WO2018003304A1 - Vehicle control device, computer program, and vehicle control method - Google Patents

Vehicle control device, computer program, and vehicle control method Download PDF

Info

Publication number
WO2018003304A1
WO2018003304A1 PCT/JP2017/017671 JP2017017671W WO2018003304A1 WO 2018003304 A1 WO2018003304 A1 WO 2018003304A1 JP 2017017671 W JP2017017671 W JP 2017017671W WO 2018003304 A1 WO2018003304 A1 WO 2018003304A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
lane
acquisition unit
travels
Prior art date
Application number
PCT/JP2017/017671
Other languages
French (fr)
Japanese (ja)
Inventor
晃 諏訪
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2018003304A1 publication Critical patent/WO2018003304A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control device, a computer program, and a vehicle control method.
  • This application claims priority based on Japanese Patent Application No. 2016-1332038 filed on July 1, 2016, and incorporates all the description content described in the above Japanese application.
  • Patent Document 1 when a preceding vehicle traveling in front of a vehicle is detected, a threshold is used to determine whether the driver has an intention to overtake the preceding vehicle.
  • a vehicle control device that performs automatic driving in a mode of following a preceding vehicle when the time to follow is equal to or greater than the threshold is disclosed.
  • the vehicle control device includes a vehicle information acquisition unit that acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as vehicle information about the vehicle, and lane information of a road on which the vehicle travels A lane information acquisition unit that acquires the lane information acquisition unit, and a lane determination unit that determines the lane on which the host vehicle travels based on the host vehicle information acquired by the host vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit With.
  • the vehicle control device includes a vehicle information acquisition unit that acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle, and a road on which the one vehicle travels.
  • a lane information acquisition unit that acquires lane information, and the one vehicle information acquired by the vehicle information acquisition unit and the lane on which the one vehicle travels are determined based on the lane information acquired by the lane information acquisition unit.
  • a lane determining unit A lane determining unit.
  • a computer program of the present disclosure is a computer program for causing a computer to control traveling of a vehicle.
  • the computer program includes vehicle information including vehicle position information and information on equipment of the vehicle for one vehicle.
  • a vehicle information acquisition unit acquired as information, a lane information acquisition unit that acquires lane information of a road on which the one vehicle travels, and the one vehicle traveling based on the acquired one vehicle information and the lane information It functions as a lane determining unit that determines a lane to be operated.
  • a vehicle information acquisition unit acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the road on which the one vehicle travels is acquired.
  • a lane information acquisition unit acquires lane information, and a lane determination unit determines a lane on which the one vehicle travels based on the acquired one vehicle information and the acquired lane information.
  • autonomous driving technology has been developed as a technology that contributes to reducing traffic accidents, smoothing traffic flow, or reducing fuel consumption.
  • Patent Document 1 can execute automatic driving reflecting the driver's intention, further smoothing of traffic flow is desired by advancement of automatic driving technology. Accordingly, it is an object of the present invention to provide a vehicle control device capable of performing automatic driving so as to smooth traffic flow, a computer program for realizing the vehicle control device, and a vehicle control method.
  • the vehicle control device includes a vehicle information acquisition unit that acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as vehicle information about the vehicle, and a road on which the vehicle travels.
  • a lane information acquisition unit that acquires the lane information of the vehicle, and the lane on which the host vehicle travels is determined based on the host vehicle information acquired by the host vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit.
  • a lane determining unit is provided.
  • the vehicle control device includes a vehicle information acquisition unit that acquires vehicle information including position information of a vehicle and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the one vehicle travels
  • a lane information acquisition unit that acquires lane information of a road to be performed, and the lane in which the one vehicle travels based on the one vehicle information acquired by the vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit
  • a lane determining unit for determining the lane includes a vehicle information acquisition unit that acquires vehicle information including position information of a vehicle and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the one vehicle travels
  • a lane information acquisition unit that acquires lane information of a road to be performed, and the lane in which the one vehicle travels based on the one vehicle information acquired by the vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit
  • a lane determining unit for determining the lane for determining the lane.
  • the computer program according to the present embodiment is a computer program for causing a computer to control the traveling of a vehicle, and the computer uses the vehicle information including vehicle position information and information related to the equipment of the vehicle for one vehicle.
  • a vehicle information acquisition unit that acquires as one vehicle information
  • a lane information acquisition unit that acquires lane information of a road on which the one vehicle travels
  • the one vehicle information based on the acquired one vehicle information and the lane information. It functions as a lane determining unit that determines the lane in which the vehicle travels.
  • the vehicle information acquisition unit acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the one vehicle travels.
  • a lane information acquisition unit acquires lane information of a road to be performed, and a lane determination unit determines a lane on which the one vehicle travels based on the acquired one vehicle information and the lane information.
  • the own vehicle information acquisition unit acquires the vehicle information including the position information of the vehicle and information related to the equipment of the vehicle as the own vehicle information about the own vehicle.
  • the vehicle is the host vehicle. Further, when the vehicle control device is not mounted on the vehicle, the host vehicle can be read as any one vehicle.
  • the equipment is equipment that affects the automatic driving of the vehicle. For example, equipment such as tires or lights, a sensor for detecting the periphery of the vehicle, or a communication device for vehicle-to-vehicle communication or road-to-vehicle communication. Etc.
  • the lane information acquisition unit acquires lane information of the road on which the host vehicle is traveling.
  • the road lane information is, for example, the number of lanes in the direction in which the host vehicle travels (the number of travel lanes). For example, when the host vehicle is traveling on an up three lane road and two down lane roads with a total of five lanes, the number of lanes is three.
  • Road lanes include three lanes on one side, two lanes on one side, and four lanes on one side.
  • Lane information can be acquired based on the position information of the host vehicle, road map information, and the like. Lane information can also be acquired from an external roadside device or the like.
  • the lane determining unit determines the lane in which the host vehicle travels based on the acquired host vehicle information and lane information. For example, there are three lanes, and the left lane, center lane, and right lane are sequentially arranged from the left in the traveling direction. In left-handed countries, such as Japan, vehicles generally run slower on the left lane than on the right lane. For example, if there is a failure in the equipment installed in the host vehicle, it is possible that the vehicle's travel control during automatic driving will be hindered. Occurs. That is, it is considered that the traffic flow can be smoothed by traveling on the left lane.
  • the lane determining unit determines a lane to travel to change the lane to the left lane.
  • operation which can aim at smoothing of a traffic flow can be performed.
  • by facilitating traffic flow it is possible to perform automatic driving that reduces the occurrence of traffic accidents.
  • right-handed countries such as the United States, the left and right are reversed.
  • the vehicle control device includes an other vehicle information acquisition unit that acquires vehicle information as other vehicle information for one or more other vehicles, and the lane determination unit is acquired by the other vehicle information acquisition unit. A lane in which the host vehicle travels is determined based on other vehicle information of the other vehicle.
  • the other vehicle information acquisition unit acquires vehicle information as other vehicle information for one or more other vehicles.
  • the lane determining unit determines a lane in which the host vehicle travels based on the acquired other vehicle information of the other vehicle. That is, the lane determining unit determines the lane in which the host vehicle travels based on the host vehicle information and the other vehicle information.
  • the host vehicle and other vehicles are traveling in the central lane.
  • the lane determining unit determines the lane so that the host vehicle travels in the left lane.
  • the other vehicle it is easier for the other vehicle to travel in the lane on the left side of the host vehicle to smooth the traffic flow. It is thought that you can.
  • the lane determination unit determines the lane so that the host vehicle travels in the right lane, for example. Thereby, even when other vehicles exist in the vicinity of the own vehicle, it is possible to perform an automatic driving that can smooth the traffic flow. In addition, by facilitating traffic flow, it is possible to perform automatic driving that reduces the occurrence of traffic accidents.
  • the vehicle information includes information on the equipment failure.
  • Vehicle information includes information on equipment failures.
  • Equipment failure includes, for example, tire puncture, light failure, sensor failure or communication device failure. If the equipment is out of order, it may be possible that the vehicle travel control during automatic driving will be hindered and information necessary for automatic driving may be lost. By including information on equipment failure in the vehicle information, it is possible to determine the lane in order to make the vehicle travel more smoothly or safely (automatic driving travel).
  • the vehicle information includes information on a sensor that is mounted on the vehicle and detects information outside the vehicle.
  • Vehicle information includes information related to a sensor that is mounted on a vehicle (the host vehicle or another vehicle) and detects information outside the vehicle.
  • the sensor includes, for example, a camera, a millimeter wave sensor (millimeter wave radar), a LiDAR (Light Detection And Ranging), and the like.
  • the information about the sensor includes the presence / absence of the sensor, the type of the sensor, the presence / absence of the sensor failure, and the like. For example, the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on whether or not the sensor is mounted. By including information about the sensor in the vehicle information, it is possible to determine a lane in order to make the vehicle travel more smoothly or safely (automatic driving travel).
  • the vehicle information includes information related to a communication device mounted on the vehicle.
  • Vehicle information includes information related to a communication device mounted on a vehicle (the own vehicle or another vehicle).
  • the information related to the communication device includes, for example, the type of communication device (for example, communication band, communication speed, number of connectable communication devices, etc.).
  • the type of communication device for example, 3G (3rd generation mobile communication), LTE (Long Termination Evolution) or 4G (4th generation mobile communication), 5G (5th generation mobile communication), etc. is there.
  • 3G (3rd generation mobile communication), LTE (Long Termination Evolution) or 4G (4th generation mobile communication), 5G (5th generation mobile communication), etc. is there.
  • the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on the type of communication device installed. By including information about the communication device in the vehicle information, it is possible to determine the lane in order to make the vehicle travel more smoothly or safely (automatic driving travel).
  • the vehicle control device includes a physical information acquisition unit that acquires information related to the physical state of the driver of the vehicle, and the lane determination unit is based on the physical information acquired by the physical information acquisition unit. A lane in which the host vehicle travels is determined.
  • the body information acquisition unit acquires information related to the physical state of the driver of the vehicle (the own vehicle or another vehicle).
  • the physical condition includes, for example, conditions such as sleepiness, drunkenness, distraction, and poor physical condition. Since the probability of a traffic accident is considered to change according to the physical condition, the lane should be determined in order to make the vehicle run more smoothly or safely (automatic driving) by considering information on the physical condition of the driver. Can do.
  • the lane determining unit determines a lane in which the host vehicle travels based on other vehicle information of the other vehicle in a predetermined area.
  • the lane determining unit determines a lane in which the host vehicle travels based on other vehicle information of other vehicles in a predetermined area.
  • the predetermined area can be a range in which the distance from the host vehicle is within a predetermined value (for example, 200 m).
  • the vehicle control device includes a determining unit that determines whether or not the lane determining unit determines a lane based on the number of the other vehicles in a predetermined area.
  • the determining unit determines whether or not the lane determining unit determines a lane based on the number of other vehicles in the predetermined area.
  • the predetermined area can be a range in which the distance from the host vehicle is within a predetermined value (for example, 200 m).
  • the host vehicle can travel in any lane, and the traveling lane can be maintained as it is. That is, when the number of other vehicles in the predetermined area is small, the lane in which the host vehicle is traveling is not determined.
  • the lane in which the host vehicle is traveling is determined in order to determine which of the host vehicle and the other vehicle is prioritized. Accordingly, it is possible to realize an automatic driving in which the lane is determined according to the priority as the number of other surrounding vehicles increases, and the lane can be freely changed as the number of other surrounding vehicles decreases.
  • the vehicle control device includes a weather information acquisition unit that acquires weather information, and the lane determination unit determines a lane in which the host vehicle travels based on the weather information acquired by the weather information acquisition unit. decide.
  • the weather information acquisition unit acquires weather information.
  • the weather information can be appropriately determined based on whether or not there is a possibility of affecting the travel of the vehicle.
  • the information that does not affect the running of the vehicle can include, for example, clear or cloudy.
  • the information affecting the running of the vehicle can include, for example, rain, snow, strong wind, and the like.
  • the lane determining unit determines the lane in which the host vehicle is traveling based on the acquired weather information. For example, in the case of rain, snow, etc. where the weather information affects driving, the lane on which the vehicle travels is set as the left lane. Thereby, a lane can be determined in order to run a vehicle more smoothly or safely (automatic driving run).
  • the vehicle control device includes a speed determining unit that determines the traveling speed of the host vehicle in the lane determined by the lane determining unit.
  • the speed determination unit determines the traveling speed of the host vehicle in the determined lane. For example, when it is determined that the vehicle is traveling on the left lane, the traveling speed is set to a low speed (for example, 50 to 60 km / h). When the lane is determined to travel on the central lane, the traveling speed is set to a medium speed (for example, 60 to 70 km / h). In addition, when it is determined that the vehicle is traveling on the right lane, the traveling speed is set to a high speed (for example, 70 to 80 km / h). Note that the traveling speed in the traveling lane may be changed regardless of which traveling lane is traveled. Thereby, a vehicle can be drive
  • the speed determination unit determines a traveling speed based on a time zone during which the host vehicle travels.
  • the speed determining unit determines the traveling speed based on the time zone in which the host vehicle travels.
  • the time zone includes, for example, a day time zone, a night time zone, and an evening time zone when the surroundings are dark. Driving a vehicle at night or in the evening is considered more likely to encounter a traffic accident than driving in the daytime. Therefore, by determining the traveling speed based on the time zone, the vehicle can travel more smoothly or safely (automatic driving traveling).
  • the vehicle information acquisition unit acquires the vehicle information as other vehicle information for one or more other vehicles
  • the lane determination unit acquires the other vehicle information. Based on this, the lane in which the one vehicle travels is determined.
  • the vehicle information acquisition unit acquires vehicle information as other vehicle information for one or more other vehicles, and the lane determination unit determines a lane on which one vehicle travels based on the other vehicle information. Thereby, even when other vehicles exist in the vicinity of one vehicle, it is possible to perform an automatic driving that can facilitate the traveling of the one vehicle.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a vehicle control system including a vehicle 1 on which a vehicle control device 100 according to the first embodiment is mounted.
  • the vehicle 1 on which the vehicle control device 100 is mounted is also referred to as the own vehicle 1, and the vehicle 2 other than the vehicle 1 is also referred to as another vehicle 2. That is, in this specification, the vehicle 1 is the host vehicle 1 and the vehicle 2 is the other vehicle 2.
  • the vehicle 1 can communicate with other vehicles 2 and 2 (for example, inter-vehicle communication).
  • the vehicle 1 can communicate between the roadside apparatus 200 and the server 300 (for example, road-to-vehicle communication).
  • FIG. 2 is a block diagram showing an example of the configuration of the vehicle control device 100 of the first embodiment.
  • the vehicle control device 100 includes a control unit 10 that controls the entire device, a host vehicle information acquisition unit 11, another vehicle information acquisition unit 12, an environment information acquisition unit 13, a storage unit 14, and an automatic driving control unit. 15, a lane determining unit 16, a traveling speed determining unit 17, a navigation unit 18, and the like.
  • the navigation unit 18 includes a GPS reception unit 181 and map information 182.
  • the vehicle control device 100 is connected to a communication device 21, a sensor unit 22, and an equipment 23 as communication devices.
  • the sensor unit 22 is mounted on the vehicle 1, but there is also a vehicle 1 that does not include the sensor unit 22.
  • the types of communication devices 21 include, for example, 3G system (3rd generation mobile communication), LTE system (LongTerm Evolution), 4G system (4th generation mobile communication), 5G system (5th generation mobile communication), wireless LAN (for example, there is WiFi) or ITS wireless system.
  • the communication device 21 may be any of these types.
  • the sensor unit 22 includes, for example, a camera (for example, a monocular camera or a stereo camera), a millimeter wave sensor (millimeter wave radar), a LiDAR (Light Detection And Ranging), a motion sensor, and the like.
  • the sensor unit 22 may be all or a part of a monocular camera, a stereo camera, a millimeter wave sensor (millimeter wave radar), a motion sensor, and LiDAR.
  • Equipment 23 includes tires, lights, child seats and the like.
  • the own vehicle information acquisition unit 11 acquires the vehicle information including the position information of the vehicle and the information related to the equipment of the vehicle as the own vehicle information about the own vehicle 1.
  • the vehicle is the host vehicle 1.
  • the host vehicle 1 can be read as any one vehicle.
  • the equipment is equipment that affects the automatic driving of the vehicle.
  • the equipment 23 such as a tire, a light, or a child seat, the sensor unit 22 for detecting the periphery of the vehicle, or inter-vehicle communication or road-vehicle communication. Communication equipment 21 and the like.
  • the vehicle information of the host vehicle 1 can be acquired from the navigation unit 18, the communication device 21, the sensor unit 22, and the equipment 23.
  • Other vehicle information acquisition part 12 acquires vehicle information as other vehicle information about one or a plurality of vehicles 2 (other vehicles).
  • the vehicle information of the other vehicle 2 may be acquired directly from the other vehicle 2 through inter-vehicle communication, or may be acquired from the roadside device 200 or the server 300 through road-to-vehicle communication.
  • the vehicle information of the own vehicle 1 is synonymous with the own vehicle information
  • the vehicle information of the other vehicle 2 is synonymous with the other vehicle information.
  • FIG. 3 is an explanatory diagram showing an example of vehicle information of the host vehicle 1 and the other vehicle 2.
  • the vehicle information includes the presence / absence of the sensor unit 22 (more specifically, the presence / absence of a monocular camera, stereo camera, millimeter wave sensor, LiDAR, and motion sensor), and the type of the sensor unit 22 (monocular camera).
  • the position information is omitted in FIG.
  • the vehicle information is also referred to as static information.
  • the own vehicle information acquisition unit 11 has a function as a physical information acquisition unit, and acquires information related to the physical state of the driver of the own vehicle 1 and / or the other vehicle 2.
  • the physical condition of the driver includes, for example, conditions such as drowsiness, drunkenness, distraction, and poor physical condition. Since the occurrence probability of traffic accidents is considered to change according to the physical condition, it is possible to determine the lane in order to make the vehicle travel more safely (automatic driving) by considering information on the physical condition of the driver. .
  • the environmental information acquisition unit 13 has a function as a weather information acquisition unit, and acquires environmental information.
  • the environmental information can be acquired from the roadside device 200 or the server 300 by road-to-vehicle communication, for example.
  • FIG. 4 is an explanatory diagram showing an example of environmental information.
  • the environmental information includes, for example, the number of surrounding vehicles existing around the host vehicle 1, weather information, time zone, presence / absence of emergency vehicles, presence / absence of dangerous driving vehicles, presence / absence of traffic jams. Information.
  • the environment information is also referred to as dynamic information.
  • Weather information can be determined as appropriate based on whether or not there is a possibility of affecting the driving of the vehicle.
  • the information that does not affect the running of the vehicle can include, for example, clear or cloudy.
  • the information affecting the running of the vehicle can include, for example, rain, snow, strong wind, and the like.
  • Hours include, for example, daytime, nighttime, and evening time when the surroundings are dark.
  • the navigation unit 18 receives radio waves from a plurality of GPS satellites by the GPS receiving unit 181 and detects the position of the host vehicle 1. Further, the navigation unit 18 estimates the position of the host vehicle 1 based on signals output from a vehicle speed sensor and a gyro sensor (both not shown), and collates with the road data of the map information 182 to check the position of the host vehicle 1. The position can be detected with higher accuracy.
  • the navigation unit 18 has a function as a lane information acquisition unit, and acquires lane information of a road on which the host vehicle 1 travels.
  • the road lane information is, for example, the number of lanes in the direction in which the host vehicle travels (the number of travel lanes). For example, when the host vehicle is traveling on an up three lane road and two down lane roads with a total of five lanes, the number of lanes is three.
  • Road lanes include three lanes on one side, two lanes on one side, and four lanes on one side.
  • the lane information can be acquired based on the position information of the host vehicle 1 and the road map information of the map information 182. Lane information can also be acquired from an external roadside device 200 or server 300.
  • the storage unit 14 stores various information acquired by the host vehicle information acquisition unit 11, the other vehicle information acquisition unit 12, the environment information acquisition unit 13, the navigation unit 18, and the like.
  • the lane determining unit 16 determines the lane in which the host vehicle 1 travels based on the acquired vehicle information and lane information. For example, there are three lanes, and the left lane, center lane, and right lane are sequentially arranged from the left in the traveling direction. In left-handed countries, such as Japan, vehicles generally run slower on the left lane than on the right lane. For example, if there is a failure in the equipment installed in the host vehicle 1, it is possible that the vehicle's travel control during automatic driving will be hindered, and smooth traffic flow can be hindered by traveling on higher speed lanes. Sex occurs. That is, it is considered that the traffic flow can be smoothed by traveling on the left lane.
  • the lane determining unit 16 determines a lane to travel to change the lane to the left lane.
  • operation which can aim at smoothing of a traffic flow can be performed.
  • by facilitating traffic flow it is possible to perform automatic driving that reduces the occurrence of traffic accidents.
  • right-handed countries such as the United States, the left and right are reversed.
  • FIG. 5 is a schematic diagram illustrating a first example of lane determination by the vehicle control device 100 according to the first embodiment.
  • the road on which the vehicle 1 (own vehicle) travels is a three-lane lane (left lane, center lane, right lane). It is assumed that the vehicle 1 is traveling in the central lane by the automatic driving control by the automatic driving control unit 15. Further, as shown in FIG. 5, as vehicle information of the vehicle 1, it is assumed that the sensor unit 22 is not mounted and the communication device 21 is a 3G system.
  • the lane determining unit 16 can determine a lane based on information about a sensor that is mounted on the vehicle 1 and detects information outside the vehicle.
  • the sensor include a monocular camera, a stereo camera, a millimeter wave sensor (millimeter wave radar), a motion sensor, and LiDAR (Light (Detection And Ranging).
  • the information about the sensor includes the presence / absence of the sensor, the type of the sensor, the presence / absence of the sensor failure, and the like.
  • the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on whether or not the sensor is mounted. In the example of FIG. 5, since the vehicle 1 does not have the sensor unit 22, it is considered that the amount of information necessary for automatic driving that can be acquired by the vehicle 1 is small.
  • the lane determining unit 16 determines the lane on which the vehicle 1 travels as the left lane. This is because it is considered that smoother and safer driving can be achieved by performing automatic driving at a lower speed because the amount of information necessary for automatic driving is smaller. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
  • the lane determining unit 16 can determine a lane based on information on equipment failure.
  • the equipment failure includes, for example, tire puncture, light failure, sensor unit 22 failure, or communication device 21 failure. If the equipment is out of order, it may be possible that the vehicle travel control during automatic driving will be hindered and information necessary for automatic driving may be lost.
  • information on equipment failure in the vehicle information it is possible to determine the lane in order to make the vehicle run more smoothly or safely (automated driving), and to make the traffic flow smoother. It can be performed.
  • automatic driving can be performed to reduce the occurrence of traffic accidents. Further, when a child seat as equipment is mounted, it can be handled in the same manner as in the case of a puncture such as a tire.
  • the lane determining unit 16 can determine the lane in which the vehicle 1 travels based on information regarding the communication device 21 mounted on the vehicle 1.
  • the information regarding the communication device 21 includes, for example, the type of the communication device 21 (for example, the communication band, the communication speed, the number of connectable communication devices, etc.).
  • examples of the types of communication devices 21 include a 3G system, an LTE system, a 4G system, a 5G system, a wireless LAN, and an ITS wireless system.
  • the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on the type of the communication device 21 installed. In the example of FIG.
  • the lane determining unit 16 determines the lane on which the vehicle 1 travels as the left lane. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
  • the lane may be determined based on one of the sensor unit 22 not mounted and the type of the communication device 21.
  • the lane may be determined based on both types of the devices 21.
  • lanes are determined based on both, it is possible to weight each piece of information.
  • the vehicle information is not limited to the example of FIG.
  • FIG. 6 is a schematic diagram showing a second example of lane determination by the vehicle control device 100 of the first embodiment.
  • the road on which the vehicle 1 (own vehicle) travels is a three-lane lane (left lane, center lane, right lane). It is assumed that the vehicle 1 is traveling in the central lane by the automatic driving control by the automatic driving control unit 15.
  • the communication apparatus 21 is a 5G system, and there is no failure of equipment.
  • the lane determining unit 16 can determine a lane based on information about a sensor that is mounted on the vehicle 1 and detects information outside the vehicle.
  • the vehicle 1 since the vehicle 1 is equipped with LiDAR, it is considered that there is a large amount of information necessary for automatic driving that can be acquired by the vehicle 1, so the lane determination unit 16 causes the vehicle 1 to travel.
  • the lane is determined as the right lane. This is because it is considered that smooth and safe driving can be performed even if automatic driving is performed at a higher speed because of the large amount of information necessary for automatic driving.
  • the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed.
  • automatic driving can be performed to reduce the occurrence of traffic accidents.
  • the lane determining unit 16 can determine the lane in which the vehicle 1 travels based on information regarding the communication device 21 mounted on the vehicle 1.
  • the communication device 21 mounted on the vehicle 1 is a 5G system, it is considered that there is a large amount of information necessary for automatic driving that can be acquired by the vehicle 1. Therefore, the lane determining unit 16 determines the lane on which the vehicle 1 is traveling as the right lane.
  • the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed.
  • automatic driving can be performed to reduce the occurrence of traffic accidents.
  • the lane determining unit 16 can determine a lane based on information on equipment failure. In the example of FIG. 6, since there is no equipment failure, there is very little possibility of hindrance to vehicle driving control during automatic driving, and it is considered that smooth and safe driving can be performed even if automatic driving is performed at a higher speed. Because it is. Therefore, the lane determining unit 16 determines the lane on which the vehicle 1 is traveling as the right lane. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
  • the lane may be determined based on part or all of the type of sensor unit 22, the type of communication device 21, and the presence or absence of equipment failure. Moreover, when using several vehicle information, such as the kind of sensor part 22, the kind of communication apparatus 21, and the presence or absence of equipment failure, each information can also be weighted.
  • the vehicle information is not limited to the example of FIG.
  • the lane determining unit 16 determines the lane in which the host vehicle 1 travels based on the acquired vehicle information of the host vehicle 1 and the vehicle information of the other vehicle 2. For example, the lane determination unit 16 determines the lane in which the host vehicle 1 travels based on the vehicle information of the host vehicle 1 when the other vehicle 2 is not traveling around the host vehicle 1.
  • the automatic driving control unit 15 controls automatic driving of the host vehicle 1 traveling in the lane determined by the lane determining unit 16. Thereafter, when the other vehicle 2 travels around the own vehicle 1, the lane determining unit 16 further refers to the vehicle information of the other vehicle 2 and maintains the lane in which the own vehicle 1 travels, or It is determined whether to change the lane, and the lane in which the vehicle 1 travels is determined.
  • the host vehicle 1 and the other vehicle 2 are traveling in the central lane.
  • the traffic flow is smoother when the own vehicle 1 travels on the left lane than the other vehicle 2. It is thought that we can plan. Therefore, for example, the lane determining unit 16 determines the lane so that the host vehicle 1 travels in the left lane.
  • the lane determining unit 16 determines the lane so that the host vehicle 1 travels in the right lane. Thereby, even when the other vehicle 2 exists in the circumference
  • FIG. 7 is a schematic diagram illustrating a third example of lane determination by the vehicle control device 100 according to the first embodiment.
  • the host vehicle 1 travels in the left lane and the other vehicle 2 travels ahead of the host vehicle 1 by the automatic driving control by the automatic driving control unit 15.
  • vehicle information of the host vehicle 1 it is assumed that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 includes a millimeter wave sensor.
  • the sensor unit 22 is out of order.
  • the lane determination unit 16 temporarily changes the lane to the center lane because the other vehicle 2 in which the sensor unit 22 has failed travels ahead of the host vehicle 1. After overtaking 2, determine the lane so that you can drive in the original left lane. In this case, it is conceivable that the own vehicle 1 travels following the other vehicle 2, but when the own vehicle 1 performing the automatic driving control detects the road condition ahead, it is detected by the other vehicle 2 in front. It is thought that the amount of information that can be reduced. In addition, since the sensor unit 22 of the other vehicle 2 is out of order, it is also impossible to acquire information regarding the road condition ahead from the other vehicle 2.
  • the vehicle passes the other vehicle 2, travels in the original left lane, and transmits information related to the road condition ahead detected by the millimeter wave sensor of the host vehicle 1 to the following vehicle.
  • the automatic driving of the own vehicle 1 is smoothly performed, the safety of the automatic driving is increased, and information on the necessary road condition can be provided to the other vehicle 2.
  • FIG. 8 is a schematic diagram showing a fourth example of lane determination by the vehicle control device 100 of the first embodiment.
  • the own vehicle 1 travels in the right lane by automatic driving control by the automatic driving control unit 15, and an emergency vehicle (another vehicle 2) approaches from the rear of the own vehicle 1.
  • the vehicle information of the host vehicle 1 it is assumed that the type of the communication device 21 is a 5G system, and the sensor unit 22 is equipped with LiDAR.
  • emergency vehicle identification information may be acquired by inter-vehicle communication.
  • the lane determining unit 16 temporarily changes the lane on which the host vehicle 1 travels to the central lane because the emergency vehicle has approached, and then changes to the original right lane after the emergency vehicle has passed.
  • the lane can be determined to do.
  • priority is given to the travel of the emergency vehicle to secure the travel space of the emergency vehicle to realize smooth travel of the emergency vehicle and temporarily change the lane in which the host vehicle 1 travels. Since the emergency vehicle is avoided by changing to, the safety of automatic driving of the host vehicle 1 is increased.
  • FIG. 9 is a schematic diagram showing a fifth example of lane determination by the vehicle control device 100 of the first embodiment.
  • the own vehicle 1 travels in the central lane by the automatic operation control by the automatic operation control unit 15, and the other vehicle 2 travels in front of the own vehicle 1.
  • vehicle information of the host vehicle 1 it is assumed that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 includes a millimeter wave sensor.
  • the sensor unit 22 includes a millimeter wave sensor.
  • the type of the communication device 21 is a 5G system
  • the sensor unit 22 is equipped with LiDAR.
  • the lane determination unit 16 compares the vehicle information of the host vehicle 1 with the vehicle information of the other vehicle 2, and from the viewpoint of automatic driving control, which vehicle information has more information amount required for automatic driving, Alternatively, it is possible to determine which vehicle information is less likely to interfere with automatic driving, and based on the determination result, the amount of information required for automatic driving may be greater, or it may interfere with automatic driving.
  • Priority control is performed to give priority to the vehicle having the lower performance (specifically, a lane that can travel at a higher speed is determined as a lane to travel).
  • the vehicle information of the own vehicle 1 is that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 is equipped with a millimeter wave sensor, whereas the vehicle information of the other vehicle 2 is the communication device.
  • the type 21 is a 5G system, and the sensor unit 22 is equipped with LiDAR. In this case, it is considered that the other vehicle 2 can acquire a larger amount of information necessary for automatic driving than the own vehicle 1.
  • the lane determining unit 16 determines the lane to change the travel lane of the host vehicle 1 from the center lane to the left lane with priority given to the other vehicle 2 over the host vehicle 1. Therefore, even when the other vehicle 2 exists in the circumference
  • FIG. 10 is a schematic diagram showing a sixth example of lane determination by the vehicle control device 100 of the first embodiment.
  • the own vehicle 1 travels in the central lane by the automatic operation control by the automatic operation control unit 15 and the other vehicle 2 is traveling in front of the own vehicle 1.
  • vehicle information of the host vehicle 1 it is assumed that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 includes a millimeter wave sensor. Further, as vehicle information of the other vehicle 2, the type of the communication device 21 is 3G and LTE, and the sensor unit 22 is not mounted.
  • the vehicle information of the own vehicle 1 is that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 is equipped with a millimeter wave sensor, whereas the vehicle information of the other vehicle 2 is the communication device.
  • the types 21 are 3G and LTE systems, and the sensor unit 22 is not mounted. In this case, it is considered that the host vehicle 1 can acquire a larger amount of information necessary for automatic driving than the other vehicle 2.
  • the lane determining unit 16 prioritizes the host vehicle 1 over the other vehicle 2, and determines the lane to change the travel lane of the host vehicle 1 from the center lane to the right lane. Therefore, even when the other vehicle 2 exists in the circumference
  • the lane determining unit 16 can determine the lane in which the host vehicle 1 travels based on the vehicle information of the other vehicle 2 in the predetermined area.
  • the predetermined area can be a range in which the distance from the vehicle 1 is within a predetermined value (for example, 200 m).
  • the lane determining unit 16 has a function as a determining unit, and determines whether or not to determine a lane based on the number of other vehicles 2 in a predetermined area.
  • the predetermined area can be a range in which the distance from the vehicle 1 is within a predetermined value (for example, 200 m).
  • a predetermined value for example, 200 m.
  • the lane in which the own vehicle 1 travels is determined in order to determine which of the own vehicle 1 and the other vehicle 2 has priority. This realizes an automatic driving in which the lane is determined according to the priority as the number of other vehicles 2 in the vicinity increases, and the lane can be freely changed as the number of other vehicles 2 in the vicinity decreases. Can do.
  • FIG. 11 is a schematic diagram showing a seventh example of lane determination by the vehicle control device 100 of the first embodiment.
  • the vehicle information includes information indicating whether the vehicle (the host vehicle 1 or the other vehicle 2) is a manually operated vehicle, a partially autonomously operated vehicle, or a fully autonomously operated vehicle.
  • the host vehicle 1 is a fully automatic driving vehicle
  • the other vehicle 2A is a partially automatic driving vehicle
  • the other vehicle 2B is a manual driving vehicle.
  • the driving lane of the own vehicle 1 is determined as the right lane (the highest priority lane, the fully automatic driving vehicle lane), so that the vehicle traveling in the right lane is fully automatic. It is possible to limit to driving vehicles, and the amount of information processing necessary for safe driving that must be predicted, such as unexpected behavior of manually driven vehicles, can be reduced, so the traveling speed is fast with a close distance between vehicles Smooth running is possible.
  • the other vehicle 2 ⁇ / b> B that is a manually operated vehicle travels in the left lane
  • the other vehicle 2 ⁇ / b> A that is a partially automatically driven vehicle travels in the center lane.
  • the traveling lane may be determined as a central lane
  • the host vehicle 1 is a manually operated vehicle
  • the traveling lane may be determined as a left lane.
  • the server 150 as a vehicle control device of the second embodiment described later determines the lane
  • the travel lanes of the vehicles 1, 2A, and 2B can be determined as shown in FIG.
  • the lane determining unit 16 can determine the lane in which the host vehicle 1 travels based on the acquired weather information. For example, in the case of rain, snow, etc. where the weather information affects driving, the lane on which the vehicle travels is set as the left lane. Thereby, a lane can be determined in order to run a vehicle more smoothly or safely (automatic driving run).
  • the traveling speed determination unit 17 has a function as a speed determination unit, and determines the traveling speed of the host vehicle 1 in the lane determined by the lane determination unit 16. For example, when it is determined that the driving lane is the left lane, the driving speed is set to a low speed (for example, 50 to 60 km / h). In addition, when it is determined that the traveling lane is the central lane, the traveling speed is set to a medium speed (for example, 60 to 70 km / h). Further, when it is determined that the travel lane is the right lane, the travel speed is set to a high speed (for example, 70 to 80 km / h).
  • the traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 based on the environment information.
  • FIG. 12 is an explanatory diagram illustrating an example of determination of the traveling speed by the vehicle control device 100 according to the first embodiment.
  • the traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 based on the weather information. For example, in the case of rain, snow, etc. where the weather information affects driving, the traveling speed can be reduced, and when the weather is clear, the traveling speed can be increased. Thereby, a vehicle can be drive
  • the traveling speed determination unit 17 can determine the traveling speed based on the time zone during which the host vehicle 1 travels.
  • the time zone includes, for example, a day time zone, a night time zone, and an evening time zone when the surroundings are dark. Driving a vehicle at night or in the evening is considered more likely to encounter a traffic accident than driving in the daytime. Therefore, for example, when the time zone is daytime, the traveling speed is set to high speed, and when the time zone is nighttime, the traveling speed is set to low speed. Thus, by determining the traveling speed based on the time zone, the vehicle can travel more smoothly or safely (automatic driving traveling).
  • the traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 based on the number of other vehicles 1 that travel around the host vehicle 1.
  • the traveling speed is set to a low speed, and when the number of other vehicles 2 around the host vehicle 1 is small, the traveling speed is set to a high speed.
  • a vehicle can be drive
  • the traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 according to the presence or absence of traffic jam. When there is a traffic jam, it is safe to follow the other vehicle 2 and travel at a low speed. If the speed of the host vehicle 1 is increased, the possibility of encountering an accident may increase. Therefore, when there is a traffic jam, the travel speed is set to a low speed (or may be a speed following the vehicle ahead), and when there is no traffic jam, the travel speed is set to a high speed. Thereby, a vehicle can be drive
  • FIG. 13 is a flowchart illustrating an example of a processing procedure of the vehicle control device 100 according to the first embodiment.
  • the control unit 10 starts automatic driving (S11), acquires host vehicle information that is vehicle information of the host vehicle 1 (S12), and acquires lane information of a road on which the host vehicle 1 travels (S13).
  • the control unit 10 performs priority control based on the acquired own vehicle information and lane information (S14).
  • the priority control includes, for example, determining a lane in which the host vehicle 1 travels, or determining a lane in which the host vehicle 1 travels and performing automatic driving control while traveling the determined lane.
  • the control unit 10 determines whether there is another vehicle 2 around the host vehicle 1 (S15). When there is another vehicle 2 (YES in S15), the control unit 10 acquires other vehicle information that is vehicle information of the other vehicle 2 (S16), and changes the priority control based on the own vehicle information and the other vehicle information. (S17).
  • the change in priority control includes, for example, changing the lane in which the host vehicle 1 travels, or changing the lane in which the host vehicle 1 travels and performing automatic driving control while traveling the changed lane. Depending on the own vehicle information and the other vehicle information, the lane in which the own vehicle 1 travels may be maintained without being changed.
  • control unit 10 performs Step S18 described later without performing the processes of Steps S16 and S17.
  • the control unit 10 acquires environment information (S18), and changes priority control based on the acquired environment information (S19). Note that the priority control is changed in the same manner as in step S17.
  • the control unit 10 determines whether or not to end the automatic operation (S20). If it is determined that the automatic operation is not to be ended (NO in S20), the control unit 10 performs the processes after step S12. If it is determined that the automatic operation is to be ended (YES in S20), the process is ended.
  • FIG. 14 is a block diagram illustrating an example of a configuration of the server 150 as the vehicle control device of the second embodiment.
  • the vehicle control device of the second embodiment is not mounted on the vehicle.
  • the server 150 includes a control unit 30 that controls the entire server, a vehicle information acquisition unit 31, an environment information acquisition unit 32, a storage unit 33 that stores map information 331, a lane determination unit 34, and a travel speed determination.
  • the unit 35 is provided.
  • the server 150 is capable of bidirectional communication with a plurality of vehicles 2, 2, 2.
  • each vehicle 1 is equipped with a navigation unit, a communication device, a sensor unit, and accessories (all not shown).
  • Vehicle information acquisition unit 31 acquires vehicle information of one or more vehicles.
  • the lane determining unit 34 determines the lane in which each of the plurality of vehicles travels based on the vehicle information of each of the plurality of vehicles. As a result, even when other vehicles exist around a certain vehicle, it is possible to perform an automatic operation that reduces the occurrence of traffic accidents in each of the plurality of vehicles.
  • FIG. 15 is a flowchart illustrating an example of a processing procedure of the server 150 as the vehicle control device of the second embodiment.
  • the control unit 30 the subject of processing will be described as the control unit 30.
  • one vehicle one vehicle is traveling on the road and no other vehicle is traveling around the vehicle at the stage of starting the processing.
  • the control unit 30 acquires the vehicle information of the one vehicle (S31), and acquires the lane information of the road on which the vehicle travels (S32).
  • the lane information can be acquired based on the position information and map information included in the vehicle information.
  • the control unit 30 transmits a priority control command for the one vehicle to the vehicle (S33).
  • the said vehicle can receive a priority control command and can change a lane based on the received priority control command.
  • the control unit 30 determines whether vehicle information has been acquired from a plurality of vehicles (other vehicles) (S34). That is, it is determined whether vehicle information is acquired from at least one other vehicle in addition to the one vehicle.
  • control unit 30 transmits a priority control command for each vehicle to each vehicle based on the vehicle information of the plurality of vehicles (S35).
  • the one vehicle although priority control is once performed in step S33, the other vehicle travels around the one vehicle.
  • the one vehicle and the other vehicle The priority control of the one vehicle may be changed based on the vehicle information of the vehicle.
  • Each vehicle can receive the priority control command and change the lane based on the received priority control command.
  • step S36 If vehicle information has not been acquired from a plurality of vehicles (NO in S34), the control unit 30 performs the process of step S36 described later without performing the process of step S35.
  • the control unit 30 acquires environmental information (S36), changes the priority control command of the vehicle (each vehicle) based on the acquired environmental information (S37), and transmits the changed priority control command to each vehicle (S38). ).
  • priority control is once performed in step S33, and after the above-described priority control is changed in step S35 according to the situation, the priority control of the one vehicle is changed again. Sometimes it is done.
  • the control unit 30 determines whether or not to end the process (S39). When it is determined that the process is not to be ended (NO in S39), the control unit 30 performs the processes after step S31, and when it is determined that the process is to be ended (YES in S39), the process is ended.
  • the vehicle control device of each embodiment described above can also be realized by using a general-purpose computer including a CPU (processor), a RAM, and the like. That is, as shown in FIGS. 13 and 15, a computer program that defines the procedure of each process is loaded into a RAM provided in the computer, and the computer program is executed by a CPU (processor), thereby controlling the vehicle on the computer.
  • a CPU processor
  • An apparatus can be realized.
  • the description is based on the assumption that the road is left-handed and has a right-hand drive, as in Japan. However, the road is right-handed and has a left-hand drive, as in the United States.
  • the description of the left lane in the specification may be read as the right lane and the description of the right lane may be read as the left lane.
  • Vehicle (own vehicle) 2 vehicles (other vehicles) DESCRIPTION OF SYMBOLS 10, 30 Control part 11 Own vehicle information acquisition part 12 Other vehicle information acquisition part 13, 32 Environmental information acquisition part 14, 33 Storage part 15 Automatic driving control part 16, 34 Lane determination part 17, 35 Traveling speed determination part 18 Navigation part 181 GPS receiver 182, 332 Map information 21 Communication equipment (communication device) 22 Sensor part 23 Equipment 31 Vehicle information acquisition part 100 Vehicle control apparatus 150 Server

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

This vehicle control device comprises: a host-vehicle information acquisition unit which acquires, for a host vehicle, vehicle information, including vehicle position information and vehicle auto part information, as host-vehicle information; a lane information acquisition unit which acquires lane information for a road that the host vehicle travels on; and a lane determination unit which determines a lane to be traveled on by the host vehicle on the basis of the host-vehicle information acquired by the host-vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit.

Description

車両制御装置、コンピュータプログラム及び車両制御方法Vehicle control apparatus, computer program, and vehicle control method
   本発明は、車両制御装置、コンピュータプログラム及び車両制御方法に関する。
 本出願は、2016年7月1日出願の日本出願第2016-132038号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a vehicle control device, a computer program, and a vehicle control method.
This application claims priority based on Japanese Patent Application No. 2016-1332038 filed on July 1, 2016, and incorporates all the description content described in the above Japanese application.
 特許文献1には、車両の前方を走行する先行車が検出された場合、運転者が先行車を追い越そうとする意思があるか否かを判定するための閾値を用いて、先行車に追従する時間が当該閾値以上であるときは、先行車を追従するモードで自動運転を行う車両制御装置が開示されている。 In Patent Document 1, when a preceding vehicle traveling in front of a vehicle is detected, a threshold is used to determine whether the driver has an intention to overtake the preceding vehicle. A vehicle control device that performs automatic driving in a mode of following a preceding vehicle when the time to follow is equal to or greater than the threshold is disclosed.
特開2014-46748号公報JP 2014-46748 A
 本開示の車両制御装置は、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を自車両について自車両情報として取得する自車両情報取得部と、前記自車両が走行する道路の車線情報を取得する車線情報取得部と、前記自車両情報取得部で取得した前記自車両情報及び前記車線情報取得部で取得した前記車線情報に基づいて前記自車両が走行する車線を決定する車線決定部とを備える。 The vehicle control device according to the present disclosure includes a vehicle information acquisition unit that acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as vehicle information about the vehicle, and lane information of a road on which the vehicle travels A lane information acquisition unit that acquires the lane information acquisition unit, and a lane determination unit that determines the lane on which the host vehicle travels based on the host vehicle information acquired by the host vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit With.
 本開示の車両制御装置は、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として取得する車両情報取得部と、前記一の車両が走行する道路の車線情報を取得する車線情報取得部と、前記車両情報取得部で取得した前記一の車両情報及び前記車線情報取得部で取得した前記車線情報に基づいて前記一の車両が走行する車線を決定する車線決定部とを備える。 The vehicle control device according to the present disclosure includes a vehicle information acquisition unit that acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle, and a road on which the one vehicle travels. A lane information acquisition unit that acquires lane information, and the one vehicle information acquired by the vehicle information acquisition unit and the lane on which the one vehicle travels are determined based on the lane information acquired by the lane information acquisition unit. A lane determining unit.
 本開示のコンピュータプログラムは、コンピュータに、車両の走行を制御させるためのコンピュータプログラムであって、コンピュータを、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として取得する車両情報取得部と、前記一の車両が走行する道路の車線情報を取得する車線情報取得部と、取得した前記一の車両情報及び前記車線情報に基づいて前記一の車両が走行する車線を決定する車線決定部として機能させる。 A computer program of the present disclosure is a computer program for causing a computer to control traveling of a vehicle. The computer program includes vehicle information including vehicle position information and information on equipment of the vehicle for one vehicle. A vehicle information acquisition unit acquired as information, a lane information acquisition unit that acquires lane information of a road on which the one vehicle travels, and the one vehicle traveling based on the acquired one vehicle information and the lane information It functions as a lane determining unit that determines a lane to be operated.
 本開示の車両制御方法は、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として車両情報取得部が取得し、前記一の車両が走行する道路の車線情報を車線情報取得部が取得し、取得された前記一の車両情報及び前記車線情報に基づいて前記一の車両が走行する車線を車線決定部が決定する。 In the vehicle control method of the present disclosure, a vehicle information acquisition unit acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the road on which the one vehicle travels is acquired. A lane information acquisition unit acquires lane information, and a lane determination unit determines a lane on which the one vehicle travels based on the acquired one vehicle information and the acquired lane information.
第1実施形態の車両制御装置が搭載された車両を含む車両制御システムの構成の一例を示す模式図である。It is a mimetic diagram showing an example of composition of a vehicle control system containing vehicles in which a vehicle control device of a 1st embodiment is carried. 第1実施形態の車両制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the vehicle control apparatus of 1st Embodiment. 自車両及び他車両の車両情報の一例を示す説明図である。It is explanatory drawing which shows an example of the vehicle information of the own vehicle and another vehicle. 環境情報の一例を示す説明図である。It is explanatory drawing which shows an example of environmental information. 第1実施形態の車両制御装置による車線決定の第1例を示す模式図である。It is a schematic diagram which shows the 1st example of the lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による車線決定の第2例を示す模式図である。It is a schematic diagram which shows the 2nd example of lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による車線決定の第3例を示す模式図である。It is a schematic diagram which shows the 3rd example of the lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による車線決定の第4例を示す模式図である。It is a schematic diagram which shows the 4th example of the lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による車線決定の第5例を示す模式図である。It is a schematic diagram which shows the 5th example of the lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による車線決定の第6例を示す模式図である。It is a schematic diagram which shows the 6th example of lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による車線決定の第7例を示す模式図である。It is a schematic diagram which shows the 7th example of the lane determination by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置による走行速度の決定の一例を示す説明図である。It is explanatory drawing which shows an example of the determination of the travel speed by the vehicle control apparatus of 1st Embodiment. 第1実施形態の車両制御装置の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the vehicle control apparatus of 1st Embodiment. 第2実施形態の車両制御装置としてのサーバの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the server as a vehicle control apparatus of 2nd Embodiment. 第2実施形態の車両制御装置としてのサーバの処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the server as a vehicle control apparatus of 2nd Embodiment.
 近年、交通事故の削減、交通流の円滑化、あるいは燃料消費の低減などに寄与する技術として自動運転に関する技術が進展している。 In recent years, autonomous driving technology has been developed as a technology that contributes to reducing traffic accidents, smoothing traffic flow, or reducing fuel consumption.
[本開示が解決しようとする課題]
 特許文献1の装置は、運転者の意思を反映した自動運転を実行することはできるものの、自動運転技術の高度化によってさらなる交通流の円滑化が望まれている。
 そこで、交通流の円滑化を図るような自動運転を行うことができる車両制御装置、該車両制御装置を実現するためのコンピュータプログラム及び車両制御方法を提供することを目的とする。
[Problems to be solved by the present disclosure]
Although the device of Patent Document 1 can execute automatic driving reflecting the driver's intention, further smoothing of traffic flow is desired by advancement of automatic driving technology.
Accordingly, it is an object of the present invention to provide a vehicle control device capable of performing automatic driving so as to smooth traffic flow, a computer program for realizing the vehicle control device, and a vehicle control method.
[本開示の効果]
 本開示によれば、交通流の円滑化を図るような自動運転を行うことができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to perform automatic driving that facilitates smooth traffic flow.
[本願発明の実施形態の説明]
 本実施の形態に係る車両制御装置は、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を自車両について自車両情報として取得する自車両情報取得部と、前記自車両が走行する道路の車線情報を取得する車線情報取得部と、前記自車両情報取得部で取得した前記自車両情報及び前記車線情報取得部で取得した前記車線情報に基づいて前記自車両が走行する車線を決定する車線決定部とを備える。
[Description of Embodiment of Present Invention]
The vehicle control device according to the present embodiment includes a vehicle information acquisition unit that acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as vehicle information about the vehicle, and a road on which the vehicle travels. A lane information acquisition unit that acquires the lane information of the vehicle, and the lane on which the host vehicle travels is determined based on the host vehicle information acquired by the host vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit. A lane determining unit.
 本実施の形態に係る車両制御装置は、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として取得する車両情報取得部と、前記一の車両が走行する道路の車線情報を取得する車線情報取得部と、前記車両情報取得部で取得した前記一の車両情報及び前記車線情報取得部で取得した前記車線情報に基づいて前記一の車両が走行する車線を決定する車線決定部とを備える。 The vehicle control device according to the present embodiment includes a vehicle information acquisition unit that acquires vehicle information including position information of a vehicle and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the one vehicle travels A lane information acquisition unit that acquires lane information of a road to be performed, and the lane in which the one vehicle travels based on the one vehicle information acquired by the vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit A lane determining unit for determining the lane.
 本実施の形態に係るコンピュータプログラムは、コンピュータに、車両の走行を制御させるためのコンピュータプログラムであって、コンピュータを、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として取得する車両情報取得部と、前記一の車両が走行する道路の車線情報を取得する車線情報取得部と、取得した前記一の車両情報及び前記車線情報に基づいて前記一の車両が走行する車線を決定する車線決定部として機能させる。 The computer program according to the present embodiment is a computer program for causing a computer to control the traveling of a vehicle, and the computer uses the vehicle information including vehicle position information and information related to the equipment of the vehicle for one vehicle. A vehicle information acquisition unit that acquires as one vehicle information, a lane information acquisition unit that acquires lane information of a road on which the one vehicle travels, and the one vehicle information based on the acquired one vehicle information and the lane information. It functions as a lane determining unit that determines the lane in which the vehicle travels.
 本実施の形態に係る車両制御方法は、車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として車両情報取得部が取得し、前記一の車両が走行する道路の車線情報を車線情報取得部が取得し、取得された前記一の車両情報及び前記車線情報に基づいて前記一の車両が走行する車線を車線決定部が決定する。 In the vehicle control method according to the present embodiment, the vehicle information acquisition unit acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle, and the one vehicle travels. A lane information acquisition unit acquires lane information of a road to be performed, and a lane determination unit determines a lane on which the one vehicle travels based on the acquired one vehicle information and the lane information.
 自車両情報取得部は、車両の位置情報及び当該車両の装備に関する情報を含む車両情報を自車両について自車両情報として取得する。なお、車両制御装置が車両に搭載されている場合には、当該車両は自車両である。また、車両制御装置が車両に搭載されていない場合には、自車両を任意の一つの車両と読み替えることができる。装備は、車両の自動運転に影響を及ぼすような装備であり、例えば、タイヤまたはライトなどの装備品、車両の周辺を検知するためのセンサ、あるいは車車間通信または路車間通信のための通信装置などを含む。 The own vehicle information acquisition unit acquires the vehicle information including the position information of the vehicle and information related to the equipment of the vehicle as the own vehicle information about the own vehicle. When the vehicle control device is mounted on the vehicle, the vehicle is the host vehicle. Further, when the vehicle control device is not mounted on the vehicle, the host vehicle can be read as any one vehicle. The equipment is equipment that affects the automatic driving of the vehicle. For example, equipment such as tires or lights, a sensor for detecting the periphery of the vehicle, or a communication device for vehicle-to-vehicle communication or road-to-vehicle communication. Etc.
 車線情報取得部は、自車両が走行する道路の車線情報を取得する。道路の車線情報は、例えば、自車両が走行する方向の車線の数(走行レーンの数)である。例えば、上り三車線、下り二車線で合計五車線の道路において、自車両が上りを走行している場合、車線の数は3となる。道路の車線は、片側三車線、片側二車線、片側四車線などを含む。車線情報は、自車両の位置情報及び道路地図情報などに基づいて取得することができる。また、車線情報は、外部の路側装置などから取得することもできる。 The lane information acquisition unit acquires lane information of the road on which the host vehicle is traveling. The road lane information is, for example, the number of lanes in the direction in which the host vehicle travels (the number of travel lanes). For example, when the host vehicle is traveling on an up three lane road and two down lane roads with a total of five lanes, the number of lanes is three. Road lanes include three lanes on one side, two lanes on one side, and four lanes on one side. Lane information can be acquired based on the position information of the host vehicle, road map information, and the like. Lane information can also be acquired from an external roadside device or the like.
 車線決定部は、取得した自車両情報及び車線情報に基づいて自車両が走行する車線を決定する。例えば、車線の数が三つあり、進行方向の左から順番に左レーン、中央レーン及び右レーンとする。日本などの左側通行の国では、一般的には、車両は、左側レーンの方が右側のレーンよりも低速で走行する。例えば、自車両に搭載した装備に故障がある場合、自動運転走行時の車両の走行制御に支障が生じることなどが考えられ、より高速のレーンを走行させると円滑な交通流を阻害する可能性が生じる。すなわち、より左側のレーンを走行する方が、交通流の円滑化を図ることができると考えられる。そこで、車線決定部は、例えば、自車両が中央レーンを走行している場合には、左レーンに車線を変更すべく走行する車線を決定する。これにより、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることによって、交通事故の発生を低減するような自動運転を行うことができる。なお、米国などの右側通行の国では、左右は逆となる。 The lane determining unit determines the lane in which the host vehicle travels based on the acquired host vehicle information and lane information. For example, there are three lanes, and the left lane, center lane, and right lane are sequentially arranged from the left in the traveling direction. In left-handed countries, such as Japan, vehicles generally run slower on the left lane than on the right lane. For example, if there is a failure in the equipment installed in the host vehicle, it is possible that the vehicle's travel control during automatic driving will be hindered. Occurs. That is, it is considered that the traffic flow can be smoothed by traveling on the left lane. Therefore, for example, when the host vehicle is traveling in the central lane, the lane determining unit determines a lane to travel to change the lane to the left lane. Thereby, automatic driving | operation which can aim at smoothing of a traffic flow can be performed. In addition, by facilitating traffic flow, it is possible to perform automatic driving that reduces the occurrence of traffic accidents. In right-handed countries such as the United States, the left and right are reversed.
 本実施の形態に係る車両制御装置は、車両情報を1又は複数の他車両について他車両情報として取得する他車両情報取得部を備え、前記車線決定部は、前記他車両情報取得部で取得した他車両の他車両情報に基づいて前記自車両が走行する車線を決定する。 The vehicle control device according to the present embodiment includes an other vehicle information acquisition unit that acquires vehicle information as other vehicle information for one or more other vehicles, and the lane determination unit is acquired by the other vehicle information acquisition unit. A lane in which the host vehicle travels is determined based on other vehicle information of the other vehicle.
 他車両情報取得部は、車両情報を1又は複数の他車両について他車両情報として取得する。車線決定部は、取得した他車両の他車両情報に基づいて自車両が走行する車線を決定する。すなわち、車線決定部は、自車両情報と他車両情報とに基づいて自車両が走行する車線を決定する。 The other vehicle information acquisition unit acquires vehicle information as other vehicle information for one or more other vehicles. The lane determining unit determines a lane in which the host vehicle travels based on the acquired other vehicle information of the other vehicle. That is, the lane determining unit determines the lane in which the host vehicle travels based on the host vehicle information and the other vehicle information.
 例えば、自車両及び他車両が中央レーンを走行しているとする。例えば、自車両に搭載した装備に故障があり、他車両に搭載した装備に故障がない場合、自車両が他車両よりも左側のレーンを走行する方が、交通流の円滑化を図ることができると考えられる。そこで、車線決定部は、例えば、自車両が左レーンを走行するように車線を決定する。逆に、自車両に搭載した装備に故障がなく、他車両に搭載した装備に故障がある場合、他車両が自車両よりも左側のレーンを走行する方が、交通流の円滑化を図ることができると考えられる。そこで、車線決定部は、例えば、自車両が右レーンを走行するように車線を決定する。これにより、自車両の周辺に他車両が存在する場合でも、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることによって、交通事故の発生を低減するような自動運転を行うことができる。 For example, it is assumed that the host vehicle and other vehicles are traveling in the central lane. For example, if there is a failure in the equipment installed in the host vehicle and there is no failure in the equipment installed in the other vehicle, it is possible for the vehicle to travel more smoothly in the lane on the left side than the other vehicle. It is considered possible. Therefore, for example, the lane determining unit determines the lane so that the host vehicle travels in the left lane. Conversely, if there is no failure in the equipment installed in the host vehicle and there is a failure in the equipment installed in the other vehicle, it is easier for the other vehicle to travel in the lane on the left side of the host vehicle to smooth the traffic flow. It is thought that you can. Therefore, the lane determination unit determines the lane so that the host vehicle travels in the right lane, for example. Thereby, even when other vehicles exist in the vicinity of the own vehicle, it is possible to perform an automatic driving that can smooth the traffic flow. In addition, by facilitating traffic flow, it is possible to perform automatic driving that reduces the occurrence of traffic accidents.
 本実施の形態に係る車両制御装置は、前記車両情報は、前記装備の故障に関する情報を含む。 In the vehicle control device according to the present embodiment, the vehicle information includes information on the equipment failure.
 車両情報は、装備の故障に関する情報を含む。装備の故障は、例えば、タイヤのパンク、ライトの故障、センサの故障または通信装置の故障などを含む。装備が故障している場合には、自動運転走行時の車両の走行制御に支障が生じること、自動運転に必要な情報が欠落することなどが考えられる。車両情報に装備の故障に関する情報を含めることにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができる。 Vehicle information includes information on equipment failures. Equipment failure includes, for example, tire puncture, light failure, sensor failure or communication device failure. If the equipment is out of order, it may be possible that the vehicle travel control during automatic driving will be hindered and information necessary for automatic driving may be lost. By including information on equipment failure in the vehicle information, it is possible to determine the lane in order to make the vehicle travel more smoothly or safely (automatic driving travel).
 本実施の形態に係る車両制御装置は、前記車両情報は、前記車両に搭載され、前記車両外の情報を検出するセンサに関する情報を含む。 In the vehicle control device according to the present embodiment, the vehicle information includes information on a sensor that is mounted on the vehicle and detects information outside the vehicle.
 車両情報は、車両(自車両又は他車両)に搭載され、当該車両外の情報を検出するセンサに関する情報を含む。センサは、例えば、カメラ、ミリ波センサ(ミリ波レーダ)、LiDAR(Light Detection And Ranging)などを含む。センサに関する情報は、センサの搭載の有無、センサの種類、センサの故障の有無などを含む。例えば、センサを搭載しているか否かに応じて、車両が取得することができる自動運転に必要な情報量が変わる。車両情報にセンサに関する情報を含めることにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができる。 Vehicle information includes information related to a sensor that is mounted on a vehicle (the host vehicle or another vehicle) and detects information outside the vehicle. The sensor includes, for example, a camera, a millimeter wave sensor (millimeter wave radar), a LiDAR (Light Detection And Ranging), and the like. The information about the sensor includes the presence / absence of the sensor, the type of the sensor, the presence / absence of the sensor failure, and the like. For example, the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on whether or not the sensor is mounted. By including information about the sensor in the vehicle information, it is possible to determine a lane in order to make the vehicle travel more smoothly or safely (automatic driving travel).
 本実施の形態に係る車両制御装置は、前記車両情報は、前記車両に搭載されている通信装置に関する情報を含む。 In the vehicle control device according to the present embodiment, the vehicle information includes information related to a communication device mounted on the vehicle.
 車両情報は、車両(自車両又は他車両)に搭載されている通信装置に関する情報を含む。通信装置に関する情報は、例えば、通信装置の種類(例えば、通信帯域、通信速度、接続可能通信機器の台数など)を含む。具体的には、通信装置の種類としては、一例として、3G(第3世代移動通信)、LTE(Long Term Evolution)又は4G(第4世代移動通信)、5G(第5世代移動通信)などがある。例えば、搭載している通信装置の種類に応じて、車両が取得することができる自動運転に必要な情報量が変わる。車両情報に通信装置に関する情報を含めることにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができる。 Vehicle information includes information related to a communication device mounted on a vehicle (the own vehicle or another vehicle). The information related to the communication device includes, for example, the type of communication device (for example, communication band, communication speed, number of connectable communication devices, etc.). Specifically, as a type of communication device, for example, 3G (3rd generation mobile communication), LTE (Long Termination Evolution) or 4G (4th generation mobile communication), 5G (5th generation mobile communication), etc. is there. For example, the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on the type of communication device installed. By including information about the communication device in the vehicle information, it is possible to determine the lane in order to make the vehicle travel more smoothly or safely (automatic driving travel).
 本実施の形態に係る車両制御装置は、前記車両の運転者の身体状態に関する情報を取得する身体情報取得部を備え、前記車線決定部は、前記身体情報取得部で取得した身体情報に基づいて前記自車両が走行する車線を決定する。 The vehicle control device according to the present embodiment includes a physical information acquisition unit that acquires information related to the physical state of the driver of the vehicle, and the lane determination unit is based on the physical information acquired by the physical information acquisition unit. A lane in which the host vehicle travels is determined.
 身体情報取得部は、車両(自車両又は他車両)の運転者の身体状態に関する情報を取得する。身体状態は、例えば、眠気、酒気帯び、注意力散漫、体調不良などの状態を含む。身体状態に応じて交通事故の発生確率は変わると考えられるので、運転者の身体状態に関する情報を考慮することにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができる。 The body information acquisition unit acquires information related to the physical state of the driver of the vehicle (the own vehicle or another vehicle). The physical condition includes, for example, conditions such as sleepiness, drunkenness, distraction, and poor physical condition. Since the probability of a traffic accident is considered to change according to the physical condition, the lane should be determined in order to make the vehicle run more smoothly or safely (automatic driving) by considering information on the physical condition of the driver. Can do.
 本実施の形態に係る車両制御装置は、前記車線決定部は、所定の領域内の前記他車両の他車両情報に基づいて前記自車両が走行する車線を決定する。 In the vehicle control device according to the present embodiment, the lane determining unit determines a lane in which the host vehicle travels based on other vehicle information of the other vehicle in a predetermined area.
 車線決定部は、所定の領域内の他車両の他車両情報に基づいて自車両が走行する車線を決定する。所定の領域内は、例えば、自車両からの距離が所定値(例えば、200mなど)以内となるような範囲とすることができる。これにより、自車両の周辺に他車両が存在する場合でも、交通流の円滑化を図ることができるような自動運転を行うことができる。 The lane determining unit determines a lane in which the host vehicle travels based on other vehicle information of other vehicles in a predetermined area. For example, the predetermined area can be a range in which the distance from the host vehicle is within a predetermined value (for example, 200 m). Thereby, even when other vehicles exist in the vicinity of the own vehicle, it is possible to perform an automatic driving that can smooth the traffic flow.
 本実施の形態に係る車両制御装置は、所定の領域内の前記他車両の台数に基づいて前記車線決定部が車線を決定するか否かを決定する決定部を備える。 The vehicle control device according to the present embodiment includes a determining unit that determines whether or not the lane determining unit determines a lane based on the number of the other vehicles in a predetermined area.
 決定部は、所定の領域内の他車両の台数に基づいて車線決定部が車線を決定するか否かを決定する。所定の領域内は、例えば、自車両からの距離が所定値(例えば、200mなど)以内となるような範囲とすることができる。所定の領域内の他車両の台数が少ない場合には、自車両はいずれの車線でも走行することが可能であり、走行中の車線をそのまま維持することもできる。すなわち、所定の領域内の他車両の台数が少ない場合には、自車両が走行する車線の決定を行わない。また、所定の領域内の他車両の台数が多い場合には、自車両と他車両とのいずれを優先させるかを決定すべく、自車両が走行する車線の決定を行う。これにより、周辺の他車両が多いほど優先度に応じて車線を決定し、周辺の他車両が少ないほど自由に車線を変更することができるような自動運転を実現することができる。 The determining unit determines whether or not the lane determining unit determines a lane based on the number of other vehicles in the predetermined area. For example, the predetermined area can be a range in which the distance from the host vehicle is within a predetermined value (for example, 200 m). When the number of other vehicles in the predetermined area is small, the host vehicle can travel in any lane, and the traveling lane can be maintained as it is. That is, when the number of other vehicles in the predetermined area is small, the lane in which the host vehicle is traveling is not determined. In addition, when the number of other vehicles in the predetermined area is large, the lane in which the host vehicle is traveling is determined in order to determine which of the host vehicle and the other vehicle is prioritized. Accordingly, it is possible to realize an automatic driving in which the lane is determined according to the priority as the number of other surrounding vehicles increases, and the lane can be freely changed as the number of other surrounding vehicles decreases.
 本実施の形態に係る車両制御装置は、天候情報を取得する天候情報取得部を備え、前記車線決定部は、前記天候情報取得部で取得した天候情報に基づいて前記自車両が走行する車線を決定する。 The vehicle control device according to the present embodiment includes a weather information acquisition unit that acquires weather information, and the lane determination unit determines a lane in which the host vehicle travels based on the weather information acquired by the weather information acquisition unit. decide.
 天候情報取得部は、天候情報を取得する。天候情報は、車両の走行に対して影響を及ぼす可能性の有無に基づいて適宜決定することができる。車両の走行に影響がない情報には、例えば、晴、曇などを含めることができる。また、車両の走行に影響を与える情報には、例えば、雨、雪、強風などを含めることができる。 The weather information acquisition unit acquires weather information. The weather information can be appropriately determined based on whether or not there is a possibility of affecting the travel of the vehicle. The information that does not affect the running of the vehicle can include, for example, clear or cloudy. In addition, the information affecting the running of the vehicle can include, for example, rain, snow, strong wind, and the like.
 車線決定部は、取得した天候情報に基づいて自車両が走行する車線を決定する。例えば、天候情報が運転に影響を与えるような、雨、雪などの場合には、走行する車線を左側のレーンとする。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができる。 The lane determining unit determines the lane in which the host vehicle is traveling based on the acquired weather information. For example, in the case of rain, snow, etc. where the weather information affects driving, the lane on which the vehicle travels is set as the left lane. Thereby, a lane can be determined in order to run a vehicle more smoothly or safely (automatic driving run).
 本実施の形態に係る車両制御装置は、前記車線決定部で決定した車線における前記自車両の走行速度を決定する速度決定部を備える。 The vehicle control device according to the present embodiment includes a speed determining unit that determines the traveling speed of the host vehicle in the lane determined by the lane determining unit.
 速度決定部は、決定した車線における自車両の走行速度を決定する。例えば、左レーンを走行する車線として決定した場合には、走行速度を低速(例えば、50~60km/hなど)とする。また、中央レーンを走行する車線として決定した場合には、走行速度を中速(例えば、60~70km/hなど)とする。また、右レーンを走行する車線として決定した場合には、走行速度を高速(例えば、70~80km/hなど)とする。なお、いずれの走行レーンを走行するかに関わらず、走行中のレーンでの走行速度を変えるようにしてもよい。これにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 The speed determination unit determines the traveling speed of the host vehicle in the determined lane. For example, when it is determined that the vehicle is traveling on the left lane, the traveling speed is set to a low speed (for example, 50 to 60 km / h). When the lane is determined to travel on the central lane, the traveling speed is set to a medium speed (for example, 60 to 70 km / h). In addition, when it is determined that the vehicle is traveling on the right lane, the traveling speed is set to a high speed (for example, 70 to 80 km / h). Note that the traveling speed in the traveling lane may be changed regardless of which traveling lane is traveled. Thereby, a vehicle can be drive | worked more smoothly or safely (automatic driving driving | running | working).
 本実施の形態に係る車両制御装置は、前記速度決定部は、前記自車両が走行する時間帯に基づいて走行速度を決定する。 In the vehicle control device according to the present embodiment, the speed determination unit determines a traveling speed based on a time zone during which the host vehicle travels.
 速度決定部は、自車両が走行する時間帯に基づいて走行速度を決定する。時間帯は、例えば、昼間の時間帯、夜間の時間帯、周辺が暗くなる夕刻の時間帯などを含む。夜間又は夕刻での車両の走行は、昼間の走行に比べて交通事故に遭遇する可能性が高いと考えられる。そこで、時間帯に基づいて走行速度を決定することにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 The speed determining unit determines the traveling speed based on the time zone in which the host vehicle travels. The time zone includes, for example, a day time zone, a night time zone, and an evening time zone when the surroundings are dark. Driving a vehicle at night or in the evening is considered more likely to encounter a traffic accident than driving in the daytime. Therefore, by determining the traveling speed based on the time zone, the vehicle can travel more smoothly or safely (automatic driving traveling).
 本実施の形態に係る車両制御装置は、前記車両情報取得部は、前記車両情報を1又は複数の他の車両について他の車両情報として取得し、前記車線決定部は、前記他の車両情報に基づいて前記一の車両が走行する車線を決定する。 In the vehicle control device according to the present embodiment, the vehicle information acquisition unit acquires the vehicle information as other vehicle information for one or more other vehicles, and the lane determination unit acquires the other vehicle information. Based on this, the lane in which the one vehicle travels is determined.
 車両情報取得部は、車両情報を1又は複数の他の車両について他の車両情報として取得し、車線決定部は、他の車両情報に基づいて一の車両が走行する車線を決定する。これにより、一の車両の周辺に他の車両が存在する場合でも、一の車両の走行の円滑化を図ることができるような自動運転を行うことができる。 The vehicle information acquisition unit acquires vehicle information as other vehicle information for one or more other vehicles, and the lane determination unit determines a lane on which one vehicle travels based on the other vehicle information. Thereby, even when other vehicles exist in the vicinity of one vehicle, it is possible to perform an automatic driving that can facilitate the traveling of the one vehicle.
[本願発明の実施形態の詳細]
(第1実施形態)
 以下、本発明を実施の形態を示す図面に基づいて説明する。図1は第1実施形態の車両制御装置100が搭載された車両1を含む車両制御システムの構成の一例を示す模式図である。車両制御装置100が搭載された車両1を自車両1とも称し、車両1以外の車両2を他車両2とも称する。すなわち、本明細書において、車両1は自車両1であり、車両2は他車両2である。図1に示すように、車両1は、他の車両2、2との間で通信を行うことができる(例えば、車車間通信)。また、車両1は、路側装置200及びサーバ300との間で通信を行うことができる(例えば、路車間通信)。
[Details of the embodiment of the present invention]
(First embodiment)
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments. FIG. 1 is a schematic diagram illustrating an example of a configuration of a vehicle control system including a vehicle 1 on which a vehicle control device 100 according to the first embodiment is mounted. The vehicle 1 on which the vehicle control device 100 is mounted is also referred to as the own vehicle 1, and the vehicle 2 other than the vehicle 1 is also referred to as another vehicle 2. That is, in this specification, the vehicle 1 is the host vehicle 1 and the vehicle 2 is the other vehicle 2. As shown in FIG. 1, the vehicle 1 can communicate with other vehicles 2 and 2 (for example, inter-vehicle communication). Moreover, the vehicle 1 can communicate between the roadside apparatus 200 and the server 300 (for example, road-to-vehicle communication).
 図2は第1実施形態の車両制御装置100の構成の一例を示すブロック図である。図2に示すように、車両制御装置100は、装置全体を制御する制御部10、自車両情報取得部11、他車両情報取得部12、環境情報取得部13、記憶部14、自動運転制御部15、車線決定部16、走行速度決定部17、ナビゲーション部18などを備える。また、ナビゲーション部18は、GPS受信部181、地図情報182などを備える。 FIG. 2 is a block diagram showing an example of the configuration of the vehicle control device 100 of the first embodiment. As shown in FIG. 2, the vehicle control device 100 includes a control unit 10 that controls the entire device, a host vehicle information acquisition unit 11, another vehicle information acquisition unit 12, an environment information acquisition unit 13, a storage unit 14, and an automatic driving control unit. 15, a lane determining unit 16, a traveling speed determining unit 17, a navigation unit 18, and the like. The navigation unit 18 includes a GPS reception unit 181 and map information 182.
 また、車両制御装置100には、通信装置としての通信機器21、センサ部22及び装備品23などが接続されている。なお、図2の例では、車両1にセンサ部22が搭載されているが、センサ部22を搭載しない車両1も存在する。 Further, the vehicle control device 100 is connected to a communication device 21, a sensor unit 22, and an equipment 23 as communication devices. In the example of FIG. 2, the sensor unit 22 is mounted on the vehicle 1, but there is also a vehicle 1 that does not include the sensor unit 22.
 通信機器21の種類には、例えば、3G方式(第3世代移動通信)、LTE方式(LongTerm Evolution)又は4G方式(第4世代移動通信)、5G方式(第5世代移動通信)、無線LAN(例えば、WiFi)、あるいはITS無線方式などがある。通信機器21は、これらの種類のうち、いずれの種類のものでもよい。 The types of communication devices 21 include, for example, 3G system (3rd generation mobile communication), LTE system (LongTerm Evolution), 4G system (4th generation mobile communication), 5G system (5th generation mobile communication), wireless LAN ( For example, there is WiFi) or ITS wireless system. The communication device 21 may be any of these types.
 センサ部22は、例えば、カメラ(例えば、単眼カメラ又はステレオカメラなど)、ミリ波センサ(ミリ波レーダ)、LiDAR(Light Detection And Ranging)、モーションセンサなどを含む。センサ部22は、単眼カメラ、ステレオカメラ、ミリ波センサ(ミリ波レーダ)、モーションセンサ及びLiDARの全部でもよく、あるいは一部でもよい。 The sensor unit 22 includes, for example, a camera (for example, a monocular camera or a stereo camera), a millimeter wave sensor (millimeter wave radar), a LiDAR (Light Detection And Ranging), a motion sensor, and the like. The sensor unit 22 may be all or a part of a monocular camera, a stereo camera, a millimeter wave sensor (millimeter wave radar), a motion sensor, and LiDAR.
 装備品23は、タイヤ、ライト、チャイルドシートなどを含む。 Equipment 23 includes tires, lights, child seats and the like.
 自車両情報取得部11は、車両の位置情報及び当該車両の装備に関する情報を含む車両情報を自車両1について自車両情報として取得する。なお、車両制御装置100が車両に搭載されている場合には、当該車両は自車両1である。また、車両制御装置100が車両に搭載されていない場合には、自車両1を任意の一つの車両と読み替えることができる。装備は、車両の自動運転に影響を及ぼすような装備であり、例えば、タイヤ、ライト又はチャイルドシートなどの装備品23、車両の周辺を検知するためのセンサ部22、あるいは車車間通信または路車間通信のための通信機器21などを含む。なお、自車両1の車両情報は、ナビゲーション部18、通信機器21、センサ部22及び装備品23から取得することができる。 The own vehicle information acquisition unit 11 acquires the vehicle information including the position information of the vehicle and the information related to the equipment of the vehicle as the own vehicle information about the own vehicle 1. When the vehicle control device 100 is mounted on a vehicle, the vehicle is the host vehicle 1. Further, when the vehicle control device 100 is not mounted on a vehicle, the host vehicle 1 can be read as any one vehicle. The equipment is equipment that affects the automatic driving of the vehicle. For example, the equipment 23 such as a tire, a light, or a child seat, the sensor unit 22 for detecting the periphery of the vehicle, or inter-vehicle communication or road-vehicle communication. Communication equipment 21 and the like. Note that the vehicle information of the host vehicle 1 can be acquired from the navigation unit 18, the communication device 21, the sensor unit 22, and the equipment 23.
 他車両情報取得部12は、車両情報を1又は複数の車両2(他車両)について他車両情報として取得する。他車両2の車両情報は、車車間通信によって他車両2から直接取得してもよく、あるいは路車間通信によって路側装置200又はサーバ300から取得するようにしてもよい。なお、本明細書において、自車両1の車両情報は自車両情報と同義であり、他車両2の車両情報は他車両情報と同義である。 Other vehicle information acquisition part 12 acquires vehicle information as other vehicle information about one or a plurality of vehicles 2 (other vehicles). The vehicle information of the other vehicle 2 may be acquired directly from the other vehicle 2 through inter-vehicle communication, or may be acquired from the roadside device 200 or the server 300 through road-to-vehicle communication. In addition, in this specification, the vehicle information of the own vehicle 1 is synonymous with the own vehicle information, and the vehicle information of the other vehicle 2 is synonymous with the other vehicle information.
 図3は自車両1及び他車両2の車両情報の一例を示す説明図である。図3に示すように、車両情報は、センサ部22の有無(より具体的には、単眼カメラ、ステレオカメラ、ミリ波センサ、LiDAR、モーションセンサそれぞれの有無)、センサ部22の種類(単眼カメラ、ステレオカメラ、ミリ波センサ、LiDAR、モーションセンサなどの別)、センサ部22の故障の有無(より具体的には、単眼カメラ、ステレオカメラ、ミリ波センサ、LiDAR、モーションセンサそれぞれの故障の有無)、装備品23(タイヤ、ライトなど)の故障の有無、装備品23(チャイルドシート)の搭載の有無、通信機器21の種類(通信帯域、通信速度、接続可能台数など)、車載器の有無及びバージョン(新しさ又は新旧)、車両の性能(加速、制動距離又は減速、ハイブリッドであるか否か等)、運転者の身体状態(心的状態を含む)、搭乗者の情報(例えば、人数、年齢、性別など)、ガソリン残量及びバッテリ残量、自動運転に関する課金(自動運転の支援に関しての支払料金など)などを含む。なお、便宜上、図3では位置情報を省略している。なお、車両情報は静的情報とも称する。 FIG. 3 is an explanatory diagram showing an example of vehicle information of the host vehicle 1 and the other vehicle 2. As shown in FIG. 3, the vehicle information includes the presence / absence of the sensor unit 22 (more specifically, the presence / absence of a monocular camera, stereo camera, millimeter wave sensor, LiDAR, and motion sensor), and the type of the sensor unit 22 (monocular camera). , Stereo camera, millimeter wave sensor, LiDAR, motion sensor, etc.), presence / absence of failure of sensor unit 22 (more specifically, presence / absence of failure of monocular camera, stereo camera, millimeter wave sensor, LiDAR, motion sensor) ), Whether or not the equipment 23 (tires, lights, etc.) has failed, whether the equipment 23 (child seat) is installed, the type of the communication device 21 (communication band, communication speed, the number of connectable devices, etc.) Version (new or old), vehicle performance (acceleration, braking distance or deceleration, whether hybrid, etc.), driver's body Status (including mental status), passenger information (eg, number of people, age, gender, etc.), remaining gasoline and battery level, billing for automatic driving (payment fee for automatic driving support, etc.) . For convenience, the position information is omitted in FIG. The vehicle information is also referred to as static information.
 自車両情報取得部11は、身体情報取得部としての機能を有し、自車両1及び/又は他車両2の運転者の身体状態に関する情報を取得する。運転者の身体状態は、例えば、眠気、酒気帯び、注意力散漫、体調不良などの状態を含む。身体状態に応じて交通事故の発生確率は変わると考えられるので、運転者の身体状態に関する情報を考慮することにより、車両をより安全に走行(自動運転走行)させるべく車線を決定することができる。 The own vehicle information acquisition unit 11 has a function as a physical information acquisition unit, and acquires information related to the physical state of the driver of the own vehicle 1 and / or the other vehicle 2. The physical condition of the driver includes, for example, conditions such as drowsiness, drunkenness, distraction, and poor physical condition. Since the occurrence probability of traffic accidents is considered to change according to the physical condition, it is possible to determine the lane in order to make the vehicle travel more safely (automatic driving) by considering information on the physical condition of the driver. .
 環境情報取得部13は、天候情報取得部としての機能を有し、環境情報を取得する。環境情報は、例えば、路車間通信によって路側装置200又はサーバ300から取得することができる。 The environmental information acquisition unit 13 has a function as a weather information acquisition unit, and acquires environmental information. The environmental information can be acquired from the roadside device 200 or the server 300 by road-to-vehicle communication, for example.
 図4は環境情報の一例を示す説明図である。図4に示すように、環境情報は、例えば、自車両1の周辺に存在する周辺車両の台数、天候情報、時間帯、緊急車両の接近の有無又は危険運転車両の接近の有無、渋滞の有無などの情報を含む。なお、環境情報は動的情報とも称する。 FIG. 4 is an explanatory diagram showing an example of environmental information. As shown in FIG. 4, the environmental information includes, for example, the number of surrounding vehicles existing around the host vehicle 1, weather information, time zone, presence / absence of emergency vehicles, presence / absence of dangerous driving vehicles, presence / absence of traffic jams. Information. The environment information is also referred to as dynamic information.
 天候情報は、車両の走行に対して影響を及ぼす可能性の有無に基づいて適宜決定することができる。車両の走行に影響がない情報には、例えば、晴、曇などを含めることができる。また、車両の走行に影響を与える情報には、例えば、雨、雪、強風などを含めることができる。 Weather information can be determined as appropriate based on whether or not there is a possibility of affecting the driving of the vehicle. The information that does not affect the running of the vehicle can include, for example, clear or cloudy. In addition, the information affecting the running of the vehicle can include, for example, rain, snow, strong wind, and the like.
 時間帯は、例えば、昼間の時間帯、夜間の時間帯、周辺が暗くなる夕刻の時間帯などを含む。 Hours include, for example, daytime, nighttime, and evening time when the surroundings are dark.
 ナビゲーション部18は、複数のGPS衛星からの電波をGPS受信部181で受け取り、自車両1の位置を検出する。また、ナビゲーション部18は、車速センサ及びジャイロセンサ(いずれも不図示)から出力される信号に基づいて自車両1の位置を推定し、地図情報182の道路データと照合することにより自車両1の位置をさらに精度良く検出することができる。 The navigation unit 18 receives radio waves from a plurality of GPS satellites by the GPS receiving unit 181 and detects the position of the host vehicle 1. Further, the navigation unit 18 estimates the position of the host vehicle 1 based on signals output from a vehicle speed sensor and a gyro sensor (both not shown), and collates with the road data of the map information 182 to check the position of the host vehicle 1. The position can be detected with higher accuracy.
 また、ナビゲーション部18は、車線情報取得部としての機能を有し、自車両1が走行する道路の車線情報を取得する。道路の車線情報は、例えば、自車両が走行する方向の車線の数(走行レーンの数)である。例えば、上り三車線、下り二車線で合計五車線の道路において、自車両が上りを走行している場合、車線の数は3となる。道路の車線は、片側三車線、片側二車線、片側四車線などを含む。車線情報は、自車両1の位置情報及び地図情報182の道路地図情報などに基づいて取得することができる。また、車線情報は、外部の路側装置200又はサーバ300などから取得することもできる。 Further, the navigation unit 18 has a function as a lane information acquisition unit, and acquires lane information of a road on which the host vehicle 1 travels. The road lane information is, for example, the number of lanes in the direction in which the host vehicle travels (the number of travel lanes). For example, when the host vehicle is traveling on an up three lane road and two down lane roads with a total of five lanes, the number of lanes is three. Road lanes include three lanes on one side, two lanes on one side, and four lanes on one side. The lane information can be acquired based on the position information of the host vehicle 1 and the road map information of the map information 182. Lane information can also be acquired from an external roadside device 200 or server 300.
 記憶部14は、自車両情報取得部11、他車両情報取得部12、環境情報取得部13、ナビゲーション部18などで取得した各種情報を記憶する。 The storage unit 14 stores various information acquired by the host vehicle information acquisition unit 11, the other vehicle information acquisition unit 12, the environment information acquisition unit 13, the navigation unit 18, and the like.
 車線決定部16は、取得した車両情報及び車線情報に基づいて自車両1が走行する車線を決定する。例えば、車線の数が三つあり、進行方向の左から順番に左レーン、中央レーン及び右レーンとする。日本などの左側通行の国では、一般的には、車両は、左側レーンの方が右側のレーンよりも低速で走行する。例えば、自車両1に搭載した装備に故障がある場合、自動運転走行時の車両の走行制御に支障が生じることなどが考えられ、より高速のレーンを走行させると円滑な交通流を阻害する可能性が生じる。すなわち、より左側のレーンを走行する方が、交通流の円滑化を図ることができると考えられる。そこで、車線決定部16は、例えば、自車両1が中央レーンを走行している場合には、左レーンに車線を変更すべく走行する車線を決定する。これにより、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることによって、交通事故の発生を低減するような自動運転を行うことができる。なお、米国などの右側通行の国では、左右は逆となる。 The lane determining unit 16 determines the lane in which the host vehicle 1 travels based on the acquired vehicle information and lane information. For example, there are three lanes, and the left lane, center lane, and right lane are sequentially arranged from the left in the traveling direction. In left-handed countries, such as Japan, vehicles generally run slower on the left lane than on the right lane. For example, if there is a failure in the equipment installed in the host vehicle 1, it is possible that the vehicle's travel control during automatic driving will be hindered, and smooth traffic flow can be hindered by traveling on higher speed lanes. Sex occurs. That is, it is considered that the traffic flow can be smoothed by traveling on the left lane. Therefore, for example, when the host vehicle 1 is traveling in the central lane, the lane determining unit 16 determines a lane to travel to change the lane to the left lane. Thereby, automatic driving | operation which can aim at smoothing of a traffic flow can be performed. In addition, by facilitating traffic flow, it is possible to perform automatic driving that reduces the occurrence of traffic accidents. In right-handed countries such as the United States, the left and right are reversed.
 次に、車線の決定方法について具体的に説明する。図5は第1実施形態の車両制御装置100による車線決定の第1例を示す模式図である。図5に示すように、車両1(自車両)が走行する道路が片側三車線(左レーン、中央レーン、右レーン)であるとする。自動運転制御部15による自動運転制御によって車両1が中央レーンを走行しているとする。また、図5に示すように、車両1の車両情報としては、センサ部22が未搭載及び通信機器21が3G方式であったとする。 Next, the method for determining the lane will be described in detail. FIG. 5 is a schematic diagram illustrating a first example of lane determination by the vehicle control device 100 according to the first embodiment. As shown in FIG. 5, it is assumed that the road on which the vehicle 1 (own vehicle) travels is a three-lane lane (left lane, center lane, right lane). It is assumed that the vehicle 1 is traveling in the central lane by the automatic driving control by the automatic driving control unit 15. Further, as shown in FIG. 5, as vehicle information of the vehicle 1, it is assumed that the sensor unit 22 is not mounted and the communication device 21 is a 3G system.
 車線決定部16は、車両1に搭載され、車両外の情報を検出するセンサに関する情報に基づいて車線を決定することができる。センサは、例えば、単眼カメラ、ステレオカメラ、ミリ波センサ(ミリ波レーダ)、モーションセンサ、LiDAR(Light Detection And Ranging)などを含む。センサに関する情報は、センサの搭載の有無、センサの種類、センサの故障の有無などを含む。例えば、センサを搭載しているか否かに応じて、車両が取得することができる自動運転に必要な情報量が変わる。図5の例では、車両1がセンサ部22を搭載していないので、車両1が取得することができる自動運転に必要な情報量が少ないと考えられる。そこで、車線決定部16は、車両1が走行するレーンを左レーンに決定する。自動運転に必要な情報量が少ない分、より低速で自動運転を行う方が円滑で安全な走行ができると考えられるからである。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができ、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 The lane determining unit 16 can determine a lane based on information about a sensor that is mounted on the vehicle 1 and detects information outside the vehicle. Examples of the sensor include a monocular camera, a stereo camera, a millimeter wave sensor (millimeter wave radar), a motion sensor, and LiDAR (Light (Detection And Ranging). The information about the sensor includes the presence / absence of the sensor, the type of the sensor, the presence / absence of the sensor failure, and the like. For example, the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on whether or not the sensor is mounted. In the example of FIG. 5, since the vehicle 1 does not have the sensor unit 22, it is considered that the amount of information necessary for automatic driving that can be acquired by the vehicle 1 is small. Therefore, the lane determining unit 16 determines the lane on which the vehicle 1 travels as the left lane. This is because it is considered that smoother and safer driving can be achieved by performing automatic driving at a lower speed because the amount of information necessary for automatic driving is smaller. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 また、図5の例では、図示していないが、車両1が搭載するセンサ部22が故障している場合は、センサ部22が未搭載である場合と同様の扱いをすることができる。 Further, although not shown in the example of FIG. 5, when the sensor unit 22 mounted on the vehicle 1 is broken, it can be handled in the same manner as when the sensor unit 22 is not mounted.
 例えば、車線決定部16は、装備の故障に関する情報に基づいて車線を決定することができる。装備の故障は、例えば、タイヤのパンク、ライトの故障、センサ部22の故障または通信機器21の故障などを含む。装備が故障している場合には、自動運転走行時の車両の走行制御に支障が生じること、自動運転に必要な情報が欠落することなどが考えられる。車両情報に装備の故障に関する情報を含めることにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができ、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。また、装備としてのチャイルドシートを搭載している場合には、タイヤなどのパンクの場合と同様の扱いとすることができる。 For example, the lane determining unit 16 can determine a lane based on information on equipment failure. The equipment failure includes, for example, tire puncture, light failure, sensor unit 22 failure, or communication device 21 failure. If the equipment is out of order, it may be possible that the vehicle travel control during automatic driving will be hindered and information necessary for automatic driving may be lost. By including information on equipment failure in the vehicle information, it is possible to determine the lane in order to make the vehicle run more smoothly or safely (automated driving), and to make the traffic flow smoother. It can be performed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents. Further, when a child seat as equipment is mounted, it can be handled in the same manner as in the case of a puncture such as a tire.
 また、車線決定部16は、車両1に搭載されている通信機器21に関する情報に基づいて車両1が走行する車線を決定することができる。通信機器21に関する情報は、例えば、通信機器21の種類(例えば、通信帯域、通信速度、接続可能通信機器の台数など)を含む。具体的には、通信機器21の種類としては、一例として、3G方式、LTE方式又は4G方式、5G方式、無線LAN、ITS無線方式などがある。例えば、搭載している通信機器21の種類に応じて、車両が取得することができる自動運転に必要な情報量が変わる。図5の例では、車両1が搭載している通信機器21が3G方式であるため、車両1が取得することができる自動運転に必要な情報量が少ないと考えられる。そこで、車線決定部16は、車両1が走行するレーンを左レーンに決定する。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができ、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 Further, the lane determining unit 16 can determine the lane in which the vehicle 1 travels based on information regarding the communication device 21 mounted on the vehicle 1. The information regarding the communication device 21 includes, for example, the type of the communication device 21 (for example, the communication band, the communication speed, the number of connectable communication devices, etc.). Specifically, examples of the types of communication devices 21 include a 3G system, an LTE system, a 4G system, a 5G system, a wireless LAN, and an ITS wireless system. For example, the amount of information necessary for automatic driving that can be acquired by the vehicle varies depending on the type of the communication device 21 installed. In the example of FIG. 5, since the communication device 21 mounted on the vehicle 1 is a 3G system, it is considered that the amount of information necessary for automatic driving that can be acquired by the vehicle 1 is small. Therefore, the lane determining unit 16 determines the lane on which the vehicle 1 travels as the left lane. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 なお、図5の例において、車両1の車両情報として、センサ部22の未搭載及び通信機器21の種類のいずれか一方に基づいて車線を決定してもよく、センサ部22の未搭載及び通信機器21の種類の両方に基づいて車線を決定してもよい。両方に基づいて車線を決定する場合には、それぞれの情報に重み付けを行うこともできる。なお、車両情報は図5の例に限定されない。 In the example of FIG. 5, as vehicle information of the vehicle 1, the lane may be determined based on one of the sensor unit 22 not mounted and the type of the communication device 21. The lane may be determined based on both types of the devices 21. When lanes are determined based on both, it is possible to weight each piece of information. The vehicle information is not limited to the example of FIG.
 図6は第1実施形態の車両制御装置100による車線決定の第2例を示す模式図である。図6に示すように、車両1(自車両)が走行する道路が片側三車線(左レーン、中央レーン、右レーン)であるとする。自動運転制御部15による自動運転制御によって車両1が中央レーンを走行しているとする。また、図6に示すように、車両1の車両情報としては、センサ部22にLiDARを搭載し、通信機器21が5G方式であり、装備の故障はないものとする。 FIG. 6 is a schematic diagram showing a second example of lane determination by the vehicle control device 100 of the first embodiment. As shown in FIG. 6, it is assumed that the road on which the vehicle 1 (own vehicle) travels is a three-lane lane (left lane, center lane, right lane). It is assumed that the vehicle 1 is traveling in the central lane by the automatic driving control by the automatic driving control unit 15. Moreover, as shown in FIG. 6, as vehicle information of the vehicle 1, LiDAR is mounted in the sensor part 22, the communication apparatus 21 is a 5G system, and there is no failure of equipment.
 車線決定部16は、車両1に搭載され、車両外の情報を検出するセンサに関する情報に基づいて車線を決定することができる。図6の例では、車両1がLiDARを搭載しているので、車両1が取得することができる自動運転に必要な情報量が多いと考えられるので、車線決定部16は、車両1が走行するレーンを右レーンに決定する。自動運転に必要な情報量が多い分、より高速で自動運転を行っても円滑で安全な走行ができると考えられるからである。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができ、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 The lane determining unit 16 can determine a lane based on information about a sensor that is mounted on the vehicle 1 and detects information outside the vehicle. In the example of FIG. 6, since the vehicle 1 is equipped with LiDAR, it is considered that there is a large amount of information necessary for automatic driving that can be acquired by the vehicle 1, so the lane determination unit 16 causes the vehicle 1 to travel. The lane is determined as the right lane. This is because it is considered that smooth and safe driving can be performed even if automatic driving is performed at a higher speed because of the large amount of information necessary for automatic driving. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 また、車線決定部16は、車両1に搭載されている通信機器21に関する情報に基づいて車両1が走行する車線を決定することができる。図5の例では、車両1が搭載している通信機器21が5G方式であるため、車両1が取得することができる自動運転に必要な情報量が多いと考えられる。そこで、車線決定部16は、車両1が走行するレーンを右レーンに決定する。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができ、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 Further, the lane determining unit 16 can determine the lane in which the vehicle 1 travels based on information regarding the communication device 21 mounted on the vehicle 1. In the example of FIG. 5, since the communication device 21 mounted on the vehicle 1 is a 5G system, it is considered that there is a large amount of information necessary for automatic driving that can be acquired by the vehicle 1. Therefore, the lane determining unit 16 determines the lane on which the vehicle 1 is traveling as the right lane. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 また、車線決定部16は、装備の故障に関する情報に基づいて車線を決定することができる。図6の例では、装備の故障がないので、自動運転走行時の車両の走行制御に支障が生じる可能性は極めて低く、より高速で自動運転を行っても円滑で安全な走行ができると考えられるからである。そこで、車線決定部16は、車両1が走行するレーンを右レーンに決定する。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができ、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 Further, the lane determining unit 16 can determine a lane based on information on equipment failure. In the example of FIG. 6, since there is no equipment failure, there is very little possibility of hindrance to vehicle driving control during automatic driving, and it is considered that smooth and safe driving can be performed even if automatic driving is performed at a higher speed. Because it is. Therefore, the lane determining unit 16 determines the lane on which the vehicle 1 is traveling as the right lane. As a result, the lane can be determined so that the vehicle travels more smoothly or safely (automated driving travel), and automatic driving can be performed so that the traffic flow can be smoothed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 なお、図6の例において、センサ部22の種類、通信機器21の種類及び装備の故障の有無の一部又は全部に基づいて車線を決定してもよい。また、センサ部22の種類、通信機器21の種類及び装備の故障の有無などの複数の車両情報を用いる場合には、それぞれの情報に重み付けを行うこともできる。なお、車両情報は図6の例に限定されない。 In the example of FIG. 6, the lane may be determined based on part or all of the type of sensor unit 22, the type of communication device 21, and the presence or absence of equipment failure. Moreover, when using several vehicle information, such as the kind of sensor part 22, the kind of communication apparatus 21, and the presence or absence of equipment failure, each information can also be weighted. The vehicle information is not limited to the example of FIG.
 次に、自車両1の周辺に他車両2が走行している場合について説明する。 Next, a case where another vehicle 2 is traveling around the host vehicle 1 will be described.
 車線決定部16は、取得した自車両1の車両情報及び他車両2の車両情報に基づいて自車両1が走行する車線を決定する。例えば、車線決定部16は、自車両1の周辺に他車両2が走行していない場合、自車両1の車両情報に基づいて、自車両1が走行する車線を決定する。自動運転制御部15は、車線決定部16が決定した車線を走行する自車両1の自動運転の制御を行う。その後、自車両1の周辺に他車両2が走行する状態になると、車線決定部16は、他車両2の車両情報をさらに参照して、自車両1が走行する車線をそのまま維持するか、あるいは車線を変更するかを判定して、自車両1が走行する車線を決定する。 The lane determining unit 16 determines the lane in which the host vehicle 1 travels based on the acquired vehicle information of the host vehicle 1 and the vehicle information of the other vehicle 2. For example, the lane determination unit 16 determines the lane in which the host vehicle 1 travels based on the vehicle information of the host vehicle 1 when the other vehicle 2 is not traveling around the host vehicle 1. The automatic driving control unit 15 controls automatic driving of the host vehicle 1 traveling in the lane determined by the lane determining unit 16. Thereafter, when the other vehicle 2 travels around the own vehicle 1, the lane determining unit 16 further refers to the vehicle information of the other vehicle 2 and maintains the lane in which the own vehicle 1 travels, or It is determined whether to change the lane, and the lane in which the vehicle 1 travels is determined.
 例えば、自車両1及び他車両2が中央レーンを走行しているとする。例えば、自車両1に搭載した装備に故障があり、他車両2に搭載した装備に故障がない場合、自車両1が他車両2よりも左側のレーンを走行する方が、交通流の円滑化を図ることができると考えられる。そこで、車線決定部16は、例えば、自車両1が左レーンを走行するように車線を決定する。 For example, it is assumed that the host vehicle 1 and the other vehicle 2 are traveling in the central lane. For example, when there is a failure in the equipment installed in the own vehicle 1 and there is no failure in the equipment installed in the other vehicle 2, the traffic flow is smoother when the own vehicle 1 travels on the left lane than the other vehicle 2. It is thought that we can plan. Therefore, for example, the lane determining unit 16 determines the lane so that the host vehicle 1 travels in the left lane.
 逆に、自車両1に搭載した装備に故障がなく、他車両2に搭載した装備に故障がある場合、他車両2が自車両1よりも左側のレーンを走行する方が、交通流の円滑化を図ることができると考えられる。そこで、車線決定部16は、例えば、自車両1が右レーンを走行するように車線を決定する。これにより、自車両1の周辺に他車両2が存在する場合でも、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 On the other hand, when there is no failure in the equipment installed in the own vehicle 1 and there is a failure in the equipment installed in the other vehicle 2, it is more smooth for the other vehicle 2 to travel on the left lane than the own vehicle 1. It is thought that it can be achieved. Therefore, for example, the lane determining unit 16 determines the lane so that the host vehicle 1 travels in the right lane. Thereby, even when the other vehicle 2 exists in the circumference | surroundings of the own vehicle 1, the automatic driving | operation which can aim at smoothing of a traffic flow can be performed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 次に、他車両2が存在する場合の車線の決定方法について具体的に説明する。図7は第1実施形態の車両制御装置100による車線決定の第3例を示す模式図である。図7に示すように、自動運転制御部15による自動運転制御によって自車両1が左レーンを走行し、自車両1の前方に他車両2が走行しているとする。また、自車両1の車両情報としては、通信機器21の種類が3GおよびLTE方式であり、センサ部22にはミリ波センサを搭載しているとする。また、他車両2の車両情報としては、センサ部22が故障しているとする。 Next, a method for determining a lane when another vehicle 2 exists will be described in detail. FIG. 7 is a schematic diagram illustrating a third example of lane determination by the vehicle control device 100 according to the first embodiment. As illustrated in FIG. 7, it is assumed that the host vehicle 1 travels in the left lane and the other vehicle 2 travels ahead of the host vehicle 1 by the automatic driving control by the automatic driving control unit 15. In addition, as vehicle information of the host vehicle 1, it is assumed that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 includes a millimeter wave sensor. In addition, as the vehicle information of the other vehicle 2, it is assumed that the sensor unit 22 is out of order.
 図7に例示するような場合、車線決定部16は、自車両1の前方にセンサ部22が故障した他車両2が走行しているので、一時的に車線を中央レーンに変更し、他車両2を追い越した後に元の左レーンを走行するように車線を決定する。この場合、自車両1が他車両2に追従して走行することも考えられるが、自動運転制御を行っている自車両1が前方の道路状況を検知する際に前方の他車両2によって検知することができる情報量が少なくなると考えられる。また、他車両2のセンサ部22が故障しているため、他車両2から前方の道路状況に関する情報を取得することもできない。そこで、他車両2を追い越し、元の左レーンを走行するとともに、自車両1のミリ波センサで検知した前方の道路状況に関する情報を後続車両へ送信する。これにより、自車両1の自動運転が円滑に行われ、また自動運転の安全性が高まるとともに、他車両2に対して必要な道路状況に関する情報を提供することができる。 In the case illustrated in FIG. 7, the lane determination unit 16 temporarily changes the lane to the center lane because the other vehicle 2 in which the sensor unit 22 has failed travels ahead of the host vehicle 1. After overtaking 2, determine the lane so that you can drive in the original left lane. In this case, it is conceivable that the own vehicle 1 travels following the other vehicle 2, but when the own vehicle 1 performing the automatic driving control detects the road condition ahead, it is detected by the other vehicle 2 in front. It is thought that the amount of information that can be reduced. In addition, since the sensor unit 22 of the other vehicle 2 is out of order, it is also impossible to acquire information regarding the road condition ahead from the other vehicle 2. Therefore, the vehicle passes the other vehicle 2, travels in the original left lane, and transmits information related to the road condition ahead detected by the millimeter wave sensor of the host vehicle 1 to the following vehicle. Thereby, the automatic driving of the own vehicle 1 is smoothly performed, the safety of the automatic driving is increased, and information on the necessary road condition can be provided to the other vehicle 2.
 図8は第1実施形態の車両制御装置100による車線決定の第4例を示す模式図である。図8に示すように、自動運転制御部15による自動運転制御によって自車両1が右レーンを走行し、自車両1の後方から緊急車両(他車両2)が接近しているとする。また、自車両1の車両情報としては、通信機器21の種類が5G方式であり、センサ部22にはLiDARを搭載しているとする。なお、緊急車両の識別は、例えば、車車間通信によって緊急車両の識別情報を取得すればよい。 FIG. 8 is a schematic diagram showing a fourth example of lane determination by the vehicle control device 100 of the first embodiment. As shown in FIG. 8, it is assumed that the own vehicle 1 travels in the right lane by automatic driving control by the automatic driving control unit 15, and an emergency vehicle (another vehicle 2) approaches from the rear of the own vehicle 1. Further, as the vehicle information of the host vehicle 1, it is assumed that the type of the communication device 21 is a 5G system, and the sensor unit 22 is equipped with LiDAR. For emergency vehicle identification, for example, emergency vehicle identification information may be acquired by inter-vehicle communication.
 図8に例示するような場合、車線決定部16は、緊急車両が接近したため、一時的に自車両1が走行するレーンを中央レーンに変更し、緊急車両が通過した後に元の右レーンに変更するように車線を決定することができる。緊急車両が接近するような場合には、緊急車両の走行を優先させて、緊急車両の走行スペースを確保して緊急車両の円滑な走行を実現するとともに、自車両1が走行する車線を一時的に変更して緊急車両を回避するので、自車両1の自動運転の安全性が高まる。 In the case illustrated in FIG. 8, the lane determining unit 16 temporarily changes the lane on which the host vehicle 1 travels to the central lane because the emergency vehicle has approached, and then changes to the original right lane after the emergency vehicle has passed. The lane can be determined to do. When an emergency vehicle approaches, priority is given to the travel of the emergency vehicle to secure the travel space of the emergency vehicle to realize smooth travel of the emergency vehicle and temporarily change the lane in which the host vehicle 1 travels. Since the emergency vehicle is avoided by changing to, the safety of automatic driving of the host vehicle 1 is increased.
 図9は第1実施形態の車両制御装置100による車線決定の第5例を示す模式図である。図9に示すように、自動運転制御部15による自動運転制御によって自車両1が中央レーンを走行し、自車両1の前方に他車両2が走行しているとする。また、自車両1の車両情報としては、通信機器21の種類が3GおよびLTE方式であり、センサ部22にはミリ波センサを搭載しているとする。また、他車両2の車両情報としては、通信機器21の種類が5G方式であり、センサ部22にはLiDARを搭載しているとする。 FIG. 9 is a schematic diagram showing a fifth example of lane determination by the vehicle control device 100 of the first embodiment. As shown in FIG. 9, it is assumed that the own vehicle 1 travels in the central lane by the automatic operation control by the automatic operation control unit 15, and the other vehicle 2 travels in front of the own vehicle 1. In addition, as vehicle information of the host vehicle 1, it is assumed that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 includes a millimeter wave sensor. Further, as the vehicle information of the other vehicle 2, it is assumed that the type of the communication device 21 is a 5G system, and the sensor unit 22 is equipped with LiDAR.
 車線決定部16は、自車両1の車両情報と他車両2の車両情報とを比較して、自動運転制御という観点から、どちらの車両情報の方が自動運転に必要な情報量が多いか、あるいはどちらの車両情報の方が自動運転に支障を来す可能性が低いかを判定し、判定結果に基づいて、自動運転に必要な情報量が多い方、あるいは自動運転に支障を来す可能性が低い方の車両を優先させる優先制御を行う(具体的には、より高速で走行することができる車線を走行する車線として決定する)。 The lane determination unit 16 compares the vehicle information of the host vehicle 1 with the vehicle information of the other vehicle 2, and from the viewpoint of automatic driving control, which vehicle information has more information amount required for automatic driving, Alternatively, it is possible to determine which vehicle information is less likely to interfere with automatic driving, and based on the determination result, the amount of information required for automatic driving may be greater, or it may interfere with automatic driving. Priority control is performed to give priority to the vehicle having the lower performance (specifically, a lane that can travel at a higher speed is determined as a lane to travel).
 図9の例では、自車両1も他車両2も、装備の故障はないので、自動運転に支障を来す可能性は同程度であると判定することができる。一方、自車両1の車両情報は、通信機器21の種類が3GおよびLTE方式であり、センサ部22にはミリ波センサを搭載されているのに対し、他車両2の車両情報は、通信機器21の種類が5G方式であり、センサ部22にはLiDARが搭載されている。この場合、他車両2の方が自車両1よりも自動運転に必要な情報量を多く取得することができると考えられる。そこで、車線決定部16は、自車両1よりも他車両2を優先して、自車両1の走行レーンを中央レーンから左レーンに変更すべく車線を決定する。これにより、自車両1の周辺に他車両2が存在する場合でも、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 In the example of FIG. 9, since neither the own vehicle 1 nor the other vehicle 2 has any equipment failure, it can be determined that the possibility of hindering automatic driving is comparable. On the other hand, the vehicle information of the own vehicle 1 is that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 is equipped with a millimeter wave sensor, whereas the vehicle information of the other vehicle 2 is the communication device. The type 21 is a 5G system, and the sensor unit 22 is equipped with LiDAR. In this case, it is considered that the other vehicle 2 can acquire a larger amount of information necessary for automatic driving than the own vehicle 1. Therefore, the lane determining unit 16 determines the lane to change the travel lane of the host vehicle 1 from the center lane to the left lane with priority given to the other vehicle 2 over the host vehicle 1. Thereby, even when the other vehicle 2 exists in the circumference | surroundings of the own vehicle 1, the automatic driving | operation which can aim at smoothing of a traffic flow can be performed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 図10は第1実施形態の車両制御装置100による車線決定の第6例を示す模式図である。図10に示すように、自動運転制御部15による自動運転制御によって自車両1が中央レーンを走行し、自車両1の前方に他車両2が走行しているとする。また、自車両1の車両情報としては、通信機器21の種類が3GおよびLTE方式であり、センサ部22にはミリ波センサを搭載しているとする。また、他車両2の車両情報としては、通信機器21の種類が3GおよびLTE方式であり、センサ部22未搭載とする。 FIG. 10 is a schematic diagram showing a sixth example of lane determination by the vehicle control device 100 of the first embodiment. As shown in FIG. 10, it is assumed that the own vehicle 1 travels in the central lane by the automatic operation control by the automatic operation control unit 15 and the other vehicle 2 is traveling in front of the own vehicle 1. In addition, as vehicle information of the host vehicle 1, it is assumed that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 includes a millimeter wave sensor. Further, as vehicle information of the other vehicle 2, the type of the communication device 21 is 3G and LTE, and the sensor unit 22 is not mounted.
 図10の例では、自車両1も他車両2も、装備の故障はないので、自動運転に支障を来す可能性は同程度であると判定することができる。一方、自車両1の車両情報は、通信機器21の種類が3GおよびLTE方式であり、センサ部22にはミリ波センサを搭載されているのに対し、他車両2の車両情報は、通信機器21の種類が3GおよびLTE方式であり、センサ部22が未搭載である。この場合、自車両1の方が他車両2よりも自動運転に必要な情報量を多く取得することができると考えられる。そこで、車線決定部16は、他車両2よりも自車両1を優先して、自車両1の走行レーンを中央レーンから右レーンに変更すべく車線を決定する。これにより、自車両1の周辺に他車両2が存在する場合でも、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 In the example of FIG. 10, neither the own vehicle 1 nor the other vehicle 2 has any equipment failure, so it can be determined that the possibility of hindering automatic driving is comparable. On the other hand, the vehicle information of the own vehicle 1 is that the type of the communication device 21 is 3G and LTE, and the sensor unit 22 is equipped with a millimeter wave sensor, whereas the vehicle information of the other vehicle 2 is the communication device. The types 21 are 3G and LTE systems, and the sensor unit 22 is not mounted. In this case, it is considered that the host vehicle 1 can acquire a larger amount of information necessary for automatic driving than the other vehicle 2. Therefore, the lane determining unit 16 prioritizes the host vehicle 1 over the other vehicle 2, and determines the lane to change the travel lane of the host vehicle 1 from the center lane to the right lane. Thereby, even when the other vehicle 2 exists in the circumference | surroundings of the own vehicle 1, the automatic driving | operation which can aim at smoothing of a traffic flow can be performed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 また、車線決定部16は、所定の領域内の他車両2の車両情報に基づいて自車両1が走行する車線を決定することができる。所定の領域内は、例えば、自車両1からの距離が所定値(例えば、200mなど)以内となるような範囲とすることができる。これにより、自車両1の周辺に他車両2が存在する場合でも、交通流の円滑化を図ることができるような自動運転を行うことができる。また、交通流の円滑化を図ることができることによって、交通事故の発生を低減するような自動運転を行うことができる。 Further, the lane determining unit 16 can determine the lane in which the host vehicle 1 travels based on the vehicle information of the other vehicle 2 in the predetermined area. For example, the predetermined area can be a range in which the distance from the vehicle 1 is within a predetermined value (for example, 200 m). Thereby, even when the other vehicle 2 exists in the circumference | surroundings of the own vehicle 1, the automatic driving | operation which can aim at smoothing of a traffic flow can be performed. In addition, since the traffic flow can be smoothed, automatic driving can be performed to reduce the occurrence of traffic accidents.
 また、車線決定部16は、決定部としての機能を有し、所定の領域内の他車両2の台数に基づいて車線を決定するか否かを決定する。所定の領域内は、例えば、自車両1からの距離が所定値(例えば、200mなど)以内となるような範囲とすることができる。所定の領域内の他車両2の台数が少ない場合には、自車両1はいずれの車線でも走行することが可能であり、走行中の車線をそのまま維持することもできる。すなわち、所定の領域内の他車両2の台数が少ない場合には、自車両1が走行する車線の決定を行わない。また、所定の領域内の他車両2の台数が多い場合には、自車両1と他車両2とのいずれを優先させるかを決定すべく、自車両1が走行する車線の決定を行う。これにより、周辺の他車両2の台数が多いほど優先度に応じて車線を決定し、周辺の他車両2の台数が少ないほど自由に車線を変更することができるような自動運転を実現することができる。 Further, the lane determining unit 16 has a function as a determining unit, and determines whether or not to determine a lane based on the number of other vehicles 2 in a predetermined area. For example, the predetermined area can be a range in which the distance from the vehicle 1 is within a predetermined value (for example, 200 m). When the number of other vehicles 2 in the predetermined area is small, the host vehicle 1 can travel in any lane, and the traveling lane can be maintained as it is. That is, when the number of other vehicles 2 in the predetermined area is small, the lane in which the host vehicle 1 travels is not determined. When the number of other vehicles 2 in the predetermined area is large, the lane in which the own vehicle 1 travels is determined in order to determine which of the own vehicle 1 and the other vehicle 2 has priority. This realizes an automatic driving in which the lane is determined according to the priority as the number of other vehicles 2 in the vicinity increases, and the lane can be freely changed as the number of other vehicles 2 in the vicinity decreases. Can do.
 図11は第1実施形態の車両制御装置100による車線決定の第7例を示す模式図である。第7例では、車両情報として、車両(自車両1、他車両2)が手動運転車両、一部自動運転車両、あるいは完全自動運転車両の別を示す情報を含める。例えば、自車両1が完全自動運転車両であり、他車両2Aが一部自動運転車両であり、他車両2Bが手動運転車両であるとする。 FIG. 11 is a schematic diagram showing a seventh example of lane determination by the vehicle control device 100 of the first embodiment. In the seventh example, the vehicle information includes information indicating whether the vehicle (the host vehicle 1 or the other vehicle 2) is a manually operated vehicle, a partially autonomously operated vehicle, or a fully autonomously operated vehicle. For example, it is assumed that the host vehicle 1 is a fully automatic driving vehicle, the other vehicle 2A is a partially automatic driving vehicle, and the other vehicle 2B is a manual driving vehicle.
 自車両1が、完全自動運転車両である場合には、自車両1の走行レーンを右レーン(最優先レーン、完全自動運転車両レーン)に決定することによって、右レーンを走行する車両を完全自動運転車両に制限することが可能となり、手動運転車両の想定外の挙動など予測しなければならない安全運転に必要な情報処理量が少なくて済むようになるため、車間距離を詰めた走行速度の速い円滑な走行が可能となる。 When the host vehicle 1 is a fully automatic driving vehicle, the driving lane of the own vehicle 1 is determined as the right lane (the highest priority lane, the fully automatic driving vehicle lane), so that the vehicle traveling in the right lane is fully automatic. It is possible to limit to driving vehicles, and the amount of information processing necessary for safe driving that must be predicted, such as unexpected behavior of manually driven vehicles, can be reduced, so the traveling speed is fast with a close distance between vehicles Smooth running is possible.
 なお、図11の例では、手動運転車両である他車両2Bは左レーンを走行し、一部自動運転車両である他車両2Aは中央レーンを走行するように図示しているが、仮に自車両1が一部自動運転車両である場合には、走行レーンを中央レーンに決定し、自車両1が手動運転車両である場合には、走行レーンを左レーンに決定してもよい。また、後述の第2実施形態の車両制御装置としてのサーバ150が、車線を決定する場合には、図11に示すように車両1、2A、2Bの走行レーンを決定することができる。 In the example of FIG. 11, the other vehicle 2 </ b> B that is a manually operated vehicle travels in the left lane, and the other vehicle 2 </ b> A that is a partially automatically driven vehicle travels in the center lane. When 1 is a partially autonomous driving vehicle, the traveling lane may be determined as a central lane, and when the host vehicle 1 is a manually operated vehicle, the traveling lane may be determined as a left lane. Further, when the server 150 as a vehicle control device of the second embodiment described later determines the lane, the travel lanes of the vehicles 1, 2A, and 2B can be determined as shown in FIG.
 また、車線決定部16は、取得した天候情報に基づいて自車両1が走行する車線を決定することができる。例えば、天候情報が運転に影響を与えるような、雨、雪などの場合には、走行する車線を左側のレーンとする。これにより、車両をより円滑又は安全に走行(自動運転走行)させるべく車線を決定することができる。 Further, the lane determining unit 16 can determine the lane in which the host vehicle 1 travels based on the acquired weather information. For example, in the case of rain, snow, etc. where the weather information affects driving, the lane on which the vehicle travels is set as the left lane. Thereby, a lane can be determined in order to run a vehicle more smoothly or safely (automatic driving run).
 走行速度決定部17は、速度決定部としての機能を有し、車線決定部16決定した車線における自車両1の走行速度を決定する。例えば、走行車線を左レーンとする決定をした場合には、走行速度を低速(例えば、50~60km/hなど)とする。また、走行車線を中央レーンとする決定をした場合には、走行速度を中速(例えば、60~70km/hなど)とする。また、走行車線を右レーンとする決定をした場合には、走行速度を高速(例えば、70~80km/hなど)とする。なお、いずれの走行レーンを走行するかに関わらず、自車両1が走行中のレーンでの走行速度を変えるようにしてもよい。これにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 The traveling speed determination unit 17 has a function as a speed determination unit, and determines the traveling speed of the host vehicle 1 in the lane determined by the lane determination unit 16. For example, when it is determined that the driving lane is the left lane, the driving speed is set to a low speed (for example, 50 to 60 km / h). In addition, when it is determined that the traveling lane is the central lane, the traveling speed is set to a medium speed (for example, 60 to 70 km / h). Further, when it is determined that the travel lane is the right lane, the travel speed is set to a high speed (for example, 70 to 80 km / h). In addition, you may make it change the driving speed in the lane in which the own vehicle 1 is drive | working irrespective of which driving | running lane it drive | works. Thereby, a vehicle can be drive | worked more smoothly or safely (automatic driving driving | running | working).
 走行速度決定部17は、環境情報に基づいて、自車両1の走行速度を決定することができる。 The traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 based on the environment information.
 図12は第1実施形態の車両制御装置100による走行速度の決定の一例を示す説明図である。走行速度決定部17は、天候情報に基づいて自車両1の走行速度を決定することができる。例えば、天候情報が運転に影響を与えるような、雨、雪などの場合には、走行速度を低速とし、天候が晴の場合には、走行速度を高速とすることができる。これにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 FIG. 12 is an explanatory diagram illustrating an example of determination of the traveling speed by the vehicle control device 100 according to the first embodiment. The traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 based on the weather information. For example, in the case of rain, snow, etc. where the weather information affects driving, the traveling speed can be reduced, and when the weather is clear, the traveling speed can be increased. Thereby, a vehicle can be drive | worked more smoothly or safely (automatic driving driving | running | working).
 また、走行速度決定部17は、自車両1が走行する時間帯に基づいて走行速度を決定することができる。時間帯は、例えば、昼間の時間帯、夜間の時間帯、周辺が暗くなる夕刻の時間帯などを含む。夜間又は夕刻での車両の走行は、昼間の走行に比べて交通事故に遭遇する可能性が高いと考えられる。そこで、例えば、時間帯が昼間の場合には、走行速度を高速とし、時間帯が夜間の場合には、走行速度を低速とする。このように、時間帯に基づいて走行速度を決定することにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 Further, the traveling speed determination unit 17 can determine the traveling speed based on the time zone during which the host vehicle 1 travels. The time zone includes, for example, a day time zone, a night time zone, and an evening time zone when the surroundings are dark. Driving a vehicle at night or in the evening is considered more likely to encounter a traffic accident than driving in the daytime. Therefore, for example, when the time zone is daytime, the traveling speed is set to high speed, and when the time zone is nighttime, the traveling speed is set to low speed. Thus, by determining the traveling speed based on the time zone, the vehicle can travel more smoothly or safely (automatic driving traveling).
 また、走行速度決定部17は、自車両1の周辺を走行する他車両1の台数に基づいて自車両1の走行速度を決定することができる。他車両2の台数が比較的多い場合には、自車両1の速度を高速にすると事故に遭遇する可能性が高くなるおそれがある。そこで、自車両1の周辺の他車両2の台数が多い場合には、走行速度を低速とし、自車両1の周辺の他車両2の台数が少ない場合には、走行速度を高速とする。これにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 Further, the traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 based on the number of other vehicles 1 that travel around the host vehicle 1. When the number of other vehicles 2 is relatively large, there is a possibility that the possibility of encountering an accident increases when the speed of the host vehicle 1 is increased. Therefore, when the number of other vehicles 2 around the host vehicle 1 is large, the traveling speed is set to a low speed, and when the number of other vehicles 2 around the host vehicle 1 is small, the traveling speed is set to a high speed. Thereby, a vehicle can be drive | worked more smoothly or safely (automatic driving driving | running | working).
 また、走行速度決定部17は、渋滞の有無に応じて自車両1の走行速度を決定することができる。渋滞がある場合には、他車両2に追従して低速で走行するのが安全であり、自車両1の速度を高速にすると事故に遭遇する可能性が高くなるおそれがある。そこで、渋滞がある場合には、走行速度を低速とし(あるいは、前方の車両に追従する速度でもよい)、渋滞がない場合には、走行速度を高速とする。これにより、車両をより円滑又は安全に走行(自動運転走行)させることができる。 Further, the traveling speed determination unit 17 can determine the traveling speed of the host vehicle 1 according to the presence or absence of traffic jam. When there is a traffic jam, it is safe to follow the other vehicle 2 and travel at a low speed. If the speed of the host vehicle 1 is increased, the possibility of encountering an accident may increase. Therefore, when there is a traffic jam, the travel speed is set to a low speed (or may be a speed following the vehicle ahead), and when there is no traffic jam, the travel speed is set to a high speed. Thereby, a vehicle can be drive | worked more smoothly or safely (automatic driving driving | running | working).
 次に、第1実施形態の車両制御装置100の動作について説明する。図13は第1実施形態の車両制御装置100の処理手順の一例を示すフローチャートである。以下では、便宜上、処理の主体を制御部10として説明する。制御部10は、自動運転を開始し(S11)、自車両1の車両情報である自車両情報を取得し(S12)、自車両1が走行する道路の車線情報を取得する(S13)。 Next, the operation of the vehicle control device 100 of the first embodiment will be described. FIG. 13 is a flowchart illustrating an example of a processing procedure of the vehicle control device 100 according to the first embodiment. Hereinafter, for the sake of convenience, the subject of processing will be described as the control unit 10. The control unit 10 starts automatic driving (S11), acquires host vehicle information that is vehicle information of the host vehicle 1 (S12), and acquires lane information of a road on which the host vehicle 1 travels (S13).
 制御部10は、取得した自車両情報及び車線情報に基づいて優先制御を実施する(S14)。優先制御は、例えば、自車両1が走行する車線を決定すること、あるいは、自車両1が走行する車線を決定し、決定した車線を走行させながら自動運転制御を行うことを含む。 The control unit 10 performs priority control based on the acquired own vehicle information and lane information (S14). The priority control includes, for example, determining a lane in which the host vehicle 1 travels, or determining a lane in which the host vehicle 1 travels and performing automatic driving control while traveling the determined lane.
 制御部10は、自車両1の周辺に他車両2が存在するか否かを判定する(S15)。他車両2がある場合(S15でYES)、制御部10は、他車両2の車両情報である他車両情報を取得し(S16)、自車両情報及び他車両情報に基づいて優先制御を変更する(S17)。優先制御の変更は、例えば、自車両1が走行する車線を変更すること、あるいは、自車両1が走行する車線を変更し、変更した車線を走行させながら自動運転制御を行うことを含む。なお、自車両情報及び他車両情報によっては、自車両1が走行する車線を変更せずに維持する場合もある。 The control unit 10 determines whether there is another vehicle 2 around the host vehicle 1 (S15). When there is another vehicle 2 (YES in S15), the control unit 10 acquires other vehicle information that is vehicle information of the other vehicle 2 (S16), and changes the priority control based on the own vehicle information and the other vehicle information. (S17). The change in priority control includes, for example, changing the lane in which the host vehicle 1 travels, or changing the lane in which the host vehicle 1 travels and performing automatic driving control while traveling the changed lane. Depending on the own vehicle information and the other vehicle information, the lane in which the own vehicle 1 travels may be maintained without being changed.
 他車両2がない場合(S15でNO)、制御部10は、ステップS16及び17の処理を行うことなく、後述のステップS18を行う。制御部10は、環境情報を取得し(S18)、取得した環境情報に基づいて優先制御を変更する(S19)。なお、優先制御の変更は、ステップS17と同様である。 If there is no other vehicle 2 (NO in S15), the control unit 10 performs Step S18 described later without performing the processes of Steps S16 and S17. The control unit 10 acquires environment information (S18), and changes priority control based on the acquired environment information (S19). Note that the priority control is changed in the same manner as in step S17.
 制御部10は、自動運転を終了するか否かを判定する(S20)。制御部10は、自動運転を終了しないと判定した場合(S20でNO)、ステップS12以降の処理を行い、自動運転を終了すると判定した場合(S20でYES)、処理を終了する。 The control unit 10 determines whether or not to end the automatic operation (S20). If it is determined that the automatic operation is not to be ended (NO in S20), the control unit 10 performs the processes after step S12. If it is determined that the automatic operation is to be ended (YES in S20), the process is ended.
(第2実施形態)
 図14は第2実施形態の車両制御装置としてのサーバ150の構成の一例を示すブロック図である。第2実施形態の車両制御装置は車両に搭載されない。図14に示すように、サーバ150は、サーバ全体を制御する制御部30、車両情報取得部31、環境情報取得部32、地図情報331を記憶する記憶部33、車線決定部34、走行速度決定部35などを備える。車両情報取得部31、環境情報取得部32、車線決定部34及び走行速度決定部35の機能は、第1実施形態の車両制御装置100の自車両情報取得部11、他車両情報取得部12、環境情報取得部13、車線決定部16及び走行速度決定部17と同様であるので説明は省略する。図14に示すように、サーバ150は、複数の車両2、2、2…と双方向の通信が可能となっている。
(Second Embodiment)
FIG. 14 is a block diagram illustrating an example of a configuration of the server 150 as the vehicle control device of the second embodiment. The vehicle control device of the second embodiment is not mounted on the vehicle. As illustrated in FIG. 14, the server 150 includes a control unit 30 that controls the entire server, a vehicle information acquisition unit 31, an environment information acquisition unit 32, a storage unit 33 that stores map information 331, a lane determination unit 34, and a travel speed determination. The unit 35 is provided. The functions of the vehicle information acquisition unit 31, the environment information acquisition unit 32, the lane determination unit 34, and the travel speed determination unit 35 are the vehicle information acquisition unit 11, the other vehicle information acquisition unit 12 of the vehicle control device 100 of the first embodiment, Since it is the same as that of the environment information acquisition part 13, the lane determination part 16, and the travel speed determination part 17, description is abbreviate | omitted. As shown in FIG. 14, the server 150 is capable of bidirectional communication with a plurality of vehicles 2, 2, 2.
 各車両1は、第1実施形態の場合と同様に、ナビゲーション部、通信機器、センサ部及び装備品(いずれも不図示)などを搭載している。 As in the case of the first embodiment, each vehicle 1 is equipped with a navigation unit, a communication device, a sensor unit, and accessories (all not shown).
 車両情報取得部31は、1又は複数の車両の車両情報を取得する。車線決定部34は、複数の車両それぞれの車両情報に基づいて複数の車両それぞれが走行する車線を決定する。これにより、ある車両の周辺に他の車両が存在する場合でも、これらの複数の車両それぞれの交通事故の発生を低減するような自動運転を行うことができる。 Vehicle information acquisition unit 31 acquires vehicle information of one or more vehicles. The lane determining unit 34 determines the lane in which each of the plurality of vehicles travels based on the vehicle information of each of the plurality of vehicles. As a result, even when other vehicles exist around a certain vehicle, it is possible to perform an automatic operation that reduces the occurrence of traffic accidents in each of the plurality of vehicles.
 次に、サーバ150の動作について説明する。図15は第2実施形態の車両制御装置としてのサーバ150の処理手順の一例を示すフローチャートである。以下では、便宜上、処理の主体を制御部30として説明する。なお、便宜上、処理を開始する段階においては、一台の車両(一の車両)が道路を走行し、当該車両の周辺に他の車両が走行していない状態であるとする。 Next, the operation of the server 150 will be described. FIG. 15 is a flowchart illustrating an example of a processing procedure of the server 150 as the vehicle control device of the second embodiment. Hereinafter, for the sake of convenience, the subject of processing will be described as the control unit 30. For convenience, it is assumed that one vehicle (one vehicle) is traveling on the road and no other vehicle is traveling around the vehicle at the stage of starting the processing.
 制御部30は、当該一台の車両情報を取得し(S31)、当該車両が走行する道路の車線情報を取得する(S32)。なお、車両情報に含まれる位置情報と地図情報とに基づいて車線情報を取得することができる。制御部30は、車両情報及び車線情報に基づいて、当該一台の車両の優先制御指令を当該車両へ送信する(S33)。なお、当該車両は優先制御指令を受信し、受信した優先制御指令に基づいて車線を変更することができる。 The control unit 30 acquires the vehicle information of the one vehicle (S31), and acquires the lane information of the road on which the vehicle travels (S32). The lane information can be acquired based on the position information and map information included in the vehicle information. Based on the vehicle information and the lane information, the control unit 30 transmits a priority control command for the one vehicle to the vehicle (S33). In addition, the said vehicle can receive a priority control command and can change a lane based on the received priority control command.
 制御部30は、複数の車両(他の車両)から車両情報を取得したか否かを判定する(S34)。すなわち、当該一台の車両の他に少なくとも一台の他の車両から車両情報を取得したか否かを判定する。複数の車両から車両情報を取得した場合(S34でYES)、制御部30は、複数の車両の車両情報に基づいて各車両の優先制御指令を各車両へ送信する(S35)。この場合、当該一の車両については、ステップS33において、一旦優先制御が行われるものの、当該一の車両の周辺に他の車両が走行する状態となったので、例えば、当該一の車両と他の車両の車両情報に基づいて、当該一の車両の優先制御が変更される場合もある。なお、各車両は優先制御指令を受信し、受信した優先制御指令に基づいて車線を変更することができる。 The control unit 30 determines whether vehicle information has been acquired from a plurality of vehicles (other vehicles) (S34). That is, it is determined whether vehicle information is acquired from at least one other vehicle in addition to the one vehicle. When vehicle information is acquired from a plurality of vehicles (YES in S34), control unit 30 transmits a priority control command for each vehicle to each vehicle based on the vehicle information of the plurality of vehicles (S35). In this case, for the one vehicle, although priority control is once performed in step S33, the other vehicle travels around the one vehicle. For example, the one vehicle and the other vehicle The priority control of the one vehicle may be changed based on the vehicle information of the vehicle. Each vehicle can receive the priority control command and change the lane based on the received priority control command.
 複数の車両から車両情報を取得していない場合(S34でNO)、制御部30は、ステップS35の処理を行うことなく、後述のステップS36の処理を行う。制御部30は、環境情報を取得し(S36)、取得した環境情報に基づいて車両(各車両)の優先制御指令を変更し(S37)、変更した優先制御指令を各車両へ送信する(S38)。この場合、当該一の車両については、ステップS33において、一旦優先制御が行われ、状況に応じてステップS35で、上述の優先制御が変更された後、再度、当該一の車両の優先制御が変更される場合もある。 If vehicle information has not been acquired from a plurality of vehicles (NO in S34), the control unit 30 performs the process of step S36 described later without performing the process of step S35. The control unit 30 acquires environmental information (S36), changes the priority control command of the vehicle (each vehicle) based on the acquired environmental information (S37), and transmits the changed priority control command to each vehicle (S38). ). In this case, for the one vehicle, priority control is once performed in step S33, and after the above-described priority control is changed in step S35 according to the situation, the priority control of the one vehicle is changed again. Sometimes it is done.
 制御部30は、処理を終了するか否かを判定する(S39)。制御部30は、処理を終了しないと判定した場合(S39でNO)、ステップS31以降の処理を行い、処理を終了すると判定した場合(S39でYES)、処理を終了する。 The control unit 30 determines whether or not to end the process (S39). When it is determined that the process is not to be ended (NO in S39), the control unit 30 performs the processes after step S31, and when it is determined that the process is to be ended (YES in S39), the process is ended.
 上述の各実施形態の車両制御装置は、CPU(プロセッサ)、RAMなどを備えた汎用コンピュータを用いて実現することもできる。すなわち、図13及び図15に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAMにロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で車両制御装置を実現することができる。 The vehicle control device of each embodiment described above can also be realized by using a general-purpose computer including a CPU (processor), a RAM, and the like. That is, as shown in FIGS. 13 and 15, a computer program that defines the procedure of each process is loaded into a RAM provided in the computer, and the computer program is executed by a CPU (processor), thereby controlling the vehicle on the computer. An apparatus can be realized.
 本明細書では、日本のように道路が左側通行であって右ハンドルの車両を前提として説明しているが、米国のように道路が右側通行であって左ハンドルの車両の場合には、本明細書における左レーンとの記載を右レーンと読み替えるとともに右レーンとの記載を左レーンと読み替えればよい。 In this specification, the description is based on the assumption that the road is left-handed and has a right-hand drive, as in Japan. However, the road is right-handed and has a left-hand drive, as in the United States. The description of the left lane in the specification may be read as the right lane and the description of the right lane may be read as the left lane.
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 車両(自車両)
 2 車両(他車両)
 10、30 制御部
 11 自車両情報取得部
 12 他車両情報取得部
 13、32 環境情報取得部
 14、33 記憶部
 15 自動運転制御部
 16、34 車線決定部
 17、35 走行速度決定部
 18 ナビゲーション部
 181 GPS受信部
 182、332 地図情報
 21 通信機器(通信装置)
 22 センサ部
 23 装備品
 31 車両情報取得部
 100 車両制御装置
 150 サーバ
 
1 Vehicle (own vehicle)
2 vehicles (other vehicles)
DESCRIPTION OF SYMBOLS 10, 30 Control part 11 Own vehicle information acquisition part 12 Other vehicle information acquisition part 13, 32 Environmental information acquisition part 14, 33 Storage part 15 Automatic driving control part 16, 34 Lane determination part 17, 35 Traveling speed determination part 18 Navigation part 181 GPS receiver 182, 332 Map information 21 Communication equipment (communication device)
22 Sensor part 23 Equipment 31 Vehicle information acquisition part 100 Vehicle control apparatus 150 Server

Claims (16)

  1.  車両の位置情報及び前記車両の装備に関する情報を含む車両情報を自車両について自車両情報として取得する自車両情報取得部と、
     前記自車両が走行する道路の車線情報を取得する車線情報取得部と、
     前記自車両情報取得部で取得した前記自車両情報及び前記車線情報取得部で取得した前記車線情報に基づいて前記自車両が走行する車線を決定する車線決定部と
     を備える車両制御装置。
    A vehicle information acquisition unit for acquiring vehicle information including vehicle position information and information relating to the equipment of the vehicle as vehicle information about the vehicle;
    A lane information acquisition unit for acquiring lane information of a road on which the host vehicle travels;
    A vehicle control device comprising: a vehicle lane determining unit that determines a lane on which the vehicle travels based on the vehicle information acquired by the vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit.
  2.  前記車両情報を1又は複数の他車両について他車両情報として取得する他車両情報取得部を備え、
     前記車線決定部は、
     前記他車両情報取得部で取得した他車両情報に基づいて前記自車両が走行する車線を決定する請求項1に記載の車両制御装置。
    An other vehicle information acquisition unit that acquires the vehicle information as other vehicle information for one or more other vehicles;
    The lane determining unit
    The vehicle control device according to claim 1, wherein a lane in which the host vehicle travels is determined based on other vehicle information acquired by the other vehicle information acquisition unit.
  3.  前記車両情報は、
     前記装備の故障に関する情報を含む請求項1又は請求項2に記載の車両制御装置。
    The vehicle information is
    The vehicle control device according to claim 1, wherein the vehicle control device includes information related to a failure of the equipment.
  4.  前記車両情報は、
     前記車両に搭載され、前記車両外の情報を検出するセンサに関する情報を含む請求項1から請求項3のいずれか一項に記載の車両制御装置。
    The vehicle information is
    The vehicle control device according to any one of claims 1 to 3, comprising information related to a sensor that is mounted on the vehicle and detects information outside the vehicle.
  5.  前記車両情報は、
     前記車両に搭載されている通信装置に関する情報を含む請求項1から請求項4のいずれか一項に記載の車両制御装置。
    The vehicle information is
    The vehicle control device according to any one of claims 1 to 4, comprising information relating to a communication device mounted on the vehicle.
  6.  前記車両情報は、
     前記自車両又は前記他車両が、手動運転車両、一部自動運転車両又は完全自動運転車両の別を示す情報を含む請求項1から請求項5のいずれか一項に記載の車両制御装置。
    The vehicle information is
    The vehicle control device according to any one of claims 1 to 5, wherein the host vehicle or the other vehicle includes information indicating whether the vehicle is a manually operated vehicle, a partially autonomous vehicle, or a fully autonomous vehicle.
  7.  前記車両の運転者の身体状態に関する情報を取得する身体情報取得部を備え、
     前記車線決定部は、
     前記身体情報取得部で取得した身体情報に基づいて前記自車両が走行する車線を決定する請求項1から請求項6のいずれか一項に記載の車両制御装置。
    A physical information acquisition unit for acquiring information related to the physical state of the driver of the vehicle;
    The lane determining unit
    The vehicle control device according to any one of claims 1 to 6, wherein a lane in which the host vehicle travels is determined based on physical information acquired by the physical information acquisition unit.
  8.  前記車線決定部は、
     所定の領域内の前記他車両の他車両情報に基づいて前記自車両が走行する車線を決定する請求項2に記載の車両制御装置。
    The lane determining unit
    The vehicle control device according to claim 2, wherein a lane in which the host vehicle travels is determined based on other vehicle information of the other vehicle in a predetermined area.
  9.  所定の領域内の前記他車両の台数に基づいて前記車線決定部が車線を決定するか否かを決定する決定部を備える請求項2又は請求項8に記載の車両制御装置。 The vehicle control device according to claim 2 or 8, further comprising a determining unit that determines whether or not the lane determining unit determines a lane based on the number of the other vehicles in a predetermined area.
  10.  天候情報を取得する天候情報取得部を備え、
     前記車線決定部は、
     前記天候情報取得部で取得した天候情報に基づいて前記自車両が走行する車線を決定する請求項1から請求項9のいずれか一項に記載の車両制御装置。
    It has a weather information acquisition unit that acquires weather information,
    The lane determining unit
    The vehicle control device according to any one of claims 1 to 9, wherein a lane in which the host vehicle travels is determined based on weather information acquired by the weather information acquisition unit.
  11.  前記車線決定部で決定した車線における前記自車両の走行速度を決定する速度決定部を備える請求項1から請求項10のいずれか一項に記載の車両制御装置。 The vehicle control device according to any one of claims 1 to 10, further comprising a speed determining unit that determines a traveling speed of the host vehicle in the lane determined by the lane determining unit.
  12.  前記速度決定部は、
     前記自車両が走行する時間帯に基づいて走行速度を決定する請求項11に記載の車両制御装置。
    The speed determining unit is
    The vehicle control device according to claim 11, wherein a traveling speed is determined based on a time zone during which the host vehicle travels.
  13.  車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として取得する車両情報取得部と、
     前記一の車両が走行する道路の車線情報を取得する車線情報取得部と、
     前記車両情報取得部で取得した前記一の車両情報及び前記車線情報取得部で取得した前記車線情報に基づいて前記一の車両が走行する車線を決定する車線決定部と
     を備える車両制御装置。
    A vehicle information acquisition unit for acquiring vehicle information including vehicle position information and information on the equipment of the vehicle as one vehicle information for one vehicle;
    A lane information acquisition unit that acquires lane information of a road on which the one vehicle travels;
    A vehicle control device comprising: a lane determining unit that determines a lane in which the one vehicle travels based on the one vehicle information acquired by the vehicle information acquisition unit and the lane information acquired by the lane information acquisition unit.
  14.  前記車両情報取得部は、
     前記車両情報を1又は複数の他の車両について他の車両情報として取得し、
     前記車線決定部は、
     前記他の車両情報に基づいて前記一の車両が走行する車線を決定する請求項13に記載の車両制御装置。
    The vehicle information acquisition unit
    Obtaining the vehicle information as other vehicle information for one or more other vehicles;
    The lane determining unit
    The vehicle control device according to claim 13, wherein a lane in which the one vehicle travels is determined based on the other vehicle information.
  15.  コンピュータに、車両の走行を制御させるためのコンピュータプログラムであって、
     コンピュータを、
     車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として取得する車両情報取得部と、
     前記一の車両が走行する道路の車線情報を取得する車線情報取得部と、
     取得した前記一の車両情報及び前記車線情報に基づいて前記一の車両が走行する車線を決定する車線決定部と
     して機能させるコンピュータプログラム。
    A computer program for causing a computer to control driving of a vehicle,
    Computer
    A vehicle information acquisition unit for acquiring vehicle information including vehicle position information and information on the equipment of the vehicle as one vehicle information for one vehicle;
    A lane information acquisition unit that acquires lane information of a road on which the one vehicle travels;
    A computer program that functions as a lane determining unit that determines a lane in which the one vehicle travels based on the acquired one vehicle information and the lane information.
  16.  車両の位置情報及び前記車両の装備に関する情報を含む車両情報を一の車両について一の車両情報として車両情報取得部が取得し、
     前記一の車両が走行する道路の車線情報を車線情報取得部が取得し、
     取得された前記一の車両情報及び前記車線情報に基づいて前記一の車両が走行する車線を車線決定部が決定する車両制御方法。
     
    The vehicle information acquisition unit acquires vehicle information including vehicle position information and information related to the equipment of the vehicle as one vehicle information for one vehicle,
    A lane information acquisition unit acquires lane information of a road on which the one vehicle travels,
    A vehicle control method in which a lane determining unit determines a lane in which the one vehicle travels based on the acquired one vehicle information and the lane information.
PCT/JP2017/017671 2016-07-01 2017-05-10 Vehicle control device, computer program, and vehicle control method WO2018003304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-132038 2016-07-01
JP2016132038A JP2018001978A (en) 2016-07-01 2016-07-01 Vehicle control device, computer program and vehicle control method

Publications (1)

Publication Number Publication Date
WO2018003304A1 true WO2018003304A1 (en) 2018-01-04

Family

ID=60787022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017671 WO2018003304A1 (en) 2016-07-01 2017-05-10 Vehicle control device, computer program, and vehicle control method

Country Status (2)

Country Link
JP (1) JP2018001978A (en)
WO (1) WO2018003304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952406A4 (en) * 2019-03-29 2022-04-13 Honda Motor Co., Ltd. Information processing apparatus, information processing method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148854A (en) * 2018-02-26 2019-09-05 本田技研工業株式会社 Vehicle controller
JP7111530B2 (en) * 2018-06-28 2022-08-02 株式会社Soken Vehicle remote control system, vehicle control device, vehicle and method for informing start timing of remote control
KR102549744B1 (en) * 2021-07-12 2023-06-29 숭실대학교 산학협력단 Method for controliing traffic flow using deep reinforcement learning based autonomous vehicles in road information system, recording medium and device for performing the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163799A (en) * 2000-11-27 2002-06-07 Natl Inst For Land & Infrastructure Management Mlit Release device for automatic driving
JP2015184721A (en) * 2014-03-20 2015-10-22 アイシン・エィ・ダブリュ株式会社 automatic operation support device, automatic operation support method and program
JP2015206655A (en) * 2014-04-18 2015-11-19 株式会社デンソー Automatic driving plan display device and program for automatic driving plan display device
JP2016017758A (en) * 2014-07-04 2016-02-01 日産自動車株式会社 Travel support device and travel support method
JP2016084093A (en) * 2014-10-28 2016-05-19 富士重工業株式会社 Traveling control system of vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163799A (en) * 2000-11-27 2002-06-07 Natl Inst For Land & Infrastructure Management Mlit Release device for automatic driving
JP2015184721A (en) * 2014-03-20 2015-10-22 アイシン・エィ・ダブリュ株式会社 automatic operation support device, automatic operation support method and program
JP2015206655A (en) * 2014-04-18 2015-11-19 株式会社デンソー Automatic driving plan display device and program for automatic driving plan display device
JP2016017758A (en) * 2014-07-04 2016-02-01 日産自動車株式会社 Travel support device and travel support method
JP2016084093A (en) * 2014-10-28 2016-05-19 富士重工業株式会社 Traveling control system of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952406A4 (en) * 2019-03-29 2022-04-13 Honda Motor Co., Ltd. Information processing apparatus, information processing method, and program
US11838859B2 (en) 2019-03-29 2023-12-05 Honda Motor Co., Ltd. Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JP2018001978A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US11780457B2 (en) System and method for providing driving assistance to safely overtake a vehicle
CN110775063B (en) Information display method and device of vehicle-mounted equipment and vehicle
CN108263382B (en) Cooperative adaptive cruise control system based on driving pattern of target vehicle
US20220324438A1 (en) Method and Apparatus for Controlling Automated Vehicle
EP4129789A1 (en) Method and device for recognizing driving behavior of vehicle
US7925413B2 (en) Vehicle control system
US20190394626A1 (en) Device, method, and computer program product for vehicle communication
WO2018003304A1 (en) Vehicle control device, computer program, and vehicle control method
US10068477B2 (en) System and method for detecting and communicating slipping of non-connected vehicles
US11027730B2 (en) Systems and methods for regulation of autonomous cruise control
EP3521120B1 (en) Apparatus and method for controlling smart cruise control system
CN113525373B (en) Lane changing control system, control method and lane changing controller for vehicle
JP2017004265A (en) Display device
CN110949375B (en) Information processing system and server
US20180001893A1 (en) Automated vehicle acceleration management system
JP2013067365A (en) Preceding vehicle follow travel device and driving support system
JP2021088289A (en) Drive assist device
JP6380257B2 (en) Vehicle information providing device
US11948407B2 (en) Method for adapting a driving behavior of a motor vehicle
US20220340131A1 (en) Driving assistance device
JP7497935B2 (en) Vehicle driving support device
CN111750087A (en) Host vehicle, method for controlling a transmission of a host vehicle, and computer readable medium
US11801857B2 (en) Control method and device for driver assistance
US20230117467A1 (en) Passing assist system
US20220176922A1 (en) Driving assistance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819671

Country of ref document: EP

Kind code of ref document: A1