WO2018003918A1 - Radiographic imaging device, radiographic imaging method, and radiographic imaging program - Google Patents

Radiographic imaging device, radiographic imaging method, and radiographic imaging program Download PDF

Info

Publication number
WO2018003918A1
WO2018003918A1 PCT/JP2017/023936 JP2017023936W WO2018003918A1 WO 2018003918 A1 WO2018003918 A1 WO 2018003918A1 JP 2017023936 W JP2017023936 W JP 2017023936W WO 2018003918 A1 WO2018003918 A1 WO 2018003918A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
ray
signal
rate
incident
Prior art date
Application number
PCT/JP2017/023936
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 勲
康隆 昆野
史人 渡辺
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018003918A1 publication Critical patent/WO2018003918A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector

Definitions

  • the present invention relates to a radiation imaging apparatus, and more particularly to a radiation imaging apparatus, a radiation imaging method, and a radiation imaging program for acquiring a projection image or a tomographic image of a subject with a photon counting type X-ray detector.
  • a medical radiation imaging apparatus using X-rays such as a computed tomography apparatus (CT)
  • CT computed tomography apparatus
  • X-rays irradiated from an X-ray source and transmitted through a subject are detected by a detector, and X caused by the subject is detected.
  • the state in the subject is imaged and used for diagnosis.
  • PCCT photon counting CT
  • Non-Patent Document 1 discloses a so-called photon counting type detector that divides a pixel into a plurality of subpixels and counts and processes photons for each subpixel.
  • a pixel composed of a plurality of subpixels is referred to as a macro pixel in order to clearly distinguish the pixel and the subpixel.
  • the amount of data obtained is increased by the number of divided subpixels. For this reason, the amount of data output from the detector is reduced by adding the count value (count rate) of the sub-pixels in each macro pixel and obtaining the output value for each macro pixel.
  • the estimation accuracy of the true incident rate of the X-ray photon with respect to the macro pixel is deteriorated. Due to the deterioration of the estimation accuracy, there arises a problem that image quality deterioration such as artifacts occurs in the reconstructed image.
  • the present invention has been made in view of the above circumstances, and the X-ray incident distribution on each subpixel is non-uniform, and even if the dead time of each subpixel varies, the incident distribution is not non-uniform.
  • the purpose is to contribute to the improvement of image quality by estimating the uniformity.
  • an X-ray source that irradiates X-rays
  • a detection unit that includes a plurality of sub-pixels that detect the X-rays
  • a detection unit that two-dimensionally arranges the X-rays
  • the X signal based on a detection signal from the sub-pixels.
  • a signal processing unit that generates an output signal corresponding to the intensity of the line, a signal addition unit that generates an X-ray count signal for each pixel by adding the output signals of the sub-pixels belonging to the pixel, and the X-ray An image generation unit that generates an image based on the count signal, the image generation unit including the X-ray count signal of the pixel to be processed and the X-ray count of a pixel located in the vicinity of the pixel to be processed
  • a radiation imaging apparatus including a non-uniformity estimation unit that estimates non-uniformity of an X-ray incident distribution of the processing target pixel based on a signal.
  • the non-uniformity of the incident distribution is estimated. This can contribute to the improvement of image quality.
  • FIG. 1 is a block diagram showing an outline of an X-ray CT apparatus according to a first embodiment of the present invention.
  • the schematic structure of the computer of the X-ray CT apparatus which concerns on the 1st Embodiment of this invention is shown,
  • (A) is a block diagram,
  • (B) is a functional block diagram of CPU in a computer.
  • It is a perspective view showing the outline of the X-ray detector concerning a 1st embodiment of the present invention.
  • It is explanatory drawing which shows the example of the relationship between the arrangement
  • FIG. 7 is an enlarged explanatory diagram in which a part of the signal processing circuit of FIG. 6 is extracted. It is the schematic diagram which showed the count rate characteristic in a Mahi type and a non-mahi type signal processing circuit. It is a reference figure which shows the example in case the incident distribution with respect to an X-ray detector is not uniform.
  • FIG. 3 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in the X-ray CT apparatus according to the first embodiment of the present invention. It is a reference figure which shows the example in case the incident distribution with respect to an X-ray detector is not uniform. It is explanatory drawing which shows the example of the arrangement
  • 10 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in an X-ray CT apparatus according to a third embodiment of the present invention. 10 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in an X-ray CT apparatus according to a fourth embodiment of the present invention.
  • a radiation imaging apparatus is based on an X-ray source that irradiates X-rays, a detection unit that two-dimensionally arranges pixels including a plurality of subpixels that detect the X-rays, and a detection signal from the subpixels
  • a signal processing unit that generates an output signal according to the intensity of the X-ray
  • a signal addition unit that generates an X-ray count signal for each pixel by adding the output signals of the sub-pixels belonging to the pixel
  • An image generation unit configured to generate an image based on the X-ray count signal, and the image generation unit includes the X-ray count signal of the processing target pixel and the X of the pixel located in the vicinity of the processing target pixel.
  • the radiation imaging apparatus includes a non-uniformity estimation unit that estimates non-uniformity of an X-ray incident distribution of the processing target pixel based on a line count signal.
  • a non-uniformity estimation unit that estimates non-uniformity of an X-ray incident distribution of the processing target pixel based on a line count signal.
  • the X-ray CT apparatus includes an X-ray source 120, an X-ray detector 1150, and the X-ray source 120 and the X-ray detector 150 as an imaging system.
  • the gantry rotating unit 110 that rotates around the center, the bed 140 disposed in the opening of the gantry rotating unit 110, the operation of these imaging systems, and the X-ray detector 150 acquired along with the operation of the imaging system
  • a control unit 170 that processes the signal and a computer 180 that generates a reconstructed image based on the data obtained by the X-ray detector 150 are provided.
  • an X-ray tube can be applied to the X-ray source 120.
  • the X-ray source 120 emits X-ray photons by causing an electron beam accelerated by a tube voltage to collide with a target metal such as tungsten or molybdenum and generating X-rays from the collision position (focal point).
  • a filter 125 is provided in the vicinity of the X-ray source 120. The filter 125 adjusts the flux and energy distribution of the X-ray photons 130 emitted from the X-ray source 120.
  • a part of the X-ray photons is absorbed by the subject 200 according to the substance distribution in the subject.
  • the part passes through the subject 200 and is detected by an X-ray detector 150 described later.
  • the gantry rotating unit 110 arranges the X-ray source 120 and the detector 150 facing each other and rotates around a predetermined rotation axis.
  • An opening into which the subject 200 is inserted is provided at the center of the gantry rotating unit 110, and a bed 140 on which the subject 200 is laid is disposed in the opening.
  • the bed 140 and the gantry rotating unit 110 are relatively movable in a predetermined direction.
  • CT in order to acquire data from all directions, the data is acquired while rotating the X-ray source 120 and the detector 150 around the subject 200 by rotating the gantry rotating unit 110 at a predetermined speed.
  • the speed of rotation is typically about 1 to 4 revolutions per second.
  • the time for accumulating data for acquiring projection data (one view) from a certain direction is typically on the order of 0.1 to 1 millisecond.
  • the X-ray detector 150 detects X-ray photons incident on the X-ray detector 150, and collects and processes, for example, a detection unit 151 that classifies into four energy ranges and a detection signal output from the detection unit 151. And a signal processing unit 152.
  • the X-ray photon detection signals output from the detection unit 151 are processed in a pulse mode by the plurality of signal processing units 152 and counted.
  • the counting here includes obtaining energy information in addition to counting the detected X-ray photons. In addition, if the X-rays scattered by the subject 200 are detected, an undesired signal is generated.
  • a collimator 145 is disposed in front of the detection unit 151 when viewed from the X-ray source 120 side, and the scattered X-rays are detected. It is preferable to block. Details of the X-ray detector 150 will be described later.
  • the control unit 170 controls the gantry rotating unit 110, the X-ray source 120, the bed 140, the X-ray detector 150, etc., and performs predetermined processing on the signals detected and collected by the X-ray detector 150 to perform the computer 180. Forward to.
  • the computer 180 includes a CPU 181 and a storage unit 182 as shown in FIG.
  • the CPU 181 realizes the function of an image generation unit 183 including a non-uniformity estimation unit 184 and a signal correction unit 185.
  • the computer 180 stores the signal acquired from the signal processing unit 152 of the X-ray detector 150 via the control unit 170 in the storage unit 182 and generates a reconstructed image of the tomographic image of the subject based on these signals and the like. To do.
  • the computer 180 is connected to the display device 191 and the input device 192, and the reconstructed image generated by the CPU 181 functioning as the image generation unit 183 is displayed on the display device 191 in accordance with an instruction from the CPU 181.
  • the input device 192 also includes imaging conditions in the X-ray CT apparatus, that is, parameters necessary for data collection, such as a voltage value or tube current applied to the X-ray source 120 from a high-voltage power supply (not shown), An input such as the speed of the rotational operation of the X-ray source 120 is received.
  • the display device 191 can display the parameters input by the input device 192 and their values.
  • the computer 180 estimates the incidence rate of X-ray photons incident on each sub-pixel 21 as necessary in order to correct the effect of pileup, and the non-uniformity estimation unit 184 detects the detection unit 151.
  • the non-uniformity of the incident distribution of the X-rays incident on is estimated.
  • the incidence rate means the number of X-ray photons incident per unit time per detection unit (pixel or sub-pixel). Details of the X-photon incidence rate estimation in the computer 180 will be described later.
  • control unit 170 and the computer 180 can be partially or wholly constructed as a system including a CPU (Central Processing Unit), a memory, and a main storage unit, and the functions of the units constituting the control unit 170 and the computer 180 are included. Can be realized by the CPU loading the program stored in the storage unit in advance into the memory and executing it. Also, some or all of the functions can be configured by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the X-ray detector 150 has a detection unit 151 that two-dimensionally arranges a plurality of pixels 20 and detects and outputs an X-ray photon for each pixel, and collects and processes output signals from each pixel 20 of the detection unit 151. And a signal processing unit 152.
  • the detection unit 151 is a unit of the X-ray detector 150 and includes a plurality of pixels 20 that detect incident X-ray photons. An X-ray photon 130 that has passed through the subject 200 enters each pixel 20 and is counted.
  • the number of pixels included in the detection unit 151 can be, for example, 892 in the longitudinal direction and 64 in the lateral direction.
  • the detection unit 151 is arranged in an arc shape with the X-ray source 120 as the center, and rotates while maintaining the positional relationship with the X-ray source 120 as the gantry rotation unit 110 rotates. To do. Therefore, in the example shown in FIG.
  • the pixels 20 are depicted as being approximately arranged in a curved surface shape.
  • the surface of the pixels is often a flat surface having no curvature, and the detection unit 151
  • the arrangement of the pixels 20 may be a polygonal shape.
  • a collimator 145 (see FIG. 1) is disposed on the X-ray source 120 side of the pixel 20 in order to remove X-ray photons scattered by the subject 200.
  • the collimator 145 may be a two-dimensional rectangular collimator whose pitch and shape coincide with those of the pixels 20 or a one-dimensional slit collimator.
  • the pixel 20 is a detection element group in which a plurality of detection elements as the sub-pixel 21 are arranged, and this detection element group constitutes the pixel 20 that is one unit of the X-ray detector 150. That is, it can be said that one pixel 20 is divided into a plurality of subpixels 21.
  • the sub-pixel 21 included in each pixel 20 is a so-called photon counting type detection element, detects incident X-ray photons, and performs counting by dividing into, for example, four energy ranges.
  • the sub-pixel 21 detects X-ray photons independently and generates an output signal for each pixel 20 by adding the output signals from the plurality of detection elements 21 constituting the pixel 20.
  • FIG. 4 shows an example in which a plurality of detection elements 21 having the same size are arranged as a pixel 20 in a total of four elements, two elements in the channel direction and two elements in the slice direction.
  • the pixel 20 is 1 mm square, for example, and each subpixel is 0.5 mm square.
  • description will be made assuming that the pixel 20 includes four subpixels 21.
  • the pixel 20 can be composed of, for example, a total of nine detection elements of the same size, 3 elements in the channel direction and 3 elements in the slice direction, and 16 elements in total in the channel direction and 4 elements in the slice direction. It can also consist of pieces. Thus, n elements in the channel direction and m elements in the slice direction and the number of sub-pixels constituting the pixel can be determined as appropriate (n and m are natural numbers). In addition, the sizes of the sub-pixels constituting the pixels are not necessarily the same size, and a configuration in which sub-pixels having different sizes are mixed can be used.
  • each detection element 21 constituting each pixel 20 is provided with positive and negative electrodes 41 and 42 so as to sandwich the detection layer 40, and a signal processing unit 152 is connected to each electrode 41 and 42.
  • a negative electrode 41 (hereinafter referred to as “common electrode 41”) provided on the incident surface of the X-ray photon 130 (the upper surface of the detection layer 40 in FIG. 4) is a common electrode that covers the entire pixel 20. It has become.
  • a positive electrode 42 (hereinafter referred to as “individual electrode 42”) is provided for each detection element 21 as a subpixel, and an individual channel 165 of the signal processing unit 152 is connected to each individual electrode 42. That is, a signal is read out for each subpixel, and X-ray photon counting including acquisition of energy information is performed.
  • the pixel 20 includes one common electrode 41 and the number of individual electrodes 42 corresponding to the sub-pixel 21 (detection element).
  • the pixel 20 includes a plurality of individual electrodes 42 in the surface of the detection layer 40, and a region corresponding to one individual electrode 42 forms one subpixel 21.
  • the boundary of the subpixel 21 is physically May not be visible.
  • the detection layer 40 is easy to be finely processed and can directly read out an electric signal, for example, a direct type such as cadmium telluride, zinc cadmium telluride, thallium bromide, mercury iodide, bismuth iodide. It is preferable to apply a compound semiconductor that is a radiation detection material.
  • the detection layer 40 can be a scintillator (indirect radiation detection material) optically coupled with an optical device.
  • the thickness of the detection layer 40 is preferably about 0.5 mm to 3 mm.
  • the X-ray photon 130 enters the detection layer 40 from the common electrode 41 side, detects the X-ray photon, and generates an amount of charge corresponding to the energy. For example, a voltage of ⁇ 600 V is applied to the common electrode 41 by a high voltage power source (not shown). It is desirable that the X-ray photons are not attenuated at the common electrode 41 and the individual electrodes 42.
  • the common electrode 41 and the individual electrode 42 are sufficiently thinner than the detection layer 40 and can be processed to a thickness of 1 ⁇ m or less.
  • the signal processing unit 152 includes a channel 165 for each subpixel 21, detects an output signal from the subpixel 21 belonging to the pixel 20 through the channel 165, and the signal adding unit 166 Addition is performed in accordance with a predetermined condition, and collected and processed as an output signal of each pixel 20.
  • FIG. 6 and 7 show an example of each channel 165 of the signal processing unit 152 connected to each sub-pixel 21.
  • FIG. Each channel 165 has a charge-sensitive preamplifier 310a that converts an X-ray photon detected as a charge signal into a voltage signal (described using 310a in FIG. 7 as a representative of 310; the same applies hereinafter),
  • a waveform shaping amplifier 320a for shaping the voltage signal converted by the type preamplifier 310a, four comparators 330a1 to 330a4 for obtaining energy information by comparing a voltage related to the voltage signal and a reference voltage, and a counter 340a1 to 340a4.
  • the signal processing in the channel 165 configured in this way is performed as follows.
  • a signal read from an arbitrary sub-pixel a in the pixel 20 is first converted from a charge signal to a voltage signal by the charge-sensitive preamplifier 310a and output to the waveform shaping amplifier 320a.
  • the voltage signal converted in the charge-sensitive preamplifier 310a is shaped in the waveform shaping amplifier 320a (hereinafter, the shaped voltage signal is referred to as “detection signal”) and output to the four comparators 330a1 to 330a4.
  • the different reference voltages th1 to th4 are supplied to the comparators 330a1 to 330a4, and the detection signals are compared with the reference voltages th1 to th4 in the comparators 330a1 to 330a4.
  • the counters 340a1 to 340a4 corresponding to the comparators count up. Thereby, X-ray photons can be classified into four types according to the energy and counted.
  • the counters 340a1, 340a2, and 340a3 may be configured to count up when the detection signal is larger than th1, th2, th3, and smaller than th2, th3, th4.
  • Each channel 165 stops counting up when a predetermined measurement time (one view) ends, and counts of counters (for example, 340a1, 340b1, 340c1, 340d1) having the same threshold value in the four sub-pixels 21 in the pixel 20.
  • the numerical value (counting rate) is added by the signal adding unit 166, and the output signal of the pixel 20 is generated.
  • four count values corresponding to different threshold values that is, corresponding to energy regions, are generated as output signals for one pixel 20. Are output to the control device 170.
  • the amount of data can be reduced by adding the signals detected by the sub-pixels 21 as the signals of the pixel 20 and outputting the signals separately from the sub-pixels 21 and outputting the signals separately.
  • the signal addition part 166 described simple addition in the above-mentioned example, it is not restricted to this, Weighted addition etc. can also be performed and it determines suitably according to the structure of a signal processing part, etc. Can do.
  • the dead time in the PCCT signal processing circuit (the signal processing unit 152 in the present embodiment) will be described.
  • PCCT it is necessary to consider how the dead time of a signal processing circuit affects the count value obtained by measurement. From the viewpoint of dead time, the signal processing circuit can ideally be roughly classified into two types, which are sometimes referred to as “mahi type” and “non-mahi type”, respectively.
  • FIG. 8 shows the count rate characteristics (relationship between incidence rate and count rate) of the Mahi type and the non-Mahi type.
  • the incidence rate is the number of X-ray photons incident per unit time per detection unit (pixel or subpixel) as described above, and the count rate is one detection unit (pixel or subpixel). ) Is the number of X-ray photons detected (counted) per unit time.
  • the quantum efficiency is 1 (no photon is transmitted without being detected), and the detected photon is applied to the sub-pixel in which the total energy is detected.
  • the count rate expected in an ideal case where the dead time is 0 is equal to the incidence rate.
  • the count rate characteristic 410 in the case of the Mahi signal processing circuit is expressed by the following equation (1), where x is the incidence rate and y is the count rate when there is a finite dead time (FIG. 8). reference).
  • is the dead time of the signal processing circuit, and is, for example, 20 nanoseconds.
  • the count rate characteristic 420 in the case of the non-mahi type can be expressed by the following equation (2) (see FIG. 8).
  • the count rate becomes the maximum value at an incidence rate of 50 Mcps per channel (5 ⁇ 10 7 counts per second), and the count rate is increased even if the incidence rate is further increased. Shows a property of decreasing (the incidence rate at which the count rate takes the maximum value is determined depending on the dead time).
  • both the Mahi-type count rate characteristic 410 and the non-Mahi-type count rate characteristic 420 are similar in that they are upwardly convex monotonically increasing functions.
  • the response of the detector when the X-ray incident distribution is not uniform will be described.
  • the incident distribution is biased only in the width direction of the pixel 20, that is, in the left-right direction in FIG.
  • the pixel 20 will be described as being divided into two sub-pixels 21L and 21R having the same size. Two sub-pixels 21 are arranged in the left-right direction in FIG.
  • what is necessary is just to convert suitably into the incident rate per unit area, when the subpixel contained in a pixel is a mutually different magnitude
  • the count rate or the incidence rate refers to the total number of events (sometimes referred to as the total count rate or the total incidence rate) for which the detection signal is greater than the reference voltage th1.
  • FIG. 9 shows an example in which pixels 20b and 20c are arranged adjacent to the pixel 20a so as to sandwich the pixel 20a as a part of the detection unit 151.
  • X-rays are uniformly incident on the pixels 20b and 20c arranged on both sides of the pixel 20a.
  • the incidence rate of X-rays at the pixel 20a is lower as it is closer to the pixel 20b and higher as it is closer to the pixel 20c. That is, X-rays are not uniformly incident on the pixels 20a. It is considered that such a change in incidence rate is mainly caused by a change in the density and thickness of a substance existing between the X-ray source 120 and the pixels 20a, 20b, and 20c.
  • the density and thickness change is considered to be a linear function spatially, the incidence rate is expected to change exponentially.
  • the simulation is performed by setting the incidence rate x for each sub-pixel included in the pixels 20a, 20b, and 20c as follows. That is, the incidence rates x bL and x bR in the sub-pixels 21bL and 21bR included in the pixel 20b are 2.5 Mcps, and both have the same incidence rate and are set to have a uniform distribution. Meanwhile, the incidence rate x aL to subpixels 21aL included in the pixel 20a 5Mcps, incidence rate x aR to subpixel 21aR is 10 Mcps, set to be exponentially-varying distance from the subpixel 20bR .
  • the incidence rates x cL and x cR of the sub-pixels 21cL and 21cR included in the pixel 20c are both 20 Mcps, and the incidence rates on both are set to have a uniform distribution (third stage in Table 1). . Accordingly, the incident rates x b , x a , and x c to the pixels 20b, 20a, and 20c in such a setting are 5, 15, and 40 Mcps, respectively (the fourth stage in Table 1).
  • the count rate per sub-pixel is, for example, as shown in the fifth row of Table 1, the count rates y bL and y bR of the sub-pixels 21bL and 21bR are both 2.4 Mcps, and the count rate y aL of the sub-pixel 21aL is 4.5Mcps, count rate y aR subpixel 21aR is 8.3Mcps, subpixel 21cL, 21cR count rate y cL, the y cR are both 13.8Mcps.
  • the incidence rate x of each pixel from which the effect of pileup has been removed can be calculated.
  • the first stage corresponds to the incident rate x (fourth stage in Table 1) initially set in the simulation, but 1.6% in the pixels 20a. It can be seen that this is underestimated (8th row in Table 1).
  • this underestimation is a non-negligible deviation that can lead to image quality degradation such as artifacts.
  • the degree of underestimation is determined by the intensity of non-uniformity of the incident distribution of X-ray photons and the incidence rate x.
  • the larger the curvature of the count rate characteristic y f (x), the lower the evaluation.
  • the computer 180 reduces the deviation of the predicted incidence rate x due to non-uniformity indicating the non-uniformity.
  • the nonuniformity of the incident distribution to the pixel is estimated using the count value y of the neighboring pixel, and the predicted incidence rate of the pixel is corrected.
  • the image generation unit 183 of the computer 180 receives the non-uniformity estimation unit 184 for estimating the non-uniformity and the incidence of X-rays incident on the pixels based on the estimation result by the non-uniformity estimation unit. and a signal correction unit 185 for calculating the rate estimated value x E.
  • the non-uniformity estimation unit 184 performs processing based on the count value y (X-ray count signal) of the processing target pixel and the count value y (X-ray count signal) of a pixel located in the vicinity of the processing target pixel. Estimate the non-uniformity of the X-ray incidence distribution of the pixels.
  • Pixel 20b is two subpixels 21bL, consists 21BR, since the incidence rate predicted value x b pixels 20b is 5Mcps, subpixel 21bL, 21bR of the incidence rate predicted value x bL, x bR are each 2.5Mcps Can be considered.
  • Sub distribution of the incident rate x a to the pixel 20a is, assuming that increases exponentially with increasing distance from the adjacent subpixels 21BR, subpixel 21aL and 21aR of the incidence rate x aL, x aR is adjacent
  • incidence rate predicted value x aL tentatively subpixel 21aL is 5.0Mcps
  • incidence rate predicted value x bR subpixel 21aR can obtain the calculation result of the 9.8Mcps. That is, the incidence rate x bR subpixel 21bR adjacent, from the distribution of the assumed exponential incidence rate, tentative subpixel 21aL, incidence rate predicted value x aL of 21aR, x bR is calculated.
  • Count rate prediction value y cala overall pixel 21a obtained by adding these, 12.6Mcps becomes, and thus about 1.5% smaller than the actual counting rate y a 12.8Mcps (5 row in Table 1) .
  • the provisional incident rate predicted value x aL is calculated.
  • X aR are corrected, and estimated incidence rates x EaL , x EaR are obtained.
  • the corrected subpixel 21aL, incidence rate estimated value x EAL of 21aR, x EaR are each 5.0Mcps, the 10.0Mcps (9 row of Table 1).
  • the computer 180 can acquire an accurate incidence rate estimated value of the pixel 20a by paying attention to the count rate in consideration of the dead time of the sub-pixel 21.
  • the non-uniformity estimation unit 184 uses the count rate characteristic f (x) of the signal processing unit 152 acquired in advance by actual measurement or simulation, and the distribution of the incidence rate to the pixel 20a is an adjacent subpixel. Assuming that it increases exponentially with distance from 21bR, the following equation (4) is used.
  • p is an incident rate x bR of the adjacent sub-pixel 21bR
  • k is a parameter.
  • incidence rate estimated value x EAL subpixel 21aL is 5.0Mcps
  • incidence rate estimated value x EBR subpixel 21aR can obtain the calculation result of the 10.0Mcps. That is, the incidence rate x bR subpixel 21bR adjacent, from the distribution of the assumed exponential incidence rate, the sub-pixel 21aL, incidence rate estimated value x EAL of 21aR, x EBR is calculated.
  • the calculated incidence rate estimation values x EaL and x EbR coincide with the incidence rate 5 Mcps to the subpixel 21 aL and the incidence rate 10 Mcps to the subpixel 21 aR, which are initially set for the simulation (third stage in Table 1). ).
  • the incidence rates of the subpixels 21aL and 21aR can be estimated to be 5.0 Mcps and 10.0 Mcps, respectively (the ninth stage in Table 1), and the entire pixel 20a is 15.0 Mcps. Therefore, it can be seen that a highly accurate estimated value is obtained as the incident rate estimated value of the pixel 20a (the 10th stage in Table 1). According to this calculation method, the incident rate estimated value can be calculated from the count rate characteristic and the actual count rate without using the incident rate predicted value.
  • the data including the count rate of the pixel 20a itself to be estimated and the count rate of the pixel 20b adjacent to the pixel 20a are used. Including data was used.
  • the incidence rate on the pixel 20a can be estimated using the data of the pixel 20a itself and the adjacent pixel 20c.
  • the incident rate estimated value of the pixel can be calculated using the count value of the pixel located in the vicinity of the pixel whose incidence rate is to be estimated, not limited to the adjacent pixel.
  • the final calculation is performed using the arithmetic average, geometric average, harmonic average, median, maximum, minimum, and other methods.
  • the estimated incidence rate to the pixel 20a is calculated, and the influence due to the non-uniformity of the incident distribution is corrected.
  • pixels are arranged two-dimensionally. Therefore, a plurality of estimated values may be acquired based on the respective count values and the count values of the pixels with respect to the four macro pixels adjacent on the side or the eight pixels including the pixels adjacent on the corner. .
  • the influence of non-uniformity can be estimated using only the estimated value obtained.
  • the calculation is performed on the assumption that the incident distribution in the pixel changes exponentially, but a different distribution may be assumed.
  • bones in a subject and metal bolts used in the orthopedic field may cause a more rapid change in incidence rate.
  • the incidence rate predicted value calculated from only the count rate characteristic is underestimated as the deviation of the incidence rate distribution is larger. Therefore, the incidence rate that changes more rapidly by the estimated value calculation method according to the present embodiment. It is preferable that a strong correction according to the incidence rate distribution is performed by assuming the distribution of ## EQU1 ## and an accurate incidence rate is calculated.
  • the computer 180 calculates the incident rate estimated values corresponding to the counters 340a1 to 340a based on the total incident rates acquired by executing the estimated value calculation method described above in consideration of the influence of non-uniformity. And stored in the storage unit 182. When the influence of pile-up is small, the dead time that occurs randomly does not affect the distribution of the detection signal size.
  • the total count rate is 12.8 Mcps, for example, the count rates of the counters 340a1 to 4 are 12.8 Mcps, 8.96 Mcps, 6.4 Mcps, 2.56 Mcps (100%, 70%, 50%, 20%), the incidence rate estimated values corresponding to the counters 340a1 to 4 are 15.0 Mcps, 10.5 Mcps, and 7 based on the total incidence rate estimation rate of 15.0 Mcps obtained according to the present embodiment. Values of 5 Mcps, 3.0 Mcps (100%, 70%, 50%, 20% of the total incidence rate estimate) are obtained. Note that the method of calculating an accurate incidence rate estimation value using the count rate characteristics and the like according to the above-described embodiment can be applied regardless of whether the signal processing unit 152 is the above-described Mahi type or non-mahi type. is there.
  • step S ⁇ b> 101 parameters for clinical imaging by the user, that is, input of imaging conditions are received via the input device 192.
  • the imaging conditions can include information about the imaging target such as the imaging region, what kind of reconstruction is performed, and parameters for calculating the incidence rate estimation value according to the imaging region and the like.
  • the parameters include parameters that affect the focal point size of the X-ray tube, such as tube current.
  • the subject is irradiated with radiation based on the imaging conditions set in step S101, and count values as projection images are collected for each subpixel.
  • the signal processing unit 152 the count value output from the detection unit 151 is processed for each subpixel, and is output to the signal addition unit 166.
  • the signal adding unit 166 adds the count value for each sub-pixel and outputs it to the control unit 170 as the count value for each pixel.
  • step S103 the nonuniformity estimation unit 184 described above estimates the influence of the nonuniformity of the incident distribution based on the count value for each pixel obtained in step 102, and then estimates the incidence rate.
  • apparatus characteristics such as the size of the focal point of the X-ray tube and parameters determined in step S101 are taken into consideration. The flow of processing for calculating the estimated incidence rate by the non-uniformity estimation unit 184 and the signal correction unit 185 will be described later.
  • step S104 the image generation unit 183 generates a reconstructed image based on the incidence rate estimation value obtained in step 530, and displays the generated reconstructed image on the output device 191 to present it to the user.
  • various correction processes and other processes can be included in the imaging process in the X-ray CT apparatus according to the present embodiment described above. Further, once the count value is acquired in step S102, parameters and the like necessary for calculating the incidence rate estimated value can be input, and step S103 and step S104 can be executed.
  • the non-uniformity estimation unit 184 outputs an output signal (hereinafter, referred to as a count value) of a processing target pixel (for example, the pixel 20a in FIG. 9) that is a pixel for calculating an incidence rate estimation value stored in the storage unit 182. (Referred to as “count rate”) (step S201), and then the count rate of any pixel (for example, pixel 20b in FIG. 9) located in the vicinity of the pixel to be processed is read (step S202).
  • count rate an output signal of a processing target pixel
  • step S203 the non-uniformity estimation unit 184 estimates non-uniformity of the processing target pixel, and in step S204, corrects the incident rate of the processing target pixel to calculate an incident rate estimated value.
  • the non-uniformity estimation unit 184 and the signal correction unit 185 read a program stored in advance in the storage unit 182 and operate as follows. First, non-uniformity estimator 184, a count rate y a processing target pixel, the process from the count rate y b for the pixel located in the vicinity of the target pixel, X-rays incidence rate to the processing target pixel is not one It is determined that
  • non-uniformity estimator 184 calculates x b If the difference is greater than or equal to a predetermined value, it is determined that the X-ray incidence rate to the processing target pixel is non-uniform. Or a a count rate y a counting rate y b compared directly, if the difference is not less than a predetermined value, X-rays incidence rate to the processing target pixel may be determined to be non-uniform.
  • step 204 the signal correction unit 185, the count rate y b of the neighboring pixels, by referring to the count rate characteristics, incidence rate of neighboring pixels corresponding to the count rate y b A predicted value xb is calculated (see step S251 in FIG. 14).
  • the signal correction unit 185 calculates the incidence rate predicted value xbR of the subpixels in the neighboring pixels (step S252). For example, assuming a uniform incidence rate in the neighboring pixels to calculate the incidence rate prediction value x bR subpixels by equally dividing the incidence rate prediction value XBR.
  • the signal correction unit 185 assumes that the incidence rate distribution in the processing target pixel changes exponentially with respect to the incidence rate predicted value xbR of the neighboring subpixel as the distance from the neighboring subpixel increases.
  • the provisional incidence rate predicted values x aL and x aR for each sub-pixel included in the processing target pixel are calculated by the above-described equation (3) (step S253).
  • the signal correction unit 185 calculates the provisional count rate prediction values y calaL and y calaR corresponding to the provisional subpixel incidence rate prediction values x aL and x bR with reference to the count rate characteristics (step S254). ).
  • Step S255 the entire processing target pixel obtained by adding, the ratio q of the count rate y a of the actual processing target pixel acquired in step S201 is calculated (step S255).
  • step S205 the signal correction
  • step S206 the signal correction unit 185 determines whether the calculation of the incidence rate estimation values for the pixels located in the vicinity of the processing target pixel has been completed. That is, the signal correction unit 185 determines whether the calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and the calculation of the incidence rate estimation value has not been completed. In that case, the process returns to step S202 and the above-described processing is repeated.
  • the process proceeds to step S207, and the signal correction unit 184 is obtained for all the pixels at the predetermined position.
  • the incident rate estimated value for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method, such as an arithmetic mean, geometric mean, harmonic mean, median value, maximum value, minimum value, or the like.
  • step S ⁇ b> 208 the signal correction unit 185 stores the calculated incidence rate estimation value of the processing target pixel in the storage unit 182.
  • step S209 it is determined whether the processing from the non-uniformity estimation for all the pixels obtained from the detection unit 151 to the calculation of the incidence rate estimated value has been completed. If the processing for all the pixels has not been completed, step S201 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is finished, this processing is finished and the process proceeds to generation of a reconstructed image. Note that the processing from the non-uniformity estimation to the incidence rate estimation value calculation described above can be performed sequentially simultaneously with the generation of the reconstructed image.
  • the calculation method of the incidence rate estimation value in consideration of the non-uniformity of the incident distribution is not limited to the above-described method, and for example, various methods can be considered as described below.
  • an example in which one incident rate estimation value is obtained for the pixel 20a from the data of two pixels of the pixel 20a and the adjacent pixel 20b has been described (see FIG. 9).
  • the incidence rates are 2.5 Mcps and 20 Mcps per subpixel in each pixel. I think there is. Then, since the incidence rate is 8 times at a distance of 3 subpixels from the subpixel 21bR to 21cL, the incidence rates of the subpixels 21aL and 21aR are, for example, 2.5 ⁇ 8 ⁇ ⁇ (1 / 3) ⁇ ⁇ Mcps, 2.5 ⁇ 8 ⁇ ⁇ (2/3) ⁇ ⁇ Mcps. In this case, it is considered that the count rate of the pixel 20a coincides with the actual measurement, and the following equation (5) can be considered for the count rate characteristic f (x).
  • the incident rate prediction value based on the count rate characteristic of the pixel 20b adjacent to the pixel 20a to be processed is 5 Mcps
  • the incident rate prediction value of the subpixel 21bR (and subpixel 21bL) is set to 2
  • the effect of non-uniformity of the incident distribution on the pixel 20a was estimated.
  • the incidence rate of the sub-pixel 21bR can be calculated using not only the adjacent pixel 20b but also the count rate of the pixel 20d.
  • the predicted incidence rate of the pixel 20d is 3 Mcps, assuming that the change in the incidence distribution is a linear function
  • the incidence rates on the subpixels 21dR, 21dL, 21bR, and 21bL are 1.25 Mcps and 1 respectively. .75 Mcps, 2.25 Mcps, 2.75 Mcps. Therefore, it is possible to estimate the non-uniformity of the incident distribution on the pixel 20a assuming that the incident rate of the sub-pixel 21bR is 2.75 Mcps.
  • the estimation of the incidence rate to the subpixel 21bR not only a linear function distribution but also an exponential distribution or other distributions can be assumed.
  • the incident rate estimation value is calculated for all pixels. However, it is not always necessary to calculate the incident rate estimated value for all pixels, and switching between calculating or not calculating the incident rate estimated value for each pixel may be performed.
  • the processing time can be shortened without calculating the incident rate estimated value by judging that the characteristics can be ignored. Note that the determination of switching according to whether or not the estimated incidence rate is calculated may be directly designated by the user using the input device 192, or indirectly through setting of imaging and reconstruction conditions. May be.
  • the non-uniformity estimation unit 184 When switching whether to calculate the incidence rate estimated value for each pixel or not, for example, according to the flowchart shown in FIG. 17, processing from non-uniformity estimation for each pixel to calculation of the incidence rate estimated value is performed.
  • the non-uniformity estimation unit 184 outputs an output signal (hereinafter referred to as “count”) regarding the count value of the processing target pixel (for example, the pixel 20a in FIG. 9) that is a pixel for calculating the incidence rate estimation value stored in the storage unit 182. (Referred to as “rate”) (step S301), and then the count rate of any pixel (for example, pixel 20b in FIG. 9) located in the vicinity of the pixel to be processed is read (step S302).
  • step S303 the non-uniformity estimation unit 184 compares the count rates of the pixel and the pixel read in step S302, so that the radiation incidence rate to the pixel becomes a maximum value, a minimum value, or a saddle point. It is determined whether or not to correct the counting rate of the pixel. If it is determined in step S303 that the pixel is not corrected, the process proceeds to step S309. If it is determined in step S303 that the pixel is corrected, the process proceeds to step S304.
  • step S304 the non-uniformity estimation unit 184 estimates the non-uniformity of the processing target pixel, corrects the incident rate of the processing target pixel, and calculates the incident rate estimated value. That is, in step S304, the non-uniformity estimation unit 184, according to the program stored in advance in the storage unit 182, as described above, the count rate of the processing target pixel and the pixel located in the vicinity of the processing target pixel. Based on the count rate, non-uniformity for each sub-pixel included in the processing target pixel is estimated, and an incidence rate estimated value corresponding to the non-uniformity is calculated. Then, the incidence rate estimation value for each sub-pixel is added to calculate the incidence rate estimation value of the processing target pixel. In step S305, the signal correction unit 185 temporarily stores the calculated incidence rate estimated value in the storage unit 182.
  • step S306 the signal correction unit 185 determines whether all the calculation of the incidence rate estimation value for the pixel located in the vicinity of the processing target pixel is completed. That is, the signal correction unit 185 determines whether the calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and the calculation of the incidence rate estimation value has not been completed. In that case, the process returns to step S302 and the above-described processing is repeated.
  • the process proceeds to step S307, and the signal correction unit 184 is obtained for all the pixels at the predetermined position.
  • the incident rate estimated value for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method, such as an arithmetic mean, geometric mean, harmonic mean, median value, maximum value, minimum value, or the like.
  • step S308 the signal correction unit 185 stores the calculated incidence rate estimation value of the processing target pixel in the storage unit 182.
  • step S309 it is determined whether the processing from the non-uniformity estimation for all the pixels obtained from the detection unit 151 to the incidence rate estimated value calculation is completed. If the processing for all the pixels is not completed, step S201 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is finished, this processing is finished and the process proceeds to generation of a reconstructed image.
  • the signal adding unit 166 outputs information on the non-uniformity of the incident distribution in the pixel together with the count rate (output signal) for reference when estimating the influence of the non-uniformity in the pixel. May be. That is, when it can be determined that the incidence rate non-uniformity is more than a certain level among the sub-pixels constituting an arbitrary pixel, data that sets a flag for the pixel is output in advance, and the storage unit It is stored in 182.
  • the incidence rate estimated value is calculated only for the flagged pixels, or the incidence rate estimated value is calculated by determining that the uniformity of the incident X-ray is low, that is, the non-uniformity is high. It is possible to perform processing such as correcting the count rate more strongly.
  • the signal adding unit 166 can set, for example, a flag of 0 or 1 as a flag to be stored together with the count rate, and can also output a quantitative value such as the degree of non-uniformity as a flag. As a result, although the amount of data to be output is slightly increased, the amount of data is still small compared to outputting the count rates of all subpixels, and the calculation cost for calculating the incidence rate estimated value can be reduced.
  • step S ⁇ b> 401 processing from non-uniformity estimation for each pixel to incidence rate estimation value calculation is performed according to the flowchart shown in FIG.
  • step S ⁇ b> 401 the non-uniformity estimation unit 184 reads the count rate related to the count value of the processing target pixel that is a pixel for calculating the incidence rate estimation value stored in the storage unit 182 together with the flag.
  • step S402 the non-uniformity estimation unit 184 determines whether or not to correct the count rate of the pixel by determining whether or not the pixel is flagged. If it is determined in step S402 that the pixel is not corrected, the process proceeds to step S409. If it is determined in step S402 that the pixel is corrected, the process proceeds to step S403.
  • step S403 the count rate of any pixel located in the vicinity of the processing target pixel is read.
  • step S404 the non-uniformity estimation unit 184 estimates the non-uniformity of the processing target pixel, corrects the incidence rate of the processing target pixel, and calculates an incidence rate estimated value.
  • the non-uniformity estimation unit 184 according to the program stored in advance in the storage unit 182, as described above, the count rate of the processing target pixel and the pixel located in the vicinity of the processing target pixel. Based on the count rate, non-uniformity for each sub-pixel included in the processing target pixel is estimated, and an incidence rate estimated value corresponding to the non-uniformity is calculated. Then, the incidence rate estimation value for each sub-pixel is added to calculate the incidence rate estimation value of the processing target pixel.
  • the signal correction unit 185 temporarily stores the calculated incidence rate estimated value in the storage unit 182.
  • step S406 the signal correction unit 185 determines whether or not the calculation of the incidence rate estimation values for the pixels located in the vicinity of the processing target pixel has been completed. That is, the signal correction unit 185 determines whether the calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and the calculation of the incidence rate estimation value has not been completed. In that case, the process returns to step S403 and the above-described processing is repeated.
  • the process proceeds to step S407, and the signal correction unit 184 is obtained for all the pixels at the predetermined position.
  • the incident rate estimated value for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method, such as an arithmetic mean, geometric mean, harmonic mean, median value, maximum value, minimum value, or the like.
  • step S408 the signal correction unit 185 stores the calculated incidence rate estimation value of the processing target pixel in the storage unit 182.
  • step S409 it is determined whether the processing from non-uniformity estimation for all the pixels obtained from the detection unit 151 to calculation of the incidence rate estimated value has been completed. If the processing for all the pixels has not been completed, step S401 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is finished, this processing is finished and the process proceeds to generation of a reconstructed image.
  • processing from non-uniformity estimation for each pixel to incidence rate estimation value calculation is performed according to the flowchart shown in FIG.
  • the non-uniformity estimation unit 184 reads the count rate related to the count value of the processing target pixel that is the pixel for calculating the incidence rate estimation value stored in the storage unit 182 (step S501), and near the processing target pixel.
  • the count rate of any pixel located is read (step S502).
  • the non-uniformity estimation unit 184 estimates the non-uniformity of the processing target pixel
  • the signal correction unit 185 corrects the incident rate of the processing target pixel based on the non-uniformity of the processing target pixel to obtain the incident rate estimated value. Calculate (step S503), and temporarily store the calculated incidence rate estimated value in the storage unit 182 (step S504).
  • step S505 the signal correction unit 185 determines whether calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and calculation of the incidence rate estimation value is completed. If not, the process returns to step S502 and the above-described processing is repeated. When the signal correction unit 185 determines that the calculation of the incidence rate estimation value has been completed for all the pixels at the predetermined position, the process proceeds to step S506, and the signal correction unit 185 is obtained for all the pixels at the predetermined position.
  • the incident rate estimated value of the processing target pixel is calculated by a predetermined method such as arithmetic mean, and the calculated incident rate estimated value of the processing target pixel is stored in the storage unit 182 ( Step S507).
  • step S508 it is determined whether the processing from the non-uniformity estimation for all the pixels obtained from the detection unit 151 to the incidence rate estimated value calculation is completed. If the processing for all the pixels is not completed, step S501 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is completed, the process proceeds to the next step S509, and it is determined whether or not the accuracy of the incidence rate estimated value stored in the storage unit 152 is sufficient. As a result of the determination, if it is determined that the accuracy is insufficient, the process returns to step S502, and the incident rate estimated value calculation process is performed again using the calculated incident rate estimated value instead of the pixel count rate. Do. On the other hand, if it is determined in step S509 that the accuracy of the incidence rate estimated value calculated by the signal correction unit 185 is sufficient, the present process is terminated and the process proceeds to generation of a reconstructed image.
  • the X-ray incident distribution on each subpixel is non-uniform and the dead time of each subpixel (detection element) varies. Since the non-uniformity of the incident distribution of the sub-pixel is estimated using the count rate in the pixels near the sub-pixel, the X-ray incident distribution can be properly grasped. As a result, since the incident X-ray dose is accurately estimated based on the non-uniformity of the incident distribution, artifacts in the acquired reconstructed image can be reduced to improve the image quality.
  • the count rate characteristic indicating the relationship between the count rate and the incident rate has been described.
  • the count rate characteristic f (x) may be given using an analytical expression or a lookup table. Further, it may be given by using interpolation as necessary.
  • the calculation of the incidence rate estimated value by the non-uniformity estimation and the correction based on the non-uniformity estimation result is not necessarily performed independently of the image reconstruction in the image generation unit, and can be performed simultaneously. . It can also be performed simultaneously with other corrections (for example, pile-up correction).
  • the estimation of the effects of non-uniformity is performed simultaneously with other detector responses in a forward problem to create a reconstructed image. Is possible.
  • subpixel division is performed by providing a common electrode on the upper surface of the direct radiation detection material and a subpixel electrode on the lower surface.
  • An electrode may be provided for each.
  • adjacent pixels 20 may share a common electrode on the upper surface, or may have electrodes individually.
  • a detector material not a direct radiation detection material but a scintillator (indirect radiation detection material) optically coupled to an optical device can be used.
  • a scintillator whose periphery is covered with a light-shielding agent may be provided for each subpixel, or a method of generating a microcrack by a laser between subpixels for one scintillator.
  • Sub-pixel division may be performed.
  • a photomultiplier tube (PMT), a photodiode (PD), an avalanche photodiode (APD), a silicon photomultiplier tube (SiPM), or the like can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention improves image quality by reducing artifacts in a reconstructed image obtained as a result of estimating nonuniformity of an incident distribution in a detector so as to accurately estimate an amount of incident radiation. Provided is a radiographic imaging device that is provided with: an X-ray source that emits X-rays; a detection unit in which pixels, each comprising a plurality of sub-pixels for detecting X-rays, are arranged in a two-dimensional array; a signal processing unit which generates an output signal in accordance with the intensity of the X-rays on the basis of detection signals supplied from the sub-pixels; a signal addition unit which generates an X-ray count signal for each of the pixels by adding output signals of the sub-pixels belonging to the pixel; and an image generation unit which generates an image on the basis of the X-ray count signal, wherein the image generation unit is provided with a nonuniformity estimation unit which estimates nonuniformity of an incident X-ray distribution in a pixel subject to processing on the basis of the X-ray count signal of said pixel subject to processing and the X-ray count signal of a pixel located near the pixel subject to processing.

Description

放射線撮像装置、放射線撮像方法及び放射線撮像プログラムRadiation imaging apparatus, radiation imaging method, and radiation imaging program
 本発明は、放射線撮像装置、特に、フォトンカウンティング型のX線検出器により被検体の投影像あるいは断層像を取得する放射線撮像装置、放射線撮像方法及び放射線撮像プログラムに関する。 The present invention relates to a radiation imaging apparatus, and more particularly to a radiation imaging apparatus, a radiation imaging method, and a radiation imaging program for acquiring a projection image or a tomographic image of a subject with a photon counting type X-ray detector.
 従来、コンピュータ断層撮影装置(CT)などのX線を利用した医療用の放射線撮像装置では、X線源から照射され被検体を透過したX線を検出器により検出し、被検体に起因したX線の減衰の情報を取得することで、被検体内の様子を画像化し診断に供している。
 近年、このような放射線撮像装置において、被検体を透過した放射線の一つ一つを分解してX線フォトンを検出する(パルスモード)ことで、より高精度の装置を実現しようという動きが活発となっている。CTの分野では、フォトンカウンティングCT(PCCT)などと呼ばれ、次世代の装置として期待されている。
Conventionally, in a medical radiation imaging apparatus using X-rays such as a computed tomography apparatus (CT), X-rays irradiated from an X-ray source and transmitted through a subject are detected by a detector, and X caused by the subject is detected. By acquiring information on line attenuation, the state in the subject is imaged and used for diagnosis.
In recent years, in such a radiation imaging apparatus, there has been an active movement toward realizing a higher-accuracy apparatus by decomposing each of the radiation transmitted through the subject and detecting X-ray photons (pulse mode). It has become. In the field of CT, it is called photon counting CT (PCCT) and is expected as a next-generation apparatus.
 PCCTに適用される検出器の例として、非特許文献1に、ピクセルを複数のサブピクセルに分割してサブピクセル毎にフォトンを計数し処理する所謂フォトンカウンティング型の検出器が開示されている。なお、以下の説明において、ピクセルとサブピクセルとを明確に区別するため、複数のサブピクセルからなるピクセルをマクロピクセルという。
 非特許文献1に開示された検出器のように、サブピクセル毎にX線フォトンを計数すると分割したサブピクセルの数だけ得られるデータ量が増えることになる。このため、各マクロピクセル内でサブピクセルの計数値(計数率)を加算し、マクロピクセル毎に出力値を得ることで、検出器から出力されるデータ量を低減している。
As an example of a detector applied to PCCT, Non-Patent Document 1 discloses a so-called photon counting type detector that divides a pixel into a plurality of subpixels and counts and processes photons for each subpixel. In the following description, a pixel composed of a plurality of subpixels is referred to as a macro pixel in order to clearly distinguish the pixel and the subpixel.
As in the detector disclosed in Non-Patent Document 1, when X-ray photons are counted for each subpixel, the amount of data obtained is increased by the number of divided subpixels. For this reason, the amount of data output from the detector is reduced by adding the count value (count rate) of the sub-pixels in each macro pixel and obtaining the output value for each macro pixel.
 ところで、複数に分割された各サブピクセルにおいて、1つの放射線のフォトンを処理する時間(デッドタイム)は有限であるため、放射線の入射率が高い場合には、デッドタイム中に複数のフォトンが時間的に重なって入力される、所謂パイルアップが生じる。パイルアップが生じると、X線フォトンを正しく計数することができず、また、X線フォトンのエネルギー情報を正確に取得することが困難となり、再構成画像にアーチファクトが生じてしまう。したがって、正確にX線フォトンの情報を取得するために、パイルアップによる影響を補正して、サブピクセルに入射したX線フォトン(放射線)の量を推定することが必要となる。 By the way, in each subpixel divided into a plurality of times, the time (dead time) for processing one photon of radiation is finite. Therefore, when the incident rate of radiation is high, a plurality of photons are timed during the dead time. So-called pile-up, which is input in an overlapping manner, occurs. When pile-up occurs, X-ray photons cannot be counted correctly, and it becomes difficult to accurately acquire energy information of X-ray photons, resulting in artifacts in the reconstructed image. Therefore, in order to accurately acquire X-ray photon information, it is necessary to correct the influence due to pileup and estimate the amount of X-ray photons (radiation) incident on the subpixel.
 しかしながら、サブピクセルに入射したX線フォトン(放射線)の量の推定に際しては以下のような課題がある。すなわち、マクロピクセルに入射する放射線の分布が一様でない場合には、マクロピクセルを構成する複数のサブピクセルのデッドタイム間にバラつきが生じる。ところが、検出器ではマクロピクセル毎に出力値を得るので、加算処理によってサブピクセルのデッドタイム間のバラつきに関する情報が失われてしまう。このため、サブピクセルのデッドタイム間のバラつきを考慮せずに各サブピクセルにおけるX線フォトンの入射率を推定すると、各サブピクセルに対するX線フォトンの入射率の推定精度が劣化し、延いてはマクロピクセルに対するX線フォトンの真の入射率の推定精度が劣化してしまう。推定精度の劣化により、再構成画像にアーチファクト等の画質劣化を生じさせるという不具合が生じる。 However, there are the following problems in estimating the amount of X-ray photons (radiation) incident on the subpixels. That is, when the distribution of the radiation incident on the macro pixel is not uniform, variation occurs between the dead times of a plurality of subpixels constituting the macro pixel. However, since the detector obtains an output value for each macro pixel, information regarding the variation between the dead times of the sub-pixels is lost by the addition process. For this reason, if the incidence rate of the X-ray photons in each subpixel is estimated without considering the variation between the dead times of the subpixels, the estimation accuracy of the incidence rate of the X-ray photons in each subpixel deteriorates. The estimation accuracy of the true incident rate of the X-ray photon with respect to the macro pixel is deteriorated. Due to the deterioration of the estimation accuracy, there arises a problem that image quality deterioration such as artifacts occurs in the reconstructed image.
 本発明は上記実情に鑑みてなされたものであり、各サブピクセルに対するX線の入射分布が非一様であり、各サブピクセルのデッドタイムにバラつきがある場合であっても、入射分布の非一様性を推定することにより、画質の向上に寄与することを目的とする。 The present invention has been made in view of the above circumstances, and the X-ray incident distribution on each subpixel is non-uniform, and even if the dead time of each subpixel varies, the incident distribution is not non-uniform. The purpose is to contribute to the improvement of image quality by estimating the uniformity.
 上記課題を解決するために、本発明は以下の手段を提供する。
 本発明の一態様は、X線を照射するX線源と、前記X線を検出する複数のサブピクセルからなるピクセルを二次元配列した検出部と、前記サブピクセルによる検出信号に基づいて前記X線の強度に応じた出力信号を生成する信号処理部と、前記ピクセルに属する前記サブピクセルの出力信号を加算することにより前記ピクセル毎のX線計数信号を生成する信号加算部と、前記X線計数信号に基づいて、画像を生成する画像生成部と、を備え、該画像生成部が、処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号とに基づいて、前記処理対象ピクセルのX線入射分布の非一様性を推定する非一様性推定部を備える放射線撮像装置を提供する。
In order to solve the above problems, the present invention provides the following means.
According to one aspect of the present invention, an X-ray source that irradiates X-rays, a detection unit that includes a plurality of sub-pixels that detect the X-rays, a detection unit that two-dimensionally arranges the X-rays, and the X signal based on a detection signal from the sub-pixels. A signal processing unit that generates an output signal corresponding to the intensity of the line, a signal addition unit that generates an X-ray count signal for each pixel by adding the output signals of the sub-pixels belonging to the pixel, and the X-ray An image generation unit that generates an image based on the count signal, the image generation unit including the X-ray count signal of the pixel to be processed and the X-ray count of a pixel located in the vicinity of the pixel to be processed Provided is a radiation imaging apparatus including a non-uniformity estimation unit that estimates non-uniformity of an X-ray incident distribution of the processing target pixel based on a signal.
 本発明によれば、各サブピクセルに対するX線の入射分布が非一様であり、各サブピクセルのデッドタイムにバラつきがある場合であっても、入射分布の非一様性を推定することにより、画質の向上に寄与することができる。 According to the present invention, even if the X-ray incident distribution for each subpixel is non-uniform and the dead time of each sub-pixel varies, the non-uniformity of the incident distribution is estimated. This can contribute to the improvement of image quality.
本発明の第1の実施形態に係るX線CT装置の概略を示すブロック図である。1 is a block diagram showing an outline of an X-ray CT apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るX線CT装置のコンピュータの概略構成を示し、(A)はブロック図であり、(B)はコンピュータにおけるCPUの機能ブロック図である。The schematic structure of the computer of the X-ray CT apparatus which concerns on the 1st Embodiment of this invention is shown, (A) is a block diagram, (B) is a functional block diagram of CPU in a computer. 本発明の第1の実施形態に係るX線検出器の概略を示す斜視図である。It is a perspective view showing the outline of the X-ray detector concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係るX線検出器の検出素子の配列とピクセルの関係の例を示す説明図である。It is explanatory drawing which shows the example of the relationship between the arrangement | sequence of the detection element of the X-ray detector which concerns on the 1st Embodiment of this invention, and a pixel. 本発明の第1の実施形態に係るX線検出器の検出素子の配列とピクセルの関係の例を示す説明図である。It is explanatory drawing which shows the example of the relationship between the arrangement | sequence of the detection element of the X-ray detector which concerns on the 1st Embodiment of this invention, and a pixel. 本発明の第1の実施形態に係るX線検出器の信号処理部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the signal processing part of the X-ray detector which concerns on the 1st Embodiment of this invention. 図6の信号処理回路の一部を抜き出した拡大説明図である。FIG. 7 is an enlarged explanatory diagram in which a part of the signal processing circuit of FIG. 6 is extracted. マヒ型および非マヒ型の信号処理回路における計数率特性を示した模式図である。It is the schematic diagram which showed the count rate characteristic in a Mahi type and a non-mahi type signal processing circuit. X線検出器に対する入射分布が一様でない場合の例を示す参考図である。It is a reference figure which shows the example in case the incident distribution with respect to an X-ray detector is not uniform. X線検出器に対する入射分布が一様でない場合の計数率及び入射率等の各種データを示す表である。It is a table | surface which shows various data, such as a count rate and an incident rate, when the incident distribution with respect to an X-ray detector is not uniform. X線検出器に対する入射分布が一様でない場合に入射率推定が過少評価になることを説明する計数率特性を示すグラフである。It is a graph which shows the count rate characteristic explaining that incidence rate estimation will be underestimated when the incident distribution with respect to an X-ray detector is not uniform. 本発明の第1の実施形態に係るX線CT装置における撮像処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the imaging process in the X-ray CT apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るX線CT装置における非一様性の推定~入射率推定値算出の流れを示すフローチャートである。3 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in the X-ray CT apparatus according to the first embodiment of the present invention. 本発明の第1の実施形態に係るX線CT装置における非一様性の推定~入射率推定値算出の流れを示すフローチャートである。3 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in the X-ray CT apparatus according to the first embodiment of the present invention. X線検出器に対する入射分布が一様でない場合の例を示す参考図である。It is a reference figure which shows the example in case the incident distribution with respect to an X-ray detector is not uniform. 本発明の第1の実施形態に係るX線検出器のサブピクセルの配列とピクセルの関係の例を示す説明図である。It is explanatory drawing which shows the example of the arrangement | sequence of the sub pixel and pixel relationship of the X-ray detector which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るX線CT装置における非一様性の推定~入射率推定値算出の流れを示すフローチャートである。6 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in an X-ray CT apparatus according to a second embodiment of the present invention. 本発明の第3の実施形態に係るX線CT装置における非一様性の推定~入射率推定値算出の流れを示すフローチャートである。10 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in an X-ray CT apparatus according to a third embodiment of the present invention. 本発明の第4の実施形態に係るX線CT装置における非一様性の推定~入射率推定値算出の流れを示すフローチャートである。10 is a flowchart showing a flow of non-uniformity estimation to incidence rate estimation value calculation in an X-ray CT apparatus according to a fourth embodiment of the present invention.
 以下、本発明の一実施形態について、図面を参照して説明する。
 本発明に係る放射線撮像装置は、X線を照射するX線源と、前記X線を検出する複数のサブピクセルからなるピクセルを二次元配列した検出部と、前記サブピクセルによる検出信号に基づいて前記X線の強度に応じた出力信号を生成する信号処理部と、前記ピクセルに属する前記サブピクセルの出力信号を加算することにより前記ピクセル毎のX線計数信号を生成する信号加算部と、前記X線計数信号に基づいて、画像を生成する画像生成部と、を備え、該画像生成部が、処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号とに基づいて、前記処理対象ピクセルのX線入射分布の非一様性を推定する非一様性推定部を備える放射線撮像装置である。
 このような放射線撮像装置によれば、各サブピクセルに対するX線の入射分布が非一様であり、各サブピクセルのデッドタイムにバラつきがある場合であっても、入射分布の非一様性を推定することができるので、推定した非一様性を利用することにより画質の向上を図ることができる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
A radiation imaging apparatus according to the present invention is based on an X-ray source that irradiates X-rays, a detection unit that two-dimensionally arranges pixels including a plurality of subpixels that detect the X-rays, and a detection signal from the subpixels A signal processing unit that generates an output signal according to the intensity of the X-ray, a signal addition unit that generates an X-ray count signal for each pixel by adding the output signals of the sub-pixels belonging to the pixel, and An image generation unit configured to generate an image based on the X-ray count signal, and the image generation unit includes the X-ray count signal of the processing target pixel and the X of the pixel located in the vicinity of the processing target pixel. The radiation imaging apparatus includes a non-uniformity estimation unit that estimates non-uniformity of an X-ray incident distribution of the processing target pixel based on a line count signal.
According to such a radiation imaging apparatus, the X-ray incident distribution on each sub-pixel is non-uniform, and even if the dead time of each sub-pixel varies, the non-uniformity of the incident distribution can be reduced. Since it can be estimated, the image quality can be improved by using the estimated non-uniformity.
 以下、より具体的に本発明の実施形態について説明する。
<第1の実施形態>
 以下、本発明の実施形態に係る放射線撮像装置の一例として、X線CT装置について図面を参照して説明する。
Hereinafter, embodiments of the present invention will be described more specifically.
<First Embodiment>
Hereinafter, an X-ray CT apparatus will be described with reference to the drawings as an example of a radiation imaging apparatus according to an embodiment of the present invention.
 図1に示すように、X線CT装置は、撮影系としての、X線源120と、X線検出器1150と、これらX線源120及びX線検出器150を対向配置し所定の回転軸を中心に回転するガントリ回転部110と、ガントリ回転部110の開口内に配置された寝台140と、これら撮影系の動作を制御すると共に撮影系の動作に伴ってX線検出器150が取得した信号を処理する制御部170と、X線検出器150により得られたデータに基づいて再構成像を生成するコンピュータ180とを備えている。 As shown in FIG. 1, the X-ray CT apparatus includes an X-ray source 120, an X-ray detector 1150, and the X-ray source 120 and the X-ray detector 150 as an imaging system. The gantry rotating unit 110 that rotates around the center, the bed 140 disposed in the opening of the gantry rotating unit 110, the operation of these imaging systems, and the X-ray detector 150 acquired along with the operation of the imaging system A control unit 170 that processes the signal and a computer 180 that generates a reconstructed image based on the data obtained by the X-ray detector 150 are provided.
 X線源120は、例えば、X線管を適用することができる。X線源120は、管電圧で加速した電子ビームをタングステンやモリブデンなどのターゲット金属に衝突させ、その衝突位置(焦点)からX線を発生させることで、X線フォトンを放出する。X線源120近傍には、フィルタ125が設けられている。フィルタ125は、X線源120から放出されたX線フォトン130のフラックス及びエネルギー分布を調整する。従って、X線源120から放出されたX線フォトンは、フィルタ125によってフラックス及びエネルギー分布の調整を受けた後に、一部は被検体200によって被検体内の物質分布に応じて吸収され、また一部は被検体200を透過して後述するX線検出器150において検出される。 For example, an X-ray tube can be applied to the X-ray source 120. The X-ray source 120 emits X-ray photons by causing an electron beam accelerated by a tube voltage to collide with a target metal such as tungsten or molybdenum and generating X-rays from the collision position (focal point). A filter 125 is provided in the vicinity of the X-ray source 120. The filter 125 adjusts the flux and energy distribution of the X-ray photons 130 emitted from the X-ray source 120. Therefore, after the X-ray photons emitted from the X-ray source 120 are subjected to the adjustment of the flux and energy distribution by the filter 125, a part of the X-ray photons is absorbed by the subject 200 according to the substance distribution in the subject. The part passes through the subject 200 and is detected by an X-ray detector 150 described later.
 ガントリ回転部110は、X線源120及び検出器150を互いに対向配置し、所定の回転軸を中心に回転する。ガントリ回転部110の中央には、被検体200が挿入される開口が設けられ、この開口内に、被検体200が寝かせられる寝台140が配置されている。寝台140とガントリ回転部110とは、所定の方向に相対的に移動可能となっている。一般に、CTでは全方向からのデータを取得するため、ガントリ回転部110を所定速度で回転させることで、X線源120及び検出器150を被検体200の周囲を回転させながらデータを取得する。回転の速度は典型的には概ね毎秒1~4回転である。また、ある1つの方向からの投影データ(1ビュー)を取得するのにデータを蓄積する時間は典型的に0.1~1ミリ秒のオーダである。 The gantry rotating unit 110 arranges the X-ray source 120 and the detector 150 facing each other and rotates around a predetermined rotation axis. An opening into which the subject 200 is inserted is provided at the center of the gantry rotating unit 110, and a bed 140 on which the subject 200 is laid is disposed in the opening. The bed 140 and the gantry rotating unit 110 are relatively movable in a predetermined direction. In general, in CT, in order to acquire data from all directions, the data is acquired while rotating the X-ray source 120 and the detector 150 around the subject 200 by rotating the gantry rotating unit 110 at a predetermined speed. The speed of rotation is typically about 1 to 4 revolutions per second. Also, the time for accumulating data for acquiring projection data (one view) from a certain direction is typically on the order of 0.1 to 1 millisecond.
 X線検出器150は、X線検出器150に入射したX線フォトンを検出し、例えば、4つのエネルギー範囲に分別する検出部151と、検出部151から出力される検出信号を収集し処理する信号処理部152とを備えている。検出部151により出力されたX線フォトンの検出信号は、複数の信号処理部152によってパルスモードで処理され、計数される。ここでいう計数とは、検出したX線フォトンを数えることに加え、エネルギー情報を取得することも含む。なお、被検体200で散乱されたX線を検出してしまうと望ましくない信号となるので、X線源120側から見て検出部151の手前にコリメータ145を配置し、散乱されたX線を遮断することが好ましい。X線検出器150の詳細は、後述する。 The X-ray detector 150 detects X-ray photons incident on the X-ray detector 150, and collects and processes, for example, a detection unit 151 that classifies into four energy ranges and a detection signal output from the detection unit 151. And a signal processing unit 152. The X-ray photon detection signals output from the detection unit 151 are processed in a pulse mode by the plurality of signal processing units 152 and counted. The counting here includes obtaining energy information in addition to counting the detected X-ray photons. In addition, if the X-rays scattered by the subject 200 are detected, an undesired signal is generated. Therefore, a collimator 145 is disposed in front of the detection unit 151 when viewed from the X-ray source 120 side, and the scattered X-rays are detected. It is preferable to block. Details of the X-ray detector 150 will be described later.
 制御部170は、ガントリ回転部110、X線源120、寝台140、X線検出器150等を制御すると共に、X線検出器150において検出し収集された信号に所定の処理を行ってコンピュータ180に転送する。 The control unit 170 controls the gantry rotating unit 110, the X-ray source 120, the bed 140, the X-ray detector 150, etc., and performs predetermined processing on the signals detected and collected by the X-ray detector 150 to perform the computer 180. Forward to.
 コンピュータ180は、図2(A)に示すように、CPU181及び記憶部182を備えている。また、CPU181は、図2(B)に示すように、非一様性推定部184及び信号補正部185を含む画像生成部183の機能を実現する。コンピュータ180は、X線検出器150の信号処理部152から制御部170を介して取得した信号を記憶部182に記憶し、これらの信号等に基づいて被検体の断層像の再構成像を生成する。 The computer 180 includes a CPU 181 and a storage unit 182 as shown in FIG. In addition, as illustrated in FIG. 2B, the CPU 181 realizes the function of an image generation unit 183 including a non-uniformity estimation unit 184 and a signal correction unit 185. The computer 180 stores the signal acquired from the signal processing unit 152 of the X-ray detector 150 via the control unit 170 in the storage unit 182 and generates a reconstructed image of the tomographic image of the subject based on these signals and the like. To do.
 また、コンピュータ180は、表示装置191及び入力装置192と接続され、画像生成部183として機能するCPU181において生成された再構成像は、CPU181の指示に従って、表示装置191に表示される。また、入力装置192は、X線CT装置における撮影条件等、すなわち、データの収集に必要なパラメータ、例えば、高圧電源(図示せず)からX線源120に印加する電圧の値や管電流、X線源120の回転動作の速度等の入力を受け付ける。表示装置191は、入力装置192により入力されたパラメータ及びその値等を表示させることができる。 Further, the computer 180 is connected to the display device 191 and the input device 192, and the reconstructed image generated by the CPU 181 functioning as the image generation unit 183 is displayed on the display device 191 in accordance with an instruction from the CPU 181. The input device 192 also includes imaging conditions in the X-ray CT apparatus, that is, parameters necessary for data collection, such as a voltage value or tube current applied to the X-ray source 120 from a high-voltage power supply (not shown), An input such as the speed of the rotational operation of the X-ray source 120 is received. The display device 191 can display the parameters input by the input device 192 and their values.
 また、コンピュータ180は、パイルアップによる影響を補正するために、各サブピクセル21に入射するX線フォトンの入射率を必要に応じて推定すると共に、非一様性推定部184によって、検出部151に入射するX線の入射分布の非一様性を推定する。ここで、本実施形態において、入射率とは、一つの検出単位(ピクセルやサブピクセル)あたりに単位時間に入射するX線フォトン数をいう。コンピュータ180におけるXフォトンの入射率推定の詳細については後述する。 In addition, the computer 180 estimates the incidence rate of X-ray photons incident on each sub-pixel 21 as necessary in order to correct the effect of pileup, and the non-uniformity estimation unit 184 detects the detection unit 151. The non-uniformity of the incident distribution of the X-rays incident on is estimated. Here, in the present embodiment, the incidence rate means the number of X-ray photons incident per unit time per detection unit (pixel or sub-pixel). Details of the X-photon incidence rate estimation in the computer 180 will be described later.
 なお、制御部170及びコンピュータ180は、その一部又は全部をCPU(中央処理装置)、メモリ及び主記憶部を含むシステムとして構築することができ、制御部170及びコンピュータ180を構成する各部の機能は、予め記憶部に格納されたプログラムをCPUがメモリにロードし、実行することにより実現することができる。また機能の一部または全部を、ASIC(Application Specific Integrated Circuit)や FPGA(Field Programmable Gate Array)などのハードウェアで構成することも可能である。 Note that the control unit 170 and the computer 180 can be partially or wholly constructed as a system including a CPU (Central Processing Unit), a memory, and a main storage unit, and the functions of the units constituting the control unit 170 and the computer 180 are included. Can be realized by the CPU loading the program stored in the storage unit in advance into the memory and executing it. Also, some or all of the functions can be configured by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
 続いて、X線検出器150について説明する。
 X線検出器150は、複数のピクセル20が二次元配列されピクセル毎にX線フォトンを検出して信号出力する検出部151と、検出部151の各ピクセル20からの出力信号を収集し処理する信号処理部152とを備えている。
Next, the X-ray detector 150 will be described.
The X-ray detector 150 has a detection unit 151 that two-dimensionally arranges a plurality of pixels 20 and detects and outputs an X-ray photon for each pixel, and collects and processes output signals from each pixel 20 of the detection unit 151. And a signal processing unit 152.
 検出部151は、図3に示すように、X線検出器150の一単位であり、入射したX線フォトンを検出するピクセル20が複数配列されて構成される。各ピクセル20には、被検体200を透過したX線フォトン130が入射し、計数される。検出部151に含まれるピクセル数は、例えば、長手方向に892個、短手方向に64個とすることができる。
 図3に示すように、検出部151は、X線源120を略中心とした円弧状に配置されており、ガントリ回転部110の回転に伴い、X線源120との位置関係を保ちながら回転する。従って、図3に示す例では、ピクセル20が近似的に曲面状に配置されているように描写しているが、一般にはピクセルの表面は曲率の無い平面であることが多く、検出部151におけるピクセル20の配置は多角形状になることもある。
 なお、被検体200で散乱されたX線フォトンを除去するために、ピクセル20のX線源120側にはコリメータ145(図1参照)が配置されている。コリメータ145は、ピクセル20とピッチ及び形状が一致するような二次元矩形コリメータであっても良いし、一次元のスリットコリメータであっても良い。
As shown in FIG. 3, the detection unit 151 is a unit of the X-ray detector 150 and includes a plurality of pixels 20 that detect incident X-ray photons. An X-ray photon 130 that has passed through the subject 200 enters each pixel 20 and is counted. The number of pixels included in the detection unit 151 can be, for example, 892 in the longitudinal direction and 64 in the lateral direction.
As shown in FIG. 3, the detection unit 151 is arranged in an arc shape with the X-ray source 120 as the center, and rotates while maintaining the positional relationship with the X-ray source 120 as the gantry rotation unit 110 rotates. To do. Therefore, in the example shown in FIG. 3, the pixels 20 are depicted as being approximately arranged in a curved surface shape. However, in general, the surface of the pixels is often a flat surface having no curvature, and the detection unit 151 The arrangement of the pixels 20 may be a polygonal shape.
Note that a collimator 145 (see FIG. 1) is disposed on the X-ray source 120 side of the pixel 20 in order to remove X-ray photons scattered by the subject 200. The collimator 145 may be a two-dimensional rectangular collimator whose pitch and shape coincide with those of the pixels 20 or a one-dimensional slit collimator.
 検出部151において、ピクセル20は、サブピクセル21としての検出素子が複数配列された検出素子群であり、この検出素子群がX線検出器150の一単位であるピクセル20を構成している。すなわち、1つのピクセル20は、複数のサブピクセル21に分割された構成であるということができる。各ピクセル20に含まれるサブピクセル21は、所謂フォトンカウンティング方式の検出素子であり、入射したX線フォトンを検出し、例えば、4つのエネルギー範囲に分別して計数を行う。 In the detection unit 151, the pixel 20 is a detection element group in which a plurality of detection elements as the sub-pixel 21 are arranged, and this detection element group constitutes the pixel 20 that is one unit of the X-ray detector 150. That is, it can be said that one pixel 20 is divided into a plurality of subpixels 21. The sub-pixel 21 included in each pixel 20 is a so-called photon counting type detection element, detects incident X-ray photons, and performs counting by dividing into, for example, four energy ranges.
 従って、検出器151では、サブピクセル21が別個独立にX線フォトンを検出し、ピクセル20を構成する複数の検出素子21からの出力信号を加算することでピクセル20毎に出力信号を生成している。
 図4に、ピクセル20として、複数の同一のサイズの検出素子21が、チャネル方向に2素子、スライス方向に2素子の計4個配列されて構成される例を示した。図4の例では、ピクセル20は例えば1mm四方であり、各サブピクセルは0.5mm四方となっている。以下、本実施の形態においては、ピクセル20が4つのサブピクセル21から構成されているものとして説明する。
Therefore, in the detector 151, the sub-pixel 21 detects X-ray photons independently and generates an output signal for each pixel 20 by adding the output signals from the plurality of detection elements 21 constituting the pixel 20. Yes.
FIG. 4 shows an example in which a plurality of detection elements 21 having the same size are arranged as a pixel 20 in a total of four elements, two elements in the channel direction and two elements in the slice direction. In the example of FIG. 4, the pixel 20 is 1 mm square, for example, and each subpixel is 0.5 mm square. Hereinafter, in the present embodiment, description will be made assuming that the pixel 20 includes four subpixels 21.
 なお、ピクセル20は、例えば同一サイズの検出素子をチャネル方向に3素子及びスライス方向に3素子の計9個から構成することができる他、チャネル方向に4素子及びスライス方向に4素子の計16個から構成することもできる。このように、チャネル方向にn素子及びスライス方向にm素子と、ピクセルを構成するサブピクセルの数は適宜定めることができる(n及びmは自然数)。また、ピクセルを構成するサブピクセルの大きさは必ずしも全て同一の大きさである必要はなく、大きさの異なるサブピクセルが混在する構成とすることもできる。 The pixel 20 can be composed of, for example, a total of nine detection elements of the same size, 3 elements in the channel direction and 3 elements in the slice direction, and 16 elements in total in the channel direction and 4 elements in the slice direction. It can also consist of pieces. Thus, n elements in the channel direction and m elements in the slice direction and the number of sub-pixels constituting the pixel can be determined as appropriate (n and m are natural numbers). In addition, the sizes of the sub-pixels constituting the pixels are not necessarily the same size, and a configuration in which sub-pixels having different sizes are mixed can be used.
 各ピクセル20を構成する各検出素子21は、例えば、図5に示すように、検出層40を挟むように正負の電極41,42が設けられ、各電極41,42に信号処理部152が接続された構造を有している。
 本実施形態では、X線フォトン130の入射面(図4における検出層40の上面)に設けられた負の電極41(以下、「共通電極41」という)が、ピクセル20全体を覆う共通電極となっている。また、正の電極42(以下、「個別電極42」という)は、サブピクセルとしての検出素子21毎に設けられ、信号処理部152の個別のチャンネル165が各個別電極42に接続されている。すなわち、サブピクセル毎に信号を読み出し、エネルギー情報の取得を含むX線フォトンの計数を行うようになっている。
For example, as shown in FIG. 5, each detection element 21 constituting each pixel 20 is provided with positive and negative electrodes 41 and 42 so as to sandwich the detection layer 40, and a signal processing unit 152 is connected to each electrode 41 and 42. Has a structured.
In the present embodiment, a negative electrode 41 (hereinafter referred to as “common electrode 41”) provided on the incident surface of the X-ray photon 130 (the upper surface of the detection layer 40 in FIG. 4) is a common electrode that covers the entire pixel 20. It has become. A positive electrode 42 (hereinafter referred to as “individual electrode 42”) is provided for each detection element 21 as a subpixel, and an individual channel 165 of the signal processing unit 152 is connected to each individual electrode 42. That is, a signal is read out for each subpixel, and X-ray photon counting including acquisition of energy information is performed.
 このように、ピクセル20は、1つの共通電極41とサブピクセル21(検出素子)に対応する数の個別電極42とを備えている。言い換えると、ピクセル20は、検出層40の表面内で、複数の個別電極42を含み、1つの個別電極42に対応した領域が1つのサブピクセル21を形成する構成となっている。図4に示す例のように、検出層40として、直接型放射線検出素材を使用した場合には、ピクセル20の上面から見た場合にはサブピクセル21の境界(図3参照)が物理的には見えない場合もある。 As described above, the pixel 20 includes one common electrode 41 and the number of individual electrodes 42 corresponding to the sub-pixel 21 (detection element). In other words, the pixel 20 includes a plurality of individual electrodes 42 in the surface of the detection layer 40, and a region corresponding to one individual electrode 42 forms one subpixel 21. As in the example shown in FIG. 4, when a direct radiation detection material is used as the detection layer 40, when viewed from the upper surface of the pixel 20, the boundary of the subpixel 21 (see FIG. 3) is physically May not be visible.
 なお、検出層40には、微細加工が容易であり、直接電気信号を読み出すことが可能な、例えばテルル化カドミウム、テルル化亜鉛カドミウム、臭化タリウム、沃化水銀、沃化ビスマスなどの直接型放射線検出素材である化合物半導体を適用することが好ましい。この他、検出層40には、シンチレータ(間接型放射線検出素材)に光デバイスを光学結合したものを使用することも可能である。また、検出層40の厚さは、0.5mm~3mm程度とすることが好ましい。 The detection layer 40 is easy to be finely processed and can directly read out an electric signal, for example, a direct type such as cadmium telluride, zinc cadmium telluride, thallium bromide, mercury iodide, bismuth iodide. It is preferable to apply a compound semiconductor that is a radiation detection material. In addition, the detection layer 40 can be a scintillator (indirect radiation detection material) optically coupled with an optical device. In addition, the thickness of the detection layer 40 is preferably about 0.5 mm to 3 mm.
 X線フォトン130は、共通電極41側から検出層40に入射し、X線フォトンを検出してそのエネルギーに応じた量の電荷を生じる。共通電極41には図示しない高圧電源により、例えば、-600Vの電圧が印加される。共通電極41及び個別電極42ではX線フォトンが減衰しないことが望ましい。共通電極41及び個別電極42は、検出層40に比べて充分に薄く、1μm以下の厚みに加工することが可能である。 The X-ray photon 130 enters the detection layer 40 from the common electrode 41 side, detects the X-ray photon, and generates an amount of charge corresponding to the energy. For example, a voltage of −600 V is applied to the common electrode 41 by a high voltage power source (not shown). It is desirable that the X-ray photons are not attenuated at the common electrode 41 and the individual electrodes 42. The common electrode 41 and the individual electrode 42 are sufficiently thinner than the detection layer 40 and can be processed to a thickness of 1 μm or less.
 信号処理部152は、図6及び図7に示すように、サブピクセル21毎にチャンネル165を備え、当該ピクセル20に属するサブピクセル21からの出力信号をチャンネル165で検出し、信号加算部166において所定の条件に従って加算し、各ピクセル20の出力信号として収集し処理する。 As shown in FIGS. 6 and 7, the signal processing unit 152 includes a channel 165 for each subpixel 21, detects an output signal from the subpixel 21 belonging to the pixel 20 through the channel 165, and the signal adding unit 166 Addition is performed in accordance with a predetermined condition, and collected and processed as an output signal of each pixel 20.
 図6及び図7に、各サブピクセル21に接続される信号処理部152の各チャンネル165の例を示す。各チャンネル165は、電荷信号として検出したX線フォトンを電圧信号に変換する電荷有感型前置増幅器310a(310の代表として図7の310aを用いて記載する;以下同じ)と、電荷有感型前置増幅器310aにより変換された電圧信号の整形を行う波形整形増幅器320aと、電圧信号に係る電圧とリファレンス電圧を比較してエネルギー情報を得るための4つのコンパレータ330a1~330a4と、カウンタ340a1~340a4とを備えている。 6 and 7 show an example of each channel 165 of the signal processing unit 152 connected to each sub-pixel 21. FIG. Each channel 165 has a charge-sensitive preamplifier 310a that converts an X-ray photon detected as a charge signal into a voltage signal (described using 310a in FIG. 7 as a representative of 310; the same applies hereinafter), A waveform shaping amplifier 320a for shaping the voltage signal converted by the type preamplifier 310a, four comparators 330a1 to 330a4 for obtaining energy information by comparing a voltage related to the voltage signal and a reference voltage, and a counter 340a1 to 340a4.
 このように構成されたチャンネル165における信号処理は以下のように行われる。ピクセル20中の任意のサブピクセルaから読み出された信号は、まず電荷有感型前置増幅器310aによって電荷信号から電圧信号に変換され、波形整形増幅器320aに出力される。電荷有感型前置増幅器310aにおいて変換された電圧信号は、波形整形増幅器320aにおいて整形され(以下、整形された後の電圧信号を「検出信号」という)、4つのコンパレータ330a1~330a4に出力される。 The signal processing in the channel 165 configured in this way is performed as follows. A signal read from an arbitrary sub-pixel a in the pixel 20 is first converted from a charge signal to a voltage signal by the charge-sensitive preamplifier 310a and output to the waveform shaping amplifier 320a. The voltage signal converted in the charge-sensitive preamplifier 310a is shaped in the waveform shaping amplifier 320a (hereinafter, the shaped voltage signal is referred to as “detection signal”) and output to the four comparators 330a1 to 330a4. The
 各コンパレータ330a1~330a4には、夫々異なるリファレンス電圧th1~th4が供給され、各コンパレータ330a1~330a4において検出信号とリファレンス電圧th1~th4とが比較される。各コンパレータ330a1~330a4における比較の結果、検出信号がリファレンス電圧よりも大きかった場合、当該コンパレータと対応するカウンタ340a1~4がカウントアップする。これにより、X線フォトンをそのエネルギーに応じて4種類に分別して計数することができる。 The different reference voltages th1 to th4 are supplied to the comparators 330a1 to 330a4, and the detection signals are compared with the reference voltages th1 to th4 in the comparators 330a1 to 330a4. As a result of comparison in each of the comparators 330a1 to 330a4, when the detection signal is larger than the reference voltage, the counters 340a1 to 340a4 corresponding to the comparators count up. Thereby, X-ray photons can be classified into four types according to the energy and counted.
 なお、カウンタ340a1,340a2,340a3は、検出信号がth1,th2,th3より大きくth2,th3,th4より小さい場合にカウントアップするような構成とすることもできる。 Note that the counters 340a1, 340a2, and 340a3 may be configured to count up when the detection signal is larger than th1, th2, th3, and smaller than th2, th3, th4.
 各チャンネル165は、所定の測定時間(1ビュー)が終了したら、カウントアップを停止し、ピクセル20内の4つのサブピクセル21で同じ閾値を持つカウンタ(例えば340a1、340b1、340c1、340d1)の計数値(計数率)が、信号加算部166にて加算され、当該ピクセル20の出力信号が生成される。異なる閾値を持つ4つのカウンタの全てに対して同様の操作が行われた後、1つのピクセル20に対して異なる閾値に対応する、つまりエネルギー領域に応じた4つの計数値が出力信号として生成され、制御装置170に出力される。 Each channel 165 stops counting up when a predetermined measurement time (one view) ends, and counts of counters (for example, 340a1, 340b1, 340c1, 340d1) having the same threshold value in the four sub-pixels 21 in the pixel 20. The numerical value (counting rate) is added by the signal adding unit 166, and the output signal of the pixel 20 is generated. After the same operation is performed on all four counters having different threshold values, four count values corresponding to different threshold values, that is, corresponding to energy regions, are generated as output signals for one pixel 20. Are output to the control device 170.
 なお、このようにサブピクセル21で検出された信号をピクセル20の信号として加算して出力することで、サブピクセル21から別個独立に信号を出力する場合に比して、データ量を削減することができる。なお、信号加算部166は、上述の例では、単純加算について述べているが、これに限られるものではなく、重み付け加算等も行うことができ、信号処理部の構成等に応じて適宜定めることができる。 Note that the amount of data can be reduced by adding the signals detected by the sub-pixels 21 as the signals of the pixel 20 and outputting the signals separately from the sub-pixels 21 and outputting the signals separately. Can do. In addition, although the signal addition part 166 described simple addition in the above-mentioned example, it is not restricted to this, Weighted addition etc. can also be performed and it determines suitably according to the structure of a signal processing part, etc. Can do.
 ここで、サブピクセル21に対する入射率を推定する必要性についての説明に先立って、PCCTの信号処理回路(本実施形態における信号処理部152)におけるデッドタイムについて説明する。
 PCCTにおいては、信号処理回路の持つデッドタイムが、測定で得られた計数値にどのように影響しているかを考慮する必要がある。デッドタイムの観点から、信号処理回路は理想的には大きく二つに分類することができ、それぞれマヒ型、非マヒ型と呼ばれることがある。図8に、マヒ型及び非マヒ型の各計数率特性(入射率と計数率の関係)を示した。ここで、入射率とは、上述したように一つの検出単位(ピクセルまたはサブピクセル)あたりに単位時間に入射するX線フォトン数であり、計数率とは、一つの検出単位(ピクセルまたはサブピクセル)あたりで単位時間に検出(計数)されるX線フォトン数をいう。
Here, prior to the description of the necessity of estimating the incidence rate with respect to the sub-pixel 21, the dead time in the PCCT signal processing circuit (the signal processing unit 152 in the present embodiment) will be described.
In PCCT, it is necessary to consider how the dead time of a signal processing circuit affects the count value obtained by measurement. From the viewpoint of dead time, the signal processing circuit can ideally be roughly classified into two types, which are sometimes referred to as “mahi type” and “non-mahi type”, respectively. FIG. 8 shows the count rate characteristics (relationship between incidence rate and count rate) of the Mahi type and the non-Mahi type. Here, the incidence rate is the number of X-ray photons incident per unit time per detection unit (pixel or subpixel) as described above, and the count rate is one detection unit (pixel or subpixel). ) Is the number of X-ray photons detected (counted) per unit time.
 以下の説明においては、説明の便宜上、量子効率は1(検出されずに透過するフォトンはない)であることとし、検出されたフォトンは全エネルギーを検出したサブピクセルに付与するものとする。
 この場合、デッドタイムが0という理想的な場合に期待される計数率は入射率に等しくなる。入射率をx、有限のデッドタイムを持つ場合の計数率をyとすると、マヒ型の信号処理回路の場合の計数率特性410は式(1)で表わされることが知られている(図8参照)。
In the following description, for convenience of explanation, it is assumed that the quantum efficiency is 1 (no photon is transmitted without being detected), and the detected photon is applied to the sub-pixel in which the total energy is detected.
In this case, the count rate expected in an ideal case where the dead time is 0 is equal to the incidence rate. It is known that the count rate characteristic 410 in the case of the Mahi signal processing circuit is expressed by the following equation (1), where x is the incidence rate and y is the count rate when there is a finite dead time (FIG. 8). reference).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、τは信号処理回路のデッドタイムであり、例えば、20ナノ秒とする。一方で非マヒ型の場合の計数率特性420は、以下の式(2)で表すことができる(図8参照)。 Here, τ is the dead time of the signal processing circuit, and is, for example, 20 nanoseconds. On the other hand, the count rate characteristic 420 in the case of the non-mahi type can be expressed by the following equation (2) (see FIG. 8).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図8に示すように、マヒ型の信号処理回路では、1チャンネル当たり50Mcps(一秒あたり5×10カウント)の入射率で計数率が最大値となり、入射率がそれ以上増えても計数率は減少するという性質を示す(計数率が最大値をとる入射率はデッドタイムに依存して決まる)。 As shown in FIG. 8, in the Mahi signal processing circuit, the count rate becomes the maximum value at an incidence rate of 50 Mcps per channel (5 × 10 7 counts per second), and the count rate is increased even if the incidence rate is further increased. Shows a property of decreasing (the incidence rate at which the count rate takes the maximum value is determined depending on the dead time).
 しかし、このように入射率が増えても計数率が減少するような高計数率領域においては、放射線の信号同士の時間間隔が短くなり過ぎて重なり合ってしまういわゆるパイルアップが極めて顕著となり、エネルギー情報を精度良く取得することが困難となる。1チャンネル当たり50Mcps以下の領域では、マヒ型の計数率特性410及び非マヒ型の計数率特性420のいずれも上に凸な単調増加関数であるという点で類似している。 However, in such a high count rate region where the count rate decreases even when the incidence rate increases, the so-called pile-up in which the time intervals between the radiation signals become too short and overlap each other becomes extremely significant, and energy information It is difficult to obtain the data with high accuracy. In the region of 50 Mcps or less per channel, both the Mahi-type count rate characteristic 410 and the non-Mahi-type count rate characteristic 420 are similar in that they are upwardly convex monotonically increasing functions.
 パイルアップがそれほど顕著ではなく、エネルギー情報を精度良く取得することができる計数率領域であっても、デッドタイムによって計数率が入射率も少なくなる効果は無視できない。従って、正確なX線フォトンの情報を取得するためには、パイルアップ(デッドタイム)による影響を補正して、サブピクセルに入射したX線フォトン(放射線の量)を推定することが必要となる。 Even in the count rate region where the pile-up is not so noticeable and energy information can be acquired with high accuracy, the effect that the count rate is reduced by the dead time cannot be ignored. Accordingly, in order to acquire accurate X-ray photon information, it is necessary to correct the influence of pile-up (dead time) and estimate the X-ray photon (radiation amount) incident on the subpixel. .
 続いて、X線の入射分布が一様でない場合の検出器の応答について説明する。
 説明の便宜を図るため、簡易的に、ピクセル20の幅方向、すなわち図9における左右方向にのみ、入射分布に偏りがある場合を想定する。また、ピクセル20が、互いに等しい大きさの、2つのサブピクセル21L及びサブピクセル21Rに分割されていることとして説明する。サブピクセル21は、図9における左右方向に2つ配置されていることとする。なお、ピクセルに含まれるサブピクセルが、互いに異なる大きさである場合には、単位面積あたりの入射率に適宜変換すればよい。
Next, the response of the detector when the X-ray incident distribution is not uniform will be described.
For convenience of explanation, it is assumed that the incident distribution is biased only in the width direction of the pixel 20, that is, in the left-right direction in FIG. In addition, the pixel 20 will be described as being divided into two sub-pixels 21L and 21R having the same size. Two sub-pixels 21 are arranged in the left-right direction in FIG. In addition, what is necessary is just to convert suitably into the incident rate per unit area, when the subpixel contained in a pixel is a mutually different magnitude | size.
 なお、図7に示した構成では、各コンパレータ330a1~330a4に供給されるリファレンス電圧th1~th4に応じた4種類のエネルギーのX線フォトンの計数値が得られる。一方、非一様性を推定するにあたってはデッドタイムを生じさせた全イベント数を用いる必要がある。従って、以下の説明において、計数率又は入射率という場合は検出信号がリファレンス電圧th1よりも大きかった全イベント数(全計数率又は全入射率と称されることもある)をいう。 In the configuration shown in FIG. 7, X-ray photon count values of four types of energy corresponding to the reference voltages th1 to th4 supplied to the comparators 330a1 to 330a4 are obtained. On the other hand, in estimating non-uniformity, it is necessary to use the total number of events that caused the dead time. Therefore, in the following description, the count rate or the incidence rate refers to the total number of events (sometimes referred to as the total count rate or the total incidence rate) for which the detection signal is greater than the reference voltage th1.
 図9には、検出部151の一部分として、ピクセル20aを挟むようにピクセル20b及び20cがピクセル20aに隣接して配置された例を示している。図9において、ピクセル20aの両隣に配置されたピクセル20b及びピクセル20cにはX線は一様に入射している。一方、ピクセル20aにおけるX線の入射率は、ピクセル20bに近い程低く、ピクセル20cに近いほど高くなっている。つまり、ピクセル20aにおいてはX線が一様に入射していない。このような入射率の変化は主にX線源120とピクセル20a,20b,20cの間に存在する物質の密度や厚みの変化によって引き起こされると考えられる。
 そして、その密度や厚みの変化が空間的に一次関数的なものであると考えられる場合、入射率は指数関数的に変化していることが期待される。
FIG. 9 shows an example in which pixels 20b and 20c are arranged adjacent to the pixel 20a so as to sandwich the pixel 20a as a part of the detection unit 151. In FIG. 9, X-rays are uniformly incident on the pixels 20b and 20c arranged on both sides of the pixel 20a. On the other hand, the incidence rate of X-rays at the pixel 20a is lower as it is closer to the pixel 20b and higher as it is closer to the pixel 20c. That is, X-rays are not uniformly incident on the pixels 20a. It is considered that such a change in incidence rate is mainly caused by a change in the density and thickness of a substance existing between the X-ray source 120 and the pixels 20a, 20b, and 20c.
When the density and thickness change is considered to be a linear function spatially, the incidence rate is expected to change exponentially.
 図10に、サブピクセル21に対するX線の入射率xを推定する際に要する種々の値を表1として示した。以下、図10の表1に従って、X線の入射分布が一様でない場合の検出器の応答、入射率xの推定について検討する。 10 shows various values necessary for estimating the X-ray incidence rate x with respect to the sub-pixel 21 as Table 1. Hereinafter, according to Table 1 of FIG. 10, the response of the detector when the X-ray incidence distribution is not uniform and the estimation of the incidence rate x will be examined.
 例えば、ピクセル20a,20b,20cに含まれる各サブピクセルに対する入射率xを以下のように設定してシミュレーションを行う。すなわち、ピクセル20bに含まれるサブピクセル21bL、21bRにおける入射率xbL、xbRは2.5Mcpsであり、両者ともその入射率は同一であり、一様な分布であると設定する。一方、ピクセル20aに含まれるサブピクセル21aLへの入射率xaLは5Mcps、サブピクセル21aRへの入射率xaRは10Mcpsであり、サブピクセル20bRから離れるにつれ指数関数的に変化していると設定する。また、ピクセル20cに含まれるサブピクセル21cL,21cRの入射率xcL、xcRは両者とも20Mcpsであり、両者への入射率は一様な分布であると設定する(表1の3段目)。従って、このような設定の場合のピクセル20b,20a,20cへの入射率x、x、xはそれぞれ5,15,40Mcpsとなる(表1の4段目)。 For example, the simulation is performed by setting the incidence rate x for each sub-pixel included in the pixels 20a, 20b, and 20c as follows. That is, the incidence rates x bL and x bR in the sub-pixels 21bL and 21bR included in the pixel 20b are 2.5 Mcps, and both have the same incidence rate and are set to have a uniform distribution. Meanwhile, the incidence rate x aL to subpixels 21aL included in the pixel 20a 5Mcps, incidence rate x aR to subpixel 21aR is 10 Mcps, set to be exponentially-varying distance from the subpixel 20bR . Further, the incidence rates x cL and x cR of the sub-pixels 21cL and 21cR included in the pixel 20c are both 20 Mcps, and the incidence rates on both are set to have a uniform distribution (third stage in Table 1). . Accordingly, the incident rates x b , x a , and x c to the pixels 20b, 20a, and 20c in such a setting are 5, 15, and 40 Mcps, respectively (the fourth stage in Table 1).
 しかしながら、X線が検出器150で検出され、有限のデッドタイムで処理された場合、実際に計測される計数率yは、パイルアップのために入射率xよりも低くなる。そのため、サブピクセルあたりの計数率は、例えば表1の5段目に示したようにサブピクセル21bL,21bRの計数率ybL、ybRが共に2.4Mcps、サブピクセル21aLの計数率yaLが4.5Mcps、サブピクセル21aRの計数率yaRが8.3Mcps、サブピクセル21cL,21cRの計数率ycL、ycRが共に13.8Mcpsになる。
 しかし、上述のように、これらのサブピクセル毎の計数率y、yの値は出力されず、信号統合部166によりピクセル毎の計数率y(=y+y)として加算され、ピクセル20b,20a,20cから得られる計数率y(=ybL+ybR)、y(=yaL+yaR)、y(=ycL+ycR)はそれぞれ4.8,12.8,27.7Mcpsとなる(表1の6段目)。
However, when X-rays are detected by the detector 150 and processed with a finite dead time, the actually measured count rate y is lower than the incidence rate x due to pileup. Therefore, the count rate per sub-pixel is, for example, as shown in the fifth row of Table 1, the count rates y bL and y bR of the sub-pixels 21bL and 21bR are both 2.4 Mcps, and the count rate y aL of the sub-pixel 21aL is 4.5Mcps, count rate y aR subpixel 21aR is 8.3Mcps, subpixel 21cL, 21cR count rate y cL, the y cR are both 13.8Mcps.
However, as described above, the values of the count rates y L and y R for each of the sub-pixels are not output, and are added as the count rate y (= y L + y R ) for each pixel by the signal integration unit 166. The count rates y b (= y bL + y bR ), y a (= y aL + y aR ), and y c (= y cL + y cR ) obtained from 20b, 20a, and 20c are 4.8, 12.8, and 27, respectively. .7 Mcps (6th row in Table 1).
 このとき、実測あるいはシミュレーション等によって、例えば、図11に示すような信号処理回路の計数率特性y=f(x)を事前に把握しておくことで、パイルアップによって低下した計数率yと、計数率特性y=f(x)とに基づいて、パイルアップの影響を除去した各ピクセルの入射率xを演算により算出することができる。
 この演算によりパイルアップの影響を除去した、ピクセルの計数値y(表1の6段目)から計数率特性y=f(x)を用いて得られた入射率予測値x(表1の7段目)は、ピクセル内で入射分布が一様なピクセル20b,20cでは、シミュレーションにおいて当初設定した入射率x(表1の4段目)に一致しているが、ピクセル20aでは1.6%の過少評価となっていることがわかる(表1の8段目)。CTが医用の診断画像を提供する装置であることに鑑みると、この過少評価はアーチファクトなどの画質低下を招来し得る、無視できない大きさのズレである。
At this time, the count rate y decreased by pileup by grasping in advance the count rate characteristic y = f (x) of the signal processing circuit as shown in FIG. Based on the count rate characteristic y = f (x), the incidence rate x of each pixel from which the effect of pileup has been removed can be calculated.
The incidence rate prediction value x (7 in Table 1) obtained by using the count rate characteristic y = f (x) from the pixel count value y (6th stage in Table 1), which eliminates the effect of pileup by this calculation. In the pixels 20b and 20c where the incident distribution is uniform within the pixels, the first stage corresponds to the incident rate x (fourth stage in Table 1) initially set in the simulation, but 1.6% in the pixels 20a. It can be seen that this is underestimated (8th row in Table 1). In view of the fact that CT is a device that provides medical diagnostic images, this underestimation is a non-negligible deviation that can lead to image quality degradation such as artifacts.
 過少評価になる現象は、図11に示す入射率xと計数率yの関係を表すグラフ(計数率特性y=f(x))から定性的に理解することができる。図11のグラフに示した関数は、上に凸な単調増加曲線の関数であり、検出器150の計数率特性y=f(x)の例を示している。サブピクセルへの入射分布が一様でなく、例えば、x=aとx=bという異なる入射率xの場合、得られる計数率yはそれぞれy=f(a)、y=f(b)となる。 The phenomenon of underestimation can be qualitatively understood from the graph (count rate characteristic y = f (x)) showing the relationship between the incidence rate x and the count rate y shown in FIG. The function shown in the graph of FIG. 11 is a function of a monotonically increasing curve that is convex upward, and shows an example of the count rate characteristic y = f (x) of the detector 150. When the incident distribution to the sub-pixels is not uniform, for example, when the incident rates x are different such as x = a and x = b, the obtained count rates y are y = f (a) and y = f (b), respectively. Become.
 この場合、2つのサブピクセルからなるピクセル内で平均したサブピクセル当たりの計数率は(f(a)+f(b))/2と計算されるが、ここから計数率特性y=f(x)を参照して算出される入射率x=cは、f(x)が上に凸の曲線である場合、常に真の平均入射率(a+b)/2よりも小さい値となる。すなわち、X線フォトンの入射分布が非一様なピクセルの場合、計数率yと計数率特性y=f(x)から推定して得られる入射率予測値xは常に過少評価されることになってしまう。過小評価の程度は、X線フォトンの入射分布の非一様性の強さ及び入射率xによって定まるものであり、X線フォトンの入射率xの分布に偏りが大きいほど過少評価になり、また、計数率特性y=f(x)の曲率が大きいほど過少評価になる。 In this case, the count rate per sub-pixel averaged in the pixel composed of two sub-pixels is calculated as (f (a) + f (b)) / 2, from which the count rate characteristic y = f (x) The incidence rate x = c calculated with reference to is always a value smaller than the true average incidence rate (a + b) / 2 when f (x) is an upwardly convex curve. That is, when the incident distribution of X-ray photons is a non-uniform pixel, the predicted incidence rate x obtained by estimation from the count rate y and the count rate characteristic y = f (x) is always underestimated. End up. The degree of underestimation is determined by the intensity of non-uniformity of the incident distribution of X-ray photons and the incidence rate x. The larger the bias in the distribution of the incidence rate x of X-ray photons, the underestimation occurs. The larger the curvature of the count rate characteristic y = f (x), the lower the evaluation.
 このような理由から、計数率yと計数率特性y=f(x)から算出される入射率予測値xをそのまま入射率とするのではなく、検出器150に入射するX線が一様でない場合を考慮し、計数率特性y=f(x)から得た入射率予測値xを補正して、入射したX線量を正確に推定することが必要となる。
 そこで、コンピュータ180は、このようなサブピクセルに入射するX線が一様でない場合、一様でない程度を示す非一様性に起因した入射率予測値xのズレを軽減するため、当該ピクセルの近傍のピクセルの計数値yを用いて当該ピクセルへの入射分布の非一様性を推定し、当該ピクセルの入射率予測値を補正する。
For this reason, the incident rate predicted value x calculated from the count rate y and the count rate characteristic y = f (x) is not used as it is, but the X-rays incident on the detector 150 are not uniform. Considering the case, it is necessary to correct the incident rate predicted value x obtained from the count rate characteristic y = f (x) and accurately estimate the incident X-ray dose.
Therefore, when the X-rays incident on such sub-pixels are not uniform, the computer 180 reduces the deviation of the predicted incidence rate x due to non-uniformity indicating the non-uniformity. The nonuniformity of the incident distribution to the pixel is estimated using the count value y of the neighboring pixel, and the predicted incidence rate of the pixel is corrected.
 このため、コンピュータ180の画像生成部183が、非一様性を推定するための非一様性推定部184と、非一様性推定部による推定結果に基づいてピクセルに入射したX線の入射率推定値xを算出する信号補正部185を備えている。 For this reason, the image generation unit 183 of the computer 180 receives the non-uniformity estimation unit 184 for estimating the non-uniformity and the incidence of X-rays incident on the pixels based on the estimation result by the non-uniformity estimation unit. and a signal correction unit 185 for calculating the rate estimated value x E.
 非一様性推定部184は、処理対象ピクセルの計数値y(X線計数信号)と、処理対象ピクセルの近傍に位置するピクセルの計数値y(X線計数信号)とに基づいて、処理対象ピクセルのX線入射分布の非一様性を推定する。ここで、上述のように、計数率特性y=f(x)を用いることにより計数率yから入射率予測値xを得ることができるので、本実施形態において、非一様性推定部184は、非一様性を推定するに際して、例えば記憶部182に予め保持しておいた計数率特性y=f(x)も利用することができる。 The non-uniformity estimation unit 184 performs processing based on the count value y (X-ray count signal) of the processing target pixel and the count value y (X-ray count signal) of a pixel located in the vicinity of the processing target pixel. Estimate the non-uniformity of the X-ray incidence distribution of the pixels. Here, as described above, since the incidence rate prediction value x can be obtained from the count rate y by using the count rate characteristic y = f (x), in the present embodiment, the non-uniformity estimation unit 184 When estimating the non-uniformity, for example, the count rate characteristic y = f (x) previously stored in the storage unit 182 can be used.
 (入射率推定値の算出手法)
 以下、図10の表1に示した例に従って、本実施形態における非一様性推定部184によるピクセル20aの入射率推定値xの算出手法の一例について説明する。
 表1の7段目に示した、計数率特性y=f(x)から得られる入射率予測値xによると、ピクセル20aの入射率予測値xは、ピクセル20bの入射率予測値xよりも大きいため、ピクセル20aにおける入射分布が非一様であることが推定される。ピクセル20bは2つのサブピクセル21bL,21bRから構成され、ピクセル20bの入射率予測値xは5Mcpsであることから、サブピクセル21bL,21bRの入射率予測値xbL、xbRは夫々2.5Mcpsであると考えることができる。
(Calculation method of estimated incidence rate)
Hereinafter, according to examples shown in Table 1 in FIG. 10, an example of a method of calculating the incidence rate estimate x E pixels 20a by nonuniformity estimator 184 in this embodiment.
It is shown in the 7th stage of the Table 1, according to the count rate characteristic y = incidence rate prediction value obtained from f (x) x, incidence rate predicted value x a pixels 20a, the incident rate prediction value x b pixels 20b It is estimated that the incident distribution at the pixel 20a is non-uniform. Pixel 20b is two subpixels 21bL, consists 21BR, since the incidence rate predicted value x b pixels 20b is 5Mcps, subpixel 21bL, 21bR of the incidence rate predicted value x bL, x bR are each 2.5Mcps Can be considered.
 ピクセル20aへの入射率xの分布が、隣接するサブピクセル21bRから離れるにつれて指数関数的に増加していると仮定すると、サブピクセル21aL及び21aRの入射率xaL、xaRは、隣接するサブピクセル21bRの入射率xbRをp、パラメータkを用いて、それぞれ、xaL=p×k=2.5×k Mcps及びxaR=p×k=2.5×k Mcpsと表すことができる。これら入射率xaL、xaRを加算した結果が、実際の計数率から計数率特性y=f(x)を参照して求めたピクセル20aの入射率予測値x=14.8 Mcpsに等しいと考えると以下の式(3)が成立する。 Sub distribution of the incident rate x a to the pixel 20a is, assuming that increases exponentially with increasing distance from the adjacent subpixels 21BR, subpixel 21aL and 21aR of the incidence rate x aL, x aR is adjacent The incident rate x bR of the pixel 21bR is expressed as x aL = p × k = 2.5 × k Mcps and x aR = p × k 2 = 2.5 × k 2 Mcps, respectively, using p and the parameter k. Can do. The result of adding these incident rates x aL and x aR is equal to the predicted incident rate x a = 14.8 Mcps of the pixel 20a obtained from the actual count rate with reference to the count rate characteristic y = f (x). The following formula (3) is established.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この式(3)を解くと、k=1.98が得られる。これにより、暫定的にサブピクセル21aLの入射率予測値xaLは5.0Mcps、サブピクセル21aRの入射率予測値xbRは9.8Mcpsとの計算結果を得ることができる。すなわち、隣接するサブピクセル21bRの入射率xbRと、仮定した指数関数的な入射率の分布から、暫定的なサブピクセル21aL、21aRの入射率予測値xaL、bRが算出される。 Solving this equation (3) gives k = 1.98. Thus, incidence rate predicted value x aL tentatively subpixel 21aL is 5.0Mcps, incidence rate predicted value x bR subpixel 21aR can obtain the calculation result of the 9.8Mcps. That is, the incidence rate x bR subpixel 21bR adjacent, from the distribution of the assumed exponential incidence rate, tentative subpixel 21aL, incidence rate predicted value x aL of 21aR, x bR is calculated.
 つぎに、この暫定的なサブピクセル21aL、21aRの入射率予測値xaL、bRに対応する計数率予測値ycalaL、ycalaRを、計数率特性y=f(x)を参照して算出する。すなわち、暫定的なサブピクセル1aL、21aRの入射率予測値xaL、xaRが、それぞれ5.0Mcps、9.8Mcpsの値をとる暫定的な計数率予測値ycalaL、ycalaRを算出すると、夫々4.5Mcps,8.1Mcpsとなる。これらを加算したピクセル21a全体の計数率予測値ycalaは、12.6Mcpsとなり、実際の計数率y=12.8Mcps(表1の5段目)よりも1.5%程度小さいこととなる。 Next, the predicted count rate values y calaL and y calaR corresponding to the incident rate predicted values x aL and x bR of the provisional subpixels 21aL and 21aR are calculated with reference to the count rate characteristic y = f (x). To do. That is, when the provisional count rate prediction values y calaL and y calaR in which the incidence rate prediction values x aL and x aR of the provisional subpixels 1aL and 21aR take values of 5.0 Mcps and 9.8 Mcps, respectively, are calculated, These are 4.5 Mcps and 8.1 Mcps, respectively. Count rate prediction value y cala overall pixel 21a obtained by adding these, 12.6Mcps becomes, and thus about 1.5% smaller than the actual counting rate y a = 12.8Mcps (5 row in Table 1) .
 そこで、上述の暫定的なサブピクセル21aL,21aRの入射率予測値xaL、xaRに1.5%を加算(すなわち、1.015倍)することにより、暫定的な入射率予測値xaL、xaRを補正し、入射率推定値xEaL、xEaRを求める。補正後の、サブピクセル21aL、21aRの入射率推定値xEaL、xEaRは夫々5.0Mcps,10.0Mcpsとなる(表1の9段目)。ピクセル20a全体として、補正後の入射率推定値xEa=xEaL+xEaR=15.0Mcpsとなる。このように、ピクセル20aの入射率推定値xEaとして、X線の非一様性を考慮して、隣接するサブピクセル21bRの入射率算出した暫定値を、実際の計数率に応じて補正した値と用いることにより、高精度の入射率推定値を算出することができる(表1の10段目)。 Therefore, by adding 1.5% to the incident rate predicted values x aL and x aR of the provisional subpixels 21aL and 21aR (that is, 1.015 times), the provisional incident rate predicted value x aL is calculated. , X aR are corrected, and estimated incidence rates x EaL , x EaR are obtained. The corrected subpixel 21aL, incidence rate estimated value x EAL of 21aR, x EaR are each 5.0Mcps, the 10.0Mcps (9 row of Table 1). As a whole, the incident rate estimated value x Ea = x EaL + x EaR = 15.0 Mcps after correction. Thus, as an incident rate estimated value x Ea of pixel 20a, in consideration of non-uniformity of the X-ray, the provisional value calculated incidence rate of the sub-pixels 21bR neighboring were corrected according to the actual count rate By using this value, it is possible to calculate a highly accurate incidence rate estimated value (10th stage in Table 1).
 (他の入射率推定値の算出手法)
 また、コンピュータ180は、サブピクセル21のデッドタイムを考慮した計数率に着目して、ピクセル20aの正確な入射率推定値を取得することもできる。具体的には、非一様性推定部184は、実測又はシミュレーションにより予め取得した信号処理部152の計数率特性f(x)を用い、ピクセル20aへの入射率の分布が、隣接するサブピクセル21bRから離れるにつれて指数関数的に増加していると仮定して、以下の式(4)を用いる。pは、隣接するサブピクセル21bRの入射率xbR、kはパラメータである。
(Other methods for calculating the estimated incidence rate)
In addition, the computer 180 can acquire an accurate incidence rate estimated value of the pixel 20a by paying attention to the count rate in consideration of the dead time of the sub-pixel 21. Specifically, the non-uniformity estimation unit 184 uses the count rate characteristic f (x) of the signal processing unit 152 acquired in advance by actual measurement or simulation, and the distribution of the incidence rate to the pixel 20a is an adjacent subpixel. Assuming that it increases exponentially with distance from 21bR, the following equation (4) is used. p is an incident rate x bR of the adjacent sub-pixel 21bR, and k is a parameter.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)を解くことにより、k=2が得られる。これにより、サブピクセル21aLの入射率推定値xEaLは5.0Mcps、サブピクセル21aRの入射率推定値xEbRは10.0Mcpsとの計算結果を得ることができる。すなわち、隣接するサブピクセル21bRの入射率xbRと、仮定した指数関数的な入射率の分布から、サブピクセル21aL、21aRの入射率推定値xEaL、EbRが算出される。算出された入射率推定値xEaL、xEbRは、シミュレーションのために初期設定したサブピクセル21aLへの入射率5Mcps、サブピクセル21aRへの入射率10Mcpsと一致している(表1の3段目)。これにより、サブピクセル21aL、21aRの入射率として夫々5.0Mcps,10.0Mcpsと推定することができ(表1の9段目)、ピクセル20a全体として、15.0Mcpsとなる。従って、ピクセル20aの入射率推定値として、高精度の推定値が得られたことがわかる(表1の10段目)。
 本算出手法によれば、入射率予測値を用いずに、計数率特性と実際の計数率とから入射率推定値を算出することができる。
By solving equation (4), k = 2 is obtained. Thus, incidence rate estimated value x EAL subpixel 21aL is 5.0Mcps incidence rate estimated value x EBR subpixel 21aR can obtain the calculation result of the 10.0Mcps. That is, the incidence rate x bR subpixel 21bR adjacent, from the distribution of the assumed exponential incidence rate, the sub-pixel 21aL, incidence rate estimated value x EAL of 21aR, x EBR is calculated. The calculated incidence rate estimation values x EaL and x EbR coincide with the incidence rate 5 Mcps to the subpixel 21 aL and the incidence rate 10 Mcps to the subpixel 21 aR, which are initially set for the simulation (third stage in Table 1). ). As a result, the incidence rates of the subpixels 21aL and 21aR can be estimated to be 5.0 Mcps and 10.0 Mcps, respectively (the ninth stage in Table 1), and the entire pixel 20a is 15.0 Mcps. Therefore, it can be seen that a highly accurate estimated value is obtained as the incident rate estimated value of the pixel 20a (the 10th stage in Table 1).
According to this calculation method, the incident rate estimated value can be calculated from the count rate characteristic and the actual count rate without using the incident rate predicted value.
 このように、上述した実施形態においては、ピクセル20aへの正確な入射率を推定するために、推定対象であるピクセル20a自身の計数率を含むデータ及びピクセル20aに隣接するピクセル20bの計数率を含むデータを用いた。同様に、例えば、ピクセル20a自身及び隣接するピクセル20cのデータを用いてもピクセル20aへの入射率を推定することができる。また、隣接するピクセルに限らず、入射率の推定対象であるピクセルの近傍に位置するピクセルの計数値を用いて、当該ピクセルの入射率推定値を算出することができる。 Thus, in the above-described embodiment, in order to estimate the accurate incidence rate to the pixel 20a, the data including the count rate of the pixel 20a itself to be estimated and the count rate of the pixel 20b adjacent to the pixel 20a are used. Including data was used. Similarly, for example, the incidence rate on the pixel 20a can be estimated using the data of the pixel 20a itself and the adjacent pixel 20c. Moreover, the incident rate estimated value of the pixel can be calculated using the count value of the pixel located in the vicinity of the pixel whose incidence rate is to be estimated, not limited to the adjacent pixel.
 そして、このようにして得られた1つのピクセルに対する複数の推定値に基づいて、それらの相加平均、相乗平均、調和平均、中央値、最大値、最小値その他の手法を用いて最終的なピクセル20aへの入射率推定値を算出し、入射分布の非一様性による影響を補正する。なお、実際の検出器ではピクセルは二次元状に配置されている。従って、辺で隣接する4つのマクロピクセル、あるいは角で隣接するピクセルを含めて8つのピクセルに対し、それぞれの計数値と当該ピクセルの計数値とに基づいて複数の推定値を取得してもよい。 Then, based on a plurality of estimated values for one pixel obtained in this way, the final calculation is performed using the arithmetic average, geometric average, harmonic average, median, maximum, minimum, and other methods. The estimated incidence rate to the pixel 20a is calculated, and the influence due to the non-uniformity of the incident distribution is corrected. In an actual detector, pixels are arranged two-dimensionally. Therefore, a plurality of estimated values may be acquired based on the respective count values and the count values of the pixels with respect to the four macro pixels adjacent on the side or the eight pixels including the pixels adjacent on the corner. .
 なお、検出器の端部に位置するピクセルは隣接するピクセルの数が中心部に比べて少なくなるが、得られるだけの推定値を用いて非一様性の影響を推定することができる。また、上述した例では、ピクセル内の入射分布が指数関数的に変化していると仮定して計算しているが、異なる分布を仮定しても良い。例えば、被検体における骨や、整形外科分野で用いられる金属製のボルトはより急激な入射率の変化をもたらす可能性がある。上述のように、入射率の分布の偏りが大きいほど計数率特性のみから算出した入射率予測値は過少評価になるため、本実施形態に係る推定値算出手法によって、より急激に変化する入射率の分布を仮定することで入射率分布に応じた強い補正を行い、正確な入射率を算出することが好ましい。 It should be noted that although the number of adjacent pixels in the pixel located at the end of the detector is smaller than that in the central part, the influence of non-uniformity can be estimated using only the estimated value obtained. In the above-described example, the calculation is performed on the assumption that the incident distribution in the pixel changes exponentially, but a different distribution may be assumed. For example, bones in a subject and metal bolts used in the orthopedic field may cause a more rapid change in incidence rate. As described above, the incidence rate predicted value calculated from only the count rate characteristic is underestimated as the deviation of the incidence rate distribution is larger. Therefore, the incidence rate that changes more rapidly by the estimated value calculation method according to the present embodiment. It is preferable that a strong correction according to the incidence rate distribution is performed by assuming the distribution of ## EQU1 ## and an accurate incidence rate is calculated.
 反対に、X線を放出するX線管の焦点が大きい場合、焦点サイズ程度よりも細かいスケールでの急激な入射率変化は原理的に生じ得ないため、本実施形態における入射率推定手法による補正の必要性の程度は小さくなる。
 従って、臨床撮像上の条件を考慮して本実施形態に係る推定値算出手法による補正の強度を調整することが好ましい。
On the contrary, when the focus of the X-ray tube that emits X-rays is large, a sudden change in the incidence rate on a scale smaller than the focus size cannot occur in principle, and therefore correction by the incidence rate estimation method in this embodiment is performed. The degree of need for is reduced.
Therefore, it is preferable to adjust the strength of correction by the estimated value calculation method according to the present embodiment in consideration of clinical imaging conditions.
 なお、コンピュータ180は、非一様性の影響を考慮し、上述した推定値算出手法を実行することにより取得した全入射率に基づいて、各カウンタ340a1~4に対応する入射率推定値を算出し、記憶部182に記憶する。パイルアップの影響が小さい場合、ランダムに発生するデッドタイムは検出信号の大きさの分布に影響しない。 Note that the computer 180 calculates the incident rate estimated values corresponding to the counters 340a1 to 340a based on the total incident rates acquired by executing the estimated value calculation method described above in consideration of the influence of non-uniformity. And stored in the storage unit 182. When the influence of pile-up is small, the dead time that occurs randomly does not affect the distribution of the detection signal size.
 よって、全計数率が12.8Mcpsで、例えばカウンタ340a1~4の計数率がそれぞれ12.8Mcps,8.96Mcps,6.4Mcps,2.56Mcps(全計数率の100%、70%、50%、20%)の場合は、本実施形態によって得られた全入射率推定率15.0Mcpsを元にして、各カウンタ340a1~4に対応する入射率推定値として15.0Mcps,10.5Mcps,7.5Mcps,3.0Mcps(全入射率推定値の100%、70%、50%、20%)という値が得られる。
 なお、上述した本実施形態に係る計数率特性等を用いて正確な入射率推定値を算出する手法は、信号処理部152が上述したマヒ型又は非マヒ型のいずれであっても適用可能である。
Therefore, the total count rate is 12.8 Mcps, for example, the count rates of the counters 340a1 to 4 are 12.8 Mcps, 8.96 Mcps, 6.4 Mcps, 2.56 Mcps (100%, 70%, 50%, 20%), the incidence rate estimated values corresponding to the counters 340a1 to 4 are 15.0 Mcps, 10.5 Mcps, and 7 based on the total incidence rate estimation rate of 15.0 Mcps obtained according to the present embodiment. Values of 5 Mcps, 3.0 Mcps (100%, 70%, 50%, 20% of the total incidence rate estimate) are obtained.
Note that the method of calculating an accurate incidence rate estimation value using the count rate characteristics and the like according to the above-described embodiment can be applied regardless of whether the signal processing unit 152 is the above-described Mahi type or non-mahi type. is there.
 このように構成されたX線CT装置における撮像処理の流れについて図12のフローチャートに従って説明する。
 ステップS101において、ユーザによる臨床撮像のためのパラメータ、すなわち撮像条件の入力を入力装置192を介して受け付ける。撮像条件には、撮像部位等の撮像対象の情報や、どのような再構成を実施するか、また、撮像部位等に応じて入射率推定値を算出するためのパラメータを含めることができる。なお、パラメータには、管電流などのX線管の焦点サイズに影響を与えるパラメータも含む。
The flow of imaging processing in the X-ray CT apparatus configured as described above will be described with reference to the flowchart of FIG.
In step S <b> 101, parameters for clinical imaging by the user, that is, input of imaging conditions are received via the input device 192. The imaging conditions can include information about the imaging target such as the imaging region, what kind of reconstruction is performed, and parameters for calculating the incidence rate estimation value according to the imaging region and the like. The parameters include parameters that affect the focal point size of the X-ray tube, such as tube current.
 次のステップS102において、ステップS101で設定された撮像条件に基づいて被検体に対して放射線が照射され、サブピクセル毎に投影像としての計数値が収集される。信号処理部152では、検出部151から出力された計数値をサブピクセル毎に処理し、信号加算部166に出力する。信号加算部166では、サブピクセル毎の計数値を加算してピクセル毎の計数値として制御部170へ出力する。 In the next step S102, the subject is irradiated with radiation based on the imaging conditions set in step S101, and count values as projection images are collected for each subpixel. In the signal processing unit 152, the count value output from the detection unit 151 is processed for each subpixel, and is output to the signal addition unit 166. The signal adding unit 166 adds the count value for each sub-pixel and outputs it to the control unit 170 as the count value for each pixel.
 続いてステップS103において、ステップ102で得られたピクセル毎の計数値に基づいて、上述した非一様性推定部184により入射分布の非一様性の影響を推定した上で入射率の推定値を計算する。この際、X線管の焦点の大きさなどの装置の特性やステップS101において定められたパラメータを考慮する。非一様性推定部184及び信号補正部185による入射率推定値算出の処理の流れについては後述する。 Subsequently, in step S103, the nonuniformity estimation unit 184 described above estimates the influence of the nonuniformity of the incident distribution based on the count value for each pixel obtained in step 102, and then estimates the incidence rate. Calculate At this time, apparatus characteristics such as the size of the focal point of the X-ray tube and parameters determined in step S101 are taken into consideration. The flow of processing for calculating the estimated incidence rate by the non-uniformity estimation unit 184 and the signal correction unit 185 will be described later.
 ステップS104において、画像生成部183において、ステップ530で得られた入射率推定値に基づいて再構成像を生成し、生成した再構成像を出力装置191に表示させることでユーザへ提示する。
 なお、上述した本実施形態に係るX線CT装置における撮像処理には、種々の補正処理や他の処理を含めることができる。また、一旦、ステップS102で計数値を取得した後に入射率推定値算出に必要なパラメータ等を入力し、ステップS103及びステップS104を実行することもできる。
In step S104, the image generation unit 183 generates a reconstructed image based on the incidence rate estimation value obtained in step 530, and displays the generated reconstructed image on the output device 191 to present it to the user.
In addition, various correction processes and other processes can be included in the imaging process in the X-ray CT apparatus according to the present embodiment described above. Further, once the count value is acquired in step S102, parameters and the like necessary for calculating the incidence rate estimated value can be input, and step S103 and step S104 can be executed.
 続いて、ピクセル毎の非一様性推定から入射率推定値算出までの処理の流れについて、図13、図14のフローチャートに従って説明する。なお、詳細な算出手法については上述の通りであるので、ここでの繰り返しの説明は省略する。 Subsequently, the flow of processing from non-uniformity estimation for each pixel to calculation of the incidence rate estimated value will be described with reference to the flowcharts of FIGS. Since the detailed calculation method is as described above, the repeated description here is omitted.
 先ず、非一様性推定部184が、記憶部182に記憶された入射率推定値を算出するピクセルである処理対象ピクセル(例えば、図9のピクセル20a)の計数値に係る出力信号(以下、「計数率」という)を読み込み(ステップS201)、続いて、当該処理対象ピクセルの近傍に位置する何れかのピクセル(例えば、図9のピクセル20b)の計数率を読み込む(ステップS202)。 First, the non-uniformity estimation unit 184 outputs an output signal (hereinafter, referred to as a count value) of a processing target pixel (for example, the pixel 20a in FIG. 9) that is a pixel for calculating an incidence rate estimation value stored in the storage unit 182. (Referred to as “count rate”) (step S201), and then the count rate of any pixel (for example, pixel 20b in FIG. 9) located in the vicinity of the pixel to be processed is read (step S202).
 ステップS203では、非一様性推定部184が、処理対象ピクセルの非一様性を推定し、ステップS204で当該処理対象ピクセルの入射率を補正して入射率推定値を算出する。具体的には、例えば、ステップS203では、非一様性推定部184および信号補正部185は、記憶部182に予め記憶されたプログラムを読み込んで以下のように動作する。まず、非一様性推定部184は、処理対象ピクセルの計数率yと、当該処理対象ピクセルの近傍に位置するピクセルの計数率yから、処理対象ピクセルへのX線入射率が非一様であると判定する。 In step S203, the non-uniformity estimation unit 184 estimates non-uniformity of the processing target pixel, and in step S204, corrects the incident rate of the processing target pixel to calculate an incident rate estimated value. Specifically, for example, in step S203, the non-uniformity estimation unit 184 and the signal correction unit 185 read a program stored in advance in the storage unit 182 and operate as follows. First, non-uniformity estimator 184, a count rate y a processing target pixel, the process from the count rate y b for the pixel located in the vicinity of the target pixel, X-rays incidence rate to the processing target pixel is not one It is determined that
 例えば、非一様性推定部184は、予め求めておいた計数率特性を参照することにより、計数率yおよびyに対応する近傍ピクセルの入射率予測値x、xを算出し、その差が所定値以上である場合、処理対象ピクセルへのX線入射率が非一様であると判定する。もしくは、計数率yと計数率yとを直接比較し、その差が所定値以上である場合、処理対象ピクセルへのX線入射率が非一様であると判定してもよい。なお、計数率特性y=f(x)は、予め求めておいた関数(数式)として非一様性推定部184または信号補正部185が保持しておいてもよいし、計数率と入射率推定値のテーブルとして保持していてもよい。 For example, non-uniformity estimator 184, previously determined by referring to the count rate characteristics had been, counting rate y a and y b in incidence rate prediction value x a of the corresponding neighboring pixels, calculates x b If the difference is greater than or equal to a predetermined value, it is determined that the X-ray incidence rate to the processing target pixel is non-uniform. Or a a count rate y a counting rate y b compared directly, if the difference is not less than a predetermined value, X-rays incidence rate to the processing target pixel may be determined to be non-uniform. The count rate characteristic y = f (x) may be held by the non-uniformity estimation unit 184 or the signal correction unit 185 as a function (formula) obtained in advance, or the count rate and the incidence rate. You may hold | maintain as a table of estimated values.
 入射率が非一様である場合、ステップ204において、信号補正部185は、近傍ピクセルの計数率yから、計数率特性を参照することにより、計数率yに対応する近傍ピクセルの入射率予測値xを算出する(図14のステップS251参照)。つぎに、信号補正部185は、近傍ピクセル内のサブピクセルの入射率予測値xbRを算出する(ステップS252)。例えば、近傍ピクセル内で一様な入射率であると仮定して、入射率予測値xbRを等分することによりサブピクセルの入射率予測値xbRを算出する。 If incidence rate is non-uniform, in step 204, the signal correction unit 185, the count rate y b of the neighboring pixels, by referring to the count rate characteristics, incidence rate of neighboring pixels corresponding to the count rate y b A predicted value xb is calculated (see step S251 in FIG. 14). Next, the signal correction unit 185 calculates the incidence rate predicted value xbR of the subpixels in the neighboring pixels (step S252). For example, assuming a uniform incidence rate in the neighboring pixels to calculate the incidence rate prediction value x bR subpixels by equally dividing the incidence rate prediction value XBR.
 つぎに、信号補正部185は、処理対象ピクセルにおける入射率分布が、近傍サブピクセルから離れるにしたがって、近傍サブピクセルの入射率予測値xbRに対して指数関数的に変化していると仮定した数式(例えば、上記式(3))により、処理対象ピクセルに含まれるサブピクセル毎の暫定的な入射率予測値xaL、xaRを算出する(ステップS253)。信号補正部185は、暫定的なサブピクセルの入射率予測値xaL、bRに対応する暫定的な計数率予測値ycalaL、ycalaRを、計数率特性を参照して算出する(ステップS254)。これらを加算した処理対象ピクセル全体の計数率予測値ycala=ycalaL+ycalaRと、ステップS201で取得した実際の処理対象ピクセルの計数率yの比qを算出する(ステップS255)。ステップS253で算出した暫定的なサブピクセルの入射率予測値xaL、xaRを比q倍することにより、入射率推定値xEaL、xEaRを求める(ステップS256)。 Next, the signal correction unit 185 assumes that the incidence rate distribution in the processing target pixel changes exponentially with respect to the incidence rate predicted value xbR of the neighboring subpixel as the distance from the neighboring subpixel increases. (For example, the provisional incidence rate predicted values x aL and x aR for each sub-pixel included in the processing target pixel are calculated by the above-described equation (3) (step S253). The signal correction unit 185 calculates the provisional count rate prediction values y calaL and y calaR corresponding to the provisional subpixel incidence rate prediction values x aL and x bR with reference to the count rate characteristics (step S254). ). These and count rate prediction value y cala = y calaL + y calaR the entire processing target pixel obtained by adding, the ratio q of the count rate y a of the actual processing target pixel acquired in step S201 is calculated (step S255). Step S253 in the calculated tentative subpixel incidence rate prediction value x aL, by multiplying the x aR ratio q, the incident rate estimated value x EAL, seek x EaR (step S256).
 そして、ステップS205に進み、信号補正部185は、算出された入射率推定値を記憶部182に一時的に記憶する。 And it progresses to step S205 and the signal correction | amendment part 185 memorize | stores the calculated incidence rate estimated value in the memory | storage part 182 temporarily.
 ステップS206では、信号補正部185は、当該処理対象ピクセルの近傍に位置するピクセルに対する入射率推定値の算出が全て終了したかを判定する。すなわち、信号補正部185は、当該ピクセルの近傍のピクセルのうち、予め定めた位置の全ピクセルについて入射率推定値の算出が終了したかを判定し、入射率推定値の算出が終了していない場合には、ステップS202に戻り上述した処理を繰り返す。 In step S206, the signal correction unit 185 determines whether the calculation of the incidence rate estimation values for the pixels located in the vicinity of the processing target pixel has been completed. That is, the signal correction unit 185 determines whether the calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and the calculation of the incidence rate estimation value has not been completed. In that case, the process returns to step S202 and the above-described processing is repeated.
 信号補正部185が予め定めた位置の全ピクセルについて入射率推定値の算出が終了したと判定した場合には、ステップS207に進み、信号補正部184が、予め定めた位置の全ピクセルについて得られた入射率推定値から、例えば、相加平均、相乗平均、調和平均、中央値、最大値、最小値等の何れか、予め定めた手法により当該処理対象ピクセルの入射率推定値を算出する。 When the signal correction unit 185 determines that the calculation of the incidence rate estimation value has been completed for all the pixels at the predetermined position, the process proceeds to step S207, and the signal correction unit 184 is obtained for all the pixels at the predetermined position. From the incident rate estimated value, for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method, such as an arithmetic mean, geometric mean, harmonic mean, median value, maximum value, minimum value, or the like.
 ステップS208において、信号補正部185は、算出した処理対象ピクセルの入射率推定値を記憶部182に記憶する。ステップS209において、検出部151から得られた全ピクセルに対する非一様性推定から入射率推定値算出までの処理が終了したかを判定し、全ピクセルに対する処理が終了していない場合にはステップS201へ戻り同様の処理を繰り返す。一方、全ピクセルに対する処理が終了した場合には、本処理を終了し、再構成像の生成に進む。
 なお、上述した非一様性推定から入射率推定値算出までの処理は、再構成像の生成と同時に逐次的に行うこともできる。
In step S <b> 208, the signal correction unit 185 stores the calculated incidence rate estimation value of the processing target pixel in the storage unit 182. In step S209, it is determined whether the processing from the non-uniformity estimation for all the pixels obtained from the detection unit 151 to the calculation of the incidence rate estimated value has been completed. If the processing for all the pixels has not been completed, step S201 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is finished, this processing is finished and the process proceeds to generation of a reconstructed image.
Note that the processing from the non-uniformity estimation to the incidence rate estimation value calculation described above can be performed sequentially simultaneously with the generation of the reconstructed image.
 (入射率推定値の算出手法の変形例)
 入射分布の非一様性を考慮した入射率推定値の算出手法は、上述した手法に限られず、例えば以下に示すように様々な手法が考えられる。
 上述の例では、当該ピクセル20aについて、当該ピクセル20aと隣接ピクセル20bの2つのピクセルのデータから1つの入射率推定値を得る例について説明した(図9参照)。この他、当該ピクセル20aを挟み、当該ピクセル20aを含む3つのピクセル20a,20b,20cあるいはそれ以上のピクセルの計数率等のデータから1つの入射率推定値を算出することもでき、本変形例では、当該ピクセル20aを含む3つのピクセル20a,20b,20cの計数率等から1つの入射率推定値を算出する場合について説明する。
(Modified example of calculation method of estimated incidence rate)
The calculation method of the incidence rate estimation value in consideration of the non-uniformity of the incident distribution is not limited to the above-described method, and for example, various methods can be considered as described below.
In the above-described example, an example in which one incident rate estimation value is obtained for the pixel 20a from the data of two pixels of the pixel 20a and the adjacent pixel 20b has been described (see FIG. 9). In addition, it is also possible to calculate one incident rate estimated value from data such as the counting rate of three pixels 20a, 20b, 20c including the pixel 20a, or more pixels including the pixel 20a. Then, the case where one incident rate estimated value is calculated from the count rates of the three pixels 20a, 20b, and 20c including the pixel 20a will be described.
 図10の表1に示すように、ピクセル20b及び20cの計数率特性に基づく入射率予測値はそれぞれ5Mcps,40Mcpsであるため、それぞれのピクセル内ではサブピクセル当たり2.5Mcps,20Mcpsの入射率であると考える。すると、サブピクセル21bRから21cLまで3サブピクセル離れたところで入射率が8倍になっていることから、サブピクセル21aL及び21aRの入射率は例えばαをパラメータとしてそれぞれ2.5×8^{(1/3)α} Mcps、2.5×8^{(2/3)α} Mcpsとおくことができる。この場合のピクセル20aの計数率が実測に一致すると考え、計数率特性f(x)に対して、以下の式(5)を考えることができる。 As shown in Table 1 of FIG. 10, since the incidence rate prediction values based on the count rate characteristics of the pixels 20b and 20c are 5 Mcps and 40 Mcps, respectively, the incidence rates are 2.5 Mcps and 20 Mcps per subpixel in each pixel. I think there is. Then, since the incidence rate is 8 times at a distance of 3 subpixels from the subpixel 21bR to 21cL, the incidence rates of the subpixels 21aL and 21aR are, for example, 2.5 × 8 ^ {(1 / 3) α } Mcps, 2.5 × 8 ^ {(2/3) α } Mcps. In this case, it is considered that the count rate of the pixel 20a coincides with the actual measurement, and the following equation (5) can be considered for the count rate characteristic f (x).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記式(5)を解くとα=1が得られる。よって、サブピクセル21aL,21aRの入射率として5.0Mcps、10.0Mcps、ピクセル20aあたりとしては15.0Mcpsという精度の良い入射率推定値を得ることができる。なお、サブピクセル21aL,21aRの入射率に関しては、式(5)に限らずサブピクセル21bR及びサブピクセル21cLの入射率を繋ぐ関数を自由に設定することができる。 Solving the above equation (5) yields α = 1. Therefore, it is possible to obtain an accurate incidence rate estimation value of 5.0 Mcps and 10.0 Mcps as the incidence rates of the subpixels 21aL and 21aR and 15.0 Mcps as the pixel 20a. In addition, regarding the incident rates of the subpixels 21aL and 21aR, not only the formula (5) but also a function that connects the incident rates of the subpixels 21bR and 21cL can be freely set.
 また、隣接するピクセルのデータのみを用いるのではなく、さらに範囲を広げた近傍のピクセルのデータを用いて入射分布の非一様性を推定しても良い。例えば、上述した手法では、処理対象のピクセル20aに隣接するピクセル20bの計数率特性に基づく入射率予測値が5Mcpsであったことからサブピクセル21bR(及びサブピクセル21bL)の入射率予測値を2.5Mcpsと考え、ピクセル20aへの入射分布の非一様性の影響を推定した。 In addition, it is possible to estimate the non-uniformity of the incident distribution by using the data of neighboring pixels with a wider range instead of using only the data of adjacent pixels. For example, in the above-described method, since the incident rate prediction value based on the count rate characteristic of the pixel 20b adjacent to the pixel 20a to be processed is 5 Mcps, the incident rate prediction value of the subpixel 21bR (and subpixel 21bL) is set to 2 The effect of non-uniformity of the incident distribution on the pixel 20a was estimated.
 図15に示すように、隣接するピクセル20bだけでなく、ピクセル20dの計数率も用いてサブピクセル21bRの入射率を計算することができる。
 例えば、ピクセル20dの入射率予測値が3Mcpsであった場合、入射分布の変化が一次関数的であると仮定すると、サブピクセル21dR,21dL,21bR,21bLへの入射率はそれぞれ1.25Mcps,1.75Mcps,2.25Mcps,2.75Mcpsと推定することができる。よって、サブピクセル21bRの入射率を2.75Mcpsと考えてピクセル20aへの入射分布の非一様性を推定することができる。サブピクセル21bRへの入射率の推定においては、一次関数的な分布に限らず、指数関数的な分布その他の分布を仮定することができる。
As shown in FIG. 15, the incidence rate of the sub-pixel 21bR can be calculated using not only the adjacent pixel 20b but also the count rate of the pixel 20d.
For example, when the predicted incidence rate of the pixel 20d is 3 Mcps, assuming that the change in the incidence distribution is a linear function, the incidence rates on the subpixels 21dR, 21dL, 21bR, and 21bL are 1.25 Mcps and 1 respectively. .75 Mcps, 2.25 Mcps, 2.75 Mcps. Therefore, it is possible to estimate the non-uniformity of the incident distribution on the pixel 20a assuming that the incident rate of the sub-pixel 21bR is 2.75 Mcps. In the estimation of the incidence rate to the subpixel 21bR, not only a linear function distribution but also an exponential distribution or other distributions can be assumed.
 また、上述した例では、簡単のため一次元的な検出器を用い、同一の行に位置するピクセルから得られるデータを用いた手法について説明したが、近傍の行に位置するピクセルのデータを用いることもできる。例えば、図16に示すように、ピクセル20bと同じ列に存在する近傍のピクセル20b+及び20b-のデータを用い、適当な加重平均の操作によりサブピクセル21bRの入射率を推定し、これを元にピクセル20aへの入射分布の非一様性の影響を推定することができる。 In the above-described example, for simplicity, a method using a one-dimensional detector and using data obtained from pixels located in the same row has been described. However, data of pixels located in neighboring rows is used. You can also. For example, as shown in FIG. 16, using the data of neighboring pixels 20b + and 20b− existing in the same column as the pixel 20b, the incidence rate of the subpixel 21bR is estimated by an appropriate weighted average operation, and based on this The influence of the non-uniformity of the incident distribution on the pixel 20a can be estimated.
<第2の実施形態>
 上述した第1の実施形態では、全ピクセルに対して入射率推定値を算出することとして説明した。しかしながら、必ずしも全ピクセルに対して入射率推定値を算出する必要はなく、ピクセル毎に入射率推定値を算出する又は算出しない、を切替えても良い。
<Second Embodiment>
In the above-described first embodiment, the incident rate estimation value is calculated for all pixels. However, it is not always necessary to calculate the incident rate estimated value for all pixels, and switching between calculating or not calculating the incident rate estimated value for each pixel may be performed.
 例えば、隣接ピクセルの計数率との比較から、当該ピクセルへの放射線入射率が極大値や極小値、あるいは鞍点となっていると判断される場合は、当該ピクセル内での入射分布の非一様性は無視できると判断して入射率推定値を算出せず、処理時間を短縮することが考えられる。なお、入射率推定値を算出する又はしないに係る切替えの判断は、入力装置192によりユーザが直接指定しても良いし、撮像や再構成の条件の設定を介して間接的に指定するようにしても良い。 For example, if it is determined from the comparison with the count rate of the adjacent pixel that the radiation incidence rate to the pixel is a maximum value, a minimum value, or a saddle point, the incident distribution in the pixel is not uniform. It can be considered that the processing time can be shortened without calculating the incident rate estimated value by judging that the characteristics can be ignored. Note that the determination of switching according to whether or not the estimated incidence rate is calculated may be directly designated by the user using the input device 192, or indirectly through setting of imaging and reconstruction conditions. May be.
 ピクセル毎に入射率推定値を算出する又は算出しない、を切替える場合には、例えば、図17に示すフローチャートに従って、ピクセル毎の非一様性推定から入射率推定値算出までの処理を行う。
 非一様性推定部184が、記憶部182に記憶された入射率推定値を算出するピクセルである処理対象ピクセル(例えば、図9のピクセル20a)の計数値に係る出力信号(以下、「計数率」という)を読み込み(ステップS301)、続いて、当該処理対象ピクセルの近傍に位置する何れかのピクセル(例えば、図9のピクセル20b)の計数率を読み込む(ステップS302)。
When switching whether to calculate the incidence rate estimated value for each pixel or not, for example, according to the flowchart shown in FIG. 17, processing from non-uniformity estimation for each pixel to calculation of the incidence rate estimated value is performed.
The non-uniformity estimation unit 184 outputs an output signal (hereinafter referred to as “count”) regarding the count value of the processing target pixel (for example, the pixel 20a in FIG. 9) that is a pixel for calculating the incidence rate estimation value stored in the storage unit 182. (Referred to as “rate”) (step S301), and then the count rate of any pixel (for example, pixel 20b in FIG. 9) located in the vicinity of the pixel to be processed is read (step S302).
 ステップS303において、非一様性推定部184が、当該ピクセルとステップS302で読み込んだピクセルの計数率同士を比較することにより、当該ピクセルへの放射線入射率が極大値や極小値、あるいは鞍点となっているかを判定することにより、当該ピクセルの計数率を補正するか否かを判断する。ステップS303において、当該ピクセルを補正しないと判定された場合には、ステップS309に進む。また、ステップS303において、当該ピクセルと補正すると判定された場合には、ステップS304に進む。 In step S303, the non-uniformity estimation unit 184 compares the count rates of the pixel and the pixel read in step S302, so that the radiation incidence rate to the pixel becomes a maximum value, a minimum value, or a saddle point. It is determined whether or not to correct the counting rate of the pixel. If it is determined in step S303 that the pixel is not corrected, the process proceeds to step S309. If it is determined in step S303 that the pixel is corrected, the process proceeds to step S304.
 ステップS304では、非一様性推定部184が、処理対象ピクセルの非一様性を推定し、当該処理対象ピクセルの入射率を補正して入射率推定値を算出する。すなわち、ステップS304では、非一様性推定部184は、記憶部182に予め記憶されたプログラムに従って、上述したように、処理対象ピクセルの計数率と、当該処理対象ピクセルの近傍に位置するピクセルの計数率とに基づいて、処理対象ピクセルに含まれるサブピクセル毎非一様性を推定し、非一様性に応じた入射率推定値を算出する。そして、サブピクセル毎の入射率推定値を加算して処理対象ピクセルの入射率推定値を算出する。ステップS305で、信号補正部185は、算出された入射率推定値を記憶部182に一時的に記憶する。 In step S304, the non-uniformity estimation unit 184 estimates the non-uniformity of the processing target pixel, corrects the incident rate of the processing target pixel, and calculates the incident rate estimated value. That is, in step S304, the non-uniformity estimation unit 184, according to the program stored in advance in the storage unit 182, as described above, the count rate of the processing target pixel and the pixel located in the vicinity of the processing target pixel. Based on the count rate, non-uniformity for each sub-pixel included in the processing target pixel is estimated, and an incidence rate estimated value corresponding to the non-uniformity is calculated. Then, the incidence rate estimation value for each sub-pixel is added to calculate the incidence rate estimation value of the processing target pixel. In step S305, the signal correction unit 185 temporarily stores the calculated incidence rate estimated value in the storage unit 182.
 ステップS306では、信号補正部185は、当該処理対象ピクセルの近傍に位置するピクセルに対する入射率推定値の算出が全て終了したかを判定する。すなわち、信号補正部185は、当該ピクセルの近傍のピクセルのうち、予め定めた位置の全ピクセルについて入射率推定値の算出が終了したかを判定し、入射率推定値の算出が終了していない場合には、ステップS302に戻り上述した処理を繰り返す。 In step S306, the signal correction unit 185 determines whether all the calculation of the incidence rate estimation value for the pixel located in the vicinity of the processing target pixel is completed. That is, the signal correction unit 185 determines whether the calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and the calculation of the incidence rate estimation value has not been completed. In that case, the process returns to step S302 and the above-described processing is repeated.
 信号補正部185が予め定めた位置の全ピクセルについて入射率推定値の算出が終了したと判定した場合には、ステップS307に進み、信号補正部184が、予め定めた位置の全ピクセルについて得られた入射率推定値から、例えば、相加平均、相乗平均、調和平均、中央値、最大値、最小値等の何れか、予め定めた手法により当該処理対象ピクセルの入射率推定値を算出する。 When the signal correction unit 185 determines that the calculation of the incidence rate estimation value has been completed for all the pixels at the predetermined position, the process proceeds to step S307, and the signal correction unit 184 is obtained for all the pixels at the predetermined position. From the incident rate estimated value, for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method, such as an arithmetic mean, geometric mean, harmonic mean, median value, maximum value, minimum value, or the like.
 ステップS308において、信号補正部185は、算出した処理対象ピクセルの入射率推定値を記憶部182に記憶する。ステップS309において、検出部151から得られた全ピクセルに対する非一様性推定から入射率推定値算出までの処理が終了したかを判定し、全ピクセルに対する処理が終了していない場合にはステップS201へ戻り同様の処理を繰り返す。一方、全ピクセルに対する処理が終了した場合には、本処理を終了し、再構成像の生成に進む。 In step S308, the signal correction unit 185 stores the calculated incidence rate estimation value of the processing target pixel in the storage unit 182. In step S309, it is determined whether the processing from the non-uniformity estimation for all the pixels obtained from the detection unit 151 to the incidence rate estimated value calculation is completed. If the processing for all the pixels is not completed, step S201 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is finished, this processing is finished and the process proceeds to generation of a reconstructed image.
<第3の実施形態>
 また、ピクセル内の非一様性の影響を推定する際の参考とするため、信号加算部166が、計数率(出力信号)と共に、ピクセル内の入射分布の非一様性に関する情報を出力しても良い。すなわち、任意のピクセルを構成するサブピクセルの間で、入射率の非一様性が一定以上存在すると判断できる場合には、予めそのピクセルに対してフラグを立てるようなデータを出力し、記憶部182に記憶しておく。
<Third Embodiment>
In addition, the signal adding unit 166 outputs information on the non-uniformity of the incident distribution in the pixel together with the count rate (output signal) for reference when estimating the influence of the non-uniformity in the pixel. May be. That is, when it can be determined that the incidence rate non-uniformity is more than a certain level among the sub-pixels constituting an arbitrary pixel, data that sets a flag for the pixel is output in advance, and the storage unit It is stored in 182.
 これにより、フラグが付されたピクセルのみ入射率推定値の算出を行う、又は、入射したX線の均一性が低い、すなわち非一様性が高いと判定して、入射率推定値算出の際により強く計数率を補正する等の処理を行うことができる。信号加算部166は、計数率と共に記憶させるフラグとして、例えば、0か1かのフラグとすることができる他、非一様性の程度などの定量的な値をフラグとして出力することもできる。これにより、出力されるデータ量はやや増加するものの、全てのサブピクセルの計数率を出力することに比べれば依然としてデータ量は少なく、入射率推定値を算出する計算コストも削減することができる。 As a result, the incidence rate estimated value is calculated only for the flagged pixels, or the incidence rate estimated value is calculated by determining that the uniformity of the incident X-ray is low, that is, the non-uniformity is high. It is possible to perform processing such as correcting the count rate more strongly. The signal adding unit 166 can set, for example, a flag of 0 or 1 as a flag to be stored together with the count rate, and can also output a quantitative value such as the degree of non-uniformity as a flag. As a result, although the amount of data to be output is slightly increased, the amount of data is still small compared to outputting the count rates of all subpixels, and the calculation cost for calculating the incidence rate estimated value can be reduced.
 この場合の処理は、例えば、図18に示すフローチャートに従って、ピクセル毎の非一様性推定から入射率推定値算出までの処理を行う。
 ステップS401において、非一様性推定部184が、記憶部182に記憶された入射率推定値を算出するピクセルである処理対象ピクセルの計数値に係る計数率をフラグと共に読み込む。ステップS402では、非一様性推定部184が、当該ピクセルにフラグが付されているか否かを判定することにより、当該ピクセルの計数率を補正するか否かを判断する。ステップS402において、当該ピクセルを補正しないと判定された場合には、ステップS409に進む。また、ステップS402において、当該ピクセルと補正すると判定された場合には、ステップS403に進む。
In this case, for example, processing from non-uniformity estimation for each pixel to incidence rate estimation value calculation is performed according to the flowchart shown in FIG.
In step S <b> 401, the non-uniformity estimation unit 184 reads the count rate related to the count value of the processing target pixel that is a pixel for calculating the incidence rate estimation value stored in the storage unit 182 together with the flag. In step S402, the non-uniformity estimation unit 184 determines whether or not to correct the count rate of the pixel by determining whether or not the pixel is flagged. If it is determined in step S402 that the pixel is not corrected, the process proceeds to step S409. If it is determined in step S402 that the pixel is corrected, the process proceeds to step S403.
 続いて、ステップS403で、当該処理対象ピクセルの近傍に位置する何れかのピクセルの計数率を読み込む。ステップS404では、非一様性推定部184が、処理対象ピクセルの非一様性を推定し、当該処理対象ピクセルの入射率を補正して入射率推定値を算出する。すなわち、ステップS404では、非一様性推定部184は、記憶部182に予め記憶されたプログラムに従って、上述したように、処理対象ピクセルの計数率と、当該処理対象ピクセルの近傍に位置するピクセルの計数率とに基づいて、処理対象ピクセルに含まれるサブピクセル毎非一様性を推定し、非一様性に応じた入射率推定値を算出する。そして、サブピクセル毎の入射率推定値を加算して処理対象ピクセルの入射率推定値を算出する。ステップS405で、信号補正部185は、算出された入射率推定値を記憶部182に一時的に記憶する。 Subsequently, in step S403, the count rate of any pixel located in the vicinity of the processing target pixel is read. In step S404, the non-uniformity estimation unit 184 estimates the non-uniformity of the processing target pixel, corrects the incidence rate of the processing target pixel, and calculates an incidence rate estimated value. In other words, in step S404, the non-uniformity estimation unit 184, according to the program stored in advance in the storage unit 182, as described above, the count rate of the processing target pixel and the pixel located in the vicinity of the processing target pixel. Based on the count rate, non-uniformity for each sub-pixel included in the processing target pixel is estimated, and an incidence rate estimated value corresponding to the non-uniformity is calculated. Then, the incidence rate estimation value for each sub-pixel is added to calculate the incidence rate estimation value of the processing target pixel. In step S405, the signal correction unit 185 temporarily stores the calculated incidence rate estimated value in the storage unit 182.
 ステップS406では、信号補正部185は、当該処理対象ピクセルの近傍に位置するピクセルに対する入射率推定値の算出が全て終了したかを判定する。すなわち、信号補正部185は、当該ピクセルの近傍のピクセルのうち、予め定めた位置の全ピクセルについて入射率推定値の算出が終了したかを判定し、入射率推定値の算出が終了していない場合には、ステップS403に戻り上述した処理を繰り返す。 In step S406, the signal correction unit 185 determines whether or not the calculation of the incidence rate estimation values for the pixels located in the vicinity of the processing target pixel has been completed. That is, the signal correction unit 185 determines whether the calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and the calculation of the incidence rate estimation value has not been completed. In that case, the process returns to step S403 and the above-described processing is repeated.
 信号補正部185が予め定めた位置の全ピクセルについて入射率推定値の算出が終了したと判定した場合には、ステップS407に進み、信号補正部184が、予め定めた位置の全ピクセルについて得られた入射率推定値から、例えば、相加平均、相乗平均、調和平均、中央値、最大値、最小値等の何れか、予め定めた手法により当該処理対象ピクセルの入射率推定値を算出する。 When the signal correction unit 185 determines that the calculation of the incidence rate estimation value has been completed for all the pixels at the predetermined position, the process proceeds to step S407, and the signal correction unit 184 is obtained for all the pixels at the predetermined position. From the incident rate estimated value, for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method, such as an arithmetic mean, geometric mean, harmonic mean, median value, maximum value, minimum value, or the like.
 ステップS408において、信号補正部185は、算出した処理対象ピクセルの入射率推定値を記憶部182に記憶する。ステップS409において、検出部151から得られた全ピクセルに対する非一様性推定から入射率推定値算出までの処理が終了したかを判定し、全ピクセルに対する処理が終了していない場合にはステップS401へ戻り同様の処理を繰り返す。一方、全ピクセルに対する処理が終了した場合には、本処理を終了し、再構成像の生成に進む。 In step S408, the signal correction unit 185 stores the calculated incidence rate estimation value of the processing target pixel in the storage unit 182. In step S409, it is determined whether the processing from non-uniformity estimation for all the pixels obtained from the detection unit 151 to calculation of the incidence rate estimated value has been completed. If the processing for all the pixels has not been completed, step S401 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is finished, this processing is finished and the process proceeds to generation of a reconstructed image.
<第4の実施形態>
 また、ピクセルへの入射率推定値を算出する際に、隣接するピクセルについて計数率特性から得られる入射率予測値(図10の表1の7段目)を用いた。しかしながら、入射率予測値が入射分布の非一様性の影響を受けている可能性がある。
<Fourth Embodiment>
Moreover, when calculating the estimated incidence rate to the pixel, the estimated incidence rate obtained from the count rate characteristic for the adjacent pixel (the seventh row in Table 1 in FIG. 10) was used. However, there is a possibility that the predicted incidence rate is affected by the nonuniformity of the incident distribution.
 そこで、さらに推定の精度を向上させるため、入射率予測値に代えて、算出した入射率推定値を用いて再度同様の入射率推定値を算出する処理を行うことができる。この処理を複数回繰り返す逐次的な処理も可能である。 Therefore, in order to further improve the accuracy of estimation, it is possible to perform a process of calculating the same incident rate estimated value again using the calculated incident rate estimated value instead of the incident rate predicted value. A sequential process that repeats this process a plurality of times is also possible.
 この場合の処理は、例えば、図19に示すフローチャートに従って、ピクセル毎の非一様性推定から入射率推定値算出までの処理を行う。
 非一様性推定部184が、記憶部182に記憶された入射率推定値を算出するピクセルである処理対象ピクセルの計数値に係る計数率を読み込み(ステップS501)、当該処理対象ピクセルの近傍に位置する何れかのピクセルの計数率を読み込む(ステップS502)。
In this case, for example, processing from non-uniformity estimation for each pixel to incidence rate estimation value calculation is performed according to the flowchart shown in FIG.
The non-uniformity estimation unit 184 reads the count rate related to the count value of the processing target pixel that is the pixel for calculating the incidence rate estimation value stored in the storage unit 182 (step S501), and near the processing target pixel. The count rate of any pixel located is read (step S502).
 続いて、非一様性推定部184が、処理対象ピクセルの非一様性を推定し、信号補正部185が、これに基づいて当該処理対象ピクセルの入射率を補正して入射率推定値を算出し(ステップS503)、算出された入射率推定値を記憶部182に一時的に記憶する(ステップS504)。 Subsequently, the non-uniformity estimation unit 184 estimates the non-uniformity of the processing target pixel, and the signal correction unit 185 corrects the incident rate of the processing target pixel based on the non-uniformity of the processing target pixel to obtain the incident rate estimated value. Calculate (step S503), and temporarily store the calculated incidence rate estimated value in the storage unit 182 (step S504).
 ステップS505では、信号補正部185が、当該ピクセルの近傍のピクセルのうち、予め定めた位置の全ピクセルについて入射率推定値の算出が終了したかを判定し、入射率推定値の算出が終了していない場合には、ステップS502に戻り上述した処理を繰り返す。信号補正部185が予め定めた位置の全ピクセルについて入射率推定値の算出が終了したと判定した場合には、ステップS506に進み、信号補正部185が、予め定めた位置の全ピクセルについて得られた入射率推定値から、例えば、相加平均等の予め定めた手法により当該処理対象ピクセルの入射率推定値を算出し、算出した処理対象ピクセルの入射率推定値を記憶部182に記憶する(ステップS507)。 In step S505, the signal correction unit 185 determines whether calculation of the incidence rate estimation value has been completed for all pixels at a predetermined position among the pixels in the vicinity of the pixel, and calculation of the incidence rate estimation value is completed. If not, the process returns to step S502 and the above-described processing is repeated. When the signal correction unit 185 determines that the calculation of the incidence rate estimation value has been completed for all the pixels at the predetermined position, the process proceeds to step S506, and the signal correction unit 185 is obtained for all the pixels at the predetermined position. From the incident rate estimated value, for example, the incident rate estimated value of the processing target pixel is calculated by a predetermined method such as arithmetic mean, and the calculated incident rate estimated value of the processing target pixel is stored in the storage unit 182 ( Step S507).
 ステップS508において、検出部151から得られた全ピクセルに対する非一様性推定から入射率推定値算出までの処理が終了したかを判定し、全ピクセルに対する処理が終了していない場合にはステップS501へ戻り同様の処理を繰り返す。一方、全ピクセルに対する処理が終了した場合には、次のステップS509に進み、記憶部152に記憶された入射率推定値の精度が十分であるか否かを判定する。判定の結果、精度が不十分であると判定された場合には、ステップS502に戻り、当該ピクセルの計数率に代えて、算出した入射率推定値を用いて、再度入射率推定値算出処理を行う。一方、ステップS509において、信号補正部185により算出された入射率推定値の精度が十分であると判定された場合には本処理を終了し、再構成像の生成に進む。 In step S508, it is determined whether the processing from the non-uniformity estimation for all the pixels obtained from the detection unit 151 to the incidence rate estimated value calculation is completed. If the processing for all the pixels is not completed, step S501 is performed. Return to and repeat the same process. On the other hand, when the processing for all the pixels is completed, the process proceeds to the next step S509, and it is determined whether or not the accuracy of the incidence rate estimated value stored in the storage unit 152 is sufficient. As a result of the determination, if it is determined that the accuracy is insufficient, the process returns to step S502, and the incident rate estimated value calculation process is performed again using the calculated incident rate estimated value instead of the pixel count rate. Do. On the other hand, if it is determined in step S509 that the accuracy of the incidence rate estimated value calculated by the signal correction unit 185 is sufficient, the present process is terminated and the process proceeds to generation of a reconstructed image.
 以上述べたように、上述した各実施形態によれば、各サブピクセルに対するX線の入射分布が非一様であり、各サブピクセル(検出素子)のデッドタイムにバラつきがある場合であっても、当該サブピクセル近傍のピクセルにおける計数率を用いて、当該サブピクセルの入射分布の非一様性を推定するので、X線の入射分布を適切に把握することができる。延いては、入射分布の非一様性に基づいて、入射したX線量を正確に推定するので、取得される再構成画像におけるアーチファクトを低減させて画質の向上を図ることができる。 As described above, according to each of the above-described embodiments, even if the X-ray incident distribution on each subpixel is non-uniform and the dead time of each subpixel (detection element) varies. Since the non-uniformity of the incident distribution of the sub-pixel is estimated using the count rate in the pixels near the sub-pixel, the X-ray incident distribution can be properly grasped. As a result, since the incident X-ray dose is accurately estimated based on the non-uniformity of the incident distribution, artifacts in the acquired reconstructed image can be reduced to improve the image quality.
 上述した各実施形態において、計数率と入射率との関係を示す計数率特性について述べたが、計数率特性f(x)は、解析的な式を用いて与えても良いし、ルックアップテーブル及び必要に応じた内挿を用いて与えても良い。
 また、非一様性の推定及び非一様性の推定結果に基づく補正による入射率推定値の算出は、画像生成部における画像再構成と必ずしも独立に行う必要はなく、同時に実施することもできる。また、他の補正(例えばパイルアップの補正)と同時に実施することもできる。例として、画像再構成において逐次近似の手法を活用する場合に、非一様性の影響の推定を他の検出器応答とともに順問題的に取り込むことで同時に実施し、再構成像を作成することが可能である。
In each of the above-described embodiments, the count rate characteristic indicating the relationship between the count rate and the incident rate has been described. However, the count rate characteristic f (x) may be given using an analytical expression or a lookup table. Further, it may be given by using interpolation as necessary.
Further, the calculation of the incidence rate estimated value by the non-uniformity estimation and the correction based on the non-uniformity estimation result is not necessarily performed independently of the image reconstruction in the image generation unit, and can be performed simultaneously. . It can also be performed simultaneously with other corrections (for example, pile-up correction). As an example, when using the successive approximation method in image reconstruction, the estimation of the effects of non-uniformity is performed simultaneously with other detector responses in a forward problem to create a reconstructed image. Is possible.
 また、上述した各実施形態においては、直接型放射線検出素材の上面に共通電極、下面にサブピクセル電極を設けることでサブピクセル分割を実施しているが、共通電極を設けず、上面もサブピクセルごとに電極を設けても良い。同様に、隣接するピクセル20は、上面の共通電極を共有しても良いし、個別に電極を有しても良い。また、検出器の素材として直接型放射線検出素材ではなく、シンチレータ(間接型放射線検出素材)に光デバイスを光学結合したものを使用することもできる。この場合のサブピクセル分割の方法としては、周囲を遮光剤に覆われたシンチレータをサブピクセルごとに設けても良いし、1つのシンチレータに対し、レーザーによるマイクロクラックをサブピクセル間に発生させる手法によってサブピクセル分割しても良い。また光学デバイスとしては、光電子増倍管(PMT)、フォトダイオード(PD)、アバランシェフォトダイオード(APD)、シリコン光電子増倍管(SiPM)などを使用することができる。 Further, in each of the above-described embodiments, subpixel division is performed by providing a common electrode on the upper surface of the direct radiation detection material and a subpixel electrode on the lower surface. An electrode may be provided for each. Similarly, adjacent pixels 20 may share a common electrode on the upper surface, or may have electrodes individually. Further, as a detector material, not a direct radiation detection material but a scintillator (indirect radiation detection material) optically coupled to an optical device can be used. As a method of dividing the subpixel in this case, a scintillator whose periphery is covered with a light-shielding agent may be provided for each subpixel, or a method of generating a microcrack by a laser between subpixels for one scintillator. Sub-pixel division may be performed. As the optical device, a photomultiplier tube (PMT), a photodiode (PD), an avalanche photodiode (APD), a silicon photomultiplier tube (SiPM), or the like can be used.
20・・・ピクセル、21・・・サブピクセル、40・・・検出層、41,42・・・電極、110・・・ガントリ回転部、120・・・X線源、125・・・フィルタ、130・・・X線フォトン、140・・・寝台、145・・コリメータ、150・・・X線検出器、151・・・検出部、152・・・信号処理部、165・・・チャンネル、166・・・信号加算部、170・・・制御部、180・・・コンピュータ、181・・・CPU,182・・・記憶部、183・・・画像生成部、184・・・非一様性推定部、185・・・信号補正部、191・・・表示装置、192・・・入力装置 20 ... Pixel, 21 ... Subpixel, 40 ... Detection layer, 41, 42 ... Electrode, 110 ... Gantry rotating part, 120 ... X-ray source, 125 ... Filter, 130 ... X-ray photons, 140 ... bed, 145 ... collimator, 150 ... X-ray detector, 151 ... detection unit, 152 ... signal processing unit, 165 ... channel, 166 ... Signal adder, 170 ... Control unit, 180 ... Computer, 181 ... CPU, 182 ... Storage, 183 ... Image generation unit, 184 ... Non-uniformity estimation 185 ... Signal correction unit 191 ... Display device 192 ... Input device

Claims (15)

  1.  X線を照射するX線源と、
     前記X線を検出する複数のサブピクセルからなるピクセルを二次元配列した検出部と、
     前記サブピクセルによる検出信号に基づいて前記X線の強度に応じた出力信号を生成する信号処理部と、
     前記ピクセルに属する前記サブピクセルの前記出力信号を加算することにより前記ピクセル毎のX線計数信号を生成する信号加算部と、
     前記X線計数信号に基づいて、画像を生成する画像生成部と、を備え、
     該画像生成部が、処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号とに基づいて、前記処理対象ピクセルにおけるX線入射分布の非一様性を推定する非一様性推定部を備える放射線撮像装置。
    An X-ray source that emits X-rays;
    A detection unit that two-dimensionally arranges pixels composed of a plurality of sub-pixels that detect the X-ray;
    A signal processing unit that generates an output signal corresponding to the intensity of the X-ray based on a detection signal from the subpixel;
    A signal adder that generates an X-ray count signal for each pixel by adding the output signals of the sub-pixels belonging to the pixel;
    An image generation unit that generates an image based on the X-ray counting signal,
    Based on the X-ray count signal of the pixel to be processed and the X-ray count signal of a pixel located in the vicinity of the pixel to be processed, the image generation unit determines whether the X-ray incident distribution in the pixel to be processed is not unique. A radiation imaging apparatus including a non-uniformity estimation unit that estimates the appearance.
  2.  前記検出部が、X線フォトンを検出するフォトンカウンティング型の検出部である請求項1記載の放射線撮像装置。 The radiation imaging apparatus according to claim 1, wherein the detection unit is a photon counting type detection unit that detects X-ray photons.
  3.  前記非一様性推定部が、処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルに隣接して位置するピクセルのX線計数信号とに基づいて、前記処理対象ピクセルにおけるX線入射分布の非一様性を推定する請求項1記載の放射線撮像装置。 Based on the X-ray count signal of the pixel to be processed and the X-ray count signal of a pixel located adjacent to the pixel to be processed, the non-uniformity estimation unit determines an X-ray incidence distribution in the pixel to be processed. The radiation imaging apparatus according to claim 1, wherein non-uniformity of the image is estimated.
  4.  前記非一様性推定部が、処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置する複数のピクセルのX線計数信号とに基づいて、前記処理対象ピクセルにおけるX線の入射分布の非一様性を推定することを特徴とする請求項1記載の放射線撮像装置。 Based on the X-ray count signal of the processing target pixel and the X-ray count signals of a plurality of pixels located in the vicinity of the processing target pixel, the non-uniformity estimation unit The radiation imaging apparatus according to claim 1, wherein non-uniformity of the incident distribution is estimated.
  5.  前記非一様性推定部が、前記ピクセルに入射するX線の入射率と前記X線計数信号との関係を示す計数率特性を予め保持し、該計数率特性と、処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号とに基づいて、前記処理対象ピクセルにおけるX線の入射分布の非一様性を推定することを特徴とする請求項1記載の放射線撮像装置。 The non-uniformity estimation unit holds in advance a count rate characteristic indicating a relationship between an incidence rate of X-rays incident on the pixel and the X-ray count signal, and the count rate characteristic and the X of the pixel to be processed are stored. The X-ray incidence distribution non-uniformity in the processing target pixel is estimated based on a line counting signal and the X-ray counting signal of a pixel located in the vicinity of the processing target pixel. Item 2. The radiation imaging apparatus according to Item 1.
  6.  前記画像生成部が、
     前記非一様性推定部による非一様性の推定結果に応じて、当該処理対象ピクセルのX線計数信号を補正して、前記処理対象ピクセルに入射したX線の入射率推定値を算出する信号補正部を備え、
     前記画像生成部が、X線の入射率推定値に基づいて画像を生成する請求項1記載の放射線撮像装置。
    The image generator
    In accordance with the non-uniformity estimation result by the non-uniformity estimation unit, the X-ray count signal of the processing target pixel is corrected, and an incidence rate estimated value of the X-rays incident on the processing target pixel is calculated. A signal correction unit,
    The radiation imaging apparatus according to claim 1, wherein the image generation unit generates an image based on an estimated X-ray incidence rate.
  7.  前記非一様性推定部が、前記ピクセルに入射するX線の入射率と前記X線計数信号との関係を示す計数率特性を予め保持し、該計数率特性を用いて、前記処理対象ピクセル及び該処理対象ピクセルの近傍に位置するピクセルの入射率予測値を算出し、前記処理対象ピクセル及び該処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号と前記入射率予測値に基づいて、前記処理対象ピクセルのX線入射分布の非一様性を推定し、
     前記信号補正部が、前記非一様性推定部による推定結果に応じて前記処理対象ピクセルの前記入射率予測値を補正した入射率推定値を算出する請求項6記載の放射線撮像装置。
    The non-uniformity estimation unit holds in advance a count rate characteristic indicating a relationship between an incidence rate of X-rays incident on the pixel and the X-ray count signal, and the processing target pixel is used by using the count rate characteristic. And an incident rate predicted value of a pixel located in the vicinity of the processing target pixel, and based on the X-ray count signal and the incident rate predicted value of the processing target pixel and a pixel located in the vicinity of the processing target pixel. , Estimating non-uniformity of the X-ray incident distribution of the pixel to be processed,
    The radiation imaging apparatus according to claim 6, wherein the signal correction unit calculates an incidence rate estimated value obtained by correcting the incidence rate predicted value of the processing target pixel according to an estimation result by the non-uniformity estimation unit.
  8.  前記画像生成部は、前記処理対象ピクセル内のサブピクセルにおけるX線の入射率推定値を算出する信号補正部を有し、
     前記信号補正部は、前記処理対象ピクセルの前記近傍に位置するピクセルの前記X線計数信号から、前記近傍のピクセル内のサブピクセルにおけるX線入射率を、予め求めておいたX線計数信号とX線入射率との関係から算出し、算出したX線入射率の値と、前記近傍のピクセル内のサブピクセルから前記処理対象ピクセル内のサブピクセルまでの距離に応じてX線入射率が変化することを表した所定の関数とを用いて、前記処理対象ピクセル内のサブピクセルのX線の前記入射率推定値を算出することを特徴とする請求項1記載の放射線撮像装置。
    The image generation unit includes a signal correction unit that calculates an X-ray incidence rate estimation value in a sub-pixel in the processing target pixel,
    The signal correction unit is configured to obtain an X-ray incidence rate at a sub-pixel in the neighboring pixel from an X-ray counting signal obtained in advance from the X-ray counting signal of the pixel located in the vicinity of the processing target pixel. Calculated from the relationship with the X-ray incidence rate, the X-ray incidence rate changes according to the calculated X-ray incidence rate value and the distance from the subpixel in the neighboring pixel to the subpixel in the processing target pixel. 2. The radiation imaging apparatus according to claim 1, wherein the X-ray incidence rate estimated value of the sub-pixel in the processing target pixel is calculated using a predetermined function indicating that the pixel is to be processed.
  9.  前記信号補正部は、前記入射率推定値を算出する際に、X線の入射率が補正前の値よりも高くなるように前記入射率推定値を算出する請求項6記載の放射線撮像装置。 The radiation imaging apparatus according to claim 6, wherein the signal correction unit calculates the incident rate estimated value so that an X-ray incident rate is higher than a value before correction when calculating the incident rate estimated value.
  10.  前記撮像対象の情報、前記X線管の焦点サイズに影響を与えるパラメータを含む複数の撮像条件を入力する入力部をさらに備え、
     前記画像生成部が、複数の前記撮像条件のうち少なくとも一つを用いてX線入射分布の非一様性を推定する請求項1記載の放射線撮像装置。
    An input unit for inputting a plurality of imaging conditions including information on the imaging target and parameters affecting the focal spot size of the X-ray tube;
    The radiation imaging apparatus according to claim 1, wherein the image generation unit estimates non-uniformity of an X-ray incident distribution using at least one of the plurality of imaging conditions.
  11.  前記信号加算部が、前記信号処理部から受け取った前記サブピクセル毎の前記出力信号に基づいて、前記処理対象ピクセルにおける非一様性に関する情報を生成し、前記X線計数信号と共に出力する請求項1記載の放射線撮像装置。 The signal adding unit generates information on non-uniformity in the processing target pixel based on the output signal for each sub-pixel received from the signal processing unit, and outputs the information together with the X-ray count signal. The radiation imaging apparatus according to 1.
  12.  前記画像生成部が、画像の生成処理の際に逐次的に各前記ピクセルに対するX線の入射分布の非一様性を推定する請求項1記載の放射線撮像装置。 The radiation imaging apparatus according to claim 1, wherein the image generation unit sequentially estimates non-uniformity of an X-ray incident distribution with respect to each pixel during image generation processing.
  13.  前記検出部が、半導体放射線検出素子を配列して構成されている請求項1記載の放射線撮像装置。 The radiation imaging apparatus according to claim 1, wherein the detection unit is configured by arranging semiconductor radiation detection elements.
  14.  X線を照射するステップと、
     前記X線を検出する検出素子を二次元配列したピクセルを複数配列した検出部によって、前記X線の検出信号を出力するステップと、
     前記検出信号に基づいて前記X線の強度に応じた出力信号を生成するステップと、
     前記ピクセルに属する前記検出素子の出力信号を加算することにより前記ピクセル毎のX線計数信号を生成するステップと、
     処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号とに基づいて、前記処理対象ピクセルのX線入射分布の非一様性を推定するステップと、
     前記X線計数信号に基づいて、画像を生成するステップと、を備えた放射線撮像方法。
    Irradiating with X-rays;
    Outputting a detection signal of the X-ray by a detection unit in which a plurality of pixels in which the detection elements for detecting the X-ray are two-dimensionally arranged are arranged;
    Generating an output signal corresponding to the intensity of the X-ray based on the detection signal;
    Generating an X-ray count signal for each pixel by adding the output signals of the detection elements belonging to the pixel;
    Estimating non-uniformity of the X-ray incident distribution of the processing target pixel based on the X-ray counting signal of the processing target pixel and the X-ray counting signal of a pixel located in the vicinity of the processing target pixel; When,
    A radiation imaging method comprising: generating an image based on the X-ray counting signal.
  15.  X線を照射するステップと、
     前記X線を検出する検出素子を二次元配列したピクセルを複数配列した検出部によって、前記X線の検出信号を出力するステップと、
     前記検出信号に基づいて前記X線の強度に応じた出力信号を生成するステップと、
     前記ピクセルに属する前記検出素子の出力信号を加算することにより前記ピクセル毎のX線計数信号を生成するステップと、
     前記X線計数信号に基づいて、画像を生成するステップと、
     処理対象ピクセルの前記X線計数信号と、前記処理対象ピクセルの近傍に位置するピクセルの前記X線計数信号とに基づいて、前記処理対象ピクセルのX線入射分布の非一様性を推定するステップとをコンピュータに実行させる放射線撮像プログラム。
    Irradiating with X-rays;
    Outputting a detection signal of the X-ray by a detection unit in which a plurality of pixels in which the detection elements for detecting the X-ray are two-dimensionally arranged are arranged;
    Generating an output signal corresponding to the intensity of the X-ray based on the detection signal;
    Generating an X-ray count signal for each pixel by adding the output signals of the detection elements belonging to the pixel;
    Generating an image based on the X-ray counting signal;
    Estimating non-uniformity of the X-ray incident distribution of the processing target pixel based on the X-ray counting signal of the processing target pixel and the X-ray counting signal of a pixel located in the vicinity of the processing target pixel; A radiation imaging program that causes a computer to execute.
PCT/JP2017/023936 2016-06-30 2017-06-29 Radiographic imaging device, radiographic imaging method, and radiographic imaging program WO2018003918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-130002 2016-06-30
JP2016130002A JP6698444B2 (en) 2016-06-30 2016-06-30 Radiation imaging apparatus, radiation imaging method, and radiation imaging program

Publications (1)

Publication Number Publication Date
WO2018003918A1 true WO2018003918A1 (en) 2018-01-04

Family

ID=60787294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023936 WO2018003918A1 (en) 2016-06-30 2017-06-29 Radiographic imaging device, radiographic imaging method, and radiographic imaging program

Country Status (2)

Country Link
JP (1) JP6698444B2 (en)
WO (1) WO2018003918A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114396B2 (en) 2018-08-03 2022-08-08 キヤノン株式会社 imaging device, imaging system, moving body
JP7246975B2 (en) * 2018-08-31 2023-03-28 キヤノンメディカルシステムズ株式会社 Photon counting detector and X-ray CT device
JP6820989B1 (en) * 2019-07-09 2021-01-27 雫石 誠 Imaging device and its driving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104911A2 (en) * 2007-02-27 2008-09-04 Koninklijke Philips Electronics N.V. Apparatus, imaging device and method for counting x-ray photons
US20130251220A1 (en) * 2012-03-26 2013-09-26 Siemens Aktiengesellschaft Method for reducing and compressing raw detector data to be transmitted of a quanta-counting detector, detector transmission path and ct system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104911A2 (en) * 2007-02-27 2008-09-04 Koninklijke Philips Electronics N.V. Apparatus, imaging device and method for counting x-ray photons
US20130251220A1 (en) * 2012-03-26 2013-09-26 Siemens Aktiengesellschaft Method for reducing and compressing raw detector data to be transmitted of a quanta-counting detector, detector transmission path and ct system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. KAPPLER ET AL.: "First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT", PROCEEDINGS OF SPIE, MEDICAL IMAGING 2012, PHYSICS OF MEDICAL IMAGING, vol. 8313, 23 February 2012 (2012-02-23), pages 83130X - 1 - 83130X-11, XP055450732 *
ZHICONG YU ET AL.: "Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array", PHYSICS IN MEDICINE & BIOLOGY, vol. 61, no. 4, 21 February 2016 (2016-02-21), pages 1572 - 1595, XP020299644 *

Also Published As

Publication number Publication date
JP6698444B2 (en) 2020-05-27
JP2018000422A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US10206638B2 (en) X-ray CT and medical diagnostic apparatus with photon counting detector
JP7053650B2 (en) Pixel design for use in radiation detectors
US9924916B2 (en) X-ray CT apparatus and controlling method
EP2867701B1 (en) Digital positron emission tomography (dpet) energy calibration method
JP6517376B2 (en) X-ray device with reduced pile-up
US9226716B2 (en) Nuclear medicine imaging apparatus and radiation therapy apparatus
US10357214B2 (en) Photon counting CT apparatus, light detection device, radiation detection device, and radiation analysis device
CN110072459B (en) Self-calibrating CT detector, system and method for self-calibration
KR20200024299A (en) Geometric Misalignment Management in X-ray Imaging Systems
JP2006101926A (en) Radiation detector, radiation image diagnostic device and generation method of radiation image
JP2020520451A (en) Scatter correction techniques for use in radiation detectors
WO2018003918A1 (en) Radiographic imaging device, radiographic imaging method, and radiographic imaging program
JP6912304B2 (en) Wave frequency distribution acquisition device, wave frequency distribution acquisition method, wave frequency distribution acquisition program and radiation imaging device
US10219763B2 (en) Photon counting CT device and estimated exposure level computation method
US10292668B2 (en) X-ray scanning apparatus
US11644587B2 (en) Pixel summing scheme and methods for material decomposition calibration in a full size photon counting computed tomography system
US11653892B2 (en) Counting response and beam hardening calibration method for a full size photon-counting CT system
US10302779B2 (en) Radiation detector, radiation imaging device, computer tomography device, and radiation detection method
US10258297B2 (en) Medical Diagnostic-imaging apparatus
JP2022013686A (en) X-ray ct apparatus, data processing method, and program
JP5798787B2 (en) Image photographing apparatus and image photographing method
JP6605211B2 (en) Photon detector and radiation analyzer
JP6425935B2 (en) Medical image diagnostic device and X-ray CT device
US20230329665A1 (en) Iterative method for material decomposition calibration in a full size photon counting computed tomography system
JP2024030533A (en) Photon counting-type x-ray image diagnostic apparatus and generation method of calibration data for pile-up correction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820272

Country of ref document: EP

Kind code of ref document: A1