement was carried out with as few voids as possible.
The measurement was performed in two ways, with and without a heat sink.
That is, the measurement was also performed in the case where the heat sink was brought into contact with the upper surface of the test body X at the portion where the fiber sheet 60 was interposed between the hot platen HT and the shape illustrated in FIG.
The results are shown in FIG.
 図10に示された結果からは、本発明によれば、熱電変換効率の向上した熱電変換シートが提供されることが確認できた。
 また、本発明においては、ヒートシンクの利用が高い起電圧を得る上で有効であることが確認できた。
 なお、図10では、遮蔽率が0%でも電圧が生じており、遮蔽率が100%でなく95%程度でも電圧が発生しなくなる結果が示されているが、これらには繊維シート60によって形成される段差が影響しているものと見られる。
 例えば、遮蔽率が0%の場合については、熱電変換素子の直下には繊維シート60が全く存在していないものの熱電変換素子から少し離れた位置に繊維シート60が存在しているために該繊維シート近くにおいては基材シートが熱盤に十分接しておらず熱電変換素子への熱の伝わりが十分ではなかったために電圧が生じたものと考えられる。
 また、遮蔽率が95%を超え100%未満の領域については、繊維シート60によって生じた段差によって空隙が形成されて熱電変換素子の直下に繊維シート60が存在していない領域においても熱盤HTから熱が伝わり難かったものと考えられる。
From the results shown in FIG. 10, it was confirmed that according to the present invention, a thermoelectric conversion sheet with improved thermoelectric conversion efficiency was provided.
Moreover, in this invention, it has confirmed that utilization of a heat sink was effective in obtaining a high electromotive voltage.
Note that FIG. 10 shows that voltage is generated even when the shielding rate is 0%, and no voltage is generated even when the shielding rate is not 100% but about 95%, but these are formed by the fiber sheet 60. It is thought that the level difference is influenced.
For example, in the case where the shielding rate is 0%, the fiber sheet 60 does not exist at all directly below the thermoelectric conversion element, but the fiber sheet 60 exists at a position slightly away from the thermoelectric conversion element. In the vicinity of the sheet, the base sheet was not sufficiently in contact with the hot platen, and it was considered that the voltage was generated because the heat transfer to the thermoelectric conversion element was not sufficient.
Further, in the region where the shielding rate is over 95% and less than 100%, the hot platen HT is also formed in the region where a gap is formed by the step generated by the fiber sheet 60 and the fiber sheet 60 does not exist immediately below the thermoelectric conversion element. It is thought that it was difficult to transmit heat from.
(起電力の測定)
 上記の起電圧の測定方法と同様にして起電流を測定した結果を図11に示す。
 また、得られた電流値と電圧値とにより起電力を算出した結果を図12に示す。
 図10に示した検討結果では、遮蔽率を10%以上90%以下とすることが高い起電圧を得る上で好ましいことが確認できた。
 その一方で図11にも示すように、遮蔽率を100%から徐々に低下させると、遮蔽率60%付近で急激に電流値が増大することがこの評価によって確認できた。
 また、図11にも示されているように、さらに遮蔽率を低下させると、遮蔽率が15%を下回るあたりで電流値が低下傾向を示すことがわかった。
 即ち、遮蔽率を15%以上60%以下とすることが高い起電力を得る上で好ましいことがこれらの結果から確認できた。
(Measurement of electromotive force)
FIG. 11 shows the result of measuring the electromotive current in the same manner as the above electromotive voltage measurement method.
Moreover, the result of having calculated the electromotive force with the obtained electric current value and voltage value is shown in FIG.
From the examination results shown in FIG. 10, it was confirmed that it is preferable to obtain a high electromotive voltage when the shielding rate is 10% or more and 90% or less.
On the other hand, as shown in FIG. 11, it was confirmed by this evaluation that when the shielding rate is gradually decreased from 100%, the current value rapidly increases near the shielding rate of 60%.
Further, as shown in FIG. 11, it was found that when the shielding rate was further reduced, the current value showed a tendency to decrease when the shielding rate was less than 15%.
That is, it was confirmed from these results that the shielding rate is preferably 15% or more and 60% or less in order to obtain a high electromotive force.
1     シート本体
10   熱電変換素子
10n n型熱電変換素子
10p p型熱電変換素子
NL   (n型熱電変換素子の)低熱抵抗領域
NH   (n型熱電変換素子の)高熱抵抗領域
PL   (p型熱電変換素子の)低熱抵抗領域
PH   (p型熱電変換素子の)高熱抵抗領域
60   繊維シート(断熱層)
100 熱電変換シート
1 sheet body 10 thermoelectric conversion element 10n n-type thermoelectric conversion element 10p p-type thermoelectric conversion element NL (n-type thermoelectric conversion element) low thermal resistance area NH (n-type thermoelectric conversion element) high thermal resistance area PL (p-type thermoelectric conversion element) Of) low thermal resistance region PH (for p-type thermoelectric conversion element) high thermal resistance region 60 fiber sheet (heat insulation layer)
100 Thermoelectric conversion sheet

Claims (5)

  1.  熱電変換に用いられる熱電変換シートであって、
     一面側から受熱し、他面側から放熱して前記熱電変換が行われるシート本体を備え、
     前記シート本体には該シート本体よりも面積の小さなシート状の熱電変換素子が複数配され、
     複数の前記熱電変換素子は直列となるように電気的に接続されて少なくとも一つの導通経路を構成しており、
     前記シート本体は、受熱側に基準面を有し、
     1以上の前記熱電変換素子は、前記基準面から該熱電変換素子までの熱抵抗が相対的に高い高熱抵抗領域と、該高熱抵抗領域よりも前記熱抵抗が低い低熱抵抗領域とを有し、且つ、該低熱抵抗領域と前記高熱抵抗領域とが前記導通経路の方向に並んでいる熱電変換シート。
    A thermoelectric conversion sheet used for thermoelectric conversion,
    A sheet body that receives heat from one side and radiates heat from the other side to perform the thermoelectric conversion is provided.
    The sheet body is provided with a plurality of sheet-like thermoelectric conversion elements having a smaller area than the sheet body,
    The plurality of thermoelectric conversion elements are electrically connected so as to be in series to form at least one conduction path,
    The seat body has a reference surface on the heat receiving side,
    The one or more thermoelectric conversion elements have a high thermal resistance region having a relatively high thermal resistance from the reference surface to the thermoelectric conversion element, and a low thermal resistance region having a lower thermal resistance than the high thermal resistance region, And the thermoelectric conversion sheet | seat in which this low thermal resistance area | region and the said high thermal resistance area | region are located in a line with the direction of the said conduction | electrical_connection path | route.
  2.  前記熱電変換素子として前記高熱抵抗領域と前記低熱抵抗領域とを有する複数のp型熱電変換素子が備えられ、
     該複数のp型熱電変換素子は、前記高熱抵抗領域と前記低熱抵抗領域とが前記導通経路の方向に並ぶ順が共通するように配されている請求項1記載の熱電変換シート。
    A plurality of p-type thermoelectric conversion elements having the high thermal resistance region and the low thermal resistance region as the thermoelectric conversion device;
    The thermoelectric conversion sheet according to claim 1, wherein the plurality of p-type thermoelectric conversion elements are arranged so that the order in which the high thermal resistance region and the low thermal resistance region are arranged in the direction of the conduction path is common.
  3.  前記熱電変換素子として前記高熱抵抗領域と前記低熱抵抗領域とを有する複数のn型熱電変換素子が備えられ、
     該複数のn型熱電変換素子は、前記高熱抵抗領域と前記低熱抵抗領域とが前記導通経路の方向に並ぶ順が共通するように配されている請求項1記載の熱電変換シート。
    A plurality of n-type thermoelectric conversion elements having the high thermal resistance region and the low thermal resistance region as the thermoelectric conversion device;
    2. The thermoelectric conversion sheet according to claim 1, wherein the plurality of n-type thermoelectric conversion elements are arranged so that the order in which the high thermal resistance region and the low thermal resistance region are arranged in the direction of the conduction path is common.
  4.  前記熱電変換素子として複数のp型熱電変換素子と複数のn型熱電変換素子とが備えられ、
     前記複数のp型熱電変換素子と前記複数のn型熱電変換素子とのそれぞれは前記高熱抵抗領域と前記低熱抵抗領域とを備えており、
     前記シート本体には、前記p型熱電変換素子と前記n型熱電変換素子とが前記導通経路に沿って交互に配され、且つ、
     前記高熱抵抗領域と前記低熱抵抗領域とが前記導通経路の方向に並ぶ順が前記p型熱電変換素子と前記n型熱電変換素子とで逆になっている請求項1記載の熱電変換シート。
    A plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements are provided as the thermoelectric conversion elements,
    Each of the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements includes the high thermal resistance region and the low thermal resistance region,
    In the sheet body, the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements are alternately arranged along the conduction path, and
    The thermoelectric conversion sheet according to claim 1, wherein the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are reversed in order in which the high thermal resistance region and the low thermal resistance region are arranged in the direction of the conduction path.
  5.  前記シート本体の受熱側の基準面から前記高熱抵抗領域までの間には、多孔体シート又は繊維シートによって形成された断熱層が備えられている請求項1乃至4の何れか1項に記載の熱電変換シート。 The thermal insulation layer formed of the porous sheet or the fiber sheet is provided between the heat receiving side reference surface of the sheet body and the high thermal resistance region. Thermoelectric conversion sheet.
PCT/JP2017/024073 2016-07-01 2017-06-30 Thermoelectric conversion sheet WO2018003960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131933 2016-07-01
JP2016131933A JP2019169483A (en) 2016-07-01 2016-07-01 Thermoelectric conversion sheet

Publications (1)

Publication Number Publication Date
WO2018003960A1 true WO2018003960A1 (en) 2018-01-04

Family

ID=60785458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024073 WO2018003960A1 (en) 2016-07-01 2017-06-30 Thermoelectric conversion sheet

Country Status (2)

Country Link
JP (1) JP2019169483A (en)
WO (1) WO2018003960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023051302A (en) * 2021-09-30 2023-04-11 学校法人早稲田大学 Thin film thermoelectric power generation device, thin film thermoelectric power generation device component and manufacturing methods thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device
JP2016018867A (en) * 2014-07-08 2016-02-01 株式会社Kri Flexible thermoelectric conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device
JP2016018867A (en) * 2014-07-08 2016-02-01 株式会社Kri Flexible thermoelectric conversion device

Also Published As

Publication number Publication date
JP2019169483A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US10840426B2 (en) Thermoelectric apparatus and articles and applications thereof
Sumino et al. Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices
US10243128B2 (en) Thermoelectric conversion element and thermoelectric conversion module
Fang et al. Large‐scale integration of flexible materials into rolled and corrugated thermoelectric modules
EP1906463A3 (en) Thermoelectric heat exchanger
TW201535806A (en) Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
US20160260883A1 (en) Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JP2010251692A (en) Thermoelectric element
JP2014179536A (en) Roll screen and roll screen apparatus
ES2950281T3 (en) Diffusion-limiting electroactive barrier layer for an optoelectronic component
US20130192654A1 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
WO2018003960A1 (en) Thermoelectric conversion sheet
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
WO2019130671A1 (en) Thermoelectric conversion sheet
KR102379266B1 (en) thermoelectric piezoelectric generator
US20220320406A1 (en) Thermoelectric device
JP2009147208A (en) Solar cell laminated thermoelectric conversion sheet
US10347811B2 (en) Thermoelectric conversion module
JP6505585B2 (en) Thermoelectric conversion element
KR20210015158A (en) Heat-radiation structure using hygroscopic polymer and thermoelectric module having the same
KR20180095292A (en) Flexible thermoelectric module
JP2017069372A (en) Thermoelectric conversion system
KR20170046006A (en) Thermoelectric device moudule and device using the same
KR20190087822A (en) Thermoelectric element
KR102130088B1 (en) Thermo electric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP