WO2018003359A1 - Laminate color filter, kit, laminate color filter manufacturing method and optical sensor - Google Patents

Laminate color filter, kit, laminate color filter manufacturing method and optical sensor Download PDF

Info

Publication number
WO2018003359A1
WO2018003359A1 PCT/JP2017/019483 JP2017019483W WO2018003359A1 WO 2018003359 A1 WO2018003359 A1 WO 2018003359A1 JP 2017019483 W JP2017019483 W JP 2017019483W WO 2018003359 A1 WO2018003359 A1 WO 2018003359A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
group
wavelength region
liquid crystal
independently
Prior art date
Application number
PCT/JP2017/019483
Other languages
French (fr)
Japanese (ja)
Inventor
亮司 後藤
嶋田 和人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018524961A priority Critical patent/JP6641009B2/en
Publication of WO2018003359A1 publication Critical patent/WO2018003359A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only

Definitions

  • the present invention relates to a laminated color filter in which an absorption color filter and a filter having a reflective color filter are laminated, a kit, a method for producing the laminated color filter, and an optical sensor having the laminated color filter, and more particularly to an absorptive color filter.
  • Layered color filter, kit, method for producing layered color filter, and optical having layered color filter having a number of species in the wavelength region that exceeds the total number of species in the wavelength region and the number of species in the reflective color filter It relates to sensors.
  • Patent Document 1 includes a color filter used to reproduce blue formed on a photodiode that receives blue among photodiodes in order to improve color reproducibility, and reproduces red. At least one of a color filter used to reproduce or a color filter used to reproduce green or a color filter used to reproduce blue is a red filter, a green filter, a blue filter, a cyan filter, or a yellow filter.
  • a solid-state imaging device formed by stacking at least two is described.
  • a color filter used for reproducing red is formed by stacking a red filter and a first yellow filter
  • a color filter used for reproducing green is a second yellow filter and a first yellow filter.
  • the color filter used for reproducing blue is formed by laminating a second cyan filter and a blue filter.
  • Patent Document 2 discloses a blue, green color by superimposing layer patterns (20) and (30) indicating two subtractive color mixture primary hue patterns and an example pattern of a single pixel blue filter B3, a green filter G3, and a red filter R3. And a red filter array is described.
  • the layer array (20) consists of two layers Y3 and M3, each containing a yellow dye and a magenta dye.
  • the layer array (30) consists of two layers M4 and C5, each containing cyan and magenta dyes.
  • Layer Y3 is limited to the region that forms filters G3 and R3.
  • Layer C5 is limited to the area where filters G3 and B3 are formed.
  • the layer M3 is limited to the region where the filter B3 is formed, but the layer M4 is limited to the region where the filter R3 is formed.
  • Patent Document 2 describes a color filter array that enables precise control of layer hue, that is, spectral absorption and transmission profiles.
  • JP 2009-289768 A Japanese Patent No. 2664154
  • Patent Document 1 color reproducibility is improved using a plurality of filters
  • Patent Document 2 it is described that the hue of a layer is accurately controlled using a plurality of filters.
  • the purpose is to acquire RGB color information in accordance with human visibility, and information in a specific wavelength range is not acquired.
  • An object of the present invention is to provide a multilayer color filter, a kit, a method for manufacturing a multilayer color filter, and an optical sensor for solving the above-described problems based on the prior art and acquiring information in a specific wavelength range. It is in.
  • the present invention has at least one absorption color filter and at least one reflection color filter, and the absorption color filter and the reflection color filter are laminated to absorb each other.
  • P> m ⁇ 2 where m is the number of species in the wavelength region of the color filter, n is the number of species in the wavelength region of the reflective color filter, and p is the number of species in the wavelength region of the multilayer color filter.
  • the present invention provides a multilayer color filter, wherein p> n ⁇ 2.
  • the reflective color filter has a circularly polarized light reflection characteristic. Moreover, it is preferable to have at least one or more layers of a reflective color filter having right circular polarization reflection characteristics and a reflective color filter having left circular polarization reflection characteristics.
  • the reflective color filter is preferably one obtained by curing a polymerizable cholesteric liquid crystal composition.
  • the polymerizable cholesteric liquid crystal composition preferably contains at least one polymerizable liquid crystal compound and at least one photoreactive chiral agent.
  • the photoreactive chiral agent is preferably represented by the following general formulas (1) to (5).
  • a 11 and A 12 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 11 —
  • Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle
  • R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group
  • R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12.
  • B 11 and B 12 each independently represents —C ( ⁇ O) — (Ar 12 ) n 11 — or —C ( ⁇ O) —Ar 13 —N ⁇ X 11 —Ar 14 —.
  • X 11 represents N or CH
  • Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 11 represents an integer of 0 to 2
  • n 11 represents 2
  • a plurality of Ar 12 may be the same or different
  • Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 11 and Z 12 may have a polymerizable group.
  • a 21 and A 22 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12.
  • B 21 and B 22 each independently represents —C ( ⁇ O) — (Ar 22 ) n 21 — or —C ( ⁇ O) —Ar 23 —N ⁇ X 21 —Ar 24 —.
  • X 21 represents N or CH
  • Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 21 represents an integer of 0 to 2
  • n 21 represents 2
  • a plurality of Ar 22 may be the same or different
  • Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 21 and Z 22 may have a polymerizable group.
  • a 31 and A 32 each independently represent a single bond, —O—C ( ⁇ O) — or —O—C ( ⁇ O) —Ar 31 —, and Ar 31 has a substituent.
  • R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent.
  • a 41 and A 42 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 41 —
  • Ar 41 represents an aromatic carbocyclic ring which may have a substituent or Represents an optionally substituted aromatic heterocycle
  • R 41 and R 43 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group
  • R 42 and R 44 each independently represents a hydrogen atom or C 1 to C 12.
  • B 41 and B 42 each independently represents —C ( ⁇ O) — (Ar 42 ) n 41 — or —C ( ⁇ O) —Ar 43 —N ⁇ X 41 —Ar 44 —.
  • X 41 represents N or CH
  • Ar 42 Ar 43 and Ar 44 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 41 represents an integer of 0 to 2
  • n 41 is 2
  • a plurality of Ar 42 may be the same or different
  • Z 41 and Z 42 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 41 and Z 42 may have a polymerizable group.
  • Z 41 and R 42 and Z 42 and R 44 may form a ring with each other, and multiple molecules of Z 41 and Z 42 may be polymerized via a covalent bond, and R 45 and R 46 are C 1 to C 30 And may form a ring with each other. * Represents an asymmetric carbon.
  • P 51 represents a polymerizable group
  • Sp 51 represents an alkylene group of a single bond or C 1 ⁇ 12
  • plurality of carbon atoms may be replaced by an oxygen atom or a carbonyl group
  • X 51 represents a single bond Or an oxygen atom
  • Ar 51 and Ar 52 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring
  • L 51 represents a single bond Or, it represents a divalent linking group
  • n 51 represents an integer of 1 to 3 and when n 51 is 2 or more, a plurality of Ar 51 and L 51 may be the same or different from each other, and R 52 is asymmetric. Represents a side chain containing carbon.
  • a photo-alignment film in contact with a reflective color filter having a right circular polarization reflection characteristic or a reflection color filter having a left circular polarization reflection characteristic, which is obtained by curing the polymerizable cholesteric liquid crystal composition.
  • the refractive index anisotropy ⁇ n of the polymerizable liquid crystal compound is preferably 0.2 or more.
  • the present invention relates to a polymerizable liquid crystal composition
  • a polymerizable liquid crystal composition comprising at least one or more polymerizable liquid crystal compounds, a photoreactive chiral agent having right-handed twist characteristics and a polymerization initiator, at least one or more polymerizable liquid crystal compounds, left-twisted characteristics.
  • a kit comprising a polymerizable liquid crystal composition containing a photoreactive chiral agent having a polymerization initiator and a polymerization initiator is provided.
  • a photoreactive chiral agent having a right twist property is represented by the following general formula (1) or general formula (3)
  • a photoreactive chiral agent having a left twist property is represented by the following general formula (2) or general formula ( It is preferable that it is represented by 3).
  • a 11 and A 12 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 11 —
  • Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle
  • R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group
  • R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12.
  • B 11 and B 12 each independently represents —C ( ⁇ O) — (Ar 12 ) n 11 — or —C ( ⁇ O) —Ar 13 —N ⁇ X 11 —Ar 14 —.
  • X 11 represents N or CH
  • Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 11 represents an integer of 0 to 2
  • n 11 represents 2
  • a plurality of Ar 12 may be the same or different
  • Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 11 and Z 12 may have a polymerizable group.
  • a 21 and A 22 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12.
  • B 21 and B 22 each independently represents —C ( ⁇ O) — (Ar 22 ) n 21 — or —C ( ⁇ O) —Ar 23 —N ⁇ X 21 —Ar 24 —.
  • X 21 represents N or CH
  • Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 21 represents an integer of 0 to 2
  • n 21 represents 2
  • a plurality of Ar 22 may be the same or different
  • Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 21 and Z 22 may have a polymerizable group.
  • a 31 and A 32 each independently represent a single bond, —O—C ( ⁇ O) — or —O—C ( ⁇ O) —Ar 31 —, and Ar 31 has a substituent.
  • R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent.
  • the present invention is also a method for producing a laminated color filter having at least one absorption color filter and at least one reflection color filter, wherein the absorption color filter and the reflection color filter are laminated.
  • the present invention provides a method for producing a laminated color filter, wherein the reflective color filter is formed by patterning regions having different spectral characteristics by exposure.
  • the reflective color filter forming step includes a right circularly polarized reflective layer forming step for forming a right circularly polarized reflective layer having a plurality of wavelength regions in the surface, and a left circularly polarized reflective layer having a plurality of wavelength regions in the surface. It is preferable to comprise a left circularly polarized light reflecting layer forming step to be formed.
  • the right circularly polarized light reflecting layer forming step was applied in a coating step and a coating step in which a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having a right twist characteristic and a polymerization initiator was applied.
  • An alignment process in which the polymerizable liquid crystal composition is heated to form a cholesteric alignment state, and a part of the polymerizable liquid crystal composition that has been converted into a cholesteric alignment state in the alignment process is subjected to an exposure treatment, whereby the reflection wavelength region of the exposed portion And a fixing step for fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure treatment on the entire surface of the polymerizable liquid crystal composition whose partial alignment state has been converted in the conversion step.
  • a step of forming a left circularly polarized light reflecting layer the step of applying a polymerizable liquid crystal composition comprising at least one polymerizable liquid crystal compound, a photoreactive chiral agent having left-twisting properties, and a polymerization initiator;
  • the polymerizable liquid crystal composition applied in the cloth process was heated to be an cholesteric alignment state, and an exposure process was performed on a part of the polymerizable liquid crystal composition that was converted into a cholesteric alignment state in the alignment process.
  • a conversion step for converting the partial reflection wavelength region, and an immobilization step for fixing the cholesteric alignment state by performing an exposure process on the entire surface of the polymerizable liquid crystal composition in which a part of the alignment state is converted in the conversion step. It is preferable to include.
  • the right circularly polarized light reflecting layer forming step is a coating step and a coating step in which a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-twisting characteristics, and a polymerization initiator is applied.
  • a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-twisting characteristics, and a polymerization initiator is applied.
  • the first fixing process to be fixed, the conversion process for converting the reflection wavelength region of the exposed part by performing an exposure process on the unexposed part in the first fixing process, and the orientation state was converted in the conversion process Including a second fixing step of fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure treatment on the polymerizable liquid crystal composition, wherein the left circularly polarized light reflecting layer forming step includes at least one kind A coating process for applying a polymerizable liquid crystal composition comprising a compatible liquid crystal compound, a photoreactive chiral agent having left-handed twisting properties and a polymerization initiator, and heating the polymerizable liquid crystal composition applied in the coating process to produce a cholesteric alignment state
  • the cholesteric alignment state in the exposed portion is fixed by performing an exposure process on a part of the polymerizable liquid crystal composition in the cholesteric alignment state.
  • the conversion process of converting the reflection wavelength region of the exposed part, and the polymerizable liquid crystal composition whose orientation state has been converted in the conversion process is subjected to an exposure process. It is preferable to include a second fixing step for fixing the alignment state of the liquid crystal composition.
  • the alignment layer applying step for applying the photo-alignment film, and the photo-alignment film formed by coating are exposed with polarized light. It is preferable to include an orientation regulating step for providing an orientation regulating force.
  • the present invention also provides an optical sensor having the multilayer color filter of the present invention.
  • a multilayer color filter a kit, a method for producing a multilayer color filter, and an optical sensor of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
  • “to” indicating a numerical range includes numerical values written on both sides.
  • is a numerical value ⁇ to a numerical value ⁇
  • the range of ⁇ is a range including the numerical value ⁇ and the numerical value ⁇ , and expressed by mathematical symbols, ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the angle or the like includes a generally allowable error range unless otherwise specified.
  • FIG. 1 is a schematic cross-sectional view showing an optical sensor having a laminated color filter according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a reflective color filter of a multilayer color filter according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an absorption color filter of the multilayer color filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a laminated color filter according to an embodiment of the present invention.
  • the optical sensor 10 illustrated in FIG. 1 includes a sensor unit 12 and a stacked color filter 14.
  • the sensor unit 12 includes a substrate 20, a wiring layer 22, and a photodiode 24.
  • the sensor unit 12 is generally called a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) including a photodiode 24.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • an image corresponding to the stacked color filter 14 can be acquired. For example, a color image represented by three primary colors of red, blue, and green can be obtained.
  • the color image is not limited to the one represented by the above three primary colors as long as it is represented by a plurality of colors.
  • the wiring layer 22 is for electrically connecting the sensor unit 12 to the outside, and has a wiring (not shown) made of a conductive material.
  • the signal charge obtained by the photodiode 24 is output to the outside.
  • a configuration having a readout circuit (not shown) for amplifying the signal charge obtained by the photodiode 24 may be used.
  • the photodiode 24 detects light and functions as a light receiving element. For light detection, for example, photoelectric conversion is used. A plurality of photodiodes 24 are two-dimensionally arranged, and a specific number of photodiodes 24 constitute one pixel.
  • the photodiode 24 is made of, for example, silicon or germanium.
  • the photodiode 24 is not particularly limited as long as it can detect light, and a PN junction type, a PIN junction type, a Schottky type, or an avalanche type can be used.
  • An insulating film 25 is formed on the photodiode 24, and a light shielding film 26 is formed on the insulating film 25 between the adjacent photodiodes 24.
  • the insulating film 25 is made of, for example, BPSG (Boron Phosphorus Silicon Glass), but is not limited thereto.
  • the light shielding film 26 is made of metal such as tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo), and nickel (Ni), but is not limited thereto. It is not a thing.
  • the multilayer color filter 14 includes at least one absorption color filter 30 and at least one reflection color filter 32.
  • the absorption color filter 30 and the reflection color filter 32 are laminated.
  • the number of species in the wavelength region of the absorption color filter 30 is m
  • the number of species in the wavelength region of the reflective color filter 32 is n
  • the number of species in the wavelength region of the multilayer color filter 14 is p, p> m ⁇ 2 and p> n ⁇ 2.
  • the absorption color filter 30 has two or more wavelength regions, and each wavelength region has different spectral characteristics as described later.
  • the reflective color filter 32 has two or more wavelength regions, and each wavelength region has different spectral characteristics as will be described later.
  • the absorption color filter 30 is provided on the insulating film 25, and the wavelength region is disposed on the photodiode 24.
  • the absorption color filter 30 is provided with a plurality of microlenses 28.
  • a planarizing layer 29 is provided on the plurality of microlenses 28.
  • a reflective color filter 32 is provided on the planarizing layer 29.
  • the multilayer color filter 14 preferably further has a near-infrared cut layer (not shown) that blocks part or the whole of the near-infrared region.
  • the arrangement position of the near infrared cut layer may be above or below the laminated color filter 14.
  • the near-infrared region is a wavelength region having a wavelength of 650 to 1200 nm.
  • As the near-infrared cut layer a known layer that can block light in the above-described near-infrared region can be appropriately used. Since the multilayer color filter 14 has a near infrared cut layer, the optical sensor 10 can perform photometry with the near infrared light removed, thereby reducing noise during photometry.
  • the microlens 28 is a convex lens whose center is thicker than the edge, and collects light on the photodiode 24.
  • the plurality of microlenses 28 have the same shape, and a microlens 28 is provided for each photodiode 24.
  • the microlens 28 is formed of a resin material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin, but is not limited thereto.
  • the planarization layer 29 planarizes the microlens 28 that is a convex lens, and is made of, for example, an acrylic resin material, a styrene resin material, or an epoxy resin material.
  • a conventional RGB color filter can be used as the absorption color filter 30 .
  • the production can be performed using a known method, and is also useful in that it is not necessary to start a new production process.
  • color filters with spectral characteristics other than RGB may be used, complementary color (YMC) color filters having transmitted light spectra in the cyan, magenta and yellow regions, and near-infrared light transmitted by cutting visible light.
  • YMC complementary color
  • a visible light cut filter is also included. Visible light is light having a wavelength of about 380 nm to 780 nm.
  • the reflective color filter 32 is preferably a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase having circular polarization reflection characteristics is fixed. That is, the reflective color filter 32 preferably has a circularly polarized light reflection characteristic.
  • the cholesteric liquid crystal layer has a property of reflecting either left or right circularly polarized light.
  • the cholesteric liquid crystal layer can be obtained by fixing the cholesteric liquid crystal phase as described above.
  • the structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. Thus, any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation is not changed by an external field or an external force.
  • the cholesteric liquid crystal phase it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may not exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
  • a liquid crystal composition containing a liquid crystal compound can be given.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing the liquid crystal compound used for forming the cholesteric liquid crystal layer preferably further contains a surfactant.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a chiral agent and a polymerization initiator.
  • the liquid phase composition having right circularly polarized light reflection property is preferably a polymerizable cholesteric liquid crystal composition containing a polymerizable liquid crystal compound, a chiral agent that induces right twist, or a polymerization disclosure agent.
  • the liquid phase composition having left circularly polarized light reflection property is preferably a polymerizable cholesteric liquid crystal composition containing a polymerizable liquid crystal compound, a chiral agent that induces left twist, or a polymerization disclosure agent.
  • the polymerizable cholesteric liquid crystal composition preferably contains one or more polymerizable liquid crystal compounds having a refractive index anisotropy ⁇ n of 0.2 or more.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No.
  • polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (14).
  • X 1 is 2 to 5 (integer).
  • ⁇ n at 30 ° C. of the liquid crystal compound is preferably 0.25 or more, more preferably 0.3 or more, and further preferably 0.35 or more.
  • the upper limit is not particularly limited, but is often 0.6 or less.
  • a method for measuring the refractive index anisotropy ⁇ n a method using a wedge-shaped liquid crystal cell described in page 202 of a liquid crystal handbook (edited by the Liquid Crystal Handbook Editorial Committee, published by Maruzen Co., Ltd.) is generally used. In this case, the evaluation can be performed by using a mixture with another liquid crystal and estimated from the extrapolated value.
  • liquid crystal compound exhibiting a high ⁇ n examples include, for example, US Pat.
  • liquid crystal compound exhibiting a high ⁇ n examples include, for example, US Pat.
  • examples thereof include compounds described in Japanese Patent Publication No. 5705465, Japanese Patent No. 5721484, and Japanese Patent No. 5723641.
  • liquid crystal compound having a polymerizable group is a compound represented by the general formula (6).
  • a 1 to A 4 each independently represents an aromatic carbocyclic ring or heterocyclic ring which may have a substituent.
  • the aromatic carbocycle include a benzene ring and a naphthalene ring.
  • the heterocyclic ring furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, Pyrazolidine ring, triazole ring, furazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine
  • A1 to A4 are preferably aromatic carbocycles, and more preferably benzene rings.
  • the type of substituent that may be substituted on the aromatic carbocycle or heterocyclic ring is not particularly limited, and examples thereof include a halogen atom, a cyano group, a nitro group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, and an acyloxy group.
  • a single bond, —COO—, —CONH—, —NHCO— or —C ⁇ C— is preferable.
  • Sp 1 and Sp 2 each independently represents a single bond or a carbon chain having 1 to 25 carbon atoms.
  • the carbon chain may be linear, branched, or cyclic.
  • a so-called alkyl group is preferable. Of these, an alkyl group having 1 to 10 carbon atoms is more preferable.
  • P 1 and P 2 each independently represent a hydrogen atom or a polymerizable group, and at least one of P 1 and P 2 represents a polymerizable group.
  • a polymeric group the polymeric group which the liquid crystal compound which has a polymeric group mentioned above has is illustrated.
  • n 1 and n 2 each independently represents an integer of 0 to 2, and when n 1 or n 2 is 2, a plurality of A 1 , A 2 , X 1 and X 2 may be the same or different Good.
  • Specific examples of the compound represented by the general formula (6) include compounds represented by the following formulas (2-1) to (2-30).
  • cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
  • the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain
  • a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different. That is, a chiral agent that induces right-handed twist is used when it has right-circularly polarized light reflection characteristics, and a chiral agent that induces left-handed twist is used when it has left-handed circularly polarized light reflection characteristics.
  • the chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, Chapter 3-4, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142), 1989), isosorbide and isomannide derivatives can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • a polymer having repeating units can be formed.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound.
  • the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerization group
  • a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by irradiation with a photomask such as actinic rays after coating and orientation.
  • a photomask such as actinic rays after coating and orientation.
  • an isomerization site of a compound exhibiting photochromic properties an azo group, an azoxy group, or a cinnamoyl group is preferable.
  • Specific examples of the compound include JP 2002-80478, JP 2002-80851, JP 2002-179633, JP 2002-179668, JP 2002-179669, and JP 2002-2002. No. 179670, JP-A No. 2002-179681, JP-A No.
  • photoreactive chiral agent compounds represented by the following general formulas (1) to (5) can be used.
  • a 11 and A 12 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 11 —
  • Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle
  • R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group
  • R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12.
  • B 11 and B 12 each independently represents —C ( ⁇ O) — (Ar 12 ) n 11 — or —C ( ⁇ O) —Ar 13 —N ⁇ X 11 —Ar 14 —.
  • X 11 represents N or CH
  • Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 11 represents an integer of 0 to 2
  • Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 11 and Z 12 may have a polymerizable group.
  • Z 11 and R 12 and Z 12 and R 14 may form a ring with each other, and a plurality of molecules of Z 11 and Z 12 may be polymerized via a covalent bond.
  • the compound represented by the general formula (1) includes, for example, JP-A-2002-080851, JP-A-2002-179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-306490, JP-A-2003-306491, JP-A-2003-313187, JP-A-2003-313189, JP-A-2003-313292 ing.
  • a 21 and A 22 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12.
  • B 21 and B 22 each independently represents —C ( ⁇ O) — (Ar 22 ) n 21 — or —C ( ⁇ O) —Ar 23 —N ⁇ X 21 —Ar 24 —.
  • X 21 represents N or CH
  • Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 21 represents an integer of 0 to 2
  • Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 21 and Z 22 may have a polymerizable group.
  • Z 21 and R 22 and Z 22 and R 24 may form a ring with each other, and a plurality of molecules of Z 21 and Z 22 may be polymerized via a covalent bond. More specifically, the compound represented by the general formula (2) is described in JP-A Nos. 2002-080478 and 2003-313188.
  • a 31 and A 32 each independently represent a single bond or —O—C ( ⁇ O) — or —O—C ( ⁇ O) —Ar 31 —, and Ar 31 has a substituent.
  • R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent.
  • N X 31 —Ar 34 —, where X 31 is N or Or CH 32 , Ar 32 , Ar 33 and Ar 34 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and n 31 Represents an integer of 0 to 2, and when n 31 is 2, a plurality of Ar 32 may be the same or different, Z 31 and Z 32 are each independently a hydrogen atom, a C 1 to C 12 alkyl group, Represents a C 1 -C 12 alkoxy group, a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 31 and Z 32 represent , May have a polymerizable group, Z 31 and R 32 and Z 32 and R 34 may form a ring with each other, and a plurality of molecules of Z 31 and Z 32 are polymerized via a covalent bond.
  • L is It represents the valence of the group.
  • the binaphthyl moiety has either (R) or (S) axial asymmetry. More specifically, compounds represented by the general formula (3) are described in JP-A Nos. 2002-179668, 2002-179669, 2002-179670, and 2002-302487. Are listed.
  • a 41 and A 42 each independently represent —C ( ⁇ O) — or —C ( ⁇ O) —Ar 41 —
  • Ar 41 represents an aromatic carbocyclic ring which may have a substituent or Represents an optionally substituted aromatic heterocycle
  • R 41 and R 43 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group
  • R 42 and R 44 each independently represents a hydrogen atom or C 1 to C 12.
  • B 41 and B 42 each independently represents —C ( ⁇ O) — (Ar 42 ) n 41 — or —C ( ⁇ O) —Ar 43 —N ⁇ X 41 —Ar 44 —.
  • X 41 represents N or CH
  • Ar 42 Ar 43 and Ar 44 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents
  • n 41 represents an integer of 0 to 2
  • n 41 is 2
  • a plurality of Ar 42 may be the same or different
  • Z 41 and Z 42 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group
  • Z 41 and Z 42 may have a polymerizable group.
  • Z 41 and R 42 and Z 42 and R 44 may form a ring with each other, and multiple molecules of Z 41 and Z 42 may be polymerized via a covalent bond, and R 45 and R 46 are C 1 to C 30 And may form a ring with each other.
  • * Represents an asymmetric carbon. More specifically, the compound represented by the general formula (4) is described in JP-A No. 2002-179633.
  • P 51 represents a polymerizable group
  • Sp 51 represents an alkylene group of a single bond or C 1 ⁇ 12
  • plurality of carbon atoms may be replaced by an oxygen atom or a carbonyl group
  • X 51 represents a single bond Or an oxygen atom
  • Ar 51 and Ar 52 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring
  • L 51 represents a single bond
  • it represents a divalent linking group
  • n 51 represents an integer of 1 to 3
  • n 51 is 2 or more, a plurality of Ar 51 and L 51 may be the same or different from each other
  • R 52 is asymmetric.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the cholesteric liquid crystal composition of the present invention may contain two or more kinds of chiral agents.
  • Torsional strength HTP (Helical Twisting Power)
  • photoisomerization ability can be adjusted.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. When the content of the crosslinking agent is within the above range, the effect of improving the crosslinking density is easily obtained, and the stability of the cholesteric liquid crystal phase is further improved.
  • Polymerization inhibitor-- The polymerization inhibitor is added to the liquid crystal composition for the purpose of improving the storage stability.
  • the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, phenothiazine, benzoquinone, hindered amine (HALS), and derivatives thereof. These may be added in an amount of 0 to 10% by mass with respect to the liquid crystalline compound. Preferably, 0 to 5% by mass is added.
  • the liquid crystal composition is preferably used as a liquid when forming a cholesteric liquid crystal layer.
  • the liquid crystal composition may contain a solvent.
  • a solvent There is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and cyclopentanone, alkyl halides, amides, sulfoxides, hetero Examples thereof include ring compounds, hydrocarbons, esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load.
  • the above-described components such as the above-described monofunctional polymerizable monomer may function as a solvent.
  • the kit of the present invention comprises at least one polymerizable liquid crystal compound, a polymerizable liquid crystal composition comprising a photoreactive chiral agent having right-handed twisting properties and a polymerization initiator, at least one polymerizable liquid crystal compound, left It consists of a polymerizable liquid crystal composition containing a photoreactive chiral agent having twisting properties and a polymerization initiator.
  • the photoreactive chiral agent having a right-twist characteristic is represented by, for example, the above general formula (1) or general formula (3).
  • the photoreactive chiral agent which has the left twist characteristic is represented by the above-mentioned general formula (2) or general formula (3), for example.
  • the above-mentioned polymerizable liquid crystal composition may be divided into a plurality of parts instead of one.
  • a cholesteric layer having a right circular polarization reflection characteristic includes a liquid crystal composition having a right circular polarization reflection characteristic containing a chiral agent that induces right twist as a substrate. What is necessary is just to form by performing the process of apply
  • a cholesteric layer having a left-circularly polarized reflection characteristic (hereinafter, also simply referred to as a left-circularly polarized cholesteric layer) is, for example, a liquid crystal composition having a left-circularly polarized reflection characteristic containing a chiral agent that induces left-handed twist.
  • coating of a liquid-crystal composition, drying, and irradiation of an ultraviolet-ray may all be performed by a well-known method.
  • a chiral agent having a moiety (photoisomerization group) that isomerizes with light such as a cinnamoyl group
  • photoisomerization group a chiral agent having a photoisomerizable group
  • the photoisomerization group may be isomerized and then irradiated with ultraviolet rays for fixing the cholesteric liquid crystal phase.
  • the photoisomerization group is isomerized by irradiating weak UV light to the unexposed part or the entire surface, Thereafter, irradiation with ultraviolet rays for fixing the cholesteric liquid crystal phase may be performed.
  • the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer can have a plurality of reflective regions that reflect light in different wavelength regions in the plane.
  • the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer are preferably laminated in the same position in the plane direction with reflection regions that reflect light in the same wavelength region.
  • the reflection wavelength region can be adjusted by adjusting the temperature at the time of ultraviolet irradiation.
  • the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer have a plurality of reflective regions that reflect light in different wavelength regions in the plane. it can.
  • a transmission region having no reflection characteristics in any wavelength region can be formed in the plane.
  • the right circularly polarized cholesteric layer or the left circularly polarized cholesteric layer may be a single layer, or the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer may each have at least one layer.
  • Widening the wavelength range of reflected light that is, the wavelength range of light to be blocked, can be realized by sequentially laminating layers with different selective reflection center wavelengths ⁇ .
  • Also known is a technique of expanding the wavelength range by a method of stepwise changing the spiral pitch in the layer called the pitch gradient method, specifically, Nature 378, 467-469 (1995), Examples include the methods described in Japanese Patent No. 281814 and Japanese Patent No. 4990426.
  • the reflection wavelength region of the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer in the present invention should be set in any range of visible light (wavelength of about 380 nm to 780 nm) and near infrared light (wavelength of about 780 nm to 2000 nm).
  • the setting method is as described above.
  • the reflective color filter forming step includes, for example, a right circular polarized reflective layer forming step for forming a right circular polarized reflective layer having a plurality of wavelength regions in the plane, and a left circular polarized reflective layer having a plurality of wavelength regions in the plane.
  • the left circularly polarized light reflecting layer forming step includes, for example, a right circular polarized reflective layer forming step for forming a right circular polarized reflective layer having a plurality of wavelength regions in the plane, and a left circular polarized reflective layer having a plurality of wavelength regions in the plane.
  • the right circularly polarized light reflection layer forming step includes, as an example, a coating step and a coating step in which a polymerizable liquid crystal composition including at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-twisting characteristics, and a polymerization initiator is applied.
  • the polymerizable liquid crystal composition applied in step 1 is heated to form a cholesteric alignment state, and a portion of the exposed portion of the polymerizable liquid crystal composition that has been converted to a cholesteric alignment state in the alignment step is exposed to light.
  • a conversion step for converting the reflection wavelength region, and a fixing for fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure process on the entire surface of the polymerizable liquid crystal composition whose partial alignment state has been converted in the conversion step.
  • the conversion process may be performed.
  • the left circularly polarized light reflection layer forming step is, as an example, a coating step and a coating step in which a polymerizable liquid crystal composition including at least one polymerizable liquid crystal compound, a photoreactive chiral agent having left-twisting characteristics, and a polymerization initiator is applied.
  • the polymerizable liquid crystal composition applied in step 1 is heated to form a cholesteric alignment state, and a portion of the exposed portion of the polymerizable liquid crystal composition that has been converted to a cholesteric alignment state in the alignment step is exposed to light.
  • a conversion process for converting the reflection wavelength region, and What is necessary is just to perform the fixing process which fixes a cholesteric alignment state by performing the exposure process to the whole surface of the polymeric liquid crystal composition which converted some alignment states at the conversion process.
  • the right circularly polarized light reflecting layer forming step includes, as another example, a coating step of applying a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having a right twist property and a polymerization initiator,
  • the polymerizable liquid crystal composition applied in the coating process is heated to form an cholesteric alignment state, and an exposure process is performed on a part of the polymerizable liquid crystal composition in the cholesteric alignment state, thereby exposing the cholesteric portion of the exposed portion.
  • a second fixing step for fixing the alignment state of the polymerizable liquid crystal composition may be performed by performing an exposure treatment on the polymerizable liquid crystal composition converted from the above.
  • the left circularly polarized light reflection layer forming step is a coating step of applying a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having left-handed twist characteristics, and a polymerization initiator,
  • the polymerizable liquid crystal composition applied in the coating process is heated to form an cholesteric alignment state, and an exposure process is performed on a part of the polymerizable liquid crystal composition in the cholesteric alignment state, thereby exposing the cholesteric portion of the exposed portion.
  • a second fixing step for fixing the alignment state of the polymerizable liquid crystal composition may be performed by performing an exposure treatment on the polymerizable liquid crystal composition converted from the above.
  • the alignment layer coating step for coating the photo-alignment film, and the photo-alignment film formed by coating with light is exposed with polarized light and the alignment is regulated. It is preferable to perform an orientation regulating step that applies force.
  • the essence of the present invention is to easily obtain a color filter having a large number of spectral characteristics by combining the absorption type color filter 30 and the reflection type color filter 32, and the combination method is not limited at all. Absent.
  • the present invention is not limited to the following configuration, and the configuration can be freely changed without departing from the gist of the present invention.
  • the spectral characteristic diagram illustrated below is a conceptual diagram for explaining changes in spectral characteristics due to the combination of the absorption color filter and the reflective color filter, and is different from the actual spectral shape.
  • the absorption color filter 30 is, for example, a color filter of three primary colors of red, blue, and green. As shown in FIG. 3, the absorption color filter 30 has a red wavelength region 30R, a green wavelength region 30G, and a blue wavelength region 30B arranged in a Bayer array. The red wavelength region 30R, the green wavelength region 30G, and the blue wavelength region 30B have different spectral characteristics.
  • the absorption color filter 30 has a plurality of first sections 31. In the first section 31, two green wavelength regions 30G, one red wavelength region 30R, and one blue wavelength region 30B are arranged.
  • the absorptive color filter 30 has three wavelength regions of a red wavelength region 30R, a green wavelength region 30G, and a blue wavelength region 30B having different spectral characteristics. Any device having a region may be used.
  • the spectral characteristics of the absorption color filter 30 are shown in FIG. As shown in FIG. 6, the red wavelength region 30R has a spectral characteristic 33R, the green wavelength region 30G has a spectral characteristic 33G, and the blue wavelength region 30B has a spectral characteristic 33B, and the spectral characteristics are different.
  • both the ultraviolet region (that is, the left side of the blue wavelength region) and the infrared region (that is, the right side of the red wavelength region) have low transmittance.
  • an ultraviolet absorber and an infrared absorber are contained in each of the red, blue and green regions of an ordinary color filter, or an ordinary absorption color filter and an ultraviolet absorption layer are included.
  • wavelength cut filters used in combination do not necessarily have to be integrated with the absorption type cut filter, but between the measurement object in the optical sensor using the laminated color filter of the present invention and the image sensor that detects light. What is necessary is just to be arrange
  • the red wavelength region 30R transmits, for example, red light having a wavelength of 570 nm to 700 nm in the long wavelength region of the visible light region, and absorbs light other than red light.
  • the green wavelength region 30G for example, transmits green light having a wavelength of 480 nm to 600 nm in the middle wavelength region of the visible light region and absorbs light other than green light.
  • the blue wavelength region 30B transmits blue light having a wavelength of 400 nm to 500 nm in the short wavelength region of the visible light region, and absorbs light other than blue light.
  • the multilayer color filter 14 is configured by the reflective color filter 32 and the absorption color filter 30.
  • the reflective color filter 32 is disposed on the planarizing layer 29.
  • the reflective color filter 32 has a plurality of second sections 32a.
  • the absorption type color filter 30 and the reflection type color filter 32 are laminated such that the first section 31 (see FIG. 3) and the second section 32a (see FIG. 2) coincide.
  • a microlens 28 is provided between the absorption color filter 30 and the reflection color filter 32, and the absorption color filter 30 and the reflection color filter 32 are laminated. Instead, the absorption color filter 30 and the reflection color filter 32 may be laminated in direct contact with each other. As shown in FIGS.
  • the reflective color filter 32 has two wavelength regions of a first wavelength region 34 and a second wavelength region 35 having different spectral characteristics.
  • the first wavelength region 34 or the second wavelength region 35 is arranged for each second section 32 a of the reflective color filter 32.
  • the same wavelength region is not arranged in the adjacent second section 32a.
  • FIG. 5 shows spectral characteristics of the first wavelength region 34 and the second wavelength region 35 of the reflective color filter 32.
  • the first wavelength region 34 has a spectral characteristic 34a. As shown in the spectral characteristics 34a, the first wavelength region 34 includes a part of the light transmitted through the blue wavelength region 30B, including a region where light transmitted through the blue wavelength region 30B and light transmitted through the green wavelength region 30G overlap. And part of the light transmitted through the green wavelength region 30G is not transmitted.
  • the second wavelength region 35 has a spectral characteristic 35a.
  • the second wavelength region 35 does not transmit light on the longer wavelength side than the first wavelength region 34.
  • the second wavelength region 35 includes a part of light that passes through the green wavelength region 30G, including a region where light that passes through the green wavelength region 30G and light that passes through the red wavelength region 30R overlap. And part of the light transmitted through the red wavelength region 30R is not transmitted.
  • the reflective color filter 32 is preferably one obtained by curing a polymerizable cholesteric liquid crystal composition.
  • the multilayer color filter 14 is as shown in FIG. 4 when viewed from the incident light side.
  • the laminated color filter 14 shown in FIG. 4 is a composite of the absorption color filter 30 and the reflection color filter 32. 7 and 8 show the spectral characteristics of the multilayer color filter 14.
  • the multilayer color filter 14 includes a first green wavelength region 30G 1 two, one pixel region in the first blue wavelength region 30B 1, the first red wavelength region 30R 1 31a is configured. Further, two second green wavelength region 30G 2, and second blue wavelength region 30B 2, 1 single pixel area 31b is composed of a second red wavelength region 30R 2. Thus, it has two types of pixel regions 31a and 31b.
  • the first blue wavelength region 30B 1 has a spectral characteristic 36B 1.
  • the first green wavelength region 30G 1 has the spectral characteristics 36G 1.
  • the first red wavelength region 30R 1 has the spectral characteristics 36R 1.
  • Spectral characteristics of the pixel region 31b of the multilayer color filter 14, as shown in FIG. 8, a second blue wavelength region 30B 2 has the spectral characteristics 36B 2.
  • Second green wavelength region 30G 2 has a spectral characteristic 36G 2.
  • the second red wavelength region 30R 2 has a spectral characteristic 36R 2.
  • the laminated color filter 14 has a red wavelength region, a green wavelength region, and a blue wavelength region as compared with the color filters of the three primary colors of red, blue, and green.
  • Light in different wavelength regions can be transmitted. That is, multi-gradation can be achieved.
  • the absorptive color filter 30 has three types of wavelength regions
  • the reflective type color filter 32 has two types of wavelength regions
  • the laminated color filter 14 has six gradations.
  • the number of species of the multilayer color filter 14 is larger than the total of the species of the wavelength region of the absorption color filter 30 and the species of the reflective color filter 32.
  • the absorption color filter 30 having m types of wavelength regions and the reflection type color filter 32 having n types of wavelength regions are overlapped with each other in different combinations, whereby the absorption type color filter 30 is obtained.
  • the maximum value of the species p of the wavelength region generated at this time is m ⁇ n.
  • the band that can be shielded by the reflective color filter is limited to about 150 nm. Therefore, when the multilayer color filter 14 is a combination of a reflective color filter and a reflective color filter, a region other than a specific wavelength is used. It is necessary to shield everything. In a reflection type color filter, it is necessary to stack a considerable number of layers in order to block a region other than a specific wavelength, which is complicated in terms of configuration and production.
  • the absorptive color filter 30 is, for example, a color filter of three primary colors, and can be manufactured by a manufacturing method similar to that used for an image pickup device such as a CCD (Charge Coupled Device), and therefore a detailed description thereof Omitted.
  • a method for manufacturing the reflective color filter 32 will be described with reference to FIGS. 9 to 16 are schematic perspective views showing the method of manufacturing the multilayer color filter according to the embodiment of the present invention in the order of steps.
  • a base layer 42 is formed on a substrate 40, and a reflective layer 44, that is, a polymerizable liquid crystal composition containing a right-twisted chiral agent having a photoisomerizable group is formed on the base layer 42, that is, A liquid crystal composition layer is prepared.
  • an exposure mask 46 having a predetermined pattern is disposed on the reflective layer 44.
  • the light L 1 is irradiated onto the reflective layer 44 from above the exposure mask 46 to expose the exposure region 45.
  • region 45 the photoisomerization of a chiral agent occurs and the wavelength of the light reflected changes in connection with it.
  • FIG. 10 schematically shows the patterning process.
  • an i-line stepper or the like is used to form a micropattern, so that there is a gap between the exposure mask 46 and the reflective layer 44.
  • the cholesteric liquid crystal composition is polymerized and fixed, the wavelength of the light reflected by the reflective layer 44 is fixed, and the first region 47 and the second region having different wavelengths of the reflected light as shown in FIG.
  • a right circularly polarized light reflection type color filter 49 a having 48 is obtained.
  • the light L 1 and the light L 2 are both ultraviolet light, and the light L 2 has higher light intensity than the light L 2 .
  • the underlayer 42 is a layer for horizontally aligning the cholesteric liquid crystal composition.
  • the base layer 42 is preferably a photo-alignment film.
  • a left circular polarized light reflective type having a first region 47a (see FIG. 16) and a second region 48a (see FIG. 16) having different wavelengths of reflected light.
  • a color filter 49b (see FIG. 16) is produced on the right circularly polarized light reflective color filter 49a.
  • the left circularly polarized reflective color filter 49b has a configuration other than the point that the reflective layer 44a is formed using a polymerizable liquid crystal composition containing a left-twisted chiral agent having an isomerization group. Can be produced in the same manner as the right circular polarization reflection type color filter 49a.
  • the above-described exposure mask 46 is disposed on the reflective layer 44a. Then, the light L 1 is irradiated on a reflective layer 44a from above the exposure mask 46 to expose the exposure area 45a. Thereby, in the exposure area
  • the exposure mask 46 is disposed at the same position as the right circular polarization reflection type color filter 49a, and the exposure area 45a is on the above-described exposure area 45.
  • FIG. 16 schematically shows the patterning as in FIG. 10, and an optical system including a plurality of lenses and the like exists between the exposure mask 46 and the reflective layer 44 as described above.
  • the cholesteric liquid crystal composition is polymerized and fixed, the wavelength of light reflected by the reflective layer 44a is fixed, and the first region 47a and the second region having different wavelengths of reflected light as shown in FIG.
  • a left circularly polarized reflective color filter 49b having 48a is obtained.
  • the first region 47a is formed on the first region 47 of the right circular polarization reflection type color filter 49a, and the second region 48a is formed on the second region 48 of the right circular polarization reflection type color filter 49a.
  • the light L 1 and the light L 2 are ultraviolet light, and the light L 2 has higher light intensity than the light L 2 .
  • it is preferably performed in a nitrogen atmosphere.
  • the left circular polarization reflection type color filter 49b is laminated on the right circular polarization reflection type color filter 49a, and the reflection type color filter 32 can be obtained.
  • the reflective color filter 32 can obtain various spectral characteristics with the same material by using optical HTP (Helical Twisting Power) conversion technology, and develops corresponding dyes like an absorption color filter. Save time and effort.
  • optical HTP Helical Twisting Power
  • the reflective color filter 32 is not limited to the configuration shown in FIG. 2, but may be the configuration shown in FIG.
  • the reflective color filter 50 shown in FIG. 17 has a plurality of second sections 52 and four types of wavelength regions having different spectral characteristics. That is, the reflective color filter 50 has a first wavelength region 34, a second wavelength region 35, a third wavelength region 53, and a fourth wavelength region 54 that have different spectral characteristics.
  • the same components as those of the reflective color filter 32 shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the reflective color filter 50 is also laminated with the first section 31 of the absorption color filter 30 and the second section of the reflective color filter 50 matched to each other as in the above-described reflective color filter 32.
  • the reflective color filter 50 has two sets of wavelength regions that are selected from four different wavelength regions having different spectral characteristics without overlapping, and are configured by two types of wavelength regions, respectively.
  • the two sets of wavelength regions include a first set composed of a first wavelength region 34 and a third wavelength region 53, and a second wavelength region 35 and a fourth wavelength region 54. Two sets of the second set. One of the first group and the second group described above is arranged for each second section 52 of the reflective color filter 50.
  • the first wavelength region 34 is disposed at a position corresponding to the blue wavelength region 30B
  • the third wavelength region 53 is disposed at a position corresponding to the green wavelength region 30G and the red wavelength region 30R.
  • the second wavelength region 35 is disposed at a position corresponding to the blue wavelength region 30B and the green wavelength region 30G
  • the fourth wavelength region 54 is disposed at a position corresponding to the red wavelength region 30R.
  • FIG. 18 shows spectral characteristics of the first wavelength region 34 to the fourth wavelength region 54 of the reflective color filter 50.
  • the same components as those of the spectral characteristics of the reflective color filter 32 shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first wavelength region 34 has a spectral characteristic 34a.
  • the first wavelength region 34 does not transmit part of the light transmitted through the blue wavelength region 30B.
  • the second wavelength region 35 has a spectral characteristic 35a.
  • the second wavelength region 35 transmits part of the light transmitted through the blue wavelength region 30B and the green wavelength region 30G, including the region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. Do not transmit part of the light.
  • the third wavelength region 53 has a spectral characteristic 53a.
  • the third wavelength region 53 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R including the region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap.
  • the fourth wavelength region 54 has a spectral characteristic 54a. The fourth wavelength region 54 does not transmit light on the longer wavelength side of the light transmitted through the red wavelength region 30R than the third wavelength region 53.
  • the multilayer color filter 14 using the reflective color filter 50 and the above-described absorption color filter 30 has two third green wavelength regions 30G 3 and a first blue wavelength region 30B 1. If, one pixel region 31c is composed of the third red wavelength region 30R 3. Further, two second green wavelength region 30G 2, and second blue wavelength region 30B 2, 1 single pixel region 31d is formed in the fourth red wavelength region 30R 4. Thus, it has two types of pixel regions 31c and 31d.
  • a first blue wavelength region 30B 1 has a spectral characteristic 36B 1.
  • the second blue wavelength region 30B 2 has the spectral characteristics 36B 2. It found the following second blue wavelength region 30B 2, and transmits light having a shorter wavelength than the first blue wavelength region 30B 1.
  • Second green wavelength region 30G 2 has a spectral characteristic 36G 2.
  • the third green wavelength region 30G 3 has the spectral characteristics 36G 3. Towards the third green wavelength region 30G 3 is, to transmit light having a shorter wavelength than the second green wavelength region 30G 2.
  • the third red wavelength region 30R 3 has the spectral characteristics 36R 3.
  • Fourth red wavelength region 30R 4 has the spectral characteristics 36R 4.
  • fourth red wavelength region 30R transmits light of a shorter wavelength side than the third red wavelength region 30R 3.
  • Second green wavelength region 30G 2 has a spectral characteristic 36G 2.
  • Fourth red wavelength region 30R 4 has the spectral characteristics 36R 4.
  • the multilayer color filter 14 is different in the red wavelength region, the green wavelength region, and the blue wavelength region, respectively, as compared with the color filters of the three primary colors of red, blue, and green.
  • Light in the wavelength region can be transmitted. That is, multi-gradation can be achieved.
  • the laminated color filter 14 has 6 gradations. Thereby, for example, a specific wavelength region can be detected in the blue wavelength region. A specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region.
  • the reflective color filter 32 is not limited to the configuration shown in FIG. 2, but may be the configuration shown in FIG.
  • a reflective color filter 51 shown in FIG. 21 has a plurality of second sections 52 and eight wavelength regions having different spectral characteristics.
  • the same components as those of the reflective color filter 32 shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the reflection type color filter 51 shown in FIG. 21 is also laminated in such a manner that the first section 31 of the absorption color filter 30 and the second section 52 of the reflection type color filter 50 coincide with each other like the reflection color filter 32 described above. Is done.
  • the reflection type color filter 51 has four sets of wavelength regions that are selected without overlapping from eight wavelength regions having different spectral characteristics, and are configured by two types of wavelength regions, respectively.
  • FIG. 21 includes a first set including a first wavelength region 34 and a fifth wavelength region 55.
  • the first wavelength region 34 is a blue wavelength region 30B.
  • the fifth wavelength region 55 is disposed at a position corresponding to the green wavelength region 30G and the red wavelength region 30R.
  • it has a second set composed of a second wavelength region 35 and a sixth wavelength region 56.
  • the second wavelength region 35 is disposed at a position corresponding to the blue wavelength region 30B, and Six wavelength regions 56 are arranged at positions corresponding to the green wavelength region 30G and the red wavelength region 30R.
  • the third wavelength region 53 and the seventh wavelength region 57 have a third set.
  • the seventh wavelength region 57 is disposed at a position corresponding to the red wavelength region 30R
  • 7 wavelength region 57 is arranged at a position corresponding to blue wavelength region 30B and green wavelength region 30G.
  • the fourth set includes a fourth wavelength region 54 and an eighth wavelength region 58.
  • the eighth wavelength region 58 is disposed at a position corresponding to the red wavelength region 30R.
  • the eight wavelength regions 58 are arranged at positions corresponding to the blue wavelength region 30B and the green wavelength region 30G.
  • the spectral characteristics of the first to eighth wavelength regions 34 to 58 of the reflective color filter 51 are shown in FIGS. 22 and 23, the same components as those of the spectral characteristics of the reflective color filter 32 shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first wavelength region 34 has a spectral characteristic 34a.
  • the first wavelength region 34 does not transmit part of the light transmitted through the blue wavelength region 30B.
  • the third wavelength region 53 has a spectral characteristic 53a.
  • the third wavelength region 53 includes a part of the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G, including a region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. It does not transmit part of.
  • the fifth wavelength region 55 has a spectral characteristic 55a.
  • the fifth wavelength region 55 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R, including a region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light.
  • the seventh wavelength region 57 has spectral characteristics 57a. The seventh wavelength region 57 does not transmit part of the light transmitted through the red wavelength region 30R.
  • the second wavelength region 35 has a spectral characteristic 35a.
  • the second wavelength region 35 does not transmit light on the longer wavelength side of the light transmitted through the blue wavelength region 30B than the first wavelength region 34.
  • the fourth wavelength region 54 has a spectral characteristic 54a.
  • the fourth wavelength region 54 includes a portion of the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G, including a region where light transmitted through the blue wavelength region 30B and light transmitted through the green wavelength region 30G overlap. It does not transmit part of.
  • the fourth wavelength region 54 does not transmit light longer than the third wavelength region 53.
  • the sixth wavelength region 56 has spectral characteristics 56a.
  • the sixth wavelength region 56 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R including the region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light.
  • the sixth wavelength region 56 does not transmit light on the longer wavelength side than the fifth wavelength region 55.
  • the eighth wavelength region 58 has spectral characteristics 58a.
  • the eighth wavelength region 58 transmits part of the light transmitted through the red wavelength region 30R.
  • the eighth wavelength region 58 transmits light longer than the seventh wavelength region 57.
  • the multilayer color filter 14 using the reflective color filter 51 and the above-described absorption color filter 30 includes two fifth green wavelength regions 30G 5 and a first blue wavelength region 30B 1. If, one pixel region 31e is composed of a red wavelength region 30R 5 of the fifth. Further, two of the sixth green wavelength region 30G 6 of a second blue wavelength region 30B 2, 1 single pixel area 31f is composed of a red wavelength region 30R 6 sixth. And two third green wavelength region 30G 3, and the third the blue wavelength region 30B 3, 1 single pixel area 31g is constituted by a red wavelength region 30R 7 of the seventh. And two fourth green wavelength region 30G 4, the fourth blue wavelength region 30B 4, 1 single pixel area 31h is composed of a red wavelength region 30R 8 of the eighth. Thus, it has four types of pixel regions 31e, 31f, 31g, and 31h.
  • the third the blue wavelength region 30B 3 has a spectral characteristic 36B 3.
  • the third green wavelength region 30G 3 has the spectral characteristics 36G 3.
  • Spectral characteristics of the pixel region 31h of the multilayer color filter 14, as shown in FIG. 26, the fourth blue wavelength region 30B 4 has a spectral characteristic 36B 4.
  • the laminated color filter 14 has a red wavelength region, a green wavelength region, and a blue wavelength region, as compared with the color filters of the three primary colors of red, blue and green. , Light in different wavelength regions can be transmitted. That is, multi-gradation can be achieved.
  • the laminated color filter 14 has 12 gradations. Also in this case, the number of species of the multilayer color filter 14 is larger than the total of the species of the wavelength region of the absorption color filter 30 and the species of the reflective color filter 51. Thereby, for example, a specific wavelength region can be detected in the blue wavelength region. A specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region.
  • the optical sensor 10 shown in FIG. 1 uses the absorption color filter 30 of the three primary colors as described above.
  • the present invention is not limited to this, and infrared light is detected like the optical sensor 11 shown in FIG. It may be possible.
  • the same components as those of the optical sensor 10 shown in FIG. 27 is a schematic cross-sectional view showing another configuration of the optical sensor having the color filter according to the embodiment of the present invention
  • FIG. 28 shows another configuration of the absorption type color filter of the color filter according to the embodiment of the present invention.
  • FIG. 29 is a schematic diagram showing another configuration of the reflective color filter of the color filter according to the embodiment of the present invention.
  • FIG. 30 is a graph showing spectral characteristics of the absorption type color filter of the color filter according to the embodiment of the present invention
  • FIG. 31 is a graph showing spectral characteristics of the reflective color filter of the color filter according to the embodiment of the present invention.
  • the optical sensor 11 is different from the optical sensor 10 shown in FIG. 1 in that infrared light can be detected, and the photodiode 24 has sensitivity to infrared light.
  • the optical sensor 11 is different in the configuration of the absorption color filter 30 and the reflection color filter 32 from the optical sensor 10 shown in FIG.
  • the absorption color filter 30 has four strip-shaped first sections 31. In the first section 31, a blue wavelength region 30B, a green wavelength region 30G, a red wavelength region 30R, and an infrared wavelength region 30IR are arranged in this order.
  • the infrared wavelength region 30IR has a spectral characteristic 33IR shown in FIG.
  • the light in the blue wavelength region 30B, the light in the green wavelength region 30G, and the light in the red wavelength region 30R are not transmitted, but only light on the longer wavelength side than the red wavelength region 30R is transmitted.
  • the infrared light transmitted through the infrared wavelength region 30IR reaches the photodiode 24 below the infrared wavelength region 30IR, and the infrared light is detected by the photodiode 24.
  • the optical sensor 11 can obtain a color image of three primary colors and an infrared light image.
  • the infrared wavelength region 30IR can be composed of a visible light cut filter that cuts visible light and transmits near infrared light.
  • the visible light cut filter contains a plurality of dyes for absorbing the entire visible light region.
  • Near-infrared light is light having a wavelength of about 780 nm to 2000 nm.
  • an infrared absorber is contained only in the blue wavelength region 30B, the green wavelength region 30G, and the red wavelength region 30R, or the infrared absorption layer is included in the blue wavelength region 30B, green wavelength. It is necessary to arrange so as to overlap only the region 30G and the red wavelength region 30R.
  • the infrared absorbing layer is disposed so as to overlap only the blue wavelength region 30B, the green wavelength region 30G, and the red wavelength region 30R, the infrared absorbing layer is formed by some method so that the infrared absorbing layer does not overlap the infrared wavelength region 30IR.
  • wavelength conversion patterning using the photoreactive chiral agent used in the present invention can be used in addition to techniques such as lithography and etching.
  • the reflective color filter 32 has ten wavelength regions of a first wavelength region 34 to a tenth wavelength region 60.
  • the first wavelength region 34 and the second wavelength region 35 are arranged at positions corresponding to the blue wavelength region 30 ⁇ / b> B of the absorption color filter 30.
  • the third wavelength region 53 and the fourth wavelength region 54 are disposed at positions overlapping and overlapping the blue wavelength region 30B and the green wavelength region 30G of the absorption color filter 30.
  • the fifth wavelength region 55 and the sixth wavelength region 56 are disposed at positions that overlap and overlap the green wavelength region 30G and the red wavelength region 30R of the absorption color filter 30.
  • the seventh wavelength region 57 and the eighth wavelength region 58 are disposed at positions that overlap and overlap the red wavelength region 30R and the infrared wavelength region 30IR of the absorption color filter 30.
  • the ninth wavelength region 59 and the tenth wavelength region 60 are disposed at positions overlapping the blue wavelength region 30B of the absorption color filter 30.
  • the first wavelength region 34 has a spectral characteristic 34a.
  • the first wavelength region 34 does not transmit part of the light transmitted through the blue wavelength region 30B.
  • the third wavelength region 53 has a spectral characteristic 53a.
  • the third wavelength region 53 transmits part of the light transmitted through the blue wavelength region 30B and the green wavelength region 30G, including the region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. Do not transmit part of the light.
  • the fifth wavelength region 55 has a spectral characteristic 55a.
  • the fifth wavelength region 55 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R, including a region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap.
  • the seventh wavelength region 57 has spectral characteristics 57a.
  • the seventh wavelength region 57 does not transmit part of the light transmitted through the red wavelength region 30R and part of the light transmitted through the infrared wavelength region 30IR.
  • the ninth wavelength region 59 has a spectral characteristic 59a. The ninth wavelength region 59 does not transmit part of the light transmitted through the infrared wavelength region 30IR.
  • the second wavelength region 35 has a spectral characteristic 35a.
  • the second wavelength region 35 does not transmit part of the light transmitted through the blue wavelength region 30B.
  • the fourth wavelength region 54 has a spectral characteristic 54a.
  • the fourth wavelength region 54 transmits part of the light transmitted through the blue wavelength region 30B and the green wavelength region 30G, including a region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. Do not transmit part of the light.
  • the sixth wavelength region 56 has spectral characteristics 56a.
  • the sixth wavelength region 56 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R including the region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap.
  • the eighth wavelength region 58 has spectral characteristics 58a.
  • the eighth wavelength region 58 does not transmit part of the light transmitted through the red wavelength region 30R and part of the light transmitted through the infrared wavelength region 30IR.
  • the tenth wavelength region 60 has a spectral characteristic 60a. The tenth wavelength region 60 does not transmit part of the light transmitted through the infrared wavelength region 30IR.
  • the laminated color filter 14 using the absorption color filter 30 and the reflection color filter 32 is 1 in the first blue wavelength region 30B 1 to the fourth blue wavelength region 30B 4 .
  • One pixel region 37a is configured, and one pixel region 37b is configured by the third blue wavelength region 30B 3 to the sixth blue wavelength region 30B 6 , and the fifth red wavelength region 30R 5 to the eighth red wavelength region.
  • one pixel region 37c at 30R 8 is formed, one pixel region 37d in the infrared wavelength region 30IR 10 of the seventh infrared wavelength region 30IR7 ⁇ tenth is constructed.
  • a first blue wavelength region 30B 1 of the laminated color filter 14 has a spectral characteristic 36B 1.
  • Third blue wavelength region 30B 3 has a spectral characteristic 36B 3.
  • the third green wavelength region 30G 3 has the spectral characteristics 36G 3.
  • Green wavelength region 30G 5 of the fifth has a spectral characteristic 36G 5.
  • Red wavelength region 30R 5 of the fifth has a spectral characteristic 36R 5.
  • the ninth infrared wavelength region 30IR 9 has a spectral characteristic 36IR 9 .
  • a second blue wavelength region 30B 2 of the laminated color filter 14 has a spectral characteristic 36B 2.
  • Fourth blue wavelength region 30B 4 has a spectral characteristic 36B 4.
  • Green wavelength region 30G 6 sixth having spectral characteristics 36G 6.
  • Red wavelength region 30R 6 of the sixth having spectral characteristics 36R 6.
  • Red wavelength region 30R 8 of the eighth having spectral characteristics 36R 8.
  • Infrared wavelength region 30IR 8 of the eighth having spectral characteristics 36IR 8 have a spectral characteristic 36IR 10.
  • the laminated color filter 14 has a red wavelength region, a blue wavelength region, and a color filter in the three primary colors of red, blue, and green and an infrared wavelength region. Further, light in different wavelength regions can be transmitted for the green wavelength region and the infrared wavelength region. That is, multi-gradation can be achieved.
  • the laminated color filter 14 has 16 gradations. Also in this case, the number of species of the multilayer color filter 14 is larger than the total of the species of the wavelength region of the absorption color filter 30 and the species of the reflective color filter 32. Thereby, for example, a specific wavelength region can be detected in the blue wavelength region. A specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region. Even in the infrared wavelength region, a specific wavelength region can be detected.
  • the reflective color filter 50 shown in FIG. 17 is composed of a first reflective filter 50a shown in FIG. 36 and a second reflective filter 50b shown in FIG. 37, and the first reflective filter 50a.
  • the second reflective filter 50b may be laminated.
  • the first reflective filter 50a has a right circular polarization reflection characteristic
  • the second reflection filter 50b has a left circular polarization reflection characteristic.
  • the first reflective filter 50a in FIG. 36 has the second wavelength region 35 and the third wavelength region 53 of the reflective color filter 50 shown in FIG. 17, and has a plurality of wavelength regions.
  • the first reflective filter 50 a has a plurality of second sections 62, and the second wavelength region 35 or the third wavelength region 53 is arranged for each second section 62.
  • the second reflective filter 50b shown in FIG. 37 has the first wavelength region 34 and the fourth wavelength region 54 of the reflective color filter 50 shown in FIG. Even in this case, the second reflective filter 50 b has a plurality of second sections 64, and the first wavelength region 34 or the fourth wavelength region 54 is arranged for each second section 64. .
  • the first reflective filter 50a and the second reflective filter 50b are stacked such that the second compartment 62 of the first reflective filter 50a and the second compartment 64 of the second reflective filter 50b are matched.
  • the same configuration as that of the reflective color filter 50 shown in FIG. 17 is obtained, and the same function as that of the reflective color filter 50 is provided.
  • the first reflective filter 50a and the second reflective filter 50b are used, the first reflective filter 50a and the second reflective filter 50b have a small number of species in the wavelength region. The number of exposures can be reduced, and the manufacturing process can be simplified.
  • the present invention is basically configured as described above.
  • the color filter, kit, color filter manufacturing method, and optical sensor of the present invention have been described in detail above.
  • the present invention is not limited to the above-described embodiment, and various improvements can be made without departing from the gist of the present invention. Of course, changes may be made.
  • a coating solution (L2) was prepared with the same composition except that the photoreactive right-turning chiral agent 1 in the preparation of the coating solution R1 was changed to the photoreactive left-turning chiral agent 1 described below.
  • a coating solution 1 for a photo-alignment film was prepared.
  • the prepared coating liquid 1 for photo-alignment film was applied by a spin coating method to form the photo-alignment film-forming film 1.
  • the coating liquid R1 was spin-coated on the glass substrate P1 with a photo-alignment film to form a coating film so as to have a film thickness of 5 ⁇ m.
  • the glass substrate P1 with a photo-alignment film on which the coating film is arranged is heated on a hot plate at 80 ° C. for 1 minute to dry and remove the solvent and form a cholesteric alignment state, and then using EXECURE 3000-W manufactured by HOYA-SCHOTT Then, UV (ultraviolet) light with an illuminance of 30 mW / cm 2 was irradiated for 10 seconds through a photomask at room temperature in a nitrogen atmosphere to fix the orientation of the region F1.
  • UV light with an illuminance of 2 mW / cm 2 was irradiated for 50 seconds (100 mJ / cm 2 ) under air, and then heated on an 80 ° C. hot plate for 1 minute to be immobilized.
  • UV light having an illuminance of 30 mW / cm 2 is irradiated again for 10 seconds through a photomask in a nitrogen atmosphere at room temperature, and the region F2 different from the region F1 is irradiated.
  • the orientation was fixed.
  • UV light with an illuminance of 2 mW / cm 2 was irradiated for 50 seconds (100 mJ / cm 2 ) under air, and then heated on an 80 ° C. hot plate for 1 minute to be immobilized.
  • UV light with an illuminance of 30 mW / cm 2 is again irradiated for 10 seconds through a photomask at room temperature in a nitrogen atmosphere, which is different from the regions F1 and F2.
  • the orientation of the region F3 was fixed.
  • UV light with an illuminance of 2 mW / cm 2 was irradiated for 50 seconds (100 mJ / cm 2 ) under air, and then heated on an 80 ° C. hot plate for 1 minute to be immobilized.
  • UV light having an illuminance of 30 mW / cm 2 is irradiated again for 10 seconds at room temperature in a nitrogen atmosphere, and the region F4 different from the region F1, the region F2, and the region F3
  • the reflection type color filter RCF1 was produced by fixing the orientation of the color filter.
  • Region F1 the area F2, the dose for the spectral transform in the area F3, and area F4, respectively 0mJ / cm 2, 100mJ / cm 2, 200mJ / cm 2 and 300 mJ / cm 2, and the reflection at the respective portions centered
  • the wavelengths were 426 nm, 496 nm, 572 nm, and 640 nm.
  • ⁇ Production of reflective color filter (LCF1)> A reflective color filter LCF1 was produced in the same manner except that the coating liquid in the production process of the reflective color filter RCF1 was changed to L1.
  • the reflection center wavelengths in the respective parts of the region F1, the region F2, the region F3, and the region F4 were 426 nm, 496 nm, 572 nm, and 640 nm.
  • RLCF1> A laminated reflective color filter RLCF1 was produced in the same manner except that the substrate in the production process of the reflective color filter LCF1 was changed to the reflective color filter RCF1 produced above.
  • the position of the region F1, the region F2, the region F3, and the region F4 of the RCF1 and the region F1, the region F2, the region F3, and the region F4 of the LCF1 overlap each other. Combined and exposed.
  • the reflection center wavelengths in the respective portions of the region F1, the region F2, the region F3, and the region F4 of the laminate were 426 nm, 496 nm, 572 nm, and 640 nm.
  • ⁇ Lamination with absorption color filter> Spectroscopy by stacking the multilayer reflective color filter RLCF1 and the color filters of the three primary colors red (R), green (G), and blue (B) used for the absorption color filter was measured.
  • the spectrum in the region F1 of the multilayer reflective color filter RLCF1 cuts the short wavelength side of the blue wavelength region
  • the spectrum in the region F2 cuts the long wavelength side of the blue wavelength region and the short wavelength side of the green wavelength region
  • region F3 It was found that the spectrum in Fig. 4 cuts the long wavelength side in the green wavelength region and the short wavelength side in the red wavelength region
  • the spectrum in the region F4 can cut the long wavelength side in the red wavelength region. That is, a stacked color filter having spectral characteristics divided into 6 wavelength regions can be realized by superimposing specific wavelength regions of the stacked reflective color filter RLCF1 and the absorption RGB color filter.
  • a red filter (R), a green filter (G), and a blue filter (B) are formed on the image sensor array by a known method, and further, a microlens and a flattening layer are formed. 3 and FIG. 17, the photo-alignment film and the laminated reflective color filter are formed on the stacked layers, and the above-described regions F1, F2, F3, and F4 and the RGB color filters are shown in FIGS.
  • the optical sensor according to the present invention can be manufactured by forming a known near-infrared cut layer that is formed as shown and further blocks a wavelength range of 650 to 1200 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A color filter for acquiring information of specific wavelength regions, a kit, a color filter manufacturing method and an optical sensor are provided. This laminate color filter comprises at least one absorptive color filter and at least one reflective color filter. The absorptive color filter and the reflective color filter are stacked on top of each other. Defining n as the number of types of wavelength regions of the absorptive color filter, n as the number of types of wavelength regions of the reflective color filter, and p as the number of types of wavelength regions of the laminate color filter, is holds that p > m ≧ 2 and p > n ≧ 2.

Description

積層型カラーフィルター、キット、積層型カラーフィルターの製造方法および光学センサMultilayer color filter, kit, multilayer color filter manufacturing method, and optical sensor
 本発明は、吸収型カラーフィルターと反射型カラーフィルターを有するフィルターを積層した積層型カラーフィルター、キット、積層型カラーフィルターの製造方法および積層型カラーフィルターを有する光学センサに関し、特に、吸収型カラーフィルターの波長領域の種数と反射型カラーフィルターの波長領域の種数の合計を上回る波長領域の種数を有する積層型カラーフィルター、キット、積層型カラーフィルターの製造方法および積層型カラーフィルターを有する光学センサに関する。 The present invention relates to a laminated color filter in which an absorption color filter and a filter having a reflective color filter are laminated, a kit, a method for producing the laminated color filter, and an optical sensor having the laminated color filter, and more particularly to an absorptive color filter. Layered color filter, kit, method for producing layered color filter, and optical having layered color filter having a number of species in the wavelength region that exceeds the total number of species in the wavelength region and the number of species in the reflective color filter It relates to sensors.
 現在、フォトダイオードを利用した光学センサおよび撮像素子が種々利用されている。光学センサおよび撮像素子でカラー画像を得るためには、一般的に、R(Red)、G(Green)、およびB(Blue)の3原色のカラーフィルターが用いられている。なお、カラーフィルターとしては、3原色に限定されるものではない。
 例えば、特許文献1には、色の再現性を高めるために、フォトダイオードのうちのブルーを受光するフォトダイオードの上に形成されるブルーを再現するために用いるカラーフィルターとを備え、レッドを再現するために用いるカラーフィルターあるいはグリーンを再現するために用いるカラーフィルターあるいはブルーを再現するために用いるカラーフィルターのうちの少なくとも1つがレッドフィルタ、グリーンフィルタ、ブルーフィルタ、シアンフィルタ、あるいはイエローフィルタのうちの少なくとも2つを積層して形成される固体撮像装置が記載されている。
 特許文献1では、レッドを再現するために用いるカラーフィルターは、レッドフィルタと第1のイエローフィルタが積層して形成され、グリーンを再現するために用いるカラーフィルターは、第2のイエローフィルタと第1のシアンフィルタが積層して形成され、ブルーを再現するために用いるカラーフィルターは、第2のシアンフィルタとブルーフィルタが積層して形成されることが例示されている。
Currently, various optical sensors and image sensors using photodiodes are used. In order to obtain a color image with an optical sensor and an imaging device, color filters of three primary colors of R (Red), G (Green), and B (Blue) are generally used. The color filter is not limited to the three primary colors.
For example, Patent Document 1 includes a color filter used to reproduce blue formed on a photodiode that receives blue among photodiodes in order to improve color reproducibility, and reproduces red. At least one of a color filter used to reproduce or a color filter used to reproduce green or a color filter used to reproduce blue is a red filter, a green filter, a blue filter, a cyan filter, or a yellow filter. A solid-state imaging device formed by stacking at least two is described.
In Patent Document 1, a color filter used for reproducing red is formed by stacking a red filter and a first yellow filter, and a color filter used for reproducing green is a second yellow filter and a first yellow filter. It is exemplified that the color filter used for reproducing blue is formed by laminating a second cyan filter and a blue filter.
 また、特許文献2には、単独ピクセル青色フィルターB3、緑色フィルターG3および赤色フィルターR3の実例パターンと、2つの減法混色原色相パターンを示す層アレイ(20)および(30)を重ねて青色、緑色および赤色フィルターアレイが記載されている。層アレイ(20)は、各々イエロー色素およびマゼンタ色素を含む2つの層Y3とM3とからなる。層アレイ(30)は、各々シアン色素およびマゼンタ色素を含む2つの層M4およびC5からなる。層Y3はフィルターG3およびR3を形成する領域に制限される。層C5はフィルターG3およびB3を形成する領域に制限される。層M3はフィルターB3を形成する領域に制限されるが、層M4はフィルターR3を形成する領域に制限される。特許文献2には、正確に層の色相、すなわち、スペクトルの吸収および透過プロフィルの制御が可能になるカラーフィルターアレイが記載されている。 Further, Patent Document 2 discloses a blue, green color by superimposing layer patterns (20) and (30) indicating two subtractive color mixture primary hue patterns and an example pattern of a single pixel blue filter B3, a green filter G3, and a red filter R3. And a red filter array is described. The layer array (20) consists of two layers Y3 and M3, each containing a yellow dye and a magenta dye. The layer array (30) consists of two layers M4 and C5, each containing cyan and magenta dyes. Layer Y3 is limited to the region that forms filters G3 and R3. Layer C5 is limited to the area where filters G3 and B3 are formed. The layer M3 is limited to the region where the filter B3 is formed, but the layer M4 is limited to the region where the filter R3 is formed. Patent Document 2 describes a color filter array that enables precise control of layer hue, that is, spectral absorption and transmission profiles.
特開2009-289768号公報JP 2009-289768 A 特許第2664154号公報Japanese Patent No. 2664154
 上述のように、特許文献1では、複数のフィルターを用いて色再現性を向上させており、特許文献2では、複数のフィルターを用いて正確に層の色相を制御することが記載されている。
 しかしながら、上述の例を含む光学センサにおいては、人間の視感度に合わせたRGBの色情報の取得が目的となっており、特定の波長域の情報を取得するものではない。
As described above, in Patent Document 1, color reproducibility is improved using a plurality of filters, and in Patent Document 2, it is described that the hue of a layer is accurately controlled using a plurality of filters. .
However, in the optical sensor including the above-described example, the purpose is to acquire RGB color information in accordance with human visibility, and information in a specific wavelength range is not acquired.
 本発明の目的は、前述の従来技術に基づく問題点を解消し、特定の波長域の情報を取得するための積層型カラーフィルター、キット、積層型カラーフィルターの製造方法および光学センサを提供することにある。 An object of the present invention is to provide a multilayer color filter, a kit, a method for manufacturing a multilayer color filter, and an optical sensor for solving the above-described problems based on the prior art and acquiring information in a specific wavelength range. It is in.
 上述の目的を達成するために、本発明は、少なくとも1つの吸収型カラーフィルターと、少なくとも1つの反射型カラーフィルターとを有し、吸収型カラーフィルターと反射型カラーフィルターは積層されており、吸収型カラーフィルターの波長領域の種数をmとし、反射型カラーフィルターの波長領域の種数をnとし、積層型カラーフィルターの波長領域の種数をpとするとき、p>m≧2、かつp>n≧2であることを特徴とする積層型カラーフィルターを提供するものである。 In order to achieve the above-described object, the present invention has at least one absorption color filter and at least one reflection color filter, and the absorption color filter and the reflection color filter are laminated to absorb each other. P> m ≧ 2, where m is the number of species in the wavelength region of the color filter, n is the number of species in the wavelength region of the reflective color filter, and p is the number of species in the wavelength region of the multilayer color filter. The present invention provides a multilayer color filter, wherein p> n ≧ 2.
 反射型カラーフィルターが円偏光反射特性を有することが好ましい。
 また、右円偏光反射特性を有する反射型カラーフィルターと、左円偏光反射特性を有する反射型カラーフィルターとを少なくとも1層ずつ以上有することが好ましい。
 反射型カラーフィルターは、重合性コレステリック液晶組成物が硬化されたものであることが好ましい。
 重合性コレステリック液晶組成物が、少なくとも1種以上の重合性液晶化合物と、少なくとも1種以上の光反応性キラル剤を含有していることが好ましい。
 光反応性キラル剤が下記一般式(1)~一般式(5)で表されることが好ましい。
It is preferable that the reflective color filter has a circularly polarized light reflection characteristic.
Moreover, it is preferable to have at least one or more layers of a reflective color filter having right circular polarization reflection characteristics and a reflective color filter having left circular polarization reflection characteristics.
The reflective color filter is preferably one obtained by curing a polymerizable cholesteric liquid crystal composition.
The polymerizable cholesteric liquid crystal composition preferably contains at least one polymerizable liquid crystal compound and at least one photoreactive chiral agent.
The photoreactive chiral agent is preferably represented by the following general formulas (1) to (5).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、A11およびA12はそれぞれ独立に-C(=O)-または-C(=O)-Ar11-を表し、Ar11は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R11およびR13はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R12およびR14はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B11およびB12はそれぞれ独立に-C(=O)-(Ar12)n11-または-C(=O)-Ar13-N=X11-Ar14-を表し、X11はNまたはCHを表し、Ar12、Ar13およびAr14はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n11は0~2の整数を表し、n11が2のとき、複数あるAr12は同じでも異なっていてもよく、Z11およびZ12はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z11およびZ12は、重合性基を有してもよく、Z11とR12およびZ12とR14が互いに環を形成してもよく、複数分子のZ11とZ12が共有結合を介してポリマー化していてもよい。 In the formula, A 11 and A 12 each independently represent —C (═O) — or —C (═O) —Ar 11 —, and Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12. B 11 and B 12 each independently represents —C (═O) — (Ar 12 ) n 11 — or —C (═O) —Ar 13 —N═X 11 —Ar 14 —. , X 11 represents N or CH, Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 11 represents an integer of 0 to 2, When n 11 is 2, a plurality of Ar 12 may be the same or different, and Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 11 and Z 12 may have a polymerizable group. Alternatively, Z 11 and R 12 and Z 12 and R 14 may form a ring with each other, and a plurality of molecules of Z 11 and Z 12 may be polymerized via a covalent bond.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、A21およびA22はそれぞれ独立に-C(=O)-または-C(=O)-Ar21-を表し、Ar21は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R21およびR23はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R22およびR24はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B21およびB22はそれぞれ独立に-C(=O)-(Ar22)n21-または-C(=O)-Ar23-N=X21-Ar24-を表し、X21はNまたはCHを表し、Ar22、Ar23およびAr24はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n21は0~2の整数を表し、n21が2のとき、複数あるAr22は同じでも異なっていてもよく、Z21およびZ22はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z21およびZ22は、重合性基を有してもよく、Z21とR22およびZ22とR24が互いに環を形成してもよく、複数分子のZ21とZ22が共有結合を介してポリマー化していてもよい。 In the formula, A 21 and A 22 each independently represent —C (═O) — or —C (═O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12. B 21 and B 22 each independently represents —C (═O) — (Ar 22 ) n 21 — or —C (═O) —Ar 23 —N═X 21 —Ar 24 —. , X 21 represents N or CH, Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 21 represents an integer of 0 to 2, When n 21 is 2, a plurality of Ar 22 may be the same or different, and Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 21 and Z 22 may have a polymerizable group. Alternatively, Z 21 and R 22 and Z 22 and R 24 may form a ring with each other, and a plurality of molecules of Z 21 and Z 22 may be polymerized via a covalent bond.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、A31およびA32はそれぞれ独立に単結合、-O-C(=O)-または-O-C(=O)-Ar31-を表し、Ar31は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R31およびR33はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R32およびR34はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B31およびB32はそれぞれ独立に単結合、-C(=O)-(Ar32)n31-または-C(=O)-Ar33-N=X31-Ar34-を表し、X31はNまたはCHを表し、Ar32、Ar33およびAr34はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n31は0~2の整数を表し、n31が2のとき、複数あるAr32は同じでも異なっていてもよく、Z31およびZ32はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z31およびZ32は、重合性基を有してもよく、Z31とR32およびZ32とR34が互いに環を形成してもよく、複数分子のZ31とZ32が共有結合を介してポリマー化していてもよく、Lは、2価の基を表す。ビナフチル部分は、(R)または(S)のいずれかの軸不斉を有する。 In the formula, A 31 and A 32 each independently represent a single bond, —O—C (═O) — or —O—C (═O) —Ar 31 —, and Ar 31 has a substituent. R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent. Represents an optionally substituted aromatic carbocycle, an optionally substituted aromatic heterocycle, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, wherein R 32 and R 34 are each independently hydrogen It represents an alkyl group of atoms or C 1 ~ C 12, B 31 and B 32 represents a single bond independently, -C (= O) - ( Ar 32) n 31 - , or -C (= O) -Ar 33 - N = X 31 —Ar 34 —, wherein X 31 is N or Represents CH, Ar 32 , Ar 33 and Ar 34 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and n 31 represents Represents an integer of 0 to 2, and when n 31 is 2, a plurality of Ar 32 may be the same or different, Z 31 and Z 32 are each independently a hydrogen atom, a C 1 to C 12 alkyl group, C an alkoxy group having 1 ~ C 12, alkylcarbonyloxy group of C 1 ~ C 12, alkylamino group of C 1 ~ C 12, or an alkyl amide group of C 1 ~ C 12, Z 31 and Z 32 are, It may have a polymerizable group, Z 31 and R 32 and Z 32 and R 34 may form a ring with each other, or a plurality of molecules of Z 31 and Z 32 may be polymerized via a covalent bond Well, L is divalent It represents a group. The binaphthyl moiety has either (R) or (S) axial asymmetry.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、A41およびA42はそれぞれ独立に-C(=O)-または-C(=O)-Ar41-を表し、Ar41は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R41およびR43はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R42およびR44はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B41およびB42はそれぞれ独立に-C(=O)-(Ar42)n41-または-C(=O)-Ar43-N=X41-Ar44-を表し、X41はNまたはCHを表し、Ar42、Ar43およびAr44はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n41は0~2の整数を表し、n41が2のとき、複数あるAr42は同じでも異なっていてもよく、Z41およびZ42はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z41およびZ42は、重合性基を有してもよく、Z41とR42およびZ42とR44が互いに環を形成してもよく、複数分子のZ41とZ42が共有結合を介してポリマー化していてもよく、R45およびR46はC~C30のアルキル基を表し、互いに環を形成してもよい。*は不斉炭素を表す。
Figure JPOXMLDOC01-appb-C000013
In the formula, A 41 and A 42 each independently represent —C (═O) — or —C (═O) —Ar 41 —, and Ar 41 represents an aromatic carbocyclic ring which may have a substituent or Represents an optionally substituted aromatic heterocycle, R 41 and R 43 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 42 and R 44 each independently represents a hydrogen atom or C 1 to C 12. B 41 and B 42 each independently represents —C (═O) — (Ar 42 ) n 41 — or —C (═O) —Ar 43 —N═X 41 —Ar 44 —. , X 41 represents N or CH, Ar 42 Ar 43 and Ar 44 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 41 represents an integer of 0 to 2, When n 41 is 2, a plurality of Ar 42 may be the same or different, and Z 41 and Z 42 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 41 and Z 42 may have a polymerizable group. Well, Z 41 and R 42 and Z 42 and R 44 may form a ring with each other, and multiple molecules of Z 41 and Z 42 may be polymerized via a covalent bond, and R 45 and R 46 are C 1 to C 30 And may form a ring with each other. * Represents an asymmetric carbon.
Figure JPOXMLDOC01-appb-C000013
 式中、P51は重合性基を表し、Sp51は単結合またはC12のアルキレン基を表し、複数ある炭素原子は酸素原子またはカルボニル基で置き換えられてもよく、X51は単結合または酸素原子を表し、Ar51およびAr52はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、L51は単結合または2価の連結基を表し、n51は1~3の整数を表し、n51が2以上の場合、複数あるAr51およびL51は互いに同じでも異なっていてもよく、R52は不斉炭素を含有する側鎖を表す。 Wherein, P 51 represents a polymerizable group, Sp 51 represents an alkylene group of a single bond or C 1 ~ 12, plurality of carbon atoms may be replaced by an oxygen atom or a carbonyl group, X 51 represents a single bond Or an oxygen atom, Ar 51 and Ar 52 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and L 51 represents a single bond Or, it represents a divalent linking group, n 51 represents an integer of 1 to 3, and when n 51 is 2 or more, a plurality of Ar 51 and L 51 may be the same or different from each other, and R 52 is asymmetric. Represents a side chain containing carbon.
 重合性コレステリック液晶組成物が硬化された、右円偏光反射特性を有する反射型カラーフィルターまたは左円偏光反射特性を有する反射型カラーフィルターに接して、光配向膜を有していることが好ましい。
 重合性液晶化合物の屈折率異方性Δnが0.2以上であることが好ましい。
 さらに近赤外領域の一部または全域を遮断する近赤外カット層を有することが好ましい。
It is preferable to have a photo-alignment film in contact with a reflective color filter having a right circular polarization reflection characteristic or a reflection color filter having a left circular polarization reflection characteristic, which is obtained by curing the polymerizable cholesteric liquid crystal composition.
The refractive index anisotropy Δn of the polymerizable liquid crystal compound is preferably 0.2 or more.
Furthermore, it is preferable to have a near-infrared cut layer that blocks part or all of the near-infrared region.
 本発明は、少なくとも1種以上の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物と、少なくとも1種以上の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物からなることを特徴とするキットを提供するものである。
 右捻り特性を有する光反応性キラル剤が下記一般式(1)または一般式(3)で表され、かつ、左捻り特性を有する光反応性キラル剤が下記一般式(2)または一般式(3)で表されることが好ましい。
The present invention relates to a polymerizable liquid crystal composition comprising at least one or more polymerizable liquid crystal compounds, a photoreactive chiral agent having right-handed twist characteristics and a polymerization initiator, at least one or more polymerizable liquid crystal compounds, left-twisted characteristics. A kit comprising a polymerizable liquid crystal composition containing a photoreactive chiral agent having a polymerization initiator and a polymerization initiator is provided.
A photoreactive chiral agent having a right twist property is represented by the following general formula (1) or general formula (3), and a photoreactive chiral agent having a left twist property is represented by the following general formula (2) or general formula ( It is preferable that it is represented by 3).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式中、A11およびA12はそれぞれ独立に-C(=O)-または-C(=O)-Ar11-を表し、Ar11は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R11およびR13はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R12およびR14はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B11およびB12はそれぞれ独立に-C(=O)-(Ar12)n11-または-C(=O)-Ar13-N=X11-Ar14-を表し、X11はNまたはCHを表し、Ar12、Ar13およびAr14はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n11は0~2の整数を表し、n11が2のとき、複数あるAr12は同じでも異なっていてもよく、Z11およびZ12はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z11およびZ12は、重合性基を有してもよく、Z11とR12およびZ12とR14が互いに環を形成してもよく、複数分子のZ11とZ12が共有結合を介してポリマー化していてもよい。 In the formula, A 11 and A 12 each independently represent —C (═O) — or —C (═O) —Ar 11 —, and Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12. B 11 and B 12 each independently represents —C (═O) — (Ar 12 ) n 11 — or —C (═O) —Ar 13 —N═X 11 —Ar 14 —. , X 11 represents N or CH, Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 11 represents an integer of 0 to 2, When n 11 is 2, a plurality of Ar 12 may be the same or different, and Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 11 and Z 12 may have a polymerizable group. Alternatively, Z 11 and R 12 and Z 12 and R 14 may form a ring with each other, and a plurality of molecules of Z 11 and Z 12 may be polymerized via a covalent bond.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、A21およびA22はそれぞれ独立に-C(=O)-または-C(=O)-Ar21-を表し、Ar21は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R21およびR23はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R22およびR24はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B21およびB22はそれぞれ独立に-C(=O)-(Ar22)n21-または-C(=O)-Ar23-N=X21-Ar24-を表し、X21はNまたはCHを表し、Ar22、Ar23およびAr24はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n21は0~2の整数を表し、n21が2のとき、複数あるAr22は同じでも異なっていてもよく、Z21およびZ22はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z21およびZ22は、重合性基を有してもよく、Z21とR22およびZ22とR24が互いに環を形成してもよく、複数分子のZ21とZ22が共有結合を介してポリマー化していてもよい。 In the formula, A 21 and A 22 each independently represent —C (═O) — or —C (═O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12. B 21 and B 22 each independently represents —C (═O) — (Ar 22 ) n 21 — or —C (═O) —Ar 23 —N═X 21 —Ar 24 —. , X 21 represents N or CH, Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 21 represents an integer of 0 to 2, When n 21 is 2, a plurality of Ar 22 may be the same or different, and Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 21 and Z 22 may have a polymerizable group. Alternatively, Z 21 and R 22 and Z 22 and R 24 may form a ring with each other, and a plurality of molecules of Z 21 and Z 22 may be polymerized via a covalent bond.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、A31およびA32はそれぞれ独立に単結合、-O-C(=O)-または-O-C(=O)-Ar31-を表し、Ar31は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R31およびR33はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R32およびR34はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B31およびB32はそれぞれ独立に単結合、-C(=O)-(Ar32)n31-または-C(=O)-Ar33-N=X31-Ar34-を表し、X31はNまたはCHを表し、Ar32、Ar33およびAr34はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n31は0~2の整数を表し、n31が2のとき、複数あるAr32は同じでも異なっていてもよく、Z31およびZ32はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z31およびZ32は、重合性基を有してもよく、Z31とR32およびZ32とR34が互いに環を形成してもよく、複数分子のZ31とZ32が共有結合を介してポリマー化していてもよく、Lは、2価の基を表す。ビナフチル部分は、(R)または(S)のいずれかの軸不斉を有する。 In the formula, A 31 and A 32 each independently represent a single bond, —O—C (═O) — or —O—C (═O) —Ar 31 —, and Ar 31 has a substituent. R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent. Represents an optionally substituted aromatic carbocycle, an optionally substituted aromatic heterocycle, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, wherein R 32 and R 34 are each independently hydrogen It represents an alkyl group of atoms or C 1 ~ C 12, B 31 and B 32 represents a single bond independently, -C (= O) - ( Ar 32) n 31 - , or -C (= O) -Ar 33 - N = X 31 —Ar 34 —, wherein X 31 is N or Represents CH, Ar 32 , Ar 33 and Ar 34 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and n 31 represents Represents an integer of 0 to 2, and when n 31 is 2, a plurality of Ar 32 may be the same or different, Z 31 and Z 32 are each independently a hydrogen atom, a C 1 to C 12 alkyl group, C an alkoxy group having 1 ~ C 12, alkylcarbonyloxy group of C 1 ~ C 12, alkylamino group of C 1 ~ C 12, or an alkyl amide group of C 1 ~ C 12, Z 31 and Z 32 are, It may have a polymerizable group, Z 31 and R 32 and Z 32 and R 34 may form a ring with each other, or a plurality of molecules of Z 31 and Z 32 may be polymerized via a covalent bond Well, L is divalent It represents a group. The binaphthyl moiety has either (R) or (S) axial asymmetry.
 また、本発明は、少なくとも1つの吸収型カラーフィルターと、少なくとも1つの反射型カラーフィルターとを有し、吸収型カラーフィルターと反射型カラーフィルターが積層された積層型カラーフィルターの製造方法であって、反射型カラーフィルターが、露光によって分光特性が異なる領域をパターニングすることで形成されることを特徴とする積層型カラーフィルターの製造方法を提供するものである。 The present invention is also a method for producing a laminated color filter having at least one absorption color filter and at least one reflection color filter, wherein the absorption color filter and the reflection color filter are laminated. The present invention provides a method for producing a laminated color filter, wherein the reflective color filter is formed by patterning regions having different spectral characteristics by exposure.
 反射型カラーフィルター形成工程が、面内に複数の波長領域を有する右円偏反射層を形成する右円偏光反射層形成工程、および、面内に複数の波長領域を有する左円偏反射層を形成する左円偏光反射層形成工程からなることが好ましい。
 右円偏光反射層形成工程が、少なくとも1種の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、配向工程でコレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で一部の配向状態を変換した重合性液晶組成物の全面に露光処理を行うことで、重合性液晶組成物の配向状態を固定化する固定化工程を含み、左円偏光反射層形成工程が、少なくとも1種の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、配向工程でコレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で一部の配向状態を変換した重合性液晶組成物の全面に露光処理を行うことで、コレステリック配向状態を固定化する固定化工程を含むことが好ましい。
The reflective color filter forming step includes a right circularly polarized reflective layer forming step for forming a right circularly polarized reflective layer having a plurality of wavelength regions in the surface, and a left circularly polarized reflective layer having a plurality of wavelength regions in the surface. It is preferable to comprise a left circularly polarized light reflecting layer forming step to be formed.
The right circularly polarized light reflecting layer forming step was applied in a coating step and a coating step in which a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having a right twist characteristic and a polymerization initiator was applied. An alignment process in which the polymerizable liquid crystal composition is heated to form a cholesteric alignment state, and a part of the polymerizable liquid crystal composition that has been converted into a cholesteric alignment state in the alignment process is subjected to an exposure treatment, whereby the reflection wavelength region of the exposed portion And a fixing step for fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure treatment on the entire surface of the polymerizable liquid crystal composition whose partial alignment state has been converted in the conversion step. A step of forming a left circularly polarized light reflecting layer, the step of applying a polymerizable liquid crystal composition comprising at least one polymerizable liquid crystal compound, a photoreactive chiral agent having left-twisting properties, and a polymerization initiator; The polymerizable liquid crystal composition applied in the cloth process was heated to be an cholesteric alignment state, and an exposure process was performed on a part of the polymerizable liquid crystal composition that was converted into a cholesteric alignment state in the alignment process. A conversion step for converting the partial reflection wavelength region, and an immobilization step for fixing the cholesteric alignment state by performing an exposure process on the entire surface of the polymerizable liquid crystal composition in which a part of the alignment state is converted in the conversion step. It is preferable to include.
 また、右円偏光反射層形成工程が、少なくとも1種の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、コレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分のコレステリック配向状態を固定化する第1固定化工程、第1固定化工程における未露光部分に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で配向状態を変換した重合性液晶組成物に露光処理を行うことで、重合性液晶組成物の配向状態を固定化する第2固定化工程を含み、左円偏光反射層形成工程が、少なくとも1種の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、コレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分のコレステリック配向状態を固定化する第1固定化工程、第1固定化工程における未露光部分に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で配向状態を変換した重合性液晶組成物に露光処理を行うことで、重合性液晶組成物の配向状態を固定化する第2固定化工程を含むことが好ましい。
 また、右円偏光反射層形成工程または左円偏光反射層形成工程の前に、光配向膜を塗布する配向層塗布工程、および、塗布して形成された光配向膜に対し、偏光で露光して配向規制力を与える配向規制工程を含むことが好ましい。
Further, the right circularly polarized light reflecting layer forming step is a coating step and a coating step in which a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-twisting characteristics, and a polymerization initiator is applied. By heating the applied polymerizable liquid crystal composition to an alignment step for making a cholesteric alignment state, a part of the polymerizable liquid crystal composition having a cholesteric alignment state is subjected to an exposure treatment, thereby changing the cholesteric alignment state of the exposed portion. The first fixing process to be fixed, the conversion process for converting the reflection wavelength region of the exposed part by performing an exposure process on the unexposed part in the first fixing process, and the orientation state was converted in the conversion process Including a second fixing step of fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure treatment on the polymerizable liquid crystal composition, wherein the left circularly polarized light reflecting layer forming step includes at least one kind A coating process for applying a polymerizable liquid crystal composition comprising a compatible liquid crystal compound, a photoreactive chiral agent having left-handed twisting properties and a polymerization initiator, and heating the polymerizable liquid crystal composition applied in the coating process to produce a cholesteric alignment state In the first fixing step and the first fixing step, the cholesteric alignment state in the exposed portion is fixed by performing an exposure process on a part of the polymerizable liquid crystal composition in the cholesteric alignment state. By performing an exposure process on the unexposed part, the conversion process of converting the reflection wavelength region of the exposed part, and the polymerizable liquid crystal composition whose orientation state has been converted in the conversion process is subjected to an exposure process. It is preferable to include a second fixing step for fixing the alignment state of the liquid crystal composition.
In addition, before the right circularly polarized light reflecting layer forming step or the left circularly polarized light reflective layer forming step, the alignment layer applying step for applying the photo-alignment film, and the photo-alignment film formed by coating are exposed with polarized light. It is preferable to include an orientation regulating step for providing an orientation regulating force.
 また、本発明の積層型カラーフィルターを有することを特徴とする光学センサを提供するものである。 The present invention also provides an optical sensor having the multilayer color filter of the present invention.
 本発明によれば、特定の波長域の情報を取得することができる。 According to the present invention, information in a specific wavelength range can be acquired.
本発明の実施形態の積層型カラーフィルターを有する光学センサを示す模式的断面図である。It is a typical sectional view showing an optical sensor which has a lamination type color filter of an embodiment of the present invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターを示す模式図である。It is a schematic diagram which shows the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの吸収型カラーフィルターを示す模式図である。It is a schematic diagram which shows the absorption type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターを示す模式図である。It is a schematic diagram which shows the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの吸収型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the absorption type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの製造方法を示す模式的斜視図である。It is a typical perspective view which shows the manufacturing method of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターを示す模式図である。It is a schematic diagram which shows the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターを示す模式図である。It is a schematic diagram which shows the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターを示す模式図である。It is a schematic diagram which shows the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターを示す模式図である。It is a schematic diagram which shows the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターを有する光学センサの他の構成を示す模式的断面図である。It is a typical sectional view showing other composition of an optical sensor which has a lamination type color filter of an embodiment of the present invention. 本発明の実施形態の積層型カラーフィルターの吸収型カラーフィルターの他の構成を示す模式図である。It is a schematic diagram which shows the other structure of the absorption type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの他の構成を示す模式図である。It is a schematic diagram which shows the other structure of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの吸収型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the absorption type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターを示す模式図である。It is a schematic diagram which shows the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the laminated color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターを示す模式図である。It is a schematic diagram which shows the reflection type color filter of the lamination type color filter of embodiment of this invention. 本発明の実施形態の積層型カラーフィルターの第3のフィルターを示す模式図である。It is a schematic diagram which shows the 3rd filter of the lamination type color filter of embodiment of this invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の積層型カラーフィルター、キット、積層型カラーフィルターの製造方法および光学センサを詳細に説明する。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 また、角度等は、特に記載がなければ一般的に許容される誤差範囲を含むものとする。
Hereinafter, a multilayer color filter, a kit, a method for producing a multilayer color filter, and an optical sensor of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
Further, the angle or the like includes a generally allowable error range unless otherwise specified.
 図1は、本発明の実施形態の積層型カラーフィルターを有する光学センサを示す模式的断面図である。図2は本発明の実施形態の積層型カラーフィルターの反射型カラーフィルターを示す模式図であり、図3は本発明の実施形態の積層型カラーフィルターの吸収型カラーフィルターを示す模式図であり、図4は本発明の実施形態の積層型カラーフィルターを示す模式図である。 FIG. 1 is a schematic cross-sectional view showing an optical sensor having a laminated color filter according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a reflective color filter of a multilayer color filter according to an embodiment of the present invention, and FIG. 3 is a schematic diagram showing an absorption color filter of the multilayer color filter according to an embodiment of the present invention. FIG. 4 is a schematic view showing a laminated color filter according to an embodiment of the present invention.
 図1に示す光学センサ10は、センサ部12と、積層型カラーフィルター14を有する。
 センサ部12は、基板20と、配線層22と、フォトダイオード24とを有する。
 センサ部12は、一般的に、フォトダイオード24を備えるCCD(Charge Coupled Device)またはCMOS(complementary metal oxide semiconductor)と呼ばれるものである。光学センサ10では、積層型カラーフィルター14に応じた画像を取得することができ、例えば、赤、青および緑の3原色で表されるカラー画像を得ることができる。なお、カラー画像とは、複数の色で表されるものであれば、上述の3原色で表されるものに限定されるものではない。
The optical sensor 10 illustrated in FIG. 1 includes a sensor unit 12 and a stacked color filter 14.
The sensor unit 12 includes a substrate 20, a wiring layer 22, and a photodiode 24.
The sensor unit 12 is generally called a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) including a photodiode 24. In the optical sensor 10, an image corresponding to the stacked color filter 14 can be acquired. For example, a color image represented by three primary colors of red, blue, and green can be obtained. The color image is not limited to the one represented by the above three primary colors as long as it is represented by a plurality of colors.
 センサ部12では、基板20に、例えば、シリコン基板が用いられる。
 配線層22は、センサ部12を外部と電気的に接続するものであり、導電性材料で構成された配線(図示せず)を有する。配線層22で、フォトダイオード24で得られた信号電荷が外部に出力される。フォトダイオード24で得られる信号電荷を増幅する読出し回路(図示せず)を有する構成でもよい。
In the sensor unit 12, for example, a silicon substrate is used as the substrate 20.
The wiring layer 22 is for electrically connecting the sensor unit 12 to the outside, and has a wiring (not shown) made of a conductive material. In the wiring layer 22, the signal charge obtained by the photodiode 24 is output to the outside. A configuration having a readout circuit (not shown) for amplifying the signal charge obtained by the photodiode 24 may be used.
 フォトダイオード24は、光を検出するものであり、受光素子として機能する。光の検出には、例えば、光電変換が利用される。複数のフォトダイオード24が、2次元的に配置されており、特定の数のフォトダイオード24で1つの画素を構成する。フォトダイオード24は、例えば、シリコンまたはゲルマニウムで構成される。
 フォトダイオード24は、光を検出することができれば、特に限定されるものではなく、PN接合型、PIN接合型、ショットキー型、またはアバランシェ型を用いることができる。
The photodiode 24 detects light and functions as a light receiving element. For light detection, for example, photoelectric conversion is used. A plurality of photodiodes 24 are two-dimensionally arranged, and a specific number of photodiodes 24 constitute one pixel. The photodiode 24 is made of, for example, silicon or germanium.
The photodiode 24 is not particularly limited as long as it can detect light, and a PN junction type, a PIN junction type, a Schottky type, or an avalanche type can be used.
 フォトダイオード24上には、絶縁膜25が形成されており、絶縁膜25には、隣接するフォトダイオード24との間に遮光膜26が形成されている。
 絶縁膜25は、例えば、BPSG(Boron Phosphorus Silicon Glass)で構成されるが、これに限定されるものではない。遮光膜26は、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)、モリブデン(Mo)およびニッケル(Ni)等の金属で構成されるが、これに限定されるものではない。
An insulating film 25 is formed on the photodiode 24, and a light shielding film 26 is formed on the insulating film 25 between the adjacent photodiodes 24.
The insulating film 25 is made of, for example, BPSG (Boron Phosphorus Silicon Glass), but is not limited thereto. The light shielding film 26 is made of metal such as tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo), and nickel (Ni), but is not limited thereto. It is not a thing.
 積層型カラーフィルター14は、少なくとも1つの吸収型カラーフィルター30と、少なくとも1つの反射型カラーフィルター32を有する。吸収型カラーフィルター30と反射型カラーフィルター32は積層されている。吸収型カラーフィルター30の波長領域の種数をmとし、反射型カラーフィルター32の波長領域の種数をnとし、積層型カラーフィルター14の波長領域の種数をpとするとき、p>m≧2、かつp>n≧2である。
 積層型カラーフィルター14においては、吸収型カラーフィルター30は2種以上の波長領域を有し、各波長領域は後述するように分光特性が異なる。反射型カラーフィルター32は2種以上の波長領域を有し、各波長領域は後述するように分光特性が異なる。
 吸収型カラーフィルター30は絶縁膜25上に設けられており、波長領域はフォトダイオード24上に配置される。
 吸収型カラーフィルター30には、複数のマイクロレンズ28が設けられている。複数のマイクロレンズ28上に平坦化層29が設けられている。平坦化層29上に反射型カラーフィルター32が設けられている。
The multilayer color filter 14 includes at least one absorption color filter 30 and at least one reflection color filter 32. The absorption color filter 30 and the reflection color filter 32 are laminated. When the number of species in the wavelength region of the absorption color filter 30 is m, the number of species in the wavelength region of the reflective color filter 32 is n, and the number of species in the wavelength region of the multilayer color filter 14 is p, p> m ≧ 2 and p> n ≧ 2.
In the laminated color filter 14, the absorption color filter 30 has two or more wavelength regions, and each wavelength region has different spectral characteristics as described later. The reflective color filter 32 has two or more wavelength regions, and each wavelength region has different spectral characteristics as will be described later.
The absorption color filter 30 is provided on the insulating film 25, and the wavelength region is disposed on the photodiode 24.
The absorption color filter 30 is provided with a plurality of microlenses 28. A planarizing layer 29 is provided on the plurality of microlenses 28. A reflective color filter 32 is provided on the planarizing layer 29.
 積層型カラーフィルター14は、さらに近赤外領域の一部または全域を遮断する近赤外カット層(図示せず)を有することが好ましい。近赤外カット層の配置位置は、積層型カラーフィルター14の上でも下でもよい。
 なお、近赤外領域とは、波長650~1200nmの波長領域のことである。近赤外カット層は、上述の近赤外領域の光を遮断できる公知のものを適宜利用することができる。
 積層型カラーフィルター14は近赤外カット層を有することで、光学センサ10では近赤外線を除去した状態で測光することができ、これにより、測光時のノイズを減らすことができる。
The multilayer color filter 14 preferably further has a near-infrared cut layer (not shown) that blocks part or the whole of the near-infrared region. The arrangement position of the near infrared cut layer may be above or below the laminated color filter 14.
The near-infrared region is a wavelength region having a wavelength of 650 to 1200 nm. As the near-infrared cut layer, a known layer that can block light in the above-described near-infrared region can be appropriately used.
Since the multilayer color filter 14 has a near infrared cut layer, the optical sensor 10 can perform photometry with the near infrared light removed, thereby reducing noise during photometry.
 マイクロレンズ28は、中心が縁よりも厚く形成された凸型レンズであり、フォトダイオード24に光を集光させるものである。複数のマイクロレンズ28は、全て同一形状であり、フォトダイオード24毎にマイクロレンズ28が設けられている。マイクロレンズ28は、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂等の樹脂系材料で形成されるが、これらに限定されるものではない。
 平坦化層29は、凸型レンズであるマイクロレンズ28上を平坦化するものであり、例えば、アクリル系樹脂材料、スチレン系樹脂材料、またはエポキシ系樹脂材料等で構成される。
The microlens 28 is a convex lens whose center is thicker than the edge, and collects light on the photodiode 24. The plurality of microlenses 28 have the same shape, and a microlens 28 is provided for each photodiode 24. For example, the microlens 28 is formed of a resin material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin, but is not limited thereto.
The planarization layer 29 planarizes the microlens 28 that is a convex lens, and is made of, for example, an acrylic resin material, a styrene resin material, or an epoxy resin material.
 吸収型カラーフィルター30としては、従来のRGBのカラーフィルターを用いることができる。その製造は公知の方法を用いることが可能であり、新たな製造プロセスを立ち上げる必要がないという点でも有用である。また、RGB以外の分光特性を有するカラーフィルターを用いてもよく、シアン、マゼンタおよびイエロー領域に透過光スペクトルを有する補色型(YMC)カラーフィルター、および可視光をカットして近赤外光を透過する可視光カットフィルターも含まれる。可視光とは、波長380nm~780nm程度の光のことである。 As the absorption color filter 30, a conventional RGB color filter can be used. The production can be performed using a known method, and is also useful in that it is not necessary to start a new production process. In addition, color filters with spectral characteristics other than RGB may be used, complementary color (YMC) color filters having transmitted light spectra in the cyan, magenta and yellow regions, and near-infrared light transmitted by cutting visible light. A visible light cut filter is also included. Visible light is light having a wavelength of about 380 nm to 780 nm.
 反射型カラーフィルター32は、円偏光反射特性を有するコレステリック液晶相が固定されたコレステリック液晶層であることが好ましい。すなわち、反射型カラーフィルター32は円偏光反射特性を有することが好ましい。コレステリック液晶層は、左右いずれかの円偏光を反射する性質を有する。 The reflective color filter 32 is preferably a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase having circular polarization reflection characteristics is fixed. That is, the reflective color filter 32 preferably has a circularly polarized light reflection characteristic. The cholesteric liquid crystal layer has a property of reflecting either left or right circularly polarized light.
 コレステリック液晶層は、上述のように、コレステリック液晶相を固定して得ることができる。
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。
 なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物は、液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
The cholesteric liquid crystal layer can be obtained by fixing the cholesteric liquid crystal phase as described above.
The structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. Thus, any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation is not changed by an external field or an external force.
In the structure in which the cholesteric liquid crystal phase is fixed, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may not exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
 コレステリック液晶相を固定してなるコレステリック液晶層の形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 コレステリック液晶層の形成に用いる液晶化合物を含む液晶組成物は、さらに界面活性剤を含むのが好ましい。また、コレステリック液晶層の形成に用いる液晶組成物は、さらにキラル剤、重合開始剤を含んでいてもよい。
As an example of a material used for forming a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase, a liquid crystal composition containing a liquid crystal compound can be given. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
The liquid crystal composition containing the liquid crystal compound used for forming the cholesteric liquid crystal layer preferably further contains a surfactant. The liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a chiral agent and a polymerization initiator.
 特に、右円偏光反射特性を有する液相組成物は、重合性液晶化合物、右捩れを誘起するキラル剤あるいはさらに重合開示剤を含む重合性コレステリック液晶組成物であるのが好ましい。また、左円偏光反射特性を有する液相組成物は、重合性液晶化合物、左捩れを誘起するキラル剤あるいはさらに重合開示剤を含む重合性コレステリック液晶組成物であるのが好ましい。
 重合性コレステリック液晶組成物は、屈折率異方性Δnが0.2以上である重合性液晶化合物を、1種以上含むことが好ましい。
In particular, the liquid phase composition having right circularly polarized light reflection property is preferably a polymerizable cholesteric liquid crystal composition containing a polymerizable liquid crystal compound, a chiral agent that induces right twist, or a polymerization disclosure agent. The liquid phase composition having left circularly polarized light reflection property is preferably a polymerizable cholesteric liquid crystal composition containing a polymerizable liquid crystal compound, a chiral agent that induces left twist, or a polymerization disclosure agent.
The polymerizable cholesteric liquid crystal composition preferably contains one or more polymerizable liquid crystal compounds having a refractive index anisotropy Δn of 0.2 or more.
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であるのが好ましい。
 コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
--Polymerizable liquid crystal compound--
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報等に記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。 The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, and JP-A-7-110469. 11-80081 and JP-A 2001-328773, and the like. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
 重合性液晶化合物の具体例としては、下記式(1)~(14)に示す化合物が挙げられる。なお、下記式(11)において、X1は2~5(整数)である。 Specific examples of the polymerizable liquid crystal compound include compounds represented by the following formulas (1) to (14). In the following formula (11), X 1 is 2 to 5 (integer).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 また、上述したように、広い帯域幅Δλおよび高い反射率を得るためには、高いΔnを示す液晶化合物を用いることが好ましい。具体的には、液晶化合物の30℃におけるΔnは0.25以上が好ましく、0.3以上がより好ましく、0.35以上が更に好ましい。上限は特に制限されないが、0.6以下の場合が多い。
 屈折率異方性Δnの測定方法としては、液晶便覧(液晶便覧編集委員会編、丸善株式会社刊)202頁に記載の楔形液晶セルを用いた方法が一般的であり、結晶化しやすい化合物の場合は、他の液晶との混合物による評価を行い、その外挿値から見積もることもできる。
Further, as described above, in order to obtain a wide bandwidth Δλ and a high reflectance, it is preferable to use a liquid crystal compound exhibiting a high Δn. Specifically, Δn at 30 ° C. of the liquid crystal compound is preferably 0.25 or more, more preferably 0.3 or more, and further preferably 0.35 or more. The upper limit is not particularly limited, but is often 0.6 or less.
As a method for measuring the refractive index anisotropy Δn, a method using a wedge-shaped liquid crystal cell described in page 202 of a liquid crystal handbook (edited by the Liquid Crystal Handbook Editorial Committee, published by Maruzen Co., Ltd.) is generally used. In this case, the evaluation can be performed by using a mixture with another liquid crystal and estimated from the extrapolated value.
 高いΔnを示す液晶化合物としては、例えば、米国特許6514578号公報、特許3999400号公報、特許4117832号公報、特許4517416号公報、特許4836335号公報、特許5411770号公報、特許5411771号公報、特許5510321号公報、特許5705465号公報、特許5721484号公報、および、特許5723641号公報等に記載の化合物が挙げられる。 Examples of the liquid crystal compound exhibiting a high Δn include, for example, US Pat. Examples thereof include compounds described in Japanese Patent Publication No. 5705465, Japanese Patent No. 5721484, and Japanese Patent No. 5723641.
 重合性基を有する液晶化合物の他の好適態様としては、一般式(6)で表される化合物が挙げられる。 Another preferred embodiment of the liquid crystal compound having a polymerizable group is a compound represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 A1~A4は、それぞれ独立に、置換基を有していてもよい芳香族炭素環または複素環を表す。芳香族炭素環としては、ベンゼン環およびナフタレン環が挙げられる。複素環としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、および、トリアジン環が挙げられる。なかでも、A1~A4は、芳香族炭素環であることが好ましく、ベンゼン環であることがより好ましい。
 芳香族炭素環または複素環に置換してもよい置換基の種類は特に制限されず、例えば、ハロゲン原子、シアノ基、ニトロ基、アルキル基、ハロゲン置換アルキル基、アルコキシ基、アルキルチオ基、アシルオキシ基、アルコキシカルボニル基、カルバモイル基、アルキル置換カルバモイル基、および、炭素数が2~6のアシルアミノ基が挙げられる。
A 1 to A 4 each independently represents an aromatic carbocyclic ring or heterocyclic ring which may have a substituent. Examples of the aromatic carbocycle include a benzene ring and a naphthalene ring. As the heterocyclic ring, furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, Pyrazolidine ring, triazole ring, furazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring, and triazine ring Can be mentioned. Among these, A1 to A4 are preferably aromatic carbocycles, and more preferably benzene rings.
The type of substituent that may be substituted on the aromatic carbocycle or heterocyclic ring is not particularly limited, and examples thereof include a halogen atom, a cyano group, a nitro group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, and an acyloxy group. , An alkoxycarbonyl group, a carbamoyl group, an alkyl-substituted carbamoyl group, and an acylamino group having 2 to 6 carbon atoms.
 X1およびX2は、それぞれ独立に、単結合、-COO-、-OCO-、-CONH-、-NHCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-または-C≡C-を表す。なかでも、単結合、-COO-、-CONH-、-NHCO-または、-C≡C-が好ましい。
 Y1およびY2は、それぞれ独立に、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、または、-C≡C-を表す。なかでも、-O-が好ましい。
 Sp1およびSp2は、それぞれ独立に、単結合、または、炭素数1~25の炭素鎖を表す。炭素鎖は、直鎖状、分岐鎖状、および、環状のいずれもよい。炭素鎖としては、いわゆるアルキル基が好ましい。なかでも、炭素数1~10のアルキル基がより好ましい。
X 1 and X 2 are each independently a single bond, —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH = CH-, -CH = CH-COO-, -OCO-CH = CH- or -C≡C-. Of these, a single bond, —COO—, —CONH—, —NHCO— or —C≡C— is preferable.
Y 1 and Y 2 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO—, —CONH—, —NHCO—, —CH═CH—, —CH = CH-COO-, -OCO-CH = CH-, or -C≡C-. Of these, —O— is preferable.
Sp 1 and Sp 2 each independently represents a single bond or a carbon chain having 1 to 25 carbon atoms. The carbon chain may be linear, branched, or cyclic. As the carbon chain, a so-called alkyl group is preferable. Of these, an alkyl group having 1 to 10 carbon atoms is more preferable.
 PおよびPは、それぞれ独立に、水素原子または重合性基を表し、PおよびPの少なくとも一方は重合性基を表す。重合性基としては、上述した重合性基を有する液晶化合物が有している重合性基が例示される。
 nおよびnはそれぞれ独立に0~2の整数を表し、nまたはnが2の場合、複数あるA、A、XおよびXは同じでもあっても異なっていてもよい。
P 1 and P 2 each independently represent a hydrogen atom or a polymerizable group, and at least one of P 1 and P 2 represents a polymerizable group. As a polymeric group, the polymeric group which the liquid crystal compound which has a polymeric group mentioned above has is illustrated.
n 1 and n 2 each independently represents an integer of 0 to 2, and when n 1 or n 2 is 2, a plurality of A 1 , A 2 , X 1 and X 2 may be the same or different Good.
 一般式(6)で表される化合物の具体例としては、下記式(2-1)~(2-30)に示す化合物が挙げられる。 Specific examples of the compound represented by the general formula (6) include compounds represented by the following formulas (2-1) to (2-30).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 また、上述以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。 Further, as polymerizable liquid crystal compounds other than those described above, cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used. Further, the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain A liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%であるのが好ましく、80~99質量%であるのがより好ましく、85~90質量%であるのがさらに好ましい。 The addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
 露光によって反射波長の分光特性を変換させる技術は、富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。この技術は、光によって異性化する部位を有するキラル剤を用いることを特徴としており、露光によってその反射波長を変換させることができる。本発明においても、この技術を応用することで、簡便に複数の分光特性を有する反射型カラーフィルターを形成することができる。 The technology for converting the spectral characteristics of the reflected wavelength by exposure is disclosed in Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63. This technique is characterized by using a chiral agent having a site that is isomerized by light, and its reflection wavelength can be converted by exposure. Also in the present invention, by applying this technique, a reflective color filter having a plurality of spectral characteristics can be easily formed.
--キラル剤(光学活性化合物)--
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 すなわち、右円偏光反射特性を有する際には、右捩れを誘起するキラル剤を用い、左円偏光反射特性を有する際には、左捩れを誘起するキラル剤を用いればよい。
--Chiral agent (optically active compound)-
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
That is, a chiral agent that induces right-handed twist is used when it has right-circularly polarized light reflection characteristics, and a chiral agent that induces left-handed twist is used when it has left-handed circularly polarized light reflection characteristics.
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。また、キラル剤は、液晶化合物であってもよい。
The chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, Chapter 3-4, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142), 1989), isosorbide and isomannide derivatives can be used.
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this embodiment, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred. The chiral agent may be a liquid crystal compound.
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線等のフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。
 光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179633号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-302487号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-306490号公報、特開2003-306491号公報、特開2003-313187号公報、特開2003-313188号公報、特開2003-313189号公報、特開2003-313292号公報および特開2000-147236号公報に記載の化合物を用いることができる。
When the chiral agent has a photoisomerization group, it is preferable because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by irradiation with a photomask such as actinic rays after coating and orientation.
As the photoisomerization group, an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group is preferable. Specific examples of the compound include JP 2002-80478, JP 2002-80851, JP 2002-179633, JP 2002-179668, JP 2002-179669, and JP 2002-2002. No. 179670, JP-A No. 2002-179681, JP-A No. 2002-179682, JP-A No. 2002-302487, JP-A No. 2002-338575, JP-A No. 2002-338668, JP-A No. 2003-306490 JP, 2003-306491, JP 2003-313187, JP 2003-313188, JP 2003-313189, JP 2003-313292, and JP 2000-147236. The described compounds can be used
 具体的には、光反応性キラル剤は、下記一般式(1)~一般式(5)で表される化合物を用いることができる。 Specifically, as the photoreactive chiral agent, compounds represented by the following general formulas (1) to (5) can be used.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式中、A11およびA12はそれぞれ独立に-C(=O)-または-C(=O)-Ar11-を表し、Ar11は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R11およびR13はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R12およびR14はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B11およびB12はそれぞれ独立に-C(=O)-(Ar12)n11-または-C(=O)-Ar13-N=X11-Ar14-を表し、X11はNまたはCHを表し、Ar12、Ar13およびAr14はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n11は0~2の整数を表し、n11が2のとき、複数あるAr12は同じでも異なっていてもよく、Z11およびZ12はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z11およびZ12は、重合性基を有してもよく、Z11とR12およびZ12とR14が互いに環を形成してもよく、複数分子のZ11とZ12が共有結合を介してポリマー化していてもよい。
 一般式(1)で表される化合物は、より具体的には、特開2002-080851号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-306490号公報、特開2003-306491号公報、特開2003-313187号公報、特開2003-313189号公報、特開2003-313292号公報に記載されている。
In the formula, A 11 and A 12 each independently represent —C (═O) — or —C (═O) —Ar 11 —, and Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12. B 11 and B 12 each independently represents —C (═O) — (Ar 12 ) n 11 — or —C (═O) —Ar 13 —N═X 11 —Ar 14 —. , X 11 represents N or CH, Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 11 represents an integer of 0 to 2, When n 11 is 2, a plurality of Ar 12 may be the same or different, and Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 11 and Z 12 may have a polymerizable group. Alternatively, Z 11 and R 12 and Z 12 and R 14 may form a ring with each other, and a plurality of molecules of Z 11 and Z 12 may be polymerized via a covalent bond.
More specifically, the compound represented by the general formula (1) includes, for example, JP-A-2002-080851, JP-A-2002-179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-306490, JP-A-2003-306491, JP-A-2003-313187, JP-A-2003-313189, JP-A-2003-313292 ing.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式中、A21およびA22はそれぞれ独立に-C(=O)-または-C(=O)-Ar21-を表し、Ar21は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R21およびR23はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R22およびR24はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B21およびB22はそれぞれ独立に-C(=O)-(Ar22)n21-または-C(=O)-Ar23-N=X21-Ar24-を表し、X21はNまたはCHを表し、Ar22、Ar23およびAr24はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n21は0~2の整数を表し、n21が2のとき、複数あるAr22は同じでも異なっていてもよく、Z21およびZ22はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z21およびZ22は、重合性基を有してもよく、Z21とR22およびZ22とR24が互いに環を形成してもよく、複数分子のZ21とZ22が共有結合を介してポリマー化していてもよい。
 一般式(2)で表される化合物は、より具体的には、特開2002-080478号公報、特開2003-313188号公報に記載されている。
In the formula, A 21 and A 22 each independently represent —C (═O) — or —C (═O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12. B 21 and B 22 each independently represents —C (═O) — (Ar 22 ) n 21 — or —C (═O) —Ar 23 —N═X 21 —Ar 24 —. , X 21 represents N or CH, Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 21 represents an integer of 0 to 2, When n 21 is 2, a plurality of Ar 22 may be the same or different, and Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 21 and Z 22 may have a polymerizable group. Alternatively, Z 21 and R 22 and Z 22 and R 24 may form a ring with each other, and a plurality of molecules of Z 21 and Z 22 may be polymerized via a covalent bond.
More specifically, the compound represented by the general formula (2) is described in JP-A Nos. 2002-080478 and 2003-313188.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式中、A31およびA32はそれぞれ独立に単結合または-O-C(=O)-、-O-C(=O)-Ar31-を表し、Ar31は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R31およびR33はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R32およびR34はそれぞれ独立に水素原子もしくはC~C12のアルキル基を表し、B31およびB32はそれぞれ独立に単結合、-C(=O)-(Ar32)n31-または-C(=O)-Ar33-N=X31-Ar34-を表し、X31はNまたはCHを表し、Ar32、Ar33およびAr34はそれぞれ独立に置換基を有していてもよい芳香族炭素環もしくは置換基を有していてもよい芳香族複素環を表し、n31は0~2の整数を表し、n31が2のとき、複数あるAr32は同じでも異なっていてもよく、Z31およびZ32はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z31およびZ32は、重合性基を有してもよく、Z31とR32およびZ32とR34が互いに環を形成してもよく、複数分子のZ31とZ32が共有結合を介してポリマー化していてもよく、Lは、2価の基を表す。ビナフチル部分は、(R)または(S)のいずれかの軸不斉を有する。
 一般式(3)で表される化合物は、より具体的には、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-302487号公報に記載されている。
In the formula, A 31 and A 32 each independently represent a single bond or —O—C (═O) — or —O—C (═O) —Ar 31 —, and Ar 31 has a substituent. R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent. Represents an optionally substituted aromatic carbocycle, an optionally substituted aromatic heterocycle, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, wherein R 32 and R 34 are each independently hydrogen Represents an atom or a C 1 to C 12 alkyl group, and B 31 and B 32 each independently represent a single bond, —C (═O) — (Ar 32 ) n 31 — or —C (═O) —Ar 33 —. N = X 31 —Ar 34 —, where X 31 is N or Or CH 32 , Ar 32 , Ar 33 and Ar 34 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and n 31 Represents an integer of 0 to 2, and when n 31 is 2, a plurality of Ar 32 may be the same or different, Z 31 and Z 32 are each independently a hydrogen atom, a C 1 to C 12 alkyl group, Represents a C 1 -C 12 alkoxy group, a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 31 and Z 32 represent , May have a polymerizable group, Z 31 and R 32 and Z 32 and R 34 may form a ring with each other, and a plurality of molecules of Z 31 and Z 32 are polymerized via a covalent bond. Well, L is It represents the valence of the group. The binaphthyl moiety has either (R) or (S) axial asymmetry.
More specifically, compounds represented by the general formula (3) are described in JP-A Nos. 2002-179668, 2002-179669, 2002-179670, and 2002-302487. Are listed.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式中、A41およびA42はそれぞれ独立に-C(=O)-または-C(=O)-Ar41-を表し、Ar41は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R41およびR43はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R42およびR44はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B41およびB42はそれぞれ独立に-C(=O)-(Ar42)n41-または-C(=O)-Ar43-N=X41-Ar44-を表し、X41はNまたはCHを表し、Ar42、Ar43およびAr44はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n41は0~2の整数を表し、n41が2のとき、複数あるAr42は同じでも異なっていてもよく、Z41およびZ42はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z41およびZ42は、重合性基を有してもよく、Z41とR42およびZ42とR44が互いに環を形成してもよく、複数分子のZ41とZ42が共有結合を介してポリマー化していてもよく、R45およびR46はC~C30のアルキル基を表し、互いに環を形成してもよい。*は不斉炭素を表す。
 一般式(4)で表される化合物は、より具体的には、特開2002-179633号公報に記載されている。
In the formula, A 41 and A 42 each independently represent —C (═O) — or —C (═O) —Ar 41 —, and Ar 41 represents an aromatic carbocyclic ring which may have a substituent or Represents an optionally substituted aromatic heterocycle, R 41 and R 43 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 42 and R 44 each independently represents a hydrogen atom or C 1 to C 12. B 41 and B 42 each independently represents —C (═O) — (Ar 42 ) n 41 — or —C (═O) —Ar 43 —N═X 41 —Ar 44 —. , X 41 represents N or CH, Ar 42 Ar 43 and Ar 44 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 41 represents an integer of 0 to 2, When n 41 is 2, a plurality of Ar 42 may be the same or different, and Z 41 and Z 42 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 41 and Z 42 may have a polymerizable group. Well, Z 41 and R 42 and Z 42 and R 44 may form a ring with each other, and multiple molecules of Z 41 and Z 42 may be polymerized via a covalent bond, and R 45 and R 46 are C 1 to C 30 And may form a ring with each other. * Represents an asymmetric carbon.
More specifically, the compound represented by the general formula (4) is described in JP-A No. 2002-179633.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式中、P51は重合性基を表し、Sp51は単結合またはC12のアルキレン基を表し、複数ある炭素原子は酸素原子またはカルボニル基で置き換えられてもよく、X51は単結合もしくは酸素原子を表し、Ar51およびAr52はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、L51は単結合もしくは2価の連結基を表し、n51は1~3の整数を表し、n51が2以上の場合、複数あるAr51およびL51は互いに同じでも異なっていてもよく、R52は不斉炭素を含有する側鎖を表す。
 一般式(5)で表される化合物は、より具体的には、特開2000-147236号公報に記載されている。
Wherein, P 51 represents a polymerizable group, Sp 51 represents an alkylene group of a single bond or C 1 ~ 12, plurality of carbon atoms may be replaced by an oxygen atom or a carbonyl group, X 51 represents a single bond Or an oxygen atom, Ar 51 and Ar 52 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and L 51 represents a single bond Alternatively, it represents a divalent linking group, n 51 represents an integer of 1 to 3, and when n 51 is 2 or more, a plurality of Ar 51 and L 51 may be the same or different from each other, and R 52 is asymmetric. Represents a side chain containing carbon.
More specifically, the compound represented by the general formula (5) is described in JP-A No. 2000-147236.
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。 The content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。 The content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
 本発明のコレステリック液晶組成物は、2種以上のキラル剤を含有していてもよく、上述した光異性化基を有するキラル剤と、光異性化基を有さないキラル剤を混合することで、捩り強度(HTP(Helical Twisting Power))および光異性化能を調節することができる。 The cholesteric liquid crystal composition of the present invention may contain two or more kinds of chiral agents. By mixing the above-described chiral agent having a photoisomerizable group and a chiral agent having no photoisomerizable group, , Torsional strength (HTP (Helical Twisting Power)) and photoisomerization ability can be adjusted.
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがさらに好ましい。
--Polymerization initiator--
When the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970), and the like. .
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物等が挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上述の範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。
-Crosslinking agent-
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. When the content of the crosslinking agent is within the above range, the effect of improving the crosslinking density is easily obtained, and the stability of the cholesteric liquid crystal phase is further improved.
--重合禁止剤-- 
 重合禁止剤は保存性の向上の目的で液晶性組成物に添加される。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ベンゾキノン、ヒンダードアミン(HALS)およびこれらの誘導体等が挙げられ、これらは、液晶性化合物に対して、0~10質量%添加することが好ましく、0~5質量%添加することがより好ましい。
--- Polymerization inhibitor--
The polymerization inhibitor is added to the liquid crystal composition for the purpose of improving the storage stability. Examples of the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, phenothiazine, benzoquinone, hindered amine (HALS), and derivatives thereof. These may be added in an amount of 0 to 10% by mass with respect to the liquid crystalline compound. Preferably, 0 to 5% by mass is added.
 液晶組成物は、コレステリック液晶層を形成する際には、液体として用いられることが好ましい。
 液晶組成物は溶媒を含んでいてもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびシクロペンタノン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。上述の単官能重合性モノマー等の上述の成分が溶媒として機能していてもよい。
The liquid crystal composition is preferably used as a liquid when forming a cholesteric liquid crystal layer.
The liquid crystal composition may contain a solvent. There is no restriction | limiting in particular as a solvent, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and cyclopentanone, alkyl halides, amides, sulfoxides, hetero Examples thereof include ring compounds, hydrocarbons, esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load. The above-described components such as the above-described monofunctional polymerizable monomer may function as a solvent.
--キット--
 本発明におけるキットは、少なくとも1種以上の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物と、少なくとも1種以上の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物からなるものである。
 右捻り特性を有する光反応性キラル剤は、例えば、上述の一般式(1)または一般式(3)で表されるものである。かつ、左捻り特性を有する光反応性キラル剤は、例えば、上述の一般式(2)または一般式(3)で表されるものである。
 なお、キットとしては、上述の重合性液晶組成物を1つではなく、複数に分割したものでもよい。
--kit--
The kit of the present invention comprises at least one polymerizable liquid crystal compound, a polymerizable liquid crystal composition comprising a photoreactive chiral agent having right-handed twisting properties and a polymerization initiator, at least one polymerizable liquid crystal compound, left It consists of a polymerizable liquid crystal composition containing a photoreactive chiral agent having twisting properties and a polymerization initiator.
The photoreactive chiral agent having a right-twist characteristic is represented by, for example, the above general formula (1) or general formula (3). And the photoreactive chiral agent which has the left twist characteristic is represented by the above-mentioned general formula (2) or general formula (3), for example.
In addition, as a kit, the above-mentioned polymerizable liquid crystal composition may be divided into a plurality of parts instead of one.
 右円偏光反射特性を有するコレステリック層(以下、単に右円偏光コレステリック層ともいう)は、一例として、右捩れを誘起するキラル剤を含む右円偏光反射特性を有するための液晶組成物を、基板上に塗布する工程、加熱によって右円偏光反射特性を有するコレステリック液晶相とする工程、および紫外線の照射(紫外線の露光)によってコレステリック液晶相を固定化する工程を行って、形成すればよい。
 他方、左円偏光反射特性を有するコレステリック層(以下、単に左円偏光コレステリック層ともいう)は、一例として、左捩れを誘起するキラル剤を含む左円偏光反射特性を有するための液晶組成物を、先に形成した右円偏光コレステリック層の上に塗布する工程、加熱によって右円偏光反射特性を有するコレステリック液晶相とする工程、および紫外線の照射(紫外線の露光)によってコレステリック液晶相を固定化する工程を行って、形成すればよい。
 なお、液晶組成物の塗布、乾燥および紫外線の照射は、いずれも公知の方法で行えばよい。
As an example, a cholesteric layer having a right circular polarization reflection characteristic (hereinafter, also simply referred to as a right circular polarization cholesteric layer) includes a liquid crystal composition having a right circular polarization reflection characteristic containing a chiral agent that induces right twist as a substrate. What is necessary is just to form by performing the process of apply | coating on the top, the process of making a cholesteric liquid crystal phase which has a right circular polarization reflection characteristic by heating, and the process of fixing a cholesteric liquid crystal phase by ultraviolet irradiation (ultraviolet exposure).
On the other hand, a cholesteric layer having a left-circularly polarized reflection characteristic (hereinafter, also simply referred to as a left-circularly polarized cholesteric layer) is, for example, a liquid crystal composition having a left-circularly polarized reflection characteristic containing a chiral agent that induces left-handed twist. A step of coating on the previously formed right circularly polarized cholesteric layer, a step of forming a cholesteric liquid crystal phase having a right circularly polarized reflective property by heating, and fixing the cholesteric liquid crystal phase by ultraviolet irradiation (ultraviolet light exposure). What is necessary is just to form by performing a process.
In addition, application | coating of a liquid-crystal composition, drying, and irradiation of an ultraviolet-ray may all be performed by a well-known method.
 ここで、前述のように、キラル剤としては、シンナモイル基等の光で異性化する部分(光異性化基)を有するキラル剤が利用可能である。液晶組成物のキラル剤として、光異性化基を有するキラル剤を用いた場合には、液晶組成物を塗布して加熱を行った後、弱い紫外線をパターニングして照射することを1回以上行って、光異性化基を異性化し、その後、コレステリック液晶相を固定化するための紫外線の照射を行ってもよい。
 また、コレステリック液晶相を固定化するための強い紫外線をパターニングして照射することで部分的に硬化させた後に、未露光部または全面に弱い紫外線を照射することで光異性化基を異性化し、その後、コレステリック液晶相を固定化するための紫外線の照射を行ってもよい。
 これにより、右円偏光コレステリック層および左円偏光コレステリック層が、面内に、異なる波長領域の光を反射する反射領域を、複数、有する構成にできる。なお、この場合には、右円偏光コレステリック層および左円偏光コレステリック層は、互いの同じ波長領域の光を反射する反射領域を、面方向に同じ位置に積層することが好ましい。
Here, as described above, as the chiral agent, a chiral agent having a moiety (photoisomerization group) that isomerizes with light, such as a cinnamoyl group, can be used. When a chiral agent having a photoisomerizable group is used as a chiral agent of the liquid crystal composition, after applying the liquid crystal composition and heating, patterning with weak ultraviolet rays is performed at least once. Then, the photoisomerization group may be isomerized and then irradiated with ultraviolet rays for fixing the cholesteric liquid crystal phase.
In addition, after partially curing by patterning and irradiating strong ultraviolet light for fixing the cholesteric liquid crystal phase, the photoisomerization group is isomerized by irradiating weak UV light to the unexposed part or the entire surface, Thereafter, irradiation with ultraviolet rays for fixing the cholesteric liquid crystal phase may be performed.
As a result, the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer can have a plurality of reflective regions that reflect light in different wavelength regions in the plane. In this case, the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer are preferably laminated in the same position in the plane direction with reflection regions that reflect light in the same wavelength region.
 また、紫外線照射時の温度を調整することで、反射波長領域を調整することも可能である。温度を調整しながら、紫外線をパターニングして照射することで、右円偏光コレステリック層および左円偏光コレステリック層が、面内に、異なる波長領域の光を反射する反射領域を、複数、有する構成にできる。特に液晶組成物の等方相温度以上に加熱した状態で、紫外線照射をすることで、いずれの波長領域にも反射特性を持たない透過領域を面内に形成することができる。 Also, the reflection wavelength region can be adjusted by adjusting the temperature at the time of ultraviolet irradiation. By adjusting the temperature and patterning and irradiating ultraviolet rays, the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer have a plurality of reflective regions that reflect light in different wavelength regions in the plane. it can. In particular, by irradiating with ultraviolet rays in a state where the liquid crystal composition is heated to an isotropic phase temperature or higher, a transmission region having no reflection characteristics in any wavelength region can be formed in the plane.
 なお、右円偏光コレステリック層または左円偏光コレステリック層が、1層ずつでもよく、右円偏光コレステリック層と左円偏光コレステリック層が、それぞれ、少なくとも1層有する多層構成でもよい。
 反射する光の波長領域、すなわち、遮断する光の波長領域を広くするには、選択反射の中心波長λをずらした層を順次積層することで実現することができる。また、ピッチグラジエント法と呼ばれる層内の螺旋ピッチを段階的に変化させる方法で、波長範囲を広げる技術も知られており、具体的にはNature 378、467-469(1995)、特開平6-281814号公報、および特許4990426号公報に記載の方法等が挙げられる。
 本発明における右円偏光コレステリック層および左円偏光コレステリック層の反射波長領域は、可視光(波長380nm~780nm程度)および近赤外光(波長780nm~2000nm程度)のいずれの範囲にも設定することが可能であり、その設定方法は上述の通りである。
The right circularly polarized cholesteric layer or the left circularly polarized cholesteric layer may be a single layer, or the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer may each have at least one layer.
Widening the wavelength range of reflected light, that is, the wavelength range of light to be blocked, can be realized by sequentially laminating layers with different selective reflection center wavelengths λ. Also known is a technique of expanding the wavelength range by a method of stepwise changing the spiral pitch in the layer called the pitch gradient method, specifically, Nature 378, 467-469 (1995), Examples include the methods described in Japanese Patent No. 281814 and Japanese Patent No. 4990426.
The reflection wavelength region of the right circularly polarized cholesteric layer and the left circularly polarized cholesteric layer in the present invention should be set in any range of visible light (wavelength of about 380 nm to 780 nm) and near infrared light (wavelength of about 780 nm to 2000 nm). The setting method is as described above.
 反射型カラーフィルター形成工程は、例えば、面内に複数の波長領域を有する右円偏反射層を形成する右円偏光反射層形成工程、および面内に複数の波長領域を有する左円偏反射層を形成する左円偏光反射層形成工程からなる。 The reflective color filter forming step includes, for example, a right circular polarized reflective layer forming step for forming a right circular polarized reflective layer having a plurality of wavelength regions in the plane, and a left circular polarized reflective layer having a plurality of wavelength regions in the plane. The left circularly polarized light reflecting layer forming step.
 右円偏光反射層形成工程は、一例として、少なくとも1種の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、配向工程でコレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で一部の配向状態を変換した重合性液晶組成物の全面に露光処理を行うことで、重合性液晶組成物の配向状態を固定化する固定化工程を行えばよい。
 左円偏光反射層形成工程は、一例として、少なくとも1種の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、配向工程でコレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、
 変換工程で一部の配向状態を変換した重合性液晶組成物の全面に露光処理を行うことで、コレステリック配向状態を固定化する固定化工程を行えばよい。
The right circularly polarized light reflection layer forming step includes, as an example, a coating step and a coating step in which a polymerizable liquid crystal composition including at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-twisting characteristics, and a polymerization initiator is applied. The polymerizable liquid crystal composition applied in step 1 is heated to form a cholesteric alignment state, and a portion of the exposed portion of the polymerizable liquid crystal composition that has been converted to a cholesteric alignment state in the alignment step is exposed to light. A conversion step for converting the reflection wavelength region, and a fixing for fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure process on the entire surface of the polymerizable liquid crystal composition whose partial alignment state has been converted in the conversion step. The conversion process may be performed.
The left circularly polarized light reflection layer forming step is, as an example, a coating step and a coating step in which a polymerizable liquid crystal composition including at least one polymerizable liquid crystal compound, a photoreactive chiral agent having left-twisting characteristics, and a polymerization initiator is applied. The polymerizable liquid crystal composition applied in step 1 is heated to form a cholesteric alignment state, and a portion of the exposed portion of the polymerizable liquid crystal composition that has been converted to a cholesteric alignment state in the alignment step is exposed to light. A conversion process for converting the reflection wavelength region, and
What is necessary is just to perform the fixing process which fixes a cholesteric alignment state by performing the exposure process to the whole surface of the polymeric liquid crystal composition which converted some alignment states at the conversion process.
 右円偏光反射層形成工程は、他の例として、少なくとも1種の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、コレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分のコレステリック配向状態を固定化する第1固定化工程、第1固定化工程における未露光部分に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で配向状態を変換した重合性液晶組成物に露光処理を行うことで、重合性液晶組成物の配向状態を固定化する第2固定化工程を行えばよい。
 左円偏光反射層形成工程は、他の例として、少なくとも1種の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、塗布工程で塗布した重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、コレステリック配向状態とした重合性液晶組成物の一部に露光処理を行うことで、露光された部分のコレステリック配向状態を固定化する第1固定化工程、第1固定化工程における未露光部分に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、変換工程で配向状態を変換した重合性液晶組成物に露光処理を行うことで、重合性液晶組成物の配向状態を固定化する第2固定化工程を行えばよい。
The right circularly polarized light reflecting layer forming step includes, as another example, a coating step of applying a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having a right twist property and a polymerization initiator, The polymerizable liquid crystal composition applied in the coating process is heated to form an cholesteric alignment state, and an exposure process is performed on a part of the polymerizable liquid crystal composition in the cholesteric alignment state, thereby exposing the cholesteric portion of the exposed portion. A first fixing step for fixing the alignment state, a conversion step for converting the reflection wavelength region of the exposed portion by performing an exposure process on the unexposed portion in the first fixing step, and an alignment state in the conversion step A second fixing step for fixing the alignment state of the polymerizable liquid crystal composition may be performed by performing an exposure treatment on the polymerizable liquid crystal composition converted from the above.
As another example, the left circularly polarized light reflection layer forming step is a coating step of applying a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound, a photoreactive chiral agent having left-handed twist characteristics, and a polymerization initiator, The polymerizable liquid crystal composition applied in the coating process is heated to form an cholesteric alignment state, and an exposure process is performed on a part of the polymerizable liquid crystal composition in the cholesteric alignment state, thereby exposing the cholesteric portion of the exposed portion. A first fixing step for fixing the alignment state, a conversion step for converting the reflection wavelength region of the exposed portion by performing an exposure process on the unexposed portion in the first fixing step, and an alignment state in the conversion step A second fixing step for fixing the alignment state of the polymerizable liquid crystal composition may be performed by performing an exposure treatment on the polymerizable liquid crystal composition converted from the above.
 右円偏光反射層形成工程または左円偏光反射層形成工程の前に、光配向膜を塗布する配向層塗布工程、および塗布して形成された光配向膜に対し、偏光で露光して配向規制力を与える配向規制工程を行うことが好ましい。 Before the right circularly polarized light reflecting layer forming step or the left circularly polarized light reflecting layer forming step, the alignment layer coating step for coating the photo-alignment film, and the photo-alignment film formed by coating with light is exposed with polarized light and the alignment is regulated. It is preferable to perform an orientation regulating step that applies force.
 以下に、本発明の積層型カラーフィルター14の構成例について、より具体的に説明する。本発明の本質は、吸収型カラーフィルター30と反射型カラーフィルター32を組み合わせることで、多数の分光特性を持ったカラーフィルターを簡便に得ることであり、その組み合わせ方については何ら限定されることはない。本発明は以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において、自由に構成を変えることができる。 Hereinafter, a configuration example of the multilayer color filter 14 of the present invention will be described more specifically. The essence of the present invention is to easily obtain a color filter having a large number of spectral characteristics by combining the absorption type color filter 30 and the reflection type color filter 32, and the combination method is not limited at all. Absent. The present invention is not limited to the following configuration, and the configuration can be freely changed without departing from the gist of the present invention.
 なお、以下に例示する分光特性の図は、吸収型カラーフィルターと反射型カラーフィルターの組み合わせによる分光特性の変化を説明するための概念図であり、実際のスペクトル形状とは異なる。 The spectral characteristic diagram illustrated below is a conceptual diagram for explaining changes in spectral characteristics due to the combination of the absorption color filter and the reflective color filter, and is different from the actual spectral shape.
 吸収型カラーフィルター30は、例えば、赤、青および緑の3原色のカラーフィルターである。吸収型カラーフィルター30は、図3に示すように、赤波長領域30R、緑波長領域30Gおよび青波長領域30Bがベイヤー配列されている。赤波長領域30R、緑波長領域30Gおよび青波長領域30Bは分光特性が異なる。
 吸収型カラーフィルター30は、複数の第1の区画31を有する。第1の区画31に、2つの緑波長領域30G、1つの赤波長領域30Rおよび1つの青波長領域30Bが配置される。
 吸収型カラーフィルター30は、分光特性が異なる赤波長領域30R、緑波長領域30Gおよび青波長領域30Bの3つの波長領域を有するが、吸収型カラーフィルター30は、上述のように少なくとも2種の波長領域を有するものであればよい。
The absorption color filter 30 is, for example, a color filter of three primary colors of red, blue, and green. As shown in FIG. 3, the absorption color filter 30 has a red wavelength region 30R, a green wavelength region 30G, and a blue wavelength region 30B arranged in a Bayer array. The red wavelength region 30R, the green wavelength region 30G, and the blue wavelength region 30B have different spectral characteristics.
The absorption color filter 30 has a plurality of first sections 31. In the first section 31, two green wavelength regions 30G, one red wavelength region 30R, and one blue wavelength region 30B are arranged.
The absorptive color filter 30 has three wavelength regions of a red wavelength region 30R, a green wavelength region 30G, and a blue wavelength region 30B having different spectral characteristics. Any device having a region may be used.
 吸収型カラーフィルター30の分光特性を図6に示す。図6に示すように、赤波長領域30Rは分光特性33Rを有し、緑波長領域30Gは分光特性33Gを有し、青波長領域30Bは分光特性33Bを有し、分光特性が異なる。
 なお、図6においては、紫外線領域(すなわち青波長領域の左側)および赤外線領域(すなわち赤波長領域の右側)はいずれも透過率が低くなっている。実際にこのような分光特性を実現するためには、通常のカラーフィルターの赤、青および緑の各領域に紫外線吸収剤および赤外線吸収剤を含有させるか、通常の吸収型カラーフィルターと紫外線吸収層(すなわち紫外線カットフィルター)および赤外線吸収層(すなわち赤外線カットフィルター)を併用してもよい。これら併用する波長カットフィルターは、必ずしも吸収型カットフィルターと一体化している必要はなく、本発明の積層型カラーフィルターを用いた光学センサにおける測定対象物と、光を検出する撮像素子との間の任意の場所に配置されていればよい。
The spectral characteristics of the absorption color filter 30 are shown in FIG. As shown in FIG. 6, the red wavelength region 30R has a spectral characteristic 33R, the green wavelength region 30G has a spectral characteristic 33G, and the blue wavelength region 30B has a spectral characteristic 33B, and the spectral characteristics are different.
In FIG. 6, both the ultraviolet region (that is, the left side of the blue wavelength region) and the infrared region (that is, the right side of the red wavelength region) have low transmittance. In order to actually realize such spectral characteristics, an ultraviolet absorber and an infrared absorber are contained in each of the red, blue and green regions of an ordinary color filter, or an ordinary absorption color filter and an ultraviolet absorption layer are included. (That is, an ultraviolet cut filter) and an infrared absorption layer (that is, an infrared cut filter) may be used in combination. These wavelength cut filters used in combination do not necessarily have to be integrated with the absorption type cut filter, but between the measurement object in the optical sensor using the laminated color filter of the present invention and the image sensor that detects light. What is necessary is just to be arrange | positioned in arbitrary places.
 赤波長領域30Rは、例えば、可視光領域の長波長域の、波長570nm~700nmの赤色光を透過させ、赤色光以外の光を吸収する。緑波長領域30Gは、例えば、可視光領域の中波長域の、波長480nm~600nmの緑色光を透過させ、緑色光以外の光を吸収する。青波長領域30Bは、可視光領域の短波長領域の、波長400nm~500nmの青色光を透過させ、青色光以外の光を吸収する。 The red wavelength region 30R transmits, for example, red light having a wavelength of 570 nm to 700 nm in the long wavelength region of the visible light region, and absorbs light other than red light. The green wavelength region 30G, for example, transmits green light having a wavelength of 480 nm to 600 nm in the middle wavelength region of the visible light region and absorbs light other than green light. The blue wavelength region 30B transmits blue light having a wavelength of 400 nm to 500 nm in the short wavelength region of the visible light region, and absorbs light other than blue light.
 図1に示すように、反射型カラーフィルター32と、吸収型カラーフィルター30とにより積層型カラーフィルター14が構成される。反射型カラーフィルター32は、平坦化層29上に配置されている。反射型カラーフィルター32は、図2に示すように、複数の第2の区画32aを有する。吸収型カラーフィルター30と反射型カラーフィルター32は、第1の区画31(図3参照)と第2の区画32a(図2参照)を一致させて積層されている。
 図1に示すように、吸収型カラーフィルター30と反射型カラーフィルター32の間に、マイクロレンズ28が設けられ、吸収型カラーフィルター30と反射型カラーフィルター32が積層されているが、これに限定されるものではなく、吸収型カラーフィルター30と反射型カラーフィルター32は直接接した状態で積層してもよい。
 反射型カラーフィルター32は、図1および図2に示すように、分光特性が異なる第1の波長領域34と第2の波長領域35の2つの波長領域を有する。
 反射型カラーフィルター32の第2の区画32a毎に、第1の波長領域34または第2の波長領域35が配置されている。図2に示す反射型カラーフィルター32では、隣接する第2の区画32aでは同じ波長領域が配置されていない。
As shown in FIG. 1, the multilayer color filter 14 is configured by the reflective color filter 32 and the absorption color filter 30. The reflective color filter 32 is disposed on the planarizing layer 29. As shown in FIG. 2, the reflective color filter 32 has a plurality of second sections 32a. The absorption type color filter 30 and the reflection type color filter 32 are laminated such that the first section 31 (see FIG. 3) and the second section 32a (see FIG. 2) coincide.
As shown in FIG. 1, a microlens 28 is provided between the absorption color filter 30 and the reflection color filter 32, and the absorption color filter 30 and the reflection color filter 32 are laminated. Instead, the absorption color filter 30 and the reflection color filter 32 may be laminated in direct contact with each other.
As shown in FIGS. 1 and 2, the reflective color filter 32 has two wavelength regions of a first wavelength region 34 and a second wavelength region 35 having different spectral characteristics.
The first wavelength region 34 or the second wavelength region 35 is arranged for each second section 32 a of the reflective color filter 32. In the reflective color filter 32 shown in FIG. 2, the same wavelength region is not arranged in the adjacent second section 32a.
 反射型カラーフィルター32の第1の波長領域34と第2の波長領域35の分光特性を図5に示す。第1の波長領域34は分光特性34aを有する。第1の波長領域34は、分光特性34aに示すように、青波長領域30Bを透過する光と緑波長領域30Gを透過する光が重なる領域を含め、青波長領域30Bを透過する光の一部と緑波長領域30Gを透過する光の一部を透過させない。 FIG. 5 shows spectral characteristics of the first wavelength region 34 and the second wavelength region 35 of the reflective color filter 32. The first wavelength region 34 has a spectral characteristic 34a. As shown in the spectral characteristics 34a, the first wavelength region 34 includes a part of the light transmitted through the blue wavelength region 30B, including a region where light transmitted through the blue wavelength region 30B and light transmitted through the green wavelength region 30G overlap. And part of the light transmitted through the green wavelength region 30G is not transmitted.
 第2の波長領域35は分光特性35aを有する。第2の波長領域35は、第1の波長領域34よりも長波長側の光を透過させない。
 第2の波長領域35は、分光特性35aに示すように、緑波長領域30Gを透過する光と赤波長領域30Rを透過する光が重なる領域を含め、緑波長領域30Gを透過する光の一部と赤波長領域30Rを透過する光の一部を透過させない。このように、第1の波長領域34と第2の波長領域35は分光特性が異なる。反射型カラーフィルター32は、重合性コレステリック液晶組成物が硬化されたものであることが好ましい。
The second wavelength region 35 has a spectral characteristic 35a. The second wavelength region 35 does not transmit light on the longer wavelength side than the first wavelength region 34.
As shown in the spectral characteristic 35a, the second wavelength region 35 includes a part of light that passes through the green wavelength region 30G, including a region where light that passes through the green wavelength region 30G and light that passes through the red wavelength region 30R overlap. And part of the light transmitted through the red wavelength region 30R is not transmitted. Thus, the first wavelength region 34 and the second wavelength region 35 have different spectral characteristics. The reflective color filter 32 is preferably one obtained by curing a polymerizable cholesteric liquid crystal composition.
 積層型カラーフィルター14は、入射光側から見た場合、図4に示すようになる。図4に示す積層型カラーフィルター14は、吸収型カラーフィルター30と反射型カラーフィルター32を合成したものである。図7および図8に積層型カラーフィルター14の分光特性を示す。
 図4に示すように、積層型カラーフィルター14は、2つの第1の緑波長領域30Gと、第1の青波長領域30Bと、第1の赤波長領域30Rとで1つの画素領域31aが構成される。また、2つの第2の緑波長領域30Gと、第2の青波長領域30Bと、第2の赤波長領域30Rとで1つの画素領域31bが構成される。このように2種の画素領域31a、31bを有する。
The multilayer color filter 14 is as shown in FIG. 4 when viewed from the incident light side. The laminated color filter 14 shown in FIG. 4 is a composite of the absorption color filter 30 and the reflection color filter 32. 7 and 8 show the spectral characteristics of the multilayer color filter 14.
As shown in FIG. 4, the multilayer color filter 14 includes a first green wavelength region 30G 1 two, one pixel region in the first blue wavelength region 30B 1, the first red wavelength region 30R 1 31a is configured. Further, two second green wavelength region 30G 2, and second blue wavelength region 30B 2, 1 single pixel area 31b is composed of a second red wavelength region 30R 2. Thus, it has two types of pixel regions 31a and 31b.
 積層型カラーフィルター14の画素領域31aの分光特性は、図7に示すように、第1の青波長領域30Bは分光特性36Bを有する。第1の緑波長領域30Gは分光特性36Gを有する。第1の赤波長領域30Rは分光特性36Rを有する。
 積層型カラーフィルター14の画素領域31bの分光特性は、図8に示すように、第2の青波長領域30Bは分光特性36Bを有する。第2の緑波長領域30Gは分光特性36Gを有する。第2の赤波長領域30Rは分光特性36Rを有する。
Spectral characteristics of the pixel area 31a of the multilayer color filter 14, as shown in FIG. 7, the first blue wavelength region 30B 1 has a spectral characteristic 36B 1. The first green wavelength region 30G 1 has the spectral characteristics 36G 1. The first red wavelength region 30R 1 has the spectral characteristics 36R 1.
Spectral characteristics of the pixel region 31b of the multilayer color filter 14, as shown in FIG. 8, a second blue wavelength region 30B 2 has the spectral characteristics 36B 2. Second green wavelength region 30G 2 has a spectral characteristic 36G 2. The second red wavelength region 30R 2 has a spectral characteristic 36R 2.
 図6、図7および図8に示す分光特性から、積層型カラーフィルター14は、赤、青および緑の3原色のカラーフィルターに比して、赤波長領域、緑波長領域および青波長領域、について、それぞれ異なる波長領域の光を透過させることができる。すなわち、多階調化することができる。吸収型カラーフィルター30が3種の波長領域を有し、反射型カラーフィルター32が2種の波長領域を有しており、積層型カラーフィルター14は6階調である。積層型カラーフィルター14の種数は、吸収型カラーフィルター30の波長領域の種数と、反射型カラーフィルター32の種数の合計よりも多い。これにより、光学センサ10では、3原色で表されるカラー画像に加えて、特定の波長域の情報を取得することができる。例えば、緑波長領域において、特定の波長領域を検出することができる。赤波長領域において、特定の波長領域を検出することができる。 From the spectral characteristics shown in FIG. 6, FIG. 7 and FIG. 8, the laminated color filter 14 has a red wavelength region, a green wavelength region, and a blue wavelength region as compared with the color filters of the three primary colors of red, blue, and green. , Light in different wavelength regions can be transmitted. That is, multi-gradation can be achieved. The absorptive color filter 30 has three types of wavelength regions, the reflective type color filter 32 has two types of wavelength regions, and the laminated color filter 14 has six gradations. The number of species of the multilayer color filter 14 is larger than the total of the species of the wavelength region of the absorption color filter 30 and the species of the reflective color filter 32. Thereby, in the optical sensor 10, in addition to the color image represented by the three primary colors, information in a specific wavelength range can be acquired. For example, a specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region.
 本発明においては、m種の波長領域を有する吸収型カラーフィルター30とn種の波長領域を有する反射型カラーフィルター32が、それぞれの波長領域を異なる組み合わせで重ね合わせることで、吸収型カラーフィルター30と反射型カラーフィルター32それぞれのカラーフィルターの波長領域の種数(m、n)を上回る波長領域の種数pを得ることができる。このとき生じる波長領域の種数pの最大値はm×nとなる。
 ここで、反射型カラーフィルターが遮蔽できる帯域は、150nm程度と限界がある、このため、積層型カラーフィルター14を反射型カラーフィルターと反射型カラーフィルターの組合せとした場合、特定の波長以外の領域をすべて遮蔽する必要がある。反射型カラーフィルターにおいて、特定の波長以外の領域を遮断するには相当数の積層をする必要があり、構成および作製の点で煩雑になる。
In the present invention, the absorption color filter 30 having m types of wavelength regions and the reflection type color filter 32 having n types of wavelength regions are overlapped with each other in different combinations, whereby the absorption type color filter 30 is obtained. In addition, it is possible to obtain the number p of species in the wavelength region that exceeds the number of species (m, n) in the wavelength region of each color filter of the reflective color filter 32. The maximum value of the species p of the wavelength region generated at this time is m × n.
Here, the band that can be shielded by the reflective color filter is limited to about 150 nm. Therefore, when the multilayer color filter 14 is a combination of a reflective color filter and a reflective color filter, a region other than a specific wavelength is used. It is necessary to shield everything. In a reflection type color filter, it is necessary to stack a considerable number of layers in order to block a region other than a specific wavelength, which is complicated in terms of configuration and production.
 次に、積層型カラーフィルター14の製造方法について、より具体的に説明する。吸収型カラーフィルター30は、例えば、3原色のカラーフィルターであり、CCD(Charge Coupled Device)等の撮像素子に利用されるものと同様の製造方法で製造することができるため、その詳細な説明は省略する。
 反射型カラーフィルター32の製造方法について、図9~図16に基づいて説明する。
 図9~図16は、本発明の実施形態の積層型カラーフィルターの製造方法を工程順に示す模式的斜視図である。
Next, the manufacturing method of the multilayer color filter 14 will be described more specifically. The absorptive color filter 30 is, for example, a color filter of three primary colors, and can be manufactured by a manufacturing method similar to that used for an image pickup device such as a CCD (Charge Coupled Device), and therefore a detailed description thereof Omitted.
A method for manufacturing the reflective color filter 32 will be described with reference to FIGS.
9 to 16 are schematic perspective views showing the method of manufacturing the multilayer color filter according to the embodiment of the present invention in the order of steps.
 図9に示すように、基板40上に下地層42を形成し、下地層42上に、光異性化基を有する右捩れキラル剤を含有する重合性液晶組成物を用いて反射層44、すなわち、液晶組成物層を形成したものを用意する。次に、図10に示すように、反射層44上に、予め定められたパターンを有する露光マスク46を配置する。そして、露光マスク46上から光Lを反射層44上に照射し、露光領域45を露光する。これにより、露光領域45ではキラル剤の光異性化が起こり、それに伴って反射する光の波長が変化する。なお、図10はパターニングの様子を模式的に表わしたものであり、実際の光学センサの製造においては、i線ステッパー等を用いて微小パターンを形成するため、露光マスク46と反射層44の間に複数のレンズ等からなる光学系が存在する。 As shown in FIG. 9, a base layer 42 is formed on a substrate 40, and a reflective layer 44, that is, a polymerizable liquid crystal composition containing a right-twisted chiral agent having a photoisomerizable group is formed on the base layer 42, that is, A liquid crystal composition layer is prepared. Next, as shown in FIG. 10, an exposure mask 46 having a predetermined pattern is disposed on the reflective layer 44. Then, the light L 1 is irradiated onto the reflective layer 44 from above the exposure mask 46 to expose the exposure region 45. Thereby, in the exposure area | region 45, the photoisomerization of a chiral agent occurs and the wavelength of the light reflected changes in connection with it. FIG. 10 schematically shows the patterning process. In actual optical sensor manufacturing, an i-line stepper or the like is used to form a micropattern, so that there is a gap between the exposure mask 46 and the reflective layer 44. There is an optical system composed of a plurality of lenses.
 露光マスク46を外した後、図11に示すように、反射層44全面に光Lを照射する。これにより、コレステリック液晶組成物が重合固定化され、反射層44における反射する光の波長が固定され、図12に示すように、反射する光の波長が異なる第1の領域47と第2の領域48を有する右円偏光反射型カラーフィルター49aが得られる。光Lと光Lは、いずれも紫外光であり、光Lの方が光Lよりも光強度が高い。また、光Lによる重合固定化を促進するために、図11の工程を窒素雰囲気下で行うことが好ましい。
 下地層42は、コレステリック液晶組成物を水平配向させるための層である。配向の均一化を図るために、下地層42は光配向膜であることが好ましく、予め直線偏光を照射することで、液晶に対する配向規制力を与えることができ、均一な反射層を得ることができる。
After removing the exposure mask 46, as shown in FIG. 11, is irradiated with light L 2 to the reflective layer 44 over the entire surface. Thereby, the cholesteric liquid crystal composition is polymerized and fixed, the wavelength of the light reflected by the reflective layer 44 is fixed, and the first region 47 and the second region having different wavelengths of the reflected light as shown in FIG. A right circularly polarized light reflection type color filter 49 a having 48 is obtained. The light L 1 and the light L 2 are both ultraviolet light, and the light L 2 has higher light intensity than the light L 2 . Moreover, in order to promote the polymerization immobilization by the light L 2 , it is preferable to perform the process of FIG. 11 in a nitrogen atmosphere.
The underlayer 42 is a layer for horizontally aligning the cholesteric liquid crystal composition. In order to make the alignment uniform, the base layer 42 is preferably a photo-alignment film. By irradiating linearly polarized light in advance, the alignment regulating force for the liquid crystal can be given, and a uniform reflection layer can be obtained. it can.
 上述の右円偏光反射型カラーフィルター49aと同様にして、反射する光の波長が異なる第1の領域47a(図16参照)と第2の領域48a(図16参照)を有する左円偏光反射型カラーフィルター49b(図16参照)を、右円偏光反射型カラーフィルター49a上に作製する。
 左円偏光反射型カラーフィルター49b(図16参照)は、図13に示すように、異性化基を有する左捩れキラル剤を含有する重合性液晶組成物を用いて反射層44aを形成する点以外は、右円偏光反射型カラーフィルター49aと同様に作製することができる。
In the same manner as the right circular polarized light reflection type color filter 49a described above, a left circular polarized light reflective type having a first region 47a (see FIG. 16) and a second region 48a (see FIG. 16) having different wavelengths of reflected light. A color filter 49b (see FIG. 16) is produced on the right circularly polarized light reflective color filter 49a.
As shown in FIG. 13, the left circularly polarized reflective color filter 49b (see FIG. 16) has a configuration other than the point that the reflective layer 44a is formed using a polymerizable liquid crystal composition containing a left-twisted chiral agent having an isomerization group. Can be produced in the same manner as the right circular polarization reflection type color filter 49a.
 図14に示すように、反射層44a上に、上述の露光マスク46を配置する。そして、露光マスク46上から光Lを反射層44a上に照射し、露光領域45aを露光する。これにより、露光領域45aではキラル剤の光異性化が起こり、それに伴って反射する光の波長が変化する。
 なお、露光マスク46は、右円偏光反射型カラーフィルター49aと同じ位置に配置しており、露光領域45aは上述の露光領域45上である。また、図16は、図10と同じくパターニングの様子を模式的に表わしたものであり、上述のように露光マスク46と反射層44の間に複数のレンズ等からなる光学系が存在する。
As shown in FIG. 14, the above-described exposure mask 46 is disposed on the reflective layer 44a. Then, the light L 1 is irradiated on a reflective layer 44a from above the exposure mask 46 to expose the exposure area 45a. Thereby, in the exposure area | region 45a, the photoisomerization of a chiral agent occurs, and the wavelength of the light reflected in connection with it changes.
Note that the exposure mask 46 is disposed at the same position as the right circular polarization reflection type color filter 49a, and the exposure area 45a is on the above-described exposure area 45. FIG. 16 schematically shows the patterning as in FIG. 10, and an optical system including a plurality of lenses and the like exists between the exposure mask 46 and the reflective layer 44 as described above.
 露光マスク46を外した後、図15に示すように、反射層44a全面に光Lを照射する。これにより、コレステリック液晶組成物が重合固定化され、反射層44aにおける反射する光の波長が固定され、図16に示すように、反射する光の波長が異なる第1の領域47aと第2の領域48aを有する左円偏光反射型カラーフィルター49bが得られる。第1の領域47aは右円偏光反射型カラーフィルター49aの第1の領域47上に、第2の領域48aは右円偏光反射型カラーフィルター49aの第2の領域48上に形成される。この場合も、光Lと光Lは紫外光であり、光Lの方が光Lよりも光強度が高い。図15の工程でも、光Lによる重合固定化を促進するために、窒素雰囲気下で行うことが好ましい。
 このようにして、図16に示すように、右円偏光反射型カラーフィルター49a上に左円偏光反射型カラーフィルター49bを積層し、反射型カラーフィルター32を得ることができる。
 なお、反射型カラーフィルター32は、光HTP(Helical Twisting Power)変換技術を用いることで、同一素材で様々な分光特性を得ることができ、吸収型カラーフィルターのように対応する色素をそれぞれ開発する手間を省くことができる。
After removing the exposure mask 46, as shown in FIG. 15, is irradiated with light L 2 to the reflective layer 44a over the entire surface. As a result, the cholesteric liquid crystal composition is polymerized and fixed, the wavelength of light reflected by the reflective layer 44a is fixed, and the first region 47a and the second region having different wavelengths of reflected light as shown in FIG. A left circularly polarized reflective color filter 49b having 48a is obtained. The first region 47a is formed on the first region 47 of the right circular polarization reflection type color filter 49a, and the second region 48a is formed on the second region 48 of the right circular polarization reflection type color filter 49a. Also in this case, the light L 1 and the light L 2 are ultraviolet light, and the light L 2 has higher light intensity than the light L 2 . Also in the process of FIG. 15, in order to promote the polymerization immobilization by the light L 2 , it is preferably performed in a nitrogen atmosphere.
In this manner, as shown in FIG. 16, the left circular polarization reflection type color filter 49b is laminated on the right circular polarization reflection type color filter 49a, and the reflection type color filter 32 can be obtained.
The reflective color filter 32 can obtain various spectral characteristics with the same material by using optical HTP (Helical Twisting Power) conversion technology, and develops corresponding dyes like an absorption color filter. Save time and effort.
 積層型カラーフィルター14において、反射型カラーフィルター32は、図2に示す構成に限定されるものではなく、例えば、図17に示す構成でもよい。図17に示す反射型カラーフィルター50は、複数の第2の区画52を有し、分光特性が異なる4種の波長領域を有する。すなわち、反射型カラーフィルター50は、分光特性が異なる第1の波長領域34、第2の波長領域35、第3の波長領域53、および第4の波長領域54を有する。
 図17の反射型カラーフィルター50において、図2に示す反射型カラーフィルター32と同一構成物には同一符号を付して、その詳細な説明は省略する。
In the multilayer color filter 14, the reflective color filter 32 is not limited to the configuration shown in FIG. 2, but may be the configuration shown in FIG. The reflective color filter 50 shown in FIG. 17 has a plurality of second sections 52 and four types of wavelength regions having different spectral characteristics. That is, the reflective color filter 50 has a first wavelength region 34, a second wavelength region 35, a third wavelength region 53, and a fourth wavelength region 54 that have different spectral characteristics.
In the reflective color filter 50 of FIG. 17, the same components as those of the reflective color filter 32 shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 反射型カラーフィルター50も、上述の反射型カラーフィルター32と同じく、吸収型カラーフィルター30の第1の区画31と、反射型カラーフィルター50の第2の区画を一致させて積層される。
 反射型カラーフィルター50は、分光特性が異なる4種の波長領域から重複することなく選択され、かつそれぞれ2種の波長領域で構成された2組の波長領域を有する。2組の波長領域とは、図17では、第1の波長領域34と第3の波長領域53で構成された第1の組と、第2の波長領域35と第4の波長領域54で構成された第2の組の2組である。反射型カラーフィルター50の第2の区画52毎に、上述の第1の組および第2の組のいずれかが配置されている。
 この場合、第1の波長領域34は青波長領域30Bに対応する位置に配置され、第3の波長領域53は緑波長領域30Gおよび赤波長領域30Rに対応する位置に配置される。また、第2の波長領域35は青波長領域30Bおよび緑波長領域30Gに対応する位置に配置され、第4の波長領域54は赤波長領域30Rに対応する位置に配置される。
The reflective color filter 50 is also laminated with the first section 31 of the absorption color filter 30 and the second section of the reflective color filter 50 matched to each other as in the above-described reflective color filter 32.
The reflective color filter 50 has two sets of wavelength regions that are selected from four different wavelength regions having different spectral characteristics without overlapping, and are configured by two types of wavelength regions, respectively. In FIG. 17, the two sets of wavelength regions include a first set composed of a first wavelength region 34 and a third wavelength region 53, and a second wavelength region 35 and a fourth wavelength region 54. Two sets of the second set. One of the first group and the second group described above is arranged for each second section 52 of the reflective color filter 50.
In this case, the first wavelength region 34 is disposed at a position corresponding to the blue wavelength region 30B, and the third wavelength region 53 is disposed at a position corresponding to the green wavelength region 30G and the red wavelength region 30R. The second wavelength region 35 is disposed at a position corresponding to the blue wavelength region 30B and the green wavelength region 30G, and the fourth wavelength region 54 is disposed at a position corresponding to the red wavelength region 30R.
 反射型カラーフィルター50の第1の波長領域34~第4の波長領域54の分光特性を図18に示す。図18において、図5に示す反射型カラーフィルター32の分光特性と同一構成物には同一符号を付して、その詳細な説明は省略する。 FIG. 18 shows spectral characteristics of the first wavelength region 34 to the fourth wavelength region 54 of the reflective color filter 50. In FIG. 18, the same components as those of the spectral characteristics of the reflective color filter 32 shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
 反射型カラーフィルター50において、第1の波長領域34は分光特性34aを有する。第1の波長領域34は青波長領域30Bを透過する光の一部を透過させない。第2の波長領域35は分光特性35aを有する。第2の波長領域35は、青波長領域30Bを透過する光と緑波長領域30Gを透過する光が重なる領域を含め、青波長領域30Bを透過する光の一部と緑波長領域30Gを透過する光の一部とを透過させない。
 第3の波長領域53は分光特性53aを有する。第3の波長領域53は、緑波長領域30Gを透過する光と赤波長領域30Rを透過する光が重なる領域を含め、緑波長領域30Gを透過する光の一部と赤波長領域30Rを透過する光の一部とを透過させない。
 第4の波長領域54は分光特性54aを有する。第4の波長領域54は、第3の波長領域53よりも赤波長領域30Rを透過する光の長波長側の光を透過させない。
In the reflective color filter 50, the first wavelength region 34 has a spectral characteristic 34a. The first wavelength region 34 does not transmit part of the light transmitted through the blue wavelength region 30B. The second wavelength region 35 has a spectral characteristic 35a. The second wavelength region 35 transmits part of the light transmitted through the blue wavelength region 30B and the green wavelength region 30G, including the region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. Do not transmit part of the light.
The third wavelength region 53 has a spectral characteristic 53a. The third wavelength region 53 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R including the region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light.
The fourth wavelength region 54 has a spectral characteristic 54a. The fourth wavelength region 54 does not transmit light on the longer wavelength side of the light transmitted through the red wavelength region 30R than the third wavelength region 53.
 反射型カラーフィルター50と上述の吸収型カラーフィルター30を用いた積層型カラーフィルター14は、図19に示すように、2つの第3の緑波長領域30Gと、第1の青波長領域30Bと、第3の赤波長領域30Rとで1つの画素領域31cが構成される。また、2つの第2の緑波長領域30Gと、第2の青波長領域30Bと、第4の赤波長領域30Rとで1つの画素領域31dが構成される。このように2種の画素領域31c、31dを有する。 As shown in FIG. 19, the multilayer color filter 14 using the reflective color filter 50 and the above-described absorption color filter 30 has two third green wavelength regions 30G 3 and a first blue wavelength region 30B 1. If, one pixel region 31c is composed of the third red wavelength region 30R 3. Further, two second green wavelength region 30G 2, and second blue wavelength region 30B 2, 1 single pixel region 31d is formed in the fourth red wavelength region 30R 4. Thus, it has two types of pixel regions 31c and 31d.
 積層型カラーフィルター14の画素領域31cの分光特性は、図20に示すように、第1の青波長領域30Bは分光特性36Bを有する。第2の青波長領域30Bは分光特性36Bを有する。第2の青波長領域30Bの方が、第1の青波長領域30Bよりも短波長側の光を透過させる。
 第2の緑波長領域30Gは分光特性36Gを有する。第3の緑波長領域30Gは分光特性36Gを有する。第3の緑波長領域30Gの方が、第2の緑波長領域30Gよりも短波長側の光を透過させる。
 第3の赤波長領域30Rは分光特性36Rを有する。第4の赤波長領域30Rは分光特性36Rを有する。第4の赤波長領域30Rの方が、第3の赤波長領域30Rよりも短波長側の光を透過させる。
 積層型カラーフィルター14の画素領域31dの分光特性は、図20に示すように、第2の青波長領域30Bは分光特性36Bを有する。第2の緑波長領域30Gは分光特性36Gを有する。第4の赤波長領域30Rは分光特性36Rを有する。
Spectral characteristics of the pixel region 31c of the laminated color filter 14, as shown in FIG. 20, a first blue wavelength region 30B 1 has a spectral characteristic 36B 1. The second blue wavelength region 30B 2 has the spectral characteristics 36B 2. It found the following second blue wavelength region 30B 2, and transmits light having a shorter wavelength than the first blue wavelength region 30B 1.
Second green wavelength region 30G 2 has a spectral characteristic 36G 2. The third green wavelength region 30G 3 has the spectral characteristics 36G 3. Towards the third green wavelength region 30G 3 is, to transmit light having a shorter wavelength than the second green wavelength region 30G 2.
The third red wavelength region 30R 3 has the spectral characteristics 36R 3. Fourth red wavelength region 30R 4 has the spectral characteristics 36R 4. It found the following fourth red wavelength region 30R 4, and transmits light of a shorter wavelength side than the third red wavelength region 30R 3.
Spectral characteristics of the pixel region 31d of the multilayer color filter 14, as shown in FIG. 20, a second blue wavelength region 30B 2 has the spectral characteristics 36B 2. Second green wavelength region 30G 2 has a spectral characteristic 36G 2. Fourth red wavelength region 30R 4 has the spectral characteristics 36R 4.
 図6および図20に示す分光特性から、積層型カラーフィルター14は、赤、青および緑の3原色のカラーフィルターに比して、赤波長領域、緑波長領域および青波長領域、について、それぞれ異なる波長領域の光を透過させることができる。すなわち、多階調化することができる。積層型カラーフィルター14は6階調である。これにより、例えば、青波長領域において、特定の波長領域を検出することができる。緑波長領域において、特定の波長領域を検出することができる。赤波長領域において、特定の波長領域を検出することができる。 From the spectral characteristics shown in FIGS. 6 and 20, the multilayer color filter 14 is different in the red wavelength region, the green wavelength region, and the blue wavelength region, respectively, as compared with the color filters of the three primary colors of red, blue, and green. Light in the wavelength region can be transmitted. That is, multi-gradation can be achieved. The laminated color filter 14 has 6 gradations. Thereby, for example, a specific wavelength region can be detected in the blue wavelength region. A specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region.
 積層型カラーフィルター14において、反射型カラーフィルター32は、図2に示す構成に限定されるものではなく、例えば、図21に示す構成でもよい。図21に示す反射型カラーフィルター51は、複数の第2の区画52を有し、分光特性が異なる8種の波長領域を有する。
 図21の反射型カラーフィルター51において、図2に示す反射型カラーフィルター32と同一構成物には同一符号を付して、その詳細な説明は省略する。
 図21に示す反射型カラーフィルター51も、上述の反射型カラーフィルター32と同じく、吸収型カラーフィルター30の第1の区画31と、反射型カラーフィルター50の第2の区画52を一致させて積層される。
 反射型カラーフィルター51は、分光特性が異なる8種の波長領域から重複することなく選択され、かつそれぞれ2種の波長領域で構成された4組の波長領域を有する。
 4組の波長領域として、図21では、第1の波長領域34と第5の波長領域55で構成された第1の組を有し、この場合、第1の波長領域34は青波長領域30Bに対応する位置に配置され、第5の波長領域55は緑波長領域30Gおよび赤波長領域30Rに対応する位置に配置される。
 また、第2の波長領域35と第6の波長領域56で構成された第2の組を有し、この場合、第2の波長領域35は青波長領域30Bに対応する位置に配置され、第6の波長領域56は緑波長領域30Gおよび赤波長領域30Rに対応する位置に配置される。
 また、第3の波長領域53と第7の波長領域57で構成された第3の組を有し、この場合、第7の波長領域57は赤波長領域30Rに対応する位置に配置され、第7の波長領域57は青波長領域30Bおよび緑波長領域30Gに対応する位置に配置される。
 また、第4の波長領域54と第8の波長領域58で構成された第4の組を有し、この場合、第8の波長領域58は赤波長領域30Rに対応する位置に配置され、第8の波長領域58は青波長領域30Bおよび緑波長領域30Gに対応する位置に配置される。
In the multilayer color filter 14, the reflective color filter 32 is not limited to the configuration shown in FIG. 2, but may be the configuration shown in FIG. A reflective color filter 51 shown in FIG. 21 has a plurality of second sections 52 and eight wavelength regions having different spectral characteristics.
In the reflective color filter 51 of FIG. 21, the same components as those of the reflective color filter 32 shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
The reflection type color filter 51 shown in FIG. 21 is also laminated in such a manner that the first section 31 of the absorption color filter 30 and the second section 52 of the reflection type color filter 50 coincide with each other like the reflection color filter 32 described above. Is done.
The reflection type color filter 51 has four sets of wavelength regions that are selected without overlapping from eight wavelength regions having different spectral characteristics, and are configured by two types of wavelength regions, respectively.
As four sets of wavelength regions, FIG. 21 includes a first set including a first wavelength region 34 and a fifth wavelength region 55. In this case, the first wavelength region 34 is a blue wavelength region 30B. The fifth wavelength region 55 is disposed at a position corresponding to the green wavelength region 30G and the red wavelength region 30R.
In addition, it has a second set composed of a second wavelength region 35 and a sixth wavelength region 56. In this case, the second wavelength region 35 is disposed at a position corresponding to the blue wavelength region 30B, and Six wavelength regions 56 are arranged at positions corresponding to the green wavelength region 30G and the red wavelength region 30R.
The third wavelength region 53 and the seventh wavelength region 57 have a third set. In this case, the seventh wavelength region 57 is disposed at a position corresponding to the red wavelength region 30R, and 7 wavelength region 57 is arranged at a position corresponding to blue wavelength region 30B and green wavelength region 30G.
In addition, the fourth set includes a fourth wavelength region 54 and an eighth wavelength region 58. In this case, the eighth wavelength region 58 is disposed at a position corresponding to the red wavelength region 30R. The eight wavelength regions 58 are arranged at positions corresponding to the blue wavelength region 30B and the green wavelength region 30G.
 反射型カラーフィルター51の第1の波長領域34~第8の波長領域58の分光特性を図22および図23に示す。図22および図23において、図5に示す反射型カラーフィルター32の分光特性と同一構成物には同一符号を付して、その詳細な説明は省略する。 The spectral characteristics of the first to eighth wavelength regions 34 to 58 of the reflective color filter 51 are shown in FIGS. 22 and 23, the same components as those of the spectral characteristics of the reflective color filter 32 shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
 反射型カラーフィルター51において、図22に示すように第1の波長領域34は分光特性34aを有する。第1の波長領域34は青波長領域30Bを透過する光の一部を透過させない。第3の波長領域53は分光特性53aを有する。第3の波長領域53は青波長領域30Bを透過する光と緑波長領域30Gを透過する光が重なる領域を含め、青波長領域30Bを透過する光の一部と緑波長領域30Gを透過する光の一部とを透過させない。
 第5の波長領域55は分光特性55aを有する。第5の波長領域55は、緑波長領域30Gを透過する光と赤波長領域30Rを透過する光が重なる領域を含め、緑波長領域30Gを透過する光の一部と赤波長領域30Rを透過する光の一部とを透過させない。
 第7の波長領域57は分光特性57aを有する。第7の波長領域57は、赤波長領域30Rを透過する光の一部を透過させない。
In the reflective color filter 51, as shown in FIG. 22, the first wavelength region 34 has a spectral characteristic 34a. The first wavelength region 34 does not transmit part of the light transmitted through the blue wavelength region 30B. The third wavelength region 53 has a spectral characteristic 53a. The third wavelength region 53 includes a part of the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G, including a region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. It does not transmit part of.
The fifth wavelength region 55 has a spectral characteristic 55a. The fifth wavelength region 55 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R, including a region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light.
The seventh wavelength region 57 has spectral characteristics 57a. The seventh wavelength region 57 does not transmit part of the light transmitted through the red wavelength region 30R.
 図23に示すように第2の波長領域35は分光特性35aを有する。第2の波長領域35は第1の波長領域34よりも青波長領域30Bを透過する光の長波長側の光を透過させない。
 第4の波長領域54は分光特性54aを有する。第4の波長領域54は青波長領域30Bを透過する光と緑波長領域30Gを透過する光が重なる領域を含め、青波長領域30Bを透過する光の一部と緑波長領域30Gを透過する光の一部とを透過させない。第4の波長領域54は第3の波長領域53よりも長波長側の光を透過させない。
 第6の波長領域56は分光特性56aを有する。第6の波長領域56は、緑波長領域30Gを透過する光と赤波長領域30Rを透過する光が重なる領域を含め、緑波長領域30Gを透過する光の一部と赤波長領域30Rを透過する光の一部とを透過させない。第6の波長領域56は第5の波長領域55よりも長波長側の光を透過させない。
 第8の波長領域58は分光特性58aを有する。第8の波長領域58は、赤波長領域30Rを透過する光の一部を透過させる。第8の波長領域58は第7の波長領域57よりも長波長側の光を透過させる。
As shown in FIG. 23, the second wavelength region 35 has a spectral characteristic 35a. The second wavelength region 35 does not transmit light on the longer wavelength side of the light transmitted through the blue wavelength region 30B than the first wavelength region 34.
The fourth wavelength region 54 has a spectral characteristic 54a. The fourth wavelength region 54 includes a portion of the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G, including a region where light transmitted through the blue wavelength region 30B and light transmitted through the green wavelength region 30G overlap. It does not transmit part of. The fourth wavelength region 54 does not transmit light longer than the third wavelength region 53.
The sixth wavelength region 56 has spectral characteristics 56a. The sixth wavelength region 56 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R including the region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light. The sixth wavelength region 56 does not transmit light on the longer wavelength side than the fifth wavelength region 55.
The eighth wavelength region 58 has spectral characteristics 58a. The eighth wavelength region 58 transmits part of the light transmitted through the red wavelength region 30R. The eighth wavelength region 58 transmits light longer than the seventh wavelength region 57.
 反射型カラーフィルター51と上述の吸収型カラーフィルター30を用いた積層型カラーフィルター14は、図24に示すように、2つの第5の緑波長領域30Gと、第1の青波長領域30Bと、第5の赤波長領域30Rとで1つの画素領域31eが構成される。また、2つの第6の緑波長領域30Gと、第2の青波長領域30Bと、第6の赤波長領域30Rとで1つの画素領域31fが構成される。
 2つの第3の緑波長領域30Gと、第3の青波長領域30Bと、第7の赤波長領域30Rとで1つの画素領域31gが構成される。2つの第4の緑波長領域30Gと、第4の青波長領域30Bと、第8の赤波長領域30Rとで1つの画素領域31hが構成される。このように4種の画素領域31e、31f、31g、31hを有する。
As shown in FIG. 24, the multilayer color filter 14 using the reflective color filter 51 and the above-described absorption color filter 30 includes two fifth green wavelength regions 30G 5 and a first blue wavelength region 30B 1. If, one pixel region 31e is composed of a red wavelength region 30R 5 of the fifth. Further, two of the sixth green wavelength region 30G 6 of a second blue wavelength region 30B 2, 1 single pixel area 31f is composed of a red wavelength region 30R 6 sixth.
And two third green wavelength region 30G 3, and the third the blue wavelength region 30B 3, 1 single pixel area 31g is constituted by a red wavelength region 30R 7 of the seventh. And two fourth green wavelength region 30G 4, the fourth blue wavelength region 30B 4, 1 single pixel area 31h is composed of a red wavelength region 30R 8 of the eighth. Thus, it has four types of pixel regions 31e, 31f, 31g, and 31h.
 積層型カラーフィルター14の画素領域31eの分光特性は、図25に示すように、第1の青波長領域30Bは分光特性36Bを有する。第5の緑波長領域30Gは分光特性36Gを有する。第5の赤波長領域30Rは分光特性36Rを有する。
 積層型カラーフィルター14の画素領域31fの分光特性は、図26に示すように、第2の青波長領域30Bは分光特性36Bを有する。第6の緑波長領域30Gは分光特性36Gを有する。第6の赤波長領域30Rは分光特性36Rを有する。
 積層型カラーフィルター14の画素領域31gの分光特性は、図25に示すように、第3の青波長領域30Bは分光特性36Bを有する。第3の緑波長領域30Gは分光特性36Gを有する。第7の赤波長領域30Rは分光特性36Rを有する。
 積層型カラーフィルター14の画素領域31hの分光特性は、図26に示すように、第4の青波長領域30Bは分光特性36Bを有する。第4の緑波長領域30Gは分光特性36Gを有する。第8の赤波長領域30Rは分光特性36Rを有する。
Spectral characteristics of the pixel region 31e of the stacked color filter 14, as shown in FIG. 25, a first blue wavelength region 30B 1 has a spectral characteristic 36B 1. Green wavelength region 30G 5 of the fifth has a spectral characteristic 36G 5. Red wavelength region 30R 5 of the fifth has a spectral characteristic 36R 5.
Spectral characteristics of the pixel region 31f of the laminated color filter 14, as shown in FIG. 26, a second blue wavelength region 30B 2 has the spectral characteristics 36B 2. Green wavelength region 30G 6 sixth having spectral characteristics 36G 6. Red wavelength region 30R 6 of the sixth having spectral characteristics 36R 6.
Spectral characteristics of the pixel region 31g of the laminated color filter 14, as shown in FIG. 25, the third the blue wavelength region 30B 3 has a spectral characteristic 36B 3. The third green wavelength region 30G 3 has the spectral characteristics 36G 3. Red wavelength region 30R 7 of the seventh having spectral characteristics 36R 7.
Spectral characteristics of the pixel region 31h of the multilayer color filter 14, as shown in FIG. 26, the fourth blue wavelength region 30B 4 has a spectral characteristic 36B 4. Fourth green wavelength region 30G 4 of having the spectral characteristics 36G 4. Red wavelength region 30R 8 of the eighth having spectral characteristics 36R 8.
 図6、図25および図26に示す分光特性から、積層型カラーフィルター14は、赤、青および緑の3原色のカラーフィルターに比して、赤波長領域、緑波長領域および青波長領域、について、それぞれ異なる波長領域の光を透過させることができる。すなわち、多階調化することができる。積層型カラーフィルター14は12階調である。この場合も、積層型カラーフィルター14の種数は、吸収型カラーフィルター30の波長領域の種数と、反射型カラーフィルター51の種数の合計よりも多い。これにより、例えば、青波長領域において、特定の波長領域を検出することができる。緑波長領域において、特定の波長領域を検出することができる。赤波長領域において、特定の波長領域を検出することができる。 From the spectral characteristics shown in FIG. 6, FIG. 25 and FIG. 26, the laminated color filter 14 has a red wavelength region, a green wavelength region, and a blue wavelength region, as compared with the color filters of the three primary colors of red, blue and green. , Light in different wavelength regions can be transmitted. That is, multi-gradation can be achieved. The laminated color filter 14 has 12 gradations. Also in this case, the number of species of the multilayer color filter 14 is larger than the total of the species of the wavelength region of the absorption color filter 30 and the species of the reflective color filter 51. Thereby, for example, a specific wavelength region can be detected in the blue wavelength region. A specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region.
 図1に示す光学センサ10は、上述のように3原色の吸収型カラーフィルター30を用いたが、これに限定されるものではなく、図27に示す光学センサ11のように赤外光を検出可能なものであってもよい。
 図27に示す光学センサ11において、図1に示す光学センサ10と同一構成物には同一符号を付して、その詳細な説明は省略する。
 図27は本発明の実施形態のカラーフィルターを有する光学センサの他の構成を示す模式的断面図であり、図28は本発明の実施形態のカラーフィルターの吸収型カラーフィルターの他の構成を示す模式図であり、図29は本発明の実施形態のカラーフィルターの反射型カラーフィルターの他の構成を示す模式図である。図30は本発明の実施形態のカラーフィルターの吸収型カラーフィルターの分光特性を示すグラフであり、図31は本発明の実施形態のカラーフィルターの反射型カラーフィルターの分光特性を示すグラフである。
The optical sensor 10 shown in FIG. 1 uses the absorption color filter 30 of the three primary colors as described above. However, the present invention is not limited to this, and infrared light is detected like the optical sensor 11 shown in FIG. It may be possible.
In the optical sensor 11 shown in FIG. 27, the same components as those of the optical sensor 10 shown in FIG.
27 is a schematic cross-sectional view showing another configuration of the optical sensor having the color filter according to the embodiment of the present invention, and FIG. 28 shows another configuration of the absorption type color filter of the color filter according to the embodiment of the present invention. FIG. 29 is a schematic diagram showing another configuration of the reflective color filter of the color filter according to the embodiment of the present invention. FIG. 30 is a graph showing spectral characteristics of the absorption type color filter of the color filter according to the embodiment of the present invention, and FIG. 31 is a graph showing spectral characteristics of the reflective color filter of the color filter according to the embodiment of the present invention.
 光学センサ11は、図1に示す光学センサ10に比して、赤外光を検出可能である点が異なり、フォトダイオード24は赤外光に対して感度を有する。また、光学センサ11は、図1に示す光学センサ10に比して、吸収型カラーフィルター30と反射型カラーフィルター32の構成が異なる。
 吸収型カラーフィルター30は、図28に示すように、4つの帯状の第1の区画31を有する。第1の区画31に、それぞれ青波長領域30Bと緑波長領域30Gと赤波長領域30Rと赤外波長領域30IRが、この順で配置されている。赤外波長領域30IRは、図30に示す分光特性33IRを有する。赤外波長領域30IRでは、青波長領域30Bの光と緑波長領域30Gの光と赤波長領域30Rの光を透過させずに、赤波長領域30Rよりも長波長側の光だけを透過させる。赤外波長領域30IRを透過した赤外光が、赤外波長領域30IRの下にあるフォトダイオード24に到達し、フォトダイオード24にて赤外光が検出される。光学センサ11では、3原色のカラー画像と、赤外光画像を得ることができる。
The optical sensor 11 is different from the optical sensor 10 shown in FIG. 1 in that infrared light can be detected, and the photodiode 24 has sensitivity to infrared light. The optical sensor 11 is different in the configuration of the absorption color filter 30 and the reflection color filter 32 from the optical sensor 10 shown in FIG.
As shown in FIG. 28, the absorption color filter 30 has four strip-shaped first sections 31. In the first section 31, a blue wavelength region 30B, a green wavelength region 30G, a red wavelength region 30R, and an infrared wavelength region 30IR are arranged in this order. The infrared wavelength region 30IR has a spectral characteristic 33IR shown in FIG. In the infrared wavelength region 30IR, the light in the blue wavelength region 30B, the light in the green wavelength region 30G, and the light in the red wavelength region 30R are not transmitted, but only light on the longer wavelength side than the red wavelength region 30R is transmitted. The infrared light transmitted through the infrared wavelength region 30IR reaches the photodiode 24 below the infrared wavelength region 30IR, and the infrared light is detected by the photodiode 24. The optical sensor 11 can obtain a color image of three primary colors and an infrared light image.
 赤外波長領域30IRは、可視光をカットして近赤外光を透過する可視光カットフィルターで構成することができる。可視光カットフィルターは可視光全域を吸収するための複数の色素を含有する。近赤外光とは、波長780nm~2000nm程度の光のことである。なお、上述したように、青波長領域30B、緑波長領域30Gおよび赤波長領域30Rそれぞれの分光特性を実現するためには、赤外線吸収剤または赤外線吸収層の併用が必要となるが、赤外波長領域30IRにおいては、赤外線を透過する必要があることから、赤外線吸収剤を青波長領域30B、緑波長領域30Gおよび赤波長領域30Rにのみ含有させるか、赤外線吸収層を青波長領域30B、緑波長領域30Gおよび赤波長領域30Rにのみ重なるように配置する必要がある。赤外線吸収層を青波長領域30B、緑波長領域30Gおよび赤波長領域30Rにのみ重なるように配置する場合は、赤外波長領域30IRに赤外線吸収層が重ならないように、何らかの方法で赤外線吸収層をパターニングする必要があるが、斜め光による画素間の混色(クロストーク)の影響を考えるとなるべく近接した位置に設置することが好ましい。パターニング方法については、リソグラフィーおよびエッチング等の手法の他に、本発明に用いられている光反応性キラル剤を用いた波長変換パターニングも利用可能である。 The infrared wavelength region 30IR can be composed of a visible light cut filter that cuts visible light and transmits near infrared light. The visible light cut filter contains a plurality of dyes for absorbing the entire visible light region. Near-infrared light is light having a wavelength of about 780 nm to 2000 nm. As described above, in order to realize the spectral characteristics of the blue wavelength region 30B, the green wavelength region 30G, and the red wavelength region 30R, it is necessary to use an infrared absorber or an infrared absorption layer in combination. In the region 30IR, since it is necessary to transmit infrared rays, an infrared absorber is contained only in the blue wavelength region 30B, the green wavelength region 30G, and the red wavelength region 30R, or the infrared absorption layer is included in the blue wavelength region 30B, green wavelength. It is necessary to arrange so as to overlap only the region 30G and the red wavelength region 30R. When the infrared absorbing layer is disposed so as to overlap only the blue wavelength region 30B, the green wavelength region 30G, and the red wavelength region 30R, the infrared absorbing layer is formed by some method so that the infrared absorbing layer does not overlap the infrared wavelength region 30IR. Although it is necessary to perform patterning, it is preferable to install the pixel at a position as close as possible considering the influence of color mixture (crosstalk) between pixels due to oblique light. As the patterning method, wavelength conversion patterning using the photoreactive chiral agent used in the present invention can be used in addition to techniques such as lithography and etching.
 反射型カラーフィルター32は、図29に示すように、第1の波長領域34~第10の波長領域60の10種の波長領域を有する。
 第1の波長領域34および第2の波長領域35は、吸収型カラーフィルター30の青波長領域30Bに対応する位置に配置される。
 第3の波長領域53および第4の波長領域54は、吸収型カラーフィルター30の青波長領域30Bおよび緑波長領域30Gに跨り、かつ重なる位置に配置される。
 第5の波長領域55および第6の波長領域56は、吸収型カラーフィルター30の緑波長領域30Gおよび赤波長領域30Rに跨り、かつ重なる位置に配置される。
 第7の波長領域57および第8の波長領域58は、吸収型カラーフィルター30の赤波長領域30Rおよび赤外波長領域30IRに跨り、かつ重なる位置に配置される。
 第9の波長領域59および第10の波長領域60は、吸収型カラーフィルター30の青波長領域30Bに重なる位置に配置される。
As shown in FIG. 29, the reflective color filter 32 has ten wavelength regions of a first wavelength region 34 to a tenth wavelength region 60.
The first wavelength region 34 and the second wavelength region 35 are arranged at positions corresponding to the blue wavelength region 30 </ b> B of the absorption color filter 30.
The third wavelength region 53 and the fourth wavelength region 54 are disposed at positions overlapping and overlapping the blue wavelength region 30B and the green wavelength region 30G of the absorption color filter 30.
The fifth wavelength region 55 and the sixth wavelength region 56 are disposed at positions that overlap and overlap the green wavelength region 30G and the red wavelength region 30R of the absorption color filter 30.
The seventh wavelength region 57 and the eighth wavelength region 58 are disposed at positions that overlap and overlap the red wavelength region 30R and the infrared wavelength region 30IR of the absorption color filter 30.
The ninth wavelength region 59 and the tenth wavelength region 60 are disposed at positions overlapping the blue wavelength region 30B of the absorption color filter 30.
 図31に示すように、第1の波長領域34は分光特性34aを有する。第1の波長領域34は、青波長領域30Bを透過する光の一部を透過させない。
 第3の波長領域53は分光特性53aを有する。第3の波長領域53は、青波長領域30Bを透過する光と緑波長領域30Gを透過する光が重なる領域を含め、青波長領域30Bを透過する光の一部と緑波長領域30Gを透過する光の一部とを透過させない。
 第5の波長領域55は分光特性55aを有する。第5の波長領域55は、緑波長領域30Gを透過する光と赤波長領域30Rを透過する光が重なる領域を含め、緑波長領域30Gを透過する光の一部と赤波長領域30Rを透過する光の一部とを透過させない。
 第7の波長領域57は分光特性57aを有する。第7の波長領域57は、赤波長領域30Rを透過する光の一部と赤外波長領域30IRを透過する光の一部を透過させない。
 第9の波長領域59は分光特性59aを有する。第9の波長領域59は、赤外波長領域30IRを透過する光の一部を透過させない。
As shown in FIG. 31, the first wavelength region 34 has a spectral characteristic 34a. The first wavelength region 34 does not transmit part of the light transmitted through the blue wavelength region 30B.
The third wavelength region 53 has a spectral characteristic 53a. The third wavelength region 53 transmits part of the light transmitted through the blue wavelength region 30B and the green wavelength region 30G, including the region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. Do not transmit part of the light.
The fifth wavelength region 55 has a spectral characteristic 55a. The fifth wavelength region 55 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R, including a region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light.
The seventh wavelength region 57 has spectral characteristics 57a. The seventh wavelength region 57 does not transmit part of the light transmitted through the red wavelength region 30R and part of the light transmitted through the infrared wavelength region 30IR.
The ninth wavelength region 59 has a spectral characteristic 59a. The ninth wavelength region 59 does not transmit part of the light transmitted through the infrared wavelength region 30IR.
 図32に示すように、第2の波長領域35は分光特性35aを有する。第2の波長領域35は、青波長領域30Bを透過する光の一部を透過させない。
 第4の波長領域54は分光特性54aを有する。第4の波長領域54は、青波長領域30Bを透過する光と緑波長領域30Gを透過する光が重なる領域を含め、青波長領域30Bを透過する光の一部と緑波長領域30Gを透過する光の一部とを透過させない。
 第6の波長領域56は分光特性56aを有する。第6の波長領域56は、緑波長領域30Gを透過する光と赤波長領域30Rを透過する光が重なる領域を含め、緑波長領域30Gを透過する光の一部と赤波長領域30Rを透過する光の一部とを透過させない。
 第8の波長領域58は分光特性58aを有する。第8の波長領域58は、赤波長領域30Rを透過する光の一部と赤外波長領域30IRを透過する光の一部を透過させない。
 第10の波長領域60は分光特性60aを有する。第10の波長領域60は、赤外波長領域30IRを透過する光の一部を透過させない。
As shown in FIG. 32, the second wavelength region 35 has a spectral characteristic 35a. The second wavelength region 35 does not transmit part of the light transmitted through the blue wavelength region 30B.
The fourth wavelength region 54 has a spectral characteristic 54a. The fourth wavelength region 54 transmits part of the light transmitted through the blue wavelength region 30B and the green wavelength region 30G, including a region where the light transmitted through the blue wavelength region 30B and the light transmitted through the green wavelength region 30G overlap. Do not transmit part of the light.
The sixth wavelength region 56 has spectral characteristics 56a. The sixth wavelength region 56 transmits a part of the light transmitted through the green wavelength region 30G and the red wavelength region 30R including the region where the light transmitted through the green wavelength region 30G and the light transmitted through the red wavelength region 30R overlap. Do not transmit part of the light.
The eighth wavelength region 58 has spectral characteristics 58a. The eighth wavelength region 58 does not transmit part of the light transmitted through the red wavelength region 30R and part of the light transmitted through the infrared wavelength region 30IR.
The tenth wavelength region 60 has a spectral characteristic 60a. The tenth wavelength region 60 does not transmit part of the light transmitted through the infrared wavelength region 30IR.
 上述の吸収型カラーフィルター30と反射型カラーフィルター32とを用いた積層型カラーフィルター14は、図33に示すように、第1の青波長領域30B~第4の青波長領域30Bで1つの画素領域37aが構成され、第3の青波長領域30B~第6の青波長領域30Bで1つの画素領域37bが構成され、第5の赤波長領域30R~第8の赤波長領域30Rで1つの画素領域37cが構成され、第7の赤外波長領域30IR7~第10の赤外波長領域30IR10で1つの画素領域37dが構成される。 As shown in FIG. 33, the laminated color filter 14 using the absorption color filter 30 and the reflection color filter 32 is 1 in the first blue wavelength region 30B 1 to the fourth blue wavelength region 30B 4 . One pixel region 37a is configured, and one pixel region 37b is configured by the third blue wavelength region 30B 3 to the sixth blue wavelength region 30B 6 , and the fifth red wavelength region 30R 5 to the eighth red wavelength region. one pixel region 37c at 30R 8 is formed, one pixel region 37d in the infrared wavelength region 30IR 10 of the seventh infrared wavelength region 30IR7 ~ tenth is constructed.
 図34に示すように、積層型カラーフィルター14の第1の青波長領域30Bは分光特性36Bを有する。第3の青波長領域30Bは分光特性36Bを有する。第3の緑波長領域30Gは分光特性36Gを有する。第5の緑波長領域30Gは分光特性36Gを有する。第5の赤波長領域30Rは分光特性36Rを有する。第7の赤波長領域30Rは分光特性36Rを有する。
 第7の赤外波長領域30IRは分光特性36IRを有する。第9の赤外波長領域30IRは分光特性36IRを有する。
As shown in FIG. 34, a first blue wavelength region 30B 1 of the laminated color filter 14 has a spectral characteristic 36B 1. Third blue wavelength region 30B 3 has a spectral characteristic 36B 3. The third green wavelength region 30G 3 has the spectral characteristics 36G 3. Green wavelength region 30G 5 of the fifth has a spectral characteristic 36G 5. Red wavelength region 30R 5 of the fifth has a spectral characteristic 36R 5. Red wavelength region 30R 7 of the seventh having spectral characteristics 36R 7.
Infrared wavelength region 30IR 7 of the seventh having spectral characteristics 36IR 7. The ninth infrared wavelength region 30IR 9 has a spectral characteristic 36IR 9 .
 図35に示すように、積層型カラーフィルター14の第2の青波長領域30Bは分光特性36Bを有する。第4の青波長領域30Bは分光特性36Bを有する。第4の緑波長領域30Gは分光特性36Gを有する。第6の緑波長領域30Gは分光特性36Gを有する。第6の赤波長領域30Rは分光特性36Rを有する。第8の赤波長領域30Rは分光特性36Rを有する。
 第8の赤外波長領域30IRは分光特性36IRを有する。第10の赤外波長領域30IR10は分光特性36IR10を有する。
As shown in FIG. 35, a second blue wavelength region 30B 2 of the laminated color filter 14 has a spectral characteristic 36B 2. Fourth blue wavelength region 30B 4 has a spectral characteristic 36B 4. Fourth green wavelength region 30G 4 of having the spectral characteristics 36G 4. Green wavelength region 30G 6 sixth having spectral characteristics 36G 6. Red wavelength region 30R 6 of the sixth having spectral characteristics 36R 6. Red wavelength region 30R 8 of the eighth having spectral characteristics 36R 8.
Infrared wavelength region 30IR 8 of the eighth having spectral characteristics 36IR 8. Infrared wavelength region 30IR 10 of the 10 have a spectral characteristic 36IR 10.
 図30、図34および図35に示す分光特性から、積層型カラーフィルター14は、赤、青および緑の3原色と赤外波長領域のカラーフィルターに比して、赤波長領域、青波長領域、および緑波長領域ならびに赤外波長領域について、それぞれ異なる波長領域の光を透過させることができる。すなわち、多階調化することができる。積層型カラーフィルター14は16階調である。この場合も、積層型カラーフィルター14の種数は、吸収型カラーフィルター30の波長領域の種数と、反射型カラーフィルター32の種数の合計よりも多い。これにより、例えば、青波長領域において、特定の波長領域を検出することができる。緑波長領域において、特定の波長領域を検出することができる。赤波長領域において、特定の波長領域を検出することができる。赤外波長領域においても、特定の波長領域を検出することができる。 From the spectral characteristics shown in FIG. 30, FIG. 34, and FIG. 35, the laminated color filter 14 has a red wavelength region, a blue wavelength region, and a color filter in the three primary colors of red, blue, and green and an infrared wavelength region. Further, light in different wavelength regions can be transmitted for the green wavelength region and the infrared wavelength region. That is, multi-gradation can be achieved. The laminated color filter 14 has 16 gradations. Also in this case, the number of species of the multilayer color filter 14 is larger than the total of the species of the wavelength region of the absorption color filter 30 and the species of the reflective color filter 32. Thereby, for example, a specific wavelength region can be detected in the blue wavelength region. A specific wavelength region can be detected in the green wavelength region. A specific wavelength region can be detected in the red wavelength region. Even in the infrared wavelength region, a specific wavelength region can be detected.
 上述の反射型カラーフィルターは、いずれも1層としたが、これに限定されるものではなく、複数層でもよい。例えば、図17に示す反射型カラーフィルター50を、図36に示す第1の反射型フィルター50aと、図37に示す第2の反射型フィルター50bとで構成し、かつ第1の反射型フィルター50aと第2の反射型フィルター50bを積層したものとしてもよい。例えば、第1の反射型フィルター50aは右円偏光反射特性を有するものであり、第2の反射型フィルター50bは左円偏光反射特性を有するものである。 The above-mentioned reflection type color filters are all formed of one layer, but the present invention is not limited to this, and a plurality of layers may be used. For example, the reflective color filter 50 shown in FIG. 17 is composed of a first reflective filter 50a shown in FIG. 36 and a second reflective filter 50b shown in FIG. 37, and the first reflective filter 50a. And the second reflective filter 50b may be laminated. For example, the first reflective filter 50a has a right circular polarization reflection characteristic, and the second reflection filter 50b has a left circular polarization reflection characteristic.
 図36の第1の反射型フィルター50aは、図17に示す反射型カラーフィルター50の第2の波長領域35と第3の波長領域53を有するものであり、複数の波長領域を有する。この場合、第1の反射型フィルター50aは、複数の第2の区画62を有し、第2の区画62毎に、第2の波長領域35または第3の波長領域53が配置されている。
 図37に示す第2の反射型フィルター50bは、図17に示す反射型カラーフィルター50の第1の波長領域34と第4の波長領域54を有するものである。この場合でも、第2の反射型フィルター50bは、複数の第2の区画64を有し、第2の区画64毎に、第1の波長領域34または第4の波長領域54は配置されている。
 第1の反射型フィルター50aの第2の区画62と、第2の反射型フィルター50bの第2の区画64を一致させて、第1の反射型フィルター50aと第2の反射型フィルター50bを積層することにより、図17に示す反射型カラーフィルター50と同じ構成となり、反射型カラーフィルター50と同様の機能を有する。
 なお、第1の反射型フィルター50aと第2の反射型フィルター50bを用いることで、第1の反射型フィルター50aと第2の反射型フィルター50bは波長領域の種数が少ないため、製造する際の露光回数を減らすことができ、製造工程を簡素化することができる。
The first reflective filter 50a in FIG. 36 has the second wavelength region 35 and the third wavelength region 53 of the reflective color filter 50 shown in FIG. 17, and has a plurality of wavelength regions. In this case, the first reflective filter 50 a has a plurality of second sections 62, and the second wavelength region 35 or the third wavelength region 53 is arranged for each second section 62.
The second reflective filter 50b shown in FIG. 37 has the first wavelength region 34 and the fourth wavelength region 54 of the reflective color filter 50 shown in FIG. Even in this case, the second reflective filter 50 b has a plurality of second sections 64, and the first wavelength region 34 or the fourth wavelength region 54 is arranged for each second section 64. .
The first reflective filter 50a and the second reflective filter 50b are stacked such that the second compartment 62 of the first reflective filter 50a and the second compartment 64 of the second reflective filter 50b are matched. Thus, the same configuration as that of the reflective color filter 50 shown in FIG. 17 is obtained, and the same function as that of the reflective color filter 50 is provided.
In addition, when the first reflective filter 50a and the second reflective filter 50b are used, the first reflective filter 50a and the second reflective filter 50b have a small number of species in the wavelength region. The number of exposures can be reduced, and the manufacturing process can be simplified.
 本発明は、基本的に以上のように構成されるものである。以上、本発明のカラーフィルター、キット、カラーフィルターの製造方法および光学センサについて詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The color filter, kit, color filter manufacturing method, and optical sensor of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiment, and various improvements can be made without departing from the gist of the present invention. Of course, changes may be made.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
[反射型カラーフィルターの作製]
 本発明に記載の分光特性が実現可能かどうかを確かめるため、ガラス基板上に反射型カラーフィルターを作製し、分光を評価した。分光スペクトルの測定には、島津製作所(株)製分光光度計UV-3100PCを用いた。
[Production of reflective color filters]
In order to confirm whether or not the spectral characteristics described in the present invention can be realized, a reflective color filter was produced on a glass substrate, and spectroscopy was evaluated. A spectrophotometer UV-3100PC manufactured by Shimadzu Corporation was used for the measurement of the spectroscopic spectrum.
<塗布液(R1)の調製>
 化合物(9)、化合物(11)、光反応性右旋回性キラル剤1、フッ素系水平配向剤1、重合開始剤、重合禁止剤、および、溶剤を混合し、下記組成の塗布液(R1)を調製した。なお、化合物(9)および化合物(11)は、上述した例示化合物に該当し、化合物(11)のXは2である。
・化合物(9)                      80質量部
・化合物(11)                     20質量部
・下記光反応性右旋回性キラル剤1            5.4質量部
・下記フッ素系水平配向剤1               0.1質量部
・重合開始剤IRGACURE819(BASF社製)4質量部
・重合禁止剤IRGANOX1010(BASF社製) 1質量部
・溶剤(シクロヘキサノン)       溶質濃度が40質量%となる量
<Preparation of coating liquid (R1)>
Compound (9), compound (11), photoreactive right-turning chiral agent 1, fluorine-based horizontal alignment agent 1, polymerization initiator, polymerization inhibitor, and solvent are mixed, and a coating liquid (R1) having the following composition is mixed. ) Was prepared. The compound (9) and the compound (11), corresponds to the exemplified compounds described above, X 1 of the compound (11) is two.
-Compound (9) 80 parts by mass-Compound (11) 20 parts by mass-Photoreactive right-turning chiral agent 1 5.4 parts by mass-Fluorine-based horizontal alignment agent 1 below 0.1 part by mass-Polymerization initiator IRGACURE819 (manufactured by BASF) 4 parts by mass, polymerization inhibitor IRGANOX1010 (manufactured by BASF) 1 part by mass, solvent (cyclohexanone) Amount at which the solute concentration is 40% by mass
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<塗布液(R2)の調製>
塗布液R1の調製における光反応性右旋回キラル剤1を下記光反応性左旋回性キラル剤1に変更した以外は、同様の組成にて、塗布液(L2)を調製した。
<Preparation of coating solution (R2)>
A coating solution (L2) was prepared with the same composition except that the photoreactive right-turning chiral agent 1 in the preparation of the coating solution R1 was changed to the photoreactive left-turning chiral agent 1 described below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<光配向膜付きガラス基板(P1)の作製>
 特開2012-155308号公報、実施例3の記載を参考に、光配向膜用塗布液1を調製した。ガラス基板上に、調製した光配向膜用塗布液1を、スピンコート法によって塗布し、光配向膜形成用膜1を形成した。得られた光配向膜形成用膜1に対し、ワイヤーグリッド偏光子を介して、偏光紫外線照射(300mJ/cm、750W超高圧水銀ランプ使用)することで、光配向膜付きガラス基板P1を形成した。
<Production of glass substrate with photo-alignment film (P1)>
With reference to the description in Example 3 of JP 2012-155308 A, a coating solution 1 for a photo-alignment film was prepared. On the glass substrate, the prepared coating liquid 1 for photo-alignment film was applied by a spin coating method to form the photo-alignment film-forming film 1. To the optical alignment film formation film 1 obtained through the wire grid polarizer, by polarized UV irradiation (300mJ / cm 2, 750W super high pressure mercury lamp used), forming the photo-alignment film-attached glass substrate P1 did.
<反射型カラーフィルター(RCF1)の作製>
 光配向膜付きガラス基板P1に対し、塗布液R1をスピンコート塗布し、膜厚5μmとなるように塗布膜を形成した。塗布膜が配置された光配向膜付きガラス基板P1を80℃のホットプレート上で1分間加熱し、溶媒を乾燥除去するとともにコレステリック配向状態を形成した後、HOYA-SCHOTT社製EXECURE3000-Wを用いて、室温、窒素雰囲気下でフォトマスクを介して、照度30mW/cmのUV(ultraviolet)光を10秒間照射し、領域F1の配向を固定化した。次いで、フォトマスクを除去し、空気下で照度2mW/cmのUV光を50秒間(100mJ/cm)照射した後、80℃のホットプレート上で1分間加熱することで、固定化されていない部分の反射波長を長波長側に変換した後に、再度、室温、窒素雰囲気下でフォトマスクを介して、照度30mW/cmのUV光を10秒間照射し、領域F1とは異なる領域F2の配向を固定化した。次いで、フォトマスクを除去し、空気下で照度2mW/cmのUV光を50秒間(100mJ/cm)照射した後、80℃のホットプレート上で1分間加熱することで、固定化されていない部分の反射波長を長波長側に変換した後に、再度、室温、窒素雰囲気下でフォトマスクを介して、照度30mW/cmのUV光を10秒間照射し、領域F1および領域F2とは異なる領域F3の配向を固定化した。次いで、フォトマスクを除去し、空気下で照度2mW/cmのUV光を50秒間(100mJ/cm)照射した後、80℃のホットプレート上で1分間加熱することで、固定化されていない部分の反射波長を長波長側に変換した後に、再度、室温、窒素雰囲気下で、照度30mW/cmのUV光を10秒間照射し、領域F1、領域F2および領域F3とは異なる領域F4の配向を固定化することで、反射型カラーフィルターRCF1を作製した。領域F1、領域F2、領域F3、および領域F4における分光変換のための照射量は、それぞれ0mJ/cm、100mJ/cm、200mJ/cmおよび300mJ/cmとなり、それぞれの部分における反射中心波長は426nm、496nm、572nm、および640nmであった。
<Production of reflective color filter (RCF1)>
The coating liquid R1 was spin-coated on the glass substrate P1 with a photo-alignment film to form a coating film so as to have a film thickness of 5 μm. The glass substrate P1 with a photo-alignment film on which the coating film is arranged is heated on a hot plate at 80 ° C. for 1 minute to dry and remove the solvent and form a cholesteric alignment state, and then using EXECURE 3000-W manufactured by HOYA-SCHOTT Then, UV (ultraviolet) light with an illuminance of 30 mW / cm 2 was irradiated for 10 seconds through a photomask at room temperature in a nitrogen atmosphere to fix the orientation of the region F1. Next, the photomask was removed, UV light with an illuminance of 2 mW / cm 2 was irradiated for 50 seconds (100 mJ / cm 2 ) under air, and then heated on an 80 ° C. hot plate for 1 minute to be immobilized. After converting the reflection wavelength of the non-existing portion to the long wavelength side, UV light having an illuminance of 30 mW / cm 2 is irradiated again for 10 seconds through a photomask in a nitrogen atmosphere at room temperature, and the region F2 different from the region F1 is irradiated. The orientation was fixed. Next, the photomask was removed, UV light with an illuminance of 2 mW / cm 2 was irradiated for 50 seconds (100 mJ / cm 2 ) under air, and then heated on an 80 ° C. hot plate for 1 minute to be immobilized. After changing the reflection wavelength of the non-existing part to the long wavelength side, UV light with an illuminance of 30 mW / cm 2 is again irradiated for 10 seconds through a photomask at room temperature in a nitrogen atmosphere, which is different from the regions F1 and F2. The orientation of the region F3 was fixed. Next, the photomask was removed, UV light with an illuminance of 2 mW / cm 2 was irradiated for 50 seconds (100 mJ / cm 2 ) under air, and then heated on an 80 ° C. hot plate for 1 minute to be immobilized. After converting the reflection wavelength of the non-existing portion to the long wavelength side, UV light having an illuminance of 30 mW / cm 2 is irradiated again for 10 seconds at room temperature in a nitrogen atmosphere, and the region F4 different from the region F1, the region F2, and the region F3 The reflection type color filter RCF1 was produced by fixing the orientation of the color filter. Region F1, the area F2, the dose for the spectral transform in the area F3, and area F4, respectively 0mJ / cm 2, 100mJ / cm 2, 200mJ / cm 2 and 300 mJ / cm 2, and the reflection at the respective portions centered The wavelengths were 426 nm, 496 nm, 572 nm, and 640 nm.
 <反射型カラーフィルター(LCF1)の作製>
 反射型カラーフィルターRCF1の作製工程における塗布液をL1に変える以外は同様にして、反射型カラーフィルターLCF1を作製した。領域F1、領域F2、領域F3、および領域F4それぞれの部分における反射中心波長は426nm、496nm、572nm、および640nmであった。
<積層型反射型カラーフィルター(RLCF1)の作製>
 反射型カラーフィルターLCF1の作製工程における基板を上述の作製した反射型カラーフィルターRCF1に変える以外は同様にして、積層型反射型カラーフィルターRLCF1を作製した。フォトマスクを介した露光の際は、RCF1の領域F1、領域F2、領域F3、および領域F4の部分とLCF1の領域F1、領域F2、領域F3、および領域F4の部分とがそれぞれ重なるように位置合わせをして、露光を行った。積層体の領域F1、領域F2、領域F3、および領域F4のそれぞれの部分における反射中心波長は426nm、496nm、572nm、および640nmであった。
<Production of reflective color filter (LCF1)>
A reflective color filter LCF1 was produced in the same manner except that the coating liquid in the production process of the reflective color filter RCF1 was changed to L1. The reflection center wavelengths in the respective parts of the region F1, the region F2, the region F3, and the region F4 were 426 nm, 496 nm, 572 nm, and 640 nm.
<Preparation of multilayer reflective color filter (RLCF1)>
A laminated reflective color filter RLCF1 was produced in the same manner except that the substrate in the production process of the reflective color filter LCF1 was changed to the reflective color filter RCF1 produced above. At the time of exposure through a photomask, the position of the region F1, the region F2, the region F3, and the region F4 of the RCF1 and the region F1, the region F2, the region F3, and the region F4 of the LCF1 overlap each other. Combined and exposed. The reflection center wavelengths in the respective portions of the region F1, the region F2, the region F3, and the region F4 of the laminate were 426 nm, 496 nm, 572 nm, and 640 nm.
<吸収型カラーフィルターとの積層>
 積層型反射型カラーフィルターRLCF1と吸収型カラーフィルターに用いられる赤(R)、緑(G)および青(B)の3原色のカラーフィルターとの積層による分光を測定した。積層型反射型カラーフィルターRLCF1の領域F1おける分光は青波長領域の短波長側をカットし、領域F2における分光は青波長領域の長波長側および緑波長領域における短波長側をカットし、領域F3における分光は緑波長領域の長波長側および赤波長領域における短波長側をカットし、領域F4における分光は赤波長領域の長波長側をカットできることがわかった。すなわち、積層型反射型カラーフィルターRLCF1と吸収型RGBカラーフィルターの特定の波長領域を重ね合わせることで、6波長領域に分割された分光特性を有する積層型カラーフィルターが実現できる。
<Lamination with absorption color filter>
Spectroscopy by stacking the multilayer reflective color filter RLCF1 and the color filters of the three primary colors red (R), green (G), and blue (B) used for the absorption color filter was measured. The spectrum in the region F1 of the multilayer reflective color filter RLCF1 cuts the short wavelength side of the blue wavelength region, the spectrum in the region F2 cuts the long wavelength side of the blue wavelength region and the short wavelength side of the green wavelength region, and region F3 It was found that the spectrum in Fig. 4 cuts the long wavelength side in the green wavelength region and the short wavelength side in the red wavelength region, and the spectrum in the region F4 can cut the long wavelength side in the red wavelength region. That is, a stacked color filter having spectral characteristics divided into 6 wavelength regions can be realized by superimposing specific wavelength regions of the stacked reflective color filter RLCF1 and the absorption RGB color filter.
 本発明の作製方法を用いることで、イメージセンサーアレイ上に、赤色フィルター(R)、緑色フィルター(G)、青色フィルター(B)を公知の方法で形成し、さらに、マイクロレンズおよび平坦化層を積層したものの上に、光配向膜および積層型反射型カラーフィルターを、上述の領域F1、領域F2、領域F3、および領域F4の部分とRGBのカラーフィルターの各領域が、図3および図17で示されるように形成し、さらに波長650~1200nmの波長領域を遮断する公知の近赤外カット層を積層することで、本発明に記載の光学センサを作製できる。 By using the production method of the present invention, a red filter (R), a green filter (G), and a blue filter (B) are formed on the image sensor array by a known method, and further, a microlens and a flattening layer are formed. 3 and FIG. 17, the photo-alignment film and the laminated reflective color filter are formed on the stacked layers, and the above-described regions F1, F2, F3, and F4 and the RGB color filters are shown in FIGS. The optical sensor according to the present invention can be manufactured by forming a known near-infrared cut layer that is formed as shown and further blocks a wavelength range of 650 to 1200 nm.
 10、11 光学センサ
 12 センサ部
 14 カラーフィルター
 20 基板
 22 配線層
 24 フォトダイオード
 25 絶縁膜
 26 遮光膜
 28 マイクロレンズ
 29 平坦化層
 30 吸収型カラーフィルター
 30B 青波長領域
 30B 第1の青波長領域
 30B 第2の青波長領域
 30B 第3の青波長領域
 30B 第4の青波長領域
 30B 第6の青波長領域
 30G 緑波長領域
 30G 第1の緑波長領域
 30G 第2の緑波長領域
 30G 第3の緑波長領域
 30G 第4の緑波長領域
 30G 第5の緑波長領域
 30G 第6の緑波長領域
 30IR 赤外波長領域
 30IR 第7の赤外波長領域
 30IR 第8の赤外波長領域
 30IR 第9の赤外波長領域
 30IR10 第10の赤外波長領域
 30R 赤波長領域
 30R 第1の赤波長領域
 30R 第2の赤波長領域
 30R 第3の赤波長領域
 30R 第4の赤波長領域
 30R 第5の赤波長領域
 30R 第6の赤波長領域
 30R 第7の赤波長領域
 30R 第8の赤波長領域
 31 第1の区画
 31a、31b、31c、31d、31e、31f、31g、31h 画素領域
 32 反射型カラーフィルター
 32a 第2の区画
 33B、33G、33IR、33R 分光特性
 34 第1の波長領域
 34a、35a 分光特性
 35 第2の波長領域
 36B、36B、36B、36B 分光特性
 36G、36G、36G、36G、36G、36G 分光特性
 36IR、36IR、36IR、36IR10 分光特性
 36R、36R、36R、36R、36R、36R、36R、36R 分光特性
 37a、37b、37c、37d 画素領域
 40 基板
 42 下地層
 44 反射層
 45、45a 露光領域
 46 露光マスク
 47、47a 第1の領域
 48、48a 第2の領域
 49a 右円偏光反射型カラーフィルター
 49b 左円偏光反射型カラーフィルター
 50、51 反射型カラーフィルター
 50a 第1の反射型フィルター
 50b 第2の反射型フィルター
 53 第3の波長領域
 53a、54a、55a、56a、57a、58a、59a、60a 分光特性
 54 第4の波長領域
 55 第5の波長領域
 56 第6の波長領域
 57 第7の波長領域
 58 第8の波長領域
 59 第9の波長領域
 60 第10の波長領域
 62、64 第2の区画
 L、L 光
DESCRIPTION OF SYMBOLS 10, 11 Optical sensor 12 Sensor part 14 Color filter 20 Board | substrate 22 Wiring layer 24 Photodiode 25 Insulating film 26 Light shielding film 28 Micro lens 29 Planarizing layer 30 Absorption type color filter 30B Blue wavelength area 30B 1 1st blue wavelength area 30B 2 2nd blue wavelength region 30B 3 3rd blue wavelength region 30B 4 4th blue wavelength region 30B 6 6th blue wavelength region 30G Green wavelength region 30G 1 1st green wavelength region 30G 2 2nd green wavelength Region 30G 3 Third green wavelength region 30G 4 Fourth green wavelength region 30G 5 Fifth green wavelength region 30G 6 Sixth green wavelength region 30IR Infrared wavelength region 30IR 7 Seventh infrared wavelength region 30IR 8th 8 infrared wavelength region 30IR 9 9th infrared wavelength region 30IR 10 10th infrared wavelength region 30R red wavelength region 30R 1 first Red wavelength region 30R 2 second red wavelength region 30R 3 third red wavelength region 30R 4 fourth red wavelength region 30R 5 fifth red wavelength region 30R 6 sixth red wavelength region 30R 7 seventh red Wavelength region 30R 8 Eighth red wavelength region 31 First section 31a, 31b, 31c, 31d, 31e, 31f, 31g, 31h Pixel area 32 Reflective color filter 32a Second section 33B, 33G, 33IR, 33R Spectroscopy characteristics 34 first wavelength region 34a, 35a spectral characteristics 35 second wavelength region 36B 1, 36B 2, 36B 3 , 36B 4 spectral characteristics 36G 1, 36G 2, 36G 3 , 36G 4, 36G 5, 36G 6 spectral characteristics 36IR 7, 36IR 8, 36IR 9 , 36IR 10 spectral characteristics 36R 1, 36R 2, 36R 3 , 36R 4, 36R 5 36R 6, 36R 7, 36R 8 spectral characteristics 37a, 37b, 37c, 37d pixel region 40 substrate 42 underlying layer 44 reflective layer 45,45a exposed regions 46 exposed mask 47,47a first region 48,48a second region 49a Right circular polarization reflective color filter 49b Left circular polarization reflective color filter 50, 51 Reflective color filter 50a First reflective filter 50b Second reflective filter 53 Third wavelength region 53a, 54a, 55a, 56a, 57a, 58a, 59a, 60a Spectral characteristics 54 4th wavelength region 55 5th wavelength region 56 6th wavelength region 57 7th wavelength region 58 8th wavelength region 59 9th wavelength region 60 10th wavelength Regions 62 and 64 Second section L 1 and L 2 light

Claims (17)

  1.  少なくとも1つの吸収型カラーフィルターと、
     少なくとも1つの反射型カラーフィルターとを有し、
     前記吸収型カラーフィルターと前記反射型カラーフィルターは積層されており、
     前記吸収型カラーフィルターの波長領域の種数をmとし、前記反射型カラーフィルターの波長領域の種数をnとし、積層型カラーフィルターの波長領域の種数をpとするとき、p>m≧2、かつp>n≧2であることを特徴とする積層型カラーフィルター。
    At least one absorption color filter;
    And at least one reflective color filter,
    The absorption color filter and the reflective color filter are laminated,
    When the number of species in the wavelength region of the absorption color filter is m, the number of species in the wavelength region of the reflective color filter is n, and the number of species in the wavelength region of the stacked color filter is p, p> m ≧ 2 and p> n ≧ 2, a laminated color filter, wherein:
  2.  前記反射型カラーフィルターが円偏光反射特性を有する請求項1に記載の積層型カラーフィルター。 The multilayer color filter according to claim 1, wherein the reflective color filter has a circularly polarized light reflection characteristic.
  3.  右円偏光反射特性を有する反射型カラーフィルターと、左円偏光反射特性を有する反射型カラーフィルターとを少なくとも1層ずつ以上有する請求項1または2に記載の積層型カラーフィルター。 3. The multilayer color filter according to claim 1, comprising at least one reflective color filter having a right circular polarization reflection characteristic and at least one reflection color filter having a left circular polarization reflection characteristic.
  4.  前記反射型カラーフィルターは、重合性コレステリック液晶組成物が硬化されたものである請求項1~3のいずれか1項に記載の積層型カラーフィルター。 The multilayer color filter according to any one of claims 1 to 3, wherein the reflective color filter is obtained by curing a polymerizable cholesteric liquid crystal composition.
  5.  前記重合性コレステリック液晶組成物が、少なくとも1種以上の重合性液晶化合物と、少なくとも1種以上の光反応性キラル剤を含有している請求項4に記載の積層型カラーフィルター。 The multilayer color filter according to claim 4, wherein the polymerizable cholesteric liquid crystal composition contains at least one polymerizable liquid crystal compound and at least one photoreactive chiral agent.
  6.  前記光反応性キラル剤が下記一般式(1)~一般式(5)で表される請求項5に記載の積層型カラーフィルター。
    Figure JPOXMLDOC01-appb-C000001

     式中、A11およびA12はそれぞれ独立に-C(=O)-または-C(=O)-Ar11-を表し、Ar11は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R11およびR13はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R12およびR14はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B11およびB12はそれぞれ独立に-C(=O)-(Ar12)n11-または-C(=O)-Ar13-N=X11-Ar14-を表し、X11はNまたはCHを表し、Ar12、Ar13およびAr14はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n11は0~2の整数を表し、n11が2のとき、複数あるAr12は同じでも異なっていてもよく、Z11およびZ12はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z11およびZ12は、重合性基を有してもよく、Z11とR12およびZ12とR14が互いに環を形成してもよく、複数分子のZ11とZ12が共有結合を介してポリマー化していてもよい。
    Figure JPOXMLDOC01-appb-C000002

     式中、A21およびA22はそれぞれ独立に-C(=O)-または-C(=O)-Ar21-を表し、Ar21は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R21およびR23はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R22およびR24はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B21およびB22はそれぞれ独立に-C(=O)-(Ar22)n21-または-C(=O)-Ar23-N=X21-Ar24-を表し、X21はNまたはCHを表し、Ar22、Ar23およびAr24はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n21は0~2の整数を表し、n21が2のとき、複数あるAr22は同じでも異なっていてもよく、Z21およびZ22はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z21およびZ22は、重合性基を有してもよく、Z21とR22およびZ22とR24が互いに環を形成してもよく、複数分子のZ21とZ22が共有結合を介してポリマー化していてもよい。
    Figure JPOXMLDOC01-appb-C000003

     式中、A31およびA32はそれぞれ独立に単結合、-O-C(=O)-または-O-C(=O)-Ar31-を表し、Ar31は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R31およびR33はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R32およびR34はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B31およびB32はそれぞれ独立に単結合、-C(=O)-(Ar32)n31-または-C(=O)-Ar33-N=X31-Ar34-を表し、X31はNまたはCHを表し、Ar32、Ar33およびAr34はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n31は0~2の整数を表し、n31が2のとき、複数あるAr32は同じでも異なっていてもよく、Z31およびZ32はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z31およびZ32は、重合性基を有してもよく、Z31とR32およびZ32とR34が互いに環を形成してもよく、複数分子のZ31とZ32が共有結合を介してポリマー化していてもよく、Lは、2価の基を表す。ビナフチル部分は、(R)または(S)のいずれかの軸不斉を有する。
    Figure JPOXMLDOC01-appb-C000004

     式中、A41およびA42はそれぞれ独立に-C(=O)-または-C(=O)-Ar41-を表し、Ar41は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R41およびR43はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R42およびR44はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B41およびB42はそれぞれ独立に-C(=O)-(Ar42)n41-または-C(=O)-Ar43-N=X41-Ar44-を表し、X41はNまたはCHを表し、Ar42、Ar43およびAr44はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n41は0~2の整数を表し、n41が2のとき、複数あるAr42は同じでも異なっていてもよく、Z41およびZ42はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z41およびZ42は、重合性基を有してもよく、Z41とR42およびZ42とR44が互いに環を形成してもよく、複数分子のZ41とZ42が共有結合を介してポリマー化していてもよく、R45およびR46はC~C30のアルキル基を表し、互いに環を形成してもよい。*は不斉炭素を表す。
    Figure JPOXMLDOC01-appb-C000005

     式中、P51は重合性基を表し、Sp51は単結合またはC12のアルキレン基を表し、複数ある炭素原子は酸素原子またはカルボニル基で置き換えられてもよく、X51は単結合または酸素原子を表し、Ar51およびAr52はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、L51は単結合または2価の連結基を表し、n51は1~3の整数を表し、n51が2以上の場合、複数あるAr51およびL51は互いに同じでも異なっていてもよく、R52は不斉炭素を含有する側鎖を表す。
    The multilayer color filter according to claim 5, wherein the photoreactive chiral agent is represented by the following general formulas (1) to (5).
    Figure JPOXMLDOC01-appb-C000001

    In the formula, A 11 and A 12 each independently represent —C (═O) — or —C (═O) —Ar 11 —, and Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12. B 11 and B 12 each independently represents —C (═O) — (Ar 12 ) n 11 — or —C (═O) —Ar 13 —N═X 11 —Ar 14 —. , X 11 represents N or CH, Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 11 represents an integer of 0 to 2, When n 11 is 2, a plurality of Ar 12 may be the same or different, and Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 11 and Z 12 may have a polymerizable group. Alternatively, Z 11 and R 12 and Z 12 and R 14 may form a ring with each other, and a plurality of molecules of Z 11 and Z 12 may be polymerized via a covalent bond.
    Figure JPOXMLDOC01-appb-C000002

    In the formula, A 21 and A 22 each independently represent —C (═O) — or —C (═O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12. B 21 and B 22 each independently represents —C (═O) — (Ar 22 ) n 21 — or —C (═O) —Ar 23 —N═X 21 —Ar 24 —. , X 21 represents N or CH, Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 21 represents an integer of 0 to 2, When n 21 is 2, a plurality of Ar 22 may be the same or different, and Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 21 and Z 22 may have a polymerizable group. Alternatively, Z 21 and R 22 and Z 22 and R 24 may form a ring with each other, and a plurality of molecules of Z 21 and Z 22 may be polymerized via a covalent bond.
    Figure JPOXMLDOC01-appb-C000003

    In the formula, A 31 and A 32 each independently represent a single bond, —O—C (═O) — or —O—C (═O) —Ar 31 —, and Ar 31 has a substituent. R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent. Represents an optionally substituted aromatic carbocycle, an optionally substituted aromatic heterocycle, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, wherein R 32 and R 34 are each independently hydrogen It represents an alkyl group of atoms or C 1 ~ C 12, B 31 and B 32 represents a single bond independently, -C (= O) - ( Ar 32) n 31 - , or -C (= O) -Ar 33 - N = X 31 —Ar 34 —, wherein X 31 is N or Represents CH, Ar 32 , Ar 33 and Ar 34 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and n 31 represents Represents an integer of 0 to 2, and when n 31 is 2, a plurality of Ar 32 may be the same or different, Z 31 and Z 32 are each independently a hydrogen atom, a C 1 to C 12 alkyl group, C an alkoxy group having 1 ~ C 12, alkylcarbonyloxy group of C 1 ~ C 12, alkylamino group of C 1 ~ C 12, or an alkyl amide group of C 1 ~ C 12, Z 31 and Z 32 are, It may have a polymerizable group, Z 31 and R 32 and Z 32 and R 34 may form a ring with each other, or a plurality of molecules of Z 31 and Z 32 may be polymerized via a covalent bond Well, L is divalent It represents a group. The binaphthyl moiety has either (R) or (S) axial asymmetry.
    Figure JPOXMLDOC01-appb-C000004

    In the formula, A 41 and A 42 each independently represent —C (═O) — or —C (═O) —Ar 41 —, and Ar 41 represents an aromatic carbocyclic ring which may have a substituent or Represents an optionally substituted aromatic heterocycle, R 41 and R 43 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 42 and R 44 each independently represents a hydrogen atom or C 1 to C 12. B 41 and B 42 each independently represents —C (═O) — (Ar 42 ) n 41 — or —C (═O) —Ar 43 —N═X 41 —Ar 44 —. , X 41 represents N or CH, Ar 42 Ar 43 and Ar 44 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 41 represents an integer of 0 to 2, When n 41 is 2, a plurality of Ar 42 may be the same or different, and Z 41 and Z 42 each independently represent a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 41 and Z 42 may have a polymerizable group. Well, Z 41 and R 42 and Z 42 and R 44 may form a ring with each other, and multiple molecules of Z 41 and Z 42 may be polymerized via a covalent bond, and R 45 and R 46 are C 1 to C 30 And may form a ring with each other. * Represents an asymmetric carbon.
    Figure JPOXMLDOC01-appb-C000005

    Wherein, P 51 represents a polymerizable group, Sp 51 represents an alkylene group of a single bond or C 1 ~ 12, plurality of carbon atoms may be replaced by an oxygen atom or a carbonyl group, X 51 represents a single bond Or an oxygen atom, Ar 51 and Ar 52 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and L 51 represents a single bond Or, it represents a divalent linking group, n 51 represents an integer of 1 to 3, and when n 51 is 2 or more, a plurality of Ar 51 and L 51 may be the same or different from each other, and R 52 is asymmetric. Represents a side chain containing carbon.
  7.  重合性コレステリック液晶組成物が硬化された、右円偏光反射特性を有する反射型カラーフィルターまたは左円偏光反射特性を有する反射型カラーフィルターに接して、光配向膜を有している請求項1~6のいずれか1項に記載の積層型カラーフィルター。 A photo-alignment film is provided in contact with a reflective color filter having a right circular polarization reflection characteristic or a reflection color filter having a left circular polarization reflection characteristic, in which a polymerizable cholesteric liquid crystal composition is cured. 7. The laminated color filter according to any one of 6 above.
  8.  前記重合性液晶化合物の屈折率異方性Δnが0.2以上である請求項5~7のいずれか1項に記載の積層型カラーフィルター。 The multilayer color filter according to any one of claims 5 to 7, wherein the refractive index anisotropy Δn of the polymerizable liquid crystal compound is 0.2 or more.
  9.  さらに近赤外領域の一部または全域を遮断する近赤外カット層を有する請求項1~8のいずれか1項に記載の積層型カラーフィルター。 The multilayer color filter according to any one of claims 1 to 8, further comprising a near-infrared cut layer that blocks part or all of the near-infrared region.
  10.  少なくとも1種以上の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物と、少なくとも1種以上の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物からなることを特徴とするキット。 A polymerizable liquid crystal composition comprising at least one or more polymerizable liquid crystal compounds, a photoreactive chiral agent having right-handed twisting properties and a polymerization initiator, and at least one or more polymerizable liquid crystal compounds, a photoreaction having left-handed twisting properties A kit comprising a polymerizable liquid crystal composition containing a polymerizable chiral agent and a polymerization initiator.
  11.  前記右捻り特性を有する光反応性キラル剤が下記一般式(1)または一般式(3)で表され、かつ、前記左捻り特性を有する光反応性キラル剤が下記一般式(2)または一般式(3)で表される請求項10に記載のキット。
    Figure JPOXMLDOC01-appb-C000006

     式中、A11およびA12はそれぞれ独立に-C(=O)-または-C(=O)-Ar11-を表し、Ar11は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R11およびR13はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R12およびR14はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B11およびB12はそれぞれ独立に-C(=O)-(Ar12)n11-または-C(=O)-Ar13-N=X11-Ar14-を表し、X11はNまたはCHを表し、Ar12、Ar13およびAr14はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n11は0~2の整数を表し、n11が2のとき、複数あるAr12は同じでも異なっていてもよく、Z11およびZ12はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z11およびZ12は、重合性基を有してもよく、Z11とR12およびZ12とR14が互いに環を形成してもよく、複数分子のZ11とZ12が共有結合を介してポリマー化していてもよい。
    Figure JPOXMLDOC01-appb-C000007

     式中、A21およびA22はそれぞれ独立に-C(=O)-または-C(=O)-Ar21-を表し、Ar21は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R21およびR23はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R22およびR24はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B21およびB22はそれぞれ独立に-C(=O)-(Ar22)n21-または-C(=O)-Ar23-N=X21-Ar24-を表し、X21はNまたはCHを表し、Ar22、Ar23およびAr24はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n21は0~2の整数を表し、n21が2のとき、複数あるAr22は同じでも異なっていてもよく、Z21およびZ22はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z21およびZ22は、重合性基を有してもよく、Z21とR22およびZ22とR24が互いに環を形成してもよく、複数分子のZ21とZ22が共有結合を介してポリマー化していてもよい。
    Figure JPOXMLDOC01-appb-C000008

     式中、A31およびA32はそれぞれ独立に単結合、-O-C(=O)-または-O-C(=O)-Ar31-を表し、Ar31は置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、R31およびR33はそれぞれ独立に水素原子、C~C12のアルキル基、置換基を有していてもよい芳香族炭素環、置換基を有していてもよい芳香族複素環、シアノ基、または、C~C12のアルキルオキシカルボニル基を表し、R32およびR34はそれぞれ独立に水素原子またはC~C12のアルキル基を表し、B31およびB32はそれぞれ独立に単結合、-C(=O)-(Ar32)n31-または-C(=O)-Ar33-N=X31-Ar34-を表し、X31はNまたはCHを表し、Ar32、Ar33およびAr34はそれぞれ独立に置換基を有していてもよい芳香族炭素環または置換基を有していてもよい芳香族複素環を表し、n31は0~2の整数を表し、n31が2のとき、複数あるAr32は同じでも異なっていてもよく、Z31およびZ32はそれぞれ独立に水素原子、C~C12のアルキル基、C~C12のアルコキシ基、C~C12のアルキルカルボニルオキシ基、C~C12のアルキルアミノ基、または、C~C12のアルキルアミド基を表し、Z31およびZ32は、重合性基を有してもよく、Z31とR32およびZ32とR34が互いに環を形成してもよく、複数分子のZ31とZ32が共有結合を介してポリマー化していてもよく、Lは、2価の基を表す。ビナフチル部分は、(R)または(S)のいずれかの軸不斉を有する。
    The photoreactive chiral agent having the right twist property is represented by the following general formula (1) or general formula (3), and the photoreactive chiral agent having the left twist property is represented by the following general formula (2) or general formula The kit of Claim 10 represented by Formula (3).
    Figure JPOXMLDOC01-appb-C000006

    In the formula, A 11 and A 12 each independently represent —C (═O) — or —C (═O) —Ar 11 —, and Ar 11 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 11 and R 13 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 12 and R 14 each independently represents a hydrogen atom or C 1 to C 12. B 11 and B 12 each independently represents —C (═O) — (Ar 12 ) n 11 — or —C (═O) —Ar 13 —N═X 11 —Ar 14 —. , X 11 represents N or CH, Ar 12 Ar 13 and Ar 14 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 11 represents an integer of 0 to 2, When n 11 is 2, a plurality of Ar 12 may be the same or different, and Z 11 and Z 12 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 11 and Z 12 may have a polymerizable group. Alternatively, Z 11 and R 12 and Z 12 and R 14 may form a ring with each other, and a plurality of molecules of Z 11 and Z 12 may be polymerized via a covalent bond.
    Figure JPOXMLDOC01-appb-C000007

    In the formula, A 21 and A 22 each independently represent —C (═O) — or —C (═O) —Ar 21 —, wherein Ar 21 represents an optionally substituted aromatic carbocycle or Represents an optionally substituted aromatic heterocycle, wherein R 21 and R 23 each independently represents a hydrogen atom, a C 1 -C 12 alkyl group, or an optionally substituted aromatic carbocycle Represents an optionally substituted aromatic heterocyclic ring, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, and R 22 and R 24 each independently represent a hydrogen atom or C 1 to C 12. B 21 and B 22 each independently represents —C (═O) — (Ar 22 ) n 21 — or —C (═O) —Ar 23 —N═X 21 —Ar 24 —. , X 21 represents N or CH, Ar 22 Ar 23 and Ar 24 represents an aromatic heterocycle optionally having independently an aromatic carbocyclic ring which may have a substituent or substituents, n 21 represents an integer of 0 to 2, When n 21 is 2, a plurality of Ar 22 may be the same or different, and Z 21 and Z 22 are each independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, Represents a C 1 -C 12 alkylcarbonyloxy group, a C 1 -C 12 alkylamino group, or a C 1 -C 12 alkylamide group, and Z 21 and Z 22 may have a polymerizable group. Alternatively, Z 21 and R 22 and Z 22 and R 24 may form a ring with each other, and a plurality of molecules of Z 21 and Z 22 may be polymerized via a covalent bond.
    Figure JPOXMLDOC01-appb-C000008

    In the formula, A 31 and A 32 each independently represent a single bond, —O—C (═O) — or —O—C (═O) —Ar 31 —, and Ar 31 has a substituent. R 31 and R 33 each independently represents a hydrogen atom, a C 1 to C 12 alkyl group, or a substituent. Represents an optionally substituted aromatic carbocycle, an optionally substituted aromatic heterocycle, a cyano group, or a C 1 to C 12 alkyloxycarbonyl group, wherein R 32 and R 34 are each independently hydrogen It represents an alkyl group of atoms or C 1 ~ C 12, B 31 and B 32 represents a single bond independently, -C (= O) - ( Ar 32) n 31 - , or -C (= O) -Ar 33 - N = X 31 —Ar 34 —, wherein X 31 is N or Represents CH, Ar 32 , Ar 33 and Ar 34 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring, and n 31 represents Represents an integer of 0 to 2, and when n 31 is 2, a plurality of Ar 32 may be the same or different, Z 31 and Z 32 are each independently a hydrogen atom, a C 1 to C 12 alkyl group, C an alkoxy group having 1 ~ C 12, alkylcarbonyloxy group of C 1 ~ C 12, alkylamino group of C 1 ~ C 12, or an alkyl amide group of C 1 ~ C 12, Z 31 and Z 32 are, It may have a polymerizable group, Z 31 and R 32 and Z 32 and R 34 may form a ring with each other, or a plurality of molecules of Z 31 and Z 32 may be polymerized via a covalent bond Well, L is divalent It represents a group. The binaphthyl moiety has either (R) or (S) axial asymmetry.
  12.  少なくとも1つの吸収型カラーフィルターと、少なくとも1つの反射型カラーフィルターとを有し、前記吸収型カラーフィルターと前記反射型カラーフィルターが積層された積層型カラーフィルターの製造方法であって、
     前記反射型カラーフィルターが、露光によって分光特性が異なる領域をパターニングすることで形成されることを特徴とする積層型カラーフィルターの製造方法。
    A method for producing a laminated color filter having at least one absorption color filter and at least one reflection color filter, wherein the absorption color filter and the reflection color filter are laminated,
    A method for producing a multilayer color filter, wherein the reflective color filter is formed by patterning regions having different spectral characteristics by exposure.
  13.  前記反射型カラーフィルター形成工程が、
     面内に複数の波長領域を有する右円偏反射層を形成する右円偏光反射層形成工程、および、
     面内に複数の波長領域を有する左円偏反射層を形成する左円偏光反射層形成工程からなる請求項12に記載の積層型カラーフィルターの製造方法。
    The reflective color filter forming step includes
    A right circularly polarized reflective layer forming step of forming a right circularly polarized reflective layer having a plurality of wavelength regions in the plane; and
    The method for producing a multilayer color filter according to claim 12, comprising a left circularly polarized reflective layer forming step of forming a left circularly polarized reflective layer having a plurality of wavelength regions in a plane.
  14.  前記右円偏光反射層形成工程が、
     少なくとも1種の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、
     前記塗布工程で塗布した前記重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、
     前記配向工程でコレステリック配向状態とした前記重合性液晶組成物の一部に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、
     前記変換工程で一部の配向状態を変換した前記重合性液晶組成物の全面に露光処理を行うことで、前記重合性液晶組成物の配向状態を固定化する固定化工程を含み、
     前記左円偏光反射層形成工程が、
     少なくとも1種の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、
     前記塗布工程で塗布した前記重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、
     前記配向工程でコレステリック配向状態とした前記重合性液晶組成物の一部に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、
     前記変換工程で一部の配向状態を変換した前記重合性液晶組成物の全面に露光処理を行うことで、コレステリック配向状態を固定化する固定化工程を含む請求項13に記載の積層型カラーフィルターの製造方法。
    The right circularly polarized light reflecting layer forming step includes
    An application step of applying a polymerizable liquid crystal composition comprising at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-handed twisting properties, and a polymerization initiator;
    An alignment step of heating the polymerizable liquid crystal composition applied in the application step to a cholesteric alignment state,
    A conversion step of converting the reflected wavelength region of the exposed portion by performing an exposure treatment on a part of the polymerizable liquid crystal composition in the cholesteric alignment state in the alignment step, and
    Including an immobilization step of immobilizing the alignment state of the polymerizable liquid crystal composition by performing an exposure treatment on the entire surface of the polymerizable liquid crystal composition that has been partially converted in the conversion step,
    The left circularly polarized light reflecting layer forming step includes
    An application step of applying a polymerizable liquid crystal composition comprising at least one polymerizable liquid crystal compound, a photoreactive chiral agent having a left-handed twist characteristic, and a polymerization initiator;
    An alignment step of heating the polymerizable liquid crystal composition applied in the application step to a cholesteric alignment state,
    A conversion step of converting the reflected wavelength region of the exposed portion by performing an exposure treatment on a part of the polymerizable liquid crystal composition in the cholesteric alignment state in the alignment step, and
    The multilayer color filter according to claim 13, further comprising an immobilization step of immobilizing a cholesteric alignment state by performing an exposure process on the entire surface of the polymerizable liquid crystal composition whose partial alignment state has been converted in the conversion step. Manufacturing method.
  15.  前記右円偏光反射層形成工程が、
     少なくとも1種の重合性液晶化合物、右捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、
     前記塗布工程で塗布した前記重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、
     コレステリック配向状態とした前記重合性液晶組成物の一部に露光処理を行うことで、露光された部分のコレステリック配向状態を固定化する第1固定化工程、
    前記第1固定化工程における未露光部分に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、
     前記変換工程で配向状態を変換した前記重合性液晶組成物に露光処理を行うことで、前記重合性液晶組成物の配向状態を固定化する第2固定化工程を含み、
     前記左円偏光反射層形成工程が、
     少なくとも1種の重合性液晶化合物、左捻り特性を有する光反応性キラル剤および重合開始剤を含む重合性液晶組成物を塗布する塗布工程、
     前記塗布工程で塗布した前記重合性液晶組成物を加熱して、コレステリック配向状態とする配向工程、
     コレステリック配向状態とした前記重合性液晶組成物の一部に露光処理を行うことで、露光された部分のコレステリック配向状態を固定化する第1固定化工程、
     前記第1固定化工程における未露光部分に露光処理を行うことで、露光された部分の反射波長領域を変換する変換工程、ならびに、
     前記変換工程で配向状態を変換した前記重合性液晶組成物に露光処理を行うことで、前記重合性液晶組成物の配向状態を固定化する第2固定化工程を含む請求項13に記載の積層型カラーフィルターの製造方法。
    The right circularly polarized light reflecting layer forming step includes
    An application step of applying a polymerizable liquid crystal composition comprising at least one polymerizable liquid crystal compound, a photoreactive chiral agent having right-handed twisting properties, and a polymerization initiator;
    An alignment step of heating the polymerizable liquid crystal composition applied in the application step to a cholesteric alignment state,
    A first immobilization step of immobilizing the cholesteric alignment state of the exposed portion by performing an exposure treatment on a part of the polymerizable liquid crystal composition in a cholesteric alignment state;
    A conversion step of converting the reflected wavelength region of the exposed portion by performing an exposure process on the unexposed portion in the first fixing step; and
    A second fixing step of fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure treatment on the polymerizable liquid crystal composition whose alignment state has been converted in the conversion step;
    The left circularly polarized light reflecting layer forming step includes
    An application step of applying a polymerizable liquid crystal composition comprising at least one polymerizable liquid crystal compound, a photoreactive chiral agent having a left-handed twist characteristic, and a polymerization initiator;
    An alignment step of heating the polymerizable liquid crystal composition applied in the application step to a cholesteric alignment state,
    A first immobilization step of immobilizing the cholesteric alignment state of the exposed portion by performing an exposure treatment on a part of the polymerizable liquid crystal composition in a cholesteric alignment state;
    A conversion step of converting the reflected wavelength region of the exposed portion by performing an exposure process on the unexposed portion in the first fixing step; and
    The lamination according to claim 13, further comprising a second fixing step of fixing the alignment state of the polymerizable liquid crystal composition by performing an exposure process on the polymerizable liquid crystal composition whose alignment state is converted in the conversion step. Type color filter manufacturing method.
  16.  前記右円偏光反射層形成工程または前記左円偏光反射層形成工程の前に、光配向膜を塗布する配向層塗布工程、および、塗布して形成された前記光配向膜に対し、偏光で露光して配向規制力を与える配向規制工程を含む請求項13~15のいずれか1項に記載の積層型カラーフィルターの製造方法。 Before the right circularly polarized light reflecting layer forming step or the left circularly polarized light reflecting layer forming step, an alignment layer applying step for applying a photo-alignment film, and the photo-alignment film formed by coating are exposed with polarized light. The method for producing a multilayer color filter according to any one of claims 13 to 15, further comprising an alignment regulating step for providing an orientation regulating force.
  17.  請求項1~9のいずれか1項に記載の積層型カラーフィルターを有することを特徴とする光学センサ。 An optical sensor comprising the multilayer color filter according to any one of claims 1 to 9.
PCT/JP2017/019483 2016-07-01 2017-05-25 Laminate color filter, kit, laminate color filter manufacturing method and optical sensor WO2018003359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018524961A JP6641009B2 (en) 2016-07-01 2017-05-25 Laminated color filter, method of manufacturing laminated color filter, and optical sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-131975 2016-07-01
JP2016131975 2016-07-01
JP2016-166721 2016-08-29
JP2016166721 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018003359A1 true WO2018003359A1 (en) 2018-01-04

Family

ID=60787151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019483 WO2018003359A1 (en) 2016-07-01 2017-05-25 Laminate color filter, kit, laminate color filter manufacturing method and optical sensor

Country Status (3)

Country Link
JP (1) JP6641009B2 (en)
TW (1) TW201803097A (en)
WO (1) WO2018003359A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202876A1 (en) * 2019-03-29 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device
WO2023032644A1 (en) * 2021-08-30 2023-03-09 富士フイルム株式会社 Decorative film, molded body, and article
JP7472182B2 (en) 2018-03-23 2024-04-22 富士フイルム株式会社 Method for producing cholesteric liquid crystal layer, cholesteric liquid crystal layer, liquid crystal composition, cured product, optically anisotropic body, and reflective layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10705026B2 (en) * 2018-10-26 2020-07-07 Kla Corporation Scanning differential interference contrast in an imaging system design

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258760A (en) * 1999-03-12 2000-09-22 Toshiba Corp Liquid crystal display device
JP2008502936A (en) * 2004-06-17 2008-01-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical separation filter
WO2014097895A1 (en) * 2012-12-17 2014-06-26 富士フイルム株式会社 Multilayered cholesteric liquid crystal, process for producing same, and laminate of multilayered cholesteric liquid crystal
JP2016076682A (en) * 2014-10-06 2016-05-12 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor and formation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287598B2 (en) * 2000-06-27 2009-07-01 富士フイルム株式会社 Photoreactive chiral agent, liquid crystal composition, liquid crystal color filter, optical film, recording medium, and method for changing twisted structure of liquid crystal
JP4287599B2 (en) * 2000-06-27 2009-07-01 富士フイルム株式会社 Photoreactive optically active compound, photoreactive chiral agent, liquid crystal composition, liquid crystal color filter, optical film, recording medium, and method for changing the twisted structure of liquid crystal
JP2002267830A (en) * 2001-03-12 2002-09-18 Fuji Photo Film Co Ltd Color filter, method for manufacturing the same and liquid crystal display device
JP2002309256A (en) * 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd Liquid crystal composition, color filter, and liquid crystal display
JP6149006B2 (en) * 2014-06-18 2017-06-14 富士フイルム株式会社 Reflective film and display having reflective film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258760A (en) * 1999-03-12 2000-09-22 Toshiba Corp Liquid crystal display device
JP2008502936A (en) * 2004-06-17 2008-01-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical separation filter
WO2014097895A1 (en) * 2012-12-17 2014-06-26 富士フイルム株式会社 Multilayered cholesteric liquid crystal, process for producing same, and laminate of multilayered cholesteric liquid crystal
JP2016076682A (en) * 2014-10-06 2016-05-12 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor and formation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472182B2 (en) 2018-03-23 2024-04-22 富士フイルム株式会社 Method for producing cholesteric liquid crystal layer, cholesteric liquid crystal layer, liquid crystal composition, cured product, optically anisotropic body, and reflective layer
WO2020202876A1 (en) * 2019-03-29 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device
WO2023032644A1 (en) * 2021-08-30 2023-03-09 富士フイルム株式会社 Decorative film, molded body, and article

Also Published As

Publication number Publication date
JPWO2018003359A1 (en) 2019-05-16
TW201803097A (en) 2018-01-16
JP6641009B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
TWI733845B (en) Color filter for image sensor, image sensor, and method for manufacturing color filter for image sensor
WO2018003359A1 (en) Laminate color filter, kit, laminate color filter manufacturing method and optical sensor
JP6650526B2 (en) Color filter for image sensor, image sensor, and method of manufacturing color filter for image sensor
US6800220B2 (en) Optically active polyester, photoreactive chiral agent, liquid crystal composition, liquid crystal color filter, optical film, recording medium, method of changing the helical structure of a liquid crystal, and method of fixing the helical structure of a liquid crystal
KR102089668B1 (en) Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
JP2018036314A (en) Polarization image sensor and polarization image sensor fabrication method
KR100739420B1 (en) Liquid crystalline composition, color filter, and optical film
JP2003313292A (en) Optically active polyester/amide, photoreactive chiral agent, liquid crystal composition, liquid crystal color filter, optical film and recording medium, and process for modifying and fixing helical structure of liquid crystal
WO2019142707A1 (en) Film, laminate, imaging device, sensor and head-up display
WO2019073974A1 (en) Reflective sheet, decorative sheet, and reflective sheet production method
JP2002179670A (en) Optically active compound, photo-reactive chiral agent, liquid crystal composition, method for changing spiral structure of liquid crystal, method for fixing spiral structure of liquid crystal, liquid crystal color filter, optical film and recording medium
KR102442596B1 (en) Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic body, polarizing plate, display device and anti-reflection film
CN110382471B (en) Polymerizable compound, polymerizable liquid crystal mixture, polymer, optical film, optically anisotropic body, polarizing plate, display device, antireflection film, and compound
CN1636164A (en) Composite nonlinear optical film, method of producing the same and applications of the same
JP7440845B2 (en) polarization imaging device
JP7416798B2 (en) Filters and imaging devices
WO2021261541A1 (en) Polarization imaging device
JP2002179633A (en) Optically active compound, photoreactive-type chiral agent, liquid crystal composition, method for changing spiral structure of liquid crystal, method for fixing spiral structure of liquid crystal, liquid crystal color filter, optical film and recording medium
JP7433435B2 (en) Liquid crystal compositions, optical elements and light guiding elements
JP2002180051A (en) Liquid crystalline chiral agent, liquid crystalline composition, liquid crystalline color filter, optical film and recording medium
US20240004116A1 (en) Liquid crystal composition, optical element, and light guide element
JP7465968B2 (en) Optical element, light guide element and liquid crystal composition
JP7200383B2 (en) optical element
JP7173914B2 (en) image display device
WO2023085398A1 (en) Optical element and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819726

Country of ref document: EP

Kind code of ref document: A1