WO2018003818A1 - Coated α-sulfofatty-acid-alkyl-ester-salt particle group - Google Patents

Coated α-sulfofatty-acid-alkyl-ester-salt particle group Download PDF

Info

Publication number
WO2018003818A1
WO2018003818A1 PCT/JP2017/023641 JP2017023641W WO2018003818A1 WO 2018003818 A1 WO2018003818 A1 WO 2018003818A1 JP 2017023641 W JP2017023641 W JP 2017023641W WO 2018003818 A1 WO2018003818 A1 WO 2018003818A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
coated
group
salt
particle group
Prior art date
Application number
PCT/JP2017/023641
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 英明
史也 新倉
鉱行 埴原
陽一 江端
高士 小林
洋平 野上
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to CN201780040895.3A priority Critical patent/CN109415656A/en
Publication of WO2018003818A1 publication Critical patent/WO2018003818A1/en
Priority to CONC2019/0000754A priority patent/CO2019000754A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds

Definitions

  • the present invention relates to a particle group of ⁇ -sulfo fatty acid alkyl ester salt coated with each particle.
  • the coated ⁇ -sulfo fatty acid alkyl ester salt group of the present invention can be used by blending with other detergent components in a detergent product.
  • the coated ⁇ -sulfo fatty acid alkyl ester salt particles of the present invention and powders of other detergent components are suitably used in a method for producing a powder detergent product by dry mixing.
  • ⁇ -Sulfo fatty acid alkyl ester salts are widely used as surfactants to be blended in powder detergents for clothing.
  • powder detergent products have been manufactured by producing particles containing ⁇ -SF salt at a high concentration and powder-mixing them with other detergent components.
  • the ⁇ -SF salt particle group has a problem that it is easy to solidify.
  • the ⁇ -SF salt particles are coated with zeolite and further sprayed with a nonionic surfactant to suppress the solidification. An example is given.
  • the ⁇ -SF salt has a problem that it easily generates odor. By blending a fragrance when mixing the ⁇ -SF salt particles with other detergent components, the odor in the powder detergent product can be suppressed.
  • An object of the present invention is to provide a coated ⁇ -sulfo fatty acid alkyl ester salt particle group excellent in suppression of solidification (hard to solidify) and suppression of odor (low odor).
  • Alkyl ester salt particle group wherein the calcium carbonate particle group (B1) has a volume median diameter of 20 ⁇ m or less, and the zinc oxide particle group (B2) has a volume median diameter of 20 ⁇ m or less.
  • the total mass of the calcium carbonate particle group (B1) and the zinc oxide particle group (B2) is 50 to 100% by mass with respect to the total mass of the coating component (B). 2] coated ⁇ -sulfo fatty acid alkyl ester salt particles.
  • the total mass of the calcium carbonate particle group (B1) and the zinc oxide particle group (B2) is 3 to 30% by mass with respect to the total mass of the coated ⁇ -sulfo fatty acid alkyl ester salt particle group.
  • the coated ⁇ -sulfo fatty acid alkyl ester salt particle group according to any one of [1] to [3].
  • a method for producing a detergent product comprising mixing the coated ⁇ -sulfo fatty acid alkyl ester salt particles of any one of [1] to [4] and other detergent components.
  • the above-mentioned coated ⁇ -sulfo fatty acid alkyl ester salt particle group is excellent in solidification suppression and odor suppression.
  • the coated ⁇ -sulfo fatty acid alkyl ester salt particle group (hereinafter also referred to as “coated ⁇ -SF salt particle group”) of the present invention comprises ⁇ -sulfo fatty acid alkyl ester salt particles (A) (hereinafter also referred to as component (A)).
  • component (A) ⁇ -sulfo fatty acid alkyl ester salt particles coated with coating component (B) (hereinafter also referred to as component (B)).
  • component (B) contains 1 or more types chosen from the group which consists of a calcium carbonate particle group (B1) and a zinc oxide particle group (B2). That component (A) is coated with component (B) means that particles of component (B) are attached around particles of component (A).
  • the average particle size of the coated ⁇ -SF salt particle group is preferably 250 ⁇ m to 3000 ⁇ m, and more preferably 350 ⁇ m to 1000 ⁇ m.
  • the average particle size of the particle group is 250 ⁇ m or more, the solidification property is more easily suppressed.
  • the average particle size of the particle group is 3000 ⁇ m or less, the difference from the particle size of other components does not become too large when blended in a powder detergent or the like, and problems such as separation are easily suppressed.
  • the average particle diameter of the coated ⁇ -SF salt particle group of the present invention is represented by a mass-based cumulative 50% diameter (mass median diameter) by a sieving method. Specifically, it is a value measured according to the following procedure.
  • the particles are classified using a 9-stage sieve and a saucer having openings of 1700 ⁇ m, 1400 ⁇ m, 1180 ⁇ m, 1000 ⁇ m, 710 ⁇ m, 500 ⁇ m, 355 ⁇ m, 250 ⁇ m and 150 ⁇ m, respectively.
  • Classification operation is performed as follows.
  • a sieve with a small opening is stacked on a tray in the order of a sieve with a large opening, and 100 g / times of particles are placed on the top of the top 1700 ⁇ m sieve, and a low-tap sieve shaker (Dalton Co., Ltd.) is covered. Manufactured, tapping: 125 times / minute, rolling: 250 times / minute) and vibrating for 3.5 minutes. Thereafter, the sample remaining on each sieve and the tray is collected for each sieve mesh.
  • Each particle of 710 ⁇ m or less (500 ⁇ m.on), 355 ⁇ m or more (500 ⁇ m.on), 250 ⁇ m or more and 355 ⁇ m or less (250 ⁇ m.on), 150 ⁇ m or more and 250 ⁇ m or less (150 ⁇ m.on), dish to 150 ⁇ m or less (150 ⁇ m.pass) Obtain a diameter-classified sample.
  • the mass frequency (%) is calculated using the obtained classification sample.
  • X be the mesh opening of the sieve
  • Y be the sum of the mass frequency (%) of the classified sample collected on the sieve having the mesh opening X and X larger than X.
  • log ⁇ log (100 / Y) ⁇ is plotted against logX, the slope of the least square approximation line is a, and the intercept is y (log is a common logarithm).
  • An average particle diameter can be calculated
  • Average particle diameter (mass 50% diameter) 10 (( ⁇ 0.521 ⁇ y) / a)
  • the bulk density of the coated ⁇ -SF salt particle group is preferably 0.55 to 0.75 kg / L, and more preferably 0.60 to 0.70 kg / L.
  • the bulk density is measured according to JIS K3362: 1998.
  • the component (A) is ⁇ -sulfo fatty acid alkyl ester salt particles.
  • Component (A) is a particle containing ⁇ -sulfo fatty acid alkyl ester salt ( ⁇ -SF salt) at a high concentration, and contains 60% by mass or more of ⁇ -SF salt.
  • the content of the ⁇ -SF salt in the component (A) is preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the ⁇ -SF salt particles may contain impurities.
  • the ⁇ -SF salt particles may contain moisture.
  • the ⁇ -SF salt particles include sulfate (sodium sulfate) which is an inevitable by-product in the production of the ⁇ -sulfo fatty acid alkyl ester salt. Etc.), an alkyl sulfate (such as sodium methyl sulfate), an ⁇ -sulfo fatty acid di-salt (such as ⁇ -sulfo fatty acid disodium salt), or an unreacted raw material.
  • the ⁇ -sulfo fatty acid di-salt has a function as a surfactant.
  • the ⁇ -SF salt contained in the component (A) is represented by the following formula (1).
  • R 1 is a linear or branched alkyl group having 6 to 20 carbon atoms or a linear or branched alkenyl group having 6 to 20 carbon atoms
  • R 2 is an alkyl group having 1 to 6 carbon atoms.
  • M is a counter ion.
  • it is excellent in suppression of odor as the number of carbon atoms of R 1 in the formula (1) is large. Specifically, since the odor is stronger as the carbon number of R 1 is larger, the odor suppression effect of the present invention is greater.
  • the carbon number of R 1 is preferably 8 or more, and more preferably 12 or more.
  • the carbon number of R 1 is preferably 18 or less, and more preferably 16 or less.
  • R 1 preferably has 8 to 18 carbon atoms, more preferably 12 to 16 carbon atoms.
  • R 2 preferably has 1 to 3 carbon atoms.
  • R 2 include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and a methyl group, an ethyl group, and a propyl group are preferable because the detergency is further improved.
  • the counter ion (M) include alkali metal ions, protonated amines, ammonium and the like.
  • Examples of the alkali metal that can be the counter ion include sodium and potassium.
  • the amine that can be the counter ion may be any of primary to tertiary amines, and preferably has 1 to 6 carbon atoms in total. The amine may have a hydroxy group.
  • alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
  • M is preferably an alkali metal ion, more preferably a sodium ion or a potassium ion.
  • the mass ratio of alpha-SF salt carbon number of R 1 is 14 alpha-SF number of carbon atoms of salt and R 1 is 16 40: be 0: 60 to 100 preferable.
  • ⁇ -sulfo fatty acid methyl ester salt MES salt
  • R 2 is a methyl group
  • M is preferably a sodium ion.
  • One ⁇ -SF salt may be used alone, or two or more ⁇ -SF salts may be used in combination.
  • component (A) includes sulfates (sodium sulfate, etc.), alkyl sulfates (sodium methyl sulfate, etc.), ⁇ -sulfo fatty acids that are by-produced during the synthesis of ⁇ -SF salt. By-products of di-salts (such as ⁇ -sulfo fatty acid disodium salt) and moisture may be contained.
  • the component (A) includes 60 to 98% by mass of ⁇ -SF salt, 1 to 10% by mass of ⁇ -sulfo fatty acid di-salt, and 1 to 10% by mass of alkyl sulfate.
  • the amount of water in component (A) is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the water content in the component (A) is 10% by mass or less, the adhesiveness at a low temperature of the component (A) is easily suppressed, and the storage stability at a low temperature is easily improved.
  • the average particle size of the group (A) is preferably 250 to 3000 ⁇ m, more preferably 350 to 1000 ⁇ m.
  • the average particle size of the component (A) group is 250 ⁇ m or more, solidification of the coated ⁇ -SF salt particle group of the present invention is more easily suppressed.
  • the average particle size of the component group (A) is 3000 ⁇ m or less, when the coated ⁇ -SF salt particle group of the present invention is blended in a powder detergent or the like, the difference from the particle size of other components increases. However, separation is difficult to occur.
  • the average particle diameter of the component (A) group is a value determined by the same method as the average particle diameter of the coated ⁇ -SF salt particle group.
  • a component can also be manufactured by a well-known method and can also use a commercial item.
  • the component (A) production method includes a step of preparing a paste containing an ⁇ -SF salt (paste preparation step), a step of preparing flakes from the paste (flaking step), and a step of preparing noodles from the flakes.
  • paste preparation step a step of preparing a paste containing an ⁇ -SF salt
  • flaking step a step of preparing flakes from the paste
  • flaking step a step of preparing noodles from the flakes.
  • Noodle making process the method of adjusting the pellet from the said noodle (pelletizing process), the method which grind
  • the noodle forming step and the pelletizing step are optional steps and may be omitted.
  • a step of classifying the group of ⁇ -SF salt particles may be provided. Furthermore, you may provide the process (aging process) of aging flakes, noodles, or a pellet after the said flaking process, noodle forming process, or pelletizing process.
  • the particle size of the group of the component (A) is adjusted to a desired range using a classification device.
  • the classifying device is not particularly limited, and a known classifying device can be used, but a sieve is preferably used.
  • a sieve is preferably used.
  • the gyro-type sieve is a sieve that gives a horizontal circular motion to a slightly inclined plane sieve.
  • a plane sieve is a sieve that gives a reciprocating motion almost parallel to the surface of a slightly inclined plane sieve.
  • the vibrating sieve is a sieve that gives a rapid vibration in a direction substantially perpendicular to the sieve surface. It is preferable that the time for sieving is 5 seconds or more.
  • a tapping ball can also be used to improve the sieving efficiency.
  • the group of the component (A) before the classification step is different depending on the production conditions, but particles having a particle size of 355 ⁇ m or less (hereinafter also referred to as “fine powder”) are the total of the group of the component (A). 30 mass% or more is contained with respect to mass.
  • fine powder particles having a particle size of 355 ⁇ m or less
  • a classification process is performed to adjust the amount of fine powder in the group of component (A). For example, the content of fine powder in the group of components (A) is adjusted to be less than 20% by mass with respect to the total mass of the group of components (A).
  • the fine powder in the group of the component (A) is added to the group of the component (A). Even when the content is 20% by mass or more based on the total mass, it is possible to obtain a coated ⁇ -SF salt particle group excellent in solidification inhibition. Therefore, in this invention, content of the fine powder in the group of (A) component is not specifically limited. From the viewpoint that the classification operation can be omitted and productivity can be improved, the content of fine powder in the group of components (A) is preferably 70% by mass or less with respect to the total mass of the group of components (A). , 60% by mass or less is more preferable, and 50% by mass or less is more preferable.
  • content of the fine powder in the group of (A) component is 20 mass% or more with respect to the total mass of the group of (A) component. It is preferable that the content is 30% by mass or more.
  • content of fine powder when there is much content of fine powder, the average particle diameter of the group of (A) component will become small.
  • the group of (A) component is mix
  • ⁇ -SF salt-containing solid The flakes, noodles, pellets and particles containing the ⁇ -SF salt (hereinafter collectively referred to as “ ⁇ -SF salt-containing solid”) have a metastable crystalline state and a solid containing the ⁇ -SF salt. It is known that there exists a stable crystal state formed by crystallizing an object.
  • An ⁇ -SF salt-containing solid in a stable crystalline state (hereinafter also referred to as “stable solid”) is an ⁇ -SF salt-containing solid in a stable state (hereinafter also referred to as “metastable solid”). It is known that it is more excellent in suppressing the solidification (see International Publication No. 2009/054406).
  • metastable solids are not easily formed from high-purity ⁇ -SF salt.
  • an ⁇ -SF salt is obtained through the above-mentioned steps using a fatty acid alkyl ester as a starting material, usually by-products such as alkyl sulfate and ⁇ -sulfo fatty acid di-salt are produced in addition to the ⁇ -SF salt. . If such a by-product is contained in the ⁇ -SF salt-containing solid, the ⁇ -SF salt-containing solid tends to be in a metastable state.
  • the metastable solid is converted into a stable solid.
  • Methods for converting a metastable solid to a stable solid are known, and examples include the following methods (I-1) to (I-3).
  • I-1) A method of maintaining a metastable solid at a pressure of 30 ° C. or more and 20000 Pa or less for at least 48 hours.
  • I-2) A method of maintaining a melt obtained by melting a metastable solid at a temperature not lower than the melting point of the metastable solid and not higher than the melting point of the stable solid for 5 minutes or more.
  • Metastable solids and stable solids can be easily distinguished by thermal analysis using a differential scanning calorimeter. 100 ⁇ S1 / S2 where S1 is the heat absorption peak area at 50 to 130 ° C. and S2 is the heat absorption peak area at 0 to 130 ° C., which is observed when thermal analysis is performed with a differential scanning calorimeter.
  • the value of crystallinity (unit:%) is less than 50% for metastable solids and 50% or more for stable solids.
  • the suppression of solidification can be enhanced by coating the component (A) with the component (B), even if the component (A) is a metastable solid, good suppression of solidification is achieved. can get. Therefore, as the component (A), a metastable solid may be used, or a stable solid may be used. From the viewpoint that the aging step can be omitted and productivity can be improved, it is preferable to use a metastable solid as the component (A). Whether component (A) is a metastable solid or a stable solid can be easily discriminated from both X-ray diffraction measurement and microscopic observation in addition to the differential scanning calorimetry measurement (International Publication No. 2009). / 054406).
  • the content of the component (A) in the coated ⁇ -sulfo fatty acid alkyl ester salt particles (hereinafter also referred to as “coated ⁇ -SF salt particles”), in which the component (A) is coated with the component (B),
  • the amount is preferably 70 to 97% by mass, more preferably 75 to 93% by mass, and still more preferably 80 to 90% by mass with respect to the SF salt particles.
  • the content of the component (A) is not less than the lower limit of the above range, when the coated ⁇ -SF salt particles are blended into a powder detergent product, the degree of freedom in blending other components other than the coated ⁇ -SF salt particles It becomes easy to keep. Further, when the content of the component (A) is not more than the upper limit of the above range, it is easy to obtain a solidification suppressing effect and an odor suppressing effect.
  • the component (B) is a coating component.
  • the component (B) is selected from the group consisting of the calcium carbonate particle group (B1) (hereinafter also referred to as the (B1) component) and the zinc oxide particle group (B2) (hereinafter also referred to as the (B2) component). Includes more than species.
  • the component (B) may include other particles that are neither calcium carbonate particles nor zinc oxide particles.
  • Other particles include inorganic builder particles such as zeolite, sodium sulfate, and sodium sulfite, alkaline agent particles such as sodium carbonate and potassium carbonate, polymer builder particles such as cationized cellulose, powdered cellulose, and sodium polyacrylate. Etc.
  • Zeolite is a general term for crystalline aluminosilicates.
  • aluminosilicate either crystalline or amorphous (amorphous) can be used, but crystalline aluminosilicate (zeolite) is preferable from the viewpoint of cation exchange ability, and A-type, X-type, and Y-type.
  • P-type zeolite is preferred.
  • A-type zeolite is preferable. When other particles are used, any one of them may be used, or two or more kinds may be used in combination.
  • the component (B) includes one or both of the component (B1) and the component (B2)
  • solidification of the coated ⁇ -SF salt particle group is suppressed and odor is suppressed.
  • the components (B1) and (B2) do not cause stickiness on the surface of the coated ⁇ -SF salt particles, and do not impair the handling properties of the coated ⁇ -SF salt particles.
  • the total mass of the component (B1) and the component (B2) is preferably 50 to 100% by mass and more preferably 70 to 100% by mass with respect to the total mass of the component (B). It is excellent in the solidification inhibitory effect and the odor inhibitory effect as it is more than the said lower limit.
  • the lower limit of the total mass of the component (B1) and the component (B2) is preferably 3% by mass and more preferably 5% by mass with respect to the total mass of the coated ⁇ -SF salt particle group. 7 mass% is more preferable, and 10 mass% is particularly preferable.
  • the upper limit is preferably 30% by mass, more preferably 25% by mass, and even more preferably 20% by mass.
  • a preferable numerical range of the total mass of the component (B1) and the component (B2) with respect to the total mass of the coated ⁇ -SF salt particle group is 3% by mass to 30% by mass, 5% by mass to 30% by mass, 7 mass% or more and 30 mass% or less, 7 mass% or more and 25 mass% or less, and 10 mass% or more and 20 mass% or less are mentioned.
  • the total mass of the component (B1) and the component (B2) is 3% by mass or more, a solidification suppressing effect and an odor suppressing effect are sufficiently obtained. Further, when the total mass of the component (B1) and the component (B2) is 30% by mass or less, when the coated ⁇ -SF salt particle group is added to the powder detergent, other than the coated ⁇ -SF salt particles It becomes easy to maintain the freedom of blending the ingredients.
  • the average particle diameter of the component (B) is represented by a volume-based cumulative 50% diameter (volume median diameter) measured by a wet method using a laser diffraction / scattering apparatus.
  • the volume median diameter of the component (B1) or the component (B2) is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 8 ⁇ m or less, particularly preferably 5 ⁇ m or less, and particularly preferably 4 ⁇ m or less. Most preferably, it is 3 ⁇ m or less.
  • the amount is not more than the above upper limit value, the effect of suppressing solidification and the effect of suppressing odor can be sufficiently obtained.
  • the volume median diameter is smaller, the solidification suppressing effect and the odor suppressing effect are further enhanced.
  • the lower limit of the volume median diameter of the component (B1) or the component (B2) is preferably 20 nm from the viewpoints of practicality and availability.
  • Preferred numerical ranges of the volume median diameter of each of the component (B1) or the component (B2) are 20 nm to 20 ⁇ m, 20 nm to 10 ⁇ m, 20 nm to 8 ⁇ m, 20 nm to 5 ⁇ m, 20 nm to 4 ⁇ m, and 20 nm or more. 3 micrometers or less are mentioned.
  • the lower limit of the volume median diameter of the group of other particles is preferably 20 nm from the viewpoint of practicality and availability.
  • the upper limit is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less from the viewpoint of suppressing solidification.
  • the volume median diameter of the component (B) can be adjusted using a known classifier such as a sieve.
  • the area covered with the component (B) is preferably 30% or more, more preferably 50% or more, relative to the surface area of the component (A). % Or more is more preferable, and it may be 100%.
  • the ratio (coverage) of the coated area to the surface area of the component (A) is determined by, for example, coating ⁇ -SF salt particles using a microscope (manufactured by Asahi Optical Instruments Co., Ltd., Handi Scope TM), a scanning electron microscope (for example, (S-2380N, manufactured by Hitachi, Ltd.) and an energy dispersive X-ray analyzer (for example, EMAX-7000, manufactured by Horiba, Ltd.), and can be confirmed by image processing or surface elemental analysis.
  • a microscope manufactured by Asahi Optical Instruments Co., Ltd., Handi Scope TM
  • S-2380N scanning electron microscope
  • an energy dispersive X-ray analyzer for example, EMAX-7000, manufactured by Horiba, Ltd.
  • the coated ⁇ -SF salt particle group can be produced by a method having a step (coating step) of coating the component (A) with the component (B).
  • the method of coating the component (A) with the component (B) is not particularly limited, and examples thereof include a method in which the component (A) and the component (B) are charged into a mixer and mixed (dry mixing). Either the component (A) or the component (B) may be charged first into the mixer, or both may be charged simultaneously.
  • the mixer used for dry-type mixing is preferable, for example, horizontal cylindrical mixers, container rotary mixers, such as V-type mixer, a stirring mixer, etc. are mentioned.
  • the coated ⁇ -SF salt particles of the present invention can be used in a detergent product together with other detergent components.
  • it is suitably used in a method for producing a powder detergent product by dry-mixing the coated ⁇ -SF salt particles of the present invention and powders of other detergent components.
  • known components blended in powder detergent products can be used.
  • anionic surfactants such as linear alkylbenzene sulfonic acid metal salts, ⁇ -olefin sulfonic acid metal salts, alkyl sulfate metal salts, and soap metal salts; nonionic surfactants such as alkylene oxide adducts of higher alcohols; Surfactant; Cationic surfactant; Inorganic builder such as zeolite, sodium sulfate and sodium sulfite; Alkaline agent such as sodium carbonate and potassium carbonate; Fluorescent agent; Bleach agent; Bleach activator; Enzyme; Polymerized builders such as cationized cellulose, powdered cellulose, and sodium polyacrylate.
  • anionic surfactants such as linear alkylbenzene sulfonic acid metal salts, ⁇ -olefin sulfonic acid metal salts, alkyl sulfate metal salts, and soap metal salts
  • nonionic surfactants such as alkylene oxide adducts
  • the content of the coated ⁇ -SF salt particle group with respect to the total mass of the powder detergent product is not particularly limited, but is preferably 1 to 80% by mass, more preferably 1 to 50% by mass, and 5 to 40%. More preferably, it is% mass. When it is in the preferable range, solidification of the powder detergent product is easily suppressed, and the fluidity is easily improved.
  • the coated ⁇ -SF salt particle group of the present invention is not limited to a powder detergent, and may be blended in, for example, a tablet-like or sheet-like solid detergent or a liquid detergent.
  • the area S1 and the area S2 were obtained by performing an “automatic division integration” process using software attached to the differential scanning calorimeter.
  • S1 the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 to 130 ° C.
  • S2 the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 0 to 130 ° C.
  • the measurement was performed by a wet method using a particle size distribution measuring apparatus (LS13320, manufactured by Beckman Coulter, Inc.) using a laser diffraction / scattering method.
  • the particle diameter at the point of 50% in the cumulative volume distribution curve in which the total volume of the particle size distribution determined on a volume basis was 100% was defined as the volume median diameter.
  • the preparation method of the measurement solution is as follows. First, the sample was dispersed in isopropyl alcohol as a solvent so that the concentration was 0.5% by mass. Next, a solution obtained by subjecting this solution to ultrasonic treatment for 30 minutes was used as a measurement solution.
  • a methyl alkyl ketone (alkyl group is C6 to C15) contained in the headspace using GC-MS (manufactured by Agilent Technologies, product name: Agilent 7890 / 5975C) under the following conditions: The component analysis was conducted.
  • R 1 is an alkyl group having 14 to 16 carbon atoms
  • R 2 is a methyl group
  • M is a sodium ion.
  • ⁇ (B) component> [Calcium carbonate particles (B1)] 8 types of calcium carbonate particles with different volume median diameters (volume median diameter 13.2 ⁇ m (special grade, manufactured by Kanto Chemical Co., Ltd.), volume median diameters 7.9 ⁇ m, 4.3 ⁇ m, 2.6 ⁇ m, 1.7 ⁇ m 1.1 ⁇ m, 0.2 ⁇ m (both manufactured by Shiroishi Kogyo Co., Ltd.) and volume median diameter of 2.1 ⁇ m (manufactured by Sankyo Seiko Co., Ltd.) were used.
  • Zeolite particle group A type zeolite particle group (manufactured by Guangzhou, 4A zeolite (trade name)) is pulverized and classified to adjust the volume median diameter to 1.6 ⁇ m or 3.8 ⁇ m.
  • Bentonite particle group Refined bentonite particles (Kunimine Industries, Ltd., Kunipia F (trade name)) were pulverized and classified to adjust the volume median diameter to 1.3 ⁇ m or 2.2 ⁇ m.
  • the reaction temperature was kept at 80 ° C.
  • the reaction product was transferred to an esterification tank, 14 kg of methanol was supplied, and an esterification reaction was performed at 80 ° C.
  • the esterified product was withdrawn from the esterification tank, and an equivalent amount of aqueous sodium hydroxide solution was added with a line mixer for continuous neutralization.
  • this neutralized product was poured into the bleaching agent mixing line, and 35% hydrogen peroxide solution was supplied in an amount of 1 to 2% by mass with respect to the ⁇ -SF salt in terms of pure component, While maintaining, the mixture was mixed and bleached to obtain an ⁇ -SF salt-containing paste.
  • the obtained ⁇ -SF salt-containing paste was introduced into a vacuum thin film evaporator (heat transfer surface: 4 m 2 , manufactured by Ballestra) at 200 kg / hr, an inner wall heating temperature of 100 to 160 ° C., and a degree of vacuum of 0.01 to 0 It was concentrated at 0.03 MPa and taken out as a melt having a temperature of 100 to 130 ° C. This melt is cooled to 20-30 ° C. for 0.5 minutes using a belt cooler (manufactured by Nippon Belting Co., Ltd.) and further crushed using a crusher (manufactured by Nippon Belting Co., Ltd.). To obtain ⁇ -SF salt-containing flakes.
  • a vacuum thin film evaporator heat transfer surface: 4 m 2 , manufactured by Ballestra
  • the ⁇ -SF salt-containing flakes were maintained at 30 ° C. and 12000 Pa for 720 hours to convert the ⁇ -SF salt-containing flakes into stable solids.
  • the ⁇ -SF salt flakes were heated to obtain a melt having a temperature of 60 to 63 ° C. This melt was charged into a KRC kneader (S2 type, manufactured by Kurimoto Seiko Co., Ltd.) in which warm water of 51 ° C. was passed through the jacket at 600 to 800 g / min, and kneaded at a rotational speed of 86 rpm for 0.5 minutes.
  • KRC kneader S2 type, manufactured by Kurimoto Seiko Co., Ltd.
  • the melt taken out from the kneader was passed through a pelleter double to form a noodle shape.
  • the noodles were crushed using nibra (manufactured by Hosokawa Micron Corporation) to obtain pellets.
  • [Crushing process] The obtained pellets were put into a speed mill and pulverized with a processing capacity of 200 kg / hr, a peripheral speed of 32 m / s, and a screen hole diameter of 2.5 mm to obtain a group of ⁇ -SF salt particles.
  • Examples 1 to 11 are examples, and examples 12 to 16 are comparative examples.
  • the component (A) and the component (B) were charged into a container rotary mixer and mixed to obtain a coated ⁇ -SF salt particle group.
  • the component (A) was used as it was.
  • the blending component is not blended.
  • the solidification inhibitory property and odor inhibitory property of the coated ⁇ -SF salt particles in each example were evaluated by the above methods. The evaluation results are shown in Table 1.
  • the coated ⁇ -SF salt particle groups of Examples 1 to 11 are excellent in solidification suppression and odor suppression.
  • the component (B) does not contain any of the component (B1) and the component (B2) and the zeolite particle group is used instead, the solidification suppression property was good, but the odor suppression property was good. Inferior.
  • the component (B) does not contain any of the components (B1) and (B2) and bentonite particles are used instead, the suppression of solidification is good although the suppression of odor is good. Inferior.
  • the above-mentioned coated ⁇ -sulfo fatty acid alkyl ester salt particle group is excellent in solidification suppression and odor suppression.
  • the above-mentioned coated ⁇ -sulfo fatty acid alkyl ester salt particles are mixed with other detergent components and used for the production of detergent products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Glanulating (AREA)

Abstract

Provided is a coated α-sulfofatty-acid-alkyl-ester-salt particle group: that is a group of coated α-sulfofatty-acid-alkyl-ester-salt particles in which α-sulfofatty-acid-alkyl-ester-salt particles (A) are coated by using a coating component (B) that contains one or more types of substances selected from a group including a calcium carbonate particle group (B1) and a zinc oxide particle group (B2); and that exhibits superior solidification suppression and odor suppression.

Description

被覆α-スルホ脂肪酸アルキルエステル塩粒子群Coated α-sulfo fatty acid alkyl ester salt particles
 本発明は、各粒子が被覆されている、α-スルホ脂肪酸アルキルエステル塩の粒子群に関する。本発明の被覆α-スルホ脂肪酸アルキルエステル塩粒子群は、他の洗剤成分とともに洗剤製品に配合して用いることができる。例えば、本発明の被覆α-スルホ脂肪酸アルキルエステル塩粒子群と他の洗剤成分の粉末とを乾式混合して粉末洗剤製品を製造する方法に好適に用いられる。
 本願は、2016年6月30日に、日本に出願された特願2016-129639号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a particle group of α-sulfo fatty acid alkyl ester salt coated with each particle. The coated α-sulfo fatty acid alkyl ester salt group of the present invention can be used by blending with other detergent components in a detergent product. For example, the coated α-sulfo fatty acid alkyl ester salt particles of the present invention and powders of other detergent components are suitably used in a method for producing a powder detergent product by dry mixing.
This application claims priority based on Japanese Patent Application No. 2016-129039 filed in Japan on June 30, 2016, the contents of which are incorporated herein by reference.
 α-スルホ脂肪酸アルキルエステル塩(以下、α-SF塩ともいう。)は、衣料用粉末洗剤等に配合される界面活性剤として広く用いられている。近年では、α-SF塩を高濃度で含有する粒子群を製造し、これを他の洗剤成分と粉体混合することで粉末洗剤製品が製造されるようになってきた。
 α-SF塩の粒子群には固化しやすいという問題があり、特許文献1には、α-SF塩粒子をゼオライトでコーティングし、さらにノニオン界面活性剤を噴霧することで、固化を抑制した実施例が記載されている。
 また、α-SF塩は臭気を発生しやすいという問題もある。α-SF塩の粒子群を他の洗剤成分と混合する際に香料を配合することで、粉末洗剤製品における臭気は抑制できる。
α-Sulfo fatty acid alkyl ester salts (hereinafter also referred to as α-SF salts) are widely used as surfactants to be blended in powder detergents for clothing. In recent years, powder detergent products have been manufactured by producing particles containing α-SF salt at a high concentration and powder-mixing them with other detergent components.
The α-SF salt particle group has a problem that it is easy to solidify. In Patent Document 1, the α-SF salt particles are coated with zeolite and further sprayed with a nonionic surfactant to suppress the solidification. An example is given.
In addition, the α-SF salt has a problem that it easily generates odor. By blending a fragrance when mixing the α-SF salt particles with other detergent components, the odor in the powder detergent product can be suppressed.
特開2011-116807号公報JP 2011-116807 A
 しかしながら、α-SF塩の粒子群を保管又は輸送する間に発生する臭気を抑制する方法は知られておらず、対策が求められる。
 本発明は、固化の抑制性(固化し難い)及び臭気の抑制性(臭気が少ない)に優れた被覆α-スルホ脂肪酸アルキルエステル塩粒子群の提供を目的とする。
However, there is no known method for suppressing odor generated during storage or transportation of α-SF salt particles, and countermeasures are required.
An object of the present invention is to provide a coated α-sulfo fatty acid alkyl ester salt particle group excellent in suppression of solidification (hard to solidify) and suppression of odor (low odor).
 本発明は以下の態様を有する。
 [1] α-スルホ脂肪酸アルキルエステル塩粒子(A)が被覆成分(B)で被覆された、被覆α-スルホ脂肪酸アルキルエステル塩粒子の群であり、前記被覆成分(B)が、炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)からなる群より選ばれる1種以上を含む、被覆α-スルホ脂肪酸アルキルエステル塩粒子群。
 [2] 前記炭酸カルシウム粒子群(B1)の体積中位径が20μm以下であり、前記酸化亜鉛粒子群(B2)の体積中位径が20μm以下である、[1]の被覆α-スルホ脂肪酸アルキルエステル塩粒子群。
The present invention has the following aspects.
[1] A group of coated α-sulfo fatty acid alkyl ester salt particles in which α-sulfo fatty acid alkyl ester salt particles (A) are coated with a coating component (B), wherein the coating component (B) is calcium carbonate particles. A coated α-sulfo fatty acid alkyl ester salt particle group containing one or more selected from the group consisting of the group (B1) and the zinc oxide particle group (B2).
[2] The coated α-sulfo fatty acid according to [1], wherein the calcium carbonate particle group (B1) has a volume median diameter of 20 μm or less, and the zinc oxide particle group (B2) has a volume median diameter of 20 μm or less. Alkyl ester salt particle group.
 [3] 前記被覆成分(B)の総質量に対して、前記炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)の合計の質量が50~100質量%である、[1]または[2]の被覆α-スルホ脂肪酸アルキルエステル塩粒子群。
 [4] 前記被覆α-スルホ脂肪酸アルキルエステル塩粒子群の総質量に対して、前記炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)の合計の質量が3~30質量%である、[1]~[3]のいずれかの被覆α-スルホ脂肪酸アルキルエステル塩粒子群。
 [5] [1]~[4]のいずれかの被覆α-スルホ脂肪酸アルキルエステル塩粒子群と他の洗剤成分を混合することを含む、洗剤製品の製造方法。
[3] The total mass of the calcium carbonate particle group (B1) and the zinc oxide particle group (B2) is 50 to 100% by mass with respect to the total mass of the coating component (B). 2] coated α-sulfo fatty acid alkyl ester salt particles.
[4] The total mass of the calcium carbonate particle group (B1) and the zinc oxide particle group (B2) is 3 to 30% by mass with respect to the total mass of the coated α-sulfo fatty acid alkyl ester salt particle group. The coated α-sulfo fatty acid alkyl ester salt particle group according to any one of [1] to [3].
[5] A method for producing a detergent product, comprising mixing the coated α-sulfo fatty acid alkyl ester salt particles of any one of [1] to [4] and other detergent components.
 上述した被覆α-スルホ脂肪酸アルキルエステル塩粒子群は、固化の抑制性及び臭気の抑制性に優れる。 The above-mentioned coated α-sulfo fatty acid alkyl ester salt particle group is excellent in solidification suppression and odor suppression.
<被覆α-スルホ脂肪酸アルキルエステル塩粒子群>
 本発明の被覆α-スルホ脂肪酸アルキルエステル塩粒子群(以下、「被覆α-SF塩粒子群」ともいう。)は、α-スルホ脂肪酸アルキルエステル塩粒子(A)(以下、(A)成分ともいう。)が、被覆成分(B)(以下、(B)成分ともいう。)で被覆された、被覆α-スルホ脂肪酸アルキルエステル塩粒子の群である。
 (B)成分は、炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)からなる群より選ばれる1種以上を含む。
 (A)成分が(B)成分で被覆されているとは、(A)成分の粒子の周囲に(B)成分の粒子が付着していることを意味する。
<Coated α-sulfo fatty acid alkyl ester salt particles>
The coated α-sulfo fatty acid alkyl ester salt particle group (hereinafter also referred to as “coated α-SF salt particle group”) of the present invention comprises α-sulfo fatty acid alkyl ester salt particles (A) (hereinafter also referred to as component (A)). Is a group of coated α-sulfo fatty acid alkyl ester salt particles coated with coating component (B) (hereinafter also referred to as component (B)).
(B) A component contains 1 or more types chosen from the group which consists of a calcium carbonate particle group (B1) and a zinc oxide particle group (B2).
That component (A) is coated with component (B) means that particles of component (B) are attached around particles of component (A).
 被覆α-SF塩粒子群の平均粒子径は250μm~3000μmであることが好ましく、350μm~1000μmであることがより好ましい。前記粒子群の平均粒子径が250μm以上であると、固化性がより抑制されやすくなる。前記粒子群の平均粒子径が3000μm以下であると、粉末洗剤等に配合する際に他の成分の粒子径との差が大きくなりすぎず分離等の問題が抑制されやすくなる。 The average particle size of the coated α-SF salt particle group is preferably 250 μm to 3000 μm, and more preferably 350 μm to 1000 μm. When the average particle size of the particle group is 250 μm or more, the solidification property is more easily suppressed. When the average particle size of the particle group is 3000 μm or less, the difference from the particle size of other components does not become too large when blended in a powder detergent or the like, and problems such as separation are easily suppressed.
 本発明の被覆α-SF塩粒子群の平均粒子径は、篩分け法による質量基準累積50%径(質量中位径)で表す。具体的には以下の手順に従い測定される値である。
 目開きがそれぞれ1700μm、1400μm、1180μm、1000μm、710μm、500μm、355μm、250μm、150μmである9段の篩と受け皿を用いて粒子の分級操作を行なう。
 分級操作は、次のように行う。先ず、受け皿上に目開きの小さな篩から目開きの大きな篩の順に積み重ね、最上である1700μmの篩の上から100g/回の粒子を入れ、蓋をしてロータップ型ふるい振盪機(ダルトン株式会社製、タッピング:125回/分、ローリング:250回/分)に取り付け、3.5分間振動させる。その後、それぞれの篩及び受け皿上に残留したサンプルを篩目ごとに回収する。この分級操作を繰り返すことによって、1400μm超1700μm以下(1400μm.on)、1180μm超1400μm以下(1180μm.on)、1000μm超1180μm以下(1000μm.on)、710μm超1000μm以下(710μm.on)、500μm超710μm以下(500μm.on)、355μm超500μm以下(355μm.on)、250μm超355μm以下(250μm.on)、150μm超250μm以下(150μm.on)、皿~150μm以下(150μm.pass)の各粒子径の分級サンプルを得る。得られた分級サンプルを用いて、質量頻度(%)を算出する。
 篩の目開きをXとし、目開きXとXより大きい目開きの篩の上に回収された分級サンプルの質量頻度(%)の総和をYとする。
 logXに対してlog{log(100/Y)}をプロットした時の最小2乗近似直線の傾きをa、切片をyとする(logは常用対数)。ただし、Yが5%以下及びYが95%以上となる点は上記プロットからは除外する。
 このa及びyを用いて次式によって平均粒子径を求めることができる。
 平均粒子径(質量50%径)=10((-0.521-y)/a)
The average particle diameter of the coated α-SF salt particle group of the present invention is represented by a mass-based cumulative 50% diameter (mass median diameter) by a sieving method. Specifically, it is a value measured according to the following procedure.
The particles are classified using a 9-stage sieve and a saucer having openings of 1700 μm, 1400 μm, 1180 μm, 1000 μm, 710 μm, 500 μm, 355 μm, 250 μm and 150 μm, respectively.
Classification operation is performed as follows. First, a sieve with a small opening is stacked on a tray in the order of a sieve with a large opening, and 100 g / times of particles are placed on the top of the top 1700 μm sieve, and a low-tap sieve shaker (Dalton Co., Ltd.) is covered. Manufactured, tapping: 125 times / minute, rolling: 250 times / minute) and vibrating for 3.5 minutes. Thereafter, the sample remaining on each sieve and the tray is collected for each sieve mesh. By repeating this classification operation, more than 1400 μm and less than 1700 μm (1400 μm.on), more than 1180 μm and less than 1400 μm (1180 μm.on), more than 1000 μm and less than 1180 μm (1000 μm.on), more than 710 μm and less than 1000 μm (710 μm.on) and more than 500 μm Each particle of 710 μm or less (500 μm.on), 355 μm or more (500 μm.on), 250 μm or more and 355 μm or less (250 μm.on), 150 μm or more and 250 μm or less (150 μm.on), dish to 150 μm or less (150 μm.pass) Obtain a diameter-classified sample. The mass frequency (%) is calculated using the obtained classification sample.
Let X be the mesh opening of the sieve, and Y be the sum of the mass frequency (%) of the classified sample collected on the sieve having the mesh opening X and X larger than X.
When log {log (100 / Y)} is plotted against logX, the slope of the least square approximation line is a, and the intercept is y (log is a common logarithm). However, the points where Y is 5% or less and Y is 95% or more are excluded from the plot.
An average particle diameter can be calculated | required by following Formula using these a and y.
Average particle diameter (mass 50% diameter) = 10 ((−0.521−y) / a)
 被覆α-SF塩粒子群の嵩密度は、0.55~0.75kg/Lであることが好ましく、0.60~0.70kg/Lであることがより好ましい。前記粒子群の嵩密度が前記好ましい範囲であると、溶解性を高めやすくなり、また、保管する際に省スペースにできる。なお、嵩密度は、JIS K3362:1998に準拠して測定される。 The bulk density of the coated α-SF salt particle group is preferably 0.55 to 0.75 kg / L, and more preferably 0.60 to 0.70 kg / L. When the bulk density of the particle group is in the preferred range, the solubility can be easily improved, and space can be saved when stored. The bulk density is measured according to JIS K3362: 1998.
 <(A)成分>
 (A)成分は、α-スルホ脂肪酸アルキルエステル塩粒子である。
 (A)成分は、α-スルホ脂肪酸アルキルエステル塩(α-SF塩)を高濃度で含有する粒子であり、α-SF塩を60質量%以上含有する。
 (A)成分中のα-SF塩の含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 α-SF塩の粒子は不純物を含んでもよい。α-SF塩の粒子は水分を含んでもよい。
 α-SF塩の粒子は、下記の式(1)で示されるα-スルホ脂肪酸アルキルエステル塩のほかに、α-スルホ脂肪酸アルキルエステル塩の製造上不可避の副生物である、硫酸塩(硫酸ナトリウム等)、アルキル硫酸塩(メチル硫酸ナトリウム等)、α-スルホ脂肪酸ジ塩(α-スルホ脂肪酸ジナトリウム塩等)、または未反応の原料を含んでもよい。α-スルホ脂肪酸ジ塩は界面活性剤としての機能を有する。
<(A) component>
The component (A) is α-sulfo fatty acid alkyl ester salt particles.
Component (A) is a particle containing α-sulfo fatty acid alkyl ester salt (α-SF salt) at a high concentration, and contains 60% by mass or more of α-SF salt.
The content of the α-SF salt in the component (A) is preferably 70% by mass or more, and more preferably 80% by mass or more.
The α-SF salt particles may contain impurities. The α-SF salt particles may contain moisture.
In addition to the α-sulfo fatty acid alkyl ester salt represented by the following formula (1), the α-SF salt particles include sulfate (sodium sulfate) which is an inevitable by-product in the production of the α-sulfo fatty acid alkyl ester salt. Etc.), an alkyl sulfate (such as sodium methyl sulfate), an α-sulfo fatty acid di-salt (such as α-sulfo fatty acid disodium salt), or an unreacted raw material. The α-sulfo fatty acid di-salt has a function as a surfactant.
 (A)成分に含まれるα-SF塩は、以下の式(1)で示される。
 R-CH(SOM)-COOR  ・・・ (1)
 [式(1)中、Rは、炭素数6~20の直鎖もしくは分岐のアルキル基又は炭素数6~20の直鎖もしくは分岐のアルケニル基であり、Rは、炭素数1~6のアルキル基であり、Mは、対イオンである。]
 本発明において、式(1)中のRの炭素数が多いほど臭気の抑制性に優れる。具体的にはRの炭素数が多いほど臭気が強いため、本発明による臭気の抑制効果が大きい。この点からはRの炭素数は、8以上が好ましく、12以上がより好ましい。一方、洗浄力の点からは、Rの炭素数は18以下が好ましく、16以下がより好ましい。
 Rの炭素数は、8~18であることが好ましく、12~16であることがより好ましい。
The α-SF salt contained in the component (A) is represented by the following formula (1).
R 1 —CH (SO 3 M) —COOR 2 (1)
[In Formula (1), R 1 is a linear or branched alkyl group having 6 to 20 carbon atoms or a linear or branched alkenyl group having 6 to 20 carbon atoms, and R 2 is an alkyl group having 1 to 6 carbon atoms. And M is a counter ion. ]
In the present invention, it is excellent in suppression of odor as the number of carbon atoms of R 1 in the formula (1) is large. Specifically, since the odor is stronger as the carbon number of R 1 is larger, the odor suppression effect of the present invention is greater. In this respect, the carbon number of R 1 is preferably 8 or more, and more preferably 12 or more. On the other hand, from the viewpoint of detergency, the carbon number of R 1 is preferably 18 or less, and more preferably 16 or less.
R 1 preferably has 8 to 18 carbon atoms, more preferably 12 to 16 carbon atoms.
 Rの炭素数は、1~3であることが好ましい。前記Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基が挙げられ、洗浄力がより向上することからメチル基、エチル基、プロピル基が好ましい。
 対イオン(M)としては、アルカリ金属イオン、プロトン化したアミン、アンモニウム等が挙げられる。前記対イオンとなり得るアルカリ金属としては、ナトリウム、カリウム等が挙げられる。前記対イオンとなり得るアミンは、第1~3級アミンのいずれであってもよく、総炭素数が1~6であることが好ましい。前記アミンは、ヒドロキシ基を有していてもよい。このようなアミンとしては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンが挙げられる。
 これらの中でも、Mはアルカリ金属イオンが好ましく、ナトリウムイオン又はカリウムイオンがより好ましい。
 上記α-SF塩においては、Rの炭素数が14であるα-SF塩とRの炭素数が16であるα-SF塩の質量比が40:60~100:0であることが好ましい。また、Rがメチル基であるα-スルホ脂肪酸メチルエステル塩(MES塩)が好ましく、Mはナトリウムイオンであることが好ましい。
 α-SF塩は、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
R 2 preferably has 1 to 3 carbon atoms. Examples of R 2 include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and a methyl group, an ethyl group, and a propyl group are preferable because the detergency is further improved.
Examples of the counter ion (M) include alkali metal ions, protonated amines, ammonium and the like. Examples of the alkali metal that can be the counter ion include sodium and potassium. The amine that can be the counter ion may be any of primary to tertiary amines, and preferably has 1 to 6 carbon atoms in total. The amine may have a hydroxy group. Examples of such amines include alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
Among these, M is preferably an alkali metal ion, more preferably a sodium ion or a potassium ion.
In the alpha-SF salt, the mass ratio of alpha-SF salt carbon number of R 1 is 14 alpha-SF number of carbon atoms of salt and R 1 is 16 40: be 0: 60 to 100 preferable. Further, α-sulfo fatty acid methyl ester salt (MES salt) in which R 2 is a methyl group is preferable, and M is preferably a sodium ion.
One α-SF salt may be used alone, or two or more α-SF salts may be used in combination.
 (A)成分には、上記α-SF塩以外に、α-SF塩の合成過程で副生される、硫酸塩(硫酸ナトリウム等)、アルキル硫酸塩(メチル硫酸ナトリウム等)、α-スルホ脂肪酸ジ塩(α-スルホ脂肪酸ジナトリウム塩等)の副生成物や水分が含まれていてもよい。一般に、(A)成分には、60~98質量%のα-SF塩と、1~10質量%のα-スルホ脂肪酸ジ塩と、1~10質量%のアルキル硫酸塩が含まれる。
 (A)成分中の水分量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 (A)成分中の水分量が10質量%以下であると、(A)成分の低温での粘着性が抑制されやすくなり、低温での保存安定性を高めやすくなる。
In addition to the α-SF salt, component (A) includes sulfates (sodium sulfate, etc.), alkyl sulfates (sodium methyl sulfate, etc.), α-sulfo fatty acids that are by-produced during the synthesis of α-SF salt. By-products of di-salts (such as α-sulfo fatty acid disodium salt) and moisture may be contained. In general, the component (A) includes 60 to 98% by mass of α-SF salt, 1 to 10% by mass of α-sulfo fatty acid di-salt, and 1 to 10% by mass of alkyl sulfate.
The amount of water in component (A) is preferably 10% by mass or less, and more preferably 5% by mass or less.
When the water content in the component (A) is 10% by mass or less, the adhesiveness at a low temperature of the component (A) is easily suppressed, and the storage stability at a low temperature is easily improved.
 (A)成分の群の平均粒子径は、250~3000μmであることが好ましく、350~1000μmであることがより好ましい。(A)成分の群の平均粒子径が250μm以上であると、本発明の被覆α-SF塩粒子群の固化がより抑制されやすくなる。(A)成分の群の平均粒子径が3000μm以下であると、本発明の被覆α-SF塩粒子群が粉末洗剤等に配合される際に、他の成分の粒子径との差が大きくなりすぎず分離が生じにくい。
 なお、(A)成分の群の平均粒子径は、被覆α-SF塩粒子群の平均粒子径と同じ方法で求められる値である。
The average particle size of the group (A) is preferably 250 to 3000 μm, more preferably 350 to 1000 μm. When the average particle size of the component (A) group is 250 μm or more, solidification of the coated α-SF salt particle group of the present invention is more easily suppressed. When the average particle size of the component group (A) is 3000 μm or less, when the coated α-SF salt particle group of the present invention is blended in a powder detergent or the like, the difference from the particle size of other components increases. However, separation is difficult to occur.
The average particle diameter of the component (A) group is a value determined by the same method as the average particle diameter of the coated α-SF salt particle group.
 (A)成分は、公知の方法で製造することもできるし、市販品を使用することもできる。
 (A)成分の製造方法としては、α-SF塩を含有するペーストを調製する工程(ペースト調製工程)、前記ペーストからフレークを調製する工程(フレーク化工程)、前記フレークからヌードルを調製する工程(ヌードル化工程)、前記ヌードルからペレットを調整する工程(ペレット化工程)、前記フレーク、ヌードル又はペレットを粉砕して粒子を得る工程(粉砕工程)を有する方法が挙げられる。
 なお、上記ヌードル化工程及びペレット化工程は、任意の工程であり省略してもよい。
 また、上記粉砕工程の後に、α-SF塩粒子の群を分級する工程(分級工程)を設けてもよい。さらに、上記フレーク化工程、ヌードル化工程又はペレット化工程の後に、フレーク、ヌードル又はペレットを熟成する工程(熟成工程)を設けてもよい。
(A) A component can also be manufactured by a well-known method and can also use a commercial item.
The component (A) production method includes a step of preparing a paste containing an α-SF salt (paste preparation step), a step of preparing flakes from the paste (flaking step), and a step of preparing noodles from the flakes. (Noodle making process), the method of adjusting the pellet from the said noodle (pelletizing process), the method which grind | pulverizes the said flake, noodle, or a pellet and obtains a particle | grain (grinding process) is mentioned.
The noodle forming step and the pelletizing step are optional steps and may be omitted.
Further, after the pulverization step, a step of classifying the group of α-SF salt particles (classification step) may be provided. Furthermore, you may provide the process (aging process) of aging flakes, noodles, or a pellet after the said flaking process, noodle forming process, or pelletizing process.
 [分級工程]
 分級工程では、分級装置を用いて(A)成分の群の粒度を所望の範囲に調整する。分級装置としては、特に限定されず、公知の分級装置を使用できるが、篩を用いることが好ましい。篩の中でも、ジャイロ式篩、平面篩及び振動篩が好ましい。ジャイロ式篩は、僅かに傾斜した平面篩に対し、水平な円運動を与える篩である。平面篩は、僅かに傾斜した平面篩に対し、面にほぼ平行に往復運動を与える篩である。振動篩は、篩面にほぼ直角方向に急速な振動を与える篩である。篩に供する時間は5秒以上であることが好ましい。また、篩効率を向上するために、タッピングボールを用いることもできる。
[Classification process]
In the classification step, the particle size of the group of the component (A) is adjusted to a desired range using a classification device. The classifying device is not particularly limited, and a known classifying device can be used, but a sieve is preferably used. Among the sieves, a gyro sieve, a flat sieve and a vibrating sieve are preferable. The gyro-type sieve is a sieve that gives a horizontal circular motion to a slightly inclined plane sieve. A plane sieve is a sieve that gives a reciprocating motion almost parallel to the surface of a slightly inclined plane sieve. The vibrating sieve is a sieve that gives a rapid vibration in a direction substantially perpendicular to the sieve surface. It is preferable that the time for sieving is 5 seconds or more. A tapping ball can also be used to improve the sieving efficiency.
 一般に、上記分級工程前の(A)成分の群には、製造条件等によっても異なるが、粒子径が355μm以下の粒子(以下、「微粉」ともいう)が、(A)成分の群の総質量に対して30質量%以上含まれる。
 (A)成分の群中における微粉の含有量が多いと、保存中に固化が進みやすい。したがって、固化を抑制するために分級工程を行って(A)成分の群中の微粉量を調整する。例えば(A)成分の群中の微粉の含有量が、(A)成分の群の総質量に対して20質量%未満となるように調整される。
 しかし、本発明においては、(A)成分を(B)成分で被覆することにより、固化の抑制性を高められることから、(A)成分の群中の微粉が、(A)成分の群の総質量に対して20質量%以上であっても、固化の抑制性に優れた被覆α-SF塩粒子群を得ることができる。
 したがって本発明において、(A)成分の群中の微粉の含有量は、特に限定されない。上記分級操作を省略でき、生産性を高められる点からは、(A)成分の群における微粉の含有量が、(A)成分の群の総質量に対して70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。また、本発明の固化抑制効果をより有効に得ることができる点からは、(A)成分の群における微粉の含有量が、(A)成分の群の総質量に対して20質量%以上であることが好ましく、30質量%以上であることがより好ましい。一方、微粉の含有量が多いと、(A)成分の群の平均粒子径が小さくなる。また、(A)成分の群を粉末洗剤製品に配合した場合に、(A)成分の粒子径と他の成分との粒子径の差が大きくなり、分離等の問題を生じる可能性がある。そのため、この点からは(A)成分の群中の微粉の含有量は、(A)成分の群の総質量に対して50質量%以下であることが好ましい。
In general, the group of the component (A) before the classification step is different depending on the production conditions, but particles having a particle size of 355 μm or less (hereinafter also referred to as “fine powder”) are the total of the group of the component (A). 30 mass% or more is contained with respect to mass.
When there is much content of the fine powder in the group of (A) component, solidification will advance easily during preservation | save. Therefore, in order to suppress solidification, a classification process is performed to adjust the amount of fine powder in the group of component (A). For example, the content of fine powder in the group of components (A) is adjusted to be less than 20% by mass with respect to the total mass of the group of components (A).
However, in the present invention, by suppressing the solidification by coating the component (A) with the component (B), the fine powder in the group of the component (A) is added to the group of the component (A). Even when the content is 20% by mass or more based on the total mass, it is possible to obtain a coated α-SF salt particle group excellent in solidification inhibition.
Therefore, in this invention, content of the fine powder in the group of (A) component is not specifically limited. From the viewpoint that the classification operation can be omitted and productivity can be improved, the content of fine powder in the group of components (A) is preferably 70% by mass or less with respect to the total mass of the group of components (A). , 60% by mass or less is more preferable, and 50% by mass or less is more preferable. Moreover, from the point which can acquire the solidification inhibitory effect of this invention more effectively, content of the fine powder in the group of (A) component is 20 mass% or more with respect to the total mass of the group of (A) component. It is preferable that the content is 30% by mass or more. On the other hand, when there is much content of fine powder, the average particle diameter of the group of (A) component will become small. Moreover, when the group of (A) component is mix | blended with a powder detergent product, the difference of the particle size of (A) component and the particle size of another component becomes large, and problems, such as isolation | separation, may arise. Therefore, from this point, the content of fine powder in the group of components (A) is preferably 50% by mass or less with respect to the total mass of the group of components (A).
 [熟成工程]
 α-SF塩を含有する上記フレーク、ヌードル、ペレット及び粒子(以下、これらをまとめて「α-SF塩含有固形物」ともいう)には、準安定な結晶状態と、α-SF塩含有固形物を結晶化することで形成される安定な結晶状態とが存在することが知られている。
 そして、安定な結晶状態のα-SF塩含有固形物(以下、「安定固体」ともいう)は、準安定な結晶状態のα-SF塩含有固形物(以下、「準安定固体」ともいう)よりも、固化の抑制性に優れることが知られている(国際公開第2009/054406号参照)。
[Aging process]
The flakes, noodles, pellets and particles containing the α-SF salt (hereinafter collectively referred to as “α-SF salt-containing solid”) have a metastable crystalline state and a solid containing the α-SF salt. It is known that there exists a stable crystal state formed by crystallizing an object.
An α-SF salt-containing solid in a stable crystalline state (hereinafter also referred to as “stable solid”) is an α-SF salt-containing solid in a stable state (hereinafter also referred to as “metastable solid”). It is known that it is more excellent in suppressing the solidification (see International Publication No. 2009/054406).
 一般に、高純度のα-SF塩からは準安定固体は形成されにくい。しかしながら、脂肪酸アルキルエステルを出発原料として用いて、上記各工程を経てα-SF塩を得ると、通常、α-SF塩以外に、アルキル硫酸塩及びα-スルホ脂肪酸ジ塩等の副生物が生じる。α-SF塩含有固形物にこのような副生物が含まれると、α-SF塩含有固形物は準安定状態となりやすい。 Generally, metastable solids are not easily formed from high-purity α-SF salt. However, when an α-SF salt is obtained through the above-mentioned steps using a fatty acid alkyl ester as a starting material, usually by-products such as alkyl sulfate and α-sulfo fatty acid di-salt are produced in addition to the α-SF salt. . If such a by-product is contained in the α-SF salt-containing solid, the α-SF salt-containing solid tends to be in a metastable state.
 熟成工程では、準安定固体を安定固体に変換する。
 準安定固体を、安定固体に変換する方法は公知であり、例えば下記(I-1)~(I-3)の方法が挙げられる。
 (I-1)準安定固体を、30℃以上、20000Pa以下の圧力において、少なくとも48時間維持する方法。
 (I-2)準安定固体を溶融して得られた溶融物を、準安定固体の融点以上で、かつ、安定固体の融点以下の温度で、5分間以上維持する方法。
 (I-3)準安定固体を溶融して得られた溶融物に対して、準安定固体の融点以上、かつ、80℃以下の温度において、100(1/s)以上の剪断速度で剪断力を与える方法。
 なお、準安定固体と、安定固体とは、示差走査熱分析計による熱分析で容易に判別できる。示差走査熱分析計で熱分析した際に観測される50~130℃における熱吸収ピーク面積をS1、0~130℃における熱吸収ピーク面積をS2としたときの、100×S1/S2で求められる結晶化度(単位:%)の値が、準安定固体は50%未満であり、安定固体は50%以上である。
In the aging step, the metastable solid is converted into a stable solid.
Methods for converting a metastable solid to a stable solid are known, and examples include the following methods (I-1) to (I-3).
(I-1) A method of maintaining a metastable solid at a pressure of 30 ° C. or more and 20000 Pa or less for at least 48 hours.
(I-2) A method of maintaining a melt obtained by melting a metastable solid at a temperature not lower than the melting point of the metastable solid and not higher than the melting point of the stable solid for 5 minutes or more.
(I-3) For a melt obtained by melting a metastable solid, a shearing force at a shear rate of 100 (1 / s) or more at a temperature not lower than the melting point of the metastable solid and not higher than 80 ° C. How to give.
Metastable solids and stable solids can be easily distinguished by thermal analysis using a differential scanning calorimeter. 100 × S1 / S2 where S1 is the heat absorption peak area at 50 to 130 ° C. and S2 is the heat absorption peak area at 0 to 130 ° C., which is observed when thermal analysis is performed with a differential scanning calorimeter. The value of crystallinity (unit:%) is less than 50% for metastable solids and 50% or more for stable solids.
 本発明においては、(A)成分を(B)成分で被覆することにより、固化の抑制性を高められることから、(A)成分が準安定固体であっても、良好な固化の抑制性が得られる。
 したがって、(A)成分としては、準安定固体を用いてもよく、安定固体を用いてもよい。熟成工程を省略でき、生産性を高められる点からは、(A)成分として準安定固体を用いることが好ましい。
 なお、(A)成分が準安定固体であるか、安定固体であるかは、上記示差走査熱分析測定以外にも、両者のX線回折測定や顕微鏡観察から容易に判別できる(国際公開第2009/054406号参照)。
In the present invention, since the suppression of solidification can be enhanced by coating the component (A) with the component (B), even if the component (A) is a metastable solid, good suppression of solidification is achieved. can get.
Therefore, as the component (A), a metastable solid may be used, or a stable solid may be used. From the viewpoint that the aging step can be omitted and productivity can be improved, it is preferable to use a metastable solid as the component (A).
Whether component (A) is a metastable solid or a stable solid can be easily discriminated from both X-ray diffraction measurement and microscopic observation in addition to the differential scanning calorimetry measurement (International Publication No. 2009). / 054406).
 (A)成分が(B)成分で被覆された、被覆α-スルホ脂肪酸アルキルエステル塩粒子(以下、「被覆α-SF塩粒子」ともいう)中の(A)成分の含有量は、被覆α-SF塩粒子に対して70~97質量%が好ましく、75~93質量%がより好ましく、80~90質量%がさらに好ましい。
 (A)成分の含有量が上記範囲の下限値以上であると、被覆α-SF塩粒子を粉末洗剤製品に配合する場合に、被覆α-SF塩粒子以外の他の成分の配合の自由度を保ちやすくなる。また、(A)成分の含有量が上記範囲の上限値以下であると、固化の抑制効果及び臭気の抑制効果が得られやすくなる。
The content of the component (A) in the coated α-sulfo fatty acid alkyl ester salt particles (hereinafter also referred to as “coated α-SF salt particles”), in which the component (A) is coated with the component (B), The amount is preferably 70 to 97% by mass, more preferably 75 to 93% by mass, and still more preferably 80 to 90% by mass with respect to the SF salt particles.
When the content of the component (A) is not less than the lower limit of the above range, when the coated α-SF salt particles are blended into a powder detergent product, the degree of freedom in blending other components other than the coated α-SF salt particles It becomes easy to keep. Further, when the content of the component (A) is not more than the upper limit of the above range, it is easy to obtain a solidification suppressing effect and an odor suppressing effect.
 <(B)成分>
 (B)成分は被覆成分である。(B)成分は、炭酸カルシウム粒子群(B1)(以下、(B1)成分ともいう。)及び酸化亜鉛粒子群(B2)(以下、(B2)成分ともいう。)からなる群より選ばれる1種以上を含む。(B)成分は、炭酸カルシウム粒子又は酸化亜鉛粒子のいずれでもない他の粒子を含んでもよい。
 他の粒子としては、ゼオライト、硫酸ナトリウム、亜硫酸ナトリウム等の無機ビルダーの粒子、炭酸ナトリウム、炭酸カリウム等のアルカリ剤の粒子、カチオン化セルロース、粉末セルロース、ポリアクリル酸ナトリウム等の高分子ビルダーの粒子等が挙げられる。
 ゼオライトとは、結晶性アルミノケイ酸塩の総称である。アルミノケイ酸塩としては、結晶性、非晶質(無定形)のいずれも用いることができるが、カチオン交換能の点から結晶性アルミノケイ酸塩(ゼオライト)が好ましく、A型、X型、Y型、P型ゼオライト等が好適である。特にA型ゼオライトが好ましい。
 他の粒子を用いる場合、いずれか1種でもよく、2種以上を組み合わせて用いてもよい。
<(B) component>
The component (B) is a coating component. The component (B) is selected from the group consisting of the calcium carbonate particle group (B1) (hereinafter also referred to as the (B1) component) and the zinc oxide particle group (B2) (hereinafter also referred to as the (B2) component). Includes more than species. The component (B) may include other particles that are neither calcium carbonate particles nor zinc oxide particles.
Other particles include inorganic builder particles such as zeolite, sodium sulfate, and sodium sulfite, alkaline agent particles such as sodium carbonate and potassium carbonate, polymer builder particles such as cationized cellulose, powdered cellulose, and sodium polyacrylate. Etc.
Zeolite is a general term for crystalline aluminosilicates. As the aluminosilicate, either crystalline or amorphous (amorphous) can be used, but crystalline aluminosilicate (zeolite) is preferable from the viewpoint of cation exchange ability, and A-type, X-type, and Y-type. P-type zeolite is preferred. In particular, A-type zeolite is preferable.
When other particles are used, any one of them may be used, or two or more kinds may be used in combination.
 (B)成分が、(B1)成分及び(B2)成分の一方又は両方を含むことで、被覆α-SF塩粒子群の固化が抑制されるとともに、臭気が抑制される。また、(B1)成分及び(B2)成分は被覆α-SF塩粒子の表面でべとつき等を生じず、被覆α-SF塩粒子群のハンドリング性を損なわない。
 (B)成分の総質量に対して、(B1)成分と(B2)成分の合計の質量が50~100質量%であることが好ましく、70~100質量%がより好ましい。上記下限値以上であると固化の抑制効果及び臭気の抑制効果に優れる。
 被覆α-SF塩粒子群の総質量に対して、(B1)成分と(B2)成分の合計の質量の下限値は、3質量%であることが好ましく、5質量%であることがより好ましく、7質量%であることがさらに好ましく、10質量%であることが特に好ましい。上限値は30質量%であることが好ましく、25質量%であることがより好ましく、20質量%であることがさらに好ましい。
 被覆α-SF塩粒子群の総質量に対する、(B1)成分と(B2)成分の合計の質量の好ましい数値範囲としては、3質量%以上30質量%以下、5質量%以上30質量%以下、7質量%以上30質量%以下、7質量%以上25質量%以下、及び10質量%以上20質量%以下が挙げられる。(B1)成分と(B2)成分の合計の質量が3質量%以上であると、固化の抑制効果及び臭気の抑制効果が充分に得られる。また、(B1)成分と(B2)成分の合計の質量が30質量%以下であると、被覆α-SF塩粒子群を粉末洗剤に配合する場合に、被覆α-SF塩粒子以外の他の成分の配合の自由度を保ちやすくなる。
When the component (B) includes one or both of the component (B1) and the component (B2), solidification of the coated α-SF salt particle group is suppressed and odor is suppressed. Further, the components (B1) and (B2) do not cause stickiness on the surface of the coated α-SF salt particles, and do not impair the handling properties of the coated α-SF salt particles.
The total mass of the component (B1) and the component (B2) is preferably 50 to 100% by mass and more preferably 70 to 100% by mass with respect to the total mass of the component (B). It is excellent in the solidification inhibitory effect and the odor inhibitory effect as it is more than the said lower limit.
The lower limit of the total mass of the component (B1) and the component (B2) is preferably 3% by mass and more preferably 5% by mass with respect to the total mass of the coated α-SF salt particle group. 7 mass% is more preferable, and 10 mass% is particularly preferable. The upper limit is preferably 30% by mass, more preferably 25% by mass, and even more preferably 20% by mass.
A preferable numerical range of the total mass of the component (B1) and the component (B2) with respect to the total mass of the coated α-SF salt particle group is 3% by mass to 30% by mass, 5% by mass to 30% by mass, 7 mass% or more and 30 mass% or less, 7 mass% or more and 25 mass% or less, and 10 mass% or more and 20 mass% or less are mentioned. When the total mass of the component (B1) and the component (B2) is 3% by mass or more, a solidification suppressing effect and an odor suppressing effect are sufficiently obtained. Further, when the total mass of the component (B1) and the component (B2) is 30% by mass or less, when the coated α-SF salt particle group is added to the powder detergent, other than the coated α-SF salt particles It becomes easy to maintain the freedom of blending the ingredients.
 本発明において、(B)成分の平均粒子径は、レーザ回折・散乱法による装置を用い湿式法により測定した体積基準累積50%径(体積中位径)で表す。
 (B1)成分又は(B2)成分の体積中位径は、それぞれ、20μm以下が好ましく、10μm以下がより好ましく、8μm以下がさらに好ましく、5μm以下が特に好ましく、4μm以下であることが顕著に好ましく、3μm以下であることが最も好ましい。上記の上限値以下であると固化の抑制効果及び臭気の抑制効果が充分に得られる。前記体積中位径が小さい程、固化の抑制効果及び臭気の抑制効果がより高まる。
 一方、(B1)成分又は(B2)成分の体積中位径の下限値としては、実用性や入手可能性の観点から、それぞれ20nmが好ましい。(B1)成分又は(B2)成分のそれぞれの体積中位径の好ましい数値範囲としては、20nm以上20μm以下、20nm以上10μm以下、20nm以上8μm以下、20nm以上5μm以下、20nm以上4μm以下及び20nm以上3μm以下が挙げられる。
In the present invention, the average particle diameter of the component (B) is represented by a volume-based cumulative 50% diameter (volume median diameter) measured by a wet method using a laser diffraction / scattering apparatus.
The volume median diameter of the component (B1) or the component (B2) is preferably 20 μm or less, more preferably 10 μm or less, further preferably 8 μm or less, particularly preferably 5 μm or less, and particularly preferably 4 μm or less. Most preferably, it is 3 μm or less. When the amount is not more than the above upper limit value, the effect of suppressing solidification and the effect of suppressing odor can be sufficiently obtained. As the volume median diameter is smaller, the solidification suppressing effect and the odor suppressing effect are further enhanced.
On the other hand, the lower limit of the volume median diameter of the component (B1) or the component (B2) is preferably 20 nm from the viewpoints of practicality and availability. Preferred numerical ranges of the volume median diameter of each of the component (B1) or the component (B2) are 20 nm to 20 μm, 20 nm to 10 μm, 20 nm to 8 μm, 20 nm to 5 μm, 20 nm to 4 μm, and 20 nm or more. 3 micrometers or less are mentioned.
 (B)成分が他の粒子の群を含む場合、他の粒子の群の体積中位径の下限値は、実用性や入手可能性の観点から20nmが好ましい。上限値は固化抑制の観点から20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。
 (B)成分の体積中位径は、篩等の公知の分級装置を用いて調整することができる。
When the component (B) includes a group of other particles, the lower limit of the volume median diameter of the group of other particles is preferably 20 nm from the viewpoint of practicality and availability. The upper limit is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less from the viewpoint of suppressing solidification.
The volume median diameter of the component (B) can be adjusted using a known classifier such as a sieve.
 被覆α-SF塩粒子において、(A)成分の表面積に対して、(B)成分で被覆されている面積が、30%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることがさらに好ましく、100%であってもよい。
 (A)成分の表面積に対する被覆された面積の割合(被覆率)は、例えば、被覆α-SF塩粒子をマイクロスコープ(株式会社朝日光学機器製作所製、Handi Scope TM)や、走査電子顕微鏡(例えば、株式会社日立製作所製、S-2380N)とエネルギー分散型X線分析装置(例えば、株式会社堀場製作所製、EMAX-7000)にて表面観察し、画像処理、あるいは表面元素分析等により確認できる。
In the coated α-SF salt particles, the area covered with the component (B) is preferably 30% or more, more preferably 50% or more, relative to the surface area of the component (A). % Or more is more preferable, and it may be 100%.
The ratio (coverage) of the coated area to the surface area of the component (A) is determined by, for example, coating α-SF salt particles using a microscope (manufactured by Asahi Optical Instruments Co., Ltd., Handi Scope TM), a scanning electron microscope (for example, (S-2380N, manufactured by Hitachi, Ltd.) and an energy dispersive X-ray analyzer (for example, EMAX-7000, manufactured by Horiba, Ltd.), and can be confirmed by image processing or surface elemental analysis.
 <被覆α-SF塩粒子群の製造方法>
 被覆α-SF塩粒子群は、(A)成分を(B)成分で被覆する工程(被覆工程)を有する方法で製造できる。
 (A)成分を(B)成分で被覆する方法としては、特に限定されないが、例えば(A)成分と(B)成分を混合機に投入し、混合(乾式混合)する方法が挙げられる。
 混合機には、(A)成分と(B)成分のどちらを先に投入してもよく、また、両者を同時に投入してもよい。
 上記混合機としては、特に限定されないが、乾式混合に用いる混合機が好ましく、例えば、水平円筒型混合機、V型混合機等の容器回転式混合機、撹拌式混合機等が挙げられる。
<Method for Producing Coated α-SF Salt Particles>
The coated α-SF salt particle group can be produced by a method having a step (coating step) of coating the component (A) with the component (B).
The method of coating the component (A) with the component (B) is not particularly limited, and examples thereof include a method in which the component (A) and the component (B) are charged into a mixer and mixed (dry mixing).
Either the component (A) or the component (B) may be charged first into the mixer, or both may be charged simultaneously.
Although it does not specifically limit as said mixer, The mixer used for dry-type mixing is preferable, for example, horizontal cylindrical mixers, container rotary mixers, such as V-type mixer, a stirring mixer, etc. are mentioned.
 本発明の被覆α-SF塩粒子群は、他の洗剤成分とともに洗剤製品に配合して用いることができる。
 例えば、本発明の被覆α-SF塩粒子群と他の洗剤成分の粉末とを乾式混合して粉末洗剤製品を製造する方法に好適に用いられる。
 他の洗剤成分は、粉末洗剤製品に配合される公知の成分を用いることができる。具体例としては、直鎖アルキルベンゼンスルホン酸金属塩、αオレフィンスルホン酸金属塩、アルキルサルフェート金属塩、石鹸金属塩等のアニオン界面活性剤;高級アルコールのアルキレンオキシド付加物等のノニオン界面活性剤;両性界面活性剤;カチオン界面活性剤;ゼオライト、硫酸ナトリウム、亜硫酸ナトリウム等の無機ビルダー;炭酸ナトリウム、炭酸カリウム等のアルカリ剤;蛍光剤;漂白剤;漂白活性化剤;酵素;香料;色素;柔軟剤;カチオン化セルロース、粉末セルロース、ポリアクリル酸ナトリウム等の高分子ビルダー等が挙げられる。
The coated α-SF salt particles of the present invention can be used in a detergent product together with other detergent components.
For example, it is suitably used in a method for producing a powder detergent product by dry-mixing the coated α-SF salt particles of the present invention and powders of other detergent components.
As other detergent components, known components blended in powder detergent products can be used. Specific examples include anionic surfactants such as linear alkylbenzene sulfonic acid metal salts, α-olefin sulfonic acid metal salts, alkyl sulfate metal salts, and soap metal salts; nonionic surfactants such as alkylene oxide adducts of higher alcohols; Surfactant; Cationic surfactant; Inorganic builder such as zeolite, sodium sulfate and sodium sulfite; Alkaline agent such as sodium carbonate and potassium carbonate; Fluorescent agent; Bleach agent; Bleach activator; Enzyme; Polymerized builders such as cationized cellulose, powdered cellulose, and sodium polyacrylate.
 粉末洗剤製品の総質量に対する、被覆α-SF塩粒子群の含有量は特に限定されないが、1~80質量%であることが好ましく、1~50質量%であることがより好ましく、5~40%質量であることがさらに好ましい。前記好ましい範囲であると、粉末洗剤製品の固化が抑制されやすく、また、流動性が高められやすくなる。
 なお、本発明の被覆α-SF塩粒子群は、粉末洗剤に限られず、例えばタブレット状やシート状の固体洗剤や、液体洗剤に配合されてもよい。
The content of the coated α-SF salt particle group with respect to the total mass of the powder detergent product is not particularly limited, but is preferably 1 to 80% by mass, more preferably 1 to 50% by mass, and 5 to 40%. More preferably, it is% mass. When it is in the preferable range, solidification of the powder detergent product is easily suppressed, and the fluidity is easily improved.
The coated α-SF salt particle group of the present invention is not limited to a powder detergent, and may be blended in, for example, a tablet-like or sheet-like solid detergent or a liquid detergent.
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following description.
<測定方法・評価方法>
 [(A)成分の結晶化度の測定方法]
 示差走査熱分析計として、SII社製DSC6220を用いた。トリオブレンダー(トリオサイエンス社製)で試料20gを粉砕し、粉砕物のうちの5~30mgを銀製のサンプルパンに入れ、0℃から130℃まで2℃/minの速度で昇温し、熱分析した。
 この時の50~130℃における熱吸収ピーク面積S1と、0~130℃における熱吸収ピーク面積S2から、S1/S2×100を求め、これを結晶化度(単位:%)とした。
 なお、面積S1と面積S2は、示差走査熱分析計に付属しているソフトウエアを用いて、「自動分割積分」処理を行うことにより、それぞれ求めた。また、50~130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を50~130℃における熱吸収ピーク面積から差し引いた値をS1とした。また、0~130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を0~130℃における熱吸収ピーク面積から差し引いた値をS2とした。
<Measurement method / Evaluation method>
[Method for measuring crystallinity of component (A)]
A DSC 6220 manufactured by SII was used as a differential scanning calorimeter. 20g of a sample is pulverized with a trio blender (manufactured by Trio Science), 5-30mg of the pulverized product is placed in a silver sample pan, heated from 0 ° C to 130 ° C at a rate of 2 ° C / min, and subjected to thermal analysis. did.
S1 / S2 × 100 was determined from the heat absorption peak area S1 at 50 to 130 ° C. and the heat absorption peak area S2 at 0 to 130 ° C. at this time, and this was defined as the crystallinity (unit:%).
The area S1 and the area S2 were obtained by performing an “automatic division integration” process using software attached to the differential scanning calorimeter. When an exothermic peak was observed at 50 to 130 ° C., the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 to 130 ° C. was defined as S1. When an exothermic peak was observed at 0 to 130 ° C., the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 0 to 130 ° C. was defined as S2.
 [(B)成分の平均粒子径(体積中位径)の測定方法]
 レーザ回折・散乱法による粒度分布測定装置(LS13 320、ベックマン・コールター株式会社製)を用いて湿式法で測定を行った。体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径を体積中位径とした。
 測定溶液の調製手法は、以下の通りである。まず、試料を濃度が0.5質量%になるように溶媒であるイソプロピルアルコールに分散させた。次いで、この溶液に30分超音波処理を施したものを測定溶液とした。
[Measuring method of average particle diameter (volume median diameter) of component (B)]
The measurement was performed by a wet method using a particle size distribution measuring apparatus (LS13320, manufactured by Beckman Coulter, Inc.) using a laser diffraction / scattering method. The particle diameter at the point of 50% in the cumulative volume distribution curve in which the total volume of the particle size distribution determined on a volume basis was 100% was defined as the volume median diameter.
The preparation method of the measurement solution is as follows. First, the sample was dispersed in isopropyl alcohol as a solvent so that the concentration was 0.5% by mass. Next, a solution obtained by subjecting this solution to ultrasonic treatment for 30 minutes was used as a measurement solution.
 [固化の抑制性の評価]
 内径50mm、高さ100mmの円筒状のセルに、試料である各例の被覆α-SF塩粒子群を80g入れ、40℃雰囲気で、2kgの荷重で1週間静置して円柱状の成形体とした。前記成形体を取り出し、IMDA製FORCE GAUGE(モデルNo、本体:MX-500N、検知部:ZP-500N)を用いて上部から5.32mm/秒の条件で検知部を降下させ、成形体の上面全体に荷重を徐々に加え、成形体が破壊するまでにかかった最大荷重(kgf)を測定した。測定は、各試料について5回ずつ行い、その平均値を求めた。この最大荷重の測定値が小さいほど、固化の抑制性に優れると評価できる。
[Evaluation of inhibition of solidification]
80 g of the coated α-SF salt particle group of each example as a sample is placed in a cylindrical cell having an inner diameter of 50 mm and a height of 100 mm, and left standing at a load of 2 kg for 1 week in an atmosphere of 40 ° C. It was. The molded body is taken out, and the detection part is lowered from the upper part at a condition of 5.32 mm / second using IMDA FORCE GAUGE (model No., main body: MX-500N, detection part: ZP-500N), and the upper surface of the molded body The load was gradually applied to the whole, and the maximum load (kgf) applied until the molded body broke was measured. The measurement was performed five times for each sample, and the average value was obtained. It can be evaluated that the smaller the measured value of the maximum load is, the more excellent the suppression of solidification is.
 [臭気の抑制性の評価]
 (1)消臭率の測定
 試料3gを20mL容量のバイアル瓶に入れて密栓し、40℃の恒温槽内で60分静置した後、ヘッドスペース部分に含まれる成分をGC-MSで分析した。
 すなわち、ヘッドスペース部分に含まれる成分を、40℃の条件下で、固相マイクロ抽出ファイバー(スペルコ社製、製品名:SPMEファイバー、膜厚:65μm、PDMS/DVB(ジビニルベンゼン分散ポリジメチルシロキサン))で30分抽出した。
 抽出後の固相マイクロ抽出ファイバーについて、GC-MS(アジレント・テクノロジー社製、製品名:Agilent7890/5975C)を用い、下記の条件でヘッドスペースに含まれるメチルアルキルケトン(アルキル基がC6~C15)について成分分析を行った。
 被覆前の(A)成分のみを試料とした場合のメチルアルキルケトン(アルキル基がC6~C15)成分の合計ピーク面積値(Xa)と、被覆α-SF塩粒子群を試料とした場合のメチルアルキルケトン(アルキル基がC6~C15)成分の合計ピーク面積値(Xb)をそれぞれ測定し、下記式(I)により消臭率(単位:%)を算出した。
 消臭率(単位:%)=(Xb)/(Xa)×100
 (測定条件)
 カラム:HP-INNOWAX(長さ:30m、内径:0.25mm、膜厚:0.25μm)、
 測定温度:35℃で3分間保持した後、205℃まで40℃/分で昇温し、さらに250℃まで10℃/分で昇温、
 キャリアガス:ヘリウム、
 注入口温度:250℃、
 インターフェイス温度:250℃、
 注入方法:パルスドスプリットレス。
[Evaluation of odor control]
(1) Measurement of deodorization rate 3 g of a sample was put in a 20 mL vial and sealed, and allowed to stand in a constant temperature bath at 40 ° C. for 60 minutes, and then the components contained in the headspace part were analyzed by GC-MS. .
That is, the components contained in the head space part were subjected to solid-phase microextraction fiber (manufactured by Spelco, product name: SPME fiber, film thickness: 65 μm, PDMS / DVB (divinylbenzene dispersed polydimethylsiloxane) under the condition of 40 ° C. ) For 30 minutes.
For the solid-phase microextraction fiber after extraction, a methyl alkyl ketone (alkyl group is C6 to C15) contained in the headspace using GC-MS (manufactured by Agilent Technologies, product name: Agilent 7890 / 5975C) under the following conditions: The component analysis was conducted.
Total peak area value (Xa) of methyl alkyl ketone (alkyl group is C6-C15) component when only component (A) before coating is used as a sample, and methyl when sample of coated α-SF salt particle group is used as a sample The total peak area value (Xb) of the alkyl ketone (alkyl group is C6 to C15) component was measured, and the deodorization rate (unit:%) was calculated by the following formula (I).
Deodorization rate (unit:%) = (Xb) / (Xa) × 100
(Measurement condition)
Column: HP-INNOWAX (length: 30 m, inner diameter: 0.25 mm, film thickness: 0.25 μm),
Measurement temperature: After holding at 35 ° C. for 3 minutes, the temperature is raised to 205 ° C. at 40 ° C./min, and further to 250 ° C. at 10 ° C./min.
Carrier gas: helium,
Inlet temperature: 250 ° C
Interface temperature: 250 ° C
Injection method: pulsed splitless.
 (2)官能評価
 試料である被覆α-SF塩粒子群(25℃)の40gを120mL容量のガラス瓶に充填して評価試料とした。評価試料の香気について、専門パネラーによる官能評価を実施した。被覆前の(A)成分のみの臭気を対照として下記の基準で評価した。
 A:消臭効果あり。
 B:やや消臭効果あり。
 C:わずかに消臭効果あり。
 D:消臭効果なし。
(2) Sensory evaluation 40 g of the sample coated α-SF salt particle group (25 ° C.) was filled into a 120 mL capacity glass bottle to prepare an evaluation sample. The sensory evaluation by the expert panel was implemented about the fragrance of the evaluation sample. The odor of only component (A) before coating was evaluated according to the following criteria as a control.
A: There is a deodorizing effect.
B: Slight deodorizing effect.
C: Slight deodorizing effect.
D: No deodorizing effect.
(使用原料)
 <(A)成分>
 (A-1):下記製造例1で製造したα-SF塩粒子の群、結晶化度75%(安定固体)、平均粒子径450μm、微粉率30質量%、水分2質量%。粒子中のα-SF塩は、上記一般式(1)において、Rが炭素数14~16のアルキル基、Rがメチル基、Mがナトリウムイオンである。
(Raw materials used)
<(A) component>
(A-1): a group of α-SF salt particles produced in Production Example 1 below, crystallinity 75% (stable solid), average particle size 450 μm, fine powder rate 30% by mass, moisture 2% by mass. In the α-SF salt in the particles, in the general formula (1), R 1 is an alkyl group having 14 to 16 carbon atoms, R 2 is a methyl group, and M is a sodium ion.
 <(B)成分>
 [炭酸カルシウム粒子群(B1)]
 体積中位径が異なる8種の炭酸カルシウム粒子群(体積中位径13.2μm(関東化学株式会社製、特級)、体積中位径7.9μm、4.3μm、2.6μm、1.7μm、1.1μm、0.2μm(いずれも白石工業株式会社製)、体積中位径2.1μm(三共精粉株式会社製)を用いた。
 [酸化亜鉛粒子群(B2)]
 酸化亜鉛粒子群(体積中位径1.1μm(関東化学株式会社製、特級))を用いた。
 [他の粒子の群]
 ゼオライト粒子群:A型ゼオライト粒子群(Guangzhou社製、4Aゼオライト(商品名))を粉砕し、分級して体積中位径を1.6μm又は3.8μmに調整したもの。
 ベントナイト粒子群:精製ベントナイト粒子(クニミネ工業株式会社製、クニピアF(商品名))を粉砕し、分級して体積中位径を1.3μm又は2.2μmに調整したものを用いた。
<(B) component>
[Calcium carbonate particles (B1)]
8 types of calcium carbonate particles with different volume median diameters (volume median diameter 13.2 μm (special grade, manufactured by Kanto Chemical Co., Ltd.), volume median diameters 7.9 μm, 4.3 μm, 2.6 μm, 1.7 μm 1.1 μm, 0.2 μm (both manufactured by Shiroishi Kogyo Co., Ltd.) and volume median diameter of 2.1 μm (manufactured by Sankyo Seiko Co., Ltd.) were used.
[Zinc oxide particles (B2)]
Zinc oxide particles (volume median diameter 1.1 μm (manufactured by Kanto Chemical Co., Ltd., special grade)) were used.
[Other group of particles]
Zeolite particle group: A type zeolite particle group (manufactured by Guangzhou, 4A zeolite (trade name)) is pulverized and classified to adjust the volume median diameter to 1.6 μm or 3.8 μm.
Bentonite particle group: Refined bentonite particles (Kunimine Industries, Ltd., Kunipia F (trade name)) were pulverized and classified to adjust the volume median diameter to 1.3 μm or 2.2 μm.
 (製造例1:(A-1)の製造)
 [ペースト化工程]
 パルミチン酸メチル(ライオン株式会社製、商品名「パステルM-16」)と、ステアリン酸メチル(ライオン株式会社製、商品名「パステルM-180」)とを、80:20(質量比)となるように混合した。
 撹拌機を備えた容量1kLの反応装置に、前記脂肪酸メチルエステル混合物330kgと、着色抑制剤として、無水硫酸ナトリウムを、脂肪酸メチルエステル混合物の5質量%となる量で投入した。この混合物を、撹拌しながら、窒素ガスで4容量%に希釈したSOガス(スルホン化ガス)110kgをバブリングしながら3時間かけて等速で吹き込み、反応させた。反応温度は80℃に保った。
 上記反応物を、エステル化槽に移し、メタノール14kgを供給して、80℃においてエステル化反応を行った。反応終了後のエステル化物をエステル化槽から抜き出し、ラインミキサーで当量の水酸化ナトリウム水溶液を添加して連続的に中和した。
 ついで、この中和物を漂白剤混合ラインに注入し、35%過酸化水素水を、純分換算で、α-SF塩に対して1~2質量%となる量で供給し、80℃に保ちながら混合し漂白して、α-SF塩含有ペーストを得た。
(Production Example 1: Production of (A-1))
[Paste making process]
Methyl palmitate (product name “Pastel M-16” manufactured by Lion Corporation) and methyl stearate (product name “Pastel M-180” manufactured by Lion Corporation) are 80:20 (mass ratio). Mixed.
Into a reactor having a capacity of 1 kL equipped with a stirrer, 330 kg of the fatty acid methyl ester mixture and anhydrous sodium sulfate as a coloring inhibitor were added in an amount of 5% by mass of the fatty acid methyl ester mixture. While stirring, 110 kg of SO 3 gas (sulfonated gas) diluted to 4% by volume with nitrogen gas was bubbled into the mixture and reacted at a constant rate over 3 hours. The reaction temperature was kept at 80 ° C.
The reaction product was transferred to an esterification tank, 14 kg of methanol was supplied, and an esterification reaction was performed at 80 ° C. After completion of the reaction, the esterified product was withdrawn from the esterification tank, and an equivalent amount of aqueous sodium hydroxide solution was added with a line mixer for continuous neutralization.
Next, this neutralized product was poured into the bleaching agent mixing line, and 35% hydrogen peroxide solution was supplied in an amount of 1 to 2% by mass with respect to the α-SF salt in terms of pure component, While maintaining, the mixture was mixed and bleached to obtain an α-SF salt-containing paste.
 [フレーク化工程]
 得られたα-SF塩含有ペーストを、真空薄膜蒸発機(伝熱面:4m、Ballestra社製)に200kg/hrで導入し、内壁加熱温度100~160℃、真空度0.01~0.03MPaにて濃縮し、温度100~130℃の溶融物として取り出した。
 この溶融物を、ベルトクーラー(株式会社日本ベルティング製)を用いて、20~30℃まで0.5分間で冷却し、さらに解砕機(株式会社日本ベルティング製)を用いて解砕することによってα-SF塩含有フレークを得た。
[Flakeing process]
The obtained α-SF salt-containing paste was introduced into a vacuum thin film evaporator (heat transfer surface: 4 m 2 , manufactured by Ballestra) at 200 kg / hr, an inner wall heating temperature of 100 to 160 ° C., and a degree of vacuum of 0.01 to 0 It was concentrated at 0.03 MPa and taken out as a melt having a temperature of 100 to 130 ° C.
This melt is cooled to 20-30 ° C. for 0.5 minutes using a belt cooler (manufactured by Nippon Belting Co., Ltd.) and further crushed using a crusher (manufactured by Nippon Belting Co., Ltd.). To obtain α-SF salt-containing flakes.
 [熟成工程]
 上記α-SF塩含有フレークを、30℃、12000Paにおいて、720時間維持し、α-SF塩含有フレークを安定固体に変換した。
 [ヌードル化工程]
 α-SF塩フレークを加温し、温度60~63℃の溶融物とした。この溶融物を、ジャケットに51℃の温水を流したKRCニーダー(S2型、栗本鐵工所社製)に、600~800g/minで投入して、回転数86rpmで0.5分間混練した。その後、ニーダーから取り出した溶融物をペレッターダブルに通過させてヌードル状に成形した。
 [ペレット化工程]
 上記ヌードルを、ニブラ(ホソカワミクロン株式会社製)を用いて解砕してペレットを得た。
 [粉砕工程]
 得られたペレットをスピードミルに投入し、処理能力200kg/hr、周速32m/s、スクリーン穴径2.5mmで粉砕し、α-SF塩粒子の群を得た。
[Aging process]
The α-SF salt-containing flakes were maintained at 30 ° C. and 12000 Pa for 720 hours to convert the α-SF salt-containing flakes into stable solids.
[Noodle making process]
The α-SF salt flakes were heated to obtain a melt having a temperature of 60 to 63 ° C. This melt was charged into a KRC kneader (S2 type, manufactured by Kurimoto Seiko Co., Ltd.) in which warm water of 51 ° C. was passed through the jacket at 600 to 800 g / min, and kneaded at a rotational speed of 86 rpm for 0.5 minutes. Thereafter, the melt taken out from the kneader was passed through a pelleter double to form a noodle shape.
[Pelletization process]
The noodles were crushed using nibra (manufactured by Hosokawa Micron Corporation) to obtain pellets.
[Crushing process]
The obtained pellets were put into a speed mill and pulverized with a processing capacity of 200 kg / hr, a peripheral speed of 32 m / s, and a screen hole diameter of 2.5 mm to obtain a group of α-SF salt particles.
 <例1~16>
 例1~11は実施例、例12~16は比較例である。
 表1に示す組成に従い、(A)成分と、(B)成分とを容器回転式混合機に投入し、両者を混合して被覆α-SF塩粒子群を得た。なお例16では、(A)成分をそのまま用いた。表中、空欄の配合成分がある場合、その配合成分は配合されていない。
 各例の被覆α-SF塩粒子群の固化の抑制性及び臭気の抑制性を上記の方法で評価した。評価結果を表1に示す。
<Examples 1 to 16>
Examples 1 to 11 are examples, and examples 12 to 16 are comparative examples.
According to the composition shown in Table 1, the component (A) and the component (B) were charged into a container rotary mixer and mixed to obtain a coated α-SF salt particle group. In Example 16, the component (A) was used as it was. In the table, when there is a blank blending component, the blending component is not blended.
The solidification inhibitory property and odor inhibitory property of the coated α-SF salt particles in each example were evaluated by the above methods. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1~11の被覆α-SF塩粒子群は、固化の抑制性及び臭気の抑制性に優れる。
 (B)成分が(B1)成分及び(B2)成分のいずれも含まず、その代わりにゼオライト粒子群を用いた例12、13は、固化の抑制性は良好であったが臭気の抑制性が劣る。
 (B)成分が(B1)成分及び(B2)成分のいずれも含まず、その代わりにベントナイト粒子群を用いた例14、15は、臭気の抑制性は良好であったが固化の抑制性が劣る。
From the results in Table 1, the coated α-SF salt particle groups of Examples 1 to 11 are excellent in solidification suppression and odor suppression.
In Examples 12 and 13 in which the component (B) does not contain any of the component (B1) and the component (B2) and the zeolite particle group is used instead, the solidification suppression property was good, but the odor suppression property was good. Inferior.
In Examples 14 and 15, in which the component (B) does not contain any of the components (B1) and (B2) and bentonite particles are used instead, the suppression of solidification is good although the suppression of odor is good. Inferior.
 上述の被覆α-スルホ脂肪酸アルキルエステル塩粒子群は、固化の抑制性及び臭気の抑制性に優れる。
 上述の被覆α-スルホ脂肪酸アルキルエステル塩粒子群は、他の洗剤成分と混合して洗剤製品の製造に用いられる。
The above-mentioned coated α-sulfo fatty acid alkyl ester salt particle group is excellent in solidification suppression and odor suppression.
The above-mentioned coated α-sulfo fatty acid alkyl ester salt particles are mixed with other detergent components and used for the production of detergent products.

Claims (5)

  1.  α-スルホ脂肪酸アルキルエステル塩粒子(A)が被覆成分(B)で被覆された、被覆α-スルホ脂肪酸アルキルエステル塩粒子の群であり、
     前記被覆成分(B)が、炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)からなる群より選ばれる1種以上を含む、被覆α-スルホ脂肪酸アルキルエステル塩粒子群。
    a group of coated α-sulfo fatty acid alkyl ester salt particles in which α-sulfo fatty acid alkyl ester salt particles (A) are coated with a coating component (B);
    A coated α-sulfo fatty acid alkyl ester salt particle group, wherein the coating component (B) contains one or more selected from the group consisting of a calcium carbonate particle group (B1) and a zinc oxide particle group (B2).
  2.  前記炭酸カルシウム粒子群(B1)の体積中位径が20μm以下であり、前記酸化亜鉛粒子群(B2)の体積中位径が20μm以下である、請求項1記載の被覆α-スルホ脂肪酸アルキルエステル塩粒子群。 The coated α-sulfo fatty acid alkyl ester according to claim 1, wherein the calcium carbonate particle group (B1) has a volume median diameter of 20 µm or less, and the zinc oxide particle group (B2) has a volume median diameter of 20 µm or less. Salt particle group.
  3.  前記被覆成分(B)の総質量に対して、前記炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)の合計の質量が50~100質量%である、請求項1記載の被覆α-スルホ脂肪酸アルキルエステル塩粒子群。 The coating α- according to claim 1, wherein the total mass of the calcium carbonate particle group (B1) and the zinc oxide particle group (B2) is 50 to 100 mass% with respect to the total mass of the coating component (B). Sulfo fatty acid alkyl ester salt particles.
  4.  前記被覆α-スルホ脂肪酸アルキルエステル塩粒子群の総質量に対して、前記炭酸カルシウム粒子群(B1)及び酸化亜鉛粒子群(B2)の合計の質量が3~30質量%である、請求項1記載の被覆α-スルホ脂肪酸アルキルエステル塩粒子群。 The total mass of the calcium carbonate particle group (B1) and the zinc oxide particle group (B2) is 3 to 30% by mass with respect to the total mass of the coated α-sulfo fatty acid alkyl ester salt particle group. The coated α-sulfo fatty acid alkyl ester salt particle group as described.
  5.  請求項1~4のいずれか一項に記載の被覆α-スルホ脂肪酸アルキルエステル塩粒子群と他の洗剤成分を混合することを含む、洗剤製品の製造方法。 A method for producing a detergent product, comprising mixing the coated α-sulfo fatty acid alkyl ester salt particles according to any one of claims 1 to 4 and other detergent components.
PCT/JP2017/023641 2016-06-30 2017-06-27 Coated α-sulfofatty-acid-alkyl-ester-salt particle group WO2018003818A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780040895.3A CN109415656A (en) 2016-06-30 2017-06-27 Coat alpha-sulfo-fatty acid alkyl ester salt particle swarm
CONC2019/0000754A CO2019000754A2 (en) 2016-06-30 2019-01-28 Group of alpha-sulfograse-coated alkyl ester salt particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016129639A JP6774798B2 (en) 2016-06-30 2016-06-30 Coated α-sulfofatty acid alkyl ester salt particles
JP2016-129639 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003818A1 true WO2018003818A1 (en) 2018-01-04

Family

ID=60785996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023641 WO2018003818A1 (en) 2016-06-30 2017-06-27 Coated α-sulfofatty-acid-alkyl-ester-salt particle group

Country Status (4)

Country Link
JP (1) JP6774798B2 (en)
CN (1) CN109415656A (en)
CO (1) CO2019000754A2 (en)
WO (1) WO2018003818A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154743A (en) * 2003-10-30 2005-06-16 Lion Corp Detergent composition and method for producing the same
JP2006182862A (en) * 2004-12-27 2006-07-13 Lion Corp Granular detergent composition
WO2007108418A1 (en) * 2006-03-17 2007-09-27 Lion Corporation Process for production of anionic surfactant powders and anionic surfactant powders
JP2008063419A (en) * 2006-09-06 2008-03-21 Lion Corp Moderate bulk-density powdery detergent for clothing and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103406A (en) * 1978-02-01 1979-08-14 Lion Corp Improvement of granulated detergent
JPS60262895A (en) * 1984-06-11 1985-12-26 ライオン株式会社 Manufacture of granular detergent
JP2001164288A (en) * 1999-12-10 2001-06-19 Lion Corp Detergent composition for laundry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154743A (en) * 2003-10-30 2005-06-16 Lion Corp Detergent composition and method for producing the same
JP2006182862A (en) * 2004-12-27 2006-07-13 Lion Corp Granular detergent composition
WO2007108418A1 (en) * 2006-03-17 2007-09-27 Lion Corporation Process for production of anionic surfactant powders and anionic surfactant powders
JP2008063419A (en) * 2006-09-06 2008-03-21 Lion Corp Moderate bulk-density powdery detergent for clothing and its manufacturing method

Also Published As

Publication number Publication date
CN109415656A (en) 2019-03-01
JP2018002821A (en) 2018-01-11
CO2019000754A2 (en) 2019-02-19
JP6774798B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP4761045B2 (en) Method for producing powder, flakes or pellets containing high concentration of α-sulfo fatty acid alkyl ester salt, and method for producing granular detergent
US8501972B2 (en) Solid fatty alkyl ester sulfonate metal salt and method for producing powder thereof with sharp particle size distribution
EP0507402B1 (en) Process for preparing detergent compositions
AU722284B2 (en) A process for production of raw materials for washing agents
WO2016047788A1 (en) Granular detergent and detergent product
AU2010320064B2 (en) Method for producing detergent granules
WO2018003818A1 (en) Coated α-sulfofatty-acid-alkyl-ester-salt particle group
WO2010058599A1 (en) METHOD FOR PRODUCING AQUEOUS α-SULFO FATTY ACID ALKYL ESTER SALT SOLUTION
JPS6187657A (en) Preparation of alpha-sulfo-fatty acid ester salt
KR101840074B1 (en) Powder detergent composition and method for producing same
JP6644000B2 (en) Coated α-sulfofatty acid alkyl ester salt particles, method for producing the same, and powder detergent
JP4488211B2 (en) Method for producing α-sulfo fatty acid alkyl ester salt-containing particles
WO2016104799A1 (en) Coated α-sulfo fatty acid alkyl ester salt particles, method for producing same, and powder detergent
WO2018003905A1 (en) Powdered detergent composition and method for producing same
WO2000032738A1 (en) Granulation method
JP5014864B2 (en) Method for storing, transporting and producing anionic surfactant-containing granular material
US20090124532A1 (en) Detergent Granule and Process for Production Thereof
US9708252B2 (en) Fatty acid alkyl ester sulfonate metal salt powder mixture and method for producing the same
JP5452481B2 (en) Α-sulfo fatty acid alkyl ester salt solid containing bubbles and method for producing the same
EP1212399A1 (en) Process for preparing high-bulk density detergent compositions
JP2011006636A (en) Alpha-sulfo fatty acid alkyl ester salt solid matter containing water-soluble neutral inorganic salt, and method for producing the same
JPH04359099A (en) Production of high-bulk density detergent composition
JP2003105378A (en) Detergent composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820172

Country of ref document: EP

Kind code of ref document: A1