WO2018003801A1 - Oiling nozzle - Google Patents

Oiling nozzle Download PDF

Info

Publication number
WO2018003801A1
WO2018003801A1 PCT/JP2017/023584 JP2017023584W WO2018003801A1 WO 2018003801 A1 WO2018003801 A1 WO 2018003801A1 JP 2017023584 W JP2017023584 W JP 2017023584W WO 2018003801 A1 WO2018003801 A1 WO 2018003801A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
curvature
radius
fiber
section
Prior art date
Application number
PCT/JP2017/023584
Other languages
French (fr)
Japanese (ja)
Inventor
祐大 遠矢
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018525179A priority Critical patent/JP6680879B2/en
Priority to EP17820155.4A priority patent/EP3461935B1/en
Priority to CN201780039805.9A priority patent/CN109415845B/en
Publication of WO2018003801A1 publication Critical patent/WO2018003801A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/04Guiding surfaces within slots or grooves
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H71/00Moistening, sizing, oiling, waxing, colouring or drying filamentary material as additional measures during package formation
    • B65H71/007Oiling, waxing by applying liquid during spooling
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/08Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating from outlets being in, or almost in, contact with the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/04Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
    • D06B3/045Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments in a tube or a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • This disclosure relates to an oiling nozzle.
  • Patent Document 1 describes an oil supply guide having an oil discharge hole and an oil reservoir adjacent to the oil discharge hole formed on the fiber contact surface.
  • the oiling nozzle of the present disclosure includes a feeding portion, a feeding portion, and an intermediate portion that is located between the feeding portion and the feeding portion and contacts the fiber. And this intermediate part has the oil discharge hole located in the said feeding part side, and the several groove-like oil reservoir orthogonal to the course of the said fiber to the said sending part side from this oil discharge hole. And in the cross section along the path of the fiber, the cross-sectional area of the first oil reservoir closest to the oil discharge hole among the plurality of oil reservoirs is the largest.
  • FIG. 3 is an enlarged view near an oil reservoir in the cross-sectional view of FIG. 2.
  • the oiling nozzle of the present disclosure can suppress damage to the fiber and reduce the amount of oil used by uniformly supplying the oil to the fiber.
  • the oiling nozzle of the present disclosure will be described in detail with reference to the drawings.
  • the oiling nozzle 10 of the present disclosure is located between the feeding unit 30, the feeding unit 40, and the intermediate unit 20 that is in contact with the fiber 1 and is positioned between the feeding unit 30 and the feeding unit 40.
  • the intermediate portion 20 includes an oil discharge hole 50 positioned on the feeding portion 30 side, and a plurality of groove-like oil reservoirs 60 orthogonal to the path of the fiber 1 on the sending portion 40 side from the oil discharge hole 50.
  • the sending part 30 side of the intermediate part 20 is a part closer to the sending part 30 than the sending part 40 in the intermediate part 20, and is located on the right side in FIG.
  • the sending part 40 side of the intermediate part 20 is a part closer to the sending part 40 than the sending part 30 in the intermediate part 20, and is located on the left side in FIG.
  • the fiber 1 is fed from the right side shown in FIG. 2, enters from the feeding section 30, and advances toward the feeding section 40 while sliding on the intermediate section 20. At this time, the fiber 1 is supplied with the oil ejected from the oil discharge hole 50 communicating with the oil supply path 70. Further, a part of the oil supplied to the fibers 1 moves together with the fibers 1 traveling in the direction of the delivery unit 40 and accumulates in a plurality of oil reservoirs 60.
  • the oil accumulated in the plurality of oil reservoirs 60 serves as an oil supply source to the fiber 1 that travels from the feeding section 30 toward the feeding section 40.
  • the oil reservoir 60 is also a storage location for oil that has been excessively supplied.
  • the number of oil reservoirs 60 is four, but the number of oil reservoirs may be plural, and may be two, three, or five or more. Needless to say.
  • the oiling nozzle 10 of this indication has the largest cross-sectional area S1 of the 1st oil sump 61 nearest to the oil discharge hole 50 among the some oil sumps 60 in the cross section along the path of the fiber 1.
  • the oiling nozzle 10 of the present disclosure when the oil oil passes through the first oil reservoir 61, the required oil amount of the fiber 1 is substantially optimized, and damage to the fiber 1 is suppressed. In addition, since less oil flows out from the delivery unit 20, the amount of oil used can be reduced.
  • the cross-sectional area of each of the plurality of oil reservoirs 60 is a cross section along the path of the fiber 1 as a measurement surface, a photograph is taken at a magnification of 10 to 100 times using an optical microscope, and image analysis software is used. To calculate.
  • image analysis software for example, image analysis software “A image kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) may be used.
  • the plurality of oil reservoirs 60 are the first oil reservoir 61, the second oil reservoir 62, the third oil reservoir 63, and the fourth oil reservoir 64.
  • the sectional area of the first oil reservoir 61 is S1
  • the sectional area of the second oil reservoir 62 is S2
  • the sectional area of the third oil reservoir 63 is S3
  • the sectional area of the fourth oil reservoir 64 is S4.
  • n 4.
  • cross-sectional area S1 of the first oil reservoir 61 may be 1.2 times or more and 2.0 times or less of the cross-sectional area S4 of the fourth oil reservoir 64. If such a configuration is satisfied, damage to the fiber 1 is further suppressed.
  • the radius of curvature A1 of the feeding portion 30 side corner may be larger than the radius of curvature B1 of the sending portion 40 side corner (A1> B1).
  • the oil ejected from the oil discharge hole 50 can easily enter the oil reservoir 61, so that the oil that has entered the oil reservoir 61 can be easily supplied to the fiber 1 while the oil is easily supplied. It becomes difficult to come out from 61. Therefore, since a favorable oil supply can be achieved, damage to the fiber 1 is further suppressed.
  • the radius of curvature A1 of the first oil reservoir 61 at the inlet portion side may be the largest. If such a configuration is satisfied, the oil ejected from the oil discharge hole 50 can easily enter the first oil reservoir 61 closest to the oil discharge port 50. Therefore, the oil can be sufficiently supplied, so that damage to the fiber 1 is further suppressed.
  • the radius of curvature B1 of the corner of the first oil reservoir 61 on the side of the delivery section 40 may be the largest among the radii of curvature of the corners on the side of the delivery section 40 of the plurality of oil reservoirs 60. If such a configuration is satisfied, the oil can be smoothly transferred to the next second oil reservoir 62 when the oil ejected from the oil discharge port 50 is supplied. Therefore, the oil can be sufficiently supplied, so that damage to the fiber 1 is further suppressed.
  • the measurement of the curvature radius of the corner of the feeding portion 30 and the curvature radius of the corner of the delivery portion 40 in each oil reservoir 60 is performed in the course of the fiber 1 in the same manner as when the cross-sectional area of each oil reservoir 60 is obtained.
  • the cross section taken along is taken as a measurement surface, and a cross-sectional photograph is taken at a magnification of 10 to 100 times using an optical microscope, and the calculation can be performed from this photograph.
  • the material of the oiling nozzle 10 of the present disclosure is not limited. If the oiling nozzle 10 of the present disclosure is made of ceramics, frictional heat is less likely to be generated compared to a case of being made of metal or resin.
  • the ceramic include alumina ceramics, zirconia ceramics, titania ceramics, silicon carbide ceramics, silicon nitride ceramics, and composites thereof.
  • alumina ceramics are an inexpensive material among ceramics, and therefore the cost can be reduced if the oiling nozzle 10 of the present disclosure is made of alumina ceramics.
  • the alumina ceramic is one in which alumina accounts for 80% by mass or more out of 100% by mass of all components constituting the ceramic.
  • the material of the oiling nozzle 10 may be confirmed by the following method.
  • the oiling nozzle 10 is measured using an X-ray diffractometer (XRD), and identification is performed using a JCPDS card from the obtained 2 ⁇ (2 ⁇ is a diffraction angle) value.
  • quantitative analysis of the contained components is performed using a fluorescent X-ray analyzer (XRF). For example, if the presence of alumina is confirmed by the above identification and the content converted to alumina (Al 2 O 3 ) from the Al content measured by XRF is 80% by mass or more, it is an alumina ceramic.
  • alumina, zirconia, titania, silicon carbide, silicon nitride as a main raw material, or a composite powder thereof and a sintering aid are mixed at a predetermined ratio to obtain a mixed raw material.
  • the mixed raw material and the solvent are put in a ball mill together with balls and pulverized to a predetermined particle size to obtain a slurry.
  • a mold that forms an oiling nozzle-shaped molded body having oil reservoirs having different cross-sectional areas may be used.
  • the radius of curvature of the feeding portion side corner and the radius of curvature of the sending portion side corner in each oil reservoir can be set to arbitrary sizes by cutting or changing the shape of the mold.
  • the maximum temperature is 1450 ° C. or higher and 1750 ° C. or lower in the air atmosphere, and the holding time at this maximum temperature is 1 hour.
  • the oiling nozzle of the present disclosure can be obtained by firing for 8 hours or less.
  • alumina powder as the main raw material
  • calcia powder and silica powder as the sintering aid
  • the mixed raw material and the solvent were put together with balls in a ball mill and pulverized to a predetermined particle size to obtain a slurry.
  • the slurry was spray-dried with a spray dryer, a binder was added, and kneaded with a kneader to obtain pellets. Then, using this pellet, an oiling nozzle-shaped molded body was obtained by an injection molding method using a mold having an oiling nozzle shape having oil reservoirs having different cross-sectional areas.
  • the obtained oiling nozzle-shaped molded body was fired in an air atmosphere at a maximum temperature of 1680 ° C. and a holding time at the maximum temperature of 1 hour to obtain an oiling nozzle-shaped sintered body. Then, each sample was obtained by finishing with a barrel grinder.
  • the number of oil reservoirs was four, and the cross-sectional area of each oil reservoir in each sample was set to the value shown in Table 1.
  • the four oil reservoirs are referred to as a first oil reservoir, a second oil reservoir, a third oil reservoir, and a fourth oil reservoir in order from the side closer to the oil discharge hole.
  • the cross-sectional area of the first oil sump is S1
  • the cross-sectional area of the second oil sump is S2
  • the cross-sectional area of the third oil sump is S3
  • the cross-sectional area of the fourth oil sump is S4.
  • the radius of curvature of the inlet side corner and the radius of curvature of the outlet side corner of each oil reservoir in the cross section along the fiber path were each 0.34 mm.
  • the sample No. with the largest cross-sectional area S4 is shown.
  • the time until damage was confirmed on the fiber was as short as 350 hours.
  • No. 2 was as short as 370 hours until the fiber was confirmed to be damaged.
  • the time until the fiber was confirmed to be damaged was as long as 400 hours or more. From this, it was found that the damage to the fiber 1 is suppressed if the oiling nozzle has the largest cross-sectional area S1 of the first oil reservoir closest to the oil discharge hole among the plurality of oil reservoirs.
  • samples were prepared in which the radius of curvature of the inlet side corner and the radius of curvature of the outlet side corner were different.
  • the sample No. 1 of Example 1 was used except that the radius of curvature of the corner of the delivery section side of the first oil reservoir was the value shown in Table 2. 6 was the same as the manufacturing method.
  • Sample No. 11 shows the sample No. of Example 1. Same as 6.
  • the radius of curvature of the feeding portion side corner in the first oil reservoir is A1
  • the radius of curvature of the sending portion side corner is B1.
  • samples having different curvature radii at the inlet side corner and at the outlet side corner were prepared in a plurality of oil reservoirs.
  • the sample N.I. of Example 2 was used except that the curvature radius of the corners on the delivery part side of the plurality of oil reservoirs was the value shown in Table 3. 12 was the same as the manufacturing method.
  • Sample No. 13 is the sample No. of Example 2. 12 is the same.
  • the radius of curvature of the feeding portion side corner is A2
  • the radius of curvature of the sending portion side corner is B2.
  • the radius of curvature of the feeding portion side corner is A3, and the curvature radius of the sending portion side corner is B3.
  • the radius of curvature of the feeding portion side corner is A4, and the radius of curvature of the sending portion side corner is B4.
  • samples with different curvature radii at the inlet side corners of a plurality of oil reservoirs were prepared.
  • the sample N.I. of Example 3 was used except that the radius of curvature of the inlet side corners of the plurality of oil reservoirs was set to the values shown in Table 4. 14 was the same as the manufacturing method.
  • Sample No. 15 is the sample No. of Example 3. 14 is the same.
  • sample no. Sample No. Nos. 16 and 17 had a long time of 580 hours or more until the fiber was confirmed to be damaged. Therefore, if the oiling nozzle has the largest curvature radius A1 at the inlet side corner of the first oil sump among the curvature radii at the inlet side corners of the plurality of oil reservoirs, damage to the fiber 1 is further suppressed. I found out that
  • samples with different curvature radii at the corners on the delivery part side of the plurality of oil reservoirs were prepared.
  • the sample N.I. of Example 4 was used except that the radius of curvature of the delivery portion side corners of the plurality of oil reservoirs was the values shown in Table 5. This was the same as the manufacturing method of No. 17.
  • Sample No. 18 shows the sample No. of Example 4. 17 is the same.
  • Oiling nozzle 20 Intermediate part 30: Inlet part 40: Outlet part 50: Oil discharge hole 60: Oil reservoir 61: First oil reservoir 62: Second oil reservoir 63: Third oil reservoir 64: First 4 Oil reservoir 70: Oil supply path

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

This oiling nozzle is provided with a feed-in section, a feed-out section, and a middle section which is positioned between the feed-in section and the feed-out section and is in contact with a fabric, wherein: the middle section has an oil discharging hole located in the feed-in section side and a plurality of groove-shaped oil reservoirs, which are perpendicular to the fiber path, on the feed-out section side from the oil discharge hole; and in the cross-section taken along the fiber path, a first oil reservoir, which is the closest to the oil discharge hole from among the plurality of oil reservoirs, has the largest cross-sectional area.

Description

オイリングノズルOiling nozzle
 本開示は、オイリングノズルに関する。 This disclosure relates to an oiling nozzle.
 繊維の案内においては、ローラガイド、オイリングノズル、ロッドガイドおよびトラバースガイド等と呼ばれる様々な形状の繊維ガイドが繊維機械に取り付けられ使用されている。ここで、オイリングノズルには、高速で案内される繊維に傷やほつれ等のダメージを発生させにくくさせるために、繊維に最適量のオイルを供給するとともに、オイルの付着ムラを少なくすることが期待されている。例えば、特許文献1には、接繊維面に形成された、オイル吐出孔と、このオイル吐出孔に隣接したオイル溜まりとを有する給油ガイドが記載されている。 In fiber guidance, various shapes of fiber guides called roller guides, oiling nozzles, rod guides, traverse guides, and the like are attached to a textile machine and used. Here, the oiling nozzle is expected to supply an optimal amount of oil to the fiber and reduce the unevenness of oil adhesion in order to make it difficult to cause damage such as scratches and fraying on the fiber guided at high speed. Has been. For example, Patent Document 1 describes an oil supply guide having an oil discharge hole and an oil reservoir adjacent to the oil discharge hole formed on the fiber contact surface.
特開平7-252716号公報Japanese Patent Laid-Open No. 7-252716
 本開示のオイリングノズルは、送入部と、送出部と、前記送入部および前記送出部の間に位置し、繊維が接する中間部と、を備える。そして、この中間部は、前記送入部側に位置するオイル吐出孔と、該オイル吐出孔より前記送出部側に、前記繊維の進路と直交する溝状の複数のオイル溜まりと、を有する。そして、前記繊維の進路に沿った断面において、複数の前記オイル溜まりのうち、前記オイル吐出孔に最も近い第1オイル溜まりの断面積が最も大きい。 The oiling nozzle of the present disclosure includes a feeding portion, a feeding portion, and an intermediate portion that is located between the feeding portion and the feeding portion and contacts the fiber. And this intermediate part has the oil discharge hole located in the said feeding part side, and the several groove-like oil reservoir orthogonal to the course of the said fiber to the said sending part side from this oil discharge hole. And in the cross section along the path of the fiber, the cross-sectional area of the first oil reservoir closest to the oil discharge hole among the plurality of oil reservoirs is the largest.
本開示のオイリングノズルの一例を模式的に示す斜視図である。It is a perspective view showing typically an example of the oiling nozzle of this indication. 図1に示すオイリングノズルにおける繊維の進路に沿った断面図である。It is sectional drawing along the course of the fiber in the oiling nozzle shown in FIG. 図2の断面図におけるオイル溜まり近傍の拡大図である。FIG. 3 is an enlarged view near an oil reservoir in the cross-sectional view of FIG. 2.
 近年、生産効率の向上のために、繊維の送り速度が3000~10000m/分と極めて高速化してきている。そこで、繊維へのダメージを抑制するため、繊維へのオイルの均一な供給が求められている。また、環境負荷の低減のため、オイル使用量の削減も求められている。 In recent years, in order to improve production efficiency, the fiber feeding speed has been extremely increased to 3000 to 10000 m / min. Therefore, in order to suppress damage to the fiber, a uniform supply of oil to the fiber is required. In addition, in order to reduce the environmental load, it is also required to reduce the amount of oil used.
 本開示のオイリングノズルは、繊維へのオイルの均一な供給により、繊維へのダメージを抑制できるとともに、オイル使用量の削減を図ることができる。以下に、本開示のオイリングノズルについて、図面を参照しながら詳細に説明する。 The oiling nozzle of the present disclosure can suppress damage to the fiber and reduce the amount of oil used by uniformly supplying the oil to the fiber. Hereinafter, the oiling nozzle of the present disclosure will be described in detail with reference to the drawings.
 本開示のオイリングノズル10は、図1および図2に示すように、送入部30と、送出部40と、送入部30および送出部40の間に位置し、繊維1が接する中間部20とを備える。そして、中間部20は、送入部30側に位置するオイル吐出孔50と、このオイル吐出孔50より送出部40側に、繊維1の進路と直交する溝状の複数のオイル溜まり60とを有している。 As shown in FIGS. 1 and 2, the oiling nozzle 10 of the present disclosure is located between the feeding unit 30, the feeding unit 40, and the intermediate unit 20 that is in contact with the fiber 1 and is positioned between the feeding unit 30 and the feeding unit 40. With. The intermediate portion 20 includes an oil discharge hole 50 positioned on the feeding portion 30 side, and a plurality of groove-like oil reservoirs 60 orthogonal to the path of the fiber 1 on the sending portion 40 side from the oil discharge hole 50. Have.
 なお、中間部20の送入部30側とは、中間部20において送出部40よりも送入部30に近い部分のことであり、図2において右側に位置する。一方、中間部20の送出部40側とは、中間部20において送入部30よりも送出部40に近い部分のことであり、図2において左側に位置する。 In addition, the sending part 30 side of the intermediate part 20 is a part closer to the sending part 30 than the sending part 40 in the intermediate part 20, and is located on the right side in FIG. On the other hand, the sending part 40 side of the intermediate part 20 is a part closer to the sending part 40 than the sending part 30 in the intermediate part 20, and is located on the left side in FIG.
 次に、本開示のオイリングノズル10による繊維1の案内について説明する。繊維1は、図2に示す右側から送られ、送入部30から入り、中間部20を摺動しながら送出部40へ向かって進む。このとき、繊維1は、オイル供給路70と連通したオイル吐出孔50より噴出されたオイルが供給される。また、繊維1に供給されたオイルの一部は、送出部40の方向へ進む繊維1とともに移動して複数のオイル溜まり60に溜まる。この複数のオイル溜まり60に溜まったオイルは、送入部30から送出部40に向かって進む繊維1へのオイル供給源となっている。また、オイル溜まり60は、供給過多となったオイルの貯留場所でもある。 Next, the guidance of the fiber 1 by the oiling nozzle 10 of the present disclosure will be described. The fiber 1 is fed from the right side shown in FIG. 2, enters from the feeding section 30, and advances toward the feeding section 40 while sliding on the intermediate section 20. At this time, the fiber 1 is supplied with the oil ejected from the oil discharge hole 50 communicating with the oil supply path 70. Further, a part of the oil supplied to the fibers 1 moves together with the fibers 1 traveling in the direction of the delivery unit 40 and accumulates in a plurality of oil reservoirs 60. The oil accumulated in the plurality of oil reservoirs 60 serves as an oil supply source to the fiber 1 that travels from the feeding section 30 toward the feeding section 40. The oil reservoir 60 is also a storage location for oil that has been excessively supplied.
 なお、図2の例では、オイル溜まり60の個数が4個である場合を示しているが、オイル溜りの個数は複数であればよく、2個、3個あるいは5個以上であってもよいことはいうまでもない。 In the example of FIG. 2, the number of oil reservoirs 60 is four, but the number of oil reservoirs may be plural, and may be two, three, or five or more. Needless to say.
 そして、本開示のオイリングノズル10は、繊維1の進路に沿った断面において、複数のオイル溜まり60のうち、オイル吐出孔50に最も近い第1オイル溜まり61の断面積S1が最も大きい。このような構成を満足していることにより、本開示のオイリングノズル10は、繊維1のオイル必要量の最適化を早期に実現することができる。 And the oiling nozzle 10 of this indication has the largest cross-sectional area S1 of the 1st oil sump 61 nearest to the oil discharge hole 50 among the some oil sumps 60 in the cross section along the path of the fiber 1. By satisfying such a configuration, the oiling nozzle 10 of the present disclosure can realize the optimization of the required oil amount of the fiber 1 at an early stage.
 具体的には、上記構成を満足していることにより、オイル吐出孔50から噴出されるオイルが供給過多であるときには、多過ぎたオイルは第1オイル溜まり61に貯留される。また、オイル吐出孔50から噴出されるオイルが少ないときには、第1オイル溜まり61に貯留されていたオイルが供給される。よって、本開示のオイリングノズル10によれば、第1オイル溜まり61を通過した段階で、繊維1のオイル必要量がほぼ最適化され、繊維1へのダメージが抑制される。また、送出部20から流れ出るオイルが少なくて済むため、オイルの使用量の削減を図ることができる。 Specifically, by satisfying the above configuration, when the amount of oil ejected from the oil discharge hole 50 is excessive, excessive oil is stored in the first oil reservoir 61. When the amount of oil ejected from the oil discharge hole 50 is small, the oil stored in the first oil reservoir 61 is supplied. Therefore, according to the oiling nozzle 10 of the present disclosure, when the oil oil passes through the first oil reservoir 61, the required oil amount of the fiber 1 is substantially optimized, and damage to the fiber 1 is suppressed. In addition, since less oil flows out from the delivery unit 20, the amount of oil used can be reduced.
 ここで、複数のオイル溜まり60のそれぞれの断面積は、繊維1の進路に沿った断面を測定面とし、光学顕微鏡を用いて10~100倍の倍率で写真を撮影し、画像解析ソフトを用いて算出すればよい。なお、画像解析ソフトとしては、例えば、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いればよい。 Here, the cross-sectional area of each of the plurality of oil reservoirs 60 is a cross section along the path of the fiber 1 as a measurement surface, a photograph is taken at a magnification of 10 to 100 times using an optical microscope, and image analysis software is used. To calculate. As the image analysis software, for example, image analysis software “A image kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) may be used.
 また、本開示のオイリングノズル10は、複数のオイル溜まり60の断面積において、オイル吐出孔50に近い方からS1、S2、・・・、オイル吐出孔50から最も遠いものをSnとしたとき、S1≧S2≧・・・≧Sn(但しS1≠Sn)であってもよい。ここで、図2に示す例によれば、複数のオイル溜まり60とは、第1オイル溜まり61、第2オイル溜まり62、第3オイル溜まり63、第4オイル溜まり64のことである。そして、第1オイル溜まり61の断面積がS1、第2オイル溜まり62の断面積がS2、第3オイル溜まり63の断面積がS3、第4オイル溜まり64の断面積がS4である。この例においては、オイル溜まり60の個数が4個であるため、n=4である。 Further, in the oiling nozzle 10 of the present disclosure, in the cross-sectional area of the plurality of oil reservoirs 60, S1, S2,..., Sn farthest from the oil discharge hole 50 are defined as Sn. S1 ≧ S2 ≧... ≧ Sn (where S1 ≠ Sn) may be used. Here, according to the example shown in FIG. 2, the plurality of oil reservoirs 60 are the first oil reservoir 61, the second oil reservoir 62, the third oil reservoir 63, and the fourth oil reservoir 64. The sectional area of the first oil reservoir 61 is S1, the sectional area of the second oil reservoir 62 is S2, the sectional area of the third oil reservoir 63 is S3, and the sectional area of the fourth oil reservoir 64 is S4. In this example, since the number of the oil reservoirs 60 is 4, n = 4.
 オイル溜まり60の断面積が、S1≧S2≧S3≧S4(但しS1≠S4)である、すなわち、オイル吐出孔50側から送出部40側に向かって断面積が小さくなる構造であるときには、繊維1のオイル必要量の最適化がさらに早期に実現する。その結果、繊維1へのダメージを抑制することができると同時に、オイルの使用量を削減することが可能となる。 When the cross-sectional area of the oil reservoir 60 is S1 ≧ S2 ≧ S3 ≧ S4 (where S1 ≠ S4), that is, when the cross-sectional area is reduced from the oil discharge hole 50 side toward the delivery portion 40 side, Optimization of the required oil quantity of 1 is realized even earlier. As a result, damage to the fiber 1 can be suppressed, and at the same time, the amount of oil used can be reduced.
 なお、断面積がS1≧S2≧S3≧S4(但しS1≠S4)であるとは、S1=S2=S3>S4、S1>S2=S3=S4、S1=S2>S3=S4、S1>S2>S3>S4等が例示される。 Note that the cross-sectional areas are S1 ≧ S2 ≧ S3 ≧ S4 (where S1 ≠ S4), S1 = S2 = S3> S4, S1> S2 = S3 = S4, S1 = S2> S3 = S4, S1> S2 > S3> S4 and the like are exemplified.
 また、第1オイル溜まり61の断面積S1は、第4オイル溜まり64の断面積S4の1.2倍以上2.0倍以下であってもよい。このような構成を満足するならば、繊維1へのダメージがより抑制される。 Further, the cross-sectional area S1 of the first oil reservoir 61 may be 1.2 times or more and 2.0 times or less of the cross-sectional area S4 of the fourth oil reservoir 64. If such a configuration is satisfied, damage to the fiber 1 is further suppressed.
 また、図3に示すように、第1オイル溜まり61において、送入部30側コーナーの曲率半径A1が、送出部40側コーナーの曲率半径B1よりも大きく(A1>B1)てもよい。 Further, as shown in FIG. 3, in the first oil reservoir 61, the radius of curvature A1 of the feeding portion 30 side corner may be larger than the radius of curvature B1 of the sending portion 40 side corner (A1> B1).
 このような構成を満足するならば、オイル吐出孔50より噴出されたオイルがオイル溜まり61に入り易いことから、繊維1にオイルを供給し易くありながら、オイル溜まり61に入ったオイルがオイル溜まり61から出難くなる。よって、良好なオイルの供給が図れるため、繊維1へのダメージがより抑制される。 If such a configuration is satisfied, the oil ejected from the oil discharge hole 50 can easily enter the oil reservoir 61, so that the oil that has entered the oil reservoir 61 can be easily supplied to the fiber 1 while the oil is easily supplied. It becomes difficult to come out from 61. Therefore, since a favorable oil supply can be achieved, damage to the fiber 1 is further suppressed.
 また、複数のオイル溜まり60においても、送入部30側コーナーの曲率半径が、送出部40側コーナーの曲率半径よりも大きいときには、繊維1へのダメージがさらに抑制される。 Also, even in the plurality of oil reservoirs 60, when the radius of curvature of the feeding portion 30 side corner is larger than the radius of curvature of the sending portion 40 side corner, damage to the fiber 1 is further suppressed.
 また、複数のオイル溜まり60の送入部30側コーナーの曲率半径のうち、第1オイル溜まり61の送入部側コーナーの曲率半径A1が最も大きくてもよい。このような構成を満足するならば、オイル吐出口50に最も近い第1オイル溜まり61に、オイル吐出孔50より噴出されたオイルが入り易くなる。そのため、オイルの供給が十分に図れることから、繊維1へのダメージがより抑制される。 Further, among the curvature radii of the plurality of oil reservoirs 60 at the inlet portion 30 side corner, the radius of curvature A1 of the first oil reservoir 61 at the inlet portion side may be the largest. If such a configuration is satisfied, the oil ejected from the oil discharge hole 50 can easily enter the first oil reservoir 61 closest to the oil discharge port 50. Therefore, the oil can be sufficiently supplied, so that damage to the fiber 1 is further suppressed.
 また、複数のオイル溜まり60の送入部30側コーナーの曲率半径において、オイル吐出孔50に近い方からA1、A2、・・・、オイル吐出孔50から最も遠いものをAnとしたとき、A1≧A2≧・・・≧An(ただしA1≠An)であってもよい。このような構成を満足するならば、オイル吐出孔50から最も遠いオイル溜まりにオイルが過剰に入ることが抑制され、流れ出るオイルが少なくて済む。そのため、オイルの使用量の削減を図ることができるとともに、良好なオイルの供給が図れることから、繊維1へのダメージがより抑制される。 When the radius of curvature of the corners of the plurality of oil reservoirs 60 on the inlet side 30 is A1, A2,... From the side closer to the oil discharge hole 50 and An is the farthest from the oil discharge hole 50, A1 ≧ A2 ≧... ≧ An (where A1 ≠ An). If such a configuration is satisfied, excessive oil entry into the oil reservoir farthest from the oil discharge hole 50 is suppressed, and less oil flows out. As a result, the amount of oil used can be reduced, and a good oil supply can be achieved, so that damage to the fiber 1 is further suppressed.
 また、複数のオイル溜まり60の送出部40側コーナーの曲率半径のうち、第1オイル溜まり61の送出部40側コーナーの曲率半径B1が最も大きくてもよい。このような構成を満足するならば、オイル吐出口50より噴出されたオイルを供給する際に、スムーズに次の第2オイル溜まり62へオイルを移すことができる。そのため、オイルの供給が十分に図れることから、繊維1へのダメージがより抑制される。 Further, the radius of curvature B1 of the corner of the first oil reservoir 61 on the side of the delivery section 40 may be the largest among the radii of curvature of the corners on the side of the delivery section 40 of the plurality of oil reservoirs 60. If such a configuration is satisfied, the oil can be smoothly transferred to the next second oil reservoir 62 when the oil ejected from the oil discharge port 50 is supplied. Therefore, the oil can be sufficiently supplied, so that damage to the fiber 1 is further suppressed.
 また、複数のオイル溜まり60の送出部40側コーナーの曲率半径において、オイル吐出孔50に近い方からB1、B2、・・・、オイル吐出孔50から最も遠いものをBnとしたとき、B1≧B2≧・・・≧Bn(ただしB1≠Bn)であってもよい。このような構成を満足するならば、オイル吐出孔50から最も遠いオイル溜まりからオイルが漏れることが抑制され、流れ出るオイルが少なくて済む。そのため、オイルの使用量の削減を図ることができるとともに、良好なオイルの供給が図れることから、繊維1へのダメージがより抑制される。 Further, when the radius of curvature of the corners on the delivery section 40 side of the plurality of oil reservoirs 60 is B1, B2,... Farthest from the oil discharge hole 50, and Bn is the farthest from the oil discharge hole 50, B1 ≧ B2 ≧... ≧ Bn (B1 ≠ Bn) may be satisfied. If such a configuration is satisfied, oil leakage from the oil reservoir farthest from the oil discharge hole 50 is suppressed, and less oil flows out. As a result, the amount of oil used can be reduced, and a good oil supply can be achieved, so that damage to the fiber 1 is further suppressed.
 なお、各オイル溜まり60における、送入部30側コーナーの曲率半径および送出部40側コーナーの曲率半径の測定は、各オイル溜まり60の断面積を求めたときと同様に、繊維1の進路に沿った断面を測定面とし、光学顕微鏡を用いて10~100倍の倍率で断面写真を撮影し、この写真から算出すればよい。 In addition, the measurement of the curvature radius of the corner of the feeding portion 30 and the curvature radius of the corner of the delivery portion 40 in each oil reservoir 60 is performed in the course of the fiber 1 in the same manner as when the cross-sectional area of each oil reservoir 60 is obtained. The cross section taken along is taken as a measurement surface, and a cross-sectional photograph is taken at a magnification of 10 to 100 times using an optical microscope, and the calculation can be performed from this photograph.
 また、本開示のオイリングノズル10の材質は、限定されるものではない。本開示のオイリングノズル10が、セラミックスからなるならば、金属や樹脂からなる場合と比較して摩擦熱が発生しにくいものとなる。ここで、セラミックスとしては、例えば、アルミナ質セラミックス、ジルコニア質セラミックス、チタニア質セラミックス、炭化珪素質セラミックス、窒化珪素質セラミックス、またはこれらの複合物が挙げられる。 Further, the material of the oiling nozzle 10 of the present disclosure is not limited. If the oiling nozzle 10 of the present disclosure is made of ceramics, frictional heat is less likely to be generated compared to a case of being made of metal or resin. Here, examples of the ceramic include alumina ceramics, zirconia ceramics, titania ceramics, silicon carbide ceramics, silicon nitride ceramics, and composites thereof.
 特に、セラミックスの中でもアルミナ質セラミックスは安価な材料であるため、本開示のオイリングノズル10をアルミナ質セラミックスで構成すれば、コストを抑えることができる。ここで、アルミナ質セラミックスとは、セラミックスを構成する全成分100質量%のうち、アルミナが80質量%以上占めるものである。 In particular, alumina ceramics are an inexpensive material among ceramics, and therefore the cost can be reduced if the oiling nozzle 10 of the present disclosure is made of alumina ceramics. Here, the alumina ceramic is one in which alumina accounts for 80% by mass or more out of 100% by mass of all components constituting the ceramic.
 なお、オイリングノズル10の材質は、以下の方法で確認すればよい。まず、X線回折装置(XRD)を用いて、オイリングノズル10を測定し、得られた2θ(2θは、回折角度である。)の値よりJCPDSカードを用いて同定を行なう。次に、蛍光X線分析装置(XRF)を用いて、含有成分の定量分析を行なう。そして、例えば、上記同定によりアルミナの存在が確認され、XRFで測定したAlの含有量からアルミナ(Al)に換算した含有量が80質量%以上であれば、アルミナ質セラミックスである。 The material of the oiling nozzle 10 may be confirmed by the following method. First, the oiling nozzle 10 is measured using an X-ray diffractometer (XRD), and identification is performed using a JCPDS card from the obtained 2θ (2θ is a diffraction angle) value. Next, quantitative analysis of the contained components is performed using a fluorescent X-ray analyzer (XRF). For example, if the presence of alumina is confirmed by the above identification and the content converted to alumina (Al 2 O 3 ) from the Al content measured by XRF is 80% by mass or more, it is an alumina ceramic.
 次に、本開示のオイリングノズルの製造方法の一例を説明する。なお、ここでは、オイリングノズルがセラミックスからなる場合を例に挙げて説明する。 Next, an example of a method for manufacturing the oiling nozzle according to the present disclosure will be described. Here, the case where the oiling nozzle is made of ceramic will be described as an example.
  まず、主原料としてのアルミナ、ジルコニア、チタニア、炭化珪素、窒化珪素、またはこれらの複合物の粉末と焼結助剤とが所定の割合になるように混合し、混合原料を得る。次に、この混合原料と溶媒とを、ボールとともにボールミルに入れて、所定の粒度まで粉砕してスラリーを得る。 First, alumina, zirconia, titania, silicon carbide, silicon nitride as a main raw material, or a composite powder thereof and a sintering aid are mixed at a predetermined ratio to obtain a mixed raw material. Next, the mixed raw material and the solvent are put in a ball mill together with balls and pulverized to a predetermined particle size to obtain a slurry.
 次に、得られたスラリーにバインダーを添加した後、スプレードライヤーを用いて、噴霧乾燥して顆粒を得る。次に、この顆粒をメカプレスに投入して、圧力を加えてオイリングノズル形状の成形体を得る。 Next, after adding a binder to the obtained slurry, spray drying is performed using a spray dryer to obtain granules. Next, this granule is put into a mechanical press, and pressure is applied to obtain an oiling nozzle shaped molded body.
 そして、この成形体に切削加工等を施すことによって、断面積が異なるオイル溜まりを備えたオイリングノズル形状に成形体を得ることができる。 Then, by subjecting this molded body to cutting or the like, it is possible to obtain the molded body in the shape of an oiling nozzle having oil reservoirs having different cross-sectional areas.
 なお、上記スラリーをスプレードライヤーにて噴霧乾燥後にバインダーを添加し、ニーダにて混練して得たペレットを用いて、インジェクション成形法で成形体を得ても構わない。この場合は、断面積が異なるオイル溜まりを備えたオイリングノズル形状の成形体となるような金型を用いればよい。また、切削加工や金型の形状変更等によって、各オイル溜まりにおける、送入部側コーナーの曲率半径と送出部側コーナーの曲率半径とを任意の大きさに設定することができる。 In addition, you may obtain a molded object by the injection molding method using the pellet which added the binder after spray-drying the said slurry with a spray dryer, and knead | mixed with the kneader. In this case, a mold that forms an oiling nozzle-shaped molded body having oil reservoirs having different cross-sectional areas may be used. Further, the radius of curvature of the feeding portion side corner and the radius of curvature of the sending portion side corner in each oil reservoir can be set to arbitrary sizes by cutting or changing the shape of the mold.
 そして、得られたオイリングノズル形状の成形体を、例えば、アルミナ粉末が主成分の場合には、大気雰囲気中で最高温度を1450℃以上1750℃以下とし、この最高温度での保持時間を1時間以上8時間以下として焼成することで、本開示のオイリングノズルを得ることができる。 Then, when the obtained oiling nozzle-shaped molded body is composed mainly of alumina powder, for example, the maximum temperature is 1450 ° C. or higher and 1750 ° C. or lower in the air atmosphere, and the holding time at this maximum temperature is 1 hour. The oiling nozzle of the present disclosure can be obtained by firing for 8 hours or less.
まず、主原料として、アルミナ粉末を99.0質量%、焼結助剤として、カルシア粉末およびシリカ粉末をそれぞれ0.5質量%となるように秤量して混合し、混合原料を得た。次に、この混合原料と溶媒とを、ボールとともにボールミルに入れて、所定の粒度になるまで粉砕してスラリーを得た。 First, 99.0% by mass of alumina powder as the main raw material, and calcia powder and silica powder as the sintering aid were weighed and mixed so as to be 0.5% by mass to obtain a mixed raw material. Next, the mixed raw material and the solvent were put together with balls in a ball mill and pulverized to a predetermined particle size to obtain a slurry.
 その後、スラリーをスプレードライヤーにて噴霧乾燥後にバインダーを添加し、ニーダにて混練してペレットを得た。そして、このペレットを用いて、断面積が異なるオイル溜まりを備えたオイリングノズル形状となるような金型を用いて、インジェクション成形法で、オイリングノズル形状の成形体を得た。 Thereafter, the slurry was spray-dried with a spray dryer, a binder was added, and kneaded with a kneader to obtain pellets. Then, using this pellet, an oiling nozzle-shaped molded body was obtained by an injection molding method using a mold having an oiling nozzle shape having oil reservoirs having different cross-sectional areas.
 そして、得られたオイリングノズル形状の成形体を、大気雰囲気中で最高温度を1680℃とし、最高温度での保持時間を1時間として焼成して、オイリングノズル形状の焼結体を得た。その後、バレル研磨機で仕上げ処理をすることで、各試料を得た。 The obtained oiling nozzle-shaped molded body was fired in an air atmosphere at a maximum temperature of 1680 ° C. and a holding time at the maximum temperature of 1 hour to obtain an oiling nozzle-shaped sintered body. Then, each sample was obtained by finishing with a barrel grinder.
 なお、オイル溜まりの個数は4個とし、各試料における各オイル溜まりの断面積が表1の値になるようにした。ここで、4個のオイル溜まりは、オイル吐出孔に近い方から順に、第1オイル溜まり、第2オイル溜まり、第3オイル溜まり、第4オイル溜まりと呼ぶ。そして、第1オイル溜まりの断面積をS1、第2オイル溜まりの断面積をS2、第3オイル溜まりの断面積をS3、第4オイル溜まりの断面積をS4とする。また、繊維の進路に沿った断面における、各オイル溜まりの送入部側コーナーの曲率半径と送出部側コーナーの曲率半径とは、それぞれ0.34mmとした。 The number of oil reservoirs was four, and the cross-sectional area of each oil reservoir in each sample was set to the value shown in Table 1. Here, the four oil reservoirs are referred to as a first oil reservoir, a second oil reservoir, a third oil reservoir, and a fourth oil reservoir in order from the side closer to the oil discharge hole. The cross-sectional area of the first oil sump is S1, the cross-sectional area of the second oil sump is S2, the cross-sectional area of the third oil sump is S3, and the cross-sectional area of the fourth oil sump is S4. Further, the radius of curvature of the inlet side corner and the radius of curvature of the outlet side corner of each oil reservoir in the cross section along the fiber path were each 0.34 mm.
 次に、各試料で繊維を案内した際に、繊維にダメージが確認されるまでの時間を測定した。この測定には、平均結晶粒径が1.2μmの酸化チタンを1.2質量%含有し、75デニール、36フィラメントであり、断面が四角状のポリエステルからなる繊維を用いた。また、オイルは、繊維の質量に対して2~4質量%となる油剤付与量とし、水エマルジョン油剤を使用した。なお、繊維の送り速度は5000m/分とした。結果を表1に示す。 Next, when the fiber was guided by each sample, the time until the fiber was confirmed to be damaged was measured. In this measurement, a fiber containing 1.2% by mass of titanium oxide having an average crystal grain size of 1.2 μm, 75 denier, 36 filaments, and a square cross section was used. The oil was applied in an amount of 2 to 4% by mass with respect to the mass of the fiber, and a water emulsion oil was used. The fiber feed rate was 5000 m / min. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、断面積S4が最大である試料No.1では、繊維にダメージが確認されるまでの時間が350時間と短かった。また、断面積の関係がS1=S2=S3=S4である試料No.2も、繊維にダメージが確認されるまでの時間が370時間と短かった。これに対し、断面積S1が最大である試料No.3-10では、繊維にダメージが確認されるまでの時間が400時間以上と長かった。このことから、複数のオイル溜まりのうち、オイル吐出孔に最も近い第1オイル溜まりの断面積S1が最も大きいオイリングノズルならば、繊維1へのダメージが抑制されることがわかった。 From the results shown in Table 1, the sample No. with the largest cross-sectional area S4 is shown. In 1, the time until damage was confirmed on the fiber was as short as 350 hours. In addition, the sample No. in which the cross-sectional area relationship is S1 = S2 = S3 = S4. No. 2 was as short as 370 hours until the fiber was confirmed to be damaged. On the other hand, the sample No. having the largest cross-sectional area S1. In 3-10, the time until the fiber was confirmed to be damaged was as long as 400 hours or more. From this, it was found that the damage to the fiber 1 is suppressed if the oiling nozzle has the largest cross-sectional area S1 of the first oil reservoir closest to the oil discharge hole among the plurality of oil reservoirs.
 また、試料No.3、4の比較の結果、断面積がS1からS4へ漸減している試料No.4の方が、繊維にダメージが確認されるまでの時間が長かった。このことから、断面積の関係がS1>S2>S3>S4であるオイリングノズルならば、繊維1へのダメージがより抑制されることがわかった。 Sample No. As a result of the comparison of 3 and 4, the sample No. with the cross-sectional area gradually decreasing from S1 to S4 In the case of No. 4, it took longer to confirm damage to the fibers. From this, it was found that if the oiling nozzle has a cross-sectional area relationship of S1> S2> S3> S4, damage to the fiber 1 is further suppressed.
 また、試料No.3-10の中でも試料No.5-9は、繊維にダメージが確認されるまでの時間が480時間以上と長かった。このことから、断面積S1が断面積S4の1.2倍以上2.0倍以下であるオイリングノズルならば、繊維1へのダメージがより抑制されることがわかった。 Sample No. Among sample 3-10, sample no. In 5-9, the time until the fiber was confirmed to be damaged was as long as 480 hours or more. From this, it was found that if the oiling nozzle has a cross-sectional area S1 of 1.2 times or more and 2.0 times or less of the cross-sectional area S4, damage to the fiber 1 is further suppressed.
 次に、第1オイル溜まりにおいて、送入部側コーナーの曲率半径と送出部側コーナーの曲率半径とを異ならせた試料を作製した。なお、各試料の作製方法としては、第1オイル溜まりの送出部側コーナーの曲率半径が表2の値になるようしたこと以外は実施例1の試料Nо.6の作製方法と同様とした。なお、試料No.11は、実施例1の試料No.6と同じである。ここで、第1オイル溜まりにおける、送入部側コーナーの曲率半径をA1、送出部側コーナーの曲率半径をB1とする。 Next, in the first oil reservoir, samples were prepared in which the radius of curvature of the inlet side corner and the radius of curvature of the outlet side corner were different. In addition, as a manufacturing method of each sample, the sample No. 1 of Example 1 was used except that the radius of curvature of the corner of the delivery section side of the first oil reservoir was the value shown in Table 2. 6 was the same as the manufacturing method. Sample No. 11 shows the sample No. of Example 1. Same as 6. Here, it is assumed that the radius of curvature of the feeding portion side corner in the first oil reservoir is A1, and the radius of curvature of the sending portion side corner is B1.
 次に、各試料で繊維を案内した際に、繊維にダメージが確認されるまでの時間を、実施例1と同じ方法で測定した。結果を表2に示す。 Next, when the fiber was guided by each sample, the time until the fiber was confirmed to be damaged was measured by the same method as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、試料No.11に比べて試料No.12は、繊維にダメージが確認されるまでの時間が540時間と長かった。このことから、第1オイル溜まりにおいて、送入部側コーナーの曲率半径A1が、送出部側コーナーの曲率半径B1よりも大きいオイリングノズルならば、繊維1へのダメージがより抑制されることがわかった。 From the results shown in Table 2, sample No. Compared to sample No. 11, sample no. No. 12 had a long time of 540 hours until the fiber was confirmed to be damaged. From this, it can be seen that in the first oil pool, if the oiling nozzle has a radius of curvature A1 of the inlet side corner larger than the radius of curvature B1 of the outlet side corner, damage to the fiber 1 is further suppressed. It was.
 次に、複数のオイル溜まりにおいて、送入部側コーナーの曲率半径と送出部側コーナーの曲率半径とを異ならせた試料を作製した。なお、各試料の作製方法としては、複数のオイル溜まりの送出部側コーナーの曲率半径が表3の値になるようしたこと以外は実施例2の試料Nо.12の作製方法と同様とした。なお、試料No.13は、実施例2の試料No.12と同じである。ここで、第2オイル溜まりにおける、送入部側コーナーの曲率半径をA2、送出部側コーナーの曲率半径をB2とする。また、第3オイル溜まりにおける、送入部側コーナーの曲率半径をA3、送出部側コーナーの曲率半径をB3とする。また、第4オイル溜まりにおける、送入部側コーナーの曲率半径をA4、送出部側コーナーの曲率半径をB4とする。 Next, samples having different curvature radii at the inlet side corner and at the outlet side corner were prepared in a plurality of oil reservoirs. In addition, as a method for producing each sample, the sample N.I. of Example 2 was used except that the curvature radius of the corners on the delivery part side of the plurality of oil reservoirs was the value shown in Table 3. 12 was the same as the manufacturing method. Sample No. 13 is the sample No. of Example 2. 12 is the same. Here, in the second oil reservoir, the radius of curvature of the feeding portion side corner is A2, and the radius of curvature of the sending portion side corner is B2. Further, in the third oil reservoir, the radius of curvature of the feeding portion side corner is A3, and the curvature radius of the sending portion side corner is B3. Further, in the fourth oil reservoir, the radius of curvature of the feeding portion side corner is A4, and the radius of curvature of the sending portion side corner is B4.
 次に、各試料で繊維を案内した際に、繊維にダメージが確認されるまでの時間を、実施例1と同じ方法で測定した。結果を表3に示す。 Next, when the fiber was guided by each sample, the time until the fiber was confirmed to be damaged was measured by the same method as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、試料No.13に比べて試料No.14は、繊維にダメージが確認されるまでの時間が560時間と長かった。このことから、複数のオイル溜まりにおいて、送入部側コーナーの曲率半径が、送出部側コーナーの曲率半径よりも大きいオイリングノズルならば、繊維1へのダメージがより抑制されることがわかった。 From the results shown in Table 3, sample No. Compared to sample No. 13, sample no. No. 14 had a long time of 560 hours until the fiber was confirmed to be damaged. From this, it was found that, in a plurality of oil reservoirs, damage to the fiber 1 is further suppressed if the oiling nozzle has a radius of curvature of the inlet portion side corner larger than that of the outlet portion side corner.
 次に、複数のオイル溜まりの送入部側コーナーの曲率半径を異ならせた試料を作製した。なお、各試料の作製方法としては、複数のオイル溜まりの送入部側コーナーの曲率半径が表4の値になるようしたこと以外は実施例3の試料Nо.14の作製方法と同様とした。なお、試料No.15は、実施例3の試料No.14と同じである。 Next, samples with different curvature radii at the inlet side corners of a plurality of oil reservoirs were prepared. In addition, as a method for producing each sample, the sample N.I. of Example 3 was used except that the radius of curvature of the inlet side corners of the plurality of oil reservoirs was set to the values shown in Table 4. 14 was the same as the manufacturing method. Sample No. 15 is the sample No. of Example 3. 14 is the same.
 次に、各試料で繊維を案内した際に、繊維にダメージが確認されるまでの時間を、実施例1と同じ方法で測定した。結果を表4に示す。 Next, when the fiber was guided by each sample, the time until the fiber was confirmed to be damaged was measured by the same method as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、試料No.15に比べて試料No.16、17は、繊維にダメージが確認されるまでの時間が580時間以上と長かった。このことから、複数のオイル溜まりの送入部側コーナーの曲率半径のうち、第1オイル溜まりの送入部側コーナーの曲率半径A1が最も大きいオイリングノズルならば、繊維1へのダメージがより抑制されることがわかった。 From the results shown in Table 4, sample no. Sample No. Nos. 16 and 17 had a long time of 580 hours or more until the fiber was confirmed to be damaged. Therefore, if the oiling nozzle has the largest curvature radius A1 at the inlet side corner of the first oil sump among the curvature radii at the inlet side corners of the plurality of oil reservoirs, damage to the fiber 1 is further suppressed. I found out that
 また、試料No.16よりも試料No.17の方が、繊維にダメージが確認されるまでの時間が600時間と長かった。このことから、オイル溜まりの送入部側コーナーの曲率半径の関係がA1>A2>A3>A4であるオイリングノズルならば、繊維1へのダメージがさらに抑制されることがわかった。 Sample No. Sample no. No. 17 took 600 hours longer to confirm damage to the fiber. From this, it was found that the damage to the fiber 1 is further suppressed if the oiling nozzle satisfies the relationship of the radius of curvature of the oil reservoir feeding portion side corner as A1> A2> A3> A4.
次に、複数のオイル溜まりの送出部側コーナーの曲率半径を異ならせた試料を作製した。なお、各試料の作製方法としては、複数のオイル溜まりの送出部側コーナーの曲率半径が表5の値になるようしたこと以外は実施例4の試料Nо.17の作製方法と同様とした。なお、試料No.18は、実施例4の試料No.17と同じである。 Next, samples with different curvature radii at the corners on the delivery part side of the plurality of oil reservoirs were prepared. In addition, as a method for producing each sample, the sample N.I. of Example 4 was used except that the radius of curvature of the delivery portion side corners of the plurality of oil reservoirs was the values shown in Table 5. This was the same as the manufacturing method of No. 17. Sample No. 18 shows the sample No. of Example 4. 17 is the same.
 次に、各試料で繊維を案内した際に、繊維にダメージが確認されるまでの時間を、実施例1と同じ方法で測定した。結果を表5に示す。 Next, when the fiber was guided by each sample, the time until the fiber was confirmed to be damaged was measured by the same method as in Example 1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から、試料No.18に比べて試料No.19、20は、繊維にダメージが確認されるまでの時間が620時間以上と長かった。このことから、複数のオイル溜まりの送出部側コーナーの曲率半径のうち、第1オイル溜まりの送出部側コーナーの曲率半径B1が最も大きいオイリングノズルならば、繊維1へのダメージがより抑制されることがわかった。 From the results shown in Table 5, sample No. Compared to sample No. 18, sample no. 19 and 20 had a long time of 620 hours or more until the fiber was confirmed to be damaged. From this, if it is an oiling nozzle with the largest curvature radius B1 of the sending part side corner of a 1st oil sump among the curvature radii of the sending part side corner of a some oil reservoir, the damage to the fiber 1 will be suppressed more. I understood it.
 また、試料No.19よりも試料No.20の方が、繊維にダメージが確認されるまでの時間が640時間と長かった。このことから、オイル溜まりの送出部側コーナーの曲率半径の関係がB1>B2>B3>B4であるオイリングノズルならば、繊維1へのダメージがさらに抑制されることがわかった。 Sample No. Sample no. In the case of 20, the time until damage was confirmed on the fiber was 640 hours. From this, it was found that the damage to the fiber 1 is further suppressed if the oiling nozzle satisfies the relationship of the radius of curvature of the oil sump delivery portion side corner B1> B2> B3> B4.
1:繊維
 10:オイリングノズル
 20:中間部
 30:送入部
 40:送出部
 50:オイル吐出孔
 60:オイル溜まり
 61:第1オイル溜まり
62:第2オイル溜まり
63:第3オイル溜まり
64:第4オイル溜まり
 70:オイル供給路
1: Fiber 10: Oiling nozzle 20: Intermediate part 30: Inlet part 40: Outlet part 50: Oil discharge hole 60: Oil reservoir 61: First oil reservoir 62: Second oil reservoir 63: Third oil reservoir 64: First 4 Oil reservoir 70: Oil supply path

Claims (9)

  1.  送入部と、送出部と、前記送入部および前記送出部の間に位置し、繊維が接する中間部と、を備え、該中間部は、前記送入部側に位置するオイル吐出孔と、該オイル吐出孔より前記送出部側に、前記繊維の進路と直交する溝状の複数のオイル溜まりとを有し、前記繊維の進路に沿った断面において、複数の前記オイル溜まりのうち、前記オイル吐出孔に最も近い第1オイル溜まりの断面積が最も大きいオイリングノズル。 An infeed section, an outfeed section, and an intermediate section located between the infeed section and the outfeed section and in contact with the fiber, the intermediate section including an oil discharge hole positioned on the infeed section side; A plurality of groove-like oil reservoirs orthogonal to the fiber path on the delivery part side from the oil discharge hole, and in the cross section along the fiber path, of the plurality of oil reservoirs, Oiling nozzle with the largest cross-sectional area of the first oil reservoir closest to the oil discharge hole.
  2.  複数の前記オイル溜まりの前記断面積において、前記オイル吐出孔に近い方からS1、S2、・・・、前記オイル吐出孔から最も遠いものをSnとしたとき、S1≧S2≧・・・≧Sn(但しS1≠Sn)である請求項1に記載のオイリングノズル。 In the cross-sectional areas of the plurality of oil reservoirs, S1, S2,..., Sn that is farthest from the oil discharge holes, S1 ≧ S2 ≧. The oiling nozzle according to claim 1, wherein S1 ≠ Sn.
  3.  前記S1は、前記Snの1.2倍以上2.0倍以下である請求項2に記載のオイリングノズル。 The oiling nozzle according to claim 2, wherein the S1 is 1.2 times or more and 2.0 times or less of the Sn.
  4.  前記第1オイル溜まりにおいて、前記送入部側コーナーの曲率半径は、前記送出部側コーナーの曲率半径よりも大きい請求項1乃至請求項3のいずれかに記載のオイリングノズル。 The oiling nozzle according to any one of claims 1 to 3, wherein, in the first oil reservoir, a radius of curvature of the inlet portion side corner is larger than a radius of curvature of the outlet portion side corner.
  5.  複数の前記オイル溜まりにおいて、前記送入部側コーナーの曲率半径は、前記送出部側コーナーの曲率半径よりも大きい請求項1乃至請求項3のいずれかに記載のオイリングノズル。 The oiling nozzle according to any one of claims 1 to 3, wherein, in the plurality of oil reservoirs, a curvature radius of the feeding portion side corner is larger than a curvature radius of the sending portion side corner.
  6.  複数の前記オイル溜まりの前記送入部側コーナーの曲率半径のうち、前記第1オイル溜まりの前記送入部側コーナーの曲率半径が最も大きい請求項1乃至請求項5のいずれかに記載のオイリングノズル。 The oiling according to any one of claims 1 to 5, wherein a radius of curvature of the corner of the first oil reservoir in the inlet portion of the first oil reservoir is largest among the radius of curvature of the corner of the inlet portion of the plurality of oil reservoirs. nozzle.
  7.  複数の前記オイル溜まりの前記送入部側コーナーの曲率半径において、前記オイル吐出孔に近い方からA1、A2、・・・、前記オイル吐出孔から最も遠いものをAnとしたとき、A1≧A2≧・・・≧An(ただしA1≠An)である請求項1乃至請求項5のいずれかに記載のオイリングノズル。 When the radius of curvature of the plurality of oil reservoirs at the inlet side corners is A1, A2,... From the side closer to the oil discharge hole, and An is the furthest from the oil discharge hole, A1 ≧ A2 The oiling nozzle according to any one of claims 1 to 5, wherein ≧... ≧ An (where A1 ≠ An).
  8.  複数の前記オイル溜まりの前記送出部側コーナーの曲率半径のうち、前記第1オイル溜まりの前記送出部側コーナーの曲率半径が最も大きい請求項1乃至請求項7のいずれかに記載のオイリングノズル。 The oiling nozzle according to any one of claims 1 to 7, wherein a radius of curvature of the corner of the first oil reservoir in the outlet section of the first oil reservoir is the largest among the radius of curvature of the corner of the outlet section of the plurality of oil reservoirs.
  9.  複数の前記オイル溜まりの前記送出部側コーナーの曲率半径において、前記オイル吐出孔に近い方からB1、B2、・・・、前記オイル吐出孔から最も遠いものをBnとしたとき、B1≧B2≧・・・≧Bn(ただしB1≠Bn)である請求項1乃至請求項7のいずれかに記載のオイリングノズル。
     
    When the radius of curvature of the plurality of oil reservoirs at the corners on the delivery section side is B1, B2,... Farthest from the oil discharge hole, and Bn is the farthest from the oil discharge hole, B1 ≧ B2 ≧ The oiling nozzle according to any one of claims 1 to 7, wherein ≧ Bn (B1 ≠ Bn).
PCT/JP2017/023584 2016-06-29 2017-06-27 Oiling nozzle WO2018003801A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018525179A JP6680879B2 (en) 2016-06-29 2017-06-27 Oiling nozzle
EP17820155.4A EP3461935B1 (en) 2016-06-29 2017-06-27 Oiling nozzle
CN201780039805.9A CN109415845B (en) 2016-06-29 2017-06-27 Oiling nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-128973 2016-06-29
JP2016128973 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003801A1 true WO2018003801A1 (en) 2018-01-04

Family

ID=60787201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023584 WO2018003801A1 (en) 2016-06-29 2017-06-27 Oiling nozzle

Country Status (4)

Country Link
EP (1) EP3461935B1 (en)
JP (1) JP6680879B2 (en)
CN (1) CN109415845B (en)
WO (1) WO2018003801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111548A1 (en) * 2019-12-04 2021-06-10 日本電気株式会社 Information presentation system, information presentation method, computer program, and authentication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023098125A (en) * 2021-12-28 2023-07-10 Tmtマシナリー株式会社 Oil supply guide, textile machine, and false twisting machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252716A (en) 1994-03-09 1995-10-03 Yuasa Itomichi Kogyo Kk Oil-feeding guide
JPH10102315A (en) * 1996-09-30 1998-04-21 Kyocera Corp Oiling nozzle
JP2008303497A (en) * 2007-06-07 2008-12-18 Jtc:Kk Oil supply guide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113779U (en) * 1982-01-28 1983-08-03 帝人株式会社 Yarn oil application device
US4926661A (en) * 1989-03-15 1990-05-22 E. I. Du Pont De Nemours And Company Yarn finish applicator
DE102011018179A1 (en) * 2011-04-19 2012-10-25 Oerlikon Textile Gmbh & Co. Kg Device for applying fluid to running multifilament thread, has non-contact and contact surfaces allowed to form surface portion in groove base along longitudinal direction with specific radius of curvature to enable wetting of thread
CN205295554U (en) * 2015-10-27 2016-06-08 汤浅丝道工业株式会社 It is glib
CN105401235A (en) * 2015-11-27 2016-03-16 扬州锦辉化纤有限公司 Oiling device for chemical fiber production
DE102016011314A1 (en) * 2016-09-20 2018-03-22 Oerlikon Textile Gmbh & Co. Kg Preparation thread guide for applying a fluid to a running filament bundle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252716A (en) 1994-03-09 1995-10-03 Yuasa Itomichi Kogyo Kk Oil-feeding guide
JPH10102315A (en) * 1996-09-30 1998-04-21 Kyocera Corp Oiling nozzle
JP2008303497A (en) * 2007-06-07 2008-12-18 Jtc:Kk Oil supply guide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111548A1 (en) * 2019-12-04 2021-06-10 日本電気株式会社 Information presentation system, information presentation method, computer program, and authentication system

Also Published As

Publication number Publication date
CN109415845A (en) 2019-03-01
EP3461935A4 (en) 2019-06-19
EP3461935A1 (en) 2019-04-03
EP3461935B1 (en) 2020-11-18
CN109415845B (en) 2021-10-22
JPWO2018003801A1 (en) 2019-04-04
JP6680879B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
KR101157528B1 (en) Nozzle member and process for producing the same
WO2018003801A1 (en) Oiling nozzle
US20060189474A1 (en) Alumina-boron carbide ceramics and methods of making and using the same
US9988315B2 (en) Sintered body and cutting tool including the same
EP3085652B1 (en) Fiber guide
EP3248925B1 (en) Fiber guide
CN111164245B (en) Oil injection nozzle
JP2010229570A (en) Fiber guide
EP3326948B1 (en) Fiber guide
KR101856273B1 (en) Inorganic medium for barrel polishing
JP6632287B2 (en) Zirconia micro media
CN108430950B (en) Ceramic sintered body
WO2018003800A1 (en) Fiber guide
JP6789379B2 (en) Fiber guide
JP7158507B2 (en) ceramic nozzle and winding machine
JP2001158658A (en) Guide member for fiber
JPH11189457A (en) Abrasion resistant alumina sintered compact
JP2020142950A (en) Heat treatment member composed of zirconia sintered body
US20070114705A1 (en) Process for making a ceramic body containing alumina and boron carbide
JP7123184B2 (en) plunger pumps, fluid delivery devices and liquid chromatography
CN104177129B (en) A kind of diamond yarn rail wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820155

Country of ref document: EP

Effective date: 20181231