WO2018002496A1 - Manivelle de pédalier - Google Patents

Manivelle de pédalier Download PDF

Info

Publication number
WO2018002496A1
WO2018002496A1 PCT/FR2017/051691 FR2017051691W WO2018002496A1 WO 2018002496 A1 WO2018002496 A1 WO 2018002496A1 FR 2017051691 W FR2017051691 W FR 2017051691W WO 2018002496 A1 WO2018002496 A1 WO 2018002496A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank
pedaling
cam
cavity
crankset
Prior art date
Application number
PCT/FR2017/051691
Other languages
English (en)
Inventor
Yvon CRESSON
Original Assignee
S.P.Y.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.P.Y.C. filed Critical S.P.Y.C.
Publication of WO2018002496A1 publication Critical patent/WO2018002496A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • B62M3/02Construction of cranks operated by hand or foot of adjustable length
    • B62M3/04Construction of cranks operated by hand or foot of adjustable length automatically adjusting

Definitions

  • the present invention relates to the field crank cranks, and in particular that crank crank for improving the efficiency of energy transfer in a system having a pedal.
  • the object of the present invention is to provide a solution at least partially overcoming the aforementioned drawbacks. More particularly, the invention aims to implement a muscle saving device in pedaling on any type of device using a pedal that is simple, effective, resistant to the effort of pedaling, simple maintenance and independent of the type of crankset hub.
  • the present invention provides a crank crank comprising a first portion and a second portion movable relative to the first portion in a rectilinear translational motion.
  • the first part can be attached to a pedal.
  • the first part forms a cavity in which the second part is inserted by a first opening of the first part.
  • the crank crank according to the invention further comprises means which control the displacement of the second portion relative to the first portion to cause maximum elongation of the crank pedaling phase of pedaling and a minimum elongation of the crank pedaling phase of pedaling.
  • the first part of the pedal crank according to the invention comprises a second opening allowing one of the ends of the second part to exit the cavity.
  • the pedal crank according to the invention comprises a first part (which can also be called support) which is integral with the pedal, and thus indirectly integral with the hub on which the pedal is fixed, and a second part (that we can also call mobile crank) which is movable relative to the first part in a rectilinear translational movement.
  • the support on which the mobile crank is fixed and the mobile crank constitute a lever arm.
  • the pedaling is a complex circular motion, alternating on each of the lower limbs of the person pedaling the following four phases shown in Figure 10: a support phase (also called pressure phase) which corresponds to the transition from position B to the position D, a traction phase corresponds to the transition from the position D to the position B, a low dead point D located between the traction phase and the support phase, and a top dead center B located between the pressure phase and the traction phase.
  • a support phase also called pressure phase
  • a traction phase corresponds to the transition from the position D to the position B
  • a low dead point D located between the traction phase and the support phase
  • a top dead center B located between the pressure phase and the traction phase.
  • the means included in the crank according to the invention thus control the length of displacement of the second part relative to the first part as a function of the pedaling phase so that the lever arm reaches its maximum during the bearing phase of the pedaling and reaches its minimum during pedaling.
  • the lever arm reaches its maximum when the crank according to the invention has achieved half of its displacement during the transition from position B to position D, that is to say when the pedal is in position C as shown in Figure 10 (in the forward position); the lever arm reaches its minimum when the crank according to the invention has achieved half of its displacement during the transition from the position D to the position B, that is to say when the pedal is in position A as shown in Figure 10 (in the rear position).
  • the means controlling the displacement of the second part relative to the first part move the second part so that the length of the crank is maximum when the crank is in the forward position, and instead the length the crank is minimal when the crank is in the rear position.
  • the maximum and minimum lengths of the crank depend on the means controlling the displacement of the second part.
  • the amplitude of the displacement is greater because the first part comprises two openings opening on its cavity which allow one of the two ends of the second part to successively enter the cavity through the first opening and leave the cavity by the second opening.
  • the presence of the second opening allows a displacement of the second larger part without the need to shorten the second part.
  • the robustness of the crank is not affected.
  • crank according to the invention can be used with any type of crankset and be attached indifferently to the side with or without a chainring plate having one or more plates.
  • crank according to the invention can be used with any type of hub because its operation is independent or independent of the type of hub. Indeed, the means that control the elongation of the crank according to the invention do not interact with the hub, but only the elements of the crank.
  • crank crank can be used with any type of vehicle or device that uses a pedal, for example a bicycle.
  • crank crank comprises one or more of the following features:
  • the means controlling the elongation of the second part relative to the first part comprise a linkage-cam system
  • the cam-link system comprises a cam connected at one of its ends to a connecting rod by a first joint and connected at the other end thereof to said second part by a second articulation, a connecting rod connected to one of its ends at the cam by the first hinge and connected at the other end thereof to said first portion by a third hinge;
  • the second articulation comprises a fastening means which is a pin secured to the cam and disposed through a through hole of said second portion, a pedal being integral with said stud;
  • the length of the cam is between 3.5 and 7 centimeters
  • said second part is fitted into said first part, said first and second parts comprising means for sliding said second part fitted into said first part.
  • the sliding means comprise at least two grooves on said first part and at least two grooves on said second part, each groove of said first part being arranged opposite a groove of said second part and the two grooves opposite the first part; one of the other forming a space.
  • the sliding means further comprises linear ball bearings located in at least two spaces;
  • the rolling means further comprise needles located in at least two spaces.
  • the present invention provides a crankset comprising pedal cranks according to the invention.
  • the present invention provides a bicycle comprising a crankset according to the invention.
  • Figure 1 shows a section of a front view of an example of the crank according to the invention with maximum elongation
  • Figure 2 shows a section of a top view of an example of the crank according to the invention with maximum elongation
  • Figure 3 shows the front view of Figure 1 in which the crank has a minimum elongation after walking an extra half-turn;
  • Figure 4 shows the front view of Figure 2 in which the crank has a minimum elongation after traveling an additional half-turn;
  • Figure 5 shows a front view of the high, low, rear and front positions of an example crank crank according to the invention
  • Figure 6 shows an example of fixing a crank according to the invention on a bottom bracket side without a plate
  • Figure 7 shows an example of attachment of a crank according to the invention on a side of pedal with a plate
  • FIGS. 8, 9a, 9b and 9c show examples of means improving the sliding of the first part with the second part of the crank according to the invention
  • Figure 10 shows the leverage obtained with the crank according to the invention
  • Figures 11 and 12 show views of the first part and the second part of the crank according to the invention.
  • Figure 13 shows an example of the first part and the second part which are nested
  • Fig. 14 shows an exemplary cavity of the first U-shaped and closed portion.
  • Figures 1 to 5 show examples of the crank 10 according to the invention.
  • Figures 1 and 2 show the crank with maximum elongation (and therefore with a maximum lever arm) when it is in the forward position (C) of Figure 5.
  • Maximum crank extension (or maximum elongation of the crank) is the maximum length that the crank can have.
  • Figures 3 and 4 show the crank with a minimum elongation (and therefore with a minimal lever arm) when in the rear position (A) of Figure 5.
  • the minimum crank extension (or minimum elongation of the crank) is the minimum length that the crank can have.
  • the cranks shown in Figures 1 to 4 are identical, but shown in different views and arrangements; Figures 1 and 3 show a side view of a crank and Figures 2 and 4 show a top view of the same crank.
  • Figures 11 and 12 show examples of the first part and second part only, that is to say without the means controlling the displacement of the second part relative to the first part.
  • Figure 11 shows a front view, a top view, a left view and a right view of the first part of the crank according to the invention.
  • Figure 12 shows a front view, a top view, a left view and a right view of the second part of the crank according to the invention.
  • the crank 10 comprises a first portion 12 which is integral with the crankset (not shown).
  • the crankset is fixed to a hub, and the crank is fixed with respect to the hub. It is preferable that one of the ends of the first part is positioned centered on the axis of rotation 60 of the hub, as is customary on a pedal.
  • the crank also comprises a second portion 14 which is movable relative to the first portion 12 by following a rectilinear translational movement: the second part is movable relative to the pedal, and therefore relative to the hub on which the pedal is fixed.
  • the mobility following a rectilinear translation movement of the second portion relative to the first may be provided by an interlocking or insertion of the second part in the first part.
  • the first part at least partially covers the second part: for this, the first part comprises a cavity 16 which can accommodate the second part.
  • the cavity is a volume without materials arranged in the first part.
  • the surface of the cavity of the first portion and the outer surface of the second portion each have a shape (or geometry) that is complementary to the other to ensure that the movement of the second portion relative to the first is a rectilinear translation movement.
  • the cavity of the first part may be rectangular U-shaped (or square), and the section of the second part will preferably be rectangular (or square) to ensure that the movement is actually a rectilinear translational movement.
  • the cavity of the first portion may be elliptical in section, and the section of the second portion is also elliptical. It will be understood that the shape of the cavity and the section of the second part are not limited to these examples alone.
  • the first portion 12 has a U-shaped cavity 16, that is to say it comprises an opening which extends on one of its sides.
  • the first portion 12 has a cavity 16 which is instead closed.
  • the first part 12 can therefore be considered as a support on which is inserted or inserted a second portion 14 which is a mobile crank following a rectilinear translation with respect to this support.
  • the second part fits in the first part.
  • the mobile crank can thus be extracted and inserted relative to the support by following a rectilinear translational movement.
  • the cavity of the first part is through, that is to say that the cavity opens on two openings.
  • the second part can be inserted in the first part by a first opening of the first part and out through the second opening of the first part; which is advantageous during the phases of minimal elongation.
  • the nesting or insertion of the second part in the first part is partial, which means that the second part is never completely included in the first part.
  • the first portion 12 has a U-shaped section which comprises two openings 12a and 12b through which one of the two ends 14a, 14b of the second portion 14 shown in the example of FIG. 12, can fit in and out.
  • one 14b of both ends of the second part has been inserted via the first opening 12a of the first part, and it can emerge via the second opening 12b. It is therefore understood that the two openings 12a and 12b allow linear displacement of greater amplitude of the second portion relative to the first.
  • sliding means between the two parts can be added. These sliding means in particular to minimize friction between the two parts during the passage of a maximum elongation to a minimum elongation (and vice versa) so that the pedaling is as fluid as possible.
  • these sliding means may comprise at least one groove (160) in the first part which is arranged facing a groove (90a, 90b, 90c) of the second part.
  • the groove (s) of the first part is (are) therefore arranged in the surface of the cavity of the support and the groove (s) of the second part is (are) therefore arranged (s) ) in the outer surface of the second part.
  • These sliding means also comprise at least one rolling means located in the space created by said at least one groove of the first and second parts, the grooves being arranged opposite one another and forming a path of guidance in which the linear bearing is located.
  • the said at least one rolling means may be a linear ball bearing or a linear needle bearing.
  • the section of the second portion 14 is rectangular (or square) and two grooves are disposed on two opposite faces of the section; the section of the cavity is also rectangular U-shaped and two grooves are arranged on two opposite faces of the cavity.
  • a linear ball bearing 92a is located in each of the two spaces created by the four grooves.
  • the element 92a is a needle that is located in each of the two spaces (or guiding path created by the four grooves).
  • needle means an element which engages in two grooves located opposite each other and serves as a guiding and sliding element for each part relative to each other; the length of a needle can vary without to be longer than the grooves.
  • the sliding means may comprise at least one groove on the first (or the second part), and a rail on the second (or the first part) which engages in a groove (90a, 90b, 90c) of said first part.
  • the term rail designates an element projecting from the surface of the cavity of the first part (or the second part); the second part (or the first part) comprises a groove in which the projecting element can engage without hindering the sliding.
  • a lubricant may be added prior to ease of sliding of the rail into the groove.
  • the sliding means allow the second part to behave as a moving carriage moving in guide rail; the first and second parts form a telescopic rail.
  • Figure 9a shows an example in which the second portion 14 comprises two grooves 90a of identical shape and size which are placed on two opposite faces, and two needles 92a which are inserted between the grooves 90a and the grooves of the first part (not shown). shown) to guide the movement of the second part with respect to the first part. Needles and grooves can be lubricated to reduce friction and wear between them.
  • FIG. 9b shows a second example in which each of the two grooves 90b receives a linear ball bearing 92b (that is to say that the balls are aligned along an axis, for example that of the groove), for example that shown in Figure 8.
  • the grooves have in this example a half-hemispherical shape to minimize friction between the two parts; it being understood that their shape is not limited to this example.
  • Figure 9c shows an example similar to that of Figure 9b except that four grooves 90c are present. This makes it possible to distribute the force over a larger number of grooves 90c and balls 92c; and thus to reduce the friction forces, which improves the flexibility of use of the crank according to the invention.
  • FIGS. 9a, 9b and 9c the gap between the grooves has been exaggeratedly increased for the sake of clarity of the figures only.
  • the geometric shapes of the sections of the second portion 14 differ.
  • one of the faces 94a of the second portion 14 includes a recess that can be used to lighten the second portion.
  • two recesses 94c which are located opposite to lighten the second part.
  • the second portion 14 shown in Figure 9b includes angled edges that have been rounded to limit friction with the rectangular cavity (not shown) of the first portion.
  • FIGS. 9a, 9b and 9c may have their distinctive elements arranged between them; for example, the second part of Figure 9c could with rounded edges similar to those of Figure 9b.
  • Figure 13 shows an example of the second part 14 which is nested or inserted in the first part according to the example of Figure 9a.
  • the section of the first part being U, at least one side face of the second part is not in contact with the cavity of the first part; the first part can be maintained with respect to the second part only with the aid of the bearings.
  • means 162 to 178 for controlling the movement of the second portion 14 of the crank 10 relative to the first portion 12 are shown.
  • the means will cause maximum extraction of the second part in the first part in pedaling phase of the pedaling and cause on the contrary a maximum insertion of the second part in the first pedaling phase of pedaling.
  • the maximum extraction (i.e. when the crank has a maximum length) and the maximum insertion (i.e. when the crank has a minimum length) depend on the means controlling the displacement of the second crank. part compared to the first.
  • the means comprise a cam linkage system 164 to
  • a cam 170 is connected at its first end to a connecting rod 164 via a first hinge 168, 176; which is to say that the rod 164 is connected at its first end to the crank 170 via the first articulation 168, 176.
  • the cam 170 is further integrally connected by its second end to a stud 172.
  • the rod 164 is connected to its second end to the support 12 (the first part) by a hinge (162, 174).
  • the rod 164 is connected on its second end to one both ends of the first part via a third articulation (162, 174). Said one of the two ends of the first part is the one furthest from the axis of the hub.
  • the first and third joints may consist of identical elements, which simplifies the manufacture of the crank 10 according to the invention.
  • the first and third joints each comprise a connecting means which may be a screw 162, 168 and a ball bearing 174, 176 which limits the friction between the screw and the connecting rod 164.
  • the cam 170 is located in the same plane as that of the first portion 14. More specifically, the face 186 of the cam 170 and the face 184 of the second portion 14 are located in the same plane. It is interesting to note that this same plane may also be the plane with which the face 188 of the connecting rod - the face 188 of the connecting rod is the one which closest to the faces 184 and 186 - coincides substantially.
  • the three joints form pivot-type links, that is to say they rotate a part by allowing only one rotation about the axis of the connection.
  • the aforementioned three joints may include additional elements such as an element that maintains a space between two faces of two elements that are connected; for example a washer. This makes it possible to limit the friction between the two faces of the elements which are connected.
  • the articulation between the second portion 14 and the cam 170 can be achieved with a connecting means such as a pin 172 which is integral with the cam 170, that is to say that there can be no rotation between these two elements.
  • the stud 172 is inserted into a through hole located in one of the two ends of the second portion 14 of the crank 10.
  • the link may further comprise a ball bearing 178 inserted into the through hole in one of the two ends of the crank portion. the second portion 14 of the crank 10.
  • the stud 172 is then inserted into the through hole via the ball bearing 178. In this way, the friction between the stud 172 and the through hole are limited.
  • the stud 172 can serve as a means for attaching a pedal 180 shown in FIG.
  • the threaded portion of the stud is out of the through hole and allows to screw the pedal.
  • the stud 172 and the pedal 180 are integral, that is to say that there can be no more rotation between these two elements also once the pedal screwed and locked on the stud.
  • the circular movement of the pedal created by the pedaling action causes the stud which itself causes a rotation of the cam 170.
  • the cam (170) progressively extracts the mobile crank (the second part 14) from the support (the first part 12) by bearing on the connecting rod (164). Still referring to FIG. 10, during the transition from a position C of the pedal to a position A of the pedal, the cam (170) progressively inserts the moving crank (the second part 14) into the support (the first part 12).
  • this articulated connection cam / connecting rod / first part (170,164,12) causes a longitudinal displacement back and forth of the movable crank (14) in the support (12) which is itself in rotation on the hub.
  • the two conjugate displacements cause a circular movement offset forwards, that is to say that the pedal 180 performs a circular translation movement of center O 'which is offset forwardly with respect to the axis of the hub as shown in Figures 5 and 10.
  • Figure 5 illustrates how the control means crank elongation 10 as a function of the pedaling phase, i.e. how the elongation of the lever arm is controlled.
  • the second part performs a movement back and forth relative to the first part for each complete rotation of the crankset on which is attached the crank 10.
  • the elongation L of the crank is minimal in the rear position A: the length of the crank is minimal.
  • the rear position is the position in which the crank is substantially horizontal during the pedaling phase of the pedaling.
  • the elongation L of the crank is equal to half of the maximum elongation in the high position B.
  • the high position is the position at which the crank is substantially vertical and is in the top dead center position between the traction phase and the support phase of pedaling.
  • the elongation L of the crank is maximum in the forward position C: the length of the crank is maximum.
  • the forward position is the position in which the crank is substantially horizontal during the pedaling phase of the pedaling.
  • the elongation L of the crank is equal to half of the maximum elongation in the low position.
  • the low position is the position at which the crank is substantially vertical and is in the bottom dead center position between the support phase and the pedaling traction phase. It will be understood that the transition from one position to another follows the following order: rear position, high position, forward position, low position.
  • the length of the crank is changing continuously: for each change in position of the crank corresponds to a variation of the crank length L.
  • the center of rotation of the pedaling is therefore off-center on the front relative to the hub on which the pedal is fixed, that is to say, an additional leverage is created in pedaling phase support.
  • the pedal 180 which is integral with the cam 170 via the stud 172, performs a circular translation movement of center O 'which is shifted forward relative to the axis of the hub.
  • the adjustment of the cam on the axis of the stud can allow a modification of its thrust angle.
  • the modification of the length of the cam makes it possible to vary the leverage effect.
  • the cam 170 is oriented in the same horizontal plane as the pedal.
  • the maximum extension of the lever arm is either late or ahead of the horizontal position before A.
  • the screwing of the pedal on the stud of the cam allows this adjustment with a nut 190a between the pedal and the stud, as shown in FIG. 4. This adjustment makes it possible, in particular, to adapt the crank to the pedaling that is specific to each wheel. 'user.
  • the ratio between the length of the standard pedaling radius and the travel of the cam 170 can be between 0.2 and 0.5. Preferably, it is 0.25 and 0.33.
  • the choice of the value of this report will depend in particular on the desired leverage effect. The longer the cam, the greater the ratio with a constant rod length, and the greater the leverage effect. This causes an increase in the offset of pedaling forward.
  • the length of the crank standard is typically between 17.5 cm and 18 cm. With a crank at 17.5 cm and a ratio of 0.25, the crank could have 21.88 cm in maximum length and 13.13 cm in minimum length. With a ratio of 0.33 the crank could have 23.28 cm in maximum length and 11.72 cm in minimum length.
  • the length of the cam may preferably be between 3.5 and 7 centimeters; it being understood that it may be longer, for example the cam length may be between 3 and 12 cm.
  • Figures 6 and 7 show examples of attachment of the crank on an axis 60 of a hub that can be maintained on a frame using for example an adjustable bowl as known for example in the field of bicycles.
  • An interface 64 is inserted on the axis of the hub which may have for example a square or hexagonal shape.
  • the interface 64 is held on the means by means of a screw 66 which is fixed in a hole of the hub for this purpose.
  • Other means can be envisaged to maintain the interface 64 fixed to the axis of the hub, for example a key.
  • the end of the first portion 12, which does not include the third joint, comprises means adapted to be inserted on the interface 64 and fix 69 the latter to the first part. Fixing can be achieved for example by means of a key or a screw 69.
  • the crank 10 is integral with the axis 60 of the hub.
  • Figure 7 differs from Figure 6 in that the interface 64 includes means 70a, 70b, 70c, 70d for securing a tray.
  • the number of means may vary depending on the type of tray to be fixed, for example five means may be necessary.
  • the materials used in the manufacture of the crank may be for example an aluminum alloy, titanium, magnesium, steel, or carbon or glass fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

L'invention concerne une manivelle de pédalier comprenant une première partie solidaire à un pédalier et formant une cavité, une deuxième partie s'insérant dans la cavité via une première ouverture de la première partie, la deuxième partie pouvant se déplacer par rapport à la première partie en suivant un mouvement de translation rectiligne, des moyens contrôlant le déplacement de la deuxième partie par rapport à la première partie pour provoquer une élongation maximale de la manivelle en phase d'appui du pédalage et une élongation minimale de la manivelle en phase de traction du pédalage. La cavité de la première partie comprend une deuxième ouverture permettant à l'une des extrémités de la deuxième partie de sortir de la cavité.

Description

MANIVELLE DE PEDALIER
DOMAINE DE L'INVENTION
La présente invention concerne le domaine des manivelles pour pédaliers, et en particulier celui des manivelles pour pédalier permettant d'améliorer l'efficacité du transfert d'énergie dans un système comportant un pédalier.
ETAT DE LA TECHNIQUE
De nombreuses techniques ont été développées afin d'améliorer les performances de la transmission d'énergie dans un système comportant un pédalier tel qu'une bicyclette. En particulier des solutions permettant d'augmenter l'effet de levier sur la manivelle lors du pédalage existent tels que décrit par exemple dans les documents US4519271, US4446754 et US4882945.
Ces solutions souffrent cependant d'un certain nombre de limitations. Parmi celles-ci, on peut citer un fonctionnement pas suffisamment sim ple pour permettre une souplesse et aisance d'utilisation que requiert le pédalage. Ce manque de simplicité s'accompagne de problèmes dans la mise en œuvre effective de ces solutions. Elles souffrent en outre de problèmes de robustesse insuffisante également lié au manque de simplicité de leur mise en œuvre. De plus, leur amplitude de déplacement est faible et ne permet donc pas d'obtenir un effet de levier suffisant.
Le but de la présente invention est de fournir une solution palliant au moins partiellement les inconvénients précités. Plus particulièrement, l'invention vise à mettre en œuvre un dispositif d'économie musculaire dans le pédalage sur tout type d'appareil utilisant un pédalier qui soit simple, efficace, résistante à l'effort du pédalage, simple d'entretien et indépendant du type de moyeu du pédalier.
EXPOSE DE L'INVENTION
A cette fin, la présente invention propose une manivelle de pédalier qui comprend une première partie et une deuxième partie pouvant se déplacer par rapport à la première partie en suivant un mouvement de translation rectiligne. La première partie peut être solidaire à un pédalier. La première partie forme une cavité dans laquelle s'insère la deuxième partie par une première ouverture de la première partie. La manivelle de pédalier selon l'invention comprend de plus des moyens qui contrôlent le déplacement de la deuxième partie par rapport à la première partie pour provoquer une élongation maximale de la manivelle en phase d'appui du pédalage et une élongation minimale de la manivelle en phase de traction du pédalage. La première partie de la manivelle de pédalier selon l'invention comprend une deuxième ouverture permettant à l'une des extrémités de la deuxième partie de sortir de la cavité.
Ainsi, la manivelle de pédalier selon l'invention comprend une première partie (que l'on peut aussi nommer support) qui est solidaire au pédalier, et donc indirectement solidaire au moyeu sur lequel le pédalier est fixé, et une deuxième partie (que l'on peut nommer aussi manivelle mobile) qui est mobile par rapport à la première partie suivant un mouvement de translation rectiligne. Le support sur lequel la manivelle mobile est fixée et la manivelle mobile constituent un bras de levier.
Le pédalage est un mouvement circulaire complexe, alternant sur chacun des membres inférieurs de la personne qui pédale les quatre phases suivantes représentées sur la Figure 10 : une phase d'appui (aussi nommée phase de pression) qui correspond au passage de la position B vers la position D, une phase de traction correspond au passage de la position D vers la position B, un point mort bas D situé entre la phase de traction et la phase d'appui, et un point mort haut B situé entre la phase de pression et la phase de traction.
Les moyens que comprend la manivelle selon l'invention contrôlent ainsi la longueur du déplacement de la deuxième partie par rapport à la première partie en fonction de la phase de pédalage de telle sorte le bras de levier atteint son maximum lors la phase d'appui du pédalage et atteint son minimum en phase de traction du pédalage.
De préférence, le bras de levier atteint son maximum lorsque la manivelle selon l'invention a réalisé la moitié de son déplacement lors du passage de la position B vers la position D, c'est-à-dire lorsque la pédale est en position C comme représentée sur la Figure 10 (en position avant) ; le bras de levier atteint son minimum lorsque la manivelle selon l'invention a réalisé la moitié de son déplacement lors du passage de la position D vers la position B, c'est-à-dire lorsque la pédale est en position A comme représentée sur la Figure 10 (en position arrière). En d'autres termes, les moyens contrôlant le déplacement de la deuxième partie par rapport à la première partie, déplacent la deuxième partie afin que la longueur de la manivelle soit maximale lorsque la manivelle est en position avant, et qu'au contraire la longueur de la manivelle soit minimale lorsque la manivelle est en position arrière. Les longueurs maximales et minimales de la manivelle dépendent des moyens de contrôlant le déplacement de la deuxième partie.
Le passage entre les élongations maximales et minimales de la manivelle se fait de manière continue, c'est-à-dire que le diamètre du pédalage reste constant. En d'autres termes, le mouvement circulaire et le rayon du pédalage reste constant. De cette manière, le centre de rotation du pédalage est décentré sur l'avant par rapport au moyeu sur lequel le pédalier est fixé, c'est-à-dire qu'un effet de levier supplémentaire est créé en phase d'appui du pédalage. Cet effet de levier supplémentaire durant la phase d'appui lié au décentrage du pédalage est illustré sur les figures 5 et 10.
L'amplitude du déplacement est plus importante car la première partie comprend deux ouvertures débouchant sur sa cavité qui permettent à l'une des deux extrémités de la deuxième partie de successivement entrer dans la cavité par la première ouverture et sortir de la cavité par la deuxième ouverture. Ainsi, la présence de la deuxième ouverture permet un déplacement de la deuxième partie plus important sans qu'il soit nécessaire de raccourcir la deuxième partie. La robustesse de la manivelle n'est donc pas affectée.
La manivelle selon l'invention peut être utilisée avec tout type de pédalier et être fixée indifféremment sur le côté avec ou sans plateau d'un pédalier comportant un ou plusieurs plateaux.
La manivelle selon l'invention peut être utilisée avec tout type de moyeu car son fonctionnement est indépendant ou autonome du type de moyeu. En effet, les moyens qui contrôlent l'élongation de la manivelle selon l'invention n'interagissent pas le moyeu, mais uniquement les éléments de la manivelle.
Ainsi, la manivelle selon l'invention peut être utilisée avec tout type de véhicule ou dispositif qui utilise un pédalier, par exemple une bicyclette. Suivant des modes de réalisation préférés, la manivelle pour pédalier comprend une ou plusieurs des caractéristiques suivantes :
- les moyens contrôlant l'élongation de la deuxième partie par rapport à la première partie comprennent un système bielle-came ;
- le système bielle-came comprend une came reliée à l'une de ses extrémités une bielle par une première articulation et reliée à l'autre de ses extrémités à ladite deuxième partie par une deuxième articulation, une bielle reliée à l'une de ses extrémités à la came par la première articulation et reliée à l'autre de ses extrémités à ladite première partie par une troisième articulation ;
- la deuxième articulation comprend un moyen d'attache qui est un goujon solidaire à la came et disposé à travers un trou traversant de ladite deuxième partie, une pédale étant solidaire avec ledit goujon ;
- la longueur de la came est comprise entre 3,5 et 7 centimètres ;
- ladite deuxième partie est emboîtée dans ladite première partie, lesdites première et deuxième parties comprenant des moyens de coulissement de ladite deuxième partie emboîtée dans la dite première partie.
- les moyens de coulissement comprennent au moins deux rainures sur ladite première partie et au moins deux rainures sur ladite deuxième partie, chaque rainure de ladite première partie étant disposée en face d'une rainure de ladite deuxième partie et les deux rainures en face l'une de l'autre formant un espace.
- les moyens de coulissement comprennent en outre des roulements à bille linéaires situés dans au moins deux espaces ;
- les moyens de roulement comprennent en outre des aiguilles situées dans au moins deux espaces.
La présente invention propose un pédalier comprenant des manivelles de pédalier selon l'invention.
La présente invention propose une bicyclette comprenant un pédalier selon l'invention.
PRESENTATION DES DESSINS D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture la description qui suit d'un mode de réalisation préféré de l'invention, donnée à e d'exemple et en référence aux dessins annexés.
La Figure 1 montre une coupe d'une vue de face d'un exemple de la manivelle selon l'invention avec une élongation maximale ;
La Figure 2 montre une coupe d'une vue de haut d'un exemple de la manivelle selon l'invention avec une élongation maximale ;
La Figure 3 montre la vue de face de la Figure 1 dans laquelle la manivelle a une élongation minimale après avoir parcouru un demi-tour supplémentaire ;
La Figure 4 montre la vue de face de la Figure 2 dans laquelle la manivelle a une élongation minimale après avoir parcouru un demi- tour supplémentaire ;
La Figure 5 montre une vue de face des positions haute, basse, arrière et avant d'un exemple de manivelle de pédalier selon l'invention ;
La Figure 6 montre un exemple de fixation d'une manivelle selon l'invention sur un côté de pédalier sans plateau ;
La Figure 7 montre un exemple de fixation d'une manivelle selon l'invention sur un côté de pédalier avec un plateau ;
Les figures 8, 9a, 9b, et 9c montrent des exemples de moyens améliorant le coulissement de la première partie avec la deuxième partie de la manivelle selon l'invention ;
La figure 10 montre l'effet de levier obtenu avec la manivelle selon l'invention ;
Les figures 11 et 12 montrent des vues de la première partie et de la deuxième partie de la manivelle selon l'invention ;
La figure 13 montre un exemple de la première partie et de la deuxième partie qui sont emboîtées ;
La figure 14 montre un exemple de cavité de la première partie en forme de U et fermée.
DESCRIPTION DETAILLE D'UN EXEMPLE DE L'INVENTION Les Figures 1 à 5 montrent des exemples de la manivelle 10 selon l'invention. Les Figures 1 et 2 montrent la manivelle avec une élongation maximale (et donc avec un bras de levier maximal) lorsqu'elle est en position avant (C) de la Figure 5. L'élongation maximale de la manivelle (ou encore allongement maximal de la manivelle) correspond à la longueur maximale que peut avoir la manivelle. Les Figures 3 et 4 montrent la manivelle avec une élongation minimale (et donc avec un bras de levier minimal) lorsqu'elle est en position arrière (A) de la Figure 5. L'élongation minimale de la manivelle (ou encore allongement minimal de la manivelle) correspond à la longueur minimale que peut avoir la manivelle. Les manivelles représentées sur les Figures 1 à 4 sont identiques, mais présentées sous des vues et des agencements qui diffèrent ; les figures 1 et 3 représentent une vue de côté d'une manivelle et les figures 2 et 4 représentent une vue de dessus de la même manivelle.
Les figures 11 et 12 montrent des exemples de la première partie et deuxième partie uniquement, c'est-à-dire sans les moyens contrôlant le déplacement de la deuxième partie par rapport à la première partie. La figure 11 montre une vue de face, une vue de haut, une vue de gauche ainsi qu'une vue de droite de la première partie de la manivelle selon l'invention. La figure 12 montre une vue de face, une vue de haut, une vue de gauche ainsi qu'une vue de droite de la deuxième partie de la manivelle selon l'invention.
La manivelle 10 comprend une première partie 12 qui est solidaire au pédalier (non représenté). Le pédalier est fixé à un moyeu, et la manivelle est donc fixe par rapport au moyeu. Il est préférable que l'une des extrémités de la première partie soit positionnée centrée sur l'axe de rotation 60 du moyeu, comme cela se fait de manière habituelle sur un pédalier. La manivelle comprend également une deuxième partie 14 qui est mobile par rapport à la première partie 12 en suivant un mouvement de translation rectiligne : la deuxième partie est donc mobile par rapport au pédalier, et donc par rapport au moyeu sur lequel le pédalier est fixé. La mobilité suivant un mouvement de translation rectiligne de la deuxième partie par rapport à la première peut être assurée par un emboîtement ou insertion de la deuxième partie dans la première partie. L'emboîtement ou insertion implique que la première partie recouvre au moins partiellement la deuxième partie : pour cela, la première partie comprend une cavité 16 qui peut accueillir la deuxième partie. La cavité est donc un volume sans matière aménagés dans la première partie. Il est préférable que la surface de la cavité de la première partie et la surface extérieure de la deuxième partie aient chacune une forme (ou géométrie) qui soit complémentaire de l'autre afin d'assurer que le mouvement de la deuxième partie par rapport à la première soit un mouvement de translation rectiligne. Par exemple, la cavité de la première partie peut être en forme de U rectangulaire (ou carré), et la section de la deuxième partie sera préférentiellement rectangulaire (ou carré) afin d'assurer que le mouvement soit effectivement un mouvement de translation rectiligne. Comme autre exemple, la cavité de la première partie peut être de section elliptique, et la section de la deuxième partie est également elliptique. On comprendra que la forme de la cavité et la section de la deuxième partie ne sont pas limitées à ces seuls exemples. Sur la droite de la figure 14, la première partie 12 a une cavité 16 en forme de U, c'est-à-dire qu'elle comprend une ouverture qui s'étend sur l'un de ses côtés. Sur la gauche de la figure 14, la première partie 12 a une cavité 16 qui est au contraire fermée.
La première partie 12 peut donc être considérée comme un support sur lequel est emboîtée ou inséré une deuxième partie 14 qui est une manivelle mobile suivant une translation rectiligne par rapport à ce support. Autrement dit, la deuxième partie s'insère dans la première partie. La manivelle mobile peut donc s'extraire et s'insérer par rapport au support en suivant un mouvement de translation rectiligne.
La cavité de la première partie est traversant, c'est-à-dire que la cavité débouche sur deux ouvertures. Ainsi, la deuxième partie peut s'insérer dans la première partie par une première ouverture de la première partie et ressortir par la deuxième ouverture de la première partie ; ce qui est avantageux lors des phases d'élongation minimale. L'emboîtement ou insertion de la deuxième partie dans la première partie est partiel, ce qui signifie que la deuxième partie n'est jamais complètement incluse dans la première partie.
Sur l'exemple de la FIG. 11, la première partie 12 a une section en forme de U qui comprend deux ouvertures 12a et 12b par lesquelles une des deux extrémités 14a, 14b de la deuxième partie 14 représentées dans l'exemple de la FIG. 12, peut s'insérer et ressortir. Sur la FIG. 13, l'une 14b des deux extrémités de la deuxième partie a été insérée via la première ouverture 12a de la première partie, et elle peut ressortir via la deuxième ouverture 12b. On comprend donc que les deux ouvertures 12a et 12b permettent un déplacement linéaire de plus grande amplitude de la deuxième partie par rapport à la première.
Afin d'améliorer le mouvement de la deuxième partie par rapport à la première, des moyens de coulissement entre les deux parties peuvent être ajoutés. Ces moyens de coulissement permettent notamment de minimiser les frottements entre les deux parties lors du passage d'une élongation maximale vers une élongation minimale (et inversement) de sorte que le pédalage soit le plus fluide possible.
Par exemple, ces moyens de coulissement peuvent comprendre au moins une rainure (160) dans la première partie qui est disposée face à une rainure (90a, 90b, 90c) de la deuxième partie. La(les) rainure(s) de la première partie est(sont) donc disposée(s) dans la surface de la cavité du support et la(les) rainure(s) de la deuxième partie est(sont) donc disposée(s) dans la surface externe de la deuxième partie. Ces moyens de coulissement comprennent également au moins un moyen de roulement situé dans l'espace créé par les dites au moins une rainure de la première et deuxième partie, les rainures étant disposées en face l'une de l'autre et formant un chemin de guidage dans lequel le roulement linéaire est situé. Le dit au moins un moyen de roulement peut être un roulement à bille linéaire ou encore un roulement à aiguilles linéaire. Dans un exemple tel que celui représenté par la Figure 13, la section de la deuxième partie 14 est rectangulaire (ou carrée) et deux rainures sont disposées sur deux faces opposées de la section ; la section de la cavité est également rectangulaire en forme de U et deux rainures sont disposées sur deux faces opposées de la cavité. Un roulement à bille linéaire 92a est situé dans chacun des deux espaces créés par les quatre rainures. Dans un autre exemple, l'élément 92a est une aiguille qui est situé dans chacun des deux espaces (ou chemin de guidage créés par les quatre rainures). Le terme aiguille signifie un élément qui s'engage dans deux rainures situées l'une en face de l'autre et qui sert d'élément de guidage et de coulissage pour chaque partie l'une par rapport à l'autre ; la longueur d'une aiguille peut varier sans pour autant être plus longue que les rainures. Alternativement, les moyens de coulissement peuvent comprendre au moins une rainure sur la première (ou la deuxième partie), et un rail sur la deuxième (ou la première partie) qui s'engage dans une rainure (90a, 90b, 90c) de ladite première partie. Le terme rail désigne un élément en saillie de la surface de la cavité de la première partie (ou de la deuxième partie) ; la deuxième partie (ou la première partie) comprend une rainure dans laquelle l'élément en saillie peut s'engager sans gêner le coulissement. Un lubrifiant peut être ajouté avant de facilité de glissement du rail dans la rainure. Toujours dans cette alternative, les moyens de coulissement permettent à la deuxième partie de se comporter comme un chariot mobile se déplaçant dans rail de guidage ; les premières et deuxièmes parties forment un rail télescopique.
La Figure 9a montre un exemple dans lequel la deuxième partie 14 comprend deux rainures 90a identiques en forme et en taille qui sont placés sur deux faces opposées, et deux aiguilles 92a qui sont insérés entre les rainures 90a et les rainures de la première partie (non représentées) afin de guider le mouvement de la deuxième partie par rapport à la première partie. Les aiguilles et les rainures peuvent être lubrifiées afin de réduire le frottement et l'usure entre eux.
La figure 9b montre un deuxième exemple dans lequel chacune des deux rainures 90b reçoit un roulement à billes linéaire 92b (c'est-à-dire les que les bille sont alignées suivant un axe, par exemple celui de la rainure), par exemple celui représenté à la figure 8. Les rainures ont dans cet exemple une forme demi- hémisphérique afin de minimiser les frottements entre les deux parties ; étant entendu que leur forme n'est pas limité à cet exemple.
La figure 9c montre un exemple semblable à celui de la figure 9b, sauf que quatre rainures 90c sont présentes. Cela permet de répartir l'effort sur un nombre plus importants de rainures 90c et de billes 92c ; et donc de diminuer les forces de frottements, ce qui améliore la souplesse d'utilisation de la manivelle selon l'invention.
Dans la Figure 9a, 9b, et 9c, l'écart entre les rainures a été exagérément augmenté pour des fins de clarté des figures uniquement. Sur les Figures 9a, 9b, et 9c, les formes géométriques des sections de la deuxième partie 14 diffèrent. Par exemple, l'une des faces 94a de la deuxième partie 14 comprend un renfoncement qui peut servir pour alléger la deuxième partie. Sur la figure 9c, deux renfoncements 94c qui sont situés face à face permettent d'alléger la deuxième partie. La deuxième partie 14 représentée sur la Figure 9b comprend des arrêtes d'angles qui ont été arrondies afin de limiter les frottements avec la cavité rectangulaire (non représentée) de la première partie. On comprendra les différents exemples des Figures 9a, 9b et 9c peuvent voir leurs éléments distinctifs agencés entre eux ; par exemple, la deuxième partie de la figure 9c pourrait avec des arrêtes arrondies semblables à celles de la Figure 9b.
La figure 13 montre un exemple de la deuxième partie 14 qui est emboîtée ou insérée dans la première partie selon l'exemple de la figure 9a. La section de la première partie étant en U, au moins une face latérale de la deuxième partie n'est pas en contact la cavité de la première partie ; la première partie peut être maintenu par rapport à la deuxième partie uniquement à l'aide des aguilles ou des roulements.
De retour sur les Figures 2 et 4, des moyens 162 à 178 permettant de contrôler le déplacement de la deuxième partie 14 de la manivelle 10 par rapport à la première partie 12 sont représentés. En particulier, les moyens vont provoquer une extraction maximale de la deuxième partie dans la première partie en phase d'appui du pédalage et provoquer au contraire une insertion maximale de la deuxième partie dans la première en phase de traction du pédalage. L'extraction maximale (c'est-à- dire lorsque la manivelle a une longueur maximale) et l'insertion maximale (c'est-à- dire lorsque la manivelle a une longueur minimale) dépendent des moyens contrôlant le déplacement de la deuxième partie par rapport à la première.
Dans un exemple, les moyens comprennent un système de bielle-came 164 à
170. Une came 170 est reliée à sa première extrémité à une bielle 164 via une première articulation 168, 176 ; ce qui revient à dire que la bielle 164 est reliée à sa première extrémité à la manivelle 170 via la première articulation 168, 176. La came 170 est en outre reliée solidairement par sa seconde extrémité à un goujon 172. La bielle 164 est reliée à sa deuxième extrémité au support 12 (la première partie) par une articulation (162, 174). La bielle 164 est reliée sur sa deuxième extrémité à l'une des deux extrémités de la première partie via une troisième articulation (162, 174). Ladite une des deux extrémités de la première partie est celle qui est la plus éloignée de l'axe du moyeu.
La première et troisièmes articulation peuvent être constitués d'éléments identiques, ce qui simplifie la fabrication de la manivelle 10 selon l'invention. Ainsi les première et troisième articulations comprennent chacune un moyen de liaison qui peut être une vis 162, 168, ainsi qu'un roulement à bille 174, 176 qui vient limiter les frottements entre la vis et la bielle 164.
De préférence, la came 170 est située dans un même plan que celui de la première partie 14. Plus précisément, la face 186 de la came 170 et la face 184 de la deuxième partie 14 sont situées dans un même plan. Il est intéressant de noter que ce même plan peut être également le plan avec lequel la face 188 de la bielle - la face 188 de la bielle est celle qui la plus proche des faces 184 et 186 - coïncide sensiblement.
Les trois articulations forment des liaisons de type pivot, c'est-à-dire qu'elles mettent en rotation une pièce en ne permettant qu'une rotation autour de l'axe de la liaison.
Les trois articulations susmentionnées peuvent comprendre des éléments supplémentaires tels qu'un élément qui maintient un espace entre deux faces de deux éléments qui sont reliés ; par exemple une rondelle. Ceci permet de limiter les frottements entre les deux faces des éléments qui sont reliés.
L'articulation entre la deuxième partie 14 et la came 170 peut être réalisée avec un moyen de liaison tel qu'un goujon 172 qui est solidaire avec la came 170, c'est-à-dire qu'il ne peut y avoir de rotation entre ces deux éléments. Le goujon 172 est inséré dans un trou traversant situé dans ladite une des deux extrémités de la deuxième partie 14 de la manivelle 10. La liaison peut de plus comprendre un roulement à bille 178 inséré dans le trou traversant situé dans ladite une des deux extrémités de la deuxième partie 14 de la manivelle 10. Le goujon 172 est alors inséré dans le trou traversant via le roulement à bille 178. De cette manière, les frottements entre le goujon 172 et le trou traversant sont limités. Le goujon 172 peut servir de moyen d'attache d'une pédale 180 représentée sur la figure 4 : la partie fileté du goujon est hors du trou traversant et permet d'y visser la pédale. Le goujon 172 et la pédale 180 sont solidaires, c'est-à-dire qu'il ne qu'il ne peut plus y avoir de rotation entre ces deux éléments également une fois la pédale vissé et bloqué sur le goujon. Ainsi, le mouvement circulaire de la pédale créé par l'action de pédalage entraine le goujon qui lui-même entraine une rotation de la came 170.
Ainsi, et en référence à la Figure 10, lors du passage d'une position A de la pédale à une position C de la pédale, la came (170) extrait progressivement la manivelle mobile (la deuxième partie 14) du support (la première partie 12) en prenant appui sur la bielle (164). Toujours en référence à la Figure 10, lors du passage d'une position C de la pédale à une position A de la pédale, la came (170) insère progressivement la manivelle mobile (la deuxième partie 14) dans le support (la première partie 12). A chaque tour de pédalage complet (c'est-à-dire en passant progressivement de la position A vers la position B, de la position B vers la position C, de la position C vers la position D et de la position D vers la position A), cette liaison articulée came/bielle/première partie (170,164,12) provoque un déplacement longitudinal en va-et-vient de la manivelle mobile (14) dans le support (12) qui est lui- même en rotation sur le moyeu. Les deux déplacements conjugués provoquent un mouvement circulaire décalé vers l'avant, c'est-à-dire que la pédale 180 effectue un mouvement de translation circulaire de centre O' qui est décalé vers l'avant par rapport à l'axe du moyeu, comme illustré sur les figures 5 et 10.
La Figure 5 illustre comment les moyens de contrôle l'allongement de la manivelle 10 en fonction de la phase de pédalage, c'est-à-dire comment l'allongement du bras de levier est contrôlé. La deuxième partie réalise un mouvement de va et vient par rapport à la première partie pour chaque rotation complète du pédalier sur lequel est attachée la manivelle 10. L'élongation L de la manivelle est minimale en position arrière A : la longueur de la manivelle est minimale. La position arrière est la position dans laquelle la manivelle est sensiblement horizontale durant la phase de traction du pédalage. L'élongation L de la manivelle est égale à la moitié de l'élongation maximale en position haute B. La position haute est la position à laquelle la manivelle est sensiblement verticale et est en position de point mort haut situé entre la phase de traction et la phase d'appui du pédalage. L'élongation L de la manivelle est maximale en position avant C : la longueur de la manivelle est maximale. La position avant est la position dans laquelle la manivelle est sensiblement horizontale durant la phase d'appui du pédalage. L'élongation L de la manivelle est égale à la moitié de l'élongation maximale en position basse. La position basse est la position à laquelle la manivelle est sensiblement verticale et est en position de point mort bas situé entre la phase de d'appui et la phase de traction du pédalage. On comprendra que le passage d'une position à l'autre suit l'ordre suivant : position arrière, position haute, position avant, position basse. Lors du passage d'une position à l'autre, la longueur de la manivelle évolue de manière continue : pour chaque variation de position de la manivelle correspond une variation de la longueur de manivelle L. Le centre de rotation du pédalage est en conséquent décentré sur l'avant par rapport au moyeu sur lequel le pédalier est fixé, c'est-à-dire qu'un effet de levier supplémentaire est créé en phase d'appui du pédalage. On notera que la pédale 180, qui est solidaire à la came 170 via le goujon 172, effectue un mouvement de translation circulaire de centre O' qui est décalé vers l'avant par rapport à l'axe du moyeu.
Le réglage de la came sur l'axe du goujon peut permettre une modification de son angle de poussée. La modification de la longueur de la came permet de faire varier l'effet levier. En effet, la came 170 est orientée dans un même plan horizontal que celui pédale. Ainsi, si la came est orientée de quelques degrés vers le haut ou vers le bas par rapport au plan de la pédale, l'allongement maximum du bras de levier est soit en retard, soit en avance sur la position l'horizontale avant A. Le vissage de la pédale sur le goujon de la came permet ce réglage avec un contre écrou 190a entre la pédale et le goujon, comme représenté sur la figure 4. Ce réglage permet notamment d'adapter la manivelle au pédalage qui est propre à chaque l'utilisateur.
Le rapport entre la longueur du rayon de pédalage standard et la course de la came 170 peut être compris entre 0,2 et 0,5. De préférence, il est compris en 0,25 et 0,33. Le choix de la valeur de ce rapport va notamment dépendre de l'effet bras de levier souhaité. Plus la came est longue, plus le rapport est grand avec une longueur de bielle constante, et plus l'effet de levier est important. Ce qui entraine une augmentation du décalage du pédalage vers l'avant. La longueur de la manivelle standard est typiquement comprise entre 17,5 cm et 18 cm. Avec une manivelle à 17,5 cm et un rapport de 0,25, la manivelle pourrait avoir 21,88 cm en longueur maximale et 13,13 cm en longueur minimale. Avec un rapport de 0,33 la manivelle pourrait avoir 23,28 cm en longueur maximale et 11,72 cm en longueur minimale. La longueur de la came peut être comprise de préférence entre 3,5 et 7 centimètres ; étant entendu qu'elle peut être plus longue, par exemple la longueur de came peut être comprise entre 3 et 12 cm.
Les Figures 6 et 7 montrent des exemples de fixation de la manivelle sur un axe 60 d'un moyeu qui peut être maintenu sur un cadre à l'aide par exemple d'une cuvette ajustable comme connu par exemple dans le domaine des bicyclettes. Une interface 64 vient s'insérer sur l'axe du moyeu qui peut avoir par exemple une forme carrée ou hexagonale. L'interface 64 est maintenue sur le moyen à l'aide d'une vis 66 qui se fixe dans un trou du moyeu à cet effet. D'autres moyens peuvent être envisagés pour maintenir fixé l'interface 64 sur l'axe du moyeu, par exemple une clavette. L'extrémité de la première partie 12, qui ne comprend pas la troisième articulation, comprend des moyens adaptés pour s'insérer sur l'interface 64 et fixer 69 ce dernier à la première partie. La fixation peut être réalisée par exemple à l'aide d'une clavette ou d'une vis 69. La manivelle 10 est donc solidaire avec l'axe 60 du moyeu.
La Figure 7 se distingue de la Figure 6 en ce que l'interface 64 comprend des moyens 70a, 70b, 70c, 70d permettant de fixer un plateau. Le nombre de moyens peut varier selon le type de plateau devant être fixé, par exemple cinq moyens peuvent être nécessaires.
Les matériaux utilisés dans la fabrication de la manivelle peuvent être par exemple un alliage d'aluminium, du titane, du magnésium, de l'acier, ou des fibres de carbone ou de verre.

Claims

REVENDICATIONS
1. Manivelle (10) de pédalier comprenant :
- une première partie (12) comprenant une cavité ;
- une deuxième partie (14) s'insérant dans la cavité via une première ouverture de la première partie, la deuxième partie pouvant se déplacer par rapport à la première partie en suivant un mouvement de translation rectiligne ;
- des moyens (162-178) contrôlant le déplacement de la deuxième partie par rapport à la première partie pour provoquer une élongation maximale de la manivelle en phase d'appui du pédalage et une élongation minimale de la manivelle en phase de traction du pédalage ;
caractérisée en ce que la cavité de la première partie comprend une deuxième ouverture permettant à l'une des extrémités de la deuxième partie de sortir de la cavité.
2. Manivelle de pédalier selon la revendication 1, dans laquelle les moyens contrôlant l'élongation de la deuxième partie par rapport à la première partie comprennent un système bielle-came (164, 170) qui comprend :
- une came (170) reliée, à l'une de ses extrémités, à une bielle (164) par une première articulation (168, 176) et reliée, à l'autre de ses extrémités, à ladite deuxième partie (14) par une deuxième articulation (172, 178) ;
- la bielle (164) reliée, à l'une de ses extrémités, à la came (170) par la première articulation (168, 176) et reliée, à l'autre de ses extrémités, à ladite première partie (12) par une troisième articulation (162, 174).
3. Manivelle de pédalier selon la revendication 2, dans laquelle la deuxième articulation (172, 178) comprend un moyen d'attache qui est un goujon (172) solidaire à la came (170) et disposé à travers un trou traversant de ladite deuxième partie, une pédale (180) étant solidaire avec ledit goujon.
4. Manivelle de pédalier selon l'un des revendications 2 à 3, dans laquelle la longueur de la came est comprise entre 3,5 et 7 centimètres.
5. Manivelle de pédalier selon l'une des revendications 1 à 4, dans laquelle lesdites première et deuxième parties comprennent des moyens de coulissement de ladite deuxième partie dans la dite première partie.
6. Manivelle de pédalier selon la revendication 5, dans laquelle les moyens de coulissement comprennent au moins deux rainures (160) sur ladite première partie et deux rainures (90a, 90b, 90c) sur ladite deuxième partie, chaque rainure de ladite première partie étant disposée en face d'une rainure de ladite deuxième partie et les deux rainures en face l'une de l'autre formant un espace.
7. Manivelle de pédalier selon la revendication 6, dans laquelle les moyens de coulissement comprennent en outre des roulements à bille linéaires situés dans lesdits espaces formés.
8. Manivelle de pédalier selon la revendication 7, dans laquelle les moyens de roulement comprennent en outre des aiguilles situées dans lesdits au moins deux espaces.
9. Manivelle de pédalier selon l'une des revendications 1 à 8, dans laquelle lesdites première et deuxième parties ont une section rectangulaire.
10. Pédalier comprenant des manivelles de pédalier selon l'une des revendications 1
PCT/FR2017/051691 2016-06-27 2017-06-23 Manivelle de pédalier WO2018002496A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1655973 2016-06-27
FR1655973A FR3053018B1 (fr) 2016-06-27 2016-06-27 Manivelle de pedalier

Publications (1)

Publication Number Publication Date
WO2018002496A1 true WO2018002496A1 (fr) 2018-01-04

Family

ID=56920762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051691 WO2018002496A1 (fr) 2016-06-27 2017-06-23 Manivelle de pédalier

Country Status (2)

Country Link
FR (1) FR3053018B1 (fr)
WO (1) WO2018002496A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446754A (en) 1979-12-05 1984-05-08 Chattin Jesse R Pedal telescoping device
US4519271A (en) 1982-04-09 1985-05-28 Jesse Chattin Pedal telescoping device
US4882945A (en) 1989-04-17 1989-11-28 Jose Trevizo Pedal extension device
WO1998029295A1 (fr) * 1997-01-04 1998-07-09 Byung Nam Kang Dispositif d'entrainement a pedales variable pour bicyclette
US20030230157A1 (en) * 2002-06-18 2003-12-18 Kelly John Robert Multi speed bicycle transmission including eccentric cranking assembly
AT507144A1 (de) * 2008-08-05 2010-02-15 Gruber Robert Dipl Ing Tretkurbelantrieb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446754A (en) 1979-12-05 1984-05-08 Chattin Jesse R Pedal telescoping device
US4519271A (en) 1982-04-09 1985-05-28 Jesse Chattin Pedal telescoping device
US4882945A (en) 1989-04-17 1989-11-28 Jose Trevizo Pedal extension device
WO1998029295A1 (fr) * 1997-01-04 1998-07-09 Byung Nam Kang Dispositif d'entrainement a pedales variable pour bicyclette
US20030230157A1 (en) * 2002-06-18 2003-12-18 Kelly John Robert Multi speed bicycle transmission including eccentric cranking assembly
AT507144A1 (de) * 2008-08-05 2010-02-15 Gruber Robert Dipl Ing Tretkurbelantrieb

Also Published As

Publication number Publication date
FR3053018B1 (fr) 2019-08-23
FR3053018A1 (fr) 2017-12-29

Similar Documents

Publication Publication Date Title
EP1928725B1 (fr) Procédé et dispositif de pédalage
FR2827634A1 (fr) Perfectionnements apportes aux dispositifs de transmission mecanique pour moteur a cylindree variable
FR2893303A1 (fr) Pedalier de cycle
FR3003925B1 (fr) Unite motrice pour vehicule de type a selle
WO2007110513A1 (fr) Bicyclette equipe avec un systeme de pedalier-manivelle et propulse par le conducteur par ses pieds en mouvement alternatif vertical reciproque
WO2008009817A1 (fr) Cadre de velo integrant un dispositif de freinage
EP2326549A1 (fr) Pedalier compact
FR3053018B1 (fr) Manivelle de pedalier
FR2818608A1 (fr) Systemes pour transformer une patinette traditionnelle en draisienne et/ou en velo et/ou en motorise et patinette specifiquement etudiee pour recevoir ces systemes
EP3439946B1 (fr) Pédalier de cycle à plateau flottant auto-positionné
FR2584671A1 (fr) Dispositif a suppression de point mort sur un pedalier, notamment de bicyclette
FR2937004A1 (fr) Suspension arriere d'un vehicule a deux roues ou similaire
FR2682350A1 (fr) Pedalier semi-rigide pour cycles.
FR2843364A1 (fr) Pedalier pour cycle avec un bras de levier optimise
EP1349768B1 (fr) Bicyclette demontable a guidon et pedales de gabarit reduit
WO2009136088A2 (fr) Systeme de pedalier a leviers
FR2895366A1 (fr) Vehicule a propulsion humaine
FR2964360A1 (fr) Dispositif mecanique a bras de levier de longueur variable
FR3113396A1 (fr) Pédale pour véhicule à propulsion humaine tel qu’un cycle
FR2903376A1 (fr) Dispositif d'entrainement en rotation d'un organe moteur d'un vehicule
FR2831131A1 (fr) Dispositif de pedalage pour cycles
WO2020228985A1 (fr) Derailleur avant de velo evitant le saut de chaine
WO2020228983A1 (fr) Pedalier a plateau mobile
FR2576866A1 (fr) Pedalier de bicyclette ou de machine analogue
FR3087742A1 (fr) Pedalier et bicyclette equipee de ce pedalier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743068

Country of ref document: EP

Kind code of ref document: A1