WO2018001047A1 - 一种便携天线和机顶盒系统 - Google Patents

一种便携天线和机顶盒系统 Download PDF

Info

Publication number
WO2018001047A1
WO2018001047A1 PCT/CN2017/087177 CN2017087177W WO2018001047A1 WO 2018001047 A1 WO2018001047 A1 WO 2018001047A1 CN 2017087177 W CN2017087177 W CN 2017087177W WO 2018001047 A1 WO2018001047 A1 WO 2018001047A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial
panel
top box
antenna
set top
Prior art date
Application number
PCT/CN2017/087177
Other languages
English (en)
French (fr)
Inventor
胡佳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018001047A1 publication Critical patent/WO2018001047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/20Adaptations for transmission via a GHz frequency band, e.g. via satellite

Definitions

  • This application relates to, but is not limited to, the field of communications, and more particularly to a portable antenna and set top box system.
  • the DVB system can be divided into a front-end system, a transmission system, and a terminal system in the order of signal propagation.
  • the front-end system is generally located in the program production department (such as the TV station and other departments), and the terminal system is the DVB set-top box.
  • DVB set-top boxes are classified into DVB-C, DVB-S and DVB-T depending on the transmission system.
  • DVB-C uses cable television network as the transmission medium and coaxial cable
  • DVB-S uses satellite as the transmission medium
  • DVB-T uses the terrestrial broadcast channel.
  • DVB-S as the mainstream satellite transmission standard in the field of broadcast TV today, has been in use for more than ten years and is widely used worldwide.
  • the satellite television receiving system in the related art performs satellite signal acquisition by a dish antenna installed outdoors, on the roof, or at the window, and then passes through a low noise block (LNB, also called a low noise downconverter).
  • LNB low noise block
  • a C-band signal of up to several GHZ transmitted in space or even a high-frequency satellite carrier signal of a Ku-band of a dozen GHZ is converted into a carrier signal of an intermediate frequency of about 1 GHz, and simultaneously subjected to noise reduction and signal amplification processing, and then sent to the set-top box.
  • the set top box mediates and decodes the received satellite signals, and then plays the audio and video signals on the television.
  • the dish antenna installed outdoors on the roof or at the window often has a large weight and volume.
  • the dish antenna in the related art cannot satisfy the carrying out. Requirements.
  • Embodiments of the present invention provide a portable antenna and a set top box system, which solve the related technology
  • the line is bulky and not portable.
  • an embodiment of the present invention provides a portable antenna, including an antenna body, the antenna body includes a center panel and a plurality of epitaxial panels disposed around the center panel; in a signal receiving state, the plurality of The epitaxial panel is unfolded around the central panel to form a satellite signal receiving surface, and receives a satellite signal; in the stowed state, the plurality of epitaxial panels are housed together.
  • an embodiment of the present invention further provides a set top box system, including a set top box and the aforementioned portable antenna; the set top box receives a satellite signal through the portable antenna.
  • Embodiments of the present invention provide a portable antenna and a set top box system.
  • the portable antenna includes an antenna body.
  • the antenna body includes a center panel and a plurality of epitaxial panels disposed around the center panel. In the signal receiving state, the plurality of epitaxial panels are formed around the center panel.
  • the satellite signal receiving surface receives the satellite signal; in the storage state, the plurality of epitaxial panels are housed together.
  • the antenna body in the related art is divided into a central panel and a plurality of epitaxial panels. When the antenna is housed, the epitaxial panels are housed together, the volume of the antenna body is reduced, and the antenna is convenient to carry.
  • FIG. 1 is a front elevational view showing a deployed state of a portable antenna according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a storage state of a portable antenna according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing a deployed state of a portable antenna according to a first embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing a storage state of a portable antenna according to a first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a set top box system according to a fourth embodiment of the present invention.
  • the idea of the embodiment of the present invention may include splitting the antenna body of an integral satellite antenna In the signal receiving state, a plurality of epitaxial panels are deployed around the center panel to form a satellite signal receiving surface, and a plurality of epitaxial panels are housed together during storage, thereby reducing the overall antenna size during storage.
  • the volume makes the antenna easy to carry.
  • This embodiment provides a portable antenna.
  • the method includes:
  • the antenna body 10 includes a center panel 101 and a plurality of epitaxial panels 102 disposed around the center panel 101.
  • the plurality of epitaxial panels 102 are deployed around the center panel 101 to form a satellite signal receiving surface to receive satellite signals.
  • the plurality of epitaxial panels 102 are housed together.
  • the antenna in the signal receiving state can be substantially captured by the satellite signal receiving surface to capture the weak satellite signal transmitted by the satellite. Since the satellite signal is very weak, the satellite signal receiving surface can converge the weak satellite signals by means of convergence. Therefore, the shape of the satellite signal receiving surface is generally a paraboloid of rotation, because the parabola has the property of concentrating the signal reflection to the focus. Most antennas are usually parabolic in shape, and some multifocal antennas are composed of a combination of spherical and parabolic surfaces. The satellite signal is reflected by a parabolic antenna and concentrated at its focus.
  • the antenna can include a feedforward antenna and a biasing antenna.
  • the feedforward antenna is also called the parabolic antenna, and its focus is at the center of the antenna. Regardless of the depth, the satellite signal receiving surface is parabolic.
  • the central focus antenna is characterized by a disk full circle and the high frequency head 107 is placed at the central focus of the antenna.
  • the biasing antenna is relative to the feedforward antenna, and the mounting position of the high frequency head 107 of the offset feeding antenna is not on a straight line perpendicular to the center plane of the antenna and passing through the center of the antenna, that is, the normal line at the center of the antenna. Therefore, there is no so-called influence of the feed shadow, and the gain of the offset feed antenna can be larger than that of the positive feed antenna under the premise of the same antenna area, processing precision, and receiving frequency. But whether it is a feedforward antenna or a biasing antenna, they are all cross-sections of a paraboloid of revolution, but the positions of the intercepts are different.
  • the feedforward antenna and the offset feed antenna have a high-frequency head 107 mounted at a focus of the paraboloid of rotation, which is determined by the characteristics of the paraboloid of rotation; when the axis of rotation of the paraboloid of revolution points to the satellite, the waves are reflected by the parabolic reflection At the focus, and the strokes are equal.
  • the satellite signal receiving surface in this embodiment may be through the center plane in the antenna body 10.
  • the plate 101 is formed with a plurality of epitaxial panels 102 surrounding the center panel 101.
  • the epitaxial panel 102 is unfolded around the center panel 101 to form a satellite signal receiving surface, and the connection relationship between the epitaxial panel 102 and the center panel 101 is exemplified below.
  • the portable antenna in this embodiment may further include a support member 103 and a telescopic connector 104 corresponding to the epitaxial panel 102.
  • the center panel 101 is disposed at the upper end of the support member 103, and each telescopic connector 104 is connected to the support member 103 and the epitaxial panel 102 corresponding to the telescopic connector 104, respectively.
  • the function of the support member 103 may include supporting the antenna body 10 such that the antenna body 10 can be placed at a desired angle; alternatively, the support member 103 can be configured to be telescopic or an assembled structure, and can be combined with a tripod Used together to make the antenna installation more stable.
  • the epitaxial panel 102 can be coupled to the support member 103 by a telescoping connector 104.
  • the telescoping connector 104 can be used to fix the epitaxial panel 102 relatively. Secondly, by adjusting the length of the telescopic connector 104, the distance between the connected epitaxial panel 102 and the center panel 101 can be adjusted.
  • the epitaxial panel 102 can be deployed around the center panel 101 to form a satellite signal receiving surface, that is, the length of the telescopic connector 104 is appropriately adjusted, so that the epitaxial panel 102 is deployed from the inside to the outside around the center panel 101; All of the epitaxial panels 102 need to be unfolded, and can be partially or fully deployed according to requirements, that is, the size of the satellite signal receiving surface can be customized according to requirements.
  • the retractable connecting member 104 may be formed by a tubular structure with a nested knot, similar to a fishing rod or an umbrella umbrella, and the material thereof is not limited; or a stretchable material may be used to make a retractable connection.
  • the piece 104, or some malleable structure, such as a metal hose, is both rigid and malleable and is well suited to the needs of the telescoping connector 104.
  • the portable antenna in this embodiment may further include a support member 103.
  • the center panel 101 is disposed at an upper end of the support member 103.
  • the extension panel 102 includes a plurality of sub-blocks 1021 that are sequentially nested and connected. The set of connections is an active connection.
  • the support member 103 is configured to support the antenna body 10 such that the antenna body 10 can be placed at a desired angle; alternatively, the support member 103 can be configured to be telescopic or can be assembled. Used in conjunction with a tripod to make the antenna installation more stable.
  • the epitaxial panel 102 can include a plurality of sub-slabs 1021 that are sequentially nested.
  • the epitaxial panel 102 can be composed of a plurality of sub-tiles 1021 that are sequentially nested.
  • a nested connection is an active connection, and adjacent sub-blocks 1021 can be nested by means of a chute or a buckle; the nested connection
  • the plurality of sub-blocks 1021 can change the degree of overlap between the adjacent sub-blocks 1021 by adjusting the nested connection, thereby changing the distance between the plurality of sub-plates 1021 and the center panel 101, thereby realizing the state of receiving in the satellite.
  • the epitaxial panels 102 are unwound around the center panel 101 to form a satellite signal receiving surface.
  • the sub-plate 1021 and the epitaxial panel 102 in this embodiment may have the same meaning, that is, the sub-plate 1021 is the epitaxial panel 102, or the epitaxial panel 102 may be composed of the sub-plate 1021.
  • the epitaxial panel 102 closest to the center panel 101 may be directly connected to the support member 103, or may be connected to the support member 103 through the telescopic connector 104, or may be fixedly or movably connected to the center panel 101.
  • the above connection manner is in this embodiment. In the examples, it can be achieved.
  • the area in which the epitaxial panel 102 is deployed around the center panel 101 to form a satellite signal receiving surface can be larger; in addition, the more complete the satellite signal receiving surface, the receiving effect of the satellite signal It will be better. Therefore, in the signal receiving state, the plurality of epitaxial panels 102 and the center panel 101 can constitute a closed paraboloid.
  • the outer epitaxial panel 102 may be sized larger than the inner epitaxial panel 102; when the epitaxial panel 102 is deployed around the central panel 101, the same size epitaxial panel 102 can form a paraboloid of each other, and a plurality of such paraboloids can be combined to form a complete paraboloid.
  • the contour of the paraboloid composed also has a difference between a circle and an ellipse; it can be noted that although the complete paraboloid may have a circular or elliptical contour, It does not need to be a perfect circle or a standard ellipse.
  • the contour shape of the paraboloid does not have a great influence on the receiving satellite signal. It is only necessary to form a satellite signal receiving surface which is a paraboloid.
  • the epitaxial panel 102 is generally provided in a multi-layer structure, and a paraboloid can be formed by the epitaxial panel 102 of the same layer, or a paraboloid can be formed by the adjacent two, three or multi-layer epitaxial panels 102.
  • a paraboloid is not strictly a face, as long as it is roughly a paraboloid.
  • the outer epitaxial panel 102 may be made of a material of a flexible material, or all outer panels may be flexible. Material, where the flexible material itself can include metal and non-metal, and since the satellite signal needs to be metal, then a flexible non-metallic material can be used to cover the metal layer on the non-metal material to form the epitaxial panel 102; ,also may The epitaxial panel 102 is fabricated directly from metal.
  • the center panel 101, the epitaxial panel 102, the support member 103, the connecting member, the sub-plate 1021, and the like in this embodiment may each be detachably connected, that is, the support member 103 and the center panel 101 may be
  • the connection between the extension panel and the extension panel 102 can also be disassembled by the connection between the connecting member and the support member 103, and a plurality of sub-plates 1021 which are sequentially nested and connected can be disassembled and assembled; Installed to further increase the portability of the antenna.
  • the portable antenna in this embodiment may further include a high frequency head 107 disposed above the center panel 101 and configured to receive and process satellite signals received by the satellite signal receiving surface.
  • the satellite signal receiving surface reflects the satellite signal transmitted by the satellite to the focus, and the high frequency head 107 is disposed at the focus, so that the satellite signal receiving surface can increase the intensity of the satellite signal; the high frequency head 107 can be disposed on the center panel 101.
  • the setting position of the tuner 107 can be set at the focus of the paraboloid formed by the satellite signal receiving surface, and the focus can be different according to the shape and size of the satellite signal receiving surface, and the setting of the tuner 107 is different.
  • the position of the high-frequency head 107 can also be different.
  • the high-frequency head 107 can be placed at the focus position of the paraboloid by adding a bracket, or the high-frequency head 107 can be directly disposed on the center panel 101. Or, by means of disassembly and assembly, the bracket is placed at the edge of the satellite signal receiving surface to support the tuner 107.
  • the tuner 107 in this embodiment may include a C-band tuner 107, or a Ku-band tuner 107, and an antenna may also be provided with two tuner 107 to achieve satellite signal reception in different bands. .
  • the function of the high frequency head 107 may include performing frequency reduction, noise reduction, amplification, etc. on the satellite signal, and then transmitting the processed satellite signal to the set top box, and the set top box mediates, encodes and decodes the satellite signal. After processing, you can access the corresponding player, such as an audio player or video player, to play the corresponding audio and video.
  • the working process of the high frequency head 107 includes: the high frequency satellite signal is collected by the metal of the satellite signal receiving surface, and the received satellite signal is processed by the high frequency head 107 located on the antenna, and the collected satellite signal can be collected.
  • the weak satellite signal is subjected to low-noise high-frequency amplification to meet the signal usage requirements, and then low noise down-conversion and low-noise intermediate frequency amplification to meet signal transmission requirements.
  • the operation of the antenna body 10 of the portable antenna in this embodiment may be that the power supply is not required, and the operation of the high frequency head 107 may be a power supply. Therefore, the battery 110 may also be included, and is configured to: Power is supplied to the tuner 107.
  • the location of the battery 110 herein may be disposed on the antenna body 10, or may be disposed to be separated from the antenna body 10, and the battery 110 may supply power to the tuner 107 by wire or wirelessly.
  • the solar receiving unit 108 may be further disposed on the surface of at least a portion of the epitaxial panel 102, and configured to convert solar energy. It is electric energy and is transmitted to the battery 110. Solar energy is a very common clean energy. In the daytime, the utilization rate is very high, and the restrictions on the use conditions are not too large. Generally, the weather will be selected to ensure the normal operation of the solar energy receiving unit 108, that is, the solar panel.
  • the battery 110 can be renewed, i.e., power is supplied to the high frequency head 107.
  • the setting position of the solar energy receiving unit 108 may be disposed on the surface of any of the epitaxial panels 102; since the area of the solar panel is larger, the utilization of the solar energy is higher, and therefore, the solar receiving unit 108 may be disposed on the outermost epitaxial panel 102.
  • the surface as far as possible, does not affect the antenna body 10 receiving satellite signals, thereby improving the collection efficiency of solar energy.
  • Portable antennas are often used in conjunction with set-top boxes.
  • the portable antennas receive satellite signals, which are sent to the set-top box after processing.
  • the set-top box then mediates, encodes and decodes the satellite signals, and plays the audio and video signals on the corresponding playback device.
  • the use of the set top box also requires energy.
  • the portable antenna may further include a power supply unit 105 configured to: transmit power of the battery 110 to the set top box by wireless transmission, thereby powering the set top box.
  • Wireless power supply technology can be divided into the following types in principle:
  • Electromagnetic coupling a simple understanding, is to separate the two windings of the transformer, which is a wireless power supply in a certain sense. Electromagnetic coupling has its shortcomings. Without a magnetic core with high magnetic permeability as a medium, the magnetic lines of force will be severely dissipated into the air, resulting in a drop in transmission efficiency, especially when the two coils are far apart, so it is not suitable for large Power, long-distance wireless power.
  • Electromagnetic resonance the principle is similar to the principle of acoustic resonance, the two media have the same resonant frequency, which can be used to transfer energy.
  • Photoelectric coupling converts electrical energy into light energy, which is transmitted to the destination by light and converted into electrical energy.
  • This wireless power supply technology is relatively intuitive, and the photoelectric conversion technology is relatively widely used.
  • the light transmission path has a defect that there is no obstacle in the transmission path. So this technology also has its limitations.
  • wireless power supply can be performed by the wireless power supply method described above.
  • the portable antenna in this embodiment may further include a signal sending unit 106 configured to: transmit the processed satellite signal to the set top box by wireless transmission.
  • the portable antenna After transmitting satellite signals through wireless transmission power and wireless transmission, the portable antenna has been wireless, and no cable can further improve the portability, and it is more convenient for storage and management.
  • the embodiment provides a portable antenna, including an antenna body.
  • the antenna body includes a center panel and a plurality of epitaxial panels disposed around the center panel.
  • the plurality of epitaxial panels are deployed around the center panel to form a satellite signal receiving surface, and receive The satellite signal; in the storage state, a plurality of epitaxial panels are housed together, thereby reducing the volume of the antenna body during storage and making the antenna easy to carry.
  • This embodiment provides a portable antenna.
  • the method includes:
  • the antenna body 10 includes a center panel 101 and a plurality of epitaxial panels 102 disposed around the center panel 101.
  • the plurality of epitaxial panels 102 are deployed around the center panel 101 to form a satellite signal receiving surface to receive satellite signals.
  • the plurality of epitaxial panels 102 are housed together.
  • the portable antenna may further include a support member 103 and a telescopic connector 104 corresponding to the extension panel 102.
  • the center panel 101 may be disposed at an upper end of the support member 103, and each of the telescopic connectors 104 and the support member 103 and The epitaxial panel 102 corresponding to the retractable connector 104 is connected.
  • the function of the support member 103 can include supporting the antenna body 10 such that the antenna body 10 can be placed at a desired angle.
  • the epitaxial panel 102 can be coupled to the support member 103 by a telescoping connector 104.
  • the telescoping connector 104 can be used to fix the epitaxial panel 102 relatively. Secondly, by adjusting the length of the telescopic connector 104, the distance between the connected epitaxial panel 102 and the center panel 101 can be adjusted.
  • the epitaxial panel 102 In the signal receiving state, the epitaxial panel 102 needs to be deployed around the center panel 101 to form a satellite signal receiving surface, so that the length of the retractable connecting member 104 can be appropriately adjusted, so that the epitaxial panel 102 is
  • the inner panel 101 is unfolded from the inside to the outside; not all of the epitaxial panels 102 need to be unfolded each time, and may be partially or fully deployed according to requirements, that is, the size of the satellite signal receiving surface can be customized according to requirements.
  • the retractable connecting member 104 may be formed by a tubular structure with a nested knot, similar to a fishing rod or an umbrella umbrella, and the material thereof is not limited; or a stretchable material may be used to make a retractable connection.
  • the piece 104, or some malleable structure, such as a metal hose, is both rigid and malleable and is well suited to the needs of the telescoping connector 104.
  • the central panel 101 and the epitaxial panel 102 in this embodiment may each be a parabolic concave curved surface, wherein the central panel 101 may be a circular concave curved surface, and the epitaxial panel 102 may be a fan-shaped concave curved surface;
  • each paraboloid can be composed of a plurality of concave curved surface epitaxial panels 102; the epitaxial panel 102 itself can be covered with a metal reflective film, and some of the epitaxial panels 102 can be covered with solar energy.
  • the remaining epitaxial panels 102 can be stacked under the center panel 101, reducing the volume of the antenna body 10.
  • the plurality of telescopic connectors 104 are adjusted to form a satellite signal receiving surface to meet the antenna body 10's need for C-band and Ku-band satellite signal collection.
  • a tuner 107 may be disposed above the center panel 101 and may include a C-band tuner 107 and/or a Ku-band tuner 107 to enable collection and processing of satellite signals in multiple bands.
  • the support member 103 in this embodiment may be configured as a telescopic or assemblable structure, and may be used in combination with a tripod, thereby greatly reducing the volume of the storage and making the antenna installation more stable.
  • the battery 110 can be disposed in the portable antenna to supply power to the high frequency head 107. Moreover, the battery 110 can be continuously powered by the covered solar energy receiving unit 108 on the epitaxial panel 102, that is, the high frequency head 107. powered by.
  • the power supply unit 105 may also be disposed in the portable antenna, and configured to: transmit power of the battery 110 to the set top box by wireless transmission.
  • the signal sending unit 106 may be further disposed in the portable antenna, and configured to: transmit the processed satellite signal to the set top box by wireless transmission.
  • the power supply unit 105 and the signal transmitting unit described above may be disposed on the support member 103 in the portable antenna, and optionally disposed on the bottom end of the support member 103 without affecting the expansion and contraction of the support member 103.
  • the embodiment provides a portable antenna, including an antenna body.
  • the antenna body includes a center panel and a plurality of epitaxial panels disposed around the center panel.
  • the plurality of epitaxial panels are deployed around the center panel to form a satellite signal receiving surface, and receive The satellite signal; in the storage state, a plurality of epitaxial panels are housed together, thereby reducing the volume of the antenna body during storage and making the antenna easy to carry.
  • This embodiment provides a portable antenna. Referring to FIG. 1 and FIG. 4, the method includes:
  • the antenna body 10 includes a center panel 101 and a plurality of epitaxial panels 102 disposed around the center panel 101.
  • the plurality of epitaxial panels 102 are deployed around the center panel 101 to form a satellite signal receiving surface to receive satellite signals.
  • the plurality of epitaxial panels 102 are housed together.
  • the portable antenna in this embodiment may further include a support member.
  • the center panel 101 is disposed at an upper end of the support member, and the extension panel 102 includes a plurality of sub-slabs 1021 that are sequentially nested and connected, and the nested connection is an active connection.
  • the support member is configured to support the antenna body 10 so that the antenna body 10 can be placed at a desired angle; alternatively, the support member can be configured to be telescopic or can be assembled, and can be combined with a tripod. Used together to make the antenna installation more stable.
  • the epitaxial panel 102 can include a plurality of sub-slabs 1021 that are sequentially nested.
  • the epitaxial panel 102 can be composed of a plurality of sub-tiles 1021 that are sequentially nested.
  • the nested connection is an active connection.
  • the adjacent sub-blocks 1021 can be nested by means of a chute or a buckle.
  • the plurality of sub-blocks 1021 of the nested connection can be changed by adjusting the nested connection.
  • the sub-plate 1021 and the epitaxial panel 102 in this embodiment may have the same meaning, that is, the sub-plate 1021 is the epitaxial panel 102, or the epitaxial panel 102 may be composed of the sub-plate 1021.
  • the epitaxial panel 102 closest to the center panel 101 may be directly connected to the support member, or may be connected to the support member through the telescopic connector 104, or may be fixedly or movably connected to the center panel 101.
  • the above connection manner is in this embodiment. Can be achieved.
  • the central panel 101 and the epitaxial panel 102 and the sub-plate 1021 constituting the epitaxial panel 102 in this embodiment may each be a parabolic concave curved surface, wherein the central panel 101 may be a circular concave curved surface, the epitaxial panel 102 and/or
  • the sub-plate 1021 may be a fan-shaped concave curved surface; in the signal receiving state, the formed satellite signal receiving surface, each paraboloid may be composed of a plurality of concave curved sub-blocks 1021; the sub-plate 1021 itself may Covered with a metal reflective film, a portion of the sub-plate 1021 may be covered with a solar receiving unit 108.
  • the remaining sub-slabs 1021 constituting the epitaxial panel 102 may be stacked under the center panel 101 to reduce the volume of the antenna body 10.
  • the degree of overlap between the plurality of sub-plates 1021 can be adjusted to form a satellite signal receiving surface to meet the antenna body 10's need for C-band and Ku-band satellite signal collection.
  • a tuner can be placed above the center panel 101 and can include a C-band tuner and/or a Ku-band tuner that enables it to collect and process satellite signals in multiple bands.
  • the support member in this embodiment may be configured to be telescopic or assembled, and may be used in combination with a tripod, thereby greatly reducing the volume of the storage and making the installation of the antenna more stable.
  • the battery 110 may be provided in the portable antenna to supply power to the high frequency head; and the battery 110 may be continuously powered by the covered solar receiving unit 108 on the epitaxial panel 102, that is, the power supply is supplied to the high frequency head.
  • the power supply unit 105 may also be disposed in the portable antenna, and configured to: transmit power of the battery 110 to the set top box by wireless transmission.
  • the signal sending unit 106 may be further disposed in the portable antenna, and configured to: transmit the processed satellite signal to the set top box by wireless transmission.
  • the power supply unit 105 and the signal transmitting unit 106 described above may be disposed on the support member in the portable antenna, and optionally disposed on the bottom end of the support member, without affecting the expansion and contraction of the support member.
  • the embodiment provides a portable antenna, including an antenna body.
  • the antenna body includes a center panel and a plurality of epitaxial panels disposed around the center panel.
  • the plurality of epitaxial panels are deployed around the center panel to form a satellite signal receiving surface, and receive The satellite signal; in the storage state, a plurality of epitaxial panels are housed together, thereby reducing the volume of the antenna body during storage and making the antenna easy to carry.
  • This embodiment provides a set top box system. Referring to FIG. 5, the method includes:
  • Set top box 20 and portable antenna 1 set top box 20 receives satellite signals through portable antenna 1.
  • the portable antenna 1 is similar to that in the foregoing embodiment, and details are not described herein again.
  • the high frequency head in the portable antenna 1 can convert the received satellite signal into an intermediate frequency signal, and then send it to the front end circuit in the set top box 20 for demodulation and error correction to obtain a digital signal, and the digital signal is decoded and sent to the A.
  • the decoder of the /V (AUDIO/VIDEO, audio and video) signal is decompressed, then subjected to video, audio encoding and analog-to-digital conversion to restore the analog audio and video signals to a playback device such as a display, a loudspeaker, and the like.
  • the portable antenna 1 may include the power supply unit 105, and the set top box 20 may include the power receiving unit 201, and the power receiving unit 201 may transmit wirelessly.
  • the power transmitted by the power supply unit 105 is received to supply power to the set top box 20.
  • the electric energy of the portable antenna 1 it can be provided by the battery 110.
  • the solar receiving unit 108 can be disposed on the epitaxial panel 102 in the antenna body 10 above the portable antenna 1, and the solar energy is converted into electric energy for the battery 110. Electricity, in turn, can transfer power to the set top box 20 to ensure proper operation of the set top box 20.
  • the portable antenna 1 may further include a signal transmitting unit 106
  • the set top box 20 may include a signal receiving unit 202 that can receive the satellite signal transmitted by the signal transmitting unit 106 by wireless transmission.
  • the set top box 20 receives the satellite signal received and processed by the portable antenna 1 and can be wirelessly transmitted through a wired transmission or a wireless transmission.
  • the wireless system of the set top box 20 can be wirelessly implemented, and no cable can further improve the portability. It is also more convenient to store and manage.
  • the present embodiment provides a set top box system, including a portable antenna and a set top box, wherein a center panel of the antenna body in the portable antenna and an epitaxial panel disposed around the center panel are in a signal receiving state, and a plurality of epitaxial panels are deployed around the center panel to form a satellite.
  • the signal receiving surface receives the satellite signal; in the storage state, the plurality of epitaxial panels are housed together, thereby reducing the volume of the antenna body during storage and making the antenna easy to carry.
  • Embodiments of the present invention provide a portable antenna and a set top box system.
  • the portable antenna includes an antenna body.
  • the antenna body includes a center panel and a plurality of epitaxial panels disposed around the center panel. In the signal receiving state, the plurality of epitaxial panels are formed around the center panel.
  • the satellite signal receiving surface receives the satellite signal; in the storage state, the plurality of epitaxial panels are housed together.
  • the antenna body in the related art is divided into a central panel and a plurality of epitaxial panels. When the antenna is housed, the epitaxial panels are housed together, the volume of the antenna body is reduced, and the antenna is convenient to carry.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

一种便携天线包括天线本体,天线本体包括中心面板和围绕中心面板设置的多个外延面板;在信号接收状态,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起。

Description

一种便携天线和机顶盒系统 技术领域
本申请涉及但不限于通信领域,尤其是一种便携天线和机顶盒系统。
背景技术
随着通信领域的发展,大家对机顶盒的要求也越来越高,DVB(Digital Video Broadcasting,数字视频广播)机顶盒在这一需求下诞生了。DVB系统按照信号传播的顺序可以分成前端系统,传输系统和终端系统。其中前端系统一般位于节目生产部门(例如电视台等部门),而终端系统即为DVB机顶盒。根据传输系统的不同,DVB机顶盒分为DVB-C、DVB-S和DVB-T。其中,DVB-C以有线电视网为传输介质、采用的是同轴电缆;DVB-S以卫星为传输介质;DVB-T用于地面广播信道。其中,DVB-S作为当今广播电视领域的主流卫星传输标准,问世已逾十年,在世界范围内得到广泛应用。
相关技术中的卫星电视接收系统,由安装在户外、屋顶、或窗边的碟形天线来完成卫星信号的采集、然后通过高频头(Low Noise Block,LNB,也叫做低噪声下变频器)将太空中传送来的高达几GHZ的C波段信号甚至十几GHZ的Ku波段的高频率卫星载波信号变成1GHZ左右的中频的载波信号,同时进行降噪、信号放大处理后,输送给机顶盒,机顶盒将接收来的卫星信号进行调解与解码,然后将音视频信号在电视机上播放。
然而,安装在户外、屋顶或窗边的碟形天线,往往具有很大的重量和体积,在用户外出时,如果想在户外通过机顶盒收看节目,相关技术中的碟形天线根本无法满足外出携带的要求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种便携天线和机顶盒系统,解决了相关技术中天 线体积大,不便携带的问题。
为了解决上述技术问题,本发明实施例提供了一种便携天线,包括天线本体,所述天线本体包括中心面板和围绕所述中心面板设置的多个外延面板;在信号接收状态,所述多个外延面板围绕所述中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,所述多个外延面板收纳在一起。
为了解决上述技术问题,本发明实施例还提供了一种机顶盒系统,包括机顶盒和前述的便携天线;所述机顶盒通过所述便携天线接收卫星信号。
有益效果:
本发明实施例提供了一种便携天线和机顶盒系统,便携天线包括天线本体,天线本体包括中心面板和围绕中心面板设置的多个外延面板;在信号接收状态,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起。通过本发明实施例的实施,将相关技术中的天线本体拆分为中心面板和多个外延面板,在收纳时,将外延面板收纳在一起,减小了天线本体的体积,使天线便于携带。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明第一实施例提供的一种便携天线的展开状态正视图;
图2为本发明第一实施例提供的一种便携天线的收纳状态剖视图;
图3为本发明第一实施例提供的一种便携天线的展开状态剖视图;
图4为本发明第一实施例提供的一种便携天线的收纳状态剖视图;
图5为本发明第四实施例提供了一种机顶盒系统的组成示意图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
本发明实施例的构思点可包括,将一个整体的卫星天线的天线本体拆分 为中心面板和外延面板,在信号接收状态时,多个外延面板围绕中心面板展开形成卫星信号接收面,收纳状态时,多个外延面板收纳在一起,从而实现了在收纳时减少了天线整体的体积,使天线便于携带。
第一实施例
本实施例提供了一种便携天线,请参考图1,包括:
天线本体10,天线本体10包括中心面板101和围绕中心面板101设置的多个外延面板102;在信号接收状态,多个外延面板102围绕中心面板101展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板102收纳在一起。
在信号接收状态中的天线,其大致可由卫星信号接收面捕捉卫星传递过来的微弱的卫星信号。由于卫星信号很微弱,因此,卫星信号接收面可通过汇聚的方式将微弱的卫星信号汇聚起来,因此,卫星信号接收面的形状一般是旋转抛物面,因为抛物线有将信号反射汇聚到焦点的性质。大多数天线通常是抛物面形状的,也有一些多焦点天线是由球面和抛物面组合而成,卫星信号经由抛物面天线反射后集中到它的焦点处。
同样是抛物面,天线可包括正馈天线和偏馈天线。正馈天线又称抛物线天线,其焦点在天线的中心,不论深浅,其卫星信号接收面弧度皆呈抛物线。中心焦点天线特征为盘面正圆,高频头107设置于天线的中央焦点。
偏馈天线是相对于正馈天线而言,是指偏馈天线的高频头107的安装位置不在与天线中心切面垂直且过天线中心的直线上,即天线中心的法线上。因此,就没有所谓的馈源阴影的影响,在天线面积、加工精度、接收频率相同的前提下,偏馈天线的增益可大于正馈天线。但无论是正馈天线,还是偏馈天线,它们都是旋转抛物面的截面,只是截取的位置不同而已。正馈天线和偏馈天线,其高频头107的安装位置一般在旋转抛物面的焦点上,这是由旋转抛物面的特性决定的;当旋转抛物面的旋转轴指向卫星时,电波经抛物面反射后汇聚于焦点,且行程相等。
本实施例中的卫星信号接收面,则可以是通过天线本体10中的中心面 板101和围绕中心面板101的多个外延面板102形成。在信号接收状态,外延面板102围绕中心面板101展开,形成卫星信号接收面,下面对外延面板102和中心面板101的连接关系做出举例说明。
本实施例中的便携天线还可包括支撑件103和与外延面板102对应的可伸缩连接件104,请参考图2和图3,中心面板101设置在支撑件103上端,每个可伸缩连接件104分别与支撑件103和与该可伸缩连接件104对应的外延面板102连接。支撑件103的作用可包括对天线本体10进行支撑,使天线本体10可以按照所需的角度进行放置;可选地,支撑件103可以设置为可伸缩的,或者可组装的结构,可以与三脚架配合使用,使天线的安装更加稳固。
外延面板102可通过可伸缩连接件104与支撑件103相连。可伸缩连接件104,其一可以将外延面板102相对固定起来,其二,通过调节可伸缩连接件104的长度,就可以调节相连的外延面板102与中心面板101之间的距离。在信号接收状态下,外延面板102可以围绕中心面板101展开,形成卫星信号接收面,即适当调节可伸缩连接件104的长度,使外延面板102由内到外地围绕中心面板101展开;并不是每次都需要将所有的外延面板102均展开,可以根据需求部分展开或者是完全展开,即卫星信号接收面的大小可以根据需求自定。可伸缩连接件104,可以是通过节节嵌套的管状结构形成,类似于鱼竿或者雨伞的伞杆,而对其材质没有限定;也可以是通过一些具有延展性的材质来制作可伸缩连接件104,或者是一些具有延展性的结构,如金属软管,既有硬度又有延展性,可以很好的胜任可伸缩连接件104的需求。
可选地,请参考图4,本实施例中的便携天线还可以包括支撑件103,中心面板101设置在支撑件103的上端,外延面板102包括多个依次嵌套连接的子板块1021,嵌套连接为活动连接。类似地,支撑件103设置为:对天线本体10进行支撑,使天线本体10可以按照所需的角度进行放置;可选地,支撑件103可以设置为可伸缩的,或者可组装的结构,可以与三脚架配合使用,使天线的安装更加稳固。
外延面板102可包括多个依次嵌套连接的子板块1021,例如外延面板102可由多个依次嵌套连接的子板块1021组成。嵌套连接是一种活动连接,相邻的子板块1021之间可通过滑槽或者卡扣等方式进行嵌套连接;嵌套连接 的多个子板块1021,可以通过调节嵌套连接,改变相邻子板块1021之间的交叠的程度,进而改变多个子板块1021与中心面板101之间的距离,从而实现在卫星接收状态,多个外延面板102围绕中心面板101展开,形成卫星信号接收面。本实施例中的子板块1021与外延面板102含义可以是一致的,即子板块1021就是外延面板102,也可以是外延面板102由子板块1021组成。最接近中心面板101的外延面板102,可以直接与支撑件103相连,也可以通过可伸缩连接件104与支撑件103相连,还可以与中心面板101固定或者活动连接,上述的连接方式在本实施例中均可以实现。
为了达到更好的卫星信号的接收效果,在信号接收状态,外延面板102围绕中心面板101展开形成卫星信号接收面的面积可以越大;此外,卫星信号接收面越完整,卫星信号的接收的效果也会越好。因此,在信号接收状态,多个外延面板102和中心面板101可组成封闭的抛物面。为了使多个外延面板102和中心面板101能够组成封闭的抛物面,外侧的外延面板102的尺寸可以大于内侧的外延面板102的尺寸;在外延面板102围绕中心面板101展开时,相同尺寸的外延面板102可互相组成一圈抛物面,而多个这样的抛物面相叠加,则可以组成完整的抛物面。由于天线有正馈天线和偏馈天线的区别,组成的抛物面的轮廓也会有圆形和椭圆形的区别;可以注意的是,虽然完整的抛物面其轮廓可以是圆形或者椭圆形,也并不需要必须是正圆形或者标准的椭圆,抛物面的轮廓形状对接收卫星信号的影响并不会很大,只需要形成的卫星信号接收面是抛物面即可。
外延面板102一般都设置为多层的结构,可以通过同一层的外延面板102形成一圈抛物面,也可以通过相邻的两层、三层或者多层外延面板102共同形成一圈抛物面,形成的抛物面并不会严格地是一个面,只要其大致上是一个抛物面即可。
由于外延面板102中,越靠外侧的外延面板102的尺寸越大,这可能导致收纳的时候出现问题,那么,可以用柔性材质的材料制作外侧的外延面板102,或者所有外侧面板均可采用柔性材质,这里的柔性材质本身可以包括金属和非金属,而由于接受卫星信号需要是金属,那么,可以用柔性的非金属材料,在该非金属材料上覆盖金属层,从而形成外延面板102;当然,也可 以直接通过金属制作外延面板102。
本实施例中的中心面板101、外延面板102、支撑件103、连接件、子板块1021等等,各自之间的连接都可以是可拆装的,即可以将支撑件103和中心面板101之间的连接拆装,也可以将外延面板102通过连接件与支撑件103之间的连接拆装,还可以将多个依次嵌套连接的子板块1021拆装;拆卸后的多个部件可以分装,进一步地提高天线的便携度。
可选地,本实施例中的便携天线还可以包括高频头107,高频头107设置于中心面板101上方,设置为:接收卫星信号接收面接收的卫星信号并加以处理。卫星信号接收面将卫星发送的卫星信号反射给焦点,而高频头107就设置于焦点上,即可通过卫星信号接收面增大卫星信号的强度;高频头107可以设置在中心面板101上,可以注意的是,高频头107的设置位置可以设置在卫星信号接收面形成的抛物面的焦点上,根据卫星信号接收面的形状、大小的不同,焦点也可以不同,高频头107的设置位置也可以不同,相应地,高频头107的设置方式也可以有区别,即可以通过增设支架使高频头107处于抛物面的焦点位置,也可以将高频头107直接设置在中心面板101上,或者通过拆装的方式,将支架设置在卫星信号接收面的边缘,支撑起高频头107。本实施例中的高频头107可以包括C波段的高频头107,或者Ku波段的高频头107,一个天线也可以两个高频头107均设置,实现不同的波段的卫星信号的接收。
在本实施例中,高频头107的作用可以包括对卫星信号进行降频、降噪、放大等等处理,然后将处理后的卫星信号传输给机顶盒,机顶盒对该卫星信号进行调解、编解码处理后,就可以接入相应的播放器,如音频播放器或者视频播放器,播放相应的音频和视频。
可选地,高频头107的工作过程包括:高频的卫星信号经由卫星信号接收面的金属汇聚,由位于天线上的高频头107将接收来的卫星信号进行处理,可对收集来的微弱卫星信号进行低噪声高频放大,使其能满足信号使用需求,然后对其进行低噪声降频,以及低噪声中频放大,以满足信号传输需求。
本实施例中的便携天线的天线本体10的工作可以是不需要电源的,而高频头107的工作则可以是需要电源的,因此,还可包括电池110,设置为: 为高频头107供电。这里的电池110的设置位置可以设置在天线本体10上,或者可以设置成与天线本体10分离,电池110可以通过有线或者无线的方式为高频头107供电。
此外,由于在野外,很难为电池110续电,高频头107的工作得不到保证,那么,还可以包括太阳能接收单元108,设置于至少部分外延面板102的表面,设置为:将太阳能转换为电能并传输给电池110。太阳能是非常普遍的清洁能源,在白天的野外,其利用率很高,使用条件的限制也不算大,一般外出都会选择好天气,可以保证太阳能接收单元108,即太阳能电池板的正常工作,可以为电池110续电,即为高频头107供电。
太阳能接收单元108的设置位置,可以设置于任意外延面板102的表面;由于太阳能电池板的面积越大,太阳能的利用率越高,因此,太阳能接收单元108可以设置在最外侧的外延面板102的表面,尽可能地在不影响天线本体10接收卫星信号的前提下,提高太阳能的采集利用率。
便携天线往往是和机顶盒配合使用的,便携天线接收卫星信号,处理后发送给机顶盒,然后机顶盒将卫星信号进行调解、编解码处理后,将音视频信号在相应的播放设备上播放。机顶盒的使用也是需要能源的,在便携天线有电源时,便携天线还可包括供电单元105,设置为:通过无线传输将电池110的电能传输给机顶盒,从而为机顶盒供电。
无线供电技术,从原理上可以分为以下几种:
电磁耦合,简单的理解,就是把变压器的两个绕组分开,就是某种意义上的无线供电。电磁耦合方式有其缺点,没有高磁导率的磁芯作为介质,磁力线会严重发散到空气中,导致传递效率下降,特别是在两个线圈远离的时候,下降得非常厉害,所以不适合大功率、远距离的无线供电。
电磁共振,其原理类似于声波共振的原理,两种介质具有相同的共振频率,就可以用来传递能量。
光电耦合,把电能转换为光能,通过光将能量传递到目的地再转换为电能。这种无线供电技术比较直观,而且光电转换技术也相对应用广泛。但是光的传递路径具有缺陷,就是传递路径中不能有障碍物。所以这种技术也有其局限性。
对于本实施例中的机顶盒的供电,可以通过上述的无线供电方式进行无线供电。
此外,本实施例中的便携天线还可以包括信号发送单元106,设置为:通过无线传输将处理后的卫星信号传输给机顶盒。
在通过无线传输供电和无线传输发送卫星信号之后,便携天线已经实现了无线化,没有线缆可以进一步地提高便携度,对于其存放和管理也更加方便。
本实施例提供了一种便携天线,包括天线本体,天线本体包括中心面板和围绕中心面板设置的多个外延面板,在信号接收状态,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起,实现了在收纳时减小了天线本体的体积,使天线便于携带。
第二实施例
本实施例提供了一种便携天线,请参考图1和图2以及图3,包括:
天线本体10,天线本体10包括中心面板101和围绕中心面板101设置的多个外延面板102,在信号接收状态,多个外延面板102围绕中心面板101展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板102收纳在一起。
本实施例中,便携天线还可包括支撑件103和与外延面板102对应的可伸缩连接件104,中心面板101可设置在支撑件103上端,每个可伸缩连接件104分别与支撑件103和与该可伸缩连接件104对应的外延面板102连接。支撑件103的作用可包括对天线本体10进行支撑,使天线本体10可以按照所需的角度进行放置。
外延面板102可通过可伸缩连接件104与支撑件103相连。可伸缩连接件104,其一可以将外延面板102相对固定起来,其二,通过调节可伸缩连接件104的长度,就可以调节相连的外延面板102与中心面板101之间的距离。在信号接收状态下,外延面板102需要围绕中心面板101展开,形成卫星信号接收面,即可适当调节可伸缩连接件104的长度,使外延面板102由 内到外的围绕中心面板101展开;并不是每次都需要将所有的外延面板102均展开,可以根据需求部分展开或者是完全展开,即卫星信号接收面的大小可以根据需求自定。可伸缩连接件104,可以是通过节节嵌套的管状结构形成,类似于鱼竿或者雨伞的伞杆,而对其材质没有限定;也可以是通过一些具有延展性的材质来制作可伸缩连接件104,或者是一些具有延展性的结构,如金属软管,既有硬度又有延展性,可以很好地胜任可伸缩连接件104的需求。
本实施例中的中心面板101和外延面板102,均可以是抛物面的凹形曲面,其中中心面板101可以是圆形的凹形曲面,外延面板102可以是类似扇形的凹形曲面;在信号接收状态下,形成的卫星信号接收面,每一圈抛物面均可以由多块凹形曲面的外延面板102组成;外延面板102本身,则可以覆有金属反射膜,部分外延面板102则可以覆有太阳能接收单元108。
在收纳状态时,除了最内圈的中心面板101,其余外延面板102均可以叠放在中心面板101之下,减小了天线本体10的体积。
在信号接收状态时,调节多个可伸缩连接件104,形成卫星信号接收面,以满足天线本体10对C波段及Ku波段卫星信号收集的需要。在中心面板101上方可设置高频头107,可以包括C波段高频头107和/或Ku波段高频头107,使其能够收集并处理多个波段的卫星信号。
可选地,本实施例中的支撑件103可以设置为可伸缩的,或者可组装的结构,可以与三脚架配合使用,较大限度地节省收纳的容积,使天线的安装更加稳固。
此外,可以在便携天线中设置电池110,为高频头107供电;而且,还可以通过在外延面板102上的覆有的太阳能接收单元108,为电池110续电,也就是为高频头107供电。
可选地,还可以在便携天线中设置供电单元105,设置为:通过无线传输将电池110的电能传输给机顶盒。
可选地,还可以在便携天线中设置信号发送单元106,设置为:通过无线传输将处理后的卫星信号传输给机顶盒。
上述的供电单元105和信号发送单元,可以设置在便携天线中的支撑件103上,可选的,设置于支撑件103的底端,不会影响支撑件103的伸缩。
本实施例提供了一种便携天线,包括天线本体,天线本体包括中心面板和围绕中心面板设置的多个外延面板,在信号接收状态,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起,实现了在收纳时减小了天线本体的体积,使天线便于携带。
第三实施例
本实施例提供了一种便携天线,请参考图1和图4,包括:
天线本体10,天线本体10包括中心面板101和围绕中心面板101设置的多个外延面板102,在信号接收状态,多个外延面板102围绕中心面板101展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板102收纳在一起。
本实施例中的便携天线还可以包括支撑件,中心面板101设置在支撑件的上端,外延面板102包括多个依次嵌套连接的子板块1021,嵌套连接为活动连接。类似的,支撑件设置为:对天线本体10进行支撑,使天线本体10可以按照所需的角度进行放置;可选的,支撑件可以设置为可伸缩的,或者可组装的结构,可以与三脚架配合使用,使天线的安装更加稳固。
外延面板102可包括多个依次嵌套连接的子板块1021,例如外延面板102可由多个依次嵌套连接的子板块1021组成。嵌套连接是一种活动连接,相邻的子板块1021之间可通过滑槽或者卡扣等方式进行嵌套连接;嵌套连接的多个子板块1021,可以通过调节嵌套连接,改变相邻子板块1021之间的交叠的程度,进而改变多个子板块1021与中心面板101之间的距离,从而实现在卫星接收状态,多个外延面板102围绕中心面板101展开,形成卫星信号接收面。本实施例中的子板块1021与外延面板102含义可以是一致的,即子板块1021就是外延面板102,也可以是外延面板102由子板块1021组成。最接近中心面板101的外延面板102,可以直接与支撑件相连,也可以通过可伸缩连接件104与支撑件相连,还可以与中心面板101固定或者活动连接,上述的连接方式在本实施例中均可以实现。
本实施例中的中心面板101和外延面板102以及组成外延面板102的子板块1021,均可以是抛物面的凹形曲面,其中中心面板101可以是圆形的凹形曲面,外延面板102和/或子板块1021可以是类似扇形的凹形曲面;在信号接收状态下,形成的卫星信号接收面,每一圈抛物面均可以由多块凹形曲面的子板块1021组成;子板块1021本身,则可以覆有金属反射膜,部分子板块1021则可以覆有太阳能接收单元108。
在收纳状态时,除了最内圈的中心面板101,其余组成外延面板102的子板块1021则可以叠放在中心面板101之下,减小天线本体10的体积。
在信号接收状态时,可调整多个子板块1021之间的交叠程度,形成卫星信号接收面,以满足天线本体10对C波段及Ku波段卫星信号收集的需要。在中心面板101上方可设置高频头,可以包括C波段高频头和/或Ku波段高频头,使其能够收集并处理多个波段的卫星信号。
可选地,本实施例中的支撑件可以设置为可伸缩的,或者可组装的结构,可以与三脚架配合使用,较大限度地节省收纳的容积,使天线的安装更加稳固。
此外,可以在便携天线中设置电池110,为高频头供电;而且,还可以通过在外延面板102上的覆有的太阳能接收单元108,为电池110续电,也就是为高频头供电。
可选地,还可以在便携天线中设置供电单元105,设置为:通过无线传输将电池110的电能传输给机顶盒。
可选地,还可以在便携天线中设置信号发送单元106,设置为:通过无线传输将处理后的卫星信号传输给机顶盒。
上述的供电单元105和信号发送单元106,可以设置在便携天线中的支撑件上,可选地,设置于支撑件的底端,不会影响支撑件的伸缩。
本实施例提供了一种便携天线,包括天线本体,天线本体包括中心面板和围绕中心面板设置的多个外延面板,在信号接收状态,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起,实现了在收纳时减小了天线本体的体积,使天线便于携带。
第四实施例
本实施例提供了一种机顶盒系统,请参考图5,包括:
机顶盒20和便携天线1;机顶盒20通过便携天线1接收卫星信号。其中,便携天线1与前述实施例中的类似,这里不再赘述。
便携天线1中的高频头,可将接收到的卫星信号,转为中频信号,然后送到机顶盒20中的前端电路进行解调和纠错,得到数字信号,数字信号经过解码后送到A/V(AUDIO/VIDEO,音视频)信号的解码器进行解压缩,然后进行视频、音频编码和模数转换,还原出模拟音视频信号到播放装置,如显示器,扩音器等等。
机顶盒20的工作可以需要能量,而在野外的话,机顶盒20不能通过市电进行工作,因此,便携天线1可以包括供电单元105,机顶盒20可以包括受电单元201,受电单元201可通过无线传输接收供电单元105传输的电能,为机顶盒20供电。至于便携天线1的电能,可以通过电池110来提供,除此之外,还可以在便携天线1上面的天线本体10中的外延面板102设置太阳能接收单元108,将太阳能转换为电能为电池110续电,进而可以将电能传输给机顶盒20,保证机顶盒20的正常工作。
此外,便携天线1还可包括信号发送单元106,机顶盒20可包括信号接收单元202,信号接收单元202可通过无线传输接收信号发送单元106发送的卫星信号。机顶盒20接收便携天线1接收并处理后的卫星信号,可以通过有线传输,也可以通过无线传输,使用无线传输的方式可以实现机顶盒20系统的无线化,没有线缆可以进一步地提高便携度,对于其存放和管理也更加方便。
本实施例提供了一种机顶盒系统,包括便携天线和机顶盒,其中便携天线中的天线本体的中心面板和围绕中心面板设置的外延面板在信号接收状态时,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起,实现了在收纳时减小了天线本体的体积,使天线便于携带。
本领域的普通技术人员可以理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围。本申请的保护范围以权利要求所定义的范围为准。
工业实用性
本发明实施例提供了一种便携天线和机顶盒系统,便携天线包括天线本体,天线本体包括中心面板和围绕中心面板设置的多个外延面板;在信号接收状态,多个外延面板围绕中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,多个外延面板收纳在一起。通过本发明实施例的实施,将相关技术中的天线本体拆分为中心面板和多个外延面板,在收纳时,将外延面板收纳在一起,减小了天线本体的体积,使天线便于携带。

Claims (12)

  1. 一种便携天线,包括天线本体,所述天线本体包括中心面板和围绕所述中心面板设置的多个外延面板;在信号接收状态,所述多个外延面板围绕所述中心面板展开形成卫星信号接收面,接收卫星信号;在收纳状态,所述多个外延面板收纳在一起。
  2. 如权利要求1所述的便携天线,还包括支撑件和与所述外延面板对应的可伸缩连接件,所述中心面板设置在所述支撑件上端,每个所述可伸缩连接件的两端分别与所述支撑件和与该可伸缩连接件对应的所述外延面板连接。
  3. 如权利要求1所述的便携天线,还包括支撑件,所述中心面板设置在所述支撑件的上端,所述外延面板包括多个依次嵌套连接的子板块,所述嵌套连接为活动连接。
  4. 如权利要求1所述的便携天线,在信号接收状态,所述多个外延面板和中心面板组成封闭的抛物面。
  5. 如权利要求1-4任一项所述的便携天线,还包括高频头,所述高频头设置于所述中心面板上方,设置为:接收所述卫星信号接收面接收的卫星信号并加以处理。
  6. 如权利要求5所述的便携天线,还包括电池,设置为:为所述高频头供电。
  7. 如权利要求6所述的便携天线,还包括太阳能接收单元,设置于至少部分所述外延面板的表面,设置为:将太阳能转换为电能并传输给所述电池。
  8. 如权利要求6所述的便携天线,还包括供电单元,设置为:通过无线传输将所述电池的电能传输给机顶盒。
  9. 如权利要求5所述的便携天线,还包括信号发送单元,设置为:通过无线传输将处理后的所述卫星信号传输给机顶盒。
  10. 一种机顶盒系统,包括机顶盒和如权利要求1-9中任一项所述的便携天线;所述机顶盒通过所述便携天线接收卫星信号。
  11. 如权利要求10所述的机顶盒系统,其中,所述便携天线包括供电单 元,所述机顶盒包括受电单元,所述受电单元设置为:通过无线传输接收所述供电单元传输的电能,为所述机顶盒供电。
  12. 如权利要求10或11所述的机顶盒系统,所述便携天线还包括信号发送单元,所述机顶盒包括信号接收单元,所述信号接收单元设置为:通过无线传输接收所述信号发送单元发送的卫星信号。
PCT/CN2017/087177 2016-06-29 2017-06-05 一种便携天线和机顶盒系统 WO2018001047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610506392.8A CN107546465A (zh) 2016-06-29 2016-06-29 一种便携天线和机顶盒系统
CN201610506392.8 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018001047A1 true WO2018001047A1 (zh) 2018-01-04

Family

ID=60785784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087177 WO2018001047A1 (zh) 2016-06-29 2017-06-05 一种便携天线和机顶盒系统

Country Status (2)

Country Link
CN (1) CN107546465A (zh)
WO (1) WO2018001047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641443A (zh) * 2020-05-25 2020-09-08 湖南科技大学 一种基于rtk的信号增强移动端及用法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642652A (en) * 1983-10-27 1987-02-10 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Unfoldable antenna reflector
CN2195798Y (zh) * 1994-04-26 1995-04-26 北京广播学院 一种伞状便携式天线
CN1444781A (zh) * 2000-08-01 2003-09-24 塔塔基础研究院 预载抛物柱面反射器天线及其制造方法
CN202282834U (zh) * 2011-10-26 2012-06-20 四川长虹电器股份有限公司 一体化电视及卫星接收设备
CN104241805A (zh) * 2014-09-19 2014-12-24 上海跃盛信息技术有限公司 一种反射索网以及具有该反射索网的伞状天线反射器
CN104269657A (zh) * 2014-09-19 2015-01-07 上海跃盛信息技术有限公司 一种伞状天线反射器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642652A (en) * 1983-10-27 1987-02-10 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Unfoldable antenna reflector
CN2195798Y (zh) * 1994-04-26 1995-04-26 北京广播学院 一种伞状便携式天线
CN1444781A (zh) * 2000-08-01 2003-09-24 塔塔基础研究院 预载抛物柱面反射器天线及其制造方法
CN202282834U (zh) * 2011-10-26 2012-06-20 四川长虹电器股份有限公司 一体化电视及卫星接收设备
CN104241805A (zh) * 2014-09-19 2014-12-24 上海跃盛信息技术有限公司 一种反射索网以及具有该反射索网的伞状天线反射器
CN104269657A (zh) * 2014-09-19 2015-01-07 上海跃盛信息技术有限公司 一种伞状天线反射器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641443A (zh) * 2020-05-25 2020-09-08 湖南科技大学 一种基于rtk的信号增强移动端及用法

Also Published As

Publication number Publication date
CN107546465A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
CN203707328U (zh) 具有渐变式环形天线元件的天线组件
US7671813B2 (en) Earphone antenna and wireless device including the same
US7542007B2 (en) Antenna, earphone antenna, and broadcasting receiver including earphone antenna
TW200522432A (en) Low profile television antenna
JPH04502697A (ja) 数個の衛星に対し1つの照準方向をもつ多焦点受信アンテナ
US20100248671A1 (en) Receiving apparatus
WO2018001047A1 (zh) 一种便携天线和机顶盒系统
JPH02228103A (ja) 円錐形ホーンアンテナ
US6166704A (en) Dual elliptical corrugated feed horn for a receiving antenna
TW471197B (en) Integrated type bi-direction feed-in electromagnetic apparatus
CN201328153Y (zh) 多功能ku频段卫星接收高频头和相应接收装置
JP2006174207A (ja) アンテナ装置および放送受信装置
KR101447798B1 (ko) 좌우 회전이 가능한 위성안테나
JPH04506740A (ja) アンテナ装置
CN210092337U (zh) 一种全向电视接收频段振子
JPH0993027A (ja) ヘリカル・ループ型面界輻射アンテナとラジオ
CN211455963U (zh) 全向长波授时磁性天线
US10594044B1 (en) Wide-direction antenna
CN215644965U (zh) 一种uhf圆极化一体化全向发射天线
CN2230979Y (zh) U段全向全频道电视接收天线
CN106207417A (zh) 室内全双宽频双极化吸顶天线
WO2000041268A1 (en) Box-kite uhf/vhf television and radio communications antenna
US11114765B2 (en) Dipole antenna structure
CN107294860A (zh) 无线路由器
CN2329089Y (zh) 一种全向全波段天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819044

Country of ref document: EP

Kind code of ref document: A1