WO2018000907A1 - 噪声发生电路、自检电路、afci和光伏发电系统 - Google Patents

噪声发生电路、自检电路、afci和光伏发电系统 Download PDF

Info

Publication number
WO2018000907A1
WO2018000907A1 PCT/CN2017/080516 CN2017080516W WO2018000907A1 WO 2018000907 A1 WO2018000907 A1 WO 2018000907A1 CN 2017080516 W CN2017080516 W CN 2017080516W WO 2018000907 A1 WO2018000907 A1 WO 2018000907A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
resistor
self
afci
circuit
Prior art date
Application number
PCT/CN2017/080516
Other languages
English (en)
French (fr)
Inventor
张圣杰
韩锦涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23163795.0A priority Critical patent/EP4242673A3/en
Priority to EP17818904.9A priority patent/EP3467525B1/en
Publication of WO2018000907A1 publication Critical patent/WO2018000907A1/zh
Priority to US16/233,440 priority patent/US10996284B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • G01R35/007Standards or reference devices, e.g. voltage or resistance standards, "golden references"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2827Testing of electronic protection circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/044Checking correct functioning of protective arrangements, e.g. by simulating a fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B29/00Generation of noise currents and voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to power supply technologies, and more particularly to a noise generating circuit, a self-checking circuit, an Arc Fault Circuit Interrupter (AFCI), and a photovoltaic power generation system.
  • AFCI Arc Fault Circuit Interrupter
  • Photovoltaic power generation system is a power generation system that converts solar energy into electrical energy. In view of the advantages of long-life, non-polluting environment, independent power generation and grid-connected operation, more and more places choose to use photovoltaic power generation system. As a power supply. At present, the above photovoltaic power generation system is mainly composed of a plurality of solar panels, photovoltaic inverters, etc., wherein the solar panels and the photovoltaic inverter are connected by cables and terminals.
  • the photovoltaic inverter of the above photovoltaic power generation system is provided with AFCI for detecting DC arc, and the AFCI includes a detection circuit for detecting whether there is a DC arc in the photovoltaic power generation system.
  • a self-test circuit for testing whether the function of the detecting circuit is normal, wherein the self-checking circuit is provided with a noise generating circuit, and the noise generating circuit can generate a noise signal having the same spectral characteristics as the arc noise signal, so that the self-checking
  • the circuit can test whether the detection circuit can detect the noise signal by outputting the noise signal to the detection circuit, and accordingly determine whether the function of the detection circuit is normal.
  • the noise generation circuit in the above self-test circuit continuously generates a noise signal, so that the noise signal will be in the working AFCI device.
  • the impact on the devices in the PV inverter where AFCI is located has caused the AFCI and PV inverters to malfunction.
  • the present application provides a noise generating circuit, a self-checking circuit, an AFCI, and a photovoltaic power generation system, which are used to solve the problem in the prior art whether the self-checking circuit in the AFCI is in a normal state of the test detecting circuit function.
  • the noise generating circuit continuously generates a noise signal, so that the noise signal affects the device in the working AFCI and the device in the PV inverter where the AFCI is located, which causes technical problems that the AFCI and the photovoltaic inverter cannot work normally.
  • the present application provides a noise generating circuit, which may include: a power switch module, a noise generator, and a capacitor; the noise generator is respectively connected to the power switch module and the capacitor;
  • the power switch module is configured to control whether the noise generator generates a noise signal according to a self-test command
  • the capacitor is configured to filter a DC component in the noise signal when the noise generator generates the noise signal.
  • the noise generating circuit provided by the first aspect, after being disposed on the self-test circuit of the AFCI in the photovoltaic power generation system, the power switch module of the noise generating circuit only controls the noise generator thereon when receiving the self-test command Production A noise signal having the same spectral characteristics as the arc noise signal. That is to say, the noise generating circuit in the self-checking circuit only generates a noise signal after the self-checking circuit tests the function of the detecting circuit, that is, only after the photovoltaic power generating system is powered on and before the inverter operates, and The self-test time, that is, the normal working time of the AFCI and the PV inverter, does not generate a noise signal.
  • the noise generating circuit does not affect the AFCI in the working state and the PV inverter in which the AFCI is located.
  • the device has an impact, ensuring the normal operation of AFCI and PV inverters, and improving the efficiency of AFCI and PV inverters.
  • the power switch module includes: a power supply, a first resistor, a second resistor, a first switch, and a P-channel metal oxide semiconductor field effect PMOS transistor ;
  • the first end of the first resistor is connected to the first end of the first switch, the second end of the first switch is grounded, and the third end of the first switch is respectively connected to the second resistor
  • One end is connected to the gate of the PMOS transistor, the second end of the second resistor and the source of the PMOS transistor are both connected to the power supply, the drain of the PMOS transistor and the noise generator connection.
  • the noise generating circuit provided by the possible implementation manner, after the first resistor of the power switch module 11 receives the self-test command, the first switch of the power switch module can be turned on by the voltage divided by the first resistor, thereby Pulling the voltage of the gate of the PMOS transistor low so that the voltage of the gate of the PMOS transistor is lower than the voltage of the source of the PMOS transistor, thereby turning on the source and the drain of the PMOS transistor.
  • the power supply VCC of the power switch module can pass through the source of the PMOS transistor to supply a noise generator connected to the drain of the PMOS transistor, so that the noise generator can generate a noise signal, so that the self-test circuit can pass the noise signal test.
  • the function of the detection circuit is normal, and the self-test function of the self-test circuit is realized.
  • the power switch module further includes: a third resistor
  • the first end of the third resistor is respectively connected to the first end of the first resistor and the first end of the first switch, and the second end of the third resistor is grounded.
  • the noise generating circuit provided by the possible embodiment enables the third resistor to release the charge accumulated by the first switch when the operation is stopped, thereby improving the stability of the first switch.
  • the power switch module further includes: a fourth resistor
  • a first end of the fourth resistor is connected to a third end of the first switch, and a second end of the fourth resistor is respectively connected to a first end of the second resistor and a gate of the PMOS tube .
  • the noise generating circuit provided by the possible implementation manner enables the fourth resistor and the second resistor to share the voltage of the VCC, so that the voltage of the gate of the PMOS transistor is equal to the voltage of the second terminal of the fourth resistor, thereby achieving the PMOS
  • the purpose of the voltage of the gate of the tube is pulled low, thereby achieving the purpose of turning on the PMOS tube, so that the power switch module can supply power to the noise generator through the PMOS tube, so that the noise generator generates a noise signal, so that the self-test circuit can pass
  • the function of the noise signal test detection circuit is normal, and the self-test function of the self-test circuit is realized.
  • the first switch is a first NPN transistor
  • a base of the first NPN transistor is a first end of the first switch, a first end of the first NPN transistor is a second end of the first switch, and a collector of the first NPN transistor is The third end of the first switch.
  • the first switch is an N-channel metal oxide semiconductor field effect NMOS transistor
  • a gate of the NMOS transistor is a first end of the first switch, a source of the NMOS transistor is a second end of the first switch, and a drain of the NMOS transistor is a third end of the first switch .
  • the noise generator is a Zener diode
  • the first end of the Zener diode is respectively connected to the drain of the PMOS transistor and the first end of the capacitor, and the second end of the Zener diode is grounded.
  • the noise generating circuit provided by the possible implementation manner can generate a shot noise signal having the same spectral characteristics as the arc noise signal when the Zener diode is in a normal working state, and therefore, a Zener diode is used as the noise generating circuit.
  • the noise generator When the noise generator is used, the life of the noise generator can be improved, and the reliability of the noise generating circuit can be improved.
  • the power switch module further includes: a fifth resistor for current limiting;
  • the first end of the Zener diode is connected to the drain of the PMOS transistor through the fifth resistor.
  • the noise generating circuit provided by the possible implementation can limit the current flowing through the Zener diode by the fifth resistor disposed between the drain of the PMOS transistor and the Zener diode, thereby avoiding the Zener diode Damaged by excessive current, the life of the Zener diode is increased, and the reliability of the noise generating circuit is improved.
  • the noise generator is a second NPN transistor
  • the emitter of the second NPN transistor is connected to the drain of the PMOS transistor, the base of the second NPN transistor is connected to the first end of the capacitor, and the second NPN transistor The collector is suspended.
  • the power switch module further includes: a fifth resistor for current limiting;
  • the emitter of the second NPN transistor is connected to the drain of the PMOS transistor through the fifth resistor.
  • the noise generating circuit provided by the possible implementation manner can limit the magnitude of the current flowing through the second NPN tertiary tube by the fifth resistor disposed between the drain of the PMOS transistor and the second NPN tertiary tube.
  • the second NPN three-stage tube can be prevented from being damaged by excessive current, and the service life of the second NPN three-stage tube is improved, thereby improving the reliability of the noise generating circuit.
  • the noise generating circuit further includes: a sixth resistor and an operational amplifier;
  • a first end of the sixth resistor is grounded, and a second end of the sixth resistor is respectively connected to a second end of the capacitor and a non-inverting input of the operational amplifier, an output of the operational amplifier and the The inverting input of the op amp is connected.
  • the noise generating circuit provided by the possible implementation, through the sixth resistor connected to the capacitor, enables the sixth resistor to release the charge accumulated by the capacitor when the operation is stopped, and at the same time, the operational amplifier is connected through the operational amplifier connected to the capacitor
  • the capacitor can be isolated from the impedance in the filter amplifier circuit on the self-test circuit, so that the capacitor can work in a normal state, so that the capacitor can effectively remove the DC component in the noise signal generated by the noise generator, thereby improving the capacitance. Work efficiency.
  • the present application provides a self-test circuit that can include any of the noise generating circuits described above.
  • the present application provides an AFCI, which may include the self-test circuit described above.
  • the present application provides a photovoltaic power generation system, which may include the AFCI described above.
  • the noise generating circuit, the self-checking circuit, the AFCI and the photovoltaic power generation system provided by the present application, after the noise generating circuit is set on the AFCI self-checking circuit in the photovoltaic power generation system, the power switch module of the noise generating circuit is only received At the time of the self-test command, the noise generator controlled thereon generates a noise signal having the same spectral characteristics as the arc noise signal.
  • the noise generating circuit in the self-checking circuit only generates a noise signal after the self-checking circuit tests the function of the detecting circuit, that is, only after the photovoltaic power generating system is powered on and before the inverter operates, and
  • the self-test time that is, the normal working time of the AFCI and the PV inverter, does not generate a noise signal. Therefore, the noise generating circuit provided by the present application does not affect the AFCI in the working state and the PV inverter in which the AFCI is located.
  • the device has an impact, ensuring the normal operation of AFCI and PV inverters, and improving the efficiency of AFCI and PV inverters.
  • FIG. 1 is a schematic structural diagram of a module of a noise generating circuit provided by the present application.
  • FIG. 3 is a circuit diagram of a noise generating circuit provided by the present application.
  • the AFCI is disposed in a photovoltaic inverter of a photovoltaic power generation system, and the AFCI may include a detection circuit for detecting whether there is a DC arc in the photovoltaic power generation system, and The self-checking circuit can test whether the function of the detecting circuit is normal after the photovoltaic power generation system is powered on and before the photovoltaic inverter operates.
  • the noise generating circuit in the self-checking circuit is connected to the detecting circuit through a switch module, and the switch module is configured to connect the noise generating circuit and the detecting circuit when the self-checking circuit tests the function of the detecting circuit, so that The noise generating circuit of the detecting circuit can output a noise signal having the same spectral characteristics as the arc noise signal to the detecting circuit, so that the self-checking circuit can determine whether the function of the detecting circuit is normal by testing whether the detecting circuit can detect the noise signal.
  • the noise generation circuit in the above self-test circuit always generates a noise signal, so that AFCI and When the PV inverter where AFCI is located is working, the noise signal generated by the noise generating circuit of the self-test circuit will affect the AFCI in operation and the device of the PV inverter where the AFCI is located, resulting in AFCI and PV inverter. The device does not work properly.
  • the noise generating circuit provided by the present application after being set to the AFCI self-test circuit in the photovoltaic power generation system, only controls the noise generator generated on the spectrum of the arc noise signal when receiving the self-test command. Noise signals with the same characteristics. That is to say, the noise generating circuit in the self-checking circuit only generates a noise signal after the self-checking circuit tests the function of the detecting circuit, that is, only after the photovoltaic power generating system is powered on and before the inverter operates, and The self-test time, that is, the normal working time of the AFCI and the PV inverter, does not generate a noise signal.
  • the noise generating circuit provided by the present application does not affect the AFCI in the working state and the PV inverter in which the AFCI is located.
  • the device has an impact that guarantees the normal operation of the AFCI and the PV inverter. Therefore, the noise generating circuit provided by the present application is intended to solve the problem in the prior art that the self-checking circuit in the AFCI is in a state in which the function of the test detecting circuit is normal, and the noise generating circuit in the self-checking circuit continuously generates a noise signal. Therefore, the noise signal will affect the devices in the working AFCI and the devices in the PV inverter where the AFCI is located, resulting in technical problems that the AFCI and the photovoltaic inverter cannot work normally.
  • FIG. 1 is a schematic structural diagram of a module of a noise generating circuit provided by the present application.
  • the noise generating circuit may include: a power switch module 11 , a noise generator 12 , and a capacitor 13 ; the noise generator 12 and the power source respectively The switch module 11 and the capacitor 13 are connected; wherein
  • the power switch module 11 is configured to control whether the noise generator 12 generates a noise signal according to the self-test command;
  • the capacitor 13 is configured to filter out a DC component in the noise signal when the noise generator 12 generates a noise signal.
  • the noise generating circuit may be disposed in the AFCI self-test circuit on the inverter of the photovoltaic power generation system, and the self-test circuit for the AFCI outputs the arc noise to the detecting circuit when testing the function of the AFCI detecting circuit.
  • a noise signal with the same spectral characteristics of the signal may be disposed in the AFCI self-test circuit on the inverter of the photovoltaic power generation system, and the self-test circuit for the AFCI outputs the arc noise to the detecting circuit when testing the function of the AFCI detecting circuit.
  • a noise signal with the same spectral characteristics of the signal.
  • the power switch module 11 included in the noise generating circuit may be any module having functions of receiving, conducting, disconnecting, power supply and the like.
  • the power switch module 11 can receive a self-test command and can supply power to the noise generator 12 when receiving the self-test command, so that the noise generator 12 can generate the same spectral characteristics as the arc noise signal.
  • the noise signal when the self-test command is not received, stops supplying power to the noise generator 12, so that the noise generator 12 does not generate the noise signal, thereby preventing the noise signal from affecting the PV inverter where the AFCI and the AFCI are located.
  • the components of the device work to ensure the normal operation of the PV inverter where AFCI and AFCI are located.
  • the self-test command may be any high-level signal that is greater than the working voltage of the power switch module 11, for example, a 5V high-level signal, a 3V high-level signal, etc., and may be specifically set according to the operating voltage of the power switch module 11. .
  • the self-test command may be a self-test command sent by a processor in the AFCI self-test circuit, or may be generated by a maintenance personnel by manually triggering a hardware switch (for example, a button, etc.) connected to the power switch module 11. Self-test instructions, etc.
  • the noise generator 12 included in the noise generating circuit may be any device capable of generating an analog arc noise signal, such as a Zener diode, an NPN transistor, or the like. In the present application, the noise generator 12 may generate a noise signal having the same spectral characteristics as the arc noise signal when the power switch module 11 receives the self-test command, that is, when the power switch module 11 supplies power thereto.
  • the capacitor included in the noise generating circuit may be any capacitor having a function of coupling an AC signal. In the present application, the capacitor may filter the DC component of the noise signal when the noise generator 12 generates a noise signal. This noise signal is closer to the actual arc noise signal.
  • the AFCI self-test circuit may include: a noise generating circuit, a first filtering amplifying circuit, a push button switch connected to the noise generating circuit, and a current transformer CT, a sampling resistor, a second filter amplifying circuit, a processor, and an LED lamp in the detecting circuit.
  • the current CT may include the coil 1 and the coil 2.
  • Step 1 After the PV system is powered on, the processor in the detection circuit on the AFCI can be initialized first, for example: system clock setting, interrupt clock setting, analog to digital converter (Analog to Digital, referred to as: AD) The sampling clock setting, the register initial setting, and the like, so that the processor after the initial setting can detect the arc noise signal in the photovoltaic power generation system.
  • the processor in the detection circuit can send a self-test instruction to the power switch module of the noise generation circuit in the AFCI self-test circuit.
  • the first step may be: after the photovoltaic power generation system is powered on, and the processor in the detection circuit on the AFCI completes the initial setting, the maintenance personnel manually Click the button switch connected to the noise generating circuit to send a self-test command to the power switch module of the noise generating circuit in the AFCI self-test circuit.
  • Step 2 The power switch module of the noise generating circuit in the self-test circuit can supply power to the noise generator when receiving the self-test command sent by the processor, so that the noise generator generates the same spectral characteristics as the arc noise signal.
  • the noise signal is filtered by the capacitor to remove the DC component, and then output to the first filter amplifier circuit in the self-test circuit.
  • the third step after receiving the noise signal of the capacitance output of the noise generating circuit, the first filtering amplifying circuit in the self-checking circuit may filter and amplify the noise signal so that the frequency and amplitude of the noise signal are equal or infinite The actual arc noise signal is approximated, and then the noise signal after the filter amplification is output to the coil 2 of the current CT of the detection circuit.
  • Step 4 Since the coil 1 and the coil 2 of the current CT on the detecting circuit are two windings of the same number wound on the same core, the coil 1 and the coil 2 of the current CT can sense the same noise signal. Therefore, in this way, the current CT can be transmitted to the coil 1 of the current CT through the coil 2 on the coil 2, and the noise signal output from the first filter amplifying circuit in the self-test circuit can be made in parallel with the coil 1 of the current CT.
  • the sampling resistor can sample the noise signal and output it to a second filter amplifying circuit on the detecting circuit.
  • Step 5 The second filter amplifying circuit on the detecting circuit further filters and amplifies the received noise signal so that the frequency and amplitude of the noise signal are equal to or infinitely close to the actual arc noise signal, and then The noise signal after the filter amplification is output to the processor on the detection circuit.
  • Step 6 After the processor on the detecting circuit receives the noise signal output by the second filtering amplifying circuit, the processor samples the noise signal through its internally integrated AD (for example, high-speed AD, etc.), and analyzes and determines the noise signal. Whether the noise signal conforms to the spectral characteristics of the actual arc. At this time, if the processor determines that the sampled simulated arc noise signal does not conform to the spectral characteristics of the actual arc, the processor, current CT, sampling resistor, and second filter amplification of the detection circuit are illustrated. If one or more components in the circuit or the like are damaged, that is, the function of the detecting circuit is abnormal, the processor may send an instruction to the LED lamp to indicate that the AFCI self-test fails by lighting the LED light.
  • AD high-speed AD, etc.
  • the processor determines that the sampled simulated arc noise signal conforms to the spectral characteristics of the actual arc, it indicates that all components in the processor, current CT, sampling resistor, second filter amplifying circuit, etc. of the detecting circuit function normally, that is, the function of the detecting circuit Normally, the processor stops transmitting a self-test command to the noise generating circuit of the self-test circuit, so that the noise generating circuit stops generating the noise signal, and the noise generating circuit stops outputting the noise signal to the detecting circuit.
  • Step 7 The processor on the detection circuit stops transmitting the self-test command to the noise generating circuit of the self-test circuit After the noise generating circuit stops outputting the noise signal to the detecting circuit, the processor can continue to pass the noise signal in the high-speed AD sampling detecting circuit integrated therein, and analyze whether the sampled noise signal conforms to the spectrum of the actual arc noise signal. Characteristic, at this time, if the processor determines that the sampled noise signal does not meet the spectral characteristics of the actual arc noise signal, one or more of the processor, the current CT, the sampling resistor, the second filter amplifier circuit, and the like of the detection circuit If the function of the component is normal, that is, the function of the detection circuit is normal, the processor determines that the AFCI self-test passes.
  • the processor determines that the sampled noise signal meets the spectral characteristics of the actual arc noise signal, at this time, since the photovoltaic power generation system has not yet started to work, under normal working conditions, there is no possibility of an arc noise signal in the photovoltaic power generation system. That is to say, under normal working conditions, the processor does not sample a noise signal that conforms to the spectral characteristics of the actual arc noise signal, and if the processor determines that the sampled noise signal conforms to the spectral characteristics of the actual arc noise signal, the detection circuit is If one or more components of the processor, the current CT, the sampling resistor, the second filter amplifying circuit, etc. are not functioning properly, that is, the function of the detecting circuit is abnormal, the processor sends an instruction to the LED lamp to illuminate the LED light. To indicate that AFCI's self-test failed.
  • the noise generating circuit provided by the present application, after the noise generating circuit is disposed on the self-test circuit of the AFCI in the photovoltaic power generation system, the power switch module of the noise generating circuit only controls the power detecting module when receiving the self-test command
  • the noise generator produces a noise signal that is identical in spectral characteristics to the arc noise signal. That is to say, the noise generating circuit in the self-checking circuit only generates a noise signal after the self-checking circuit tests the function of the detecting circuit, that is, only after the photovoltaic power generating system is powered on and before the inverter operates, and
  • the self-test time that is, the normal working time of the AFCI and the PV inverter, does not generate a noise signal.
  • the noise generating circuit does not affect the AFCI in the working state and the PV inverter in which the AFCI is located.
  • the device has an impact, ensuring the normal operation of AFCI and PV inverters, and improving the efficiency of AFCI and PV inverters.
  • FIG. 3 is a circuit diagram of a noise generating circuit provided by the present application.
  • the power switch module 11 of the noise generating circuit may include: a power supply VCC, a first resistor R1, a second resistor R2, and a first switch. 111 and PMOS tube Q1;
  • the first end of the first resistor R1 is connected to the first end of the first switch 111, the second end of the first switch 111 is grounded, and the third end of the first switch 111 and the first end of the second resistor R2 are respectively
  • the gate of Q1 is connected, the second end of the second resistor R2 and the source of Q1 are both connected to the power supply, and the drain of Q1 is connected to the noise generator.
  • the first resistor R1 may be a voltage dividing resistor, and the first resistor R1 may be connected to the output end of the processor or the button switch through the second end thereof, so that the first resistor R1 can receive the self-test command, and When receiving the self-test instruction in the form of a high level signal, the high level signal is divided to reduce the voltage of the high level signal to be close to the operating voltage of the first switch 111 to turn the first switch 111 is turned on.
  • the first switch 111 after the turn-on can ground the gate of Q1, thereby achieving the purpose of lowering the voltage of the gate of Q1, so that the voltage of the gate of Q1 is lower than the voltage of the source of Q1, thereby making Q1
  • the source and drain can be turned on.
  • the power supply VCC of the power switch module 11 can pass through the source of Q1 to supply power to the noise generator 12 connected to the drain of Q1 to make noise.
  • the generator 12 can generate a noise signal having the same spectral characteristics as the arc noise signal, so that the self-test circuit can test whether the function of the detection circuit is normal through the noise signal, and realize the self-test function of the self-test circuit.
  • the power switch module 11 may further include: a third resistor R3 for dividing the voltage, and the first ends of the third resistor R3 are respectively The first end of the first resistor R1 is connected to the first end of the first switch 111, and the second end of the third resistor R3 is grounded, so that the third resistor R3 can be The stability of the first switch 111 is improved by releasing the charge accumulated by the first switch 111 when the operation is stopped.
  • the power switch module 11 further includes: a fourth resistor R4 for dividing the voltage; wherein the first end of the fourth resistor R4 is The third end of the first switch 111 is connected, and the second end of the fourth resistor R4 is respectively connected to the first end of the second resistor R2 and the gate of Q1, so that the fourth resistors R4 and R2 can share the power supply VCC
  • the voltage, and thus the voltage of the gate of Q1 is equal to the voltage of the second terminal of R4, thereby achieving the purpose of lowering the voltage of the gate of Q1, thereby achieving the purpose of turning on the PMOS transistor, so that the power switch module 11 can pass through the PMOS transistor.
  • the noise generator is powered to generate a noise signal, so that the self-test circuit can test whether the function of the detection circuit is normal through the noise signal, and realize the self-test function of the self-test circuit.
  • the first switch 111 in the power switch module 11 can be any switch that can be turned on when the operating voltage is satisfied, such as an NPN transistor, an NMOS transistor, or the like.
  • the first switch 111 is the first NPN transistor T1
  • the base B of the T1 is the first end of the first switch 111
  • the emitter E of the T1 is the second end of the first switch 111
  • T1 The collector C is the third end of the first switch 111.
  • the gate of the NMOS transistor is the first end of the first switch 111
  • the source of the NMOS transistor is the second end of the first switch 111
  • the drain of the NMOS transistor is the first The third end of a switch 111.
  • the power switch module 11 shown in FIG. 3 is a power switch module in which the first switch 111 is T1 as an example.
  • the noise generator 12 included in the noise generating circuit may be any device capable of generating an analog arc noise signal, such as an NPN transistor, a Zener diode, or the like.
  • the noise generator 12 when the noise generator 12 is a second NPN transistor, the emitter E of the second NPN transistor can be connected to the drain of the PMOS transistor, and the base B of the second NPN transistor can be connected to the capacitor.
  • the first end of C1 is connected, and the collector C of the second NPN three-stage tube can be suspended, so that the second NPN three-stage tube can work in a reverse breakdown state when the power switch module 11 supplies power thereto to generate A white noise signal with the same spectral characteristics of the arc noise signal.
  • the noise generator 12 is the Zener diode ZD1
  • the first end of the ZD1 is respectively connected to the drain of the PMOS transistor and the first end of the capacitor C1, and the second end of the ZD1 is grounded, so that the ZD1 is
  • the power switch module 11 supplies power thereto, that is, when ZD1 can work normally, a shot noise signal having the same spectral characteristics as the arc noise signal can be generated. Since ZD1 can generate the same noise signal as the spectral characteristic of the arc noise signal in a normal working state, when ZD1 is used as the noise generator 12 of the noise generating circuit, the life of the noise generator 12 can be improved, thereby improving noise. The reliability of the circuit occurs.
  • FIG. 3 shows the noise generating circuit 11 which uses the Zener diode ZD1 as the noise generator 12.
  • the power switch module 11 further includes: a fifth resistor R5 for current limiting, and the R5 may be disposed between the drain of the Q1 and the noise generator 12 for limiting the flow
  • the magnitude of the current of the noise generator 12 therefore, can prevent the noise generator 12 from being damaged by excessive current, improving the service life of the noise generator 12, thereby improving the reliability of the noise generating circuit.
  • the noise generator 12 is ZD1
  • the power switch module 11 includes the R5
  • the first end of the ZD1 can be connected to the drain of the PMOS transistor through R5.
  • the noise generator 12 is a second NPN tertiary tube
  • the power switch module 11 includes R5, the emitter E of the second NPN tertiary tube can be connected to the drain of the PMOS transistor through R5.
  • the noise generating circuit may further include: a sixth resistor R6 and an operational amplifier U1; wherein the first end of the R6 is grounded, and the second end of the R6 is respectively connected to the second end of the C1 and the U1 Connected to the non-inverting input, The output of U1 is connected to the inverting input of U1, so that R6 can release the charge accumulated by capacitor C1 when it stops working, and U1 can isolate the capacitance from the impedance in the filter amplifier circuit on the self-test circuit.
  • C1 can work in the normal state, so that C1 can effectively remove the DC component in the simulated arc noise signal generated by the noise generator, which improves the working efficiency of C1.
  • the noise generating circuit provided by the present application, after being set on the self-test circuit of the AFCI in the photovoltaic power generation system, the power switch module of the noise generating circuit only controls the noise generator generated on the power switch module when receiving the self-test command A noise signal that has the same spectral characteristics as the arc noise signal. That is to say, the noise generating circuit in the self-checking circuit only generates a noise signal after the self-checking circuit tests the function of the detecting circuit, that is, only after the photovoltaic power generating system is powered on and before the inverter operates, and The self-test time, that is, the normal working time of the AFCI and the PV inverter, does not generate a noise signal.
  • the noise generating circuit does not affect the AFCI in the working state and the PV inverter in which the AFCI is located.
  • the device has an impact, ensuring the normal operation of AFCI and PV inverters, and improving the efficiency of AFCI and PV inverters.
  • the noise generating circuit provided by the present application is described, but those skilled in the art may It is understood that the above noise generating circuit can also be set in the AFCI on other devices of the photovoltaic power generation system, and can also be set in the AFCI of any other device or system (for example, high voltage direct current power source) provided with AFCI, which can avoid noise occurrence.
  • the circuit affects the equipment where AFCI and AFCI are located due to the arc noise signal generated during the non-self-test time to ensure that the equipment where AFCI and AFCI are located is working properly.
  • a self-checking circuit is provided, and the self-checking circuit may include the noise generating circuit in any of the above embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • an AFCI is further provided, and the AFCI may include the self-checking circuit described above, and the self-checking circuit may include the noise generating circuit in any of the foregoing embodiments, and the implementation principle and the technical effect are similar. I will not repeat them here.
  • a photovoltaic power generation system which may include the above-mentioned AFCI, and the AFCI may include a noise generating circuit in any of the above embodiments, and the implementation principle and technical effect are similar. , will not repeat them here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Photovoltaic Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种噪声发生电路、自检电路、AFCI和光伏发电系统,噪声发生电路包括:电源开关模块(11)、噪声发生器(12)和电容(13);噪声发生器(12)分别与电源开关模块(11)和电容(13)连接;电源开关模块(11),用于根据自检指令控制噪声发生器(12)是否产生噪声信号;电容(13),用于在噪声发生器(12)产生噪声信号时,滤除噪声信号中的直流成分。噪声发生电路、自检电路、AFCI和光伏发电系统,能够在非自检时间不产生噪声信号,进而能够避免对处于工作状态的AFCI中的器件和AFCI所在光伏逆变器中的器件产生影响,保证了AFCI和光伏逆变器的正常工作。

Description

噪声发生电路、自检电路、AFCI和光伏发电系统 技术领域
本申请涉及电源技术,尤其涉及一种噪声发生电路、自检电路、电弧故障断路器(Arc Fault Circuit Interrupter,AFCI)和光伏发电系统。
背景技术
光伏发电系统是一种将太阳能转换成电能的发电系统,鉴于光伏发电系统具有使用寿命长、不污染环境、能独立发电又能并网运行等优点,越来越多的场所选择使用光伏发电系统作为供电电源。目前,上述光伏发电系统主要由多个太阳能电池板、光伏逆变器等组成,其中,太阳能电池板与光伏逆变器之间通过线缆和接线端子连接。
现有技术中,上述光伏发电系统因线缆老化或接线端子连接不可靠等原因,易引起直流电弧故障。为了避免上述光伏发电系统因直流电弧故障引起电气火灾,上述光伏发电系统的光伏逆变器中设置有用于检测直流电弧的AFCI,该AFCI包括用于检测光伏发电系统中是否有直流电弧的检测电路,以及,用于测试检测电路功能是否正常的自检电路,其中,自检电路中设置有噪声发生电路,该噪声发生电路可以产生与电弧噪声信号的频谱特性相同的噪声信号,以使得自检电路可以通过向检测电路输出该噪声信号,以测试检测电路是否可以检测出该噪声信号,并依此来判断检测电路的功能是否正常。
然而,无论上述AFCI中的自检电路是否处于测试检测电路功能是否正常的状态,上述自检电路中的噪声发生电路均会持续产生噪声信号,使得该噪声信号会对工作中的AFCI中的器件和AFCI所在光伏逆变器中的器件产生影响,导致AFCI和光伏逆变器无法正常工作。
发明内容
本申请提供一种噪声发生电路、自检电路、AFCI和光伏发电系统,用于解决现有技术中无论AFCI中的自检电路是否处于测试检测电路功能是否正常的状态,该自检电路中的噪声发生电路均会持续产生噪声信号,使得该噪声信号会对工作中的AFCI中的器件和AFCI所在光伏逆变器中的器件产生影响,导致AFCI和光伏逆变器无法正常工作的技术问题。
第一方面,本申请提供一种噪声发生电路,该噪声发生电路可以包括:电源开关模块、噪声发生器和电容;所述噪声发生器分别与所述电源开关模块和所述电容连接;
所述电源开关模块,用于根据自检指令控制所述噪声发生器是否产生噪声信号;
所述电容,用于在所述噪声发生器产生所述噪声信号时,滤除所述噪声信号中的直流成分。
通过第一方面提供的噪声发生电路,在设置到光伏发电系统中的AFCI的自检电路上后,噪声发生电路的电源开关模块仅会在接收到自检指令时,控制其上的噪声发生器产 生与电弧噪声信号的频谱特性相同的噪声信号。也就是说,自检电路中的噪声发生电路仅在自检电路测试检测电路的功能时,即仅在光伏发电系统上电后、且逆变器工作之前,才会产生噪声信号,而在非自检时间,即AFCI和光伏逆变器正常工作时间,不会产生噪声信号,因此,本申请提供的噪声发生电路,不会对处于工作状态的AFCI、以及,AFCI所在光伏逆变器中的器件产生影响,保证了AFCI和光伏逆变器的正常工作,提高了AFCI和光伏逆变器的工作效率。
可选的,在第一方面的一种可能的实施方式中,所述电源开关模块包括:供电电源、第一电阻、第二电阻、第一开关和P沟道金属氧化物半导体场效应PMOS管;
所述第一电阻的第一端与所述第一开关的第一端连接,所述第一开关的第二端接地,所述第一开关的第三端分别与所述第二电阻的第一端和所述PMOS管的栅极连接,所述第二电阻的第二端和所述PMOS管的源极均与所述供电电源连接,所述PMOS管的漏极与所述噪声发生器连接。
通过该可能的实施方式提供的噪声发生电路,使电源开关模块11的第一电阻在接收到自检指令后,电源开关模块的第一开关可以通过第一电阻分压后的电压导通,从而将PMOS管的栅极的电压拉低,以使PMOS管的栅极的电压低于PMOS管的源极的电压,进而使PMOS管的源极和漏极导通,通过这种方式,可以使电源开关模块的供电电源VCC可以经过PMOS管的源极,向与PMOS管的漏极连接的噪声发生器供电,以使得噪声发生器可以产生噪声信号,从而使自检电路可以通过该噪声信号测试检测电路的功能是否正常,实现了自检电路的自检功能。
可选的,在第一方面的一种可能的实施方式中,所述电源开关模块还包括:第三电阻;
所述第三电阻的第一端分别与所述第一电阻的第一端和所述第一开关的第一端连接,所述第三电阻的第二端接地。
通过该可能的实施方式提供的噪声发生电路,使得第三电阻可以释放第一开关在停止工作时所积攒的电荷,提高了第一开关的稳定性。
可选的,在第一方面的一种可能的实施方式中,所述电源开关模块还包括:第四电阻;
所述第四电阻的第一端与所述第一开关的第三端连接,所述第四电阻的第二端分别与所述第二电阻的第一端和所述PMOS管的栅极连接。
通过该可能的实施方式提供的噪声发生电路,使得第四电阻和第二电阻可以共同分摊VCC的电压,进而使得PMOS管的栅极的电压等于第四电阻的第二端的电压,从而达到将PMOS管的栅极的电压拉低的目的,进而达到PMOS管导通的目的,使得电源开关模块可以通过PMOS管为噪声发生器供电,以使噪声发生器产生噪声信号,从而使自检电路可以通过该噪声信号测试检测电路的功能是否正常,实现了自检电路的自检功能。
可选的,在第一方面的一种可能的实施方式中,所述第一开关为第一NPN三极管;
所述第一NPN三极管的基极为所述第一开关的第一端,所述第一NPN三极管的发射极为所述第一开关的第二端,所述第一NPN三极管的集电极为所述第一开关的第三端。
可选的,在第一方面的一种可能的实施方式中,所述第一开关为N沟道金属氧化物半导体场效应NMOS管;
所述NMOS管的栅极为所述第一开关的第一端,所述NMOS管的源极为所述第一开关的第二端,所述NMOS管的漏极为所述第一开关的第三端。
可选的,在第一方面的一种可能的实施方式中,所述噪声发生器为稳压二极管;
所述稳压二极管的第一端分别与所述PMOS管的漏极和所述电容的第一端连接,所述稳压二极管的第二端接地。
通过该可能的实施方式提供的噪声发生电路,由于稳压二极管在正常工作状态时,可以产生与电弧噪声信号的频谱特性相同的散粒噪声信号,因此,在使用稳压二极管作为噪声发生电路的噪声发生器时,可以提高噪声发生器的使用寿命,进而可以提高噪声发生电路的可靠性。
可选的,在第一方面的一种可能的实施方式中,所述电源开关模块还包括:用于限流的第五电阻;
所述稳压二极管的第一端通过所述第五电阻与所述PMOS管的漏极连接。
通过该可能的实施方式提供的噪声发生电路,通过设置在PMOS管的漏极与稳压二极管之间的第五电阻,可以限制流过稳压二极管的电流的大小,因此,可以避免稳压二极管被过大的电流损坏,提高了稳压二极管的使用寿命,进而提高了噪声发生电路的可靠性。
可选的,在第一方面的一种可能的实施方式中,所述噪声发生器为第二NPN三极管;
所述第二NPN三级管的发射极与所述PMOS管的漏极连接,所述第二NPN三级管的基极与所述电容的第一端连接,所述第二NPN三级管的集电极悬空。
可选的,在第一方面的一种可能的实施方式中,所述电源开关模块还包括:用于限流的第五电阻;
所述第二NPN三级管的发射极通过所述第五电阻与所述PMOS管的漏极连接。
通过该可能的实施方式提供的噪声发生电路,通过设置在PMOS管的漏极与第二NPN三级管之间的第五电阻,可以限制流过第二NPN三级管的电流的大小,因此,可以避免第二NPN三级管被过大的电流损坏,提高了第二NPN三级管的使用寿命,进而提高了噪声发生电路的可靠性。
可选的,在第一方面的一种可能的实施方式中,所述噪声发生电路还包括:第六电阻和运算放大器;
所述第六电阻的第一端接地,所述第六电阻的第二端分别与所述电容的第二端和所述运算放大器的同相输入端连接,所述运算放大器的输出端与所述运算放大器的反相输入端连接。
通过该可能的实施方式提供的噪声发生电路,通过与电容连接的第六电阻,使第六电阻可以释放电容在停止工作时所积攒的电荷,同时,通过与电容连接的运算放大器,使运算放大器可以将电容与自检电路上的滤波放大电路中的阻抗进行隔离,使电容可以工作在正常状态,进而使电容可以有效的去除噪声发生器所产生的噪声信号中的直流成分,提高了电容的工作效率。
第二方面,本申请提供一种自检电路,该自检电路可以包括上述任一噪声发生电路。
上述第二方面所提供的自检电路,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第三方面,本申请提供一种AFCI,该AFCI可以包括上述自检电路。
上述第三方面所提供的AFCI,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种光伏发电系统,该光伏发电系统可以包括上述AFCI。
上述第四方面所提供的光伏发电系统,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
本申请提供的噪声发生电路、自检电路、AFCI和光伏发电系统,在将噪声发生电路设置到光伏发电系统中的AFCI的自检电路上后,噪声发生电路的电源开关模块仅会在接收到自检指令时,控制其上的噪声发生器产生与电弧噪声信号的频谱特性相同的噪声信号。也就是说,自检电路中的噪声发生电路仅在自检电路测试检测电路的功能时,即仅在光伏发电系统上电后、且逆变器工作之前,才会产生噪声信号,而在非自检时间,即AFCI和光伏逆变器正常工作时间,不会产生噪声信号,因此,本申请提供的噪声发生电路,不会对处于工作状态的AFCI、以及,AFCI所在光伏逆变器中的器件产生影响,保证了AFCI和光伏逆变器的正常工作,提高了AFCI和光伏逆变器的工作效率。
附图说明
图1为本申请提供的一种噪声发生电路的模块结构示意图;
图2为本申请提供的AFCI的自检电路;
图3为本申请提供的一种噪声发生电路的电路图。
附图标记说明:
11:电源开关模块;  12:噪声发生器;
13:电容;          111:第一开关。
具体实施方式
以光伏发电系统中的AFCI为例,现有技术中,该AFCI设置在光伏发电系统的光伏逆变器中,该AFCI可以包括用于检测光伏发电系统中是否有直流电弧的检测电路,以及,自检电路,该自检电路可以在光伏发电系统上电后,且光伏逆变器工作之前,测试检测电路功能是否正常。其中,上述自检电路中的噪声发生电路通过一个开关模块与检测电路连接,该开关模块用于在自检电路对检测电路的功能进行测试时,将噪声发生电路与检测电路连通,以使得自检电路的噪声发生电路可以向检测电路输出与电弧噪声信号的频谱特性相同的噪声信号,进而使得自检电路可以通过测试检测电路是否可以检测出该噪声信号,来判断检测电路的功能是否正常。然而,无论上述开关模块是否处于导通状态,也就是说,无论上述自检电路是否在对检测电路的功能进行测试,上述自检电路中的噪声发生电路均会一直产生噪声信号,使得AFCI和AFCI所在的光伏逆变器在工作时,该自检电路的噪声发生电路所产生的噪声信号会对工作中的AFCI、以及,AFCI所在光伏逆变器的器件产生影响,导致AFCI和光伏逆变器无法正常工作。
而本申请所提供的噪声发生电路,在设置到光伏发电系统中的AFCI的自检电路上后,仅会在接收到自检指令时,控制其上的噪声发生器产生与电弧噪声信号的频谱特性相同的噪声信号。也就是说,自检电路中的噪声发生电路仅在自检电路测试检测电路的功能时,即仅在光伏发电系统上电后、且逆变器工作之前,才会产生噪声信号,而在非自检时间,即AFCI和光伏逆变器正常工作时间,不会产生噪声信号,因此,本申请提供的噪声发生电路,不会对处于工作状态的AFCI、以及,AFCI所在光伏逆变器中的器件产生影响,保证了AFCI和光伏逆变器的正常工作。因此,本申请提供的噪声发生电路,旨在解决现有技术中无论AFCI中的自检电路是否处于测试检测电路功能是否正常的状态,该自检电路中的噪声发生电路均会持续产生噪声信号,使得该噪声信号会对工作中的AFCI中的器件和AFCI所在光伏逆变器中的器件产生影响,导致AFCI和光伏逆变器无法正常工作的技术问题。
图1为本申请提供的一种噪声发生电路的模块结构示意图,如图1所示,该噪声发生电路可以包括:电源开关模块11、噪声发生器12和电容13;噪声发生器12分别与电源开关模块11和电容13连接;其中,
上述电源开关模块11,用于根据自检指令控制噪声发生器12是否产生噪声信号;
上述电容13,用于在噪声发生器12产生噪声信号时,滤除噪声信号中的直流成分。
具体的,上述噪声发生电路可以设置在光伏发电系统的逆变器上的AFCI的自检电路中,用于AFCI的自检电路在测试AFCI的检测电路的功能时,向检测电路输出与电弧噪声信号的频谱特性相同的噪声信号。
其中,上述噪声发生电路所包括的电源开关模块11可以为任一具有接收、导通、断开、供电等功能的模块。在本申请中,上述电源开关模块11可以接收自检指令,并可以在接收到自检指令时,为噪声发生器12供电,以使噪声发生器12可以产生与电弧噪声信号的频谱特性相同的噪声信号,而在未接收到自检指令时,则停止向噪声发生器12供电,以使噪声发生器12不会产生该噪声信号,从而可以避免该噪声信号影响AFCI和AFCI所在的光伏逆变器的元器件的工作,以保证AFCI和AFCI所在的光伏逆变器的正常工作。其中,上述自检指令可以为任一大于电源开关模块11工作电压的高电平信号,例如:5V高电平信号、3V高电平信号等,具体可以根据电源开关模块11的工作电压设定。具体实现时,上述自检指令可以为AFCI的自检电路中的处理器发送的自检指令,还可以为维护人员通过手动触发与电源开关模块11连接的硬件开关(例如:按键等)所产生的自检指令等。
上述噪声发生电路所包括的噪声发生器12可以为任一能够产生模拟的电弧噪声信号的器件,例如:稳压二极管、NPN三极管等。在本申请中,上述噪声发生器12可以在电源开关模块11接收到自检指令时,即电源开关模块11为其供电时,产生与电弧噪声信号的频谱特性相同的噪声信号。上述噪声发生电路所包括的电容可以为任一具有耦合交流信号功能的电容,在本申请中,上述电容可以在噪声发生器12产生噪声信号时,将该噪声信号中的直流成分滤除,使该噪声信号更加接近于实际的电弧噪声信号。
下面以上述噪声发生电路设置在现有的一种AFCI的自检电路为例,对本申请所提供的噪声发生电路的工作原理进行说明,具体地:
图2为本申请提供的AFCI的自检电路,如图2所示,该AFCI的自检电路可以包括: 噪声发生电路、第一滤波放大电路、与噪声发生电路连接的按键开关,以及,检测电路中的电流互感器CT、采样电阻、第二滤波放大电路、处理器和LED灯。其中,上述电流CT可以包括:线圈1和线圈2。在将本申请所提供的噪声发生电路设置在图2所示的AFCI的自检电路中时,上述AFCI的自检方法具体可以包括:
第一步:在光伏发电系统上电后,AFCI上的检测电路中的处理器可以先进行初始化设置,例如:系统时钟设置、中断时钟设置、模拟数字转换器(Analog to Digital,简称:AD)采样时钟设置、寄存器初始化设置等,以使初始化设置后的处理器可以检测光伏发电系统中的电弧噪声信号。在完成初始化设置之后,检测电路中的处理器可以向AFCI的自检电路中的噪声发生电路的电源开关模块发送自检指令。可选的,若上述自检指令为人为触发的,则上述第一步还可以为:在光伏发电系统上电后,且AFCI上的检测电路中的处理器完成初始化设置之后,维护人员通过手动点击与噪声发生电路连接的按键开关,向AFCI的自检电路中的噪声发生电路的电源开关模块发送自检指令。
第二步:自检电路中的噪声发生电路的电源开关模块在接收到处理器发送的自检指令时,可以向噪声发生器供电,以使噪声发生器产生与电弧噪声信号的频谱特性相同的噪声信号,该噪声信号经电容滤除直流成分后,输出至自检电路中的第一滤波放大电路。
第三步:自检电路中的第一滤波放大电路在接收到噪声发生电路的电容输出的噪声信号之后,可以对该噪声信号进行滤波放大,以使该噪声信号的频率和幅值等于或无限接近于实际的电弧噪声信号,然后再将该进行滤波放大之后的噪声信号输出至检测电路的电流CT的线圈2。
第四步:由于检测电路上的电流CT的线圈1和线圈2是缠绕在同一个磁芯上的两个相同匝数的绕组,所以电流CT的线圈1和线圈2可以感应到相同的噪声信号,因此,通过这种方式,可以使电流CT通过其上的线圈2将自检电路中的第一滤波放大电路输出的噪声信号传递给电流CT的线圈1,以使得与电流CT的线圈1并联的采样电阻可以采样该噪声信号,并输出至检测电路上的第二滤波放大电路。
第五步:检测电路上的第二滤波放大电路对所接收到的噪声信号进一步进行滤波放大,以使该噪声信号的频率和幅值等于或无限接近于实际的电弧噪声信号,然后再将该进行滤波放大之后的噪声信号输出至检测电路上的处理器。
第六步:检测电路上的处理器在接收到第二滤波放大电路输出的噪声信号之后,处理器通过其内部集成的AD(例如:高速AD等)对该噪声信号进行采样,并分析判断该噪声信号是否符合实际电弧的频谱特性,此时,若处理器判断所采样的模拟的电弧噪声信号不符合实际电弧的频谱特性,说明检测电路的处理器、电流CT、采样电阻、第二滤波放大电路等中的某一个或多个元器件出现损坏,即检测电路的功能不正常,则处理器可以向LED灯发送指令,通过点亮LED灯来指示AFCI的自检失败。若处理器判断所采样的模拟的电弧噪声信号符合实际电弧的频谱特性,说明检测电路的处理器、电流CT、采样电阻、第二滤波放大电路等中所有元器件功能正常,即检测电路的功能正常,则处理器就会停止向自检电路的噪声发生电路发送自检指令,以使噪声发生电路停止产生噪声信号,进而使噪声发生电路停止向检测电路输出该噪声信号。
第七步:检测电路上的处理器在停止向自检电路的噪声发生电路发送自检指令之 后,即噪声发生电路停止向检测电路输出噪声信号之后,处理器可以继续通过其内部集成的高速AD采样检测电路中的噪声信号,并分析判断所采样的噪声信号是否符合实际电弧噪声信号的频谱特性,此时,若处理器判断所采样的噪声信号不符合实际电弧噪声信号的频谱特性,说明检测电路的处理器、电流CT、采样电阻、第二滤波放大电路等中的某一个或多个元器件功能正常,即检测电路的功能正常,则处理器确定AFCI自检通过。若处理器判断所采样的噪声信号符合实际电弧噪声信号的频谱特性,此时,由于光伏发电系统还未开始工作,因此,在正常工作状态下,光伏发电系统中不可能存在电弧噪声信号,也就是说,在正常工作状态下,处理器不会采样到符合实际电弧噪声信号的频谱特性的噪声信号,则若处理器判断所采样的噪声信号符合实际电弧噪声信号的频谱特性,说明检测电路的处理器、电流CT、采样电阻、第二滤波放大电路等中一个或多个元器件功能不正常,即检测电路的功能不正常,则处理器就会向LED灯发送指令,通过点亮LED灯来指示AFCI的自检失败。
本申请所提供的噪声发生电路,在将噪声发生电路设置到光伏发电系统中的AFCI的自检电路上后,噪声发生电路的电源开关模块仅会在接收到自检指令时,控制其上的噪声发生器产生与电弧噪声信号的频谱特性相同的噪声信号。也就是说,自检电路中的噪声发生电路仅在自检电路测试检测电路的功能时,即仅在光伏发电系统上电后、且逆变器工作之前,才会产生噪声信号,而在非自检时间,即AFCI和光伏逆变器正常工作时间,不会产生噪声信号,因此,本申请提供的噪声发生电路,不会对处于工作状态的AFCI、以及,AFCI所在光伏逆变器中的器件产生影响,保证了AFCI和光伏逆变器的正常工作,提高了AFCI和光伏逆变器的工作效率。
图3为本申请提供的一种噪声发生电路的电路图,如图3所示,上述噪声发生电路的电源开关模块11可以包括:供电电源VCC、第一电阻R1、第二电阻R2、第一开关111和PMOS管Q1;
其中,第一电阻R1的第一端与第一开关111的第一端连接,第一开关111的第二端接地,第一开关111的第三端分别与第二电阻R2的第一端和Q1的栅极连接,第二电阻R2的第二端和Q1的源极均与供电电源连接,Q1的漏极与噪声发生器连接。
具体的,上述第一电阻R1可以为分压电阻,上述第一电阻R1可以通过其第二端与处理器的输出端或者按键开关连接,以使第一电阻R1可以接收自检指令,并在接收到高电平信号形式的自检指令时,对该高电平信号进行分压,以降低该高电平信号的电压,使其接近于第一开关111的工作电压,以将第一开关111导通。导通后的第一开关111可以使Q1的栅极接地,进而达到了拉低Q1的栅极的电压的目的,从而使Q1的栅极的电压低于Q1的源极的电压,进而使得Q1的源极和漏极可以导通。通过这种方式,使电源开关模块11在接收到自检指令后,电源开关模块11的供电电源VCC可以经过Q1的源极,向与Q1的漏极连接的噪声发生器12供电,以使得噪声发生器12可以产生与电弧噪声信号的频谱特性相同的噪声信号,从而使自检电路可以通过该噪声信号测试检测电路的功能是否正常,实现了自检电路的自检功能。
继续参照上述图3,可选的,在本申请的另一实现方式中,上述电源开关模块11还可以包括:用于分压的第三电阻R3,该第三电阻R3的第一端分别与第一电阻R1的第一端和第一开关111的第一端连接,第三电阻R3的第二端接地,以使得该第三电阻R3可 以释放第一开关111在停止工作时所积攒的电荷,提高了第一开关111的稳定性。
继续参照上述图3,可选的,在本申请的另一实现方式中,上述电源开关模块11还可以包括:用于分压的第四电阻R4;其中,第四电阻R4的第一端与第一开关111的第三端连接,第四电阻R4的第二端分别与第二电阻R2的第一端和Q1的栅极连接,以使得第四电阻R4和R2可以共同分摊供电电源VCC的电压,进而使得Q1的栅极的电压等于R4的第二端的电压,从而达到将Q1的栅极的电压拉低的目的,进而达到PMOS管导通的目的,使得电源开关模块11可以通过PMOS管为噪声发生器供电,以使噪声发生器产生噪声信号,从而使自检电路可以通过该噪声信号测试检测电路的功能是否正常,实现了自检电路的自检功能。
继续参照上述图3,如图3所示,上述电源开关模块11中的第一开关111可以为任一能够在满足工作电压时就可以导通的开关,例如:NPN三极管、NMOS管等。可选的,当上述第一开关111为第一NPN三极管T1时,上述T1的基极B为第一开关111的第一端,T1的发射极E为第一开关111的第二端,T1的集电极C为第一开关111的第三端。可选的,当上述第一开关111为NMOS管时,上述NMOS管的栅极为第一开关111的第一端,NMOS管的源极为第一开关111的第二端,NMOS管的漏极为第一开关111的第三端。其中,图3中示出的电源开关模块11是以第一开关111为T1为例的电源开关模块。
如上述实施例所说,上述噪声发生电路所包括的噪声发生器12可以为任一能够产生模拟的电弧噪声信号的器件,例如:NPN三极管、稳压二极管等。可选的,当上述噪声发生器12为第二NPN三极管时,该第二NPN三级管的发射极E可以与PMOS管的漏极连接,第二NPN三级管的基极B可以与电容C1的第一端连接,第二NPN三级管的集电极C可以悬空,以使得第二NPN三级管在电源开关模块11为其供电时,可以工作在反向击穿状态,以产生与电弧噪声信号的频谱特性相同的白噪声信号。可选的,当上述噪声发生器12为稳压二极管ZD1时,该ZD1的第一端分别与PMOS管的漏极和电容C1的第一端连接,ZD1的第二端接地,以使得ZD1在电源开关模块11为其供电时,即ZD1可以正常工作时,可以产生与电弧噪声信号的频谱特性相同的散粒噪声信号。由于ZD1可以在正常的工作状态产生与电弧噪声信号的频谱特性相同噪声信号,因此,在使用ZD1作为噪声发生电路的噪声发生器12时,可以提高噪声发生器12的使用寿命,进而可以提高噪声发生电路的可靠性。上述图3示出的是以稳压二极管ZD1作为噪声发生器12的噪声发生电路11。
继续参照图3,可选的,上述电源开关模块11还可以包括:用于限流的第五电阻R5,该R5可以设置在Q1的漏极与噪声发生器12之间,用于限制流过噪声发生器12的电流的大小,因此,可以避免噪声发生器12被过大的电流损坏,提高了噪声发生器12的使用寿命,进而提高了噪声发生电路的可靠性。可选的,若上述噪声发生器12为ZD1,则在上述电源开关模块11包括R5时,ZD1的第一端可以通过R5与PMOS管的漏极连接。可选的,若上述噪声发生器12为第二NPN三级管,则在上述电源开关模块11包括R5时,第二NPN三级管的发射极E可以通过R5与PMOS管的漏极连接。
继续参照图3,可选的,上述噪声发生电路还可以包括:第六电阻R6和运算放大器U1;其中,R6的第一端接地,R6的第二端分别与C1的第二端和U1的同相输入端连接, U1的输出端与U1的反相输入端连接,以使得R6可以释放电容C1在停止工作时所积攒的电荷,同时使得U1可以将电容与自检电路上的滤波放大电路中的阻抗进行隔离,使C1可以工作在正常状态,进而使C1可以有效的去除噪声发生器所产生的模拟的电弧噪声信号中的直流成分,提高了C1的工作效率。
本申请所提供的噪声发生电路,在设置到光伏发电系统中的AFCI的自检电路上后,噪声发生电路的电源开关模块仅会在接收到自检指令时,控制其上的噪声发生器产生与电弧噪声信号的频谱特性相同的噪声信号。也就是说,自检电路中的噪声发生电路仅在自检电路测试检测电路的功能时,即仅在光伏发电系统上电后、且逆变器工作之前,才会产生噪声信号,而在非自检时间,即AFCI和光伏逆变器正常工作时间,不会产生噪声信号,因此,本申请提供的噪声发生电路,不会对处于工作状态的AFCI、以及,AFCI所在光伏逆变器中的器件产生影响,保证了AFCI和光伏逆变器的正常工作,提高了AFCI和光伏逆变器的工作效率。
需要说明的是,虽然上述实施例均以噪声发生电路设置在光伏发电系统中的逆变器上的AFCI为例,来对本申请所提供的噪声发生电路进行了说明,但是,本领域技术人员可以理解的是,上述噪声发生电路还可以设置在光伏发电系统的其他设备上的AFCI,还可以设置在其他任意设置有AFCI的设备或系统(例如:高压直流电源)的AFCI中,可以避免噪声发生电路在非自检时间因产生电弧噪声信号而对AFCI和AFCI所在的设备产生影响,以保证AFCI和AFCI所在的设备正常工作。
本申请另一方面,还提供了一种自检电路,该自检电路可以包括上述任一实施例中的噪声发生电路,其实现原理和技术效果类似,在此不再赘述。
本申请又一方面,还提供了一种AFCI,该AFCI可以包括上述所说的自检电路,该自检电路可以包括上述任一实施例中的噪声发生电路,其实现原理和技术效果类似,在此不再赘述。
本申请又一方面,还提供了一种光伏发电系统,该光伏发电系统可以包括上述所说的AFCI,该AFCI中可以包括上述任一实施例中的噪声发生电路,其实现原理和技术效果类似,在此不再赘述。

Claims (14)

  1. 一种噪声发生电路,其特征在于,包括:电源开关模块、噪声发生器和电容;所述噪声发生器分别与所述电源开关模块和所述电容连接;
    所述电源开关模块,用于根据自检指令控制所述噪声发生器是否产生噪声信号;
    所述电容,用于在所述噪声发生器产生所述噪声信号时,滤除所述噪声信号中的直流成分。
  2. 根据权利要求1所述的噪声发生电路,其特征在于,所述电源开关模块包括:供电电源、第一电阻、第二电阻、第一开关和P沟道金属氧化物半导体场效应PMOS管;
    所述第一电阻的第一端与所述第一开关的第一端连接,所述第一开关的第二端接地,所述第一开关的第三端分别与所述第二电阻的第一端和所述PMOS管的栅极连接,所述第二电阻的第二端和所述PMOS管的源极均与所述供电电源连接,所述PMOS管的漏极与所述噪声发生器连接。
  3. 根据权利要求2所述的噪声发生电路,其特征在于,所述电源开关模块还包括:第三电阻;
    所述第三电阻的第一端分别与所述第一电阻的第一端和所述第一开关的第一端连接,所述第三电阻的第二端接地。
  4. 根据权利要求2或3所述的噪声发生电路,其特征在于,所述电源开关模块还包括:第四电阻;
    所述第四电阻的第一端与所述第一开关的第三端连接,所述第四电阻的第二端分别与所述第二电阻的第一端和所述PMOS管的栅极连接。
  5. 根据权利要求2-4任一项所述噪声发生电路,其特征在于,所述第一开关为第一NPN三极管;
    所述第一NPN三极管的基极为所述第一开关的第一端,所述第一NPN三极管的发射极为所述第一开关的第二端,所述第一NPN三极管的集电极为所述第一开关的第三端。
  6. 根据权利要求2-4任一项所述噪声发生电路,其特征在于,所述第一开关为N沟道金属氧化物半导体场效应NMOS管;
    所述NMOS管的栅极为所述第一开关的第一端,所述NMOS管的源极为所述第一开关的第二端,所述NMOS管的漏极为所述第一开关的第三端。
  7. 根据权利要求2-6任一项所述的噪声发生电路,其特征在于,所述噪声发生器为稳压二极管;
    所述稳压二极管的第一端分别与所述PMOS管的漏极和所述电容的第一端连接,所述稳压二极管的第二端接地。
  8. 根据权利要求7所述的噪声发生电路,其特征在于,所述电源开关模块还包括:用于限流的第五电阻;
    所述稳压二极管的第一端通过所述第五电阻与所述PMOS管的漏极连接。
  9. 根据权利要求2-6任一项所述的噪声发生电路,其特征在于,所述噪声发生器为第二NPN三极管;
    所述第二NPN三级管的发射极与所述PMOS管的漏极连接,所述第二NPN三级管的 基极与所述电容的第一端连接,所述第二NPN三级管的集电极悬空。
  10. 根据权利要求9所述的噪声发生电路,其特征在于,所述电源开关模块还包括:用于限流的第五电阻;
    所述第二NPN三级管的发射极通过所述第五电阻与所述PMOS管的漏极连接。
  11. 根据权利要求1-10任一项所述的噪声发生电路,其特征在于,所述噪声发生电路还包括:第六电阻和运算放大器;
    所述第六电阻的第一端接地,所述第六电阻的第二端分别与所述电容的第二端和所述运算放大器的同相输入端连接,所述运算放大器的输出端与所述运算放大器的反相输入端连接。
  12. 一种自检电路,其特征在于,所述自检电路包括:如权利要求1-11任一项所述的噪声发生电路。
  13. 一种电弧故障断路器AFCI,其特征在于,所述AFCI包括:如权利要求12所述的自检电路。
  14. 一种光伏发电系统,其特征在于,所述光伏发电系统包括:如权利要求13所述的电弧故障断路器AFCI。
PCT/CN2017/080516 2016-07-01 2017-04-14 噪声发生电路、自检电路、afci和光伏发电系统 WO2018000907A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23163795.0A EP4242673A3 (en) 2016-07-01 2017-04-14 Noise generation circuit, self-test circuit, afci and photovoltaic power generation system
EP17818904.9A EP3467525B1 (en) 2016-07-01 2017-04-14 Noise generation circuit, self-test circuit, afci and photovoltaic power generation system
US16/233,440 US10996284B2 (en) 2016-07-01 2018-12-27 Noise generation circuit, self-checking circuit, AFCI, and photovoltaic power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610510507.0A CN106199477B (zh) 2016-07-01 2016-07-01 噪声发生电路、自检电路、afci和光伏发电系统
CN201610510507.0 2016-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/233,440 Continuation US10996284B2 (en) 2016-07-01 2018-12-27 Noise generation circuit, self-checking circuit, AFCI, and photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2018000907A1 true WO2018000907A1 (zh) 2018-01-04

Family

ID=57464030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080516 WO2018000907A1 (zh) 2016-07-01 2017-04-14 噪声发生电路、自检电路、afci和光伏发电系统

Country Status (4)

Country Link
US (1) US10996284B2 (zh)
EP (2) EP3467525B1 (zh)
CN (1) CN106199477B (zh)
WO (1) WO2018000907A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809290B (zh) * 2020-07-30 2023-07-21 南亞科技股份有限公司 測試系統
CN116520111A (zh) * 2023-07-03 2023-08-01 深圳戴普森新能源技术有限公司 一种光伏逆变器的电弧故障检测方法及检测系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199477B (zh) * 2016-07-01 2019-06-18 西安华为技术有限公司 噪声发生电路、自检电路、afci和光伏发电系统
CN107681767A (zh) * 2017-11-20 2018-02-09 珠海格力电器股份有限公司 发电系统及供电方法
CN112782497B (zh) * 2019-11-11 2023-06-30 阳光电源股份有限公司 一种电弧检测装置及其自检方法
CN111412629A (zh) * 2020-03-30 2020-07-14 珠海格力电器股份有限公司 一种负载控制装置、空调及其负载控制方法
CN112217536B (zh) * 2020-11-30 2024-03-08 成都泰格微电子研究所有限责任公司 一种卫星地面站的射频前端及其自检方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731915A1 (en) * 2005-06-08 2006-12-13 Sensata Technologies, Inc. Arc fault circuit interrupter test circuit
CN101266277A (zh) * 2008-04-24 2008-09-17 中兴通讯股份有限公司 一种直流开关保护电路的通断检测装置和方法
CN101882867A (zh) * 2010-06-28 2010-11-10 浙江大华技术股份有限公司 抗强干扰的系统电源开关控制信号发生电路
CN101925828A (zh) * 2008-01-24 2010-12-22 西门子工业公司 测试用于串联电弧检测的afci设备的方法和装置
CN204882846U (zh) * 2015-07-24 2015-12-16 开滦能源化工股份有限公司吕家坨矿业分公司 高低压验电器测试仪
CN205178880U (zh) * 2015-12-08 2016-04-20 广州市千牧电子有限公司 一种开关控制装置
CN106199477A (zh) * 2016-07-01 2016-12-07 西安华为技术有限公司 噪声发生电路、自检电路、afci和光伏发电系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD286090A7 (de) * 1988-09-12 1991-01-17 Veb Robotron-Messelektronik "Otto Schoen" Dresden,De Ladungsinjektor
US6532424B1 (en) * 1995-03-13 2003-03-11 Square D Company Electrical fault detection circuit with dual-mode power supply
US5565818A (en) * 1995-07-27 1996-10-15 Robbins; David F. Laser trimmable integrated noise circuit
US5737342A (en) 1996-05-31 1998-04-07 Quantum Corporation Method for in-chip testing of digital circuits of a synchronously sampled data detection channel
US6433977B1 (en) * 1999-04-16 2002-08-13 Pass & Seymour, Inc. Combo AFCI/GFCI with single test button
US6807035B1 (en) * 2000-11-28 2004-10-19 Hubbell Incorporated Fault interrupter using microcontroller for fault sensing and automatic self-testing
US7486492B2 (en) * 2006-01-18 2009-02-03 Eaton Corporation Electrical switching apparatus including a second trip circuit responding to failure of a first trip circuit to provide a repetitive signal
CN101114768A (zh) * 2006-07-27 2008-01-30 刘浩铭 由微处理器产生模拟信号进行故障电弧自检的方法
US8717720B2 (en) 2010-07-20 2014-05-06 Siemens Industry, Inc. Systems and methods for providing arc fault and/or ground fault protection for distributed generation sources
EP2605405A1 (de) 2011-12-13 2013-06-19 Tecdata AG Einrichtung und Verfahren zur Erzeugung von Rauschsignalen und Verwendung einer Einrichtung zur Erzeugung von Rauschsignalen
CN203054158U (zh) * 2013-01-05 2013-07-10 绵阳和瑞电子有限公司 一种具有工作状态指示的电弧故障检测装置
CN105675966B (zh) 2016-01-08 2019-03-22 安徽长远绿色能源有限公司 一种基于差值计算方式的故障电弧检测方法及其保护装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731915A1 (en) * 2005-06-08 2006-12-13 Sensata Technologies, Inc. Arc fault circuit interrupter test circuit
CN101925828A (zh) * 2008-01-24 2010-12-22 西门子工业公司 测试用于串联电弧检测的afci设备的方法和装置
CN101266277A (zh) * 2008-04-24 2008-09-17 中兴通讯股份有限公司 一种直流开关保护电路的通断检测装置和方法
CN101882867A (zh) * 2010-06-28 2010-11-10 浙江大华技术股份有限公司 抗强干扰的系统电源开关控制信号发生电路
CN204882846U (zh) * 2015-07-24 2015-12-16 开滦能源化工股份有限公司吕家坨矿业分公司 高低压验电器测试仪
CN205178880U (zh) * 2015-12-08 2016-04-20 广州市千牧电子有限公司 一种开关控制装置
CN106199477A (zh) * 2016-07-01 2016-12-07 西安华为技术有限公司 噪声发生电路、自检电路、afci和光伏发电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809290B (zh) * 2020-07-30 2023-07-21 南亞科技股份有限公司 測試系統
CN116520111A (zh) * 2023-07-03 2023-08-01 深圳戴普森新能源技术有限公司 一种光伏逆变器的电弧故障检测方法及检测系统
CN116520111B (zh) * 2023-07-03 2023-08-25 深圳戴普森新能源技术有限公司 一种光伏逆变器的电弧故障检测方法及检测系统

Also Published As

Publication number Publication date
EP4242673A2 (en) 2023-09-13
CN106199477B (zh) 2019-06-18
US10996284B2 (en) 2021-05-04
CN106199477A (zh) 2016-12-07
EP4242673A3 (en) 2023-11-15
EP3467525B1 (en) 2023-04-05
US20190154746A1 (en) 2019-05-23
EP3467525A4 (en) 2019-07-10
EP3467525A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2018000907A1 (zh) 噪声发生电路、自检电路、afci和光伏发电系统
US9865411B2 (en) Safety device for a photovoltaic system
CN203967734U (zh) 输出短路保护装置
US9547047B2 (en) Leakage current detection device with self-testing function
WO2018028194A1 (zh) 瞬态过电压保护电路和包含其的阵列基板、显示装置
TWM481439U (zh) 交換式電源供應器及其保護裝置
CN109217675A (zh) 电源转换装置及其同步整流电路
CN107926101B (zh) 发光元件驱动设备
US9787184B2 (en) Multiple-phase power circuit
CN105391320B (zh) 多相电源电路
CN201149987Y (zh) 过电压保护装置
CN108174488A (zh) 一种led保护电路
CN203895973U (zh) 一种电涌保护箱
US9832836B2 (en) Drive circuit for illuminating device and illuminating device having the drive circuit
CN109361195A (zh) 一种输入过压保护电路及电源系统
CN102378442B (zh) 发光二极管模组驱动装置及发光二极管模组
CN211577382U (zh) 短路检测装置及充电设备
CN210225845U (zh) 一种负载过压保护电路及保护芯片
CN203774555U (zh) 一种交流电源插座
CN103245872B (zh) 交流熔断器状态检测装置
CN215493782U (zh) 燃气具的交流风机检测装置以及燃气具
CN111725786B (zh) 一种电子设备、电源及其电源电路
CN213986775U (zh) 一种应用广播系统的线路故障采样电路
CN219533671U (zh) 电磁阀控制电路及气体灭火控制系统
CN117214674B (zh) 一种用于psr集成电路工作状态测试的测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017818904

Country of ref document: EP

Effective date: 20190103