WO2018003940A1 - Optical receptacle and optical transceiver - Google Patents

Optical receptacle and optical transceiver Download PDF

Info

Publication number
WO2018003940A1
WO2018003940A1 PCT/JP2017/024011 JP2017024011W WO2018003940A1 WO 2018003940 A1 WO2018003940 A1 WO 2018003940A1 JP 2017024011 W JP2017024011 W JP 2017024011W WO 2018003940 A1 WO2018003940 A1 WO 2018003940A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
ferrule
fiber
core
Prior art date
Application number
PCT/JP2017/024011
Other languages
French (fr)
Japanese (ja)
Inventor
祥 近藤
弘嗣 我妻
哲史 兼行
悟史 箱崎
裕希 佐藤
康平 冨永
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201780039784.0A priority Critical patent/CN109416441A/en
Priority to CN202110013796.4A priority patent/CN112835157B/en
Priority claimed from JP2017127001A external-priority patent/JP2018010292A/en
Publication of WO2018003940A1 publication Critical patent/WO2018003940A1/en
Priority to US16/234,877 priority patent/US20190154925A1/en
Priority to US17/069,225 priority patent/US11598922B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • An aspect of the present invention generally relates to an optical transceiver and module for optical communication, and more particularly to an optical receptacle suitable for a module for high-speed communication.
  • An optical receptacle is used as a component for optically connecting an optical fiber connector to an optical element such as a light receiving element or a light emitting element in an optical module of an optical communication transceiver.
  • optical communication transceivers are required to increase in speed.
  • the shape of a transceiver or the like that adopts a receptacle-type optical module is standardized, and if the modulation speed of an optical signal emitted from a semiconductor laser, which is one of optical elements, is increased, the space required for an electric circuit increases. Therefore, downsizing of the optical module is demanded.
  • the mode field diameter of a semiconductor laser element is generally smaller than the core diameter of 10 ⁇ m of an optical fiber used as an optical signal transmission path.
  • a single module has a plurality of semiconductor lasers, and light emitted from each semiconductor laser is transmitted into an optical waveguide formed inside a plate-shaped member. Then, an optical module having a structure that is optically coupled to an optical fiber of an optical receptacle after being combined into one waveguide is also used.
  • an optical module having a structure that is optically coupled to an optical fiber of an optical receptacle after being combined into one waveguide is also used.
  • a lens for condensing light emitted from a semiconductor laser element onto a fiber core or condensing light emitted from a fiber core onto a light receiving element has a difference between the mode field diameter of the optical element and the fiber core diameter. In some cases, it is necessary to have a magnification function. However, the larger the difference, the longer the focal length of the lens, or the larger the number of necessary lenses, and there is a problem that the optical system becomes complicated and expensive.
  • the magnification by the lens is kept small. Instead, a lens is formed on a part of the optical fiber side end face of the optical fiber, or a GI fiber is fused.
  • a method is known in which the mode field diameter of the incident light is enlarged and the optimum mode field diameter for the fiber is incident on the fiber end face (for example, Patent Document 1).
  • Patent Document 1 since the method of Patent Document 1 uses a GI fiber whose mode field diameter periodically changes, in order to obtain an optimum mode field diameter, the length of the GI fiber must be strictly controlled. There was a problem that it was difficult to manage.
  • a fiber having different refractive indexes is fused stepwise from the core center to the outer peripheral portion in the radial direction, such as a GI fiber
  • a core having a different refractive index is fused in a fusion technique in which the fiber end faces are fused and integrated. Since it melts and mixes, it is difficult to manage the refractive index around the fused part, and there is a problem that optical loss increases.
  • Patent Document 2 proposes an optical receptacle in which the optical element side of the optical fiber is formed in a tapered shape, and the mode field diameter on the optical element side is smaller than the mode field diameter on the PC (Physical Contact) side. Thereby, connection loss can be suppressed.
  • the taper shape is located at the end on the optical element side. Both end portions of the optical fiber need to be mirrored (polished) so as not to cause adverse effects of light entering and exiting. For this reason, there has been a problem that the diameter varies depending on the degree of mirror finishing, and it is difficult to stably control the mode field diameter. That is, the configuration of Patent Document 2 also requires a highly accurate dimensional tolerance with respect to the axial length of the optical fiber.
  • the core of the optical element side end surface of the optical fiber is made smaller, and the refractive index difference between the core and the clad than the fiber generally used in the transmission line is reduced. While fusing a large fiber, it contributes to shortening the total length of the optical module, while the refractive index and the fiber are generally used in the transmission line, and the refractive index and the fusion part of the fiber having a large refractive index difference between the core and the clad.
  • the first invention includes an optical fiber having a core and a cladding for conducting light, a ferrule having a through hole to which the optical fiber is fixed, and a first elastic member for fixing the optical fiber to the through hole.
  • the first elastic member is provided between the optical fiber and the inner wall of the through hole, and the holder is
  • the optical receptacle is characterized in that the other end surface side of the fiber stub is held, and the sleeve holds the one end surface side of the fiber stub.
  • the core diameter at the end surface of the ferrule opposite to the side optically connected to the plug ferrule is smaller than the core diameter at the end surface of the ferrule on the side optically connected to the plug ferrule.
  • the length of can be reduced.
  • the second portion is formed, a rapid change in the core shape can be suppressed when the first portion transitions to the third portion. Loss can be suppressed.
  • the first part and the third part do not change in shape with respect to the axial direction and the loss of light is small, there is no problem regardless of where the second part is located in the inner diameter part of the optical ferrule. As a result, the receptacle can be manufactured economically without requiring precise length control of the fiber.
  • the optical receptacle is connected to an optical fiber that is generally laid.
  • the MFD of the optical fiber to be laid is about 10 ⁇ m, and the connection loss due to the MFD difference between the plug and the optical receptacle can be suppressed by arranging the third portion on the optical connection side.
  • the refractive index of the core of the first portion, the refractive index of the core of the second portion, and the refractive index of the core of the third portion are equal to each other,
  • the refractive index of the cladding of the first part is smaller than the refractive index of the cladding of the third part, and the refractive index of the cladding of the second part is from the first part side to the third part side. It is an optical receptacle characterized by becoming larger.
  • this optical receptacle by using a fiber having a large refractive index difference, light can be confined without scattering even with a small core diameter, and loss when light enters the fiber can be suppressed.
  • the second portion since the second portion is formed, it is possible to suppress a sudden change in the refractive index difference when the first portion transitions to the third portion. Loss can be suppressed.
  • the core material can be shared and there is no refractive index difference between the cores in the connecting portions of the first part, the second part, and the third part, the loss due to the reflection of the connecting part is suppressed. be able to.
  • the refractive index of the cladding of the first portion, the refractive index of the cladding of the second portion, and the refractive index of the cladding of the third portion are equal to each other,
  • the refractive index of the core of the first part is larger than the refractive index of the core of the third part, and the refractive index of the core of the second part is from the first part side to the third part side. It is an optical receptacle characterized by becoming smaller toward.
  • the clad can be formed of the same material, the clad can have uniform physical properties. Thereby, since the melting point becomes uniform, the outer diameter of the clad at the time of fusion can be easily formed.
  • the core diameter of the second part increases linearly from the first part side toward the third part side. Is an optical receptacle.
  • the core diameter of the second part increases nonlinearly from the first part side toward the third part side. It is the optical receptacle characterized.
  • this optical receptacle since it is not necessary to precisely control the fusion fiber pulling speed, the fusion discharge time, and the power when forming the second portion, it can be manufactured relatively easily. it can.
  • the core of the second portion has a core diameter of the second portion from the first portion side to the third portion side.
  • An optical receptacle characterized by having a step in a part of a region where is increased.
  • this optical receptacle since it is not necessary to precisely control the fusion fiber pulling speed, the fusion discharge time, and the power when forming the second portion, it can be manufactured relatively easily. it can. In addition, if this shape is adopted, even fibers having different melting points can be connected, so that the options of fibers used for fusion can be expanded.
  • a seventh invention is an optical receptacle according to any one of the first to sixth inventions, wherein a core diameter in the first portion is 0.5 ⁇ m or more and 8 ⁇ m or less.
  • the MFD is reduced on the fiber side with respect to the light emitted from the fine optical waveguide, it is not necessary to zoom the light when entering the fiber. Accordingly, the coupling distance can be shortened and the lens can be simplified.
  • the difference between the refractive index of the core and the refractive index of the cladding in the first portion is the difference between the refractive index of the core and the cladding in the third portion. It is an optical receptacle characterized by being larger than the difference from the refractive index.
  • the light when transmitting light having a beam waist smaller than that in the third portion, the light can be propagated in a single mode and with little loss.
  • the difference between the refractive index of the core and the refractive index of the cladding in the first portion is the difference between the refractive index of the core and the cladding in the second portion. It is an optical receptacle characterized by being larger than the difference from the refractive index.
  • the light when transmitting light having a beam waist smaller than that of the second portion in the first portion, the light can be propagated in a single mode and with little loss.
  • a tenth aspect of the invention is an optical receptacle according to any one of the first to ninth aspects, wherein a core diameter in the third portion is 8 ⁇ m or more and 20 ⁇ m or less.
  • the single mode fiber for optical communication that is currently used generally and the MFD can be aligned, so that the coupling loss caused by the MFD difference when coupled with the plug ferrule can be suppressed.
  • the difference between the refractive index of the core and the refractive index of the cladding in the third portion is the difference between the refractive index of the core and the cladding in the second portion. It is an optical receptacle characterized by being smaller than the difference from the refractive index.
  • the third portion when transmitting light having a larger beam waist than that of the second portion, light can be propagated in a single mode and with little loss.
  • the difference between the refractive index of the core and the refractive index of the cladding in the second portion is from the first portion side to the third portion side. It is an optical receptacle characterized by becoming smaller toward.
  • the refractive index gradually decreases from the first part side toward the third part side, thereby preventing a sudden change in the refractive index between the first part and the third part. And light loss due to reflection or scattering at the coupling position of the first part and the third part can be suppressed.
  • a thirteenth invention is characterized in that, in any one of the first to twelfth inventions, an outer diameter of the optical fiber in the first portion is equal to an outer diameter of the optical fiber in the third portion. Is an optical receptacle.
  • the center axis deviation between the first part and the third part can be prevented, and the fusion caused by the axis deviation can be prevented. Loss can be suppressed.
  • a fourteenth invention is characterized in that, in any one of the first to thirteenth inventions, an outer diameter of the optical fiber in the second portion is smaller than an outer diameter of the optical fiber in the first portion. Is an optical receptacle.
  • the optical fiber since the first elastic member exists in a wedge shape on the outer periphery of the second portion where the outer diameter of the optical fiber is thin, the optical fiber is prevented from protruding outward from the ferrule, and the optical fiber It is possible to suppress cracks and cracks on the outer periphery.
  • a fifteenth invention is characterized in that, in any one of the first to fourteenth inventions, an outer diameter of the optical fiber in the second portion is smaller than an outer diameter of the optical fiber in the third portion. Is an optical receptacle.
  • the wedge action by the first elastic member provided on the outer side of the clad of the second part is more effective by providing a difference in the clad outer diameter of the second part and the third part. You can do it.
  • the central portion in the axial direction of the second portion is disposed so as not to overlap an area where the ferrule and the holder are in contact with each other. It is an optical receptacle characterized by being.
  • optical receptacle for example, even when the second portion is formed by fusion, stress is applied to the second portion having a relatively lower strength than the first portion and the third portion, and the second portion It is possible to suppress the occurrence of fiber breakage or the like in this portion. The reliability of the optical receptacle can be further improved.
  • the first portion, the second portion, and the third portion are disposed in the through hole over the entire area. It is an optical receptacle characterized by the above.
  • optical receptacle since the entire optical fiber is present in the through-hole of the ferrule, it is possible to suppress problems such as bending and cracking of the optical fiber due to external force.
  • An eighteenth invention according to any one of the first to seventeenth inventions, further comprising a translucent member fixed to the ferrule, wherein the through hole is provided on the small diameter portion and the other end surface side.
  • the first elastic member is an optical receptacle provided between the optical fiber and the translucent member.
  • the optical connection distance is extended by beam diameter conversion represented by a zoom lens or the like.
  • the incident surface can be further disposed inside the receptacle, and the optical connection distance from the plug connection surface of the optical receptacle to the waveguide can be shortened. it can.
  • the first portion has a portion protruding from the ferrule, and the second portion and the third portion are disposed over the entire area.
  • An optical receptacle characterized by being disposed in the through hole.
  • optical receptacle alignment of the optical element and the optical receptacle can be facilitated by making the optical fiber protrude from the ferrule end face.
  • the through hole of the ferrule has a first region in which a width in an orthogonal direction orthogonal to an axial direction corresponds to a width in the orthogonal direction of the optical fiber, A second region that is disposed closer to the other end surface than the first region and widens in the orthogonal direction toward the other end surface, and the axially central portion of the second portion is the first region
  • An optical receptacle characterized by being disposed so as to overlap with a region.
  • optical receptacle it is possible to suppress external stress from being applied to the second portion by disposing the central portion in the axial direction of the second portion so as to overlap the first region. Thereby, it is possible to suppress occurrence of fiber breakage or the like in the second portion.
  • the through hole of the ferrule has a first region in which a width in an orthogonal direction orthogonal to an axial direction corresponds to a width in the orthogonal direction of the optical fiber, A second region that is disposed closer to the other end surface than the first region and widens in the orthogonal direction toward the other end surface, and the second portion overlaps the first region.
  • An optical receptacle characterized by being arranged.
  • optical receptacle it is possible to suppress external stress from being applied to the second portion by disposing the second portion so as to overlap the first region. Thereby, it is possible to suppress occurrence of fiber breakage or the like in the second portion.
  • the apparatus further includes a fixing member that is provided on an end surface side of the portion protruding from the ferrule of the first portion and fixes the optical fiber,
  • the fixing member is an optical receptacle characterized in that the fixing member is spaced apart from the ferrule.
  • the position of the optical fiber can be managed with high accuracy even when a part of the optical fiber protrudes from the ferrule.
  • the alignment with the optical element can be accurately performed in a short time.
  • the holder holds a portion of the outer surface of the ferrule that is closer to the other end surface than the first region. It is.
  • optical receptacle it is possible to further suppress the external stress accompanying the press-fitting into the ferrule holder from being applied to the second portion.
  • the twenty-fourth invention is an optical receptacle according to any one of the nineteenth to twenty-third inventions, wherein the holder does not protrude from the other end surface.
  • the holder can be made into a simple shape, and the member cost of the holder can be suppressed. Moreover, when an optical fiber is bent, it can also suppress that an optical fiber contacts a holder.
  • a twenty-fifth aspect of the invention is an optical receptacle according to the twentieth or twenty-first aspect of the invention, wherein the holder holds only a portion of the outer surface of the ferrule facing the first region.
  • the member cost of the holder can be suppressed, and the optical fiber can be prevented from coming into contact with the holder. Furthermore, the stress applied to the boundary portion between the first region and the second region can be relaxed.
  • the optical fiber further includes a protective member that covers a portion of the optical fiber that extends outward from the ferrule, and a tube that covers the protective member.
  • the optical receptacle is characterized in that a space is provided between the protective member and the tube.
  • This optical receptacle can suppress the protective member from coming into direct contact with the holder.
  • stress concentration also occurs at the interface between the tube and the first elastic member even when bending, but since there is a space between the tube and the protective member, the development of cracks is suppressed. be able to.
  • the tube exists independently of the optical fiber, there is no limitation on the selection of the material according to the optical characteristics of the optical fiber, and the protective member can be selected by selecting a material stronger than the protective member. Stronger bending resistance can be achieved.
  • the optical fiber further includes a second elastic member that covers the first elastic member at a portion extending outward of the ferrule. 2.
  • the optical receptacle is characterized in that the hardness of the elastic member is lower than the hardness of the first elastic member.
  • the optical fiber and the ferrule can realize optical properties, and at the end of the holder, stress relaxation can be realized when bending acts on the optical fiber. can do.
  • a part of the end face of the ferrule and the optical fiber on the end face of the fiber stub opposite to the side optically connected to the plug ferrule is characterized in that an end surface has a predetermined angle from a plane perpendicular to the central axis of the fiber stub.
  • a part of the end face of the ferrule and the end face of the optical fiber are polished so as to have a predetermined angle from a plane perpendicular to the central axis of the fiber stub, thereby being connected to the optical receptacle.
  • the light reflected by the end face of the optical fiber can be prevented from returning to the light emitting element, and the optical element can be operated stably.
  • the twenty-ninth invention is the optical receptacle according to any one of the first to twenty-eighth inventions, wherein the first portion, the second portion, and the third portion are integrally formed. It is.
  • optical receptacle by forming the optical fiber integrally, it is possible to suppress the optical loss by preventing the generation of voids at the boundaries of the first part, the second part, and the third part. Can do.
  • a thirtieth aspect of the present invention is the optical receptacle according to any one of the first to twenty-ninth aspects, wherein the length of the first portion along the central axis of the fiber stub is 5 ⁇ m or more. .
  • optical receptacle it is possible to suppress optical loss due to variations in the length of optical fiber and polishing.
  • a thirty-first invention is the optical receptacle according to any one of the first to thirty-first inventions, wherein the length of the third portion along the central axis of the fiber stub is 5 ⁇ m or more. .
  • optical receptacle it is possible to suppress optical loss due to variations in the length of optical fiber and polishing.
  • the optical fiber has the smallest details of the smallest outer diameter in the second portion, and the change in the inner diameter of the through hole is:
  • the thickness of the first elastic member is smaller than the change in the outer diameter of the optical fiber, and the thickness of the first elastic member is the largest in the finest detail, and gradually increases from the first portion toward the finest detail.
  • the length in the axial direction of the optical fiber of the first elastic member provided between the second portion and the inner wall is gradually increased from the portion to the most detailed portion.
  • the first elastic member provided in the smallest detail with the smallest outer diameter of the optical fiber is present in a wedge shape, and the movement of the optical fiber in the axial direction can be suppressed.
  • the optical fiber from protruding outward from the ferrule, and to suppress chipping and cracks on the outer periphery of the optical fiber. It can be suppressed that the optical fiber tip is deeper than the tip of the ferrule and an optical loss when coupled with the plug ferrule is increased.
  • the eccentric amount of the center of the core when the other end surface is based on the center of the outer diameter of the ferrule is 7 ⁇ m or less.
  • optical receptacle at the time of alignment with an optical element such as a semiconductor laser element, at least a part of the light emitted from the optical element can be obtained simply by installing the optical receptacle and the optical element at the initial position. Can be made incident on the core, and alignment work can be facilitated.
  • an optical element such as a semiconductor laser element
  • a thirty-fourth invention is the invention according to any one of the first to thirty-third inventions, which is orthogonal to the axial direction of the optical fiber between the cladding of the first portion and the cladding of the third portion.
  • the optical receptacle is characterized in that the amount of displacement in the direction to lie is 4 ⁇ m or less.
  • this optical receptacle it is possible to suppress the occurrence of axial misalignment with the plug ferrule on the one end face side optically connected to the plug ferrule. It is possible to suppress an increase in connection loss due to an axial deviation from the plug ferrule.
  • a thirty-fifth aspect of the present invention is an optical transceiver comprising any one of the first to thirty-four optical receptacles.
  • the core on the optical element side end face of the optical fiber is made small, and a fiber having a refractive index difference between the core and the clad larger than that of a fiber generally used for a transmission path is fused. While contributing to shortening the overall length of the module, a part where the refractive index and core diameter gradually change is formed in the fused part of the fiber generally used in the transmission line and the fiber having a large refractive index difference between the core and the cladding. Thus, the conversion efficiency of the mode field can be suppressed, and as a result, a decrease in coupling efficiency from the optical element to the plug ferrule can be suppressed.
  • An optical receptacle and an optical transceiver capable of preventing a reduction in coupling efficiency by suppressing and suppressing a loss of MFD conversion are provided.
  • FIG. 15A to FIG. 15A It is an enlarged front view of the fiber stub in the first embodiment of the present invention. It is an expanded sectional view of the optical fiber in 1st embodiment of this invention. It is a graph showing the relationship between the axial shift in the optical connection surface of a fiber stub and a plug ferrule and connection loss. It is an expanded sectional view of the fiber stub in 2nd embodiment of this invention. It is a schematic diagram which illustrates an example of the analysis regarding the conversion part length of a 2nd part. It is a graph showing the analysis result regarding the conversion part length of a 2nd part. It is the contour figure and graph which represent the light intensity distribution of the analysis result regarding the conversion part length of a 2nd part.
  • FIG. 15C are schematic views illustrating analysis regarding the length of the first portion.
  • FIG. 16A and FIG. 16B are schematic cross-sectional views illustrating a part of the optical receptacle according to the third embodiment of the invention. It is a typical sectional view which illustrates a part of optical receptacle concerning a 4th embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view illustrating a modification of the optical receptacle according to the fourth embodiment of the invention.
  • FIG. 10 is a schematic cross-sectional view illustrating a part of an optical receptacle according to a fifth embodiment of the invention.
  • FIG. 10 is a schematic cross-sectional view illustrating a part of an optical receptacle according to a sixth embodiment of the invention.
  • FIG. 26A and FIG. 26B are schematic cross-sectional views illustrating an optical receptacle according to the seventh embodiment of the invention.
  • FIGS. 26A and FIG. 26B are schematic cross-sectional views illustrating an optical receptacle according to the seventh embodiment of the invention.
  • FIGS. 29A and 29B are schematic views illustrating an optical transceiver according to the eighth embodiment of the invention.
  • FIG. 1 is a schematic cross-sectional view of an optical receptacle showing a first embodiment of the present invention.
  • the optical receptacle 1 includes a fiber stub 4, a holder 5 that holds the fiber stub 4, and a sleeve 6 that holds the tip of the fiber stub 4 at one end and a plug ferrule inserted into the optical receptacle 1 at the other end.
  • the fiber stub 4 includes an optical fiber 2, a ferrule 3 having a through hole 3 c that holds the optical fiber 2, and an elastic member 9 (first elastic member).
  • the elastic member 9 is provided between the optical fiber 2 and the inner wall of the through hole 3c.
  • the optical fiber 2 is bonded and fixed to the through hole 3 c of the ferrule 3 using an elastic member 9. Note that the plug ferrule to be inserted into the optical receptacle 1 is not shown.
  • the holder 5 has a bush 5a and a housing 5b.
  • the bush 5 a is fitted on the outer surface of the ferrule 3 and holds the rear end side of the ferrule 3.
  • the housing 5b fits on the outer surface of the bush 5a and covers the fiber stub 4 and the sleeve 6.
  • the housing 5b covers the fiber stub 4 and the sleeve 6 around the axis, and protects the fiber stub 4 and the sleeve 6 from external force and the like.
  • the bush 5a holds the fiber stub 4 and the sleeve 6 in a state of being accommodated in the housing 5b.
  • the housing 5b is, for example, cylindrical.
  • the outer diameter of the bush 5 a is larger than the outer diameter of the sleeve 6.
  • the inner diameter of the housing 5b is substantially the same as the outer diameter of the bush 5a.
  • the housing 5b fits only on the outer surface of the bush 5a without fitting on the outer surface of the sleeve 6.
  • ferrule 3 examples include ceramics and glass. In this embodiment, zirconia ceramics is used.
  • the optical fiber 2 is bonded and fixed at the center of the ferrule 3, and one end (end face 3b: FIG. 1) optically connected to the plug ferrule. And a convex spherical surface. Further, in assembling the optical receptacle 1, the fiber stub 4 is often press-fitted and fixed to the holder 5 (bush 5a).
  • the material suitable for the sleeve 6 includes resin, metal, ceramics, etc.
  • a split sleeve made of zirconia ceramics having slits in the full length direction was used.
  • the sleeve 6 holds the tip (end face 3b) polished on the convex spherical surface of the fiber stub 4 at one end, and holds the plug ferrule to be inserted into the optical receptacle at the other end.
  • the optical fiber 2 has a core 8 extending along the central axis C1 and a clad 7 surrounding the core 8.
  • the refractive index of the core is higher than the refractive index of the cladding.
  • quartz glass can be cited. Impurities may be added to the quartz glass.
  • the fiber stub 4 has one end face (end face 3b) optically connected to the plug ferrule and the other end face (end face 3a) opposite to the one end face.
  • the core 8 is exposed from the clad 7 at the end face 3a and the end face 3b.
  • an optical element such as a semiconductor laser element is disposed on the end face 3a side.
  • Light emitted from a semiconductor laser element or the like enters the optical receptacle 1 from the end face 3 a side and propagates in the core 8.
  • the light incident on the core 8 from the end surface 3b propagates in the core 8 and is emitted from the end surface 3a side toward the optical element.
  • An optical element such as an isolator may be provided between the end face 3a and an optical element such as a semiconductor laser element.
  • the isolator has, for example, an element (such as a Faraday element) that rotates a polarization angle or a polarizer, and transmits light only in one direction. Thereby, for example, damage to the laser element due to the return light reflected by the end face 3a, noise, and the like can be suppressed.
  • the fiber stub 4 may be polished so that the end surface 3b is inclined with respect to a plane orthogonal to the central axis C1. That is, the convex spherical end surface 3b may be an oblique convex spherical surface that is inclined with respect to a plane orthogonal to the central axis C1.
  • the optical receptacle 1 is optically connected to an APC (AngledngPhysical Contact) connector at the end face 3b, and reflection and connection loss at the connection point can be suppressed.
  • FIG. 2 is an enlarged cross-sectional view of the fiber stub in the first embodiment of the present invention.
  • the optical fiber 2 is a single fiber in which a first portion (first portion 21), a second portion (second portion 22), and a third portion (third portion 23) are fused.
  • the first portion of the optical fiber 2 includes a first partial cladding 7a and a first partial core 8a
  • the second portion includes a second partial cladding 7b and a second partial core 8b
  • the third portion includes a third partial cladding 7c and a third portion.
  • the core 8c comprises a fiber stub 4 polished on the convex spherical surface, a third portion on the end surface 3b side, a second portion in the center, and a first portion on the end surface 3a side optically connected to the optical element opposite to the end surface 3b. Is arranged.
  • the holder 5 (bush 5a) holds the end surface 3a side (first portion 21 side) of the fiber stub 4.
  • the sleeve 6 holds the end surface 3 b side (third portion 23 side) of the fiber stub 4.
  • the first partial cladding 7a, the second partial cladding 7b, and the third partial cladding 7c are included in the cladding 7 described with reference to FIG.
  • the first partial core 8a, the second partial core 8b, and the third partial core 8c are included in the core 8 described with reference to FIG.
  • the core diameter D1 of the first part is smaller than the core diameter D3 of the third part, and the core diameter D2 of the second part gradually increases as the transition from the first part to the third part (see, for example, FIG. 3).
  • the fiber outer diameter D4 of the first portion and the fiber outer diameter D6 of the third portion are the same, but the fiber outer diameter D5 of the second portion is smaller than them (see, for example, FIG. 3).
  • the core diameter is the length of the core along the direction orthogonal to the optical axis (center axis C1), that is, the core diameter.
  • the fiber outer diameter is the fiber length (cladding length) along the direction orthogonal to the central axis C1, that is, the fiber diameter.
  • Examples of the method for forming the second part include a method of stretching the optical fiber fusion part while applying heat higher than the melting point of quartz from the outer periphery of the fusion part when the first part and the third part are fused.
  • the length of the second portion of the fiber stub 4 in the direction of the central axis C1 needs to be designed in consideration of the length with the least loss and the limit length that can be extended while applying heat.
  • the length is desirably 10 micrometers ( ⁇ m) or more and 1000 ⁇ m.
  • the optical fiber 2 has the smallest portion NP having the smallest outer diameter in the second portion 22.
  • the change in the inner diameter of the through hole 3 c is smaller than the change in the outer diameter of the optical fiber 2.
  • the inner diameter of the through hole 3 c is substantially constant from the first portion 21 to the third portion 23.
  • the thickness of the elastic member 9 is largest at the most detailed NP, and gradually increases from the first portion 21 toward the most detailed NP, and gradually increases from the third portion 23 toward the most detailed NP.
  • the length of the elastic member 9 provided between the second portion 22 and the inner wall 3c in the axial direction of the optical fiber 2 is the axis of the elastic member 9 provided between the first portion 21 and the inner wall 3c.
  • the length of the elastic member 9 of the second portion 22 is shorter than both the length of the elastic member 9 of the first portion 21 and the length of the elastic member 9 of the third portion 23.
  • FIG. 3, FIG. 4, FIG. 5, FIG. 6 and FIG. 7 show the shape of the second part.
  • FIG. 3 shows a state in which the core diameter D2 of the second part linearly expands as it changes from the first part to the third part.
  • FIG. 5 shows a state in which the core diameter D2 of the second part increases nonlinearly as it changes from the first part to the third part.
  • FIG. 6 shows that while the core diameter D2 of the second part changes from the first part to the third part, the core expands nonlinearly, but a part of the boundary between the clad 7 and the core 8 extends to the fiber center axis C1.
  • a state is shown in which a portion S1 (this is referred to as a step) is substantially vertical.
  • the difference between the refractive index of the cladding and the refractive index of the core in each part is the largest in the first part, then the second part is the largest, and the third part is the smallest. Because the second part is formed at the time of fusing the first part and the third part, the refractive index difference is large on the first part side, and the refractive index difference is gradually reduced toward the third part side.
  • the laser When the laser is focused to a certain beam waist diameter D7, it has the characteristic of spreading at a spread angle of ⁇ degrees. That is, if one of the divergence angle or the beam diameter is determined, the other is inevitably determined.
  • the refractive index difference between the core and the clad As a method for producing a refractive index difference between the core and the clad, a method of adding rare earth such as erbium or germanium to quartz glass is known, and examples of the addition target include the core, the clad, or both.
  • the refractive index can be adjusted by the additive substance and concentration in the quartz glass.
  • the refractive index of the core and the refractive index of the cladding are about 1.4 or more and 1.6 or less, respectively.
  • the fiber used for the first portion has a refractive index difference so that the spread angle ⁇ of the laser incident on the first portion matches the NA. It is necessary to use a fixed fiber.
  • the incident diameter is also determined. Therefore, it is necessary to use a fiber having an MFD (mode field diameter) matched to the incident beam diameter together with the refractive index difference.
  • MFD mode field diameter
  • the length of the first part and the third part in the direction of the central axis C1 is preferably 100 ⁇ m or more in order to secure the distance until the incident light settles in a single mode, and the second part penetrates the ferrule 3. It is desirable to adjust so that it may be arrange
  • the optical fiber 2 is fixed to the through hole 3 c of the ferrule 3 using an elastic member (adhesive) 9.
  • the material suitable for the adhesive include resin-based adhesives such as epoxy and silicon. In this example, a high-temperature curing type epoxy-based adhesive was used.
  • a space existing between the optical fiber 2 and the inner wall of the ferrule 3 is filled with the same adhesive without any gap.
  • the fiber outer diameter D5 of the second portion is smaller than the fiber outer diameter D4 of the first portion and smaller than the fiber outer diameter D6 of the third portion.
  • a gap is generated between the ferrule 3 and the outer periphery of the fiber of the second portion in 3c.
  • the gap is filled with the elastic member 9 as an adhesive without any gap.
  • the elastic member 9 may contain bubbles that do not affect the function of the optical receptacle 1. More specifically, the elastic member 9 may contain bubbles that can prevent the optical fiber 2 from moving due to contact with the plug ferrule because the fixing strength of the optical fiber 2 is lowered due to poor adhesion. .
  • the elastic member 9 may include bubbles having a length of 30 ⁇ m or less in the axial direction of the optical fiber 2 (direction along the interface between the optical fiber 2 and the ferrule 3), for example.
  • the elastic member 9 may include bubbles having a maximum diameter of 30 ⁇ m or less, for example. Thereby, even when the elastic member 9 contains air bubbles, it is possible to prevent the function of the optical receptacle 1 from being affected.
  • the elastic member 9 in the “state in which the elastic member 9 is filled” and the “state in which the elastic member 9 is filled without a gap”, the elastic member 9 includes bubbles having an axial length of 30 ⁇ m or less. It also includes the case of being out.
  • the second part is formed by fusing the first part and the third part, the strength of the second part is lower than the strength of the first part or the third part depending on the forming conditions. There is a case.
  • the second portion can be reinforced by filling the outer periphery of the second portion with the elastic member 9.
  • the fiber outer diameter D5 of the second portion may be substantially the same as the fiber outer diameter D4 of the first portion or the fiber outer diameter D5 of the third portion. Good. By taking this shape, it is possible to relatively easily control the discharge amount and the discharge timing when the optical fiber 2 is formed by fusing.
  • the end surface 2a of the optical fiber 2 is a plane substantially perpendicular to the central axis C1 of the ferrule 3 (same as the central axis of the fiber stub). It is polished to become.
  • substantially perpendicular is preferably about 85 to 95 degrees with respect to the central axis C1.
  • the end face 2a of the optical fiber 2 is polished to a plane perpendicular to the central axis C1 of the fiber stub 4, and the end face 2a of the optical fiber 2 and the end face 3a of the ferrule 3 are further polished. Exist on the same plane.
  • the distance between the end face 2a of the optical fiber 2 and the end face 3a of the ferrule 3 is about ⁇ 250 nm to +250 nm.
  • the center of the core 8 of the optical fiber 2 is within the range of 0.005 millimeters (mm) from the center of the ferrule 3 on the end surface 3a opposite to the end surface 3b polished to the convex spherical surface of the fiber stub 4.
  • the convex spherical surface of the fiber stub 4 is usually formed on a plane perpendicular to the central axis C1 of the ferrule 3, but is formed on a plane having a predetermined angle (for example, 4 to 10 degrees) from the perpendicular surface. May be.
  • FIG. 8 is an enlarged front view of the fiber stub in the first embodiment of the present invention.
  • the core 8 may be eccentric with respect to the ferrule 3 due to, for example, a manufacturing error.
  • the core amount EA is 7 ⁇ m or less.
  • FIG. 9 is an enlarged cross-sectional view of the optical fiber in the first embodiment of the present invention.
  • the optical fiber 2 when forming the optical fiber 2 by fusing two optical fibers, if at least one core of each optical fiber is eccentric with respect to the cladding, the centers of the cores Are welded together. For this reason, a positional shift may occur between the first partial cladding 7a and the third partial cladding 7c in a direction orthogonal to the axial direction.
  • the displacement DA in the direction perpendicular to the axial direction of the optical fiber 2 between the first partial cladding 7a of the first portion 21 and the third partial cladding 7c of the third portion 23 is 4 ⁇ m or less. is there.
  • FIG. 10 is a graph showing the relationship between the axial shift and the connection loss in the optical connection surface between the fiber stub and the plug ferrule.
  • the required quality of the connection loss between the fiber stub 4 and the plug ferrule on the optical connection surface side is often 0.5 dB or less. There are various causes of the loss, but it is considered that the influence of the axial deviation between the fiber stub 4 and the plug ferrule is large.
  • the through hole 3c of the ferrule 3 must be 4 ⁇ m or more.
  • the optical fiber 2 is biased and bonded, resulting in misalignment of the optical connection surface, which may increase the connection loss.
  • the connection loss on the optical connection surface exceeds 0.5 dB, and the request cannot be satisfied. Therefore, as described above, the displacement amount DA is 4 ⁇ m or less. Thereby, the axial shift with the plug ferrule on the optical connection surface can be suppressed, and the connection loss can be suppressed. It is possible to suppress the connection loss from exceeding 0.8 dB.
  • FIG. 11 is a schematic cross-sectional view of an optical receptacle showing a second embodiment of the present invention.
  • the members constituting the optical receptacle 1 are the same as those in the first embodiment, and the end surface 3b (see FIG. 11) polished to the convex spherical surface of the ferrule 3 having the optical fiber 2 and the through hole 3c for holding the optical fiber 2.
  • the end face 3a (see FIG. 11)
  • a part of the end face 2a of the optical fiber 2 and a part of the end face 3b of the ferrule 3 are at a predetermined angle (for example, 4) from a plane perpendicular to the central axis C1 of the ferrule 3. It is polished so as to be a flat surface having a degree of 10 degrees.
  • the optical fiber 2 is inserted into the through hole 3c of the ferrule 3 and an adhesive is used. After fixing, the ferrule 3 and the optical fiber 2 are formed by polishing simultaneously.
  • an elastic member for fixing the optical fiber 2 in the through hole 3c of the ferrule 3 on the outer periphery of the portion 2b where the outer diameter of the second portion is reduced.
  • Agent 9 is filled.
  • FIGS. 12 to 14 are schematic views illustrating examples of analysis conditions and analysis results used in the examination.
  • FIG. 12 is a schematic cross-sectional view showing the optical fiber used in this study.
  • a beam having a beam waist having a diameter w1 is incident on a fiber having an MFD having a diameter w2
  • the coupling efficiency ⁇ is It is known that it is required in
  • the MFD of a single mode fiber has a diameter that is 0.5 to 4 ⁇ m larger than the core diameter of the fiber, although it varies depending on the wavelength when the core diameter is in the range of 0 to 10 ⁇ m. From this fact, it is desirable that the core diameter of the fiber is smaller by 0.5 to 4 ⁇ m than the incident beam waist.
  • the divergence angle ⁇ 1 can be obtained.
  • the light receiving angle ⁇ 2 of the fiber is As can be seen from the above, it is found from the refractive index n core of the core and the refractive index n clad of the cladding.
  • the refractive index of the core and the clad changes in the range of about 1.4 to 1.6.
  • the length of the second part in the direction of the central axis C1 will be described.
  • optical CAE analysis was performed.
  • the core diameter D1 of the first portion is 3 ⁇ m
  • the refractive index of the first partial core 8a is 1.49
  • the core diameter D3 of the third portion is 8.2 ⁇ m
  • the refractive index of the third partial core 8c is 1.4677
  • the total length of the fiber was 1000 ⁇ m
  • the refractive indexes of the clads (7a, 7b, and 7c) in each part were 1.4624 in common
  • the beam waist diameter D7 of the incident beam was 3.2 ⁇ m.
  • Fig. 13 shows a graph summarizing the analysis results of this analysis.
  • the horizontal axis indicates the length of the second portion in the direction of the central axis C1
  • the vertical axis indicates the logarithm of the light intensity at the fiber exit end when the incident light is 1.
  • FIG. 14 is a contour diagram and a graph showing the light intensity distribution in the fiber in an example of the analysis conditions.
  • the vertical axis of the graph indicates the distance from the incident end of the fiber, and the horizontal axis indicates the light intensity.
  • the incident light is initially reduced in intensity due to light interference, but is stabilized when it has propagated to some extent from the exit end.
  • the second part is entered while maintaining a constant value.
  • loss due to MFD conversion and refractive index change occurs, so that the light intensity decreases, and then enters the third part.
  • the third part there is almost no change in intensity, and a constant value is maintained until the emission end.
  • the length of the first portion and the third portion in the direction of the central axis C1 does not affect the attenuation, so even if the length changes, the function of the fiber and the loss of the entire fiber are not affected. There is no effect.
  • the lengths of the first part and the third part can be designed with any length of the designer, and the dimensional tolerance of the design dimension can be made large. This advantage does not require strict dimensional accuracy like GI fiber or fiber with lens, and can greatly contribute to the improvement of mass productivity.
  • FIG. 15A to FIG. 15C are schematic views illustrating an example of the optical receptacle of the reference example used for the study on the length of the first portion and an analysis result thereof.
  • the optical receptacle of the reference example has a fiber stub 49 shown in FIG.
  • the structure of the fiber stub 49 of the reference example is the same as the structure in which the first portion 21 (the first partial cladding 7a and the first partial core 8a) is not provided in the fiber stub 4 according to the embodiment. That is, the fiber stub 49 includes an optical fiber 29 and a ferrule 39 that holds the optical fiber 29.
  • the fiber stub 49 has an end face 39b connected to the plug ferrule and an end face 39a opposite to the end face 39b.
  • the optical fiber 29 has a second portion 229 (conversion unit) and a third portion 239.
  • the third portion 239 is aligned with the second portion 229 in the axial direction and is continuous with the second portion 229.
  • the second part 229 forms part of the end face 39a, and the third part 239 forms part of the end face 39b.
  • the core diameter of the second portion 229 increases toward the third portion 239.
  • the core diameter of the third portion 239 is substantially constant in the direction of the central axis C1. In FIG. 15A, for convenience, some elements such as an elastic member are omitted.
  • the end surface 39a is polished in a mirror shape.
  • the end surface 39b is polished into a convex spherical shape. Thereby, the loss of light at the end faces 39a and 39b can be suppressed.
  • the polishing amount of the end face 39a is, for example, not less than 5 ⁇ m and not more than 50 ⁇ m. Thereby, a mirror-like end surface can be formed.
  • the length of the second portion 229 is shortened according to the polishing amount.
  • the end surface position of the second portion 229 (the position of the portion exposed as part of the end surface 39a of the second portion 229) varies by about 5 to 50 ⁇ m according to the polishing amount. That is, the core diameter Da on the end face 39a varies. This causes a loss when using a fiber whose MFD changes periodically, such as a GI fiber.
  • FIG. 15B and FIG. 15C show examples of analysis results.
  • the length La along the axial direction of the second portion 229 was 50 ⁇ m
  • the core diameter Da at the end face 39a was 3 ⁇ m
  • the core diameter Db at the end face 39b was 9 ⁇ m.
  • the rate of change along the axial direction of the core diameter in the second portion 229 was constant.
  • FIG. 15B shows the length La of 20% (polishing amount of 10 ⁇ m), 40% (polishing amount of 20 ⁇ m), 60% (polishing amount of 30 ⁇ m) or 70% (polishing amount of 30 ⁇ m) of the fiber stub 49 as described above. It represents the loss (dB) when shortened by 80% (polishing amount 40 ⁇ m).
  • the loss is -1.06 dB before the end face 39a is polished. From the graph, it can be seen that the loss increases as the second portion 229 is shortened by polishing. For example, when the conversion portion (second portion 229) is shortened by 50% by polishing, the loss is about ⁇ 3 dB.
  • the loss increases by polishing the end face.
  • the loss varies depending on the variation in the polishing amount. The amount of polishing needs to be strictly controlled, and mass productivity may be reduced.
  • a first portion in which the core diameter and the refractive index do not substantially change along the central axis C1 is provided. Even if the length of the first portion along the central axis C1 varies due to the polishing of the end surface 3a, an increase in optical loss and a variation in variation are small. For example, even if the end face position changes within the length of the first portion, the characteristics of the optical receptacle are not substantially deteriorated.
  • the length of the first portion along the central axis C1 is equal to or greater than the polishing amount of the end surface 3a.
  • the end surface 3a is polished by about 5 ⁇ m or more and 50 ⁇ m or less.
  • the length of the first portion along the central axis C1 is desirably 5 ⁇ m or more, and more desirably 50 ⁇ m or more if possible.
  • the upper limit of the length along the central axis C1 of the first part is not particularly limited as long as the second part and the third part can be disposed in the fiber stub 4 (in the through hole of the ferrule 3). Therefore, depending on the overall length of the fiber stub 4, the first portion may be extended to about 7 to 10 mm. Thereby, mass productivity can be improved.
  • the core diameter at the end face connected to the plug ferrule varies depending on the polishing amount. Loss increases due to changes in the core diameter at the end face.
  • a third portion in which the core diameter and the refractive index do not substantially change along the central axis C1 is provided. Even if the length of the third portion along the central axis C1 varies due to the polishing of the end surface 3b, an increase in optical loss and a variation in variation are small.
  • the length of the third portion along the central axis C1 is preferably equal to or greater than the polishing amount of the end surface 3b.
  • the end surface 3b is polished by about 5 ⁇ m or more and 20 ⁇ m or less.
  • the length of the third portion along the central axis C1 is preferably 5 ⁇ m or more, and more preferably 20 ⁇ m or more if possible.
  • the upper limit of the length of the third portion along the central axis C1 is not particularly limited as long as the first portion and the second portion can be disposed in the fiber stub 4 (in the through hole of the ferrule 3). Therefore, depending on the overall length of the fiber stub 4, the third portion may be extended to about 7 to 10 mm. Thereby, mass productivity can be improved.
  • the core diameter D1 of the end surface 3a opposite to the end surface 3b polished to the convex spherical surface of the fiber stub 4 is smaller than the core diameter D2 of the end surface 3b polished to the convex spherical surface.
  • the length of the optical module can be reduced. Further, it is possible to eliminate the need for highly accurate dimensional management with respect to the axial lengths of the first portion and the third portion. Since the fiber outer diameter D5 of the second portion is smaller than the cladding through-hole 3c, the elastic member 9 is filled in the gap, thereby preventing the fiber from moving in the central axis direction.
  • FIG. 16A and FIG. 16B are schematic cross-sectional views illustrating a part of the optical receptacle according to the third embodiment of the invention.
  • FIGS. 16A and 16B show an enlarged view of the fiber stub 4 and the holder 5 (bush 5a) in the optical receptacle according to the present embodiment.
  • the axial central portion C2 of the second portion 22 of the optical fiber 2 overlaps with the region A1 where the ferrule 3 and the holder 5 (bush 5a) are in contact with each other. It is arranged so that it does not become.
  • the central portion C2 in the axial direction of the second portion 22 is provided at a position where the fiber stub 4 is not press-fitted into the holder 5 (bush 5a).
  • the axial direction is, for example, the direction in which the first portion 21, the second portion 22, and the third portion 23 are arranged.
  • the axial direction is the direction in which the optical fiber 2 extends.
  • the axial center portion C2 is the axial center of the second portion 22 where the core diameter D2 gradually changes.
  • the second portion 22 is formed, for example, by fusing the first portion 21 and the third portion 23 and stretching the fusion portion while applying heat.
  • the cladding outer shape changes at the fusion part.
  • the cladding outer diameter of the second portion 22 is smaller than the cladding outer diameter of the first portion 21 and the cladding outer diameter of the third portion 23.
  • the strength of the second portion 22 is lower than the strength of the first portion 21 and the third portion 23.
  • the strength of the second portion 22 is further reduced.
  • the central portion C2 in the axial direction of the second portion 22 is disposed so as not to overlap the region A1 where the ferrule 3 and the holder 5 (bush 5a) are in contact. To do. Thereby, for example, even when the second portion 22 is formed by fusion, a stress is applied to the second portion 22 having relatively lower strength than the first portion 21 and the third portion 23, and the The occurrence of fiber breakage or the like in the second portion 22 can be suppressed. The reliability of the optical receptacle 1 can be further improved.
  • the axial central portion C2 of the second portion 22 is shifted toward the end face 3b optically connected to the plug ferrule with respect to the region A1.
  • the axial center C2 of the second portion 22 may be shifted to the end face 3a side optically connected to the optical element with respect to the region A1.
  • a part of the second portion 22 overlaps the area A1.
  • the entire second portion 22 may not overlap the region A1.
  • the length of the fiber stub 4 in the axial direction can be further shortened.
  • FIG. 17 is a schematic cross-sectional view illustrating a part of an optical receptacle according to the fourth embodiment of the invention.
  • the portion of the fiber stub 4 in the optical receptacle according to the present embodiment is shown enlarged.
  • the fiber stub 4 further includes a translucent member 70 fixed to the ferrule 3.
  • the through hole 3c of the ferrule 3 has a small diameter part DP1 and a large diameter part DP2.
  • the large diameter portion DP2 is provided closer to the end face 3a than the small diameter portion DP1.
  • the large diameter portion DP2 has a larger diameter than the small diameter portion DP1.
  • the diameter of the large-diameter portion DP2 is the width in the direction orthogonal to the axial direction.
  • the large diameter portion DP2 is a portion that is provided closer to the end surface 3a than the small diameter portion DP1 in the through hole 3c, and is wider than the small diameter portion DP2. Further, the diameter of the large diameter portion DP2 may be increased toward the end surface 3a, for example.
  • the entire optical fiber 2 is disposed in the small diameter portion DP1.
  • the translucent member 70 is disposed in the large diameter portion DP2.
  • the whole translucent member 70 is provided in the large diameter portion DP2.
  • a part of the translucent member 70 may protrude from the ferrule 3. That is, at least a part of the translucent member 70 only needs to be provided in the large diameter portion DP2.
  • the cross sectional shapes of the translucent member 70 and the large diameter portion DP2 are, for example, rectangular.
  • the cross-sectional shapes of the translucent member 70 and the large-diameter portion DP2 may be circular, elliptical, or polygonal.
  • the elastic member 9 is provided in a gap between the optical fiber 2 and the small diameter portion DP1 of the through hole 3c of the ferrule 3, and the gap between the translucent member 70 and the large diameter portion DP2 and the optical fiber. 2 and the translucent member 70.
  • the elastic member 9 is filled in a gap between the optical fiber 2 and the small diameter portion DP1 of the through hole 3c of the ferrule 3, and between the translucent member 70 and the large diameter portion DP2.
  • the gap and the gap between the optical fiber 2 and the translucent member 70 are filled. Thereby, the optical fiber 2 and the translucent member 70 are bonded and fixed in the through hole 3 c of the ferrule 3 using the elastic member 9.
  • the end face 2 a of the optical fiber 2 opposite to the side optically connected to the plug ferrule is in close contact with the elastic member 9.
  • An end surface 70 a on the optical fiber 2 side of the translucent member 70 is in close contact with the elastic member 9.
  • the elastic member 9 and the translucent member 70 have translucency. Thereby, the light irradiated from the optical element enters the optical fiber 2 through the translucent member 70 and the elastic member 9, and the light emitted from the optical fiber 2 passes through the translucent member 70 and the elastic member 9. Through the optical element.
  • At least a part of the end surface 70 b of the translucent member 70 opposite to the optical fiber 2 has a plane that is substantially perpendicular to the central axis C ⁇ b> 1 of the optical receptacle 1.
  • substantially perpendicular refers to, for example, an angle of about 85 degrees or more and 95 degrees or less with respect to the central axis C1 of the optical receptacle 1.
  • the surface roughness of the end surface 70b of the translucent member 70 is desirably an arithmetic average roughness of 0.1 micrometers or less in order to minimize the amount of reflected light.
  • the elastic member 9 is filled with no gap between the optical fiber 2 and the small diameter portion DP1. Thereby, the bias of the elastic member 9 filled around the optical fiber 2 is reduced, and the thermal expansion coefficient of the elastic member 9 and the thermal expansion coefficient of the optical fiber 2 when the optical receptacle 1 is exposed to a temperature change. It is possible to prevent the optical fiber 2 from being broken or cracked due to the difference between the two. Further, since the amount of variation in the diameter direction in the through-hole 3c of the ferrule 3 on the end face 2a opposite to the optically connected side of the plug ferrule of the optical fiber 2 is reduced, the light emitting element and the light receiving element and the end face of the optical fiber 2 The time for aligning is reduced.
  • the material of the elastic member 9 in the small diameter portion DP1 may be different from the material of the elastic member 9 in the large diameter portion DP2.
  • each of the elastic member 9 and the translucent member 70 has substantially the same refractive index as the refractive index of the core of the optical fiber 2.
  • the substantially same refractive index here is about 1.4 or more and 1.6 or less.
  • the refractive index of the core of the optical fiber 2 is, for example, about 1.46 or more and 1.47 or less.
  • the refractive index of the elastic member 9 is, for example, about 1.4 or more and 1.5 or less.
  • the refractive index of the translucent member 70 is, for example, about 1.4 or more and 1.6 or less.
  • the elastic member 9 has a lower elastic modulus than ceramics used as a material for the ferrule 3 and quartz glass used as a material for the optical fiber 2.
  • quartz glass used as a material for the optical fiber 2. For example, an epoxy resin, an acrylic resin, a silicon resin, etc. are illustrated.
  • the optical connection distance is reduced by beam diameter conversion represented by a zoom lens or the like.
  • the incident surface can be further disposed inside the receptacle, and the optical connection distance from the plug connection surface of the optical receptacle 1 to the waveguide can be increased. It can be made shorter.
  • the optical receptacle 1 can be miniaturized.
  • FIG. 18 is a schematic cross-sectional view illustrating a modification of the optical receptacle according to the fourth embodiment of the invention.
  • this example has a structure in which the translucent member 70 of the optical receptacle described with reference to FIG. 17 is replaced with an isolator 72.
  • the configuration other than the isolator 72 is substantially the same as the optical receptacle described with reference to FIG.
  • the isolator 72 includes a first polarizer 74, a second polarizer 75, and a Faraday rotator 76.
  • the Faraday rotator 76 is provided between the first polarizer 74 and the second polarizer 75.
  • the Faraday rotator 76 includes a material such as garnet. Thereby, the light emitted from the light emitting element and incident on the optical fiber 2 or the light emitted from the optical fiber 2 and incident on the light receiving element can be transmitted only in one direction.
  • the isolator 72 may be used as the translucent member 70.
  • the isolator 72 for example, it is possible to suppress the reflection of light at the end surface 72b of the isolator 72, or to prevent the reflected light from returning to the light emitting element, and to stably operate the light emitting element.
  • an AR (anti-reflective) coating may be applied to the end surface 72b of the isolator 72 opposite to the optical fiber 2, for example.
  • FIG. 19 is a schematic cross-sectional view illustrating a part of an optical receptacle according to the fifth embodiment of the invention.
  • FIG. 19 shows an enlarged view of the fiber stub 4 in the optical receptacle according to the present embodiment.
  • the first part includes a part (inner side part 21 a) arranged in the through hole 3 c of the ferrule 3 and a part (projecting part) arranged outside the through hole 3 c. 21b).
  • the optical receptacle according to the present embodiment has an elastic member 19. Except for the above, this embodiment is the same as the first or second embodiment.
  • the protruding portion 21b protrudes outward from the ferrule 3 (the surface of the ferrule 3 opposite to the end surface 3b). That is, the protrusion 21b is not aligned with the ferrule 3 in the direction orthogonal to the central axis C1.
  • the inner portion 21a is aligned with the ferrule 3 in a direction orthogonal to the central axis C1, and is surrounded by the ferrule 3 when viewed along the central axis C1.
  • the entire area of the second portion and the entire area of the third portion are respectively disposed in the through holes 3c. That is, the entire area of the second portion and the entire area of the third portion are aligned with the ferrule 3 in a direction orthogonal to the central axis C1, and are surrounded by the ferrule 3 when viewed along the central axis C1.
  • a module such as a semiconductor laser element and an optical element are provided on the side opposite to the end face 3b of the optical receptacle.
  • FIG. 19 shows a part 31 of the optical element as an example.
  • the portion 31 of the optical element has a shape (such as a groove) corresponding to the protruding portion 21b.
  • the projecting portion 21b is placed on the part 31 of the optical element and pressed directly against the light emitting end of the optical element.
  • light is made incident on the protruding portion 21 from the light emitting end using an element such as a lens.
  • the elastic member 19 is provided at the end of the protruding portion 21b on the third portion side.
  • the elastic member 19 is in contact with the protruding portion 21b and the ferrule 3, for example. Thereby, the elastic member 19 protects the first portion.
  • the length L1 along the direction of the central axis C1 of the elastic member 19 is, for example, about 2 mm.
  • the length L2 along the direction of the central axis C1 of the protruding portion 21b is desirably 2 mm or more.
  • the length L2 of the protruding portion 21b is desirably 20 mm or less.
  • the length L2 of the protrusion 21b may be 100 mm or less.
  • the 2nd part and the 3rd part are arrange
  • FIG. 20 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the sixth embodiment of the invention.
  • FIG. 20 shows an enlarged view of the fiber stub 4 in the optical receptacle according to the present embodiment.
  • the through hole 3c of the ferrule 3 has a first region R1 and a second region R2.
  • the configuration other than the through hole 3c is substantially the same as that of the optical receptacle described with reference to FIG.
  • the first region R1 is a region in which the width in the orthogonal direction orthogonal to the axial direction corresponds to the width of the optical fiber 2 in the orthogonal direction. That is, the first region R1 is a portion having substantially the same diameter as the outer diameter of the optical fiber 2 in the through hole 3c. The diameter of the first region R1 is substantially constant along the axial direction. The first region R1 is continuous with the end surface 3b of the ferrule 3. The ferrule 3 holds the optical fiber 2 in the first region R1.
  • region R2 is arrange
  • the second region R2 is continuous with the first region R1. Further, in this example, the second region R ⁇ b> 2 is continuous with the end face 3 a of the ferrule 3.
  • the second region R2 is a region where the width in the orthogonal direction widens toward the end face 3a side of the ferrule 3. That is, 2nd area
  • the diameter continuously increases toward the end face 3a.
  • the diameter in the second region R2 may be increased stepwise toward the end face 3a.
  • the tip of the optical fiber 2 is placed in the through hole 3c along the inclination of the second region R2.
  • the manufacturability of the optical receptacle 1 can be improved.
  • the elastic member 19 is filled in the second region R2.
  • the central portion C2 in the axial direction of the second portion 22 is disposed so as to overlap the first region R1.
  • the entire second portion 22 is disposed so as to overlap the first region R1.
  • a part of the second portion 22 on the end surface 3a side may overlap the second region R2.
  • at least the axial center portion C ⁇ b> 2 only needs to overlap the first region R ⁇ b> 1.
  • the second region R2 is provided in the through hole 3c of the ferrule 3.
  • the optical fiber 2 can be easily inserted into the through hole 3c, and the manufacturability of the optical receptacle 1 can be improved.
  • the central portion C2 in the axial direction of the second portion 22 is disposed so as to overlap the first region R1.
  • the holder 5 (bush 5a) holds, for example, a portion facing the first region R1 and a portion facing the second region R2 on the outer surface of the ferrule 3.
  • the central portion C2 in the axial direction of the second portion 22 is disposed so as not to overlap the region A1 where the ferrule 3 and the holder 5 (bush 5a) are in contact. Thereby, generation
  • FIG. 21 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
  • the holder 5 (bush 5 a) holds only the portion of the outer surface of the ferrule 3 that is closer to the end surface 3 a than the first region R ⁇ b> 1.
  • the holder 5 (bush 5a) holds only a portion of the outer surface of the ferrule 3 that faces the second region R2. Thereby, it can suppress more that the external stress accompanying the press injection to the holder 5 (bush 5a) of the ferrule 3 is added to the 2nd part 22.
  • the optical receptacle 1 further includes a protective member 10.
  • the protective member 10 covers a portion of the optical fiber 2 that extends outward from the ferrule 3.
  • the protection member 10 has flexibility and bends in any direction together with the optical fiber 2.
  • a resin material such as polyester elastomer or acrylate resin is used.
  • the outer diameter of the protective member 10 is, for example, about 0.2 mm to 1.0 mm.
  • the tip 10a of the protection member 10 is located in the second region R2 of the through hole 3c.
  • the protective member 10 covers a portion of the optical fiber 2 that is not held by the ferrule 3.
  • the inner peripheral surface 5n of the bush 5a has a first inner peripheral portion IS1 and a second inner peripheral portion IS2.
  • the first inner peripheral portion IS1 fits on the outer surface of the ferrule 3.
  • the second inner peripheral portion IS2 is located behind (the end surface 3a side) of the first inner peripheral portion IS1, protrudes inward from the first inner peripheral portion IS1, and is part of the optical fiber 2 and part of the protective member 10.
  • the inner diameter of the first inner peripheral portion IS1 of the bush 5a is substantially the same as the outer diameter of the ferrule 3.
  • the inner diameter of the second inner peripheral portion IS2 of the bush 5a is smaller than the outer diameter of the ferrule 3. Accordingly, the second inner peripheral portion IS2 is located behind the end surface 3a of the ferrule 3.
  • the inner diameter of the second inner peripheral portion IS2 is set to a value larger than the outer diameter of the protective member 10 and smaller than the outer diameter of the ferrule 3, for example.
  • the inner diameter of the portion of the second inner peripheral portion IS2 is, for example, smaller than the opening diameter on the end surface 3a side of the through hole 3c that expands in the second region R2.
  • a gap SP is provided in the axial direction.
  • the elastic member 9 is also filled in the gap SP.
  • the distance in the axial direction of the gap SP is, for example, longer than the outer diameter of the optical fiber 2.
  • the distance in the axial direction of the gap SP is, for example, about 0.125 mm to 0.2 mm.
  • the distance in the axial direction of the gap SP is the distance in the axial direction between the end surface 3a of the ferrule 3 and the second inner peripheral portion IS2.
  • the outer diameter of the optical fiber 2 is the length in the direction orthogonal to the axial direction of the optical fiber 2. Since the optical performance is not affected, the elastic member 9 excluding the first region R1 may contain bubbles of any size.
  • the bush 5a has a first rear end face BS1 and a second rear end face BS2.
  • the second rear end face BS2 is recessed more to the front end side (end face 3b side) than the first rear end face BS1 on the outer peripheral side than the first rear end face BS1.
  • the first rear end surface BS1 and the second rear end surface BS2 are, for example, planes orthogonal to the axial direction.
  • the bush 5a protrudes inward in the vicinity of the rear end of the inner peripheral surface 5n. Thereby, the area of 1st rear end surface BS1 and 2nd rear end surface BS2 can be enlarged.
  • the bush 5a has a chamfered portion 5c between the first rear end surface BS1 and the second inner peripheral portion IS2 (inner peripheral surface 5n).
  • the chamfered portion 5c may be a so-called C surface obtained by linearly grinding a corner portion between the first rear end surface BS1 and the second inner peripheral portion IS2, or a corner portion between the first rear end surface BS1 and the second inner peripheral portion IS2.
  • a so-called R-plane obtained by rounding off may be used.
  • the elastic member 9 has a protruding portion 9p that protrudes outward of the bush 5a on the rear end side of the bush 5a and covers a corner portion between the rear end of the bush 5a and the outer surface of the protection member 10.
  • the outer surface of the protruding portion 9p is, for example, a concave curved surface that is recessed toward the corner portion side and gently connects the rear end of the bush 5a and the outer surface of the protection member 10.
  • the outer surface of the ferrule 3 has a first contact portion CP1 that contacts the inner peripheral surface 5n of the bush 5a.
  • the outer surface of the bush 5a has a second contact portion CP2 that contacts the inner peripheral surface of the housing 5b.
  • the intermediate point m2 in the axial direction of the second contact part CP2 is located behind the intermediate point m1 in the axial direction of the first contact part CP1.
  • the tip 10a of the protection member 10 is located in the second region R2 of the through hole 3c.
  • the length of the part which protruded from the protection member 10 of the optical fiber 2 can be shortened as much as possible.
  • the bending of the optical fiber 2 can be suppressed and the optical fiber 2 can be easily inserted into the through hole 3 c of the ferrule 3.
  • the manufacturability of the optical receptacle 1 can be improved.
  • the optical fiber 2 and the protective member 10 further extend outward from the bush 5a (holding tool 5), and are bonded and fixed to the bush 5a by the elastic member 9.
  • tip of the optical fiber 2 protrudes from the front-end
  • the elastic member 9 is also filled in the gap SP between the end face 3a of the ferrule 3 and the second inner peripheral portion IS2. Thereby, the deformation
  • the bush 5a has a first rear end face BS1 and a second rear end face BS2.
  • the first rear end surface BS1 as a receiving surface of the adhesive serving as the elastic member 9
  • the second rear end surface BS2 is used as a positioning surface, and the second rear end surface BS2 is pressed into the housing 5b so that the bush 5a and the housing 5b are pressed. It can suppress that position shift arises.
  • the adhesive flows into the positioning surface, and the bush 5a may be deeply pressed into the housing 5b by the amount of the hardened adhesive. There is sex.
  • the first rear end face BS1 and the second rear end face BS2 such positional deviation can be suppressed and the positional accuracy between the bush 5a and the housing 5b can be increased.
  • the distance between the second rear end surface BS2 that is the positioning surface and the end surface 3b of the ferrule 3 that is the PC surface can be determined more accurately.
  • the length from the second rear end surface BS2 to the end surface 3b of the ferrule 3 is The thickness of the bush 5a changes depending on the quality (error, variation, etc.).
  • the gap SP as in this example, the length from the second rear end face BS2 to the end face 3b of the ferrule 3 can be determined more accurately without depending on the quality of the parts. Can do. As a result, the reliability and productivity of the optical receptacle 1 can be improved.
  • the ferrule 3 may be fixed obliquely due to the right angle of the end surface 3a of the ferrule 3 or the second inner peripheral portion IS2, or the ferrule 3 may be missing. There is a concern that the bush 5a may be deformed.
  • the gap SP by providing the gap SP, it is possible to suppress the oblique press-fitting of the ferrule 3 and the breakage and deformation of the component regardless of the quality of the component.
  • the error in the overall length of the ferrule 3 is, for example, about ⁇ 0.05 mm (range 0.1 mm).
  • the error in the thickness dimension of the bush 5a is, for example, about ⁇ 0.05 mm (range 0.1 mm).
  • the axial distance of the gap SP is preferably about 0.2 mm.
  • the axial distance of the gap SP is made longer than the outer diameter of the optical fiber 2.
  • the distance in the axial direction of the gap SP is set to about 0.125 mm or more and 0.2 mm or less. Thereby, the reliability and productivity of the optical receptacle 1 can be further improved.
  • the protective member 10 is bonded longer by making the length of the portion of the first rear end face BS1 longer than the length necessary for holding the bush 5a in the housing 5b (length required for press-fitting). Can be fixed. Thereby, the deformation
  • the optical fiber 2 can be easily inserted into the bush 5a, and the productivity can be improved.
  • the chamfered portion 5c can be used as an adhesive reservoir, and the adhesive is more prevented from flowing into the second rear end surface BS2 (positioning surface). be able to.
  • the elastic member 9 has a protruding portion 9p. Therefore, when a load is applied by an external force, it is possible to suppress the optical fiber 2 from being locally bent at a corner portion between the rear end of the bush 5a and the outer surface of the protection member 10. For example, the bending base point of the optical fiber 2 can be moved away from the boundary portion between the first region R1 and the second region R2.
  • the housing 5b holds the bush 5a by press-fitting. Thereby, holding force can be improved and the bush 5a can be appropriately held with a simple configuration.
  • the intermediate point m2 of the second contact part CP2 of the bush 5a is located behind the intermediate point m1 of the first contact part CP1 of the ferrule 3.
  • FIG. 22 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
  • the bush 5 a holds only the outer surface of the fiber stub 4.
  • the inner diameter of the bush 5a is substantially constant.
  • the rear end of the bush 5a does not protrude rearward from the end surface 3a.
  • at least a part of the bush 5a holds a portion of the outer surface of the ferrule 3 that faces the second region R2.
  • the fiber stub 4 may be located inside the bush 5a.
  • the protruding portion 9 p of the elastic member 9 is provided at the corner portion between the end surface 3 a of the ferrule 3 and the outer surface of the protective member 10.
  • the member cost of the bush 5a can be suppressed.
  • the optical fiber 2 when bent, it can also suppress that the optical fiber 2 contacts the bush 5a.
  • FIG. 23 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
  • the bush 5 a holds only a portion of the outer surface of the ferrule 3 that faces the first region R ⁇ b> 1.
  • the bush 5a holds a portion in front of the second region R2 of the ferrule 3.
  • FIG. 24 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
  • the optical receptacle 1 further includes a tube 12.
  • the tube 12 has a cylindrical shape that covers the outer periphery of the protection member 10.
  • the tube 12 has flexibility.
  • the inner diameter of the tube 12 is slightly larger than the outer diameter of the protective member 10, and a space is provided between the tube 12 and the protective member 10.
  • the tip of the tube 12 is located in the second region R2 of the through hole 3c.
  • the position of the tip of the tube 12 is not limited to this, and may be an arbitrary position.
  • the protective member 10 When the protective member 10 is in direct contact with the holder 5, the protective member 10 may be cracked. Moreover, when the interface between the protective member 10 and the elastic member 9 exists at the rear end of the holder 5, bending stress concentrates on the interface, and the protective member 10 may be cracked. The crack generated in the protective member 10 may propagate into the protective member 10 due to repeated bending and may reach the cladding 7 of the optical fiber 2.
  • the tube 12 By providing the tube 12 outside the protective member 10, it is possible to suppress the protective member 10 from coming into direct contact with the holder 5. In addition, stress concentration occurs at the interface between the tube 12 and the elastic member 9 even when bending is performed. However, since there is a space between the tube 12 and the protective member 10, cracks may develop. Can be suppressed. Further, since the tube 12 exists independently of the optical fiber 2, there is no restriction on the selection of the material according to the optical characteristics of the optical fiber 2, and a material having a stronger strength than the protective member 10 should be selected. Thus, bending resistance stronger than that of the protective member 10 can be realized.
  • FIG. 25 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
  • the optical receptacle 1 further includes an elastic member 14 (second elastic member) in addition to the elastic member 9 (first elastic member).
  • the elastic member 14 covers a corner portion between the rear end of the holder 5 (bush 5a) and the outer surface of the protection member 10.
  • the elastic member 14 covers the protruding portion 9p.
  • the elastic member 14 covers, for example, the entire outer surface of the protruding portion 9p. In other words, the elastic member 14 covers the boundary portion between the elastic member 9 and the protection member 10.
  • the hardness of the elastic member 14 is lower than the hardness of the elastic member 9. In other words, the elastic modulus of the elastic member 14 is smaller than the elastic modulus of the elastic member 9. The hardness of the elastic member 9 is higher than the hardness of the protective member 10.
  • the hardness of the elastic member 14 is, for example, about the same as the hardness of the protection member 10.
  • the hardness of the elastic member 14 is, for example, not less than 0.8 times and not more than 1.2 times the hardness of the protective member 10.
  • the hardness of the protective member 10 is, for example, about Shore D20 to 30. In this case, the hardness of the elastic member 14 is about shore D20 to 30 as well.
  • a resin material such as polyester elastomer or acrylate resin is used for the protective member 10.
  • a resin material such as an epoxy resin is used for the elastic member 9.
  • a resin material such as polyester resin, acrylic resin, or silicone resin is used for the elastic member 14.
  • a resin adhesive is used for the elastic member 9 and the elastic member 14. In this case, the hardness of the elastic member 9 and the hardness of the elastic member 14 are the hardnesses after the adhesive is cured (after complete curing).
  • the material of the elastic member 9 is preferably a low outgas material having a refractive index optically close to that of glass.
  • the elastic member 9 is required to have a certain adhesive strength such that the optical fiber 2 moves during optical connection with the plug ferrule.
  • the material of the elastic member 14 is preferably a material having a low elastic modulus in order to relieve stress.
  • the elastic member 14 may be arrange
  • the optical fiber 2 and the ferrule 3 have optical properties, and at the end of the holder 5, stress relaxation when bending acts on the optical fiber 2. It is possible to realize the two characteristics.
  • FIG. 26A and FIG. 26B are schematic cross-sectional views illustrating an optical receptacle according to the seventh embodiment of the invention.
  • a fixing member 80 is further provided.
  • the configuration other than the fixing member 80 is substantially the same as the optical receptacle described with reference to FIG.
  • the fixing member 80 is provided on the end surface 2a side of the portion protruding from the ferrule 3 of the first portion 21, and fixes the optical fiber 2.
  • the fixing member 80 is disposed away from the ferrule 3. In other words, the fixing member 80 is disposed away from the end surface 3 a of the ferrule 3.
  • the fixing member 80 includes a base portion 81, a lid portion 82, and an elastic member 83.
  • the base part 81 has a substantially rectangular block shape.
  • a groove 81 a is provided on the upper surface of the base portion 81.
  • the groove 81 a is formed according to the shape of the optical fiber 2.
  • the base part 81 accommodates one end of the optical fiber 2 in the groove 81a. Thereby, the base part 81 supports the lower part of the end of the optical fiber 2.
  • the shape of the groove 81a is, for example, a V shape.
  • the lid portion 82 is provided on the base portion 81 and closes the groove 81 a of the base portion 81.
  • the lid 82 covers the upper part of one end of the optical fiber 2 accommodated in the groove 81a.
  • the fixing member 80 covers one end of the optical fiber 2 around the axis by the base portion 81 and the lid portion 82.
  • optical glass such as quartz glass is used for the base portion 81 and the lid portion 82 of the fixing member 80.
  • the material of the base portion 81 and the lid portion 82 may be, for example, a brittle material such as ceramics or a metal material such as stainless steel.
  • the elastic member 83 is provided between the base portion 81 and the lid portion 82.
  • the elastic member 83 is filled in the groove 81a.
  • the elastic member 83 adheres and fixes the lid portion 82 and one end of the optical fiber 2 to the base portion 81. Thereby, one end of the optical fiber 2 is fixed to the fixing member 80.
  • an epoxy resin, an acrylic resin, a silicon resin, or the like is used for the elastic member 83.
  • the optical fiber 2 is provided with a coating 86.
  • the coating 86 covers a portion between the ferrule 3 and the fixing member 80 of the optical fiber 2.
  • the coating 86 covers a portion of the optical fiber 2 that is not covered with the ferrule 3 and the fixing member 80.
  • the coating 86 protects the portion of the optical fiber 2 exposed from the ferrule 3 and the fixing member 80.
  • a resin material is used for the covering 86.
  • the end surface 2a of the optical fiber 2 connected to the optical element is substantially flush with the end surface of the base portion 81 and the end surface of the lid portion 82, for example.
  • the end surface 2a of the optical fiber 2 may protrude from the end surface of the base portion 81 and the end surface of the lid portion 82, for example.
  • the optical fiber 2 and the optical element are combined to cause light to enter and exit, or when the light is condensed on the end surface 2a of the optical fiber 2 via a lens or the like, the optical fiber 2 having a small core diameter and a laser having a small diameter
  • the light must be accurately aligned. For this reason, for example, the alignment accuracy required compared to the alignment of 10 ⁇ m laser light becomes strict.
  • FIGS. 27A to 27E are explanatory views showing an example of the analysis result of the optical receptacle according to the seventh embodiment of the present invention.
  • the axial misalignment between the central portion where the light is collected and the central portion of the core (Axial misalignment) and the axial position of the light condensing point ( The optical loss is obtained when the defocus) and the mode field diameter (MFD) of the optical fiber 2 are changed.
  • FIGS. 27B to 27E are graphs showing examples of analysis results. As shown in FIGS. 27B to 27E, the loss of light increases as the magnitude of the axis deviation increases. On the other hand, when the defocus amount is increased, it is possible to reduce the loss of light due to the axis deviation. Then, the loss of light due to the axis deviation tends to increase as the mode field diameter of the optical fiber 2 decreases.
  • the position of the optical fiber 2 is high. It can be managed with accuracy. For example, the alignment with the optical element can be accurately performed in a short time. For example, the alignment state can be maintained with high accuracy.
  • the eccentric amount EA of the center of the core 8 with respect to the center of the outer diameter of the ferrule 3 is 7 ⁇ m or less. More preferably, the eccentricity EA is 5.6 ⁇ m or less.
  • the light emitted from an optical element such as a semiconductor laser element enters the core 8 most efficiently when the center of the optical element coincides with the center of the core 8.
  • an optical element such as a semiconductor laser element
  • the incident light quantity in a state of variation of 1 ⁇ W or less is measured.
  • the This is considered to be because light in a measurement environment such as sunlight or illumination light enters. If 1 ⁇ W is replaced with a loss with 1 mW as a reference, it becomes ⁇ 30 dB.
  • FIG. 28 is a schematic cross-sectional view illustrating a modification of the optical receptacle according to the seventh embodiment of the invention.
  • the end surface 2a of the optical fiber 2 connected to the optical element, the end surface of the base portion 81, and the end surface of the lid portion 82 may be polished obliquely.
  • FIGS. 29A and 29B are schematic views illustrating an optical transceiver according to the eighth embodiment of the invention.
  • the optical transceiver 200 according to the present embodiment includes the optical receptacle 1, the optical element 110, and the control board 120.
  • a circuit or the like is formed on the control board 120.
  • the control board 120 is electrically connected to the optical element 110.
  • the control board 120 controls the operation of the optical element 110.
  • the optical element 110 is, for example, a light receiving element or a light emitting element.
  • the optical element 110 is a light emitting unit.
  • the optical element 110 includes a laser diode 111 and a lens 112.
  • the laser diode 111 is controlled by the control board 120 and emits light to the fiber stub 4 of the optical receptacle 1.
  • the lens 112 is located between the optical receptacle 1 and the laser diode 111 on the optical path of the emitted light.
  • the optical element 110 may have an element 113 as shown in FIG.
  • the element 113 includes a laser diode and an optical waveguide having a small core diameter. Light propagating through the core of the waveguide enters the optical receptacle 1 through the lens 112.
  • the optical waveguide is formed by, for example, silicon photonics. A quartz waveguide may be used as the optical waveguide. In the embodiment, the light emitted from the laser diode or the optical waveguide may be directly incident on the optical receptacle 1 without providing the lens 112.
  • a plug ferrule 50 is inserted into the optical receptacle 1.
  • the plug ferrule 50 is held by the sleeve 6.
  • the optical fiber 2 is optically connected to the plug ferrule 50 at the end face 3b.
  • the optical element 110 and the plug ferrule 50 are optically connected via the optical receptacle, and optical communication is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical receptacle is provided with: a fiber stub that includes an optical fiber having a core and cladding, a ferrule having a through hole, and an elastic member for affixing the optical fiber; retention hardware for retaining the fiber stub; and a sleeve for retaining a plug ferrule. The optical fiber has one end surface and another end surface on the opposite side. The optical fiber has a first part on the other end surface side, a third part on the one end surface side, and a second part between these. The core diameter of the first part is smaller than the core diameter of the third part. The core diameter of the second part becomes larger moving from the first to the third part. The elastic member is provided between the optical fiber and the inside wall of the through hole. Thus, it is possible to provide an optical receptacle and optical transceiver wherein the total length of the optical module is reduced, highly precise dimensional tolerance is unnecessary for the length in the axial direction of fiber, reductions in coupling efficiency are prevented, and MFD conversion loss is suppressed.

Description

光レセプタクル及び光トランシーバOptical receptacle and optical transceiver
 本発明の態様は、一般に、光通信用の光トランシーバ、モジュールに係り、特に高速通信用モジュールに好適な光レセプタクルに関する。 An aspect of the present invention generally relates to an optical transceiver and module for optical communication, and more particularly to an optical receptacle suitable for a module for high-speed communication.
 光レセプタクルは、光通信用トランシーバの光モジュールにおいて光ファイバコネクタを受光素子や発光素子等の光素子と光学的に接続させるための部品として用いられる。 An optical receptacle is used as a component for optically connecting an optical fiber connector to an optical element such as a light receiving element or a light emitting element in an optical module of an optical communication transceiver.
 近年、IPトラフィックの増加に伴い光通信用トランシーバは高速化が要求されている。一般に、レセプタクル型光モジュールを採用するトランシーバ等の形状は規格化されており、光学素子の1つである半導体レーザーから出射する光信号の変調速度を高速化すると、電気回路に必要なスペースが大きくなり、光モジュールの小型化が求められている。 In recent years, with the increase in IP traffic, optical communication transceivers are required to increase in speed. In general, the shape of a transceiver or the like that adopts a receptacle-type optical module is standardized, and if the modulation speed of an optical signal emitted from a semiconductor laser, which is one of optical elements, is increased, the space required for an electric circuit increases. Therefore, downsizing of the optical module is demanded.
 半導体レーザー素子のモードフィールド径は、一般的に光信号の伝送路として用いられる光ファイバのコア径10μmよりも小さい。 The mode field diameter of a semiconductor laser element is generally smaller than the core diameter of 10 μm of an optical fiber used as an optical signal transmission path.
 近年では光トランシーバの通信速度をより高速化するため、単一のモジュール内に複数の半導体レーザーを有し、各半導体レーザーから出射された光を、板状部材の内部に形成された光導波路内で1つ導波路に合波した後、光レセプタクルの光ファイバと光学的に結合する構造の光モジュールも使われている。これらの光モジュールでは、小型化するために前述の光導波路を持つ板状部材を小型化する必要があり、光導波路のコア径は小さくなる傾向がある。 In recent years, in order to further increase the communication speed of optical transceivers, a single module has a plurality of semiconductor lasers, and light emitted from each semiconductor laser is transmitted into an optical waveguide formed inside a plate-shaped member. Then, an optical module having a structure that is optically coupled to an optical fiber of an optical receptacle after being combined into one waveguide is also used. In these optical modules, in order to reduce the size, it is necessary to reduce the size of the plate member having the optical waveguide described above, and the core diameter of the optical waveguide tends to be reduced.
 発光素子に代えて受光素子を用いる光モジュールにおいても、より高速、より長距離通信用途で用いるために、受光素子の受光径を小さくする傾向がある。 Even in an optical module that uses a light receiving element instead of a light emitting element, there is a tendency to reduce the light receiving diameter of the light receiving element in order to use it for higher speed and longer distance communication.
 半導体レーザー素子から出射された光をファイバコアに集光する、またはファイバコアから出射された光を受光素子に集光するためのレンズは、光学素子のモードフィールド径とファイバコア径に差がある場合には倍率機能を有する必要があるが、差が大きければ大きいほど、レンズの焦点距離が長くなる、または必要レンズ枚数が多くなり光学系が複雑かつ高価になる問題があった。 A lens for condensing light emitted from a semiconductor laser element onto a fiber core or condensing light emitted from a fiber core onto a light receiving element has a difference between the mode field diameter of the optical element and the fiber core diameter. In some cases, it is necessary to have a magnification function. However, the larger the difference, the longer the focal length of the lens, or the larger the number of necessary lenses, and there is a problem that the optical system becomes complicated and expensive.
 モジュール全長が長くなることまたは光学系の複雑化を防ぐために、レンズによる倍率は小さく抑え、代わりに光ファイバの光学素子側端面の一部のファイバ先端にレンズを形成したり、GIファイバを融着することで入射された光のモードフィールド径を拡大しファイバに最適なモードフィールド径をファイバ端面に入射する方法が知られている(例えば特許文献1)。 In order to prevent an increase in the overall length of the module or complication of the optical system, the magnification by the lens is kept small. Instead, a lens is formed on a part of the optical fiber side end face of the optical fiber, or a GI fiber is fused. Thus, a method is known in which the mode field diameter of the incident light is enlarged and the optimum mode field diameter for the fiber is incident on the fiber end face (for example, Patent Document 1).
 しかしながら特許文献1の方法は、周期的にモードフィールド径が変化するGIファイバを用いるため、最適なモードフィールド径を得るためにはGIファイバの長さを厳密に管理しなければならず、製造上の管理が困難であるという課題があった。 However, since the method of Patent Document 1 uses a GI fiber whose mode field diameter periodically changes, in order to obtain an optimum mode field diameter, the length of the GI fiber must be strictly controlled. There was a problem that it was difficult to manage.
 また、GIファイバのように径方向に対してコア中心から外周部にかけて段階的に屈折率が異なるファイバを融着するとき、ファイバ端面を溶かして一体化させる融着技術では屈折率の異なるコアが溶け出し混ざりあってしまうため、融着部周辺の屈折率を管理することが困難であり、光損失が大きくなってしまう課題があった。 In addition, when a fiber having different refractive indexes is fused stepwise from the core center to the outer peripheral portion in the radial direction, such as a GI fiber, a core having a different refractive index is fused in a fusion technique in which the fiber end faces are fused and integrated. Since it melts and mixes, it is difficult to manage the refractive index around the fused part, and there is a problem that optical loss increases.
 また、特許文献2では、光ファイバの光学素子側をテーパ状に形成し、光学素子側のモードフィールド径をPC(Physical Contact)側のモードフィールド径よりも小さくした光レセプタクルを提案している。これにより、接続損失を抑制することができる。しかしながら、特許文献2の構成では、テーパ形状が、光学素子側の端部に位置している。光ファイバの両端部は、光入出射の弊害とならないように鏡面(研磨)加工が必要となる。このため、鏡面加工の具合によって径が変化してしまい、モードフィールド径を安定的に制御することが難しいという課題があった。すなわち、特許文献2の構成においても、光ファイバの軸方向長さに関して高い精度の寸法公差を必要としていた。 Patent Document 2 proposes an optical receptacle in which the optical element side of the optical fiber is formed in a tapered shape, and the mode field diameter on the optical element side is smaller than the mode field diameter on the PC (Physical Contact) side. Thereby, connection loss can be suppressed. However, in the configuration of Patent Document 2, the taper shape is located at the end on the optical element side. Both end portions of the optical fiber need to be mirrored (polished) so as not to cause adverse effects of light entering and exiting. For this reason, there has been a problem that the diameter varies depending on the degree of mirror finishing, and it is difficult to stably control the mode field diameter. That is, the configuration of Patent Document 2 also requires a highly accurate dimensional tolerance with respect to the axial length of the optical fiber.
特開2006-154243号公報JP 2006-154243 A 特開2006-119633号公報JP 2006-119633 A
 本発明の態様は、上記問題を解決するためになされたもので、光ファイバの光学素子側端面のコアを小さくし、かつ一般的に伝送路に用いられるファイバよりもコアとクラッドの屈折率差の大きいファイバを融着することで、光モジュール全長を短くすることに貢献しながら、一般的に伝送路に用いられるファイバとコアとクラッドの屈折率差の大きいファイバの融着部分に屈折率およびコア径が緩やかに推移する部分を形成することで、モードフィールドの変換効率を抑え、結果として光学素子からプラグフェルールまでの結合効率の低下を抑制することができる光レセプタクル及び光トランシーバを提供することを目的とする。 An aspect of the present invention has been made to solve the above-described problems. The core of the optical element side end surface of the optical fiber is made smaller, and the refractive index difference between the core and the clad than the fiber generally used in the transmission line is reduced. While fusing a large fiber, it contributes to shortening the total length of the optical module, while the refractive index and the fiber are generally used in the transmission line, and the refractive index and the fusion part of the fiber having a large refractive index difference between the core and the clad. To provide an optical receptacle and an optical transceiver capable of suppressing mode field conversion efficiency by forming a portion where the core diameter gradually changes, and consequently suppressing a decrease in coupling efficiency from an optical element to a plug ferrule. With the goal.
 第1の発明は、光を導通するためのコアとクラッドを有する光ファイバ、前記光ファイバが固定される貫通孔を有するフェルール、前記光ファイバを前記貫通孔に固定する第1弾性部材、を含むファイバスタブと、前記ファイバスタブを保持する保持具と、前記ファイバスタブを一端で保持し、他端でプラグフェルールを保持可能とするスリーブと、を備え、前記ファイバスタブは、前記フェルールのプラグフェルールと光学的接続する側の一端面と、前記一端面とは反対側の他端面を有し、前記光ファイバは、前記他端面側の第1の部分と、前記一端面側の第3の部分と、前記第1の部分と前記第3の部分との間に第2の部分を有し、前記第1の部分におけるコア径は、前記第3の部分におけるコア径より小さく、前記第2の部分におけるコア径は、前記第1の部分側から前記第3の部分側に向かって大きくなり、前記第1弾性部材は、前記光ファイバと前記貫通孔の内壁との間に設けられ、前記保持具は、前記ファイバスタブの前記他端面側を保持し、前記スリーブは、前記ファイバスタブの前記一端面側を保持することを特徴とする光レセプタクルである。 The first invention includes an optical fiber having a core and a cladding for conducting light, a ferrule having a through hole to which the optical fiber is fixed, and a first elastic member for fixing the optical fiber to the through hole. A fiber stub, a holding tool for holding the fiber stub, and a sleeve for holding the fiber stub at one end and holding the plug ferrule at the other end, the fiber stub having a plug ferrule of the ferrule, One end face on the side to be optically connected and the other end face opposite to the one end face, and the optical fiber includes a first part on the other end face side and a third part on the one end face side. , Having a second part between the first part and the third part, wherein the core diameter in the first part is smaller than the core diameter in the third part, and the second part In The core diameter increases from the first part side toward the third part side, the first elastic member is provided between the optical fiber and the inner wall of the through hole, and the holder is The optical receptacle is characterized in that the other end surface side of the fiber stub is held, and the sleeve holds the one end surface side of the fiber stub.
 この光レセプタクルによれば、フェルールのプラグフェルールと光学的接続する側とは反対側の端面におけるコア径が、フェルールのプラグフェルールと光学的接続する側の端面におけるコア径よりも小さいため、光モジュールの長さを小さくすることができる。
 また、第2の部分を形成することで、第1の部分から第3の部分へ推移していく際に、コア形状の急激な変化を抑えることができるため、第2の部分での光学的損失を抑えることができる。
 さらに、第1の部分と第3の部分は形状が軸方向に対して変化せず、光の損失も小さいため、第2の部分は光フェルール内径部のどこに所在しても問題はない。これにより、ファイバの精密な長さ管理を必要とせず、経済的にレセプタクルを製造することができる。
 また、光レセプタクルは、一般的に敷設される光ファイバと接続される。一般的に敷設される光ファイバのMFDは、約10μmであり、第3部分を光学的接続する側に配置することで、プラグと光レセプタクルとのMFD差による接続損失を抑えることができる。
According to this optical receptacle, the core diameter at the end surface of the ferrule opposite to the side optically connected to the plug ferrule is smaller than the core diameter at the end surface of the ferrule on the side optically connected to the plug ferrule. The length of can be reduced.
In addition, since the second portion is formed, a rapid change in the core shape can be suppressed when the first portion transitions to the third portion. Loss can be suppressed.
Furthermore, since the first part and the third part do not change in shape with respect to the axial direction and the loss of light is small, there is no problem regardless of where the second part is located in the inner diameter part of the optical ferrule. As a result, the receptacle can be manufactured economically without requiring precise length control of the fiber.
The optical receptacle is connected to an optical fiber that is generally laid. Generally, the MFD of the optical fiber to be laid is about 10 μm, and the connection loss due to the MFD difference between the plug and the optical receptacle can be suppressed by arranging the third portion on the optical connection side.
 第2の発明は、第1の発明において、前記第1の部分のコアの屈折率、前記第2の部分のコアの屈折率、および前記第3の部分におけるコアの屈折率は互いに等しく、前記第1の部分のクラッドの屈折率は、前記第3の部分のクラッドの屈折率より小さく、前記第2の部分のクラッドの屈折率は、前記第1の部分側から前記第3の部分側に向かって大きくなることを特徴とする光レセプタクルである。 According to a second invention, in the first invention, the refractive index of the core of the first portion, the refractive index of the core of the second portion, and the refractive index of the core of the third portion are equal to each other, The refractive index of the cladding of the first part is smaller than the refractive index of the cladding of the third part, and the refractive index of the cladding of the second part is from the first part side to the third part side. It is an optical receptacle characterized by becoming larger.
 この光レセプタクルによれば、屈折率差の大きいファイバを用いることで、小さいコア径でも光を散乱させること無く閉じ込めることができ、光がファイバに入射する際の損失を抑えることができる。また、第2の部分を形成することで、第1の部分から第3の部分へ推移していく際に、屈折率差の急激な変化を抑えることができるため、第2の部分での光学的損失を抑えることができる。また、コアの素材を共通化することができ、第1の部分、第2の部分、第3の部分の接続部におけるコア同士の屈折率差が存在しないため、接続部の反射による損失をおさえることができる。 According to this optical receptacle, by using a fiber having a large refractive index difference, light can be confined without scattering even with a small core diameter, and loss when light enters the fiber can be suppressed. In addition, since the second portion is formed, it is possible to suppress a sudden change in the refractive index difference when the first portion transitions to the third portion. Loss can be suppressed. Moreover, since the core material can be shared and there is no refractive index difference between the cores in the connecting portions of the first part, the second part, and the third part, the loss due to the reflection of the connecting part is suppressed. be able to.
 第3の発明は、第1の発明において、前記第1の部分のクラッドの屈折率、前記第2の部分のクラッドの屈折率、および前記第3の部分におけるクラッドの屈折率は、互いに等しく、前記第1の部分のコアの屈折率は、前記第3の部分のコアの屈折率より大きく、前記第2の部分のコアの屈折率は、前記第1の部分側から前記第3の部分側に向かって小さくなることを特徴とする光レセプタクルである。 According to a third invention, in the first invention, the refractive index of the cladding of the first portion, the refractive index of the cladding of the second portion, and the refractive index of the cladding of the third portion are equal to each other, The refractive index of the core of the first part is larger than the refractive index of the core of the third part, and the refractive index of the core of the second part is from the first part side to the third part side. It is an optical receptacle characterized by becoming smaller toward.
 この光レセプタクルによれば、クラッドが同一素材で形成できるため、クラッドが一様な物性を持つことができる。それにより、融点も一様になるため融着時のクラッド外径の成形を容易に行うことができる。 According to this optical receptacle, since the clad can be formed of the same material, the clad can have uniform physical properties. Thereby, since the melting point becomes uniform, the outer diameter of the clad at the time of fusion can be easily formed.
 第4の発明は、第1~3いずれか1つの発明において、前記第2の部分のコア径は、前記第1の部分側から前記第3の部分側に向かって線形に大きくなることを特徴とする光レセプタクルである。 According to a fourth invention, in any one of the first to third inventions, the core diameter of the second part increases linearly from the first part side toward the third part side. Is an optical receptacle.
 この光レセプタクルによれば、第2の部分に進入したレーザーが放射状に広がっていったとしても、クラッドとコアの境界には小さい角度で入射されることとなり、光が全反射することによりクラッド側に光が逃げていくことを防ぐことができる。 According to this optical receptacle, even if the laser that has entered the second portion spreads radially, it enters the boundary between the cladding and the core at a small angle, and the total reflection of the light causes the cladding side Can prevent light from escaping.
 第5の発明は、第1~3のいずれか1つの発明において、前記第2の部分のコア径は、前記第1の部分側から前記第3の部分側に向かって非線形に大きくなることを特徴とする光レセプタクルである。 According to a fifth invention, in any one of the first to third inventions, the core diameter of the second part increases nonlinearly from the first part side toward the third part side. It is the optical receptacle characterized.
 この光レセプタクルによれば、第2の部分を形成する際の融着ファイバ引っ張り速度、融着放電時間やパワーに精度の高い制御を必要としないため、製造が比較的容易に可能とすることができる。 According to this optical receptacle, since it is not necessary to precisely control the fusion fiber pulling speed, the fusion discharge time, and the power when forming the second portion, it can be manufactured relatively easily. it can.
 第6の発明は、第1~3のいずれか1つの発明において、前記第2の部分のコアは、前記第1の部分側から前記第3の部分側にかけて、前記第2の部分のコア径が大きくなっている領域の一部に段差を有することを特徴とする光レセプタクルである。 According to a sixth aspect of the present invention, in any one of the first to third aspects, the core of the second portion has a core diameter of the second portion from the first portion side to the third portion side. An optical receptacle characterized by having a step in a part of a region where is increased.
 この光レセプタクルによれば、第2の部分を形成する際の融着ファイバ引っ張り速度、融着放電時間やパワーに精度の高い制御を必要としないため、製造が比較的容易に可能とすることができる。また、この形状を取れば融点の異なるファイバでも接続することができるため、融着に用いるファイバの選択肢を広げることができる。 According to this optical receptacle, since it is not necessary to precisely control the fusion fiber pulling speed, the fusion discharge time, and the power when forming the second portion, it can be manufactured relatively easily. it can. In addition, if this shape is adopted, even fibers having different melting points can be connected, so that the options of fibers used for fusion can be expanded.
 第7の発明は、第1~6のいずれか1つの発明において、前記第1の部分におけるコア径が、0.5μm以上、8μm以下であることを特徴とする光レセプタクルである。 A seventh invention is an optical receptacle according to any one of the first to sixth inventions, wherein a core diameter in the first portion is 0.5 μm or more and 8 μm or less.
 この光レセプタクルによれば、微細な光導波路から放出された光に対して、ファイバ側がMFDを小さくすることで、ファイバに入射する際に光のズームを必要としなくなる。それにより結合距離の短縮を図れると共に、レンズの簡略化にも貢献することができる。 According to this optical receptacle, since the MFD is reduced on the fiber side with respect to the light emitted from the fine optical waveguide, it is not necessary to zoom the light when entering the fiber. Accordingly, the coupling distance can be shortened and the lens can be simplified.
 第8の発明は、第1~7のいずれか1つの発明において、前記第1の部分におけるコアの屈折率とクラッドの屈折率との差は、前記第3の部分におけるコアの屈折率とクラッドの屈折率との差より大きいことを特徴とする光レセプタクルである。 According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the difference between the refractive index of the core and the refractive index of the cladding in the first portion is the difference between the refractive index of the core and the cladding in the third portion. It is an optical receptacle characterized by being larger than the difference from the refractive index.
 この光レセプタクルによれば、第1の部分において、第3の部分よりも小さいビームウェストの光を伝える場合に、シングルモードでかつ損失少なく光を伝播することができる。 According to this optical receptacle, in the first portion, when transmitting light having a beam waist smaller than that in the third portion, the light can be propagated in a single mode and with little loss.
 第9の発明は、第1~8のいずれか1つの発明において、前記第1の部分におけるコアの屈折率とクラッドの屈折率との差は、前記第2の部分におけるコアの屈折率とクラッドの屈折率との差より大きいことを特徴とする光レセプタクルである。 According to a ninth invention, in any one of the first to eighth inventions, the difference between the refractive index of the core and the refractive index of the cladding in the first portion is the difference between the refractive index of the core and the cladding in the second portion. It is an optical receptacle characterized by being larger than the difference from the refractive index.
 この光レセプタクルによれば、第1の部分において、第2の部分よりも小さいビームウェストの光を伝える場合に、シングルモードでかつ損失少なく光を伝播することができる。 According to this optical receptacle, when transmitting light having a beam waist smaller than that of the second portion in the first portion, the light can be propagated in a single mode and with little loss.
 第10の発明は、第1~9のいずれか1つの発明において、前記第3の部分におけるコア径が、8μm以上、20μm以下であることを特徴とする光レセプタクルである。 A tenth aspect of the invention is an optical receptacle according to any one of the first to ninth aspects, wherein a core diameter in the third portion is 8 μm or more and 20 μm or less.
 この光レセプタクルによれば、現在一般的に使用されている光通信用シングルモードファイバとMFDをそろえることができるため、プラグフェルールと結合する場合のMFD差に起因する結合損失を抑えることができる。 According to this optical receptacle, the single mode fiber for optical communication that is currently used generally and the MFD can be aligned, so that the coupling loss caused by the MFD difference when coupled with the plug ferrule can be suppressed.
 第11の発明は、第1~10のいずれか1つの発明において、前記第3の部分におけるコアの屈折率とクラッドの屈折率との差は、前記第2の部分におけるコアの屈折率とクラッドの屈折率との差より小さいことを特徴とする光レセプタクルである。 In an eleventh aspect of the invention, in any one of the first to tenth aspects, the difference between the refractive index of the core and the refractive index of the cladding in the third portion is the difference between the refractive index of the core and the cladding in the second portion. It is an optical receptacle characterized by being smaller than the difference from the refractive index.
 この光レセプタクルによれば、第3の部分において、第2の部分よりも大きいビームウェストの光を伝える場合に、シングルモードでかつ損失少なく光を伝播することができる。 According to this optical receptacle, in the third portion, when transmitting light having a larger beam waist than that of the second portion, light can be propagated in a single mode and with little loss.
 第12の発明は、第1~11のいずれか1つの発明において、前記第2の部分におけるコアの屈折率とクラッドの屈折率の差は、前記第1の部分側から前記第3の部分側に向かって小さくなることを特徴とする光レセプタクルである。 According to a twelfth aspect of the present invention, in any one of the first to eleventh aspects, the difference between the refractive index of the core and the refractive index of the cladding in the second portion is from the first portion side to the third portion side. It is an optical receptacle characterized by becoming smaller toward.
 この光レセプタクルによれば、第1の部分側から第3の部分側に向かって徐々に屈折率が小さくなることで、第1の部分と第3の部分の急激な屈折率の変化を防ぐことができ、第1の部分と第3の部分の結合位置における反射や散乱による光損失を抑えることができる。 According to this optical receptacle, the refractive index gradually decreases from the first part side toward the third part side, thereby preventing a sudden change in the refractive index between the first part and the third part. And light loss due to reflection or scattering at the coupling position of the first part and the third part can be suppressed.
 第13の発明は、第1~12のいずれか1つの発明において、前記第1の部分における前記光ファイバの外径は、前記第3の部分における前記光ファイバの外径と等しいことを特徴とする光レセプタクルである。 A thirteenth invention is characterized in that, in any one of the first to twelfth inventions, an outer diameter of the optical fiber in the first portion is equal to an outer diameter of the optical fiber in the third portion. Is an optical receptacle.
 この光レセプタクルによれば、第1の部分と第3の部分の外形が等しいことにより、第1の部分と第3の部分の中心軸ずれを防止することができ、軸ずれに起因する融着損失を抑えることができる。 According to this optical receptacle, since the outer shapes of the first part and the third part are equal, the center axis deviation between the first part and the third part can be prevented, and the fusion caused by the axis deviation can be prevented. Loss can be suppressed.
 第14の発明は、第1~13のいずれか1つの発明において、前記第2の部分における前記光ファイバの外径は、前記第1の部分における前記光ファイバの外径よりも小さいことを特徴とする光レセプタクルである。 A fourteenth invention is characterized in that, in any one of the first to thirteenth inventions, an outer diameter of the optical fiber in the second portion is smaller than an outer diameter of the optical fiber in the first portion. Is an optical receptacle.
 この光レセプタクルによれば、光ファイバの外径が細くなる第2の部分の外周には第1弾性部材が楔状に存在するため、光ファイバがフェルールよりも外側に突き出ることを抑え、光ファイバの外周のカケやクラックを抑制することができる。 According to this optical receptacle, since the first elastic member exists in a wedge shape on the outer periphery of the second portion where the outer diameter of the optical fiber is thin, the optical fiber is prevented from protruding outward from the ferrule, and the optical fiber It is possible to suppress cracks and cracks on the outer periphery.
 第15の発明は、第1~14のいずれか1つの発明において、前記第2の部分における前記光ファイバの外径は、前記第3の部分における前記光ファイバの外径よりも小さいことを特徴とする光レセプタクルである。 A fifteenth invention is characterized in that, in any one of the first to fourteenth inventions, an outer diameter of the optical fiber in the second portion is smaller than an outer diameter of the optical fiber in the third portion. Is an optical receptacle.
 この光レセプタクルによれば、第2の部分と第3の部分のクラッド外径に差を持たせることで、第2の部分のクラッドの外側に設けられた第1弾性部材による楔作用をより効果的にする事ができる。 According to this optical receptacle, the wedge action by the first elastic member provided on the outer side of the clad of the second part is more effective by providing a difference in the clad outer diameter of the second part and the third part. You can do it.
 第16の発明は、第1~15のいずれか1つの発明において、前記第2の部分の軸方向中央部は、前記フェルールと前記保持具とが接する領域とは重ならないように配設されていることを特徴とする光レセプタクルである。 According to a sixteenth aspect of the present invention, in any one of the first to fifteenth aspects, the central portion in the axial direction of the second portion is disposed so as not to overlap an area where the ferrule and the holder are in contact with each other. It is an optical receptacle characterized by being.
 この光レセプタクルによれば、例えば、融着によって第2の部分を形成する場合にも、第1の部分及び第3の部分よりも比較的強度の低い第2の部分に応力が加わり、第2の部分においてファイバ折れなどが発生してしまうことを抑制することができる。光レセプタクルの信頼性をより向上させることができる。 According to this optical receptacle, for example, even when the second portion is formed by fusion, stress is applied to the second portion having a relatively lower strength than the first portion and the third portion, and the second portion It is possible to suppress the occurrence of fiber breakage or the like in this portion. The reliability of the optical receptacle can be further improved.
 第17の発明は、第1~16のいずれか1つの発明において、前記第1の部分、前記第2の部分、および前記第3の部分は、全域に渡って前記貫通孔内に配設されていることを特徴とする光レセプタクルである。 In a seventeenth aspect based on any one of the first to sixteenth aspects, the first portion, the second portion, and the third portion are disposed in the through hole over the entire area. It is an optical receptacle characterized by the above.
 この光レセプタクルによれば、光ファイバの全体がフェルールの貫通孔内に存在するため、外力による光ファイバの折れやクラックといった不具合を抑制する事ができる。 According to this optical receptacle, since the entire optical fiber is present in the through-hole of the ferrule, it is possible to suppress problems such as bending and cracking of the optical fiber due to external force.
 第18の発明は、第1~17のいずれか1つの発明において、前記フェルールに固定された透光性部材を、さらに備え、前記貫通孔は、小径部と、前記他端面側に設けられ前記小径部よりも大きい径を有する大径部と、を有し、前記光ファイバの全体は、前記小径部に配設され、前記透光性部材の少なくとも一部は、前記大径部に配設され、前記第1弾性部材は、前記光ファイバと前記透光性部材との間に設けられたことを特徴とする光レセプタクルである。 An eighteenth invention according to any one of the first to seventeenth inventions, further comprising a translucent member fixed to the ferrule, wherein the through hole is provided on the small diameter portion and the other end surface side. A large-diameter portion having a larger diameter than the small-diameter portion, and the entire optical fiber is disposed in the small-diameter portion, and at least a part of the translucent member is disposed in the large-diameter portion. The first elastic member is an optical receptacle provided between the optical fiber and the translucent member.
 この光レセプタクルによれば、第3の部分を設けることで、微細導波路などの光部材からファイバに光を入射させる際に、ズームレンズなどに代表されるビーム径変換によって光接続距離が延びてしまうことを抑制し、かつフェルールに大径部を設けることで入射面をよりレセプタクル内部に配設することができ、光レセプタクルのプラグ接続面から導波路までの光接続距離をより短くすることができる。 According to this optical receptacle, by providing the third portion, when light is incident on the fiber from an optical member such as a fine waveguide, the optical connection distance is extended by beam diameter conversion represented by a zoom lens or the like. By providing a large-diameter portion on the ferrule, the incident surface can be further disposed inside the receptacle, and the optical connection distance from the plug connection surface of the optical receptacle to the waveguide can be shortened. it can.
 第19の発明は、第1~16のいずれか1つの発明において、前記第1の部分は、前記フェルールから突出した部分を有し、前記第2の部分及び前記第3の部分は、全域に亘って前記貫通孔内に配設されていることを特徴とする光レセプタクルである。 In a nineteenth aspect based on any one of the first to sixteenth aspects, the first portion has a portion protruding from the ferrule, and the second portion and the third portion are disposed over the entire area. An optical receptacle characterized by being disposed in the through hole.
 この光レセプタクルによれば、光ファイバをフェルール端面から突出させることで、光学素子と光レセプタクルとを光学的に接続する際の調芯が容易になる。 According to this optical receptacle, alignment of the optical element and the optical receptacle can be facilitated by making the optical fiber protrude from the ferrule end face.
 第20の発明は、第19の発明において、前記フェルールの前記貫通孔は、軸方向に対して直交する直交方向における幅が前記光ファイバの前記直交方向の幅に対応する第1領域と、前記第1領域よりも前記他端面側に配置され、前記他端面に向かって前記直交方向の幅が広がる第2領域と、を有し、前記第2の部分の軸方向中央部は、前記第1領域と重なるように配設されていることを特徴とする光レセプタクルである。 According to a twentieth aspect, in the nineteenth aspect, the through hole of the ferrule has a first region in which a width in an orthogonal direction orthogonal to an axial direction corresponds to a width in the orthogonal direction of the optical fiber, A second region that is disposed closer to the other end surface than the first region and widens in the orthogonal direction toward the other end surface, and the axially central portion of the second portion is the first region An optical receptacle characterized by being disposed so as to overlap with a region.
 この光レセプタクルによれば、第2の部分の軸方向中央部を、第1領域と重なるように配設することにより、第2の部分に外部応力が加わることを抑制することができる。これにより、第2の部分においてファイバ破損などが生じることを抑制することができる。 According to this optical receptacle, it is possible to suppress external stress from being applied to the second portion by disposing the central portion in the axial direction of the second portion so as to overlap the first region. Thereby, it is possible to suppress occurrence of fiber breakage or the like in the second portion.
 第21の発明は、第19の発明において、前記フェルールの前記貫通孔は、軸方向に対して直交する直交方向における幅が前記光ファイバの前記直交方向の幅に対応する第1領域と、前記第1領域よりも前記他端面側に配置され、前記他端面に向かって前記直交方向の幅が広がる第2領域と、を有し、前記第2の部分は、前記第1領域と重なるように配設されていることを特徴とする光レセプタクルである。 In a twenty-first aspect, in the nineteenth aspect, the through hole of the ferrule has a first region in which a width in an orthogonal direction orthogonal to an axial direction corresponds to a width in the orthogonal direction of the optical fiber, A second region that is disposed closer to the other end surface than the first region and widens in the orthogonal direction toward the other end surface, and the second portion overlaps the first region. An optical receptacle characterized by being arranged.
 この光レセプタクルによれば、第2の部分を、第1領域と重なるように配設することにより、第2の部分に外部応力が加わることを抑制することができる。これにより、第2の部分においてファイバ破損などが生じることを抑制することができる。 According to this optical receptacle, it is possible to suppress external stress from being applied to the second portion by disposing the second portion so as to overlap the first region. Thereby, it is possible to suppress occurrence of fiber breakage or the like in the second portion.
 第22の発明は、第19~21のいずれか1つの発明において、前記第1の部分の前記フェルールから突出した部分の端面側に設けられ、前記光ファイバを固定する固定部材を、さらに備え、前記固定部材は、前記フェルールとは離隔して配設されていることを特徴とする光レセプタクルである。 In a twenty-second aspect of the invention, in any one of the nineteenth to twenty-first aspects, the apparatus further includes a fixing member that is provided on an end surface side of the portion protruding from the ferrule of the first portion and fixes the optical fiber, The fixing member is an optical receptacle characterized in that the fixing member is spaced apart from the ferrule.
 この光レセプタクルによれば、固定部材を設けることにより、光ファイバの一部をフェルールから突出させた場合にも、光ファイバの位置を高い精度で管理することができる。例えば、光学素子との位置合わせを短時間で精度良く行うことができる。 According to this optical receptacle, by providing the fixing member, the position of the optical fiber can be managed with high accuracy even when a part of the optical fiber protrudes from the ferrule. For example, the alignment with the optical element can be accurately performed in a short time.
 第23の発明は、第20又は第21の発明において、前記保持具は、前記フェルールの外側面のうち、前記第1領域よりも前記他端面側の部分を保持することを特徴とする光レセプタクルである。 According to a twenty-third aspect, in the twentieth or twenty-first aspect, the holder holds a portion of the outer surface of the ferrule that is closer to the other end surface than the first region. It is.
 この光レセプタクルによれば、フェルールの保持具への圧入にともなう外部応力が、第2の部分に加わってしまうことをより抑制することができる。 According to this optical receptacle, it is possible to further suppress the external stress accompanying the press-fitting into the ferrule holder from being applied to the second portion.
 第24の発明は、第19~23のいずれか1つの発明において、前記保持具は、前記他端面よりも突出しないことを特徴とする光レセプタクルである。 The twenty-fourth invention is an optical receptacle according to any one of the nineteenth to twenty-third inventions, wherein the holder does not protrude from the other end surface.
 この光レセプタクルによれば、保持具を単純な形状とすることができ、保持具の部材コストを抑えることができる。また、光ファイバが曲げられた際に、光ファイバが保持具に接触してしまうことを抑制することもできる。 According to this optical receptacle, the holder can be made into a simple shape, and the member cost of the holder can be suppressed. Moreover, when an optical fiber is bent, it can also suppress that an optical fiber contacts a holder.
 第25の発明は、第20又は第21の発明において、前記保持具は、前記フェルールの外側面のうち、前記第1領域と対向する部分のみを保持することを特徴とする光レセプタクルである。 A twenty-fifth aspect of the invention is an optical receptacle according to the twentieth or twenty-first aspect of the invention, wherein the holder holds only a portion of the outer surface of the ferrule facing the first region.
 この光レセプタクルによれば、保持具の部材コストを抑え、光ファイバが保持具に接触してしまうことを抑制できる。さらには、第1領域と第2領域との境界部分にかかる応力を緩和することができる。 According to this optical receptacle, the member cost of the holder can be suppressed, and the optical fiber can be prevented from coming into contact with the holder. Furthermore, the stress applied to the boundary portion between the first region and the second region can be relaxed.
 第26の発明は、第19~25のいずれか1つの発明において、前記光ファイバの前記フェルールの外方に延在した部分を被覆する保護部材と、前記保護部材を覆うチューブと、をさらに備え、前記保護部材と前記チューブとの間には、空間が設けられていることを特徴とする光レセプタクルである。 According to a twenty-sixth aspect of the present invention, in any one of the nineteenth to twenty-fifth aspects, the optical fiber further includes a protective member that covers a portion of the optical fiber that extends outward from the ferrule, and a tube that covers the protective member. The optical receptacle is characterized in that a space is provided between the protective member and the tube.
 この光レセプタクルによれば、保護部材が保持具に直接接触してしまうことを抑制することができる。また、曲げに対しても、応力集中は、チューブと第1弾性部材との界面に発生するが、チューブと保護部材との間には、空間が存在するため、亀裂が進展するのを抑制することができる。また、チューブは、光ファイバとは独立して存在しているため、光ファイバの光学特性にともなう材料の選択などの制限がなく、保護部材よりも強度の強い材料を選択することで、保護部材よりも強い曲げ耐性を実現することができる。 This optical receptacle can suppress the protective member from coming into direct contact with the holder. In addition, stress concentration also occurs at the interface between the tube and the first elastic member even when bending, but since there is a space between the tube and the protective member, the development of cracks is suppressed. be able to. In addition, since the tube exists independently of the optical fiber, there is no limitation on the selection of the material according to the optical characteristics of the optical fiber, and the protective member can be selected by selecting a material stronger than the protective member. Stronger bending resistance can be achieved.
 第27の発明は、第19~26のいずれか1つの発明において、前記光ファイバの前記フェルールの外方に延在した部分において前記第1弾性部材を覆う第2弾性部材をさらに備え、前記第2弾性部材の硬度は、前記第1弾性部材の硬度よりも低いことを特徴とする光レセプタクルである。 According to a twenty-seventh aspect of the present invention, in any one of the nineteenth to twenty-sixth aspects, the optical fiber further includes a second elastic member that covers the first elastic member at a portion extending outward of the ferrule. 2. The optical receptacle is characterized in that the hardness of the elastic member is lower than the hardness of the first elastic member.
 この光レセプタクルによれば、光ファイバとフェルールは、光学的な性質を、保持具の端部においては、光ファイバに曲げが作用した時の応力緩和を実現することができ、2つの特性を両立することができる。 According to this optical receptacle, the optical fiber and the ferrule can realize optical properties, and at the end of the holder, stress relaxation can be realized when bending acts on the optical fiber. can do.
 第28の発明は、第1~27のいずれか1つの発明において、前記ファイバスタブのプラグフェルールと光学的接続する側とは反対側の端面において、前記フェルールの端面の一部と前記光ファイバの端面が、前記ファイバスタブの中心軸に対して垂直となる面から所定の角度をもつことを特徴とする光レセプタクルである。 According to a twenty-eighth aspect of the invention, in any one of the first to twenty-seventh aspects, a part of the end face of the ferrule and the optical fiber on the end face of the fiber stub opposite to the side optically connected to the plug ferrule. The optical receptacle is characterized in that an end surface has a predetermined angle from a plane perpendicular to the central axis of the fiber stub.
 この光レセプタクルによれば、フェルールの端面の一部と光ファイバの端面とをファイバスタブの中心軸に対して垂直となる面から所定の角度をもつように研磨することで、光レセプタクルに接続される発光素子から出射され光ファイバに入射する光のうちで、光ファイバの端面で反射した光が発光素子に戻ることを防止し、光学素子を安定して動作させることができる。 According to this optical receptacle, a part of the end face of the ferrule and the end face of the optical fiber are polished so as to have a predetermined angle from a plane perpendicular to the central axis of the fiber stub, thereby being connected to the optical receptacle. Among the light emitted from the light emitting element and entering the optical fiber, the light reflected by the end face of the optical fiber can be prevented from returning to the light emitting element, and the optical element can be operated stably.
 第29の発明は、第1~28のいずれか1つの発明において、前記第1の部分、前記第2の部分、および前記第3の部分は、一体でできていることを特徴とする光レセプタクルである。 The twenty-ninth invention is the optical receptacle according to any one of the first to twenty-eighth inventions, wherein the first portion, the second portion, and the third portion are integrally formed. It is.
 この光レセプタクルによれば、光ファイバを一体で形成することで、第1の部分、第2の部分、第3の部分それぞれの境界に空隙が発生することを防ぐことにより、光損失を抑えることができる。 According to this optical receptacle, by forming the optical fiber integrally, it is possible to suppress the optical loss by preventing the generation of voids at the boundaries of the first part, the second part, and the third part. Can do.
 第30の発明は、第1~29のいずれか1つの発明において、前記ファイバスタブの中心軸に沿った前記第1の部分の長さは、5μm以上であることを特徴とする光レセプタクルである。 A thirtieth aspect of the present invention is the optical receptacle according to any one of the first to twenty-ninth aspects, wherein the length of the first portion along the central axis of the fiber stub is 5 μm or more. .
 この光レセプタクルによれば、光ファイバの長さ及び研磨のばらつきを原因とした光損失を抑制することができる。 According to this optical receptacle, it is possible to suppress optical loss due to variations in the length of optical fiber and polishing.
 第31の発明は、第1~30のいずれか1つの発明において、前記ファイバスタブの中心軸に沿った前記第3の部分の長さは、5μm以上であることを特徴とする光レセプタクルである。 A thirty-first invention is the optical receptacle according to any one of the first to thirty-first inventions, wherein the length of the third portion along the central axis of the fiber stub is 5 μm or more. .
 この光レセプタクルによれば、光ファイバの長さ及び研磨のばらつきを原因とした光損失を抑制することができる。 According to this optical receptacle, it is possible to suppress optical loss due to variations in the length of optical fiber and polishing.
 第32の発明は、第1~第31のいずれか1つの発明において、前記光ファイバは、最も小さい外径の最細部を前記第2の部分に有し、前記貫通孔の内径の変化は、前記光ファイバの外径の変化よりも小さく、前記第1弾性部材の厚さは、前記最細部において最も大きく、前記第1の部分から前記最細部に向かって徐々に大きくなるとともに、前記第3の部分から前記最細部に向かって徐々に大きくなり、前記第2の部分と前記内壁との間に設けられた前記第1弾性部材の前記光ファイバの軸方向の長さは、前記第1の部分と前記内壁との間に設けられた前記第1弾性部材の前記軸方向の長さ、及び前記第3の部分と前記内壁との間に設けられた前記第1弾性部材の前記軸方向の長さの少なくとも一方よりも短いことを特徴とする光レセプタクルである。 In a thirty-second invention, in any one of the first to thirty-first inventions, the optical fiber has the smallest details of the smallest outer diameter in the second portion, and the change in the inner diameter of the through hole is: The thickness of the first elastic member is smaller than the change in the outer diameter of the optical fiber, and the thickness of the first elastic member is the largest in the finest detail, and gradually increases from the first portion toward the finest detail. The length in the axial direction of the optical fiber of the first elastic member provided between the second portion and the inner wall is gradually increased from the portion to the most detailed portion. The axial length of the first elastic member provided between the portion and the inner wall, and the axial length of the first elastic member provided between the third portion and the inner wall. An optical receptor characterized by being shorter than at least one of the lengths It is a cycle.
 この光レセプタクルによれば、光ファイバの外径が最も小さい最細部に設けられた第1弾性部材が楔状に存在することとなり、光ファイバの軸方向の移動を抑制することができる。例えば、光ファイバがフェルールよりも外側に突き出ることを抑え、光ファイバの外周のカケやクラックを抑制することができる。光ファイバの先端がフェルールの先端よりも奥まり、プラグフェルールと結合する際の光学的な損失が増加してしまうことを抑制することができる。 According to this optical receptacle, the first elastic member provided in the smallest detail with the smallest outer diameter of the optical fiber is present in a wedge shape, and the movement of the optical fiber in the axial direction can be suppressed. For example, it is possible to suppress the optical fiber from protruding outward from the ferrule, and to suppress chipping and cracks on the outer periphery of the optical fiber. It can be suppressed that the optical fiber tip is deeper than the tip of the ferrule and an optical loss when coupled with the plug ferrule is increased.
 第33の発明は、第1~第32のいずれか1つの発明において、前記他端面において、前記フェルールの外径の中心を基準とした時の前記コアの中心の偏芯量は、7μm以下であることを特徴とする光レセプタクルである。 In a thirty-third aspect of the invention according to any one of the first to thirty-second aspects, the eccentric amount of the center of the core when the other end surface is based on the center of the outer diameter of the ferrule is 7 μm or less. An optical receptacle characterized by being.
 この光レセプタクルによれば、半導体レーザ素子等の光学素子との調芯作業を行う際に、光レセプタクルと光学素子とを初期位置に設置するだけで、光学素子から照射された光の少なくとも一部をコアに入射させることができ、調芯作業をし易くすることができる。 According to this optical receptacle, at the time of alignment with an optical element such as a semiconductor laser element, at least a part of the light emitted from the optical element can be obtained simply by installing the optical receptacle and the optical element at the initial position. Can be made incident on the core, and alignment work can be facilitated.
 第34の発明は、第1~第33のいずれか1つの発明において、前記第1の部分の前記クラッドと、前記第3の部分の前記クラッドと、の間の前記光ファイバの軸方向と直交する方向の変位量は、4μm以下であることを特徴とする光レセプタクルである。 A thirty-fourth invention is the invention according to any one of the first to thirty-third inventions, which is orthogonal to the axial direction of the optical fiber between the cladding of the first portion and the cladding of the third portion. The optical receptacle is characterized in that the amount of displacement in the direction to lie is 4 μm or less.
 この光レセプタクルによれば、プラグフェルールと光学的に接続される一端面側において、プラグフェルールとの軸ずれが生じてしまうことを抑制することができる。プラグフェルールとの軸ずれにともなう接続損失の増加を抑制することができる。 According to this optical receptacle, it is possible to suppress the occurrence of axial misalignment with the plug ferrule on the one end face side optically connected to the plug ferrule. It is possible to suppress an increase in connection loss due to an axial deviation from the plug ferrule.
 第35の発明は、第1~34のいずれか1つの光レセプタクルを備えたことを特徴とする光トランシーバである。 A thirty-fifth aspect of the present invention is an optical transceiver comprising any one of the first to thirty-four optical receptacles.
 この光トランシーバによれば、光ファイバの光学素子側端面のコアを小さくし、かつ一般的に伝送路に用いられるファイバよりもコアとクラッドの屈折率差の大きいファイバを融着することで、光モジュール全長を短くすることに貢献しながら、一般的に伝送路に用いられるファイバとコアとクラッドの屈折率差の大きいファイバの融着部分に屈折率およびコア径が緩やかに推移する部分を形成することで、モードフィールドの変換効率を抑え、結果として光学素子からプラグフェルールまでの結合効率の低下を抑制することができる。 According to this optical transceiver, the core on the optical element side end face of the optical fiber is made small, and a fiber having a refractive index difference between the core and the clad larger than that of a fiber generally used for a transmission path is fused. While contributing to shortening the overall length of the module, a part where the refractive index and core diameter gradually change is formed in the fused part of the fiber generally used in the transmission line and the fiber having a large refractive index difference between the core and the cladding. Thus, the conversion efficiency of the mode field can be suppressed, and as a result, a decrease in coupling efficiency from the optical element to the plug ferrule can be suppressed.
 光ファイバの光学素子側端面のコアを小さくすることで光モジュール全長を短くすることに貢献しながら、ファイバの軸方向長さに関して高い精度の寸法公差を必要とせず、ファイバの軸方向の動きを抑制することで結合効率の低下を防止し、またMFD変換の損失を抑えることのできる光レセプタクル及び光トランシーバが提供される。 While reducing the overall length of the optical module by reducing the core of the optical element side end face of the optical fiber, it does not require high-accuracy dimensional tolerances regarding the axial length of the fiber, and the axial movement of the fiber can be reduced. An optical receptacle and an optical transceiver capable of preventing a reduction in coupling efficiency by suppressing and suppressing a loss of MFD conversion are provided.
本発明の第一の実施形態を示す光レセプタクルの模式断面図である。It is a schematic cross section of the optical receptacle which shows 1st embodiment of this invention. 本発明の第一の実施形態におけるファイバスタブの拡大断面図である。It is an expanded sectional view of the fiber stub in 1st embodiment of this invention. 本発明の第一の実施形態における第2部分が線形に拡大している状態の拡大断面図である。It is an expanded sectional view in the state where the 2nd portion in a first embodiment of the present invention has expanded linearly. 本発明の第一の実施形態におけるビーム伝播の模式図である。It is a schematic diagram of the beam propagation in the first embodiment of the present invention. 本発明の第一の実施形態における第2部分が非線形に拡大している状態の拡大断面図である。It is an expanded sectional view of the state where the 2nd portion in a first embodiment of the present invention is expanding nonlinearly. 本発明の第一の実施形態における第2部分に段差を有している状態の拡大断面図である。It is an expanded sectional view of the state which has a level | step difference in the 2nd part in 1st embodiment of this invention. 本発明の第一の実施形態における第2部分を例示する模式断面図である。It is a schematic cross section which illustrates the 2nd part in 1st embodiment of this invention. 本発明の第一の実施形態におけるファイバスタブの拡大正面図である。It is an enlarged front view of the fiber stub in the first embodiment of the present invention. 本発明の第一の実施形態における光ファイバの拡大断面図である。It is an expanded sectional view of the optical fiber in 1st embodiment of this invention. ファイバスタブとプラグフェルールとの光接続面における軸ずれと接続損失との関係を表すグラフ図である。It is a graph showing the relationship between the axial shift in the optical connection surface of a fiber stub and a plug ferrule and connection loss. 本発明の第二の実施形態におけるファイバスタブの拡大断面図である。It is an expanded sectional view of the fiber stub in 2nd embodiment of this invention. 第二部分の変換部長さに関する解析の一例を例示する模式図である。It is a schematic diagram which illustrates an example of the analysis regarding the conversion part length of a 2nd part. 第二部分の変換部長さに関する解析結果を表すグラフ図である。It is a graph showing the analysis result regarding the conversion part length of a 2nd part. 第二部分の変換部長さに関する解析結果の光強度分布を表すコンタ図とグラフ図である。It is the contour figure and graph which represent the light intensity distribution of the analysis result regarding the conversion part length of a 2nd part. 図15(a)~図15(c)は、第一部分の長さに関する解析を例示する模式図である。FIG. 15A to FIG. 15C are schematic views illustrating analysis regarding the length of the first portion. 図16(a)及び図16(b)は、本発明の第三の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。FIG. 16A and FIG. 16B are schematic cross-sectional views illustrating a part of the optical receptacle according to the third embodiment of the invention. 本発明の第四の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。It is a typical sectional view which illustrates a part of optical receptacle concerning a 4th embodiment of the present invention. 本発明の第四の実施形態に係る光レセプタクルの変形例を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating a modification of the optical receptacle according to the fourth embodiment of the invention. 本発明の第五の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating a part of an optical receptacle according to a fifth embodiment of the invention. 本発明の第六の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating a part of an optical receptacle according to a sixth embodiment of the invention. 本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the optical receptacle which concerns on the 6th embodiment of this invention. 本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the optical receptacle which concerns on the 6th embodiment of this invention. 本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the optical receptacle which concerns on the 6th embodiment of this invention. 本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the optical receptacle which concerns on the 6th embodiment of this invention. 本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the optical receptacle which concerns on the 6th embodiment of this invention. 図26(a)及び図26(b)は、本発明の第七の実施形態に係る光レセプタクルを例示する模式的断面図である。FIG. 26A and FIG. 26B are schematic cross-sectional views illustrating an optical receptacle according to the seventh embodiment of the invention. 図27(a)~図27(e)は、本発明の第七の実施形態に係る光レセプタクルの解析結果の一例を表す説明図である。FIGS. 27A to 27E are explanatory views showing an example of the analysis result of the optical receptacle according to the seventh embodiment of the present invention. 本発明の第七の実施形態に係る光レセプタクルの変形例を例示する模式的断面図である。It is a typical sectional view which illustrates a modification of an optical receptacle concerning a 7th embodiment of the present invention. 図29(a)及び図29(b)は、本発明の第八の実施形態に係る光トランシーバを例示する模式図である。FIGS. 29A and 29B are schematic views illustrating an optical transceiver according to the eighth embodiment of the invention.
 以下、図面を参照しつつ、本発明の実施形態について例示をする。尚、各図面中同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, embodiments of the present invention will be illustrated with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same component in each drawing, and detailed description is abbreviate | omitted suitably.
 (第一の実施形態)
 図1は、本発明の第一の実施形態を示す光レセプタクルの模式断面図である。
 光レセプタクル1は、ファイバスタブ4と、ファイバスタブ4を保持する保持具5と、ファイバスタブ4の先端を一端で保持し、他端で光レセプタクル1に挿入されるプラグフェルールを保持可能なスリーブ6と、を備えている。ファイバスタブ4は、光ファイバ2と、光ファイバ2を保持する貫通孔3cを有するフェルール3と、弾性部材9(第1弾性部材)と、を含む。弾性部材9は、光ファイバ2と貫通孔3cの内壁との間に設けられる。光ファイバ2はフェルール3の貫通孔3cに弾性部材9を用いて接着固定されている。なお、光レセプタクル1に挿入されるプラグフェルールは図示されていない。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of an optical receptacle showing a first embodiment of the present invention.
The optical receptacle 1 includes a fiber stub 4, a holder 5 that holds the fiber stub 4, and a sleeve 6 that holds the tip of the fiber stub 4 at one end and a plug ferrule inserted into the optical receptacle 1 at the other end. And. The fiber stub 4 includes an optical fiber 2, a ferrule 3 having a through hole 3 c that holds the optical fiber 2, and an elastic member 9 (first elastic member). The elastic member 9 is provided between the optical fiber 2 and the inner wall of the through hole 3c. The optical fiber 2 is bonded and fixed to the through hole 3 c of the ferrule 3 using an elastic member 9. Note that the plug ferrule to be inserted into the optical receptacle 1 is not shown.
 保持具5は、ブッシュ5aと、ハウジング5bと、を有する。ブッシュ5aは、フェルール3の外側面に嵌り、フェルール3の後端側を保持する。ハウジング5bは、ブッシュ5aの外側面に嵌り、ファイバスタブ4及びスリーブ6を覆う。ハウジング5bは、ファイバスタブ4及びスリーブ6を軸周りに覆い、ファイバスタブ4及びスリーブ6を外力などから保護する。このように、ブッシュ5aは、ファイバスタブ4及びスリーブ6をハウジング5b内に収容した状態で保持する。ハウジング5bは、例えば、円筒状である。ブッシュ5aの外径は、スリーブ6の外径よりも大きい。ハウジング5bの内径は、ブッシュ5aの外径と実質的に同じである。ハウジング5bは、スリーブ6の外側面に嵌ることなく、ブッシュ5aの外側面のみに嵌る。 The holder 5 has a bush 5a and a housing 5b. The bush 5 a is fitted on the outer surface of the ferrule 3 and holds the rear end side of the ferrule 3. The housing 5b fits on the outer surface of the bush 5a and covers the fiber stub 4 and the sleeve 6. The housing 5b covers the fiber stub 4 and the sleeve 6 around the axis, and protects the fiber stub 4 and the sleeve 6 from external force and the like. Thus, the bush 5a holds the fiber stub 4 and the sleeve 6 in a state of being accommodated in the housing 5b. The housing 5b is, for example, cylindrical. The outer diameter of the bush 5 a is larger than the outer diameter of the sleeve 6. The inner diameter of the housing 5b is substantially the same as the outer diameter of the bush 5a. The housing 5b fits only on the outer surface of the bush 5a without fitting on the outer surface of the sleeve 6.
 フェルール3に適する材質はセラミックス、ガラス等が挙げられるが、本実施例ではジルコニアセラミックスを用い、その中心に光ファイバ2を接着固定し、プラグフェルールと光学的接続される一端(端面3b:図1参照)を凸球面に研磨して形成した。また、光レセプタクル1の組立てにおいて、ファイバスタブ4は保持具5(ブッシュ5a)に圧入固定されることが多い。 Examples of suitable materials for the ferrule 3 include ceramics and glass. In this embodiment, zirconia ceramics is used. The optical fiber 2 is bonded and fixed at the center of the ferrule 3, and one end (end face 3b: FIG. 1) optically connected to the plug ferrule. And a convex spherical surface. Further, in assembling the optical receptacle 1, the fiber stub 4 is often press-fitted and fixed to the holder 5 (bush 5a).
 スリーブ6に適する材質は樹脂、金属、セラミックス等があげられるが、本実施例では全長方向にスリットを有するジルコニアセラミックス製の割りスリーブを用いた。スリーブ6は一端でファイバスタブ4の凸球面に研磨された先端部(端面3b)を保持し、他端で光レセプタクルに挿入されるプラグフェルールを保持するようになっている。 The material suitable for the sleeve 6 includes resin, metal, ceramics, etc. In this embodiment, a split sleeve made of zirconia ceramics having slits in the full length direction was used. The sleeve 6 holds the tip (end face 3b) polished on the convex spherical surface of the fiber stub 4 at one end, and holds the plug ferrule to be inserted into the optical receptacle at the other end.
 光ファイバ2は、中心軸C1に沿って延在するコア8と、コア8の周囲を囲むクラッド7と、を有する。例えば、コアの屈折率は、クラッドの屈折率よりも高い。光ファイバ(コア8及びクラッド7)の材料としては、例えば石英ガラスが挙げられる。石英ガラスには不純物が添加されていてもよい。 The optical fiber 2 has a core 8 extending along the central axis C1 and a clad 7 surrounding the core 8. For example, the refractive index of the core is higher than the refractive index of the cladding. As a material of the optical fiber (the core 8 and the clad 7), for example, quartz glass can be cited. Impurities may be added to the quartz glass.
 ファイバスタブ4は、プラグフェルールと光学的接続される一端面(端面3b)と、当該一端面とは反対側の他端面(端面3a)と、を有する。コア8は、端面3a及び端面3bにおいてクラッド7から露出している。 The fiber stub 4 has one end face (end face 3b) optically connected to the plug ferrule and the other end face (end face 3a) opposite to the one end face. The core 8 is exposed from the clad 7 at the end face 3a and the end face 3b.
 例えば、端面3a側に半導体レーザ素子等の光学素子が配置される。半導体レーザ素子等から出射された光は、端面3a側から光レセプタクル1に入射し、コア8内を伝搬する。または、端面3bからコア8に入射した光は、コア8内を伝搬し、端面3a側から光学素子へ向けて出射される。 For example, an optical element such as a semiconductor laser element is disposed on the end face 3a side. Light emitted from a semiconductor laser element or the like enters the optical receptacle 1 from the end face 3 a side and propagates in the core 8. Alternatively, the light incident on the core 8 from the end surface 3b propagates in the core 8 and is emitted from the end surface 3a side toward the optical element.
 端面3aと半導体レーザ素子等の光学素子等との間に、アイソレータ等の光学素子を設けてもよい。アイソレータは、例えば、偏光角度を回転させる素子(ファラデー素子等)や偏光子を有し、光を1方向にのみ透過させる。これにより、例えば、端面3aで反射された戻り光によるレーザ素子の損傷や、ノイズ等を抑制することができる。 An optical element such as an isolator may be provided between the end face 3a and an optical element such as a semiconductor laser element. The isolator has, for example, an element (such as a Faraday element) that rotates a polarization angle or a polarizer, and transmits light only in one direction. Thereby, for example, damage to the laser element due to the return light reflected by the end face 3a, noise, and the like can be suppressed.
 また、ファイバスタブ4は、端面3bが中心軸C1と直交する平面に対して傾斜するように、研磨されていてもよい。すなわち、凸球面状の端面3bは、中心軸C1と直交する平面に対して傾斜する斜め凸球面であってもよい。これにより、光レセプタクル1は、端面3bにおいてAPC(Angled Physical Contact)コネクタと光学的に接続され、接続点における反射や接続損失を抑制することができる。 Further, the fiber stub 4 may be polished so that the end surface 3b is inclined with respect to a plane orthogonal to the central axis C1. That is, the convex spherical end surface 3b may be an oblique convex spherical surface that is inclined with respect to a plane orthogonal to the central axis C1. Thereby, the optical receptacle 1 is optically connected to an APC (AngledngPhysical Contact) connector at the end face 3b, and reflection and connection loss at the connection point can be suppressed.
 図2は、本発明の第一の実施形態におけるファイバスタブの拡大断面図である。
 光ファイバ2は第一部分(第1の部分21)、第二部分(第2の部分22)、第三部分(第3の部分23)を融着した一本のファイバである。光ファイバ2の第一部分は第一部分クラッド7aと第一部分コア8aからなり、第二部分は第二部分クラッド7bと第二部分コア8bからなり、第三部分は第三部分クラッド7cと第三部分コア8cからなり、ファイバスタブ4の凸球面に研磨した端面3b側に第三部分が、中央に第二部分が、端面3bとは反対側の光学素子と光学接続される端面3a側に第一部分が配置されている。保持具5(ブッシュ5a)は、ファイバスタブ4の端面3a側(第1の部分21側)を保持する。スリーブ6は、ファイバスタブ4の端面3b側(第3の部分23側)を保持する。なお、第一部分クラッド7a、第二部分クラッド7b及び第三部分クラッド7cは、図1に関して説明したクラッド7に含まれる。また、第一部分コア8a、第二部分コア8b及び第三部分コア8cは、図1に関して説明したコア8に含まれる。
FIG. 2 is an enlarged cross-sectional view of the fiber stub in the first embodiment of the present invention.
The optical fiber 2 is a single fiber in which a first portion (first portion 21), a second portion (second portion 22), and a third portion (third portion 23) are fused. The first portion of the optical fiber 2 includes a first partial cladding 7a and a first partial core 8a, the second portion includes a second partial cladding 7b and a second partial core 8b, and the third portion includes a third partial cladding 7c and a third portion. The core 8c comprises a fiber stub 4 polished on the convex spherical surface, a third portion on the end surface 3b side, a second portion in the center, and a first portion on the end surface 3a side optically connected to the optical element opposite to the end surface 3b. Is arranged. The holder 5 (bush 5a) holds the end surface 3a side (first portion 21 side) of the fiber stub 4. The sleeve 6 holds the end surface 3 b side (third portion 23 side) of the fiber stub 4. The first partial cladding 7a, the second partial cladding 7b, and the third partial cladding 7c are included in the cladding 7 described with reference to FIG. The first partial core 8a, the second partial core 8b, and the third partial core 8c are included in the core 8 described with reference to FIG.
 第一部分のコア径D1は、第三部分のコア径D3よりも小さく、第二部分のコア径D2は第一部分から第三部分に推移するにつれて徐々に大きくなっている(例えば図3を参照)。また、第一部分のファイバ外径D4と第三部分のファイバ外径D6は同じ大きさであるが、第二部分のファイバ外径D5はそれらよりも小さい(例えば図3を参照)。なお、コア径は、光軸(中心軸C1)と直交する方向に沿ったコアの長さ、すなわちコアの直径である。また、ファイバ外径は、中心軸C1と直交する方向に沿ったファイバの長さ(クラッドの長さ)、すなわちファイバの直径である。 The core diameter D1 of the first part is smaller than the core diameter D3 of the third part, and the core diameter D2 of the second part gradually increases as the transition from the first part to the third part (see, for example, FIG. 3). . Further, the fiber outer diameter D4 of the first portion and the fiber outer diameter D6 of the third portion are the same, but the fiber outer diameter D5 of the second portion is smaller than them (see, for example, FIG. 3). The core diameter is the length of the core along the direction orthogonal to the optical axis (center axis C1), that is, the core diameter. The fiber outer diameter is the fiber length (cladding length) along the direction orthogonal to the central axis C1, that is, the fiber diameter.
 第二部分を形成する手法としては、第一部分と第三部分を融着する際に、融着部の外周から石英の融点以上の熱を加えながら光ファイバ融着部を引き伸ばす方法等が挙げられる。第二部分のファイバスタブ4の中心軸C1方向の長さは、最も損失が少ない長さと熱を加えながら引き伸ばす事ができる限界の長さを考えて設計する必要がある。その長さとしては10マイクロメートル(μm)以上から1000μmであることが望ましい。 Examples of the method for forming the second part include a method of stretching the optical fiber fusion part while applying heat higher than the melting point of quartz from the outer periphery of the fusion part when the first part and the third part are fused. . The length of the second portion of the fiber stub 4 in the direction of the central axis C1 needs to be designed in consideration of the length with the least loss and the limit length that can be extended while applying heat. The length is desirably 10 micrometers (μm) or more and 1000 μm.
 このように、光ファイバ2は、最も小さい外径の最細部NPを第2の部分22に有する。貫通孔3cの内径の変化は、光ファイバ2の外径の変化よりも小さい。貫通孔3cの内径は、第1の部分21から第3の部分23にかけて実質的に一定である。弾性部材9の厚さは、最細部NPにおいて最も大きく、第1の部分21から最細部NPに向かって徐々に大きくなるとともに、第3の部分23から最細部NPに向かって徐々に大きくなる。第2の部分22と内壁3cとの間に設けられた弾性部材9の光ファイバ2の軸方向の長さは、第1の部分21と内壁3cとの間に設けられた弾性部材9の軸方向の長さ、及び第3の部分23と内壁3cとの間に設けられた弾性部材9の軸方向の長さの少なくとも一方よりも短い。この例では、第2の部分22の弾性部材9の長さは、第1の部分21の弾性部材9の長さ、及び第3の部分23の弾性部材9の長さの双方よりも短い。 Thus, the optical fiber 2 has the smallest portion NP having the smallest outer diameter in the second portion 22. The change in the inner diameter of the through hole 3 c is smaller than the change in the outer diameter of the optical fiber 2. The inner diameter of the through hole 3 c is substantially constant from the first portion 21 to the third portion 23. The thickness of the elastic member 9 is largest at the most detailed NP, and gradually increases from the first portion 21 toward the most detailed NP, and gradually increases from the third portion 23 toward the most detailed NP. The length of the elastic member 9 provided between the second portion 22 and the inner wall 3c in the axial direction of the optical fiber 2 is the axis of the elastic member 9 provided between the first portion 21 and the inner wall 3c. This is shorter than at least one of the length in the direction and the length in the axial direction of the elastic member 9 provided between the third portion 23 and the inner wall 3c. In this example, the length of the elastic member 9 of the second portion 22 is shorter than both the length of the elastic member 9 of the first portion 21 and the length of the elastic member 9 of the third portion 23.
 図3、図4、図5、図6及び図7に第二部分の形状について示す。 FIG. 3, FIG. 4, FIG. 5, FIG. 6 and FIG. 7 show the shape of the second part.
 図3は、第二部分のコア径D2が第一部分から第三部分に推移していくにつれて線形的に拡大していく様子を示している。この形状をとることにより、第二部分に進入したレーザーが広がり角αで広がっていったとしても、図4で示すように、壁に対して小さい角度α‘で入射され、クラッド側に光が逃げていくことを防ぐ。ただし、この形状を作成するためには、ファイバを引っ張る速度とファイバに熱を加えるための放電量や放電タイミング、放電位置を厳密に制御しなくてはならず、形状形成の難易度は比較的高い。 FIG. 3 shows a state in which the core diameter D2 of the second part linearly expands as it changes from the first part to the third part. By adopting this shape, even if the laser that has entered the second portion spreads at a spread angle α, as shown in FIG. 4, the light is incident on the wall at a small angle α ′, and light is incident on the cladding side. Prevent running away. However, in order to create this shape, the speed at which the fiber is pulled and the discharge amount, discharge timing, and discharge position for applying heat to the fiber must be strictly controlled. high.
 図5は、第二部分のコア径D2が第一部分から第三部分に推移していくにつれて非線形に拡大していく様子を示している。この形状をとることにより、線形でコアが拡大していく時よりも変換部(第二部分)における損失は大きくなる可能性はあるが、上記制御項目に関して許容値が広がるため、放電量や放電タイミングが制御できないような製造機器に置いても、比較的簡単な制御によって作成できる利点がある。 FIG. 5 shows a state in which the core diameter D2 of the second part increases nonlinearly as it changes from the first part to the third part. By adopting this shape, there is a possibility that the loss in the conversion part (second part) is larger than when the core expands linearly, but since the allowable value for the above control items increases, the discharge amount and discharge Even if it is placed on a manufacturing device whose timing cannot be controlled, there is an advantage that it can be created by relatively simple control.
 図6は、第二部分のコア径D2が第一部分から第三部分に推移していくにつれてコアが非線形に拡大しつつも、クラッド7とコア8との境の一部がファイバ中心軸C1に対してほぼ垂直となる部分S1(本明細書ではこれを段差と呼ぶ)を有している状態を示している。この形状をとることにより、融着時に第二部分全域にわたって熱を伝えることが困難な場合でも作成することができる利点がある。 FIG. 6 shows that while the core diameter D2 of the second part changes from the first part to the third part, the core expands nonlinearly, but a part of the boundary between the clad 7 and the core 8 extends to the fiber center axis C1. On the other hand, a state is shown in which a portion S1 (this is referred to as a step) is substantially vertical. By taking this shape, there is an advantage that it can be created even when it is difficult to transfer heat over the entire second portion during fusion.
 それぞれの部分のクラッドの屈折率とコアの屈折率の差の大きさは、第一部分が最も大きく、次いで第二部分が大きく、第三部分が最も小さい。第二部分に関しては第一部分と第三部分の融着時に形成されるという理由から、屈折率差は第一部分側では大きく、第三部分側に寄るにつれて徐々に屈折率差は小さくなっていく。 The difference between the refractive index of the cladding and the refractive index of the core in each part is the largest in the first part, then the second part is the largest, and the third part is the smallest. Because the second part is formed at the time of fusing the first part and the third part, the refractive index difference is large on the first part side, and the refractive index difference is gradually reduced toward the third part side.
 レーザーはあるビームウェスト径D7の状態まで集光された場合、広がり角α度で広がっていく特性を持つ。つまり、広がり角またはビーム径どちらか一方が決定すれば、もう一方も必然的に決定する。 ¡When the laser is focused to a certain beam waist diameter D7, it has the characteristic of spreading at a spread angle of α degrees. That is, if one of the divergence angle or the beam diameter is determined, the other is inevitably determined.
 コアとクラッドの屈折率差を生じさせる方法として、石英ガラスにエルビウムやゲルマニウムなど希土類を添加する方法が知られており、添加する対象は、コア、クラッド、またはその両方が挙げられる。石英ガラス中の添加物質や濃度によって、屈折率を調整することができる。第一部分、第二部分、第三部分それぞれにおいて、コアの屈折率とクラッドの屈折率とは、それぞれ1.4以上1.6以下程度である。コアとファイバの屈折率の差によって入射できるNA(開口度)が決定するため、第一部分に用いるファイバは、第一部分に入射するレーザーの広がり角αとNAが一致するように屈折率差を持たせたファイバを用いる必要がある。 As a method for producing a refractive index difference between the core and the clad, a method of adding rare earth such as erbium or germanium to quartz glass is known, and examples of the addition target include the core, the clad, or both. The refractive index can be adjusted by the additive substance and concentration in the quartz glass. In each of the first part, the second part, and the third part, the refractive index of the core and the refractive index of the cladding are about 1.4 or more and 1.6 or less, respectively. Since the NA (aperture) that can be incident is determined by the difference in refractive index between the core and the fiber, the fiber used for the first portion has a refractive index difference so that the spread angle α of the laser incident on the first portion matches the NA. It is necessary to use a fixed fiber.
 広がり角が決定すれば入射径も決まるため、屈折率差と合わせて、入射するビーム径にあわせたMFD(モードフィールド径)を持つファイバを用いる必要がある。 If the divergence angle is determined, the incident diameter is also determined. Therefore, it is necessary to use a fiber having an MFD (mode field diameter) matched to the incident beam diameter together with the refractive index difference.
 第一部分、第三部分の中心軸C1方向の長さは、入射した光が単一のモードに落ち着くまでの距離を確保するためにそれぞれ100μm以上持つことが望ましく、第二部分がフェルール3の貫通孔3cの中央付近に配置されるように調整されることが望ましい。 The length of the first part and the third part in the direction of the central axis C1 is preferably 100 μm or more in order to secure the distance until the incident light settles in a single mode, and the second part penetrates the ferrule 3. It is desirable to adjust so that it may be arrange | positioned near the center of the hole 3c.
 ファイバスタブ4において光ファイバ2はフェルール3の貫通孔3cに弾性部材(接着剤)9を用いて固定される。ここで接着剤に適する材料としてはエポキシ、シリコン等の樹脂系接着剤があげられるが、本実施例では高温硬化型のエポキシ系接着剤を用いた。なお、フェルール3の貫通孔3c内において、光ファイバ2とフェルール3の内壁との間に存在する空間には同接着剤が隙間無く充填されている。 In the fiber stub 4, the optical fiber 2 is fixed to the through hole 3 c of the ferrule 3 using an elastic member (adhesive) 9. Here, examples of the material suitable for the adhesive include resin-based adhesives such as epoxy and silicon. In this example, a high-temperature curing type epoxy-based adhesive was used. In the through hole 3 c of the ferrule 3, a space existing between the optical fiber 2 and the inner wall of the ferrule 3 is filled with the same adhesive without any gap.
 ここで、図1~図6に表した例では、第二部分のファイバ外径D5は、第一部分のファイバ外径D4よりも小さく、第三部分のファイバ外径D6よりも小さいため、貫通孔3c内においてフェルール3と第二部分のファイバ外周との間に隙間が発生する。この隙間に接着剤として弾性部材9が隙間無く充填される。これにより、第二部分のファイバの外側に充填された弾性部材9がファイバに対しての楔となり、ファイバスタブ4と光レセプタクル1に挿入されるプラグフェルールとが光学接続を行うために接触し、軸方向に平行に外力が作用したとしても、ファイバスタブ4又は光ファイバ2が軸方向に移動することを抑制する。 In the example shown in FIGS. 1 to 6, the fiber outer diameter D5 of the second portion is smaller than the fiber outer diameter D4 of the first portion and smaller than the fiber outer diameter D6 of the third portion. A gap is generated between the ferrule 3 and the outer periphery of the fiber of the second portion in 3c. The gap is filled with the elastic member 9 as an adhesive without any gap. Thereby, the elastic member 9 filled on the outside of the fiber of the second part becomes a wedge for the fiber, and the fiber stub 4 and the plug ferrule inserted into the optical receptacle 1 come into contact with each other for optical connection, Even if an external force is applied parallel to the axial direction, the fiber stub 4 or the optical fiber 2 is prevented from moving in the axial direction.
 なお、弾性部材9は、光レセプタクル1の機能に影響を与えない程度の気泡を含んでいてもよい。より詳しくは、弾性部材9は、接着不良により光ファイバ2の固定強度が低くなり、プラグフェルールとの接触にともなって光ファイバ2が動いてしまうことを抑制できる程度の気泡を含んでいてもよい。弾性部材9は、例えば、光ファイバ2の軸方向(光ファイバ2とフェルール3との界面に沿う方向)の長さが30μm以下の気泡を含んでいてもよい。弾性部材9は、例えば、最大直径が30μm以下の気泡を含んでいてもよい。これにより、弾性部材9が気泡を含んでいる場合においても、光レセプタクル1の機能に影響を与えてしまうことを抑制することができる。本願明細書において、「弾性部材9が充填されている状態」及び「弾性部材9が隙間無く充填されている状態」には、弾性部材9が、30μm以下の軸方向の長さの気泡を含んでいる場合も含むものとする。 The elastic member 9 may contain bubbles that do not affect the function of the optical receptacle 1. More specifically, the elastic member 9 may contain bubbles that can prevent the optical fiber 2 from moving due to contact with the plug ferrule because the fixing strength of the optical fiber 2 is lowered due to poor adhesion. . The elastic member 9 may include bubbles having a length of 30 μm or less in the axial direction of the optical fiber 2 (direction along the interface between the optical fiber 2 and the ferrule 3), for example. The elastic member 9 may include bubbles having a maximum diameter of 30 μm or less, for example. Thereby, even when the elastic member 9 contains air bubbles, it is possible to prevent the function of the optical receptacle 1 from being affected. In the present specification, in the “state in which the elastic member 9 is filled” and the “state in which the elastic member 9 is filled without a gap”, the elastic member 9 includes bubbles having an axial length of 30 μm or less. It also includes the case of being out.
 また、第二部分は、第一部分と第三部分とを融着させることで形成されるため、形成条件によっては、第二部分の強度は、第一部分の強度又は第三部分の強度よりも低い場合がある。これに対して、第二部分の外周に弾性部材9が充填されることにより、第二部分を補強することができる。 Moreover, since the second part is formed by fusing the first part and the third part, the strength of the second part is lower than the strength of the first part or the third part depending on the forming conditions. There is a case. On the other hand, the second portion can be reinforced by filling the outer periphery of the second portion with the elastic member 9.
 但し、実施形態においては、図7に表したように、第二部分のファイバ外径D5は、第一部分のファイバ外径D4又は第三部分のファイバ外径D5と実質的に同じであってもよい。この形状をとることにより、融着によって光ファイバ2を形成するときに、放電量や放電タイミングの制御を比較的簡単とすることができる。 However, in the embodiment, as shown in FIG. 7, the fiber outer diameter D5 of the second portion may be substantially the same as the fiber outer diameter D4 of the first portion or the fiber outer diameter D5 of the third portion. Good. By taking this shape, it is possible to relatively easily control the discharge amount and the discharge timing when the optical fiber 2 is formed by fusing.
 また、通常、光レセプタクル1では光を光ファイバ2に入射する、または光ファイバ2より光を出射する際に光ファイバ2の端面2a(図2を参照)での光の反射を防ぐため、ファイバスタブ4の凸球面に研磨された端面3bとは反対側の端面3aにおいて、光ファイバ2の端面2aはフェルール3の中心軸C1(ファイバスタブの中心軸と同じ)に対して略垂直な平面となるように研磨される。ここで略垂直とは、中心軸C1に対して85度~95度程度であることが望ましい。 Also, normally, in the optical receptacle 1, in order to prevent reflection of light at the end face 2 a (see FIG. 2) of the optical fiber 2 when light enters the optical fiber 2 or when light is emitted from the optical fiber 2, In the end surface 3a opposite to the end surface 3b polished to the convex spherical surface of the stub 4, the end surface 2a of the optical fiber 2 is a plane substantially perpendicular to the central axis C1 of the ferrule 3 (same as the central axis of the fiber stub). It is polished to become. Here, “substantially perpendicular” is preferably about 85 to 95 degrees with respect to the central axis C1.
 本発明の第一の実施形態では、光ファイバ2の端面2aはファイバスタブ4の中心軸C1に対して垂直となる平面に研磨されており、さらに光ファイバ2の端面2aとフェルール3の端面3aはほぼ同一平面上に存在している。ここでほぼ同一平面上とは、光ファイバ2の端面2aとフェルール3の端面3aとの間の距離が-250nm~+250nm程度であることが望ましい。 In the first embodiment of the present invention, the end face 2a of the optical fiber 2 is polished to a plane perpendicular to the central axis C1 of the fiber stub 4, and the end face 2a of the optical fiber 2 and the end face 3a of the ferrule 3 are further polished. Exist on the same plane. Here, it is preferable that the distance between the end face 2a of the optical fiber 2 and the end face 3a of the ferrule 3 is about −250 nm to +250 nm.
 ファイバスタブ4の凸球面に研磨した端面3bとは反対側の端面3aにおいて、光ファイバ2のコア8の中心は、フェルール3の中心から0.005ミリメートル(mm)の範囲内に存在する。これにより、光ファイバ2のコア8の位置を制御することで、光モジュールの組み立て時の接続ロスを小さくし、容易に光モジュールを組み立てることができる。 The center of the core 8 of the optical fiber 2 is within the range of 0.005 millimeters (mm) from the center of the ferrule 3 on the end surface 3a opposite to the end surface 3b polished to the convex spherical surface of the fiber stub 4. Thereby, by controlling the position of the core 8 of the optical fiber 2, the connection loss at the time of assembling the optical module can be reduced, and the optical module can be easily assembled.
 ファイバスタブ4の凸球面は通常フェルール3の中心軸C1に対して垂直な平面上に形成されているが、垂直となる面から所定の角度(例えば4度~10度)を持つ平面上に形成されても良い。 The convex spherical surface of the fiber stub 4 is usually formed on a plane perpendicular to the central axis C1 of the ferrule 3, but is formed on a plane having a predetermined angle (for example, 4 to 10 degrees) from the perpendicular surface. May be.
 図8は、本発明の第一の実施形態におけるファイバスタブの拡大正面図である。
 図8に表したように、コア8は、例えば、製造誤差などにより、フェルール3に対して偏芯する場合がある。この際、プラグフェルールと光学的接続される一端面(端面3b)と反対側の他端面(端面3a)において、フェルール3の外径の中心CL1を基準とした時のコア8の中心CL2の偏芯量EAは、7μm以下である。これにより、半導体レーザ素子等の光学素子との調芯作業をし易くすることができる。
FIG. 8 is an enlarged front view of the fiber stub in the first embodiment of the present invention.
As illustrated in FIG. 8, the core 8 may be eccentric with respect to the ferrule 3 due to, for example, a manufacturing error. At this time, at the other end face (end face 3a) opposite to the one end face (end face 3b) optically connected to the plug ferrule, the deviation of the center CL2 of the core 8 when the center CL1 of the outer diameter of the ferrule 3 is used as a reference. The core amount EA is 7 μm or less. Thereby, alignment work with optical elements, such as a semiconductor laser element, can be made easy.
 図9は、本発明の第一の実施形態における光ファイバの拡大断面図である。
 図9に表したように、2つの光ファイバを融着させて光ファイバ2を形成する際に、各光ファイバの少なくとも一方のコアがクラッドに対して偏芯している場合、コアの中心同士を合わせて溶着が行われる。このため、第一部分クラッド7aと第三部分クラッド7cとの間には、軸方向と直交する方向において、位置ズレが生じる場合がある。
FIG. 9 is an enlarged cross-sectional view of the optical fiber in the first embodiment of the present invention.
As shown in FIG. 9, when forming the optical fiber 2 by fusing two optical fibers, if at least one core of each optical fiber is eccentric with respect to the cladding, the centers of the cores Are welded together. For this reason, a positional shift may occur between the first partial cladding 7a and the third partial cladding 7c in a direction orthogonal to the axial direction.
 この場合、第1の部分21の第一部分クラッド7aと、第3の部分23の第三部分クラッド7cと、の間の光ファイバ2の軸方向と直交する方向の変位量DAは、4μm以下である。 In this case, the displacement DA in the direction perpendicular to the axial direction of the optical fiber 2 between the first partial cladding 7a of the first portion 21 and the third partial cladding 7c of the third portion 23 is 4 μm or less. is there.
 これにより、プラグフェルールと光学的に接続される一端面(端面3b)側において、プラグフェルールとの軸ずれが生じてしまうことを抑制することができる。プラグフェルールとの軸ずれにともなう接続損失の増加を抑制することができる。また、例えば、第一部分クラッド7aと第三部分クラッド7cとの間の段差がフェルール3に引っ掛かり、光ファイバ2がフェルール3に入らなくなってしまうことを抑制することができる。さらには、第2の部分22に接着剤などによる応力集中が発生し、光ファイバ2の破断の要因となってしまうことを抑制することができる。このように、変位量DAを小さくすることにより、光ファイバ2の破断を抑制できるとともに、組立の歩留まりを改善することができる。 Thereby, it is possible to suppress the occurrence of axial misalignment with the plug ferrule on one end surface (end surface 3b) side optically connected to the plug ferrule. It is possible to suppress an increase in connection loss due to an axial deviation from the plug ferrule. Further, for example, it is possible to prevent the step between the first partial cladding 7 a and the third partial cladding 7 c from being caught by the ferrule 3 and the optical fiber 2 from entering the ferrule 3. Furthermore, it can be suppressed that stress concentration due to an adhesive or the like occurs in the second portion 22 and causes the optical fiber 2 to break. Thus, by reducing the displacement amount DA, it is possible to suppress breakage of the optical fiber 2 and to improve the assembly yield.
 図10は、ファイバスタブとプラグフェルールとの光接続面における軸ずれと接続損失との関係を表すグラフ図である。
 光接続面側におけるファイバスタブ4とプラグフェルールとの接続損失の要求品質は、0.5dB以下とされることが多い。その損失原因は、様々であるが、ファイバスタブ4とプラグフェルールとの軸ずれの影響が大きいと考えられる。
FIG. 10 is a graph showing the relationship between the axial shift and the connection loss in the optical connection surface between the fiber stub and the plug ferrule.
The required quality of the connection loss between the fiber stub 4 and the plug ferrule on the optical connection surface side is often 0.5 dB or less. There are various causes of the loss, but it is considered that the influence of the axial deviation between the fiber stub 4 and the plug ferrule is large.
 例えば、変位量DAが4μmである場合には、光ファイバ2をフェルール3に入れ込むために、フェルール3の貫通孔3cを4μm以上にしなければならない。貫通孔3cの直径が大きい場合、光ファイバ2が偏って接着され、光接続面での軸ずれとなり、接続損失が大きくなる可能性がある。例えば、光接続面での接続損失が0.5dBを超えてしまい、要求を満たすことができなくなってしまう。従って、上記のように、変位量DAは、4μm以下とする。これにより、光接続面におけるプラグフェルールとの軸ずれを抑制し、接続損失を抑制することができる。接続損失が0.8dBを超えてしまうことを抑制することができる。 For example, when the displacement amount DA is 4 μm, in order to insert the optical fiber 2 into the ferrule 3, the through hole 3c of the ferrule 3 must be 4 μm or more. When the diameter of the through-hole 3c is large, the optical fiber 2 is biased and bonded, resulting in misalignment of the optical connection surface, which may increase the connection loss. For example, the connection loss on the optical connection surface exceeds 0.5 dB, and the request cannot be satisfied. Therefore, as described above, the displacement amount DA is 4 μm or less. Thereby, the axial shift with the plug ferrule on the optical connection surface can be suppressed, and the connection loss can be suppressed. It is possible to suppress the connection loss from exceeding 0.8 dB.
 (第二の実施形態)
 図11は、本発明の第二の実施形態を示す光レセプタクルの模式断面図である。
 光レセプタクル1を構成する部材は第一の実施形態と同様であり、光ファイバ2と光ファイバ2を保持する貫通孔3cを有するフェルール3の凸球面に研磨された端面3b(図11参照)とは反対側の端面3a(図11参照)において、光ファイバ2の端面2aとフェルール3の端面3bの一部が、フェルール3の中心軸C1に対して垂直となる面から所定の角度(例えば4度~10度)を持つ平面となるように研磨されている。
(Second embodiment)
FIG. 11 is a schematic cross-sectional view of an optical receptacle showing a second embodiment of the present invention.
The members constituting the optical receptacle 1 are the same as those in the first embodiment, and the end surface 3b (see FIG. 11) polished to the convex spherical surface of the ferrule 3 having the optical fiber 2 and the through hole 3c for holding the optical fiber 2. In the opposite end face 3a (see FIG. 11), a part of the end face 2a of the optical fiber 2 and a part of the end face 3b of the ferrule 3 are at a predetermined angle (for example, 4) from a plane perpendicular to the central axis C1 of the ferrule 3. It is polished so as to be a flat surface having a degree of 10 degrees.
 このことにより、光レセプタクル1に接続される発光素子から出射され光ファイバ2に入射する光のうちで、光ファイバ2の端面2aで反射した光が発光素子に戻ることを防止し、光学素子を安定して動作させることができる。 This prevents light reflected from the end face 2a of the optical fiber 2 from returning from the light emitting element connected to the optical receptacle 1 and entering the optical fiber 2 from returning to the light emitting element. It can be operated stably.
 通常、ファイバスタブ4におけるフェルール3の中心軸C1に対して垂直となる面から所定の角度を持つ面を形成するためには、フェルール3の貫通孔3cに光ファイバ2を挿入し、接着剤で固定した後にフェルール3と光ファイバ2を同時に研磨して形成する。 Usually, in order to form a surface having a predetermined angle from a surface perpendicular to the central axis C1 of the ferrule 3 in the fiber stub 4, the optical fiber 2 is inserted into the through hole 3c of the ferrule 3 and an adhesive is used. After fixing, the ferrule 3 and the optical fiber 2 are formed by polishing simultaneously.
 本発明の第一、および第二の実施形態では、第二部分の外径が細くなった部分2bの外周に、光ファイバ2をフェルール3の貫通孔3c内に固定するための弾性部材(接着剤)9が充填されている。このため、光ファイバの中心軸C1と平行な力が作用したとしても、弾性部材が楔として作用し、ファイバの中心軸方向のズレを抑制することができるため、接触不良に伴う損失やファイバがフェルールから飛び出す現象が起きにくくなる。 In the first and second embodiments of the present invention, an elastic member (adhesion) for fixing the optical fiber 2 in the through hole 3c of the ferrule 3 on the outer periphery of the portion 2b where the outer diameter of the second portion is reduced. Agent) 9 is filled. For this reason, even if a force parallel to the central axis C1 of the optical fiber is applied, the elastic member acts as a wedge and can suppress the deviation in the central axis direction of the fiber. The phenomenon of jumping out of the ferrule is less likely to occur.
 次に、本発明者が実施した第一部分の光ファイバのコア径、屈折率、第二部分の中心軸C1方向の長さに関する検討について、図面を参照しつつ説明する。
 図12~図14は、検討に用いた解析条件および解析結果の一例を例示する模式図である。
Next, the study on the core diameter, refractive index, and length of the second portion in the central axis C1 direction performed by the present inventor will be described with reference to the drawings.
12 to 14 are schematic views illustrating examples of analysis conditions and analysis results used in the examination.
 まず、コア径について説明する。
 図12は、本検討で用いた光ファイバを表す模式断面図である。
 直径w1のビームウェストを持つビームが直径w2のMFDを持つファイバに入射される場合、光軸垂直方向の軸ずれ、角度ずれ、光軸方向のずれがないと仮定すると結合効率ηは以下の式で求められることが知られている。
First, the core diameter will be described.
FIG. 12 is a schematic cross-sectional view showing the optical fiber used in this study.
When a beam having a beam waist having a diameter w1 is incident on a fiber having an MFD having a diameter w2, assuming that there is no axial deviation, angular deviation, and optical axis deviation in the optical axis vertical direction, the coupling efficiency η is It is known that it is required in
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この理論式によれば、レーザのビームウェストとファイバのMFDが一致するw1=w2の時に効率は1(100%)になる事がわかる。また、シングルモードファイバのMFDは、コア径が0~10μmの範囲においては、波長によって変動するがファイバのコア径よりも直径が0.5~4μm大きくなることが知られている。この事実より、ファイバのコア径は入射されるビームウェストよりも0.5~4μm程度小さいことが望ましい。 According to this theoretical formula, it can be seen that the efficiency is 1 (100%) when w1 = w2 where the beam waist of the laser and the MFD of the fiber coincide. In addition, it is known that the MFD of a single mode fiber has a diameter that is 0.5 to 4 μm larger than the core diameter of the fiber, although it varies depending on the wavelength when the core diameter is in the range of 0 to 10 μm. From this fact, it is desirable that the core diameter of the fiber is smaller by 0.5 to 4 μm than the incident beam waist.
 屈折率差について説明する。光がシングルモードファイバの中を伝播していくには、光の広がり角θ1とファイバの受光角θ2とが一致していることが望ましい。なお、このθ1は、次式で求められることが知られている。 Explanation of refractive index difference. In order for light to propagate through the single mode fiber, it is desirable that the light spread angle θ1 and the light receiving angle θ2 of the fiber match. It is known that θ1 can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この式によれば、入射されるレーザービームのビームウェストw1が分かれば広がり角θ1を求めることができる。また、ファイバの受光角θ2は、
Figure JPOXMLDOC01-appb-M000003
に示されるとおり、コアの屈折率ncoreとクラッドの屈折率ncladから求められることが分かっている。
According to this equation, if the beam waist w1 of the incident laser beam is known, the divergence angle θ1 can be obtained. The light receiving angle θ2 of the fiber is
Figure JPOXMLDOC01-appb-M000003
As can be seen from the above, it is found from the refractive index n core of the core and the refractive index n clad of the cladding.
 入射されるビームウェストw1が決定されれば、そのビームの広がり角も必然的に決定されるため、ファイバのコアとクラッドの屈折率差はθ2=θ1となるように決定されなければならない。例えば、コアとクラッドに石英ガラスを用いた場合、コアとクラッドの屈折率は1.4~1.6程度の範囲で推移する。 If the incident beam waist w1 is determined, the divergence angle of the beam is inevitably determined, so the difference in refractive index between the core and the clad of the fiber must be determined to be θ2 = θ1. For example, when quartz glass is used for the core and the clad, the refractive index of the core and the clad changes in the range of about 1.4 to 1.6.
 第二部分の中心軸C1方向の長さについて説明する。この長さの違いによる効果を確認するために、光CAE解析を実施した。本検討では第一部分のコア径D1は3μm、第一部分コア8aの屈折率は1.49、第3の部分のコア径D3は8.2μm、第三部分コア8cの屈折率は1.4677、ファイバ全長を1000μm、各部分のクラッド(7aと7bと7c)の屈折率は共通で1.4624、入射されたビームのビームウェスト径D7は3.2μmとした。この条件の下で、第二部分の中心軸C1方向の長さを0μmから500μmまで100μm刻みで変化させた場合に、光強度がどのように変化するか計算した。なお、第一部分と第三部分の長さはそれぞれ(1000μm - 第二部分長さ)÷2とした。 The length of the second part in the direction of the central axis C1 will be described. In order to confirm the effect of this difference in length, optical CAE analysis was performed. In this examination, the core diameter D1 of the first portion is 3 μm, the refractive index of the first partial core 8a is 1.49, the core diameter D3 of the third portion is 8.2 μm, and the refractive index of the third partial core 8c is 1.4677, The total length of the fiber was 1000 μm, the refractive indexes of the clads (7a, 7b, and 7c) in each part were 1.4624 in common, and the beam waist diameter D7 of the incident beam was 3.2 μm. Under this condition, it was calculated how the light intensity changes when the length of the second portion in the central axis C1 direction is changed from 0 μm to 500 μm in increments of 100 μm. The lengths of the first part and the third part were (1000 μm − second part length) ÷ 2.
 この解析の解析結果をまとめたグラフを図13に示す。横軸は第二部分の中心軸C1方向の長さ、縦軸は入射された光を1としたときの、ファイバ出射端における光の強度を対数表示したものである。この解析結果によれば、第二部分の中心軸C1方向の長さが長くなれば、光ファイバ2の内部における損失が小さくなる。その変化の様子としては、0~100μmまでは長さが増加することにより損失は急激に低下し、100μm以上では損失はほぼ横ばいとなる。これより、第二部分の長さは100μm以上であることが望ましいと考えられる。 Fig. 13 shows a graph summarizing the analysis results of this analysis. The horizontal axis indicates the length of the second portion in the direction of the central axis C1, and the vertical axis indicates the logarithm of the light intensity at the fiber exit end when the incident light is 1. According to this analysis result, if the length of the second portion in the direction of the central axis C1 is increased, the loss inside the optical fiber 2 is reduced. As the state of the change, the loss rapidly decreases as the length increases from 0 to 100 μm, and the loss becomes almost flat at 100 μm or more. From this, it is considered that the length of the second portion is desirably 100 μm or more.
 図14は、本解析条件の一例において、ファイバ内の光強度分布をコンタ図とグラフで示した図である。グラフの縦軸はファイバの入射端からの距離、横軸は光の強度を示している。このグラフで特筆すべきことは、第一部分と第三部分を伝播していく過程において、光はほぼ減衰しないという点である。入射された光は当初光の干渉によって強度が減少するものの、それが出射端からある程度伝播したところで安定する。その後は一定の値を保ったまま第二部分に入る。第二部分ではMFDの変換および屈折率の変化による損失が発生するため光強度は低下し、その後第三部分へと入る。第三部分ではほぼ強度の変化は無く、出射端まで一定の値を保つ。 FIG. 14 is a contour diagram and a graph showing the light intensity distribution in the fiber in an example of the analysis conditions. The vertical axis of the graph indicates the distance from the incident end of the fiber, and the horizontal axis indicates the light intensity. What should be noted in this graph is that light is not substantially attenuated in the process of propagating through the first part and the third part. The incident light is initially reduced in intensity due to light interference, but is stabilized when it has propagated to some extent from the exit end. After that, the second part is entered while maintaining a constant value. In the second part, loss due to MFD conversion and refractive index change occurs, so that the light intensity decreases, and then enters the third part. In the third part, there is almost no change in intensity, and a constant value is maintained until the emission end.
 本発明の一実施形態によれば、第一部分と第三部分の中心軸C1方向の長さは減衰には影響しないため、その長さが変化してもファイバの機能およびファイバ全体の損失には影響は無い。言い換えれば第一部分と第三部分の長さは設計者の任意の長さで設計することができるうえに、その設計寸法の寸法公差は大きくとることができる。この利点はGIファイバやレンズ付ファイバのように厳密な寸法精度を必要とせず、量産性の向上に大きく貢献することができる。 According to one embodiment of the present invention, the length of the first portion and the third portion in the direction of the central axis C1 does not affect the attenuation, so even if the length changes, the function of the fiber and the loss of the entire fiber are not affected. There is no effect. In other words, the lengths of the first part and the third part can be designed with any length of the designer, and the dimensional tolerance of the design dimension can be made large. This advantage does not require strict dimensional accuracy like GI fiber or fiber with lens, and can greatly contribute to the improvement of mass productivity.
 次に、中心軸C1方向に沿った第一部分の長さ、及び中心軸C1方向に沿った第三部分の長さに関する検討について、説明する。
 図15(a)~図15(c)は、第一部分の長さに関する検討に用いた参考例の光レセプタクル及びその解析結果の一例を例示する模式図である。
Next, a study on the length of the first portion along the central axis C1 direction and the length of the third portion along the central axis C1 direction will be described.
FIG. 15A to FIG. 15C are schematic views illustrating an example of the optical receptacle of the reference example used for the study on the length of the first portion and an analysis result thereof.
 参考例の光レセプタクルは、図15(a)に示すファイバスタブ49を有する。参考例のファイバスタブ49の構造は、実施形態に係るファイバスタブ4において第1の部分21(第一部分クラッド7aと第一部分コア8a)が設けられない構造と同様である。
 すなわち、ファイバスタブ49は、光ファイバ29と、光ファイバ29を保持するフェルール39と、を有する。ファイバスタブ49は、プラグフェルールと接続される端面39bと、端面39bとは反対側の端面39aと、を有する。また、光ファイバ29は、第二部分229(変換部)と、第三部分239と、を有する。第三部分239は、第二部分229と軸方向において並び、第二部分229と連続する。第二部分229は、端面39aの一部を形成し、第三部分239は、端面39bの一部を形成する。中心軸C1方向において、第二部分229のコア径は、第三部分239へ向かって拡大している。第三部分239のコア径は、中心軸C1方向において、実質的に一定である。なお、図15(a)では、便宜上、弾性部材など一部の要素を省略している。
The optical receptacle of the reference example has a fiber stub 49 shown in FIG. The structure of the fiber stub 49 of the reference example is the same as the structure in which the first portion 21 (the first partial cladding 7a and the first partial core 8a) is not provided in the fiber stub 4 according to the embodiment.
That is, the fiber stub 49 includes an optical fiber 29 and a ferrule 39 that holds the optical fiber 29. The fiber stub 49 has an end face 39b connected to the plug ferrule and an end face 39a opposite to the end face 39b. In addition, the optical fiber 29 has a second portion 229 (conversion unit) and a third portion 239. The third portion 239 is aligned with the second portion 229 in the axial direction and is continuous with the second portion 229. The second part 229 forms part of the end face 39a, and the third part 239 forms part of the end face 39b. In the central axis C1 direction, the core diameter of the second portion 229 increases toward the third portion 239. The core diameter of the third portion 239 is substantially constant in the direction of the central axis C1. In FIG. 15A, for convenience, some elements such as an elastic member are omitted.
 一般に、端面39aは、鏡面状に研磨される。また、端面39bは、凸球面状に研磨される。これにより、端面39a、39bにおける光の損失を抑制することができる。光レセプタクルにおいては、光学素子と光レセプタクルとの接続(例えばV形状の溝が用いられる)や、付着した接着剤の除去の観点からも端面を研磨することが望ましい。
 端面39aの研磨量は、例えば5μm以上50μm以下である。これにより、鏡面状の端面を形成することができる。
In general, the end surface 39a is polished in a mirror shape. The end surface 39b is polished into a convex spherical shape. Thereby, the loss of light at the end faces 39a and 39b can be suppressed. In the optical receptacle, it is desirable to polish the end face from the viewpoint of connection between the optical element and the optical receptacle (for example, a V-shaped groove is used) and removal of the adhered adhesive.
The polishing amount of the end face 39a is, for example, not less than 5 μm and not more than 50 μm. Thereby, a mirror-like end surface can be formed.
 ここで、図15(a)に示したファイバスタブ49において、例えば、端面39aが5~50μm程度研磨されると、研磨量に応じて、第二部分229の長さが短くなる。言い換えれば、研磨量に応じて、第二部分229の端面位置(第二部分229のうち端面39aの一部として露出する部分の位置)が5~50μm程度変動する。つまり、端面39aにおけるコア径Daが変動する。これは、GIファイバなど、周期的にMFDが変化するようなファイバを用いる場合には、損失の原因となる。 Here, in the fiber stub 49 shown in FIG. 15A, for example, when the end face 39a is polished by about 5 to 50 μm, the length of the second portion 229 is shortened according to the polishing amount. In other words, the end surface position of the second portion 229 (the position of the portion exposed as part of the end surface 39a of the second portion 229) varies by about 5 to 50 μm according to the polishing amount. That is, the core diameter Da on the end face 39a varies. This causes a loss when using a fiber whose MFD changes periodically, such as a GI fiber.
 本願発明者は、上記のような端面39aの研磨と、損失と、の関係について解析を行った。図15(b)及び図15(c)に解析結果の一例を示す。この検討では、端面39aの研磨前において、第二部分229の軸方向に沿った長さLaを50μmとし、端面39aにおけるコア径Daを3μmとし、端面39bにおけるコア径Dbを9μmとした。第二部分229におけるコア径の軸方向に沿った変化率は、一定とした。 The inventor of the present application analyzed the relationship between the polishing of the end face 39a and the loss as described above. FIG. 15B and FIG. 15C show examples of analysis results. In this examination, before polishing the end face 39a, the length La along the axial direction of the second portion 229 was 50 μm, the core diameter Da at the end face 39a was 3 μm, and the core diameter Db at the end face 39b was 9 μm. The rate of change along the axial direction of the core diameter in the second portion 229 was constant.
 図15(b)は、上記のようなファイバスタブ49において、端面39aの研磨により、長さLaが20%(研磨量10μm)、40%(研磨量20μm)、60%(研磨量30μm)又は80%(研磨量40μm)短くなった場合の損失(dB)を表す。図15(c)は、図15(b)のデータを表すグラフ図である。ここで、損失(dB)は、端面39aから光(径DL=3μm)が入射した場合の出射端(端面39b)における光の強度から算出される。 FIG. 15B shows the length La of 20% (polishing amount of 10 μm), 40% (polishing amount of 20 μm), 60% (polishing amount of 30 μm) or 70% (polishing amount of 30 μm) of the fiber stub 49 as described above. It represents the loss (dB) when shortened by 80% (polishing amount 40 μm). FIG. 15C is a graph showing the data of FIG. Here, the loss (dB) is calculated from the intensity of light at the emission end (end surface 39b) when light (diameter DL = 3 μm) enters from the end surface 39a.
 端面39aの研磨が行われる前において損失は、-1.06dBである。グラフより、研磨によって第二部分229が短くなると損失が大きくなることが分かる。例えば、研磨によって変換部(第二部分229)が50%短くなると損失は、-3dB程度となる。 The loss is -1.06 dB before the end face 39a is polished. From the graph, it can be seen that the loss increases as the second portion 229 is shortened by polishing. For example, when the conversion portion (second portion 229) is shortened by 50% by polishing, the loss is about −3 dB.
 このように、第一部分が設けられない参考例においては、端面を研磨することによって損失が増大してしまう。また、参考例において、予め研磨量を考慮して研磨前の端面のコア径を定めたとしても、研磨量のばらつきに応じて損失がばらつく。研磨量を厳密に管理する必要が生じ、量産性が低下することがある。 As described above, in the reference example in which the first portion is not provided, the loss increases by polishing the end face. In the reference example, even if the core diameter of the end face before polishing is determined in consideration of the polishing amount in advance, the loss varies depending on the variation in the polishing amount. The amount of polishing needs to be strictly controlled, and mass productivity may be reduced.
 これに対して、実施形態に係る光レセプタクルにおいては、実質的にコア径及び屈折率が中心軸C1に沿って変化しない第一部分が設けられる。端面3aの研磨によって、中心軸C1に沿った第一部分の長さが変動しても、光学的損失の増大やばらつきの変化は小さい。例えば、第一部分の長さの範囲内で端面位置が変化しても、光レセプタクルの特性は、実質的に劣化しない。 On the other hand, in the optical receptacle according to the embodiment, a first portion in which the core diameter and the refractive index do not substantially change along the central axis C1 is provided. Even if the length of the first portion along the central axis C1 varies due to the polishing of the end surface 3a, an increase in optical loss and a variation in variation are small. For example, even if the end face position changes within the length of the first portion, the characteristics of the optical receptacle are not substantially deteriorated.
 以上により、第一部分の中心軸C1に沿った長さは、端面3aの研磨量以上であることが望ましい。上述の通り、端面3aを鏡面状とするため、端面3aは、5μm以上50μm以下程度研磨される。したがって、第一部分の中心軸C1に沿った長さは、5μm以上であることが望ましく、可能であれば50μm以上であることが、さらに望ましい。第一部分の中心軸C1に沿った長さの上限は、ファイバスタブ4内(フェルール3の貫通孔内)に第二部分及び第三部分を配設することができれば、特に制限されない。そのためファイバスタブ4の全長によっては、第一部分を7~10mm程度にまで伸ばしてもよい。これにより、量産性を向上させることができる。 From the above, it is desirable that the length of the first portion along the central axis C1 is equal to or greater than the polishing amount of the end surface 3a. As described above, in order to make the end surface 3a a mirror surface, the end surface 3a is polished by about 5 μm or more and 50 μm or less. Accordingly, the length of the first portion along the central axis C1 is desirably 5 μm or more, and more desirably 50 μm or more if possible. The upper limit of the length along the central axis C1 of the first part is not particularly limited as long as the second part and the third part can be disposed in the fiber stub 4 (in the through hole of the ferrule 3). Therefore, depending on the overall length of the fiber stub 4, the first portion may be extended to about 7 to 10 mm. Thereby, mass productivity can be improved.
 図15(a)~図15(c)に関する説明は、例えば、第三部分を有さない参考例においても、同様である。すなわち、この場合は、プラグフェルールと接続される端面におけるコア径が、研磨量によって変化する。端面におけるコア径の変化によって、損失が増大する。これに対して、実施形態に係る光レセプタクルにおいては、実質的にコア径及び屈折率が中心軸C1に沿って変化しない第三部分が設けられる。端面3bの研磨によって、中心軸C1に沿った第三部分の長さが変動しても、光学的損失の増大やばらつきの変化は小さい。 15A to 15C are the same in the reference example having no third part, for example. That is, in this case, the core diameter at the end face connected to the plug ferrule varies depending on the polishing amount. Loss increases due to changes in the core diameter at the end face. On the other hand, in the optical receptacle according to the embodiment, a third portion in which the core diameter and the refractive index do not substantially change along the central axis C1 is provided. Even if the length of the third portion along the central axis C1 varies due to the polishing of the end surface 3b, an increase in optical loss and a variation in variation are small.
 以上により、第三部分の中心軸C1に沿った長さは、端面3bの研磨量以上であることが望ましい。例えば、端面3bを凸球面状とするため、端面3bは、5μm以上20μm以下程度研磨される。したがって、第三部分の中心軸C1に沿った長さは、5μm以上であることが望ましく、可能であれば20μm以上であることが、さらに望ましい。第三部分の中心軸C1に沿った長さの上限は、ファイバスタブ4内(フェルール3の貫通孔内)に第一部分及び第二部分を配設することばできれば、特に制限されない。そのためファイバスタブ4の全長によっては、第三部分を7~10mm程度にまで伸ばしてもよい。これにより、量産性を向上させることができる。 Thus, the length of the third portion along the central axis C1 is preferably equal to or greater than the polishing amount of the end surface 3b. For example, in order to make the end surface 3b into a convex spherical shape, the end surface 3b is polished by about 5 μm or more and 20 μm or less. Accordingly, the length of the third portion along the central axis C1 is preferably 5 μm or more, and more preferably 20 μm or more if possible. The upper limit of the length of the third portion along the central axis C1 is not particularly limited as long as the first portion and the second portion can be disposed in the fiber stub 4 (in the through hole of the ferrule 3). Therefore, depending on the overall length of the fiber stub 4, the third portion may be extended to about 7 to 10 mm. Thereby, mass productivity can be improved.
 以上説明したように、本実施形態によればファイバスタブ4の凸球面に研磨した端面3bとは反対側の端面3aにおけるコア径D1が凸球面に研磨した端面3bのコア径D2よりも小さいため、光モジュールの長さを小さくすることができる。また、第一部分と第三部分の軸方向長さに対して、高い精度の寸法管理を必要としないものとできる。
 第二部分のファイバ外径D5はクラッドの貫通孔3cよりも小さいため、その隙間に弾性部材9が充填されることにより、ファイバが中心軸方向に移動することを抑止することができる。
As described above, according to the present embodiment, the core diameter D1 of the end surface 3a opposite to the end surface 3b polished to the convex spherical surface of the fiber stub 4 is smaller than the core diameter D2 of the end surface 3b polished to the convex spherical surface. The length of the optical module can be reduced. Further, it is possible to eliminate the need for highly accurate dimensional management with respect to the axial lengths of the first portion and the third portion.
Since the fiber outer diameter D5 of the second portion is smaller than the cladding through-hole 3c, the elastic member 9 is filled in the gap, thereby preventing the fiber from moving in the central axis direction.
 (第三の実施形態)
 図16(a)及び図16(b)は、本発明の第三の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図16(a)及び図16(b)では、本実施形態に係る光レセプタクルのうち、ファイバスタブ4及び保持具5(ブッシュ5a)の部分を拡大して表している。
 図16(a)に表したように、この例において、光ファイバ2の第2の部分22の軸方向中央部C2は、フェルール3と保持具5(ブッシュ5a)とが接する領域A1とは重ならないように配設されている。すなわち、第2の部分22の軸方向中央部C2は、ファイバスタブ4において、保持具5(ブッシュ5a)に圧入されない位置に設けられる。軸方向とは、例えば、第1の部分21、第2の部分22、及び第3の部分23の並ぶ方向である。換言すれば、軸方向とは、光ファイバ2の延びる方向である。軸方向中央部C2は、より詳しくは、コア径D2が徐々に変化する第2の部分22の軸方向の中心である。
(Third embodiment)
FIG. 16A and FIG. 16B are schematic cross-sectional views illustrating a part of the optical receptacle according to the third embodiment of the invention.
FIGS. 16A and 16B show an enlarged view of the fiber stub 4 and the holder 5 (bush 5a) in the optical receptacle according to the present embodiment.
As shown in FIG. 16A, in this example, the axial central portion C2 of the second portion 22 of the optical fiber 2 overlaps with the region A1 where the ferrule 3 and the holder 5 (bush 5a) are in contact with each other. It is arranged so that it does not become. That is, the central portion C2 in the axial direction of the second portion 22 is provided at a position where the fiber stub 4 is not press-fitted into the holder 5 (bush 5a). The axial direction is, for example, the direction in which the first portion 21, the second portion 22, and the third portion 23 are arranged. In other words, the axial direction is the direction in which the optical fiber 2 extends. More specifically, the axial center portion C2 is the axial center of the second portion 22 where the core diameter D2 gradually changes.
 前述のように、第2の部分22は、例えば、第1の部分21と第3の部分23とを融着させ、熱を加えながら融着部を引き伸ばすことによって形成される。この場合、融着部においては、クラッド外形が変化する。第2の部分22のクラッド外径は、第1の部分21のクラッド外径及び第3の部分23のクラッド外径よりも細い。このため、第2の部分22の強度は、第1の部分21及び第3の部分23の強度よりも低くなる。また、融着部においては、光ファイバ2内に欠陥や空隙が発生する可能性もある。この場合には、第2の部分22の強度が、より低下してしまう。 As described above, the second portion 22 is formed, for example, by fusing the first portion 21 and the third portion 23 and stretching the fusion portion while applying heat. In this case, the cladding outer shape changes at the fusion part. The cladding outer diameter of the second portion 22 is smaller than the cladding outer diameter of the first portion 21 and the cladding outer diameter of the third portion 23. For this reason, the strength of the second portion 22 is lower than the strength of the first portion 21 and the third portion 23. Further, in the fused portion, there is a possibility that a defect or a gap is generated in the optical fiber 2. In this case, the strength of the second portion 22 is further reduced.
 この際、図16(a)に表したように、第2の部分22の軸方向中央部C2を、フェルール3と保持具5(ブッシュ5a)とが接する領域A1とは重ならないように配設する。これにより、例えば、融着によって第2の部分22を形成する場合などにおいても、第1の部分21及び第3の部分23よりも比較的強度の低い第2の部分22に応力が加わり、第2の部分22においてファイバ折れなどが発生してしまうことを抑制することができる。光レセプタクル1の信頼性をより向上させることができる。 At this time, as shown in FIG. 16A, the central portion C2 in the axial direction of the second portion 22 is disposed so as not to overlap the region A1 where the ferrule 3 and the holder 5 (bush 5a) are in contact. To do. Thereby, for example, even when the second portion 22 is formed by fusion, a stress is applied to the second portion 22 having relatively lower strength than the first portion 21 and the third portion 23, and the The occurrence of fiber breakage or the like in the second portion 22 can be suppressed. The reliability of the optical receptacle 1 can be further improved.
 図16(a)では、第2の部分22の軸方向中央部C2が、領域A1に対して、プラグフェルールと光学的に接続される端面3b側にずれている。図16(b)に表したように、第2の部分22の軸方向中央部C2は、領域A1に対して、光学素子と光学的に接続される端面3a側にずらしてもよい。 In FIG. 16A, the axial central portion C2 of the second portion 22 is shifted toward the end face 3b optically connected to the plug ferrule with respect to the region A1. As shown in FIG. 16B, the axial center C2 of the second portion 22 may be shifted to the end face 3a side optically connected to the optical element with respect to the region A1.
 また、図16(a)では、第2の部分22の一部が、領域A1に重なっている。これに限ることなく、図16(b)に表したように、第2の部分22の全体が、領域A1と重ならないようにしてもよい。第2の部分22の全体が、領域A1と重ならない場合には、第2の部分22に応力が加わり、ファイバ折れなどが生じてしまうことを、より抑制することができる。一方、第2の部分22の一部が、領域A1に重なる場合には、ファイバスタブ4の軸方向の長さを、より短くすることができる。 In FIG. 16A, a part of the second portion 22 overlaps the area A1. Without being limited to this, as shown in FIG. 16B, the entire second portion 22 may not overlap the region A1. When the entire second portion 22 does not overlap with the region A1, it is possible to further suppress the occurrence of stress on the second portion 22 and the occurrence of fiber breakage. On the other hand, when a part of the second portion 22 overlaps the region A1, the length of the fiber stub 4 in the axial direction can be further shortened.
 (第四の実施形態)
 図17は、本発明の第四の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図17では、本実施形態に係る光レセプタクルのうち、ファイバスタブ4の部分を拡大して表している。
 図17に表したように、この例において、ファイバスタブ4は、フェルール3に固定された透光性部材70をさらに有する。フェルール3の貫通孔3cは、小径部DP1と、大径部DP2と、を有する。大径部DP2は、小径部DP1よりも端面3a側に設けられる。そして、大径部DP2は、小径部DP1よりも大きい径を有する。大径部DP2の径とは、換言すれば、軸方向と直交する方向の幅である。大径部DP2は、貫通孔3cにおいて、小径部DP1よりも端面3a側に設けられ、小径部DP2よりも幅の広い部分である。また、大径部DP2の径は、例えば、端面3a側に向かって広げてもよい。
(Fourth embodiment)
FIG. 17 is a schematic cross-sectional view illustrating a part of an optical receptacle according to the fourth embodiment of the invention.
In FIG. 17, the portion of the fiber stub 4 in the optical receptacle according to the present embodiment is shown enlarged.
As shown in FIG. 17, in this example, the fiber stub 4 further includes a translucent member 70 fixed to the ferrule 3. The through hole 3c of the ferrule 3 has a small diameter part DP1 and a large diameter part DP2. The large diameter portion DP2 is provided closer to the end face 3a than the small diameter portion DP1. The large diameter portion DP2 has a larger diameter than the small diameter portion DP1. In other words, the diameter of the large-diameter portion DP2 is the width in the direction orthogonal to the axial direction. The large diameter portion DP2 is a portion that is provided closer to the end surface 3a than the small diameter portion DP1 in the through hole 3c, and is wider than the small diameter portion DP2. Further, the diameter of the large diameter portion DP2 may be increased toward the end surface 3a, for example.
 この例では、光ファイバ2の全体が、小径部DP1に配設される。透光性部材70は、大径部DP2に配設される。例えば、透光性部材70の全体が、大径部DP2内に設けられる。透光性部材70の一部は、フェルール3から突出してもよい。すなわち、透光性部材70においては、その少なくとも一部が、大径部DP2内に設けられていればよい。 In this example, the entire optical fiber 2 is disposed in the small diameter portion DP1. The translucent member 70 is disposed in the large diameter portion DP2. For example, the whole translucent member 70 is provided in the large diameter portion DP2. A part of the translucent member 70 may protrude from the ferrule 3. That is, at least a part of the translucent member 70 only needs to be provided in the large diameter portion DP2.
 軸方向と直交する断面において、透光性部材70及び大径部DP2の断面形状は、例えば、矩形状である。透光性部材70及び大径部DP2の断面形状は、円形でもよいし、楕円形や多角形でもよい。 In the cross section orthogonal to the axial direction, the cross sectional shapes of the translucent member 70 and the large diameter portion DP2 are, for example, rectangular. The cross-sectional shapes of the translucent member 70 and the large-diameter portion DP2 may be circular, elliptical, or polygonal.
 弾性部材9は、光ファイバ2と、フェルール3の貫通孔3cの小径部DP1と、の間の隙間に設けられるとともに、透光性部材70と大径部DP2との間の隙間、及び光ファイバ2と透光性部材70との間の隙間に設けられる。換言すれば、弾性部材9は、光ファイバ2と、フェルール3の貫通孔3cの小径部DP1と、の間の隙間に充填されるとともに、透光性部材70と大径部DP2との間の隙間、及び光ファイバ2と透光性部材70との間の隙間に充填される。これにより、光ファイバ2および透光性部材70は、フェルール3の貫通孔3c内に弾性部材9を用いて接着固定される。 The elastic member 9 is provided in a gap between the optical fiber 2 and the small diameter portion DP1 of the through hole 3c of the ferrule 3, and the gap between the translucent member 70 and the large diameter portion DP2 and the optical fiber. 2 and the translucent member 70. In other words, the elastic member 9 is filled in a gap between the optical fiber 2 and the small diameter portion DP1 of the through hole 3c of the ferrule 3, and between the translucent member 70 and the large diameter portion DP2. The gap and the gap between the optical fiber 2 and the translucent member 70 are filled. Thereby, the optical fiber 2 and the translucent member 70 are bonded and fixed in the through hole 3 c of the ferrule 3 using the elastic member 9.
 光ファイバ2のプラグフェルールと光学接続する側とは反対側の端面2aは、弾性部材9と密着している。透光性部材70の光ファイバ2側の端面70aは、弾性部材9と密着している。弾性部材9及び透光性部材70は、透光性を有する。これにより、光学素子から照射された光が、透光性部材70及び弾性部材9を介して光ファイバ2に入射し、光ファイバ2から出射した光が、透光性部材70及び弾性部材9を介して光学素子に入射する。 The end face 2 a of the optical fiber 2 opposite to the side optically connected to the plug ferrule is in close contact with the elastic member 9. An end surface 70 a on the optical fiber 2 side of the translucent member 70 is in close contact with the elastic member 9. The elastic member 9 and the translucent member 70 have translucency. Thereby, the light irradiated from the optical element enters the optical fiber 2 through the translucent member 70 and the elastic member 9, and the light emitted from the optical fiber 2 passes through the translucent member 70 and the elastic member 9. Through the optical element.
 透光性部材70の光ファイバ2とは反対側の端面70bのうちの少なくとも一部は、光レセプタクル1の中心軸C1に対し略垂直となる平面を有している。ここで、略垂直とは、例えば、光レセプタクル1の中心軸C1に対して約85度以上、95度以下の角度である。 At least a part of the end surface 70 b of the translucent member 70 opposite to the optical fiber 2 has a plane that is substantially perpendicular to the central axis C <b> 1 of the optical receptacle 1. Here, the term “substantially perpendicular” refers to, for example, an angle of about 85 degrees or more and 95 degrees or less with respect to the central axis C1 of the optical receptacle 1.
 透光性部材70の端面70bに平面を形成する際の方法としては、ダイヤ砥粒を持つ研磨フィルム等による方法がある。また、透光性部材70の端面70bの面粗さは、光の反射量をできるだけ小さくするため、算術平均粗さ0.1マイクロメートル以下となることが望ましい。 As a method for forming a flat surface on the end surface 70b of the translucent member 70, there is a method using a polishing film having diamond abrasive grains. Further, the surface roughness of the end surface 70b of the translucent member 70 is desirably an arithmetic average roughness of 0.1 micrometers or less in order to minimize the amount of reflected light.
 光ファイバ2と小径部DP1との間には、弾性部材9が隙間無く充填されている。これにより、光ファイバ2の周囲に充填される弾性部材9の偏りが小さくなり、光レセプタクル1が温度変化に晒された際に、弾性部材9の熱膨張係数と、光ファイバ2の熱膨張係数と、の間の差により光ファイバ2の折れやクラックが発生することを抑制することができる。さらに、光ファイバ2のプラグフェルールと光学接続する側と反対側の端面2aのフェルール3の貫通孔3c内における直径方向の変動量が小さくなるため、発光素子や受光素子と光ファイバ2の端面とを位置合わせする際の時間が短縮される。ここで、小径部DP1における弾性部材9の材料は、大径部DP2における弾性部材9の材料と異なっていてもよい。 The elastic member 9 is filled with no gap between the optical fiber 2 and the small diameter portion DP1. Thereby, the bias of the elastic member 9 filled around the optical fiber 2 is reduced, and the thermal expansion coefficient of the elastic member 9 and the thermal expansion coefficient of the optical fiber 2 when the optical receptacle 1 is exposed to a temperature change. It is possible to prevent the optical fiber 2 from being broken or cracked due to the difference between the two. Further, since the amount of variation in the diameter direction in the through-hole 3c of the ferrule 3 on the end face 2a opposite to the optically connected side of the plug ferrule of the optical fiber 2 is reduced, the light emitting element and the light receiving element and the end face of the optical fiber 2 The time for aligning is reduced. Here, the material of the elastic member 9 in the small diameter portion DP1 may be different from the material of the elastic member 9 in the large diameter portion DP2.
 弾性部材9および透光性部材70のそれぞれは、光ファイバ2のコアの屈折率と略同じ屈折率を有していることが望ましい。ここでいう略同じ屈折率とは、1.4以上1.6以下程度である。光ファイバ2のコアの屈折率は、例えば約1.46以上、1.47以下程度である。弾性部材9の屈折率は、例えば約1.4以上、1.5以下程度である。透光性部材70の屈折率は、例えば約1.4以上、1.6以下程度である。これにより、透光性部材70と弾性部材9との間の境界面、および弾性部材9と光ファイバ2との間の境界面における光の反射を減少させることができ、光モジュールの結合効率が向上する。 It is desirable that each of the elastic member 9 and the translucent member 70 has substantially the same refractive index as the refractive index of the core of the optical fiber 2. The substantially same refractive index here is about 1.4 or more and 1.6 or less. The refractive index of the core of the optical fiber 2 is, for example, about 1.46 or more and 1.47 or less. The refractive index of the elastic member 9 is, for example, about 1.4 or more and 1.5 or less. The refractive index of the translucent member 70 is, for example, about 1.4 or more and 1.6 or less. Thereby, reflection of the light in the interface between the translucent member 70 and the elastic member 9 and the interface between the elastic member 9 and the optical fiber 2 can be reduced, and the coupling efficiency of the optical module can be reduced. improves.
 弾性部材9は、フェルール3の材料として用いられるセラミックスや光ファイバ2の材料として用いられる石英ガラスに比べて低い弾性率を有する。例えば、エポキシ系樹脂、アクリル系樹脂、シリコン系樹脂等が例示される。 The elastic member 9 has a lower elastic modulus than ceramics used as a material for the ferrule 3 and quartz glass used as a material for the optical fiber 2. For example, an epoxy resin, an acrylic resin, a silicon resin, etc. are illustrated.
 光レセプタクルでは、反射を減少させるため、光ファイバ2の端面2aを鏡面状の平面となるように研磨加工を施すことが一般的である。これに対して、図17に表した構成では、光ファイバ2の端面2aを同様に研磨加工を施さなくても、端面2aにおける光の反射を減少させることができる。さらには、透光性部材70の固定強度を確保することができる。 In an optical receptacle, in order to reduce reflection, it is common to perform polishing so that the end surface 2a of the optical fiber 2 becomes a mirror-like plane. On the other hand, in the configuration shown in FIG. 17, the reflection of light at the end surface 2a can be reduced even if the end surface 2a of the optical fiber 2 is not similarly polished. Furthermore, the fixing strength of the translucent member 70 can be ensured.
 また、光ファイバ2に第3の部分23を設けることで、微細導波路などの光部材から光ファイバ2に光を入射させる際に、ズームレンズなどに代表されるビーム径変換によって光接続距離が延びてしまうことを抑制し、かつフェルール3に大径部DP2を設けることで入射面をよりレセプタクル内部に配設することができ、光レセプタクル1のプラグ接続面から導波路までの光接続距離をより短くすることができる。例えば、光レセプタクル1の小型化を図ることができる。 Further, by providing the third portion 23 in the optical fiber 2, when light is incident on the optical fiber 2 from an optical member such as a fine waveguide, the optical connection distance is reduced by beam diameter conversion represented by a zoom lens or the like. By suppressing the extension and providing the ferrule 3 with the large-diameter portion DP2, the incident surface can be further disposed inside the receptacle, and the optical connection distance from the plug connection surface of the optical receptacle 1 to the waveguide can be increased. It can be made shorter. For example, the optical receptacle 1 can be miniaturized.
 図18は、本発明の第四の実施形態に係る光レセプタクルの変形例を例示する模式的断面図である。
 図18に表したように、この例では、図17に関して説明した光レセプタクルの透光性部材70が、アイソレータ72に置き換えられた構造を有する。図18に表した光レセプタクルにおいて、アイソレータ72以外の構成は、図17に関して説明した光レセプタクルと実質的に同じである。
FIG. 18 is a schematic cross-sectional view illustrating a modification of the optical receptacle according to the fourth embodiment of the invention.
As shown in FIG. 18, this example has a structure in which the translucent member 70 of the optical receptacle described with reference to FIG. 17 is replaced with an isolator 72. In the optical receptacle shown in FIG. 18, the configuration other than the isolator 72 is substantially the same as the optical receptacle described with reference to FIG.
 アイソレータ72は、第1の偏光子74と、第2の偏光子75と、ファラデー回転子76と、を有する。ファラデー回転子76は、第1の偏光子74と第2の偏光子75との間に設けられている。ファラデー回転子76は、例えばガーネットなどの材料を含む。これにより、発光素子から発射され光ファイバ2に入射する光、または光ファイバ2から出射され受光素子に入射する光を一方向にだけ通過させることができる。 The isolator 72 includes a first polarizer 74, a second polarizer 75, and a Faraday rotator 76. The Faraday rotator 76 is provided between the first polarizer 74 and the second polarizer 75. The Faraday rotator 76 includes a material such as garnet. Thereby, the light emitted from the light emitting element and incident on the optical fiber 2 or the light emitted from the optical fiber 2 and incident on the light receiving element can be transmitted only in one direction.
 このように、アイソレータ72を透光性部材70として用いてもよい。アイソレータ72を用いた場合には、例えば、アイソレータ72の端面72bにおいて光が反射することを抑え、あるいは反射した光が発光素子に戻ることを抑制し、発光素子を安定して動作させることができる。また、アイソレータ72の光ファイバ2と反対側の端面72bには、例えば、AR(anti-reflective)コーティングを施してもよい。 Thus, the isolator 72 may be used as the translucent member 70. When the isolator 72 is used, for example, it is possible to suppress the reflection of light at the end surface 72b of the isolator 72, or to prevent the reflected light from returning to the light emitting element, and to stably operate the light emitting element. . Further, an AR (anti-reflective) coating may be applied to the end surface 72b of the isolator 72 opposite to the optical fiber 2, for example.
 (第五の実施形態)
 図19は、本発明の第五の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図19は、本実施形態に係る光レセプタクルのうち、ファイバスタブ4の部分を拡大して表している。図19に表したように、第一部分(第1の部分21)は、フェルール3の貫通孔3c内に配置された部分(内側部21a)と、貫通孔3c外に配置された部分(突出部21b)と、を有する。また、本実施形態に係る光レセプタクルは、弾性部材19を有する。上記以外については、本実施形態は、第一又は第二の実施形態と同様である。
(Fifth embodiment)
FIG. 19 is a schematic cross-sectional view illustrating a part of an optical receptacle according to the fifth embodiment of the invention.
FIG. 19 shows an enlarged view of the fiber stub 4 in the optical receptacle according to the present embodiment. As shown in FIG. 19, the first part (first part 21) includes a part (inner side part 21 a) arranged in the through hole 3 c of the ferrule 3 and a part (projecting part) arranged outside the through hole 3 c. 21b). Further, the optical receptacle according to the present embodiment has an elastic member 19. Except for the above, this embodiment is the same as the first or second embodiment.
 突出部21bは、フェルール3(端面3bとは反対側の、フェルール3の面)から外側に突出している。すなわち、突出部21bは、中心軸C1と直交する方向においてフェルール3と並ばない。内側部21aは、中心軸C1と直交する方向においてフェルール3と並び、中心軸C1に沿って見たときにフェルール3に囲まれている。 The protruding portion 21b protrudes outward from the ferrule 3 (the surface of the ferrule 3 opposite to the end surface 3b). That is, the protrusion 21b is not aligned with the ferrule 3 in the direction orthogonal to the central axis C1. The inner portion 21a is aligned with the ferrule 3 in a direction orthogonal to the central axis C1, and is surrounded by the ferrule 3 when viewed along the central axis C1.
 また、第二部分の全域および第三部分の全域は、それぞれ貫通孔3c内に配置されている。すなわち、第二部分の全域および第三部分の全域は、中心軸C1と直交する方向においてフェルール3と並び、中心軸C1に沿って見たときにフェルール3に囲まれている。 Further, the entire area of the second portion and the entire area of the third portion are respectively disposed in the through holes 3c. That is, the entire area of the second portion and the entire area of the third portion are aligned with the ferrule 3 in a direction orthogonal to the central axis C1, and are surrounded by the ferrule 3 when viewed along the central axis C1.
 既に述べたとおり、光レセプタクルの端面3bと反対側には、半導体レーザ素子等のモジュールや光学素子が設けられる。図19には、一例として、光学素子の一部分31を示している。 As already described, a module such as a semiconductor laser element and an optical element are provided on the side opposite to the end face 3b of the optical receptacle. FIG. 19 shows a part 31 of the optical element as an example.
 例えば、光学素子の一部分31は、突出部21bに対応した形状(溝など)を有している。光学素子と光レセプタクルとを組み立てる際には、光学素子の一部分31に突出部21bを載せる等し、光学素子の光出射端に、直接、押し当てる。または、レンズ等の素子を用いて光出射端から突出部21に光が入射されるようにする。これにより、組立の際の調芯の手間を軽減することができる。また、調芯の精度を向上させることができ、光学的な接続損失を低減させることができる。 For example, the portion 31 of the optical element has a shape (such as a groove) corresponding to the protruding portion 21b. When assembling the optical element and the optical receptacle, the projecting portion 21b is placed on the part 31 of the optical element and pressed directly against the light emitting end of the optical element. Alternatively, light is made incident on the protruding portion 21 from the light emitting end using an element such as a lens. Thereby, the labor of alignment at the time of an assembly can be reduced. In addition, alignment accuracy can be improved, and optical connection loss can be reduced.
 弾性部材19は、突出部21bの第三部分側の端部に設けられる。弾性部材19は、例えば、突出部21b及びフェルール3に接している。これにより、弾性部材19は、第一部分を保護する。弾性部材19の中心軸C1方向に沿った長さL1は、例えば2mm程度である。このため、突出部21bの中心軸C1方向に沿った長さL2は、2mm以上であることが望ましい。また、第一部分の強度の確保、及び光レセプタクルの小型化の観点から、突出部21bの長さL2は、20mm以下であることが望ましい。但し、光レセプタクルの使用用途によっては、突出部21bの長さL2を100mm以下としてもよい。なお、第二部分及び第三部分は、貫通孔3cの内部に配置されているため、フェルール3によって保護される。 The elastic member 19 is provided at the end of the protruding portion 21b on the third portion side. The elastic member 19 is in contact with the protruding portion 21b and the ferrule 3, for example. Thereby, the elastic member 19 protects the first portion. The length L1 along the direction of the central axis C1 of the elastic member 19 is, for example, about 2 mm. For this reason, the length L2 along the direction of the central axis C1 of the protruding portion 21b is desirably 2 mm or more. Further, from the viewpoint of securing the strength of the first portion and reducing the size of the optical receptacle, the length L2 of the protruding portion 21b is desirably 20 mm or less. However, depending on the intended use of the optical receptacle, the length L2 of the protrusion 21b may be 100 mm or less. In addition, since the 2nd part and the 3rd part are arrange | positioned inside the through-hole 3c, they are protected by the ferrule 3. FIG.
 (第六の実施形態)
 図20は、本発明の第六の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図20は、本実施形態に係る光レセプタクルのうち、ファイバスタブ4の部分を拡大して表している。
 図20に表したように、この例では、フェルール3の貫通孔3cが、第1領域R1と、第2領域R2と、を有する。図20に表した光レセプタクルにおいて、貫通孔3c以外の構成は、図19に関して説明した光レセプタクルと実質的に同じである。
(Sixth embodiment)
FIG. 20 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the sixth embodiment of the invention.
FIG. 20 shows an enlarged view of the fiber stub 4 in the optical receptacle according to the present embodiment.
As shown in FIG. 20, in this example, the through hole 3c of the ferrule 3 has a first region R1 and a second region R2. In the optical receptacle shown in FIG. 20, the configuration other than the through hole 3c is substantially the same as that of the optical receptacle described with reference to FIG.
 第1領域R1は、軸方向に対して直交する直交方向における幅が、光ファイバ2の直交方向の幅に対応する領域である。すなわち、第1領域R1は、貫通孔3cにおいて、光ファイバ2の外径と実質的に同じ径を有する部分である。第1領域R1の径は、軸方向に沿って実質的に一定である。また、第1領域R1は、フェルール3の端面3bと連続している。フェルール3は、第1領域R1において光ファイバ2を保持する。 The first region R1 is a region in which the width in the orthogonal direction orthogonal to the axial direction corresponds to the width of the optical fiber 2 in the orthogonal direction. That is, the first region R1 is a portion having substantially the same diameter as the outer diameter of the optical fiber 2 in the through hole 3c. The diameter of the first region R1 is substantially constant along the axial direction. The first region R1 is continuous with the end surface 3b of the ferrule 3. The ferrule 3 holds the optical fiber 2 in the first region R1.
 第2領域R2は、第1領域R1よりも端面3a側に配置される。第2領域R2は、第1領域R1と連続する。また、この例において、第2領域R2は、フェルール3の端面3aと連続している。第2領域R2は、フェルール3の端面3a側に向かって直交方向の幅が広がる領域である。すなわち、第2領域R2は、貫通孔3cにおいて、端面3a側に向かうに従って径が広がる部分である。 2nd area | region R2 is arrange | positioned rather than 1st area | region R1 at the end surface 3a side. The second region R2 is continuous with the first region R1. Further, in this example, the second region R <b> 2 is continuous with the end face 3 a of the ferrule 3. The second region R2 is a region where the width in the orthogonal direction widens toward the end face 3a side of the ferrule 3. That is, 2nd area | region R2 is a part which a diameter spreads as it goes to the end surface 3a side in the through-hole 3c.
 第2領域R2では、例えば、端面3a側に向かって径が連続的に広がる。第2領域R2における径は、例えば、端面3a側に向かって段階的に広げてもよい。但し、第2領域R2の径を連続的に広げることにより、例えば、光ファイバ2を貫通孔3cに挿入する際に、第2領域R2の傾斜に沿って光ファイバ2の先端を貫通孔3c内に挿入し易くすることができる。例えば、光レセプタクル1の製造性を向上させることができる。第2領域R2には、例えば、弾性部材19が充填される。 In the second region R2, for example, the diameter continuously increases toward the end face 3a. For example, the diameter in the second region R2 may be increased stepwise toward the end face 3a. However, by continuously expanding the diameter of the second region R2, for example, when the optical fiber 2 is inserted into the through hole 3c, the tip of the optical fiber 2 is placed in the through hole 3c along the inclination of the second region R2. Can be easily inserted. For example, the manufacturability of the optical receptacle 1 can be improved. For example, the elastic member 19 is filled in the second region R2.
 第2の部分22の軸方向中央部C2は、第1領域R1と重なるように配設されている。この例においては、第2の部分22の全体が、第1領域R1と重なるように配設されている。例えば、第2の部分22の端面3a側の一部は、第2領域R2に重なってもよい。第2の部分22においては、少なくとも軸方向中央部C2が、第1領域R1と重なっていればよい。 The central portion C2 in the axial direction of the second portion 22 is disposed so as to overlap the first region R1. In this example, the entire second portion 22 is disposed so as to overlap the first region R1. For example, a part of the second portion 22 on the end surface 3a side may overlap the second region R2. In the second portion 22, at least the axial center portion C <b> 2 only needs to overlap the first region R <b> 1.
 このように、フェルール3の貫通孔3cに第2領域R2を設ける。これにより、光ファイバ2を貫通孔3cに挿入し易くし、光レセプタクル1の製造性を向上させることができる。そして、この場合、第2の部分22の軸方向中央部C2を、第1領域R1と重なるように配設する。これにより、第2の部分22に外部応力が加わることを抑制し、第2の部分22においてファイバ破損などが生じることを抑制することができる。そして、第2の部分22の全体を第1領域R1に重ねて配設することにより、第2の部分22に外部応力が加わることをより抑制することができる。 Thus, the second region R2 is provided in the through hole 3c of the ferrule 3. Thereby, the optical fiber 2 can be easily inserted into the through hole 3c, and the manufacturability of the optical receptacle 1 can be improved. In this case, the central portion C2 in the axial direction of the second portion 22 is disposed so as to overlap the first region R1. Thereby, it is possible to suppress external stress from being applied to the second portion 22, and to suppress occurrence of fiber breakage or the like in the second portion 22. And it can suppress more that external stress is added to the 2nd part 22 by arrange | positioning the whole 2nd part 22 so that it may overlap with 1st area | region R1.
 保持具5(ブッシュ5a)は、例えば、フェルール3の外側面において、第1領域R1と対向する部分と、第2領域R2と対向する部分と、を保持する。この際、前述のように、第2の部分22の軸方向中央部C2が、フェルール3と保持具5(ブッシュ5a)とが接する領域A1とは重ならないように配設する。これにより、ファイバ折れなどの発生を抑制することができる。 The holder 5 (bush 5a) holds, for example, a portion facing the first region R1 and a portion facing the second region R2 on the outer surface of the ferrule 3. At this time, as described above, the central portion C2 in the axial direction of the second portion 22 is disposed so as not to overlap the region A1 where the ferrule 3 and the holder 5 (bush 5a) are in contact. Thereby, generation | occurrence | production of fiber breakage etc. can be suppressed.
 図21は、本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。
 図21に表したように、この例では、保持具5(ブッシュ5a)が、フェルール3の外側面のうち、第1領域R1よりも端面3a側の部分のみを保持する。保持具5(ブッシュ5a)は、例えば、フェルール3の外側面のうち、第2領域R2と対向する部分のみを保持する。これにより、フェルール3の保持具5(ブッシュ5a)への圧入にともなう外部応力が、第2の部分22に加わってしまうことをより抑制することができる。
FIG. 21 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
As shown in FIG. 21, in this example, the holder 5 (bush 5 a) holds only the portion of the outer surface of the ferrule 3 that is closer to the end surface 3 a than the first region R <b> 1. For example, the holder 5 (bush 5a) holds only a portion of the outer surface of the ferrule 3 that faces the second region R2. Thereby, it can suppress more that the external stress accompanying the press injection to the holder 5 (bush 5a) of the ferrule 3 is added to the 2nd part 22. FIG.
 この例において、光レセプタクル1は、保護部材10をさらに備えている。保護部材10は、光ファイバ2のフェルール3の外方に延在した部分を被覆する。保護部材10は、可撓性を有し、光ファイバ2とともに任意の方向に撓む。保護部材10には、例えば、ポリエステルエラストマやアクリレート樹脂などの樹脂材料が用いられる。保護部材10の外径は、例えば、0.2mm~1.0mm程度である。 In this example, the optical receptacle 1 further includes a protective member 10. The protective member 10 covers a portion of the optical fiber 2 that extends outward from the ferrule 3. The protection member 10 has flexibility and bends in any direction together with the optical fiber 2. For the protective member 10, for example, a resin material such as polyester elastomer or acrylate resin is used. The outer diameter of the protective member 10 is, for example, about 0.2 mm to 1.0 mm.
 保護部材10の先端10aは、貫通孔3cの第2領域R2内に位置する。保護部材10は、光ファイバ2のフェルール3に保持されていない部分を被覆する。 The tip 10a of the protection member 10 is located in the second region R2 of the through hole 3c. The protective member 10 covers a portion of the optical fiber 2 that is not held by the ferrule 3.
 ブッシュ5aの内周面5nは、第1内周部IS1と、第2内周部IS2と、を有する。第1内周部IS1は、フェルール3の外側面に嵌る。第2内周部IS2は、第1内周部IS1の後方(端面3a側)に位置し、第1内周部IS1よりも内側に突出し、光ファイバ2の一部及び保護部材10の一部を軸周りに取り囲む。 The inner peripheral surface 5n of the bush 5a has a first inner peripheral portion IS1 and a second inner peripheral portion IS2. The first inner peripheral portion IS1 fits on the outer surface of the ferrule 3. The second inner peripheral portion IS2 is located behind (the end surface 3a side) of the first inner peripheral portion IS1, protrudes inward from the first inner peripheral portion IS1, and is part of the optical fiber 2 and part of the protective member 10. Around the axis.
 ブッシュ5aの第1内周部IS1の部分の内径は、フェルール3の外径と実質的に同じである。一方、ブッシュ5aの第2内周部IS2の部分の内径は、フェルール3の外径よりも小さい。従って、第2内周部IS2は、フェルール3の端面3aよりも後方に位置する。 The inner diameter of the first inner peripheral portion IS1 of the bush 5a is substantially the same as the outer diameter of the ferrule 3. On the other hand, the inner diameter of the second inner peripheral portion IS2 of the bush 5a is smaller than the outer diameter of the ferrule 3. Accordingly, the second inner peripheral portion IS2 is located behind the end surface 3a of the ferrule 3.
 第2内周部IS2の部分の内径は、例えば、保護部材10の外径よりも大きく、かつフェルール3の外径よりも小さい値に設定される。第2内周部IS2の部分の内径は、例えば、第2領域R2において広がった貫通孔3cの端面3a側の開口径よりも小さい。 The inner diameter of the second inner peripheral portion IS2 is set to a value larger than the outer diameter of the protective member 10 and smaller than the outer diameter of the ferrule 3, for example. The inner diameter of the portion of the second inner peripheral portion IS2 is, for example, smaller than the opening diameter on the end surface 3a side of the through hole 3c that expands in the second region R2.
 フェルール3の端面3aと第2内周部IS2との間には、軸方向において隙間SPが設けられている。弾性部材9は、この隙間SPにも充填されている。隙間SPの軸方向の距離は、例えば、光ファイバ2の外径よりも長い。隙間SPの軸方向の距離は、例えば、0.125mm以上0.2mm以下程度である。隙間SPの軸方向の距離は、換言すれば、フェルール3の端面3aと第2内周部IS2との間の軸方向の距離である。また、光ファイバ2の外径は、換言すれば、光ファイバ2の軸方向と直交する方向の長さである。なお、光学性能には影響しないため、第1領域R1を除く、この弾性部材9の内部には任意の大きさの気泡が含まれていてもよい。 Between the end surface 3a of the ferrule 3 and the second inner peripheral portion IS2, a gap SP is provided in the axial direction. The elastic member 9 is also filled in the gap SP. The distance in the axial direction of the gap SP is, for example, longer than the outer diameter of the optical fiber 2. The distance in the axial direction of the gap SP is, for example, about 0.125 mm to 0.2 mm. In other words, the distance in the axial direction of the gap SP is the distance in the axial direction between the end surface 3a of the ferrule 3 and the second inner peripheral portion IS2. In other words, the outer diameter of the optical fiber 2 is the length in the direction orthogonal to the axial direction of the optical fiber 2. Since the optical performance is not affected, the elastic member 9 excluding the first region R1 may contain bubbles of any size.
 ブッシュ5aは、第1後端面BS1と、第2後端面BS2と、を有する。第2後端面BS2は、第1後端面BS1よりも外周側において第1後端面BS1よりも先端側(端面3b側)に凹んでいる。第1後端面BS1及び第2後端面BS2は、例えば、軸方向に対して直交する平面である。前述のように、ブッシュ5aは、内周面5nの後端付近を内側に突出させている。これにより、第1後端面BS1及び第2後端面BS2の面積を大きくすることができる。 The bush 5a has a first rear end face BS1 and a second rear end face BS2. The second rear end face BS2 is recessed more to the front end side (end face 3b side) than the first rear end face BS1 on the outer peripheral side than the first rear end face BS1. The first rear end surface BS1 and the second rear end surface BS2 are, for example, planes orthogonal to the axial direction. As described above, the bush 5a protrudes inward in the vicinity of the rear end of the inner peripheral surface 5n. Thereby, the area of 1st rear end surface BS1 and 2nd rear end surface BS2 can be enlarged.
 ブッシュ5aは、第1後端面BS1と第2内周部IS2(内周面5n)との間に面取り部5cを有する。換言すれば、ブッシュ5aの後端側の開口部は、後端側に向かうに従って径が広がる。面取り部5cは、第1後端面BS1と第2内周部IS2との角部を直線状に研削した所謂C面でもよいし、第1後端面BS1と第2内周部IS2との角部を丸めた所謂R面でもよい。 The bush 5a has a chamfered portion 5c between the first rear end surface BS1 and the second inner peripheral portion IS2 (inner peripheral surface 5n). In other words, the diameter of the opening on the rear end side of the bush 5a increases toward the rear end side. The chamfered portion 5c may be a so-called C surface obtained by linearly grinding a corner portion between the first rear end surface BS1 and the second inner peripheral portion IS2, or a corner portion between the first rear end surface BS1 and the second inner peripheral portion IS2. A so-called R-plane obtained by rounding off may be used.
 弾性部材9は、ブッシュ5aの後端側においてブッシュ5aの外方に突出し、ブッシュ5aの後端と保護部材10の外側面とのコーナー部分を覆う突出部9pを有する。突出部9pの外表面は、例えば、コーナー部分側に凹み、ブッシュ5aの後端と保護部材10の外側面とをなだらかに接続する凹曲面状である。 The elastic member 9 has a protruding portion 9p that protrudes outward of the bush 5a on the rear end side of the bush 5a and covers a corner portion between the rear end of the bush 5a and the outer surface of the protection member 10. The outer surface of the protruding portion 9p is, for example, a concave curved surface that is recessed toward the corner portion side and gently connects the rear end of the bush 5a and the outer surface of the protection member 10.
 フェルール3の外側面は、ブッシュ5aの内周面5nに当接する第1当接部CP1を有する。ブッシュ5aの外側面は、ハウジング5bの内周面に当接する第2当接部CP2を有する。第2当接部CP2の軸方向の中間点m2は、第1当接部CP1の軸方向の中間点m1よりも後方に位置する。 The outer surface of the ferrule 3 has a first contact portion CP1 that contacts the inner peripheral surface 5n of the bush 5a. The outer surface of the bush 5a has a second contact portion CP2 that contacts the inner peripheral surface of the housing 5b. The intermediate point m2 in the axial direction of the second contact part CP2 is located behind the intermediate point m1 in the axial direction of the first contact part CP1.
 この例では、保護部材10の先端10aが、貫通孔3cの第2領域R2内に位置する。これにより、光ファイバ2の保護部材10から突き出た部分の長さを極力短くすることができる。例えば、光ファイバ2の撓みを抑制し、光ファイバ2をフェルール3の貫通孔3cに挿入し易くすることができる。例えば、光レセプタクル1の製造性を向上させることができる。 In this example, the tip 10a of the protection member 10 is located in the second region R2 of the through hole 3c. Thereby, the length of the part which protruded from the protection member 10 of the optical fiber 2 can be shortened as much as possible. For example, the bending of the optical fiber 2 can be suppressed and the optical fiber 2 can be easily inserted into the through hole 3 c of the ferrule 3. For example, the manufacturability of the optical receptacle 1 can be improved.
 また、この例では、光ファイバ2及び保護部材10が、ブッシュ5a(保持具5)の外方にさらに延在し、弾性部材9によってブッシュ5aに接着固定される。これにより、光ファイバ2の保護部材10から突き出た部分が、外力によって変形したり、傾いたりすることを抑制することができる。また、外力の印加にともなって光ファイバ2の先端がフェルール3の先端から突き出たり、反対に引っ込んだりすることを抑制することができる。 In this example, the optical fiber 2 and the protective member 10 further extend outward from the bush 5a (holding tool 5), and are bonded and fixed to the bush 5a by the elastic member 9. Thereby, it can suppress that the part which protruded from the protection member 10 of the optical fiber 2 deform | transforms or inclines by external force. Moreover, it can suppress that the front-end | tip of the optical fiber 2 protrudes from the front-end | tip of the ferrule 3 with the application of external force, or retracts on the contrary.
 また、この例では、弾性部材9が、フェルール3の端面3aと第2内周部IS2との間の隙間SPにも充填されている。これにより、外力にともなう光ファイバ2の先端部分の変形や位置ずれをより抑制することができる。なお、光学性能には影響しないため、第1領域R1を除く、この弾性部材9の内部には任意の大きさの気泡が含まれていてもよい。 In this example, the elastic member 9 is also filled in the gap SP between the end face 3a of the ferrule 3 and the second inner peripheral portion IS2. Thereby, the deformation | transformation and position shift of the front-end | tip part of the optical fiber 2 accompanying external force can be suppressed more. Since the optical performance is not affected, the elastic member 9 excluding the first region R1 may contain bubbles of any size.
 また、この例では、ブッシュ5aが、第1後端面BS1と第2後端面BS2とを有する。これにより、例えば、第1後端面BS1を弾性部材9となる接着剤の受け面として用いることにより、接着剤が第2後端面BS2に流れ込んでしまうことを抑制することができる。そして、ブッシュ5aをハウジング5bに圧入する際に、第2後端面BS2を位置決め面として用い、第2後端面BS2を押圧してハウジング5bへの圧入を行うことにより、ブッシュ5aとハウジング5bとに位置ずれが生じてしまうことを抑制することができる。 In this example, the bush 5a has a first rear end face BS1 and a second rear end face BS2. Thereby, for example, by using the first rear end surface BS1 as a receiving surface of the adhesive serving as the elastic member 9, it is possible to suppress the adhesive from flowing into the second rear end surface BS2. When the bush 5a is press-fitted into the housing 5b, the second rear end surface BS2 is used as a positioning surface, and the second rear end surface BS2 is pressed into the housing 5b so that the bush 5a and the housing 5b are pressed. It can suppress that position shift arises.
 例えば、接着剤の塗布とブッシュ5aの位置決めとを同じ平面で行おうとした場合には、接着剤が位置決め面に流れ込み、硬化した接着剤の分だけブッシュ5aがハウジング5bに深く圧入されてしまう可能性が有る。第1後端面BS1と第2後端面BS2とを設けることにより、こうした位置ずれを抑制し、ブッシュ5aとハウジング5bとの位置精度を高めることができる。 For example, when the application of the adhesive and the positioning of the bush 5a are performed on the same plane, the adhesive flows into the positioning surface, and the bush 5a may be deeply pressed into the housing 5b by the amount of the hardened adhesive. There is sex. By providing the first rear end face BS1 and the second rear end face BS2, such positional deviation can be suppressed and the positional accuracy between the bush 5a and the housing 5b can be increased.
 また、隙間SPを設けることにより、位置決め面である第2後端面BS2とPC面であるフェルール3の端面3bとの間の距離を、より正確に決めることができる。例えば、隙間SPが無く、フェルール3の端面3aと第2内周部IS2とが接触している場合、第2後端面BS2からフェルール3の端面3bまでの長さは、フェルール3の全長寸法やブッシュ5aの厚み寸法のできばえ(誤差やバラツキなど)によって変化してしまう。これに対して、この例のように隙間SPを設けることにより、部品のできばえに依存することなく、第2後端面BS2からフェルール3の端面3bまでの長さを、より正確に決めることができる。そして、これにより、光レセプタクル1の信頼性や生産性の向上を図ることができる。 Also, by providing the gap SP, the distance between the second rear end surface BS2 that is the positioning surface and the end surface 3b of the ferrule 3 that is the PC surface can be determined more accurately. For example, when there is no gap SP and the end surface 3a of the ferrule 3 and the second inner peripheral portion IS2 are in contact, the length from the second rear end surface BS2 to the end surface 3b of the ferrule 3 is The thickness of the bush 5a changes depending on the quality (error, variation, etc.). On the other hand, by providing the gap SP as in this example, the length from the second rear end face BS2 to the end face 3b of the ferrule 3 can be determined more accurately without depending on the quality of the parts. Can do. As a result, the reliability and productivity of the optical receptacle 1 can be improved.
 また、隙間SPが設けられていない場合には、フェルール3の端面3aや第2内周部IS2の直角度のできばえなどにより、フェルール3が斜めに固定されてしまったり、フェルール3が欠けてしまったり、ブッシュ5aが変形したりしてしまうことが懸念される。この例では、隙間SPを設けることにより、部品のできばえによらず、フェルール3の斜め圧入や、部品の破損及び変形などを抑制することができる。 Further, when the gap SP is not provided, the ferrule 3 may be fixed obliquely due to the right angle of the end surface 3a of the ferrule 3 or the second inner peripheral portion IS2, or the ferrule 3 may be missing. There is a concern that the bush 5a may be deformed. In this example, by providing the gap SP, it is possible to suppress the oblique press-fitting of the ferrule 3 and the breakage and deformation of the component regardless of the quality of the component.
 フェルール3の全長寸法の誤差は、例えば、±0.05mm(レンジ0.1mm)程度である。ブッシュ5aの厚み寸法の誤差は、例えば、±0.05mm(レンジ0.1mm)程度である。この場合、隙間SPの軸方向の距離は、0.2mm程度であることが好ましい。このように、隙間SPの軸方向の距離は、光ファイバ2の外径よりも長くする。隙間SPの軸方向の距離は、0.125mm以上0.2mm以下程度に設定する。これにより、光レセプタクル1の信頼性や生産性をより向上させることができる。 The error in the overall length of the ferrule 3 is, for example, about ± 0.05 mm (range 0.1 mm). The error in the thickness dimension of the bush 5a is, for example, about ± 0.05 mm (range 0.1 mm). In this case, the axial distance of the gap SP is preferably about 0.2 mm. Thus, the axial distance of the gap SP is made longer than the outer diameter of the optical fiber 2. The distance in the axial direction of the gap SP is set to about 0.125 mm or more and 0.2 mm or less. Thereby, the reliability and productivity of the optical receptacle 1 can be further improved.
 また、ブッシュ5aをハウジング5bに保持させるのに必要となる長さ(圧入に必要な長さ)よりも第1後端面BS1の部分の長さを長くすることにより、保護部材10をより長く接着固定することができる。これにより、光ファイバ2の先端部分の変形や位置ずれをより抑制することができる。 Further, the protective member 10 is bonded longer by making the length of the portion of the first rear end face BS1 longer than the length necessary for holding the bush 5a in the housing 5b (length required for press-fitting). Can be fixed. Thereby, the deformation | transformation and position shift of the front-end | tip part of the optical fiber 2 can be suppressed more.
 また、この例では、ブッシュ5aの後端面と内周面との間に面取り部5cを設けることにより、光ファイバ2をブッシュ5aに挿入し易くし、製造性を向上させることができる。また、第1後端面BS1に接着剤を塗布した際に、面取り部5cを接着剤溜まりとして用いることができ、接着剤が第2後端面BS2(位置決め面)に流れ込んでしまうことをより抑制することができる。 Further, in this example, by providing the chamfered portion 5c between the rear end surface and the inner peripheral surface of the bush 5a, the optical fiber 2 can be easily inserted into the bush 5a, and the productivity can be improved. Further, when the adhesive is applied to the first rear end surface BS1, the chamfered portion 5c can be used as an adhesive reservoir, and the adhesive is more prevented from flowing into the second rear end surface BS2 (positioning surface). be able to.
 また、この例では、弾性部材9が突出部9pを有する。これにより、外力によって荷重が加わった際に、ブッシュ5aの後端と保護部材10の外側面とのコーナー部分において光ファイバ2が局所的に折れ曲がってしまうことを抑制することができる。例えば、光ファイバ2の曲げ基点を第1領域R1と第2領域R2との境界部分から遠ざけることができる。 Further, in this example, the elastic member 9 has a protruding portion 9p. Thereby, when a load is applied by an external force, it is possible to suppress the optical fiber 2 from being locally bent at a corner portion between the rear end of the bush 5a and the outer surface of the protection member 10. For example, the bending base point of the optical fiber 2 can be moved away from the boundary portion between the first region R1 and the second region R2.
 また、この例では、ハウジング5bが、圧入によってブッシュ5aを保持する。これにより、保持力を向上させ、簡単な構成でブッシュ5aを適切に保持することができる。 In this example, the housing 5b holds the bush 5a by press-fitting. Thereby, holding force can be improved and the bush 5a can be appropriately held with a simple configuration.
 また、この例では、ブッシュ5aの第2当接部CP2の中間点m2が、フェルール3の第1当接部CP1の中間点m1よりも後方に位置する。これにより、例えば、ブッシュ5aをハウジング5bに圧入させた場合などにおいても、圧入よる締め付け力を第2当接部CP2によって広域に分散させ、第1領域R1と第2領域R2との境界部分において、光ファイバ2に外力が集中してしまうことをより抑制することができる。 Further, in this example, the intermediate point m2 of the second contact part CP2 of the bush 5a is located behind the intermediate point m1 of the first contact part CP1 of the ferrule 3. Thereby, for example, even when the bush 5a is press-fitted into the housing 5b, the tightening force due to the press-fitting is dispersed over a wide area by the second contact portion CP2, and at the boundary portion between the first region R1 and the second region R2. Further, the concentration of external force on the optical fiber 2 can be further suppressed.
 図22は、本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。
 図22に表したように、この例では、ブッシュ5aが、ファイバスタブ4の外側面のみを保持する。ブッシュ5aの内径は、実質的に一定である。ブッシュ5aの後端は、端面3aよりも後方に突出しない。この際、ブッシュ5aの少なくとも一部は、フェルール3の外側面のうち、第2領域R2と対向する部分を保持する。ファイバスタブ4は、ブッシュ5aの内側に位置していてもよい。また、この例では、フェルール3の端面3aと保護部材10の外側面とのコーナー部分に、弾性部材9の突出部9pが設けられる。
FIG. 22 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
As shown in FIG. 22, in this example, the bush 5 a holds only the outer surface of the fiber stub 4. The inner diameter of the bush 5a is substantially constant. The rear end of the bush 5a does not protrude rearward from the end surface 3a. At this time, at least a part of the bush 5a holds a portion of the outer surface of the ferrule 3 that faces the second region R2. The fiber stub 4 may be located inside the bush 5a. In this example, the protruding portion 9 p of the elastic member 9 is provided at the corner portion between the end surface 3 a of the ferrule 3 and the outer surface of the protective member 10.
 このように、ブッシュ5aを単純な形状とすることで、ブッシュ5aの部材コストを抑えることができる。また、光ファイバ2が曲げられた際に、光ファイバ2がブッシュ5aに接触してしまうことを抑制することもできる。 Thus, by making the bush 5a a simple shape, the member cost of the bush 5a can be suppressed. Moreover, when the optical fiber 2 is bent, it can also suppress that the optical fiber 2 contacts the bush 5a.
 図23は、本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。
 図23に表したように、この例では、ブッシュ5aが、フェルール3の外側面のうち、第1領域R1と対向する部分のみを保持する。ブッシュ5aは、フェルール3の第2領域R2よりも前方の部分を保持する。これにより、上記と同様に、ブッシュ5aの部材コストを抑え、光ファイバ2がブッシュ5aに接触してしまうことを抑制できる。さらには、第1領域R1と第2領域R2との境界部分にかかる応力を緩和することができる。
FIG. 23 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
As illustrated in FIG. 23, in this example, the bush 5 a holds only a portion of the outer surface of the ferrule 3 that faces the first region R <b> 1. The bush 5a holds a portion in front of the second region R2 of the ferrule 3. Thereby, like the above, the member cost of the bush 5a can be suppressed, and the optical fiber 2 can be prevented from coming into contact with the bush 5a. Furthermore, the stress applied to the boundary portion between the first region R1 and the second region R2 can be relaxed.
 図24は、本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。
 図24に表したように、この例では、光レセプタクル1が、チューブ12をさらに備えている。チューブ12は、保護部材10の外周を覆う筒状である。チューブ12は、可撓性を有する。チューブ12の内径は、保護部材10の外径よりも僅かに大きく、チューブ12と保護部材10との間には、空間が設けられている。チューブ12の先端は、貫通孔3cの第2領域R2内に位置する。チューブ12の先端の位置は、これに限ることなく、任意の位置でよい。
FIG. 24 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
As shown in FIG. 24, in this example, the optical receptacle 1 further includes a tube 12. The tube 12 has a cylindrical shape that covers the outer periphery of the protection member 10. The tube 12 has flexibility. The inner diameter of the tube 12 is slightly larger than the outer diameter of the protective member 10, and a space is provided between the tube 12 and the protective member 10. The tip of the tube 12 is located in the second region R2 of the through hole 3c. The position of the tip of the tube 12 is not limited to this, and may be an arbitrary position.
 保護部材10が保持具5に直接接触した場合、保護部材10に亀裂が生じる可能性がある。また、保持具5の後端に保護部材10と弾性部材9との界面が存在した場合、その界面には曲げ応力が集中し、保護部材10に亀裂が生じる可能性がある。保護部材10に発生した亀裂は、曲げを繰り返すことで保護部材10の内部に進展し、光ファイバ2のクラッド7まで到達してしまう恐れがある。 When the protective member 10 is in direct contact with the holder 5, the protective member 10 may be cracked. Moreover, when the interface between the protective member 10 and the elastic member 9 exists at the rear end of the holder 5, bending stress concentrates on the interface, and the protective member 10 may be cracked. The crack generated in the protective member 10 may propagate into the protective member 10 due to repeated bending and may reach the cladding 7 of the optical fiber 2.
 保護部材10の外側にチューブ12を設けることにより、保護部材10が保持具5に直接接触してしまうことを抑制することができる。また、曲げに対しても、応力集中は、チューブ12と弾性部材9との界面に発生するが、チューブ12と保護部材10との間には、空間が存在するため、亀裂が進展するのを抑制することができる。また、チューブ12は、光ファイバ2とは独立して存在しているため、光ファイバ2の光学特性にともなう材料の選択などの制限がなく、保護部材10よりも強度の強い材料を選択することで、保護部材10よりも強い曲げ耐性を実現することができる。 By providing the tube 12 outside the protective member 10, it is possible to suppress the protective member 10 from coming into direct contact with the holder 5. In addition, stress concentration occurs at the interface between the tube 12 and the elastic member 9 even when bending is performed. However, since there is a space between the tube 12 and the protective member 10, cracks may develop. Can be suppressed. Further, since the tube 12 exists independently of the optical fiber 2, there is no restriction on the selection of the material according to the optical characteristics of the optical fiber 2, and a material having a stronger strength than the protective member 10 should be selected. Thus, bending resistance stronger than that of the protective member 10 can be realized.
 図25は、本発明の第六の実施形態に係る光レセプタクルの変形例を表す模式的断面図である。
 図25に表したように、この例では、光レセプタクル1が、弾性部材9(第1弾性部材)に加えて、弾性部材14(第2弾性部材)をさらに備えている。
FIG. 25 is a schematic cross-sectional view showing a modification of the optical receptacle according to the sixth embodiment of the present invention.
As shown in FIG. 25, in this example, the optical receptacle 1 further includes an elastic member 14 (second elastic member) in addition to the elastic member 9 (first elastic member).
 弾性部材14は、保持具5(ブッシュ5a)の後端と保護部材10の外側面とのコーナー部分を覆う。弾性部材9が突出部9pを有する場合、弾性部材14は、突出部9pを覆う。弾性部材14は、例えば、突出部9pの外表面の全体を覆う。換言すれば、弾性部材14は、弾性部材9と保護部材10との境界部分を覆う。 The elastic member 14 covers a corner portion between the rear end of the holder 5 (bush 5a) and the outer surface of the protection member 10. When the elastic member 9 has the protruding portion 9p, the elastic member 14 covers the protruding portion 9p. The elastic member 14 covers, for example, the entire outer surface of the protruding portion 9p. In other words, the elastic member 14 covers the boundary portion between the elastic member 9 and the protection member 10.
 弾性部材14の硬度は、弾性部材9の硬度よりも低い。換言すれば、弾性部材14の弾性率は、弾性部材9の弾性率よりも小さい。弾性部材9の硬度は、保護部材10の硬度よりも高い。弾性部材14の硬度は、例えば、保護部材10の硬度と同程度である。弾性部材14の硬度は、例えば、保護部材10の硬度の0.8倍以上1.2倍以下である。保護部材10の硬度は、例えば、ショアD20から30程度である。この場合、弾性部材14の硬度も、同様に、ショアD20から30程度である。 The hardness of the elastic member 14 is lower than the hardness of the elastic member 9. In other words, the elastic modulus of the elastic member 14 is smaller than the elastic modulus of the elastic member 9. The hardness of the elastic member 9 is higher than the hardness of the protective member 10. The hardness of the elastic member 14 is, for example, about the same as the hardness of the protection member 10. The hardness of the elastic member 14 is, for example, not less than 0.8 times and not more than 1.2 times the hardness of the protective member 10. The hardness of the protective member 10 is, for example, about Shore D20 to 30. In this case, the hardness of the elastic member 14 is about shore D20 to 30 as well.
 保護部材10には、前述のように、ポリエステルエラストマやアクリレート樹脂などの樹脂材料が用いられる。弾性部材9には、前述のように、エポキシ樹脂などの樹脂材料が用いられる。弾性部材14には、例えば、ポリエステル樹脂、アクリル樹脂、シリコーン樹脂などの樹脂材料が用いられる。弾性部材9及び弾性部材14には、例えば、樹脂系接着剤が用いられる。この場合、弾性部材9の硬度及び弾性部材14の硬度は、接着剤の硬化後(完全硬化後)の硬度である。 As described above, a resin material such as polyester elastomer or acrylate resin is used for the protective member 10. As described above, a resin material such as an epoxy resin is used for the elastic member 9. For the elastic member 14, for example, a resin material such as polyester resin, acrylic resin, or silicone resin is used. For example, a resin adhesive is used for the elastic member 9 and the elastic member 14. In this case, the hardness of the elastic member 9 and the hardness of the elastic member 14 are the hardnesses after the adhesive is cured (after complete curing).
 弾性部材9の材料は、光学的にガラスに近い屈折率を持ち、低アウトガスの材料が好ましい。また、弾性部材9には、プラグフェルールとの光学的な接続の際に光ファイバ2が動かいなどの一定の接着強度が求められる。一方、弾性部材14の材料は、応力を緩和するために弾性率の小さい材料を用いることが好ましい。なお、弾性部材14は、保持具5(ブッシュ5a)の端面に限ることなく、保持具5の内側に亘って配置されていてもよい。 The material of the elastic member 9 is preferably a low outgas material having a refractive index optically close to that of glass. In addition, the elastic member 9 is required to have a certain adhesive strength such that the optical fiber 2 moves during optical connection with the plug ferrule. On the other hand, the material of the elastic member 14 is preferably a material having a low elastic modulus in order to relieve stress. In addition, the elastic member 14 may be arrange | positioned over the inner side of the holder 5, without restricting to the end surface of the holder 5 (bush 5a).
 上記のように、弾性部材9、14を設けることにより、光ファイバ2とフェルール3は、光学的な性質を、保持具5の端部においては、光ファイバ2に曲げが作用した時の応力緩和を実現することができ、2つの特性を両立することができる。 As described above, by providing the elastic members 9 and 14, the optical fiber 2 and the ferrule 3 have optical properties, and at the end of the holder 5, stress relaxation when bending acts on the optical fiber 2. It is possible to realize the two characteristics.
 (第七の実施形態)
 図26(a)及び図26(b)は、本発明の第七の実施形態に係る光レセプタクルを例示する模式的断面図である。
 図26(a)及び図26(b)に表したように、この例では、固定部材80をさらに備える。図26(a)及び図26(b)に表した光レセプタクルにおいて、固定部材80以外の構成は、図19に関して説明した光レセプタクルと実質的に同じである。
(Seventh embodiment)
FIG. 26A and FIG. 26B are schematic cross-sectional views illustrating an optical receptacle according to the seventh embodiment of the invention.
As shown in FIG. 26A and FIG. 26B, in this example, a fixing member 80 is further provided. In the optical receptacle shown in FIGS. 26A and 26B, the configuration other than the fixing member 80 is substantially the same as the optical receptacle described with reference to FIG.
 固定部材80は、第1の部分21のフェルール3から突出した部分の端面2a側に設けられ、光ファイバ2を固定する。固定部材80は、フェルール3とは離隔して配設されている。換言すれば、固定部材80は、フェルール3の端面3aとは離隔して配設される。 The fixing member 80 is provided on the end surface 2a side of the portion protruding from the ferrule 3 of the first portion 21, and fixes the optical fiber 2. The fixing member 80 is disposed away from the ferrule 3. In other words, the fixing member 80 is disposed away from the end surface 3 a of the ferrule 3.
 固定部材80は、土台部81と、蓋部82と、弾性部材83と、を有する。土台部81は、略矩形のブロック状である。土台部81の上面には、溝81aが設けられている。溝81aは、光ファイバ2の形状に応じて形成される。土台部81は、光ファイバ2の一端を溝81a内に収容する。これにより、土台部81は、光ファイバ2の一端の下方を支える。溝81aの形状は、例えば、V字状である。 The fixing member 80 includes a base portion 81, a lid portion 82, and an elastic member 83. The base part 81 has a substantially rectangular block shape. A groove 81 a is provided on the upper surface of the base portion 81. The groove 81 a is formed according to the shape of the optical fiber 2. The base part 81 accommodates one end of the optical fiber 2 in the groove 81a. Thereby, the base part 81 supports the lower part of the end of the optical fiber 2. The shape of the groove 81a is, for example, a V shape.
 蓋部82は、土台部81の上に設けられ、土台部81の溝81aを塞ぐ。蓋部82は、溝81a内に収容された光ファイバ2の一端の上方を覆う。このように、固定部材80は、土台部81と蓋部82とによって、光ファイバ2の一端を軸周りに覆う。固定部材80の土台部81及び蓋部82には、例えば、石英ガラスなどの光学ガラスが用いられる。土台部81及び蓋部82の材料は、例えば、セラミックスなどの脆性材料やステンレスなどの金属材料でもよい。 The lid portion 82 is provided on the base portion 81 and closes the groove 81 a of the base portion 81. The lid 82 covers the upper part of one end of the optical fiber 2 accommodated in the groove 81a. Thus, the fixing member 80 covers one end of the optical fiber 2 around the axis by the base portion 81 and the lid portion 82. For the base portion 81 and the lid portion 82 of the fixing member 80, for example, optical glass such as quartz glass is used. The material of the base portion 81 and the lid portion 82 may be, for example, a brittle material such as ceramics or a metal material such as stainless steel.
 弾性部材83は、土台部81と蓋部82との間に設けられる。また、弾性部材83は、溝81a内に充填される。弾性部材83は、蓋部82及び光ファイバ2の一端を土台部81に接着固定する。これにより、光ファイバ2の一端が、固定部材80に固定される。弾性部材83には、例えば、エポキシ系樹脂、アクリル系樹脂、シリコン系樹脂等が用いられる。 The elastic member 83 is provided between the base portion 81 and the lid portion 82. The elastic member 83 is filled in the groove 81a. The elastic member 83 adheres and fixes the lid portion 82 and one end of the optical fiber 2 to the base portion 81. Thereby, one end of the optical fiber 2 is fixed to the fixing member 80. For the elastic member 83, for example, an epoxy resin, an acrylic resin, a silicon resin, or the like is used.
 光ファイバ2には、被覆86が設けられている。被覆86は、光ファイバ2のフェルール3と固定部材80との間の部分を覆う。換言すれば、被覆86は、光ファイバ2のうちのフェルール3及び固定部材80に覆われていない部分を覆う。これにより、被覆86は、光ファイバ2のフェルール3及び固定部材80から露出した部分を保護する。被覆86には、例えば、樹脂材料が用いられる。 The optical fiber 2 is provided with a coating 86. The coating 86 covers a portion between the ferrule 3 and the fixing member 80 of the optical fiber 2. In other words, the coating 86 covers a portion of the optical fiber 2 that is not covered with the ferrule 3 and the fixing member 80. Thereby, the coating 86 protects the portion of the optical fiber 2 exposed from the ferrule 3 and the fixing member 80. For the covering 86, for example, a resin material is used.
 光学素子と接続される光ファイバ2の端面2aは、例えば、土台部81の端面及び蓋部82の端面と略面一である。光ファイバ2の端面2aは、例えば、土台部81の端面及び蓋部82の端面より突出していてもよい。 The end surface 2a of the optical fiber 2 connected to the optical element is substantially flush with the end surface of the base portion 81 and the end surface of the lid portion 82, for example. The end surface 2a of the optical fiber 2 may protrude from the end surface of the base portion 81 and the end surface of the lid portion 82, for example.
 光ファイバ2と光学素子とをつき合わせて光を入出射させる場合、または光ファイバ2の端面2aにレンズなどを介して光を集光する場合、コア径の小さい光ファイバ2と径の小さいレーザ光とを精度よく位置合わせしなければならない。このため、例えば、10μmのレーザ光の調芯に比べて求められる調芯精度は厳しくなる。 When the optical fiber 2 and the optical element are combined to cause light to enter and exit, or when the light is condensed on the end surface 2a of the optical fiber 2 via a lens or the like, the optical fiber 2 having a small core diameter and a laser having a small diameter The light must be accurately aligned. For this reason, for example, the alignment accuracy required compared to the alignment of 10 μm laser light becomes strict.
 図27(a)~図27(e)は、本発明の第七の実施形態に係る光レセプタクルの解析結果の一例を表す説明図である。
 図27(a)に表したように、解析では、光が集光された中心部とコアの中心部の軸ずれの大きさ(Axial misalignment)と、光の集光地点の軸方向の位置(Defocus)と、光ファイバ2のモードフィールド径(MFD)と、を変化させた時の、光の損失を求めている。
FIGS. 27A to 27E are explanatory views showing an example of the analysis result of the optical receptacle according to the seventh embodiment of the present invention.
As shown in FIG. 27A, in the analysis, the axial misalignment between the central portion where the light is collected and the central portion of the core (Axial misalignment) and the axial position of the light condensing point ( The optical loss is obtained when the defocus) and the mode field diameter (MFD) of the optical fiber 2 are changed.
 図27(b)~図27(e)は、解析結果の一例を表すグラフ図である。
 図27(b)~図27(e)に表したように、軸ずれの大きさが大きくなる程、光の損失は増加する。一方、デフォーカス量を大きくすると、軸ずれにともなう光の損失を減少させることができる。そして、軸ずれにともなう光の損失は、光ファイバ2のモードフィールド径が小さくなる程、増加する傾向にある。
FIGS. 27B to 27E are graphs showing examples of analysis results.
As shown in FIGS. 27B to 27E, the loss of light increases as the magnitude of the axis deviation increases. On the other hand, when the defocus amount is increased, it is possible to reduce the loss of light due to the axis deviation. Then, the loss of light due to the axis deviation tends to increase as the mode field diameter of the optical fiber 2 decreases.
 このように、光ファイバ2のコア径が小さくなる程、光学素子との高い調芯精度が要求される。これに対して、本実施形態に係る光レセプタクルでは、固定部材80を設けることにより、コア径の小さい光ファイバ2の一部をフェルール3から突出させた場合にも、光ファイバ2の位置を高い精度で管理することができる。例えば、光学素子との位置合わせを短時間で精度良く行うことができる。例えば、高い精度で調芯状態を維持することができる。 Thus, as the core diameter of the optical fiber 2 becomes smaller, higher alignment accuracy with the optical element is required. On the other hand, in the optical receptacle according to the present embodiment, by providing the fixing member 80, even when a part of the optical fiber 2 having a small core diameter is protruded from the ferrule 3, the position of the optical fiber 2 is high. It can be managed with accuracy. For example, the alignment with the optical element can be accurately performed in a short time. For example, the alignment state can be maintained with high accuracy.
 プラグフェルールと光学的接続される一端面(端面3b)と反対側の他端面(端面3a)において、フェルール3の外径の中心を基準とした時のコア8の中心の偏芯量EAは、7μm以下である。より好ましくは、偏芯量EAは、5.6μm以下である。 On the other end face (end face 3a) opposite to the one end face (end face 3b) optically connected to the plug ferrule, the eccentric amount EA of the center of the core 8 with respect to the center of the outer diameter of the ferrule 3 is 7 μm or less. More preferably, the eccentricity EA is 5.6 μm or less.
 半導体レーザ素子等の光学素子から照射された光は、光学素子の中心とコア8の中心とが一致した時に、最も効率良くコア8内に入射する。調芯作業中において、初期位置(光レセプタクルと光学素子とを機械的に設置しただけの状態)の段階で、光学素子から照射された光が僅かでもコア8に入射していれば、入射した光の変動のみをモニタすることで、容易に光学素子の中心をコア8の中心と合わせることができる。 The light emitted from an optical element such as a semiconductor laser element enters the core 8 most efficiently when the center of the optical element coincides with the center of the core 8. During alignment, if the light emitted from the optical element is incident on the core 8 at the initial position (the state in which the optical receptacle and the optical element are merely mechanically installed) By monitoring only light fluctuations, the center of the optical element can be easily aligned with the center of the core 8.
 光学素子から照射される光を1mWとした時、光学素子が照射していない状態で光レセプタクルのコア8に入射する光を測定した場合、例えば、1μW以下でばらついた状態の入射光量が測定される。これは、日光や照明光などの測定環境中の光が入射するためであると考えられる。1mWを基準として1μWを損失に置き換えると、-30dBになる。 When the light radiated from the optical element is 1 mW, when the light incident on the core 8 of the optical receptacle is measured in a state where the optical element is not radiated, for example, the incident light quantity in a state of variation of 1 μW or less is measured. The This is considered to be because light in a measurement environment such as sunlight or illumination light enters. If 1 μW is replaced with a loss with 1 mW as a reference, it becomes −30 dB.
 図27で行ったレーザと光ファイバ2との位置ずれの損失結果から、-30dBを近似的に計算すると、図27(b)において5.6μmとなる。光学素子の出力が高かった場合を考慮して7μm以下でコア8の偏芯を管理する。 Approximate calculation of −30 dB from the loss result of the positional deviation between the laser and the optical fiber 2 performed in FIG. 27 yields 5.6 μm in FIG. Considering the case where the output of the optical element is high, the eccentricity of the core 8 is managed at 7 μm or less.
 これにより、半導体レーザ素子等の光学素子との調芯作業を行う際に、光レセプタクルと光学素子とを初期位置に設置するだけで、光学素子から照射された光の少なくとも一部をコア8に入射させることができ、調芯作業をし易くすることができる。そして、偏芯量EAを5.6μm以下とすることにより、調芯作業をよりし易くすることができる。なお、このように偏芯量EAを設定する構成は、図1~図3などに表したように、コア8が、端面3a及び端面3bにおいてクラッド7から露出している構成において、特に有効である。 Thereby, when performing alignment work with an optical element such as a semiconductor laser element, at least a part of the light emitted from the optical element is transferred to the core 8 only by installing the optical receptacle and the optical element at the initial position. It can be made incident, and alignment work can be facilitated. And by making the eccentricity EA 5.6 μm or less, the alignment work can be made easier. The configuration for setting the eccentricity EA in this way is particularly effective in the configuration in which the core 8 is exposed from the clad 7 at the end face 3a and the end face 3b, as shown in FIGS. is there.
 図28は、本発明の第七の実施形態に係る光レセプタクルの変形例を例示する模式的断面図である。
 図28に表したように、光学素子と接続される光ファイバ2の端面2a、土台部81の端面、及び蓋部82の端面は、斜めに研磨されていてもよい。
FIG. 28 is a schematic cross-sectional view illustrating a modification of the optical receptacle according to the seventh embodiment of the invention.
As shown in FIG. 28, the end surface 2a of the optical fiber 2 connected to the optical element, the end surface of the base portion 81, and the end surface of the lid portion 82 may be polished obliquely.
 (第八の実施形態)
 図29(a)及び図29(b)は、本発明の第八の実施形態に係る光トランシーバを例示する模式図である。
 図29(a)に表したように、本実施形態に係る光トランシーバ200は、光レセプタクル1と、光学素子110と、制御基板120と、を有する。
(Eighth embodiment)
FIGS. 29A and 29B are schematic views illustrating an optical transceiver according to the eighth embodiment of the invention.
As illustrated in FIG. 29A, the optical transceiver 200 according to the present embodiment includes the optical receptacle 1, the optical element 110, and the control board 120.
 制御基板120上には、回路等が形成されている。制御基板120は、光学素子110と電気的に接続されている。制御基板120は、光学素子110の動作を制御する。 A circuit or the like is formed on the control board 120. The control board 120 is electrically connected to the optical element 110. The control board 120 controls the operation of the optical element 110.
 光学素子110は、例えば、受光素子または発光素子が用いられる。この例では、光学素子110は、発光部である。光学素子110は、レーザダイオード111とレンズ112とを有する。レーザダイオード111は、制御基板120に制御され、光を光レセプタクル1のファイバスタブ4へ出射する。レンズ112は、出射された光の光路上において、光レセプタクル1とレーザダイオード111との間に位置する。 The optical element 110 is, for example, a light receiving element or a light emitting element. In this example, the optical element 110 is a light emitting unit. The optical element 110 includes a laser diode 111 and a lens 112. The laser diode 111 is controlled by the control board 120 and emits light to the fiber stub 4 of the optical receptacle 1. The lens 112 is located between the optical receptacle 1 and the laser diode 111 on the optical path of the emitted light.
 なお、光学素子110は、図29(b)に表したように、素子113を有していてもよい。この素子113は、レーザダイオードと、コア径の小さい光導波路と、を有する。導波路のコア内を伝搬する光は、レンズ112を介して光レセプタクル1に入射する。光導波路は、例えば、シリコンフォトニクスによって形成される。また、光導波路には、石英導波路を用いてもよい。なお、実施形態においては、レンズ112を設けずに、レーザダイオードや光導波路から出射される光を直接、光レセプタクル1に入射させてもよい。 Note that the optical element 110 may have an element 113 as shown in FIG. The element 113 includes a laser diode and an optical waveguide having a small core diameter. Light propagating through the core of the waveguide enters the optical receptacle 1 through the lens 112. The optical waveguide is formed by, for example, silicon photonics. A quartz waveguide may be used as the optical waveguide. In the embodiment, the light emitted from the laser diode or the optical waveguide may be directly incident on the optical receptacle 1 without providing the lens 112.
 また、光レセプタクル1には、プラグフェルール50が挿入されている。プラグフェルール50は、スリーブ6によって保持されている。光ファイバ2は、端面3bにおいて、プラグフェルール50と光学的に接続されている。これにより、光学素子110とプラグフェルール50とが光レセプタクルを介して光学的に接続され、光通信が可能となる。 Further, a plug ferrule 50 is inserted into the optical receptacle 1. The plug ferrule 50 is held by the sleeve 6. The optical fiber 2 is optically connected to the plug ferrule 50 at the end face 3b. As a result, the optical element 110 and the plug ferrule 50 are optically connected via the optical receptacle, and optical communication is possible.
 以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、ファイバスタブ4などが備える各要素の形状、寸法、材質、配置などや光ファイバ2やフェルール3の設置形態などは、例示したものに限定されるわけではなく適宜変更することができる。
 また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
The embodiment of the present invention has been described above. However, the present invention is not limited to these descriptions. As long as the features of the present invention are provided, those skilled in the art appropriately modified the design of the above-described embodiments are also included in the scope of the present invention. For example, the shape, size, material, arrangement, etc. of each element included in the fiber stub 4 and the like, the installation form of the optical fiber 2 and the ferrule 3 are not limited to those illustrated, and can be changed as appropriate.
Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.
 1 光レセプタクル、 2 光ファイバ、 2a 光ファイバの端面、 3 フェルール、 3a 光学素子と光学接続される端面、 3b プラグフェルールと光学接続される端面、 3c 貫通孔、 4 ファイバスタブ、 5 保持具、 5a ブッシュ、 5b ハウジング、 6 スリーブ、 7a 第一部分クラッド、 7b 第二部分クラッド、 7c 第三部分クラッド、 8a 第一部分コア、 8b 第二部分コア、 8c 第三部分コア、 9、14、19 弾性部材、 21 第1の部分、 21a 内側部、 21b 突出部、 22 第2の部分、 23 第3の部分、29 光ファイバ、 31 光学素子の一部分、 39 フェルール、 39a 光学素子と光学接続される端面、 39b プラグフェルールと光学接続される端面、 49 ファイバスタブ、 50 プラグフェルール、 70 透光性部材、 72 アイソレータ、 74 第1の偏光子、 75 第2の偏光子、 76 ファラデー回転子、 80 固定部材、 81 土台部、 82 蓋部、 83 弾性部材、 86 被覆、 110 光学素子、 111 レーザダイオード、 112 レンズ、 113 素子、 120 制御基板、 229 第二部分、 239 第三部分、 D1 第一部分のコア径、 D2 第二部分のコア径、 D3 第二部分のコア径、 D4 第一部分のファイバ外径、 D5 第二部分のファイバ外径、 D6 第三部分のファイバ外径、 D7 ビームウェスト径、 C1 ファイバスタブ4の中心軸、 L1 弾性部材の長さ、 L2 突出部の長さ、 S1 部分、 α 広がり角、 α’ 第二部分の境界とビームが織り成す角度 1 optical receptacle, 2 optical fiber, 2a optical fiber end face, 3 ferrule, 3a optical end face to be optically connected to optical element, 3b optical end face to be connected to plug ferrule, 3c optical through hole, 4 optical fiber stub, 5 optical holder, 5a Bush, 5b housing, 6 sleeve, 7a first partial cladding, 7b second partial cladding, 7c third partial cladding, 8a first partial core, 8b second partial core, 8c third partial core, 9, 14, 19th elastic member, 21 first part, 21a inner part, 21b protruding part, 22 second part, 23 third part, 29 optical fiber, 31 一部分 optical element part, 39 ferrule, 39a optical element end face that is optically connected, 39b Plug ferrule and optical connection End face, 49 mm fiber stub, 50 mm plug ferrule, 70 mm translucent member, 72 mm isolator, 74 mm first polarizer, 75 mm second polarizer, 76 mm Faraday rotator, 80 mm fixed member, 81 mm base, 82 mm lid , 83 mm elastic member, 86 mm coating, 110 mm optical element, 111 mm laser diode, 112 mm lens, 113 mm element, 120 mm control board, 229 mm second part, 239 mm third part, D1 mm first part core diameter, D2 mm second part core diameter , D3 second part core diameter, D4 first part fiber outer diameter, D5 second part fiber outer diameter, D6 third part fiber outer diameter, D7 beam waist diameter, C1 中心 fiber stub 4 central axis, L1 elastic The length of the member, the length of the L2 protrusion, the S1 portion, Angle alpha divergence angle, alpha 'boundary and the beam of the second portion weaves

Claims (35)

  1.  光を導通するためのコアとクラッドを有する光ファイバ、前記光ファイバが固定される貫通孔を有するフェルール、前記光ファイバを前記貫通孔に固定する第1弾性部材、を含むファイバスタブと、
     前記ファイバスタブを保持する保持具と、
     前記ファイバスタブを一端で保持し、他端でプラグフェルールを保持可能とするスリーブと、
     を備え、
     前記ファイバスタブは、前記フェルールのプラグフェルールと光学的接続する側の一端面と、前記一端面とは反対側の他端面を有し、
     前記光ファイバは、前記他端面側の第1の部分と、前記一端面側の第3の部分と、前記第1の部分と前記第3の部分との間に第2の部分を有し、
     前記第1の部分におけるコア径は、前記第3の部分におけるコア径より小さく、
     前記第2の部分におけるコア径は、前記第1の部分側から前記第3の部分側に向かって大きくなり、
     前記第1弾性部材は、前記光ファイバと前記貫通孔の内壁との間に設けられ、
     前記保持具は、前記ファイバスタブの前記他端面側を保持し、
     前記スリーブは、前記ファイバスタブの前記一端面側を保持することを特徴とする光レセプタクル。
    An optical fiber having a core and a cladding for conducting light, a ferrule having a through hole to which the optical fiber is fixed, a first elastic member for fixing the optical fiber to the through hole, and a fiber stub.
    A holder for holding the fiber stub;
    A sleeve that holds the fiber stub at one end and a plug ferrule at the other end;
    With
    The fiber stub has one end surface on the side optically connected to the plug ferrule of the ferrule, and the other end surface opposite to the one end surface,
    The optical fiber has a first portion on the other end surface side, a third portion on the one end surface side, and a second portion between the first portion and the third portion,
    The core diameter in the first part is smaller than the core diameter in the third part,
    The core diameter in the second part increases from the first part side toward the third part side,
    The first elastic member is provided between the optical fiber and the inner wall of the through hole,
    The holder holds the other end surface side of the fiber stub,
    The optical receptacle, wherein the sleeve holds the one end face side of the fiber stub.
  2.  前記第1の部分のコアの屈折率、前記第2の部分のコアの屈折率、および前記第3の部分におけるコアの屈折率は、互いに等しく、
     前記第1の部分のクラッドの屈折率は、前記第3の部分のクラッドの屈折率より小さく、
     前記第2の部分のクラッドの屈折率は、前記第1の部分側から前記第3の部分側に向かって大きくなることを特徴とする請求項1に記載の光レセプタクル。
    The refractive index of the core of the first part, the refractive index of the core of the second part, and the refractive index of the core in the third part are equal to each other,
    The refractive index of the cladding of the first portion is smaller than the refractive index of the cladding of the third portion,
    2. The optical receptacle according to claim 1, wherein a refractive index of the cladding of the second portion increases from the first portion side toward the third portion side.
  3.  前記第1の部分のクラッドの屈折率、前記第2の部分のクラッドの屈折率、および前記第3の部分におけるクラッドの屈折率は、互いに等しく、
     前記第1の部分のコアの屈折率は、前記第3の部分のコアの屈折率より大きく、
     前記第2の部分のコアの屈折率は、前記第1の部分側から前記第3の部分側に向かって小さくなることを特徴とする請求項1に記載の光レセプタクル。
    The refractive index of the cladding of the first portion, the refractive index of the cladding of the second portion, and the refractive index of the cladding in the third portion are equal to each other,
    The refractive index of the core of the first part is greater than the refractive index of the core of the third part,
    2. The optical receptacle according to claim 1, wherein the refractive index of the core of the second portion decreases from the first portion side toward the third portion side.
  4.  前記第2の部分のコア径は、前記第1の部分側から前記第3の部分側に向かって線形に大きくなることを特徴とする請求項1~3のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 3, wherein a core diameter of the second portion increases linearly from the first portion side toward the third portion side. .
  5.  前記第2の部分のコア径は、前記第1の部分側から前記第3の部分側に向かって非線形に大きくなることを特徴とする請求項1~3のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 3, wherein a core diameter of the second part increases nonlinearly from the first part side toward the third part side. .
  6.  前記第2の部分のコアは、前記第1の部分側から前記第3の部分側にかけて、前記第2の部分のコア径が大きくなっている領域の一部に段差を有することを特徴とする請求項1~3のいずれか1つに記載の光レセプタクル。 The core of the second part has a step in a part of a region where the core diameter of the second part is increased from the first part side to the third part side. The optical receptacle according to any one of claims 1 to 3.
  7.  前記第1の部分におけるコア径が、0.5μm以上、8μm以下であることを特徴とする請求項1~6のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 6, wherein a core diameter in the first portion is not less than 0.5 µm and not more than 8 µm.
  8.  前記第1の部分におけるコアの屈折率とクラッドの屈折率との差は、前記第3の部分におけるコアの屈折率とクラッドの屈折率との差より大きいことを特徴とする請求項1~7のいずれか1つに記載の光レセプタクル。 The difference between the refractive index of the core and the refractive index of the cladding in the first portion is larger than the difference between the refractive index of the core and the refractive index of the cladding in the third portion. The optical receptacle according to any one of the above.
  9.  前記第1の部分におけるコアの屈折率とクラッドの屈折率との差は、前記第2の部分におけるコアの屈折率とクラッドの屈折率との差より大きいことを特徴とする請求項1~8のいずれか1つに記載の光レセプタクル。 The difference between the refractive index of the core and the refractive index of the cladding in the first portion is larger than the difference between the refractive index of the core and the refractive index of the cladding in the second portion. The optical receptacle according to any one of the above.
  10.  前記第3の部分におけるコア径が、8μm以上、20μm以下であることを特徴とする請求項1~9のいずれか1つに記載の光レセプタクル。 10. The optical receptacle according to claim 1, wherein a core diameter in the third portion is 8 μm or more and 20 μm or less.
  11.  前記第3の部分におけるコアの屈折率とクラッドの屈折率との差は、前記第2の部分におけるコアの屈折率とクラッドの屈折率との差より小さいことを特徴とする請求項1~10のいずれか1つに記載の光レセプタクル。 The difference between the refractive index of the core and the refractive index of the cladding in the third portion is smaller than the difference between the refractive index of the core and the refractive index of the cladding in the second portion. The optical receptacle according to any one of the above.
  12.  前記第2の部分におけるコアの屈折率とクラッドの屈折率の差は、前記第1の部分側から前記第3の部分側に向かって小さくなることを特徴とする請求項1~11のいずれか1つに記載の光レセプタクル。 12. The difference between the refractive index of the core and the refractive index of the cladding in the second portion decreases from the first portion side toward the third portion side. The optical receptacle according to one.
  13.  前記第1の部分における前記光ファイバの外径は、前記第3の部分における前記光ファイバの外径と等しいことを特徴とする請求項1~12のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 12, wherein an outer diameter of the optical fiber in the first portion is equal to an outer diameter of the optical fiber in the third portion.
  14.  前記第2の部分における前記光ファイバの外径は、前記第1の部分における前記光ファイバの外径よりも小さいことを特徴とする請求項1~13のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 13, wherein an outer diameter of the optical fiber in the second portion is smaller than an outer diameter of the optical fiber in the first portion.
  15.  前記第2の部分における前記光ファイバの外径は、前記第3の部分における前記光ファイバの外径よりも小さいことを特徴とする請求項1~14のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 14, wherein an outer diameter of the optical fiber in the second portion is smaller than an outer diameter of the optical fiber in the third portion.
  16.  前記第2の部分の軸方向中央部は、前記フェルールと前記保持具とが接する領域とは重ならないように配設されていることを特徴とする請求項1~15のいずれか1つに記載の光レセプタクル。 The axially central portion of the second portion is disposed so as not to overlap with a region where the ferrule and the holder are in contact with each other. Light receptacle.
  17.  前記第1の部分、前記第2の部分、および前記第3の部分は、全域に渡って前記貫通孔内に配設されていることを特徴とする請求項1~16のいずれか1つに記載の光レセプタクル。 The first part, the second part, and the third part are disposed in the through hole over the entire area. Optical receptacle as described.
  18.  前記フェルールに固定された透光性部材を、さらに備え、
     前記貫通孔は、小径部と、前記他端面側に設けられ前記小径部よりも大きい径を有する大径部と、を有し、
     前記光ファイバの全体は、前記小径部に配設され、
     前記透光性部材の少なくとも一部は、前記大径部に配設され、
     前記第1弾性部材は、前記光ファイバと前記透光性部材との間に設けられたことを特徴とする請求項1~17のいずれか1つに記載の光レセプタクル。
    Further comprising a translucent member fixed to the ferrule,
    The through hole has a small diameter portion and a large diameter portion provided on the other end surface side and having a larger diameter than the small diameter portion,
    The entire optical fiber is disposed in the small diameter portion,
    At least a part of the translucent member is disposed in the large diameter portion,
    The optical receptacle according to any one of claims 1 to 17, wherein the first elastic member is provided between the optical fiber and the translucent member.
  19.  前記第1の部分は、前記フェルールから突出した部分を有し、
     前記第2の部分及び前記第3の部分は、全域に亘って前記貫通孔内に配設されていることを特徴とする請求項1~16のいずれか1つに記載の光レセプタクル。
    The first portion has a portion protruding from the ferrule,
    The optical receptacle according to any one of claims 1 to 16, wherein the second portion and the third portion are disposed in the through hole over the entire area.
  20.  前記フェルールの前記貫通孔は、軸方向に対して直交する直交方向における幅が前記光ファイバの前記直交方向の幅に対応する第1領域と、前記第1領域よりも前記他端面側に配置され、前記他端面に向かって前記直交方向の幅が広がる第2領域と、を有し、
     前記第2の部分の軸方向中央部は、前記第1領域と重なるように配設されていることを特徴とする請求項19記載の光レセプタクル。
    The through hole of the ferrule is disposed on the other end surface side of the first region corresponding to the width in the orthogonal direction of the optical fiber in the orthogonal direction orthogonal to the axial direction, and the first region. And a second region in which the width in the orthogonal direction widens toward the other end surface,
    The optical receptacle according to claim 19, wherein an axially central portion of the second portion is disposed so as to overlap the first region.
  21.  前記フェルールの前記貫通孔は、軸方向に対して直交する直交方向における幅が前記光ファイバの前記直交方向の幅に対応する第1領域と、前記第1領域よりも前記他端面側に配置され、前記他端面に向かって前記直交方向の幅が広がる第2領域と、を有し、
     前記第2の部分は、前記第1領域と重なるように配設されていることを特徴とする請求項19記載の光レセプタクル。
    The through hole of the ferrule is disposed on the other end surface side of the first region corresponding to the width in the orthogonal direction of the optical fiber in the orthogonal direction orthogonal to the axial direction, and the first region. And a second region in which the width in the orthogonal direction widens toward the other end surface,
    The optical receptacle according to claim 19, wherein the second portion is disposed so as to overlap the first region.
  22.  前記第1の部分の前記フェルールから突出した部分の端面側に設けられ、前記光ファイバを固定する固定部材を、さらに備え、
     前記固定部材は、前記フェルールとは離隔して配設されていることを特徴とする請求項19~21のいずれか1つに記載の光レセプタクル。
    A fixing member that is provided on an end surface side of the portion protruding from the ferrule of the first portion and fixes the optical fiber;
    The optical receptacle according to any one of claims 19 to 21, wherein the fixing member is disposed apart from the ferrule.
  23.  前記保持具は、前記フェルールの外側面のうち、前記第1領域よりも前記他端面側の部分を保持することを特徴とする請求項20又は21に記載の光レセプタクル。 The optical receptacle according to claim 20 or 21, wherein the holder holds a portion of the outer surface of the ferrule closer to the other end surface than the first region.
  24.  前記保持具は、前記他端面よりも突出しないことを特徴とする請求項19~23のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 19 to 23, wherein the holder does not protrude from the other end surface.
  25.  前記保持具は、前記フェルールの外側面のうち、前記第1領域と対向する部分のみを保持することを特徴とする請求項20又は21に記載の光レセプタクル。 The optical receptacle according to claim 20 or 21, wherein the holder holds only a portion of the outer surface of the ferrule facing the first region.
  26.  前記光ファイバの前記フェルールの外方に延在した部分を被覆する保護部材と、
     前記保護部材を覆うチューブと、
     をさらに備え、
     前記保護部材と前記チューブとの間には、空間が設けられていることを特徴とする請求項19~25のいずれか1つに記載の光レセプタクル。
    A protective member that covers a portion of the optical fiber that extends outward from the ferrule;
    A tube covering the protective member;
    Further comprising
    The optical receptacle according to any one of claims 19 to 25, wherein a space is provided between the protective member and the tube.
  27.  前記光ファイバの前記フェルールの外方に延在した部分において前記第1弾性部材を覆う第2弾性部材をさらに備え、
     前記第2弾性部材の硬度は、前記第1弾性部材の硬度よりも低いことを特徴とする請求項19~26のいずれか1つに記載の光レセプタクル。
    A second elastic member that covers the first elastic member in a portion extending outward of the ferrule of the optical fiber;
    The optical receptacle according to any one of claims 19 to 26, wherein the hardness of the second elastic member is lower than the hardness of the first elastic member.
  28.  前記ファイバスタブのプラグフェルールと光学的接続する側とは反対側の端面において、前記フェルールの端面の一部と前記光ファイバの端面が、前記ファイバスタブの中心軸に対して垂直となる面から所定の角度をもつことを特徴とする請求項1~27のいずれか1つに記載の光レセプタクル。 A part of the end surface of the ferrule and the end surface of the optical fiber are predetermined from a surface perpendicular to the central axis of the fiber stub on the end surface of the fiber stub opposite to the side optically connected to the plug ferrule. The optical receptacle according to claim 1, wherein the optical receptacle has an angle of
  29.  前記第1の部分、前記第2の部分、および前記第3の部分は、一体でできていることを特徴とする請求項1~28のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 28, wherein the first part, the second part, and the third part are integrally formed.
  30.  前記ファイバスタブの中心軸に沿った前記第1の部分の長さは、5μm以上であることを特徴とする請求項1~29のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 29, wherein the length of the first portion along the central axis of the fiber stub is 5 μm or more.
  31.  前記ファイバスタブの中心軸に沿った前記第3の部分の長さは、5μm以上であることを特徴とする請求項1~30のいずれか1つに記載の光レセプタクル。 The optical receptacle according to any one of claims 1 to 30, wherein the length of the third portion along the central axis of the fiber stub is 5 μm or more.
  32.  前記光ファイバは、最も小さい外径の最細部を前記第2の部分に有し、
     前記貫通孔の内径の変化は、前記光ファイバの外径の変化よりも小さく、
     前記第1弾性部材の厚さは、前記最細部において最も大きく、前記第1の部分から前記最細部に向かって徐々に大きくなるとともに、前記第3の部分から前記最細部に向かって徐々に大きくなり、
     前記第2の部分と前記内壁との間に設けられた前記第1弾性部材の前記光ファイバの軸方向の長さは、前記第1の部分と前記内壁との間に設けられた前記第1弾性部材の前記軸方向の長さ、及び前記第3の部分と前記内壁との間に設けられた前記第1弾性部材の前記軸方向の長さの少なくとも一方よりも短いことを特徴とする請求項1~31のいずれか1つに記載の光レセプタクル。
    The optical fiber has the smallest details of the smallest outer diameter in the second portion;
    The change in the inner diameter of the through hole is smaller than the change in the outer diameter of the optical fiber,
    The thickness of the first elastic member is the largest in the finest detail, and gradually increases from the first portion toward the finest detail, and gradually increases from the third portion toward the finest detail. Become
    The length of the first elastic member provided between the second part and the inner wall in the axial direction of the optical fiber is the first length provided between the first part and the inner wall. The axial length of the elastic member is shorter than at least one of the axial length of the first elastic member provided between the third portion and the inner wall. Item 32. The optical receptacle according to any one of Items 1 to 31.
  33.  前記他端面において、前記フェルールの外径の中心を基準とした時の前記コアの中心の偏芯量は、7μm以下であることを特徴とする請求項1~32のいずれか1つに記載の光レセプタクル。 The eccentricity of the center of the core with respect to the center of the outer diameter of the ferrule on the other end surface is 7 μm or less, according to any one of claims 1 to 32, Optical receptacle.
  34.  前記第1の部分の前記クラッドと、前記第3の部分の前記クラッドと、の間の前記光ファイバの軸方向と直交する方向の変位量は、4μm以下であることを特徴とする請求項1~33のいずれか1つに記載の光レセプタクル。 The displacement amount in a direction orthogonal to the axial direction of the optical fiber between the clad of the first portion and the clad of the third portion is 4 μm or less. 34. The optical receptacle according to any one of .about.33.
  35.  請求項1~34のいずれか1つに記載の光レセプタクルを備えたことを特徴とする光トランシーバ。 An optical transceiver comprising the optical receptacle according to any one of claims 1 to 34.
PCT/JP2017/024011 2016-06-29 2017-06-29 Optical receptacle and optical transceiver WO2018003940A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780039784.0A CN109416441A (en) 2016-06-29 2017-06-29 Optical receptacle and optical transceiver
CN202110013796.4A CN112835157B (en) 2016-06-29 2017-06-29 Optical receptacle and optical transceiver
US16/234,877 US20190154925A1 (en) 2016-06-29 2018-12-28 Optical receptacle and optical transceiver
US17/069,225 US11598922B2 (en) 2016-06-29 2020-10-13 Optical receptacle and optical transceiver

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016129047 2016-06-29
JP2016-129047 2016-06-29
JP2017-127001 2017-06-29
JP2017127001A JP2018010292A (en) 2016-06-29 2017-06-29 Optical Receptacle and Optical Transceiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/234,877 Continuation US20190154925A1 (en) 2016-06-29 2018-12-28 Optical receptacle and optical transceiver

Publications (1)

Publication Number Publication Date
WO2018003940A1 true WO2018003940A1 (en) 2018-01-04

Family

ID=60786832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024011 WO2018003940A1 (en) 2016-06-29 2017-06-29 Optical receptacle and optical transceiver

Country Status (1)

Country Link
WO (1) WO2018003940A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013363A (en) * 1999-06-29 2001-01-19 Mitsubishi Electric Corp Optical fiber terminal
US20030026551A1 (en) * 2001-08-06 2003-02-06 Tan Larry Kwung Optical fiber connector
JP2004205654A (en) * 2002-12-24 2004-07-22 Showa Electric Wire & Cable Co Ltd Spot size converting optical fiber component and its manufacturing method
JP2005208113A (en) * 2004-01-20 2005-08-04 Nippon Telegr & Teleph Corp <Ntt> Mode field converter
JP2005284150A (en) * 2004-03-30 2005-10-13 Fujikura Ltd Method of manufacturing core-expanded optical fiber, optical fiber, and optical connector
JP2005300596A (en) * 2004-04-06 2005-10-27 Fujikura Ltd Composite optical fiber, optical connector, and optical fiber with optical connector
JP2005308880A (en) * 2004-04-19 2005-11-04 Fujikura Ltd Optical connector and its manufacturing method
JP2006030366A (en) * 2004-07-13 2006-02-02 Totoku Electric Co Ltd Mfd converting adapter
JP2006119633A (en) * 2004-09-27 2006-05-11 Kyocera Corp Optical receptacle and optical module using the same
JP2007226120A (en) * 2006-02-27 2007-09-06 Kyocera Corp Mode field converter and manufacturing method therefor
JP2008299029A (en) * 2007-05-31 2008-12-11 Kyocera Corp Ferrule and manufacturing method therefor, and optical device, fiber stub and light receptacle using the same
JP2013114001A (en) * 2011-11-28 2013-06-10 Fujikura Ltd Optical fiber cable with connector and method of assembling optical fiber cable with connector
JP2014197089A (en) * 2013-03-29 2014-10-16 Toto株式会社 Optical receptacle
JP2015028593A (en) * 2013-06-28 2015-02-12 Toto株式会社 Optical receptacle
JP2015038592A (en) * 2013-06-28 2015-02-26 Toto株式会社 Optical receptacle
JP2016128900A (en) * 2014-12-26 2016-07-14 Toto株式会社 Optical receptacle and optical transceiver

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013363A (en) * 1999-06-29 2001-01-19 Mitsubishi Electric Corp Optical fiber terminal
US20030026551A1 (en) * 2001-08-06 2003-02-06 Tan Larry Kwung Optical fiber connector
JP2004205654A (en) * 2002-12-24 2004-07-22 Showa Electric Wire & Cable Co Ltd Spot size converting optical fiber component and its manufacturing method
JP2005208113A (en) * 2004-01-20 2005-08-04 Nippon Telegr & Teleph Corp <Ntt> Mode field converter
JP2005284150A (en) * 2004-03-30 2005-10-13 Fujikura Ltd Method of manufacturing core-expanded optical fiber, optical fiber, and optical connector
JP2005300596A (en) * 2004-04-06 2005-10-27 Fujikura Ltd Composite optical fiber, optical connector, and optical fiber with optical connector
JP2005308880A (en) * 2004-04-19 2005-11-04 Fujikura Ltd Optical connector and its manufacturing method
JP2006030366A (en) * 2004-07-13 2006-02-02 Totoku Electric Co Ltd Mfd converting adapter
JP2006119633A (en) * 2004-09-27 2006-05-11 Kyocera Corp Optical receptacle and optical module using the same
JP2007226120A (en) * 2006-02-27 2007-09-06 Kyocera Corp Mode field converter and manufacturing method therefor
JP2008299029A (en) * 2007-05-31 2008-12-11 Kyocera Corp Ferrule and manufacturing method therefor, and optical device, fiber stub and light receptacle using the same
JP2013114001A (en) * 2011-11-28 2013-06-10 Fujikura Ltd Optical fiber cable with connector and method of assembling optical fiber cable with connector
JP2014197089A (en) * 2013-03-29 2014-10-16 Toto株式会社 Optical receptacle
JP2015028593A (en) * 2013-06-28 2015-02-12 Toto株式会社 Optical receptacle
JP2015038592A (en) * 2013-06-28 2015-02-26 Toto株式会社 Optical receptacle
JP2016128900A (en) * 2014-12-26 2016-07-14 Toto株式会社 Optical receptacle and optical transceiver

Similar Documents

Publication Publication Date Title
JP6170527B2 (en) Optical receptacle and optical transceiver
JP7270084B2 (en) Optical receptacles and optical transceivers
JP5952326B2 (en) Optical receptacle
US20060024001A1 (en) Optical fiber connected body with mutually coaxial and inclined cores, optical connector for forming the same, and mode conditioner and optical transmitter using the same
JP2006221165A (en) Terminal for optical fiber and manufacturing method thereof
JP2002014253A (en) Optical fiber body and optical module having it
EP2573601B1 (en) Optical collimator and optical connector using same
WO2018109977A1 (en) Optical connection part
US20210026080A1 (en) Optical receptacle and optical transceiver
JP2015028593A (en) Optical receptacle
WO2018003940A1 (en) Optical receptacle and optical transceiver
WO2016104653A1 (en) Optical receptacle and optical transceiver
JP2001194623A (en) Fiber stub type optical device and optical module using same
JP2654755B2 (en) Low-reflection optical components with uneven mating connection
US20190033534A1 (en) Optical fiber connector, optical apparatus, optical transceiver, and method of manufacturing optical fiber connector
US20130064553A1 (en) Optical communication module and optical communication apparatus
JP2007193049A (en) Optical waveguide and optical module
JP2005227414A (en) Optical connection device
JPH11271575A (en) Optical semiconductor module
JP2015096978A (en) Optical receptacle
JP2020085949A (en) Method for manufacturing optical connection structural body and optical connector part
JP2019082557A (en) Optical receptacle
JP2006221159A (en) Optical transmitter module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820294

Country of ref document: EP

Kind code of ref document: A1