WO2018000590A1 - 安全协商方法、安全功能实体、核心网网元及用户设备 - Google Patents

安全协商方法、安全功能实体、核心网网元及用户设备 Download PDF

Info

Publication number
WO2018000590A1
WO2018000590A1 PCT/CN2016/099398 CN2016099398W WO2018000590A1 WO 2018000590 A1 WO2018000590 A1 WO 2018000590A1 CN 2016099398 W CN2016099398 W CN 2016099398W WO 2018000590 A1 WO2018000590 A1 WO 2018000590A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
security
core network
network element
function entity
Prior art date
Application number
PCT/CN2016/099398
Other languages
English (en)
French (fr)
Inventor
应江威
杨艳梅
黄正磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16906986.1A priority Critical patent/EP3468241B1/en
Priority to CN201680086587.XA priority patent/CN109314860B/zh
Publication of WO2018000590A1 publication Critical patent/WO2018000590A1/zh
Priority to US16/233,938 priority patent/US10880744B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0433Key management protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/047Key management, e.g. using generic bootstrapping architecture [GBA] without using a trusted network node as an anchor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to communication technologies, and in particular, to a security negotiation method, a security function entity, a core network element, and a user equipment.
  • 3GPP Third Generation Partnership Project
  • UE User Equipment
  • Attachment mainly completes the process of security process, resource cleanup and registration update and default bearer establishment.
  • the security process mainly includes access authentication and Key Agreement (AKA) and algorithm negotiation.
  • AKA access authentication and Key Agreement
  • a basic key Kamse is negotiated between the UE and the network through the AKA process, and the algorithm negotiation is completed according to the basic Kasme and the specific algorithm identifier, thereby negotiating the integrity protection key and the encryption key.
  • the signaling of interaction between the UE and the network is separately protected by integrity and encryption by the negotiated integrity protection key and encryption key.
  • the AKA and the algorithm negotiation between the UE and the network are specifically negotiated between the UE and the Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • the MME is mainly responsible for all control plane functions of the user and session management, including non-access stratum (NAS) signaling and security, tracking area management, and gateway selection. That is, the MME is responsible for both mobility management and session management. Therefore, in the 4G network, the signaling interaction between the UE and the network is terminated in the MME. Therefore, the AKA and the algorithm negotiation between the UE and the network only need the UE. Negotiate with the MME, so only a set of AKA and algorithm negotiation results need to be negotiated.
  • NAS non-access stratum
  • the mobility management function and the session function of the original MME are implemented by different network entities.
  • the 5G network is abstracted into different network slices, and each network slice includes a control plane functional entity such as a Mobility Management (MM) and a Session Management (SM) functional entity ( Control Plane Function (CPF), and User Plane Function (UPF).
  • MM Mobility Management
  • SM Session Management
  • CPF Control Plane Function
  • UPF User Plane Function
  • the AKA and algorithm negotiation results in the prior art are based on a set of negotiation results between the UE and the MME. Therefore, the prior art AKA and algorithm negotiation methods cannot meet the needs of the 5G network.
  • the embodiments of the present invention provide a security negotiation method, a security function entity, a core network element, and a user equipment to solve the problems in the prior art.
  • a first aspect of the present invention provides a security negotiation method, including:
  • the security function entity receives the authentication request sent by the network element of the core network, where the authentication request is generated by the core network element according to the request message of the user equipment UE;
  • the security function entity performs authentication and key agreement with the UE to generate a security parameter according to the authentication request, where the security parameter includes a first key;
  • the security function entity generates a security key between the core network element and the UE according to the key request and the first key.
  • the security parameter further includes first identification information, wherein the first identification information is used to identify a first security authentication between the UE and the security function entity.
  • the security parameter further includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, the first identifier The information includes address information of the security function entity corresponding to the first security authentication.
  • it also includes:
  • the security function entity sends the first identification information to the UE.
  • the core network element includes a mobility management MM entity, a session management SM entity, a non-access stratum NAS proxy node, a slice selection function SSF or a core network node, wherein the core network node Support MM function and SM function.
  • the security function entity generates a security key between the core network element and the UE according to the key request and the first key, including:
  • the security function entity generates a security key between the MM and the UE according to the first key.
  • the security function entity generates a security key between the core network element and the UE according to the key request and the first key, including:
  • the security function entity generates a security key between the MM and the UE according to the first key and the identifier of the MM, where the identifier of the MM passes the key by the MM
  • the request is sent to the security function entity.
  • the generating a security key between the MM and the UE includes:
  • the security function entity generates a second key of the MM
  • the security function entity sends a second key of the MM to the MM, so that the MM generates a security key between the MM and the UE according to the second key of the MM.
  • the security function entity generates a security key between the SM and the UE according to the first key.
  • the security function entity generates a security key between the core network element and the UE according to the key request and the first key, including:
  • the security function entity generates a security key between the SM and the UE according to the first key and the identifier of the SM, where the identifier of the SM passes the key by the SM
  • the request is sent to the security function entity.
  • the security function entity receives a key request sent by the core network element, including:
  • the security function entity receives a key request sent by the SM, where the key request includes the first identifier information, and the first identifier information is sent by the UE to the SM.
  • the security function entity generates a security key between the core network element and the UE according to the key request and the first key, including:
  • the security function entity generates a security key between the SM and the UE according to the first key and the first identifier information.
  • the security function entity is based on the key request and the first Generating a security key between the core network element and the UE by using a key, including:
  • the security function entity generates a security key between the SM and the UE according to the first key, the first identifier information, and the identifier of the SM, where the identifier of the SM is The SM is sent to the security function entity by the key request.
  • the generating a security key between the SM and the UE includes:
  • the security function entity generates a second key of the SM
  • the security function entity sends a second key of the SM to the SM, so that the SM generates a security key between the SM and the UE according to the second key of the SM.
  • a second aspect of the present invention provides a security negotiation method, including:
  • the core network element performs security negotiation according to the judgment result, and acquires a security key between the core network element and the UE.
  • the request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, and the first security authentication is included.
  • the address information of the security function entity is included.
  • the core network element includes a mobility management MM entity, a session management SM entity, a non-access stratum NAS proxy node, a slice selection function SSF or a core network node, wherein the core network node Support MM function and SM function.
  • the core network element performs security negotiation according to the judgment result, and obtains a security key between the core network element and the UE, including:
  • the core network element determines that the security function entity corresponding to the first security authentication is trustable, then:
  • the core network element sends a key request to the security function entity corresponding to the first security authentication, so that the security function entity corresponding to the first security authentication generates the core network element according to the key request.
  • the core network element generates a security key between the core network element and the UE according to the second key of the core network element.
  • the core network element performs security negotiation according to the judgment result, and obtains a security key between the core network element and the UE, including:
  • the core network element determines that the security function entity corresponding to the first security authentication is untrustworthy, then:
  • the core network element sends an authentication request to the first security function entity, so that the first security function entity performs authentication and key agreement with the UE according to the authentication request.
  • the core network element sends a key request to the first security function entity, so that the first security function entity generates a second key of the core network element according to the key request;
  • the core network element generates a security key between the core network element and the UE according to the second key of the core network element.
  • a third aspect of the present invention provides a security negotiation method, including:
  • the user equipment UE sends a first request message to the core network element, where the first message is used by the core network element to send an authentication request to the security function entity according to the first request message;
  • the UE performs authentication and key agreement with the security function entity to generate a security parameter, where the security parameter includes a first key;
  • the UE generates a security key between the UE and the core network element according to the first key.
  • it also includes:
  • the UE Receiving, by the UE, the first identifier information that is sent by the security function entity, where the first identifier information is generated by the security function entity when performing authentication and key agreement with the UE, where the first identifier information is used. Identifying a first security authentication between the UE and the security function entity.
  • it also includes:
  • the functional entity sends a key request.
  • the UE generates a security key between the UE and the core network element according to the first key, including:
  • the UE generates a security key between the UE and the core network element according to the second key.
  • the UE generates a security key between the UE and the core network element according to the first key, including:
  • the UE generates a security key between the UE and the core network element according to the second key.
  • the core network element includes a mobility management MM entity, a session management SM entity, a non-access stratum NAS proxy node, a slice selection function SSF or a core network node, wherein the core network node Support MM function and SM function.
  • a fourth aspect of the present invention provides a security function entity, including:
  • a receiving module configured to receive an authentication request sent by a core network element, where the authentication request is generated by the core network element according to a request message of the user equipment UE;
  • a processing module configured to perform authentication and key agreement with the UE according to the authentication request, to generate a security parameter, where the security parameter includes a first key
  • the receiving module is further configured to receive a key request sent by the core network element
  • the processing module is further configured to generate a security key between the core network element and the UE according to the key request and the first key.
  • the security parameter further includes first identification information, wherein the first identification information is used to identify a first security authentication between the UE and the security function entity.
  • the security parameter further includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, the first identifier The information includes address information of the security function entity corresponding to the first security authentication.
  • it also includes:
  • a sending module configured to send the first identifier information to the UE.
  • the core network element includes a mobility management MM entity, a session management SM entity, a non-access stratum NAS proxy node, a slice selection function SSF or a core network node, wherein the core network node Support MM function and SM function.
  • the processing module is specifically configured to:
  • the processing module is further used to:
  • the processing module includes:
  • a first generating unit configured to generate a second key of the MM
  • a first sending unit configured to send a second key of the MM to the MM, so that the MM generates a security key between the MM and the UE according to the second key of the MM .
  • the processing module is further used to:
  • the processing module is further used to:
  • the key request sent by the SM is received, where the key request includes the first identifier information, and the first identifier information is sent by the UE to the SM.
  • a security key between the SM and the UE is generated according to the first key and the first identification information.
  • the processing module is further used to:
  • the processing module further includes:
  • a second generating unit configured to generate a second key of the SM
  • a second sending unit configured to send a second key of the SM to the SM, so that the SM generates a security key between the SM and the UE according to the second key of the SM .
  • a fifth aspect of the present invention provides a core network element, including:
  • a receiving module configured to receive a request message sent by the user equipment UE
  • a processing module configured to determine, according to a preset policy, whether the UE needs to be authenticated certificate
  • the processing module is further configured to perform security negotiation according to the determination result, and obtain a security key between the core network element and the UE.
  • the request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, and the first security authentication is included.
  • the address information of the security function entity is included.
  • the core network element includes a mobility management MM entity, a session management SM entity, a non-access stratum NAS proxy node, a slice selection function SSF or a core network node, wherein the core network node Support MM function and SM function.
  • the processing module includes:
  • a first sending unit configured to send a key request to the security function entity corresponding to the first security authentication, when the security function entity corresponding to the first security authentication is trusted, to enable the first security authentication
  • Corresponding security function entity generates a second key of the core network element according to the key request
  • a first generating unit configured to generate a security key between the core network element and the UE according to the second key of the core network element.
  • the processing module further includes:
  • a second sending unit configured to: when it is determined that the security function entity corresponding to the first security authentication is untrustworthy, send an authentication request to the first security function entity, so that the first security function entity is configured according to the authentication request
  • the UE performs authentication and key agreement
  • a third sending unit configured to send a key request to the first security function entity, so that the first security function entity generates a second key of the core network element according to the key request;
  • a second generating unit configured to generate a security key between the core network element and the UE according to the second key of the core network element.
  • a sixth aspect of the present invention provides a user equipment, including:
  • a sending module configured to send a first request message to the core network element, where the first message is used by the core network element to send an authentication request to the security function entity according to the first request message;
  • a processing module configured to perform authentication and key agreement with the security function entity to generate a security parameter a number, wherein the security parameter includes a first key
  • the processing module is further configured to generate a security key between the UE and the core network element according to the first key.
  • it also includes:
  • a receiving module configured to receive first identifier information that is sent by the security function entity, where the first identifier information is generated by the security function entity when performing authentication and key agreement with the UE, where the first identifier information is generated. And configured to identify a first security authentication between the UE and the security function entity.
  • the sending module is further configured to:
  • the processing module includes:
  • a first generating unit configured to generate a second key of the core network element according to the first key
  • a second generating unit configured to generate a security key between the UE and the core network element according to the second key.
  • the processing module further includes:
  • a third generating unit configured to generate a second key of the core network element according to the first key and the identifier of the core network element
  • a fourth generating unit configured to generate a security key between the UE and the core network element according to the second key.
  • the core network element includes a mobility management MM entity, a session management SM entity, a non-access stratum NAS proxy node, a slice selection function SSF or a core network node, wherein the core network node Support MM function and SM function.
  • a seventh aspect of the present invention provides a security function entity, including:
  • the memory is used to store program instructions, and the processor is used to call program instructions in the memory to perform the following methods:
  • An eighth aspect of the present invention provides a core network element, including:
  • the memory is used to store program instructions, and the processor is used to call program instructions in the memory to perform the following methods:
  • the preset policy it is determined whether the UE needs to be securely authenticated.
  • a ninth aspect of the present invention provides a user equipment, including:
  • Memory and processor The memory is used to store program instructions, and the processor is used to call program instructions in the memory to perform the following methods:
  • the solution of the embodiment of the present invention can negotiate NAS security for the 5G network architecture, thereby meeting the security requirements of the 5G network.
  • FIG. 1 is a system architecture diagram of an embodiment of the present invention
  • FIG. 3 is an interaction flowchart of Embodiment 1 of a security negotiation method according to an embodiment of the present disclosure
  • FIG. 4 is an interaction flowchart of Embodiment 2 of a security negotiation method according to an embodiment of the present disclosure
  • FIG. 5 is an interaction flowchart of Embodiment 3 of a security negotiation method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of generating a security key by a UE according to Embodiment 4 of a security negotiation method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of generating a security key by a UE according to Embodiment 5 of a security negotiation method according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart diagram of Embodiment 1 of another security negotiation method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of Embodiment 2 of another security negotiation method according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of interaction when a security function entity in another embodiment of the security negotiation method according to the embodiment of the present invention is trusted;
  • FIG. 11 is a schematic flowchart of Embodiment 3 of another security negotiation method according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of interaction when a security function entity in Embodiment 3 of another security negotiation method is not trusted according to an embodiment of the present disclosure
  • FIG. 13 is a block diagram of a first embodiment of a security function entity according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram of a second embodiment of a security function entity according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of a third embodiment of a security function entity according to an embodiment of the present disclosure.
  • FIG. 16 is a block diagram of a fourth embodiment of a security function entity according to an embodiment of the present disclosure.
  • FIG. 17 is a block diagram of a first embodiment of a core network element according to an embodiment of the present disclosure.
  • FIG. 18 is a block diagram of a second embodiment of a core network element according to an embodiment of the present disclosure.
  • FIG. 19 is a block diagram of a third embodiment of a core network element according to an embodiment of the present disclosure.
  • FIG. 20 is a block diagram of a first embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 21 is a block diagram of a second embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 22 is a block diagram of a third embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 23 is a block diagram of a fourth embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 24 is a block diagram of a fifth embodiment of a security function entity according to an embodiment of the present disclosure.
  • FIG. 25 is a block diagram of a fourth embodiment of a core network element according to an embodiment of the present disclosure.
  • Figure 26 is a block diagram of a fifth embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 1 is a system architecture diagram of an embodiment of the present invention
  • FIG. 2 is another system architecture diagram of an embodiment of the invention.
  • each network slice has a separate CPF entity and a UPF entity, that is, network slice 1 and network slice 2 in FIG. 1 have respective MM functional entities, SM functional entities, and UPF functional entities.
  • multiple network slices share only a part of specific CPF entities (such as MM functional entities), and each network slice has independent partial CPF entities (such as SM functional entities) and independent UPF entities. That is, the network slice 1 and the network slice 2 in FIG. 2 share one common MM, and at the same time, the network slice 1 and the network slice 2 have respective SM function entities and UPF function entities.
  • the method provided by the embodiment of the present invention can be applied to any one of the foregoing system architectures, that is, the security negotiation between the UE and the core network can be implemented by using the method provided by the embodiment of the present invention.
  • the core network element of the present invention may be an MM, an SM, a NAS proxy node, a Slice Selection Function (SSF) or a core network node.
  • the core network node supports the MM function and the SM function.
  • the security function entity of the present invention is specifically used to implement security functions, which also belong to network elements in the core network.
  • FIG. 3 is an interaction flowchart of Embodiment 1 of a security negotiation method according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the UE sends a first request message to the core network element.
  • the MM and the SM are used as an example to describe the security negotiation.
  • the MM and the SM in this embodiment may also be replaced with the other core network elements.
  • This message may be sent to the SSF first and then sent to the security function entity.
  • the message can also be sent directly to the security function entity without any intermediate core network functional entity processing or without any intermediate core network functional entities.
  • the first request message may be, for example, an attach request message, or the message may also be other NAS messages between the UE and the core network element, such as an MM message, an SM message, or an authentication message.
  • the core network element sends an authentication request to the security function entity.
  • the authentication request may be the first request message described above, or may be a new message generated after processing the first request message. That is, the core network element may directly transmit the first request message to the security function entity, or may process the first request message to generate an authentication request and send the authentication request to the security function entity.
  • the security function entity performs authentication and key agreement with the UE according to the authentication request, and generates a security parameter.
  • the first key is included in the security parameter.
  • the security function entity may also be merged into the MM, and the interaction between the MM and the security function entity is an internal interaction.
  • the security function entity can also be merged into the SM, and the interaction between the SM and the security function entity is an internal interaction.
  • the security function entity comprises two parts: an authentication module and a key management module.
  • the two modules can be independent of each other, that is, the authentication module is a separate entity, and the key management module can be merged into the user data entity.
  • the security function entity sends an authentication success response to the core network element.
  • the MM sends a key request to the security function entity.
  • the security function entity generates a security key between the MM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the MM according to the key request and the first key.
  • the security function entity sends a key response to the MM, where the key response includes the second key of the MM.
  • the MM generates a security key between the MM and the UE according to the second key of the MM.
  • the SM sends a key request to the security function entity.
  • the security function entity generates a security key between the SM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the SM according to the key request and the first key.
  • S1011 The security function entity sends a key response to the SM, where the key response includes the second key of the SM.
  • S1012 The SM generates a security key between the SM and the UE according to the second key of the SM.
  • the UE generates a security key between the core network element and the UE according to the first key.
  • the UE In this step, the UE generates a security key between the UE and each core network element for different core network elements.
  • the UE when the MM generates a security key between the MM and the UE, the UE generates a second key of the MM according to the first key, and generates a security secret between the UE and the MM according to the second key of the MM. key.
  • the UE When the SM generates a security key between the SM and the UE, the UE generates a second key of the SM according to the first key, and generates a security key between the UE and the SM according to the second key of the SM.
  • NAS security for the 5G network architecture can be negotiated to meet the security requirements of the 5G network.
  • FIG. 4 is an interaction flowchart of Embodiment 2 of the security negotiation method according to the embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the UE sends a first request message to the core network element.
  • the core network element sends an authentication request to the security function entity.
  • the security function entity performs authentication and key agreement with the UE according to the authentication request, and generates a security parameter.
  • the security parameter includes a first key and first identification information.
  • the foregoing first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the foregoing first identifier information is used to identify the first security authentication between the UE and the security function entity, and the first identifier information includes the security function entity corresponding to the first security authentication. Address information.
  • the security function entity sends an authentication success response to the core network element.
  • the security function entity sends the first identifier information to the UE.
  • the security function entity sends the first identification information to the UE, and needs to be sent by the UE again.
  • the security function entity can reuse the previous negotiation result without having to re-negotiate again.
  • the security function entity when it sends the first identifier information to the UE, it may be sent at any stage after the first identifier information is generated. That is, this step and the steps before and after it are not strictly sequential.
  • the security function entity may directly generate the first identification information and send the first identification information to the UE in the process of performing authentication and security negotiation with the UE.
  • the security function entity may also send the first identifier information by using other messages after generating the first identifier information. That is, this step is an optional step, and the first identification information may be sent in this step, or may be sent in the negotiation in S203.
  • the MM sends a key request to the security function entity.
  • the security function entity generates a security key between the MM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the MM according to the key request and the first key.
  • the security function entity sends a key response to the MM, where the key response includes the second key of the MM.
  • the MM generates a security key between the MM and the UE according to the second key of the MM.
  • the SM sends a key request to the security function entity.
  • the security function entity generates a security key between the SM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the SM according to the key request and the first key.
  • the security function entity sends a key response to the SM, where the key response includes the second key of the SM.
  • S2013 The SM generates a security key between the SM and the UE according to the second key of the SM.
  • the UE generates a security key between the core network element and the UE according to the first key.
  • the UE In this step, the UE generates a security key between the UE and each core network element for different core network elements.
  • the time for the UE to generate the security key of each core network element may be different.
  • the UE when the MM generates a security key between the MM and the UE, the UE also generates a security key between the MM and the UE accordingly.
  • the SM When the SM generates a security key between the SM and the UE, the UE also generates security between the SM and the UE accordingly. Key.
  • the security function entity when the security function entity generates the security key between the MM and the UE according to the key request and the first key, the security function may perform the following two alternative manners.
  • the security function entity In a first alternative, the security function entity generates a security key between the MM and the UE according to the first key.
  • the security function entity generates a second key of the MM according to the first key.
  • the first key is a basic key
  • the second key of the MM is a key calculated by a specific algorithm based on the first key.
  • the security key between the MM and the UE is generated according to the second key of the MM.
  • the security key between the MM and the UE may include an integrity protection key and an encryption key. That is, the integrity protection key and the encryption key between the MM and the UE can be calculated by the second key of the MM.
  • one example of an algorithm for MM's integrity protection key is:
  • NAS_int_MM HMAC-SHA256(Kasme_MM, integrity key label, Alg_int ID)
  • the Kasme_MM is the second key of the MM
  • the integrity key label indicates that the algorithm is used to calculate the integrity protection key
  • the Alg_int ID is the integrity protection algorithm identifier.
  • one example of an algorithm for MM's encryption key is:
  • NAS_enc_MM HMAC-SHA256(Kasme_MM,confidentiality key label,Alg_enc ID)
  • the Kasme_MM is the second key of the MM.
  • the confidentiality key label indicates that the algorithm is used to calculate the encryption key, and the Alg_enc ID is the encryption algorithm identifier.
  • the security function entity In a second optional manner, the security function entity generates a security key between the MM and the UE according to the first key and the identifier of the MM, where the identifier of the MM is sent by the MM to the security function entity through the key request. .
  • the security function entity generates a second key of the MM according to the first key and the identifier of the MM.
  • the first key is a basic key
  • the second key of the MM is based on the first key.
  • the second key of the MM can be calculated by the following algorithm:
  • Kasme_MM HMAC-SHA256(Kasme, MM ID)
  • the Kasme is the first key and the MM ID is the MM identifier.
  • the security key between the MM and the UE is generated according to the second key of the MM.
  • the security key between the MM and the UE may include an integrity protection key and an encryption key. That is, the integrity protection key and the encryption key between the MM and the UE can be calculated by the second key of the MM.
  • one example of an algorithm for MM's integrity protection key is:
  • NAS_int_MM HMAC-SHA256(Kasme_MM, integrity key label, Alg_int ID)
  • the Kasme_MM is the second key of the MM
  • the integrity key label indicates that the algorithm is used to calculate the integrity protection key
  • the Alg_int ID is the integrity protection algorithm identifier.
  • NAS_enc_MM HMAC-SHA256(Kasme_MM,confidentiality key label,Alg_enc ID)
  • the Kasme_MM is the second key of the MM.
  • the confidentiality key label indicates that the algorithm is used to calculate the encryption key, and the Alg_enc ID is the encryption algorithm identifier.
  • the security function entity when the security function entity generates the security key between the SM and the UE according to the key request and the first key, the security function may perform the following two alternative manners.
  • the security function entity In a first alternative, the security function entity generates a security key between the SM and the UE according to the first key.
  • the security function entity generates a second key of the SM according to the first key.
  • the first key is a basic key
  • the second key of the SM is a key calculated by a specific algorithm based on the first key.
  • the SM After the SM receives the second key of the SM, the SM generates a security key between the SM and the UE according to the second key of the SM.
  • the security key between the SM and the UE may include an integrity protection key and an encryption key. That is, the integrity protection key and the encryption key between the SM and the UE can be calculated by the second key of the SM.
  • the security function entity In a second optional manner, the security function entity generates a security key between the SM and the UE according to the first key and the identifier of the SM, where the identifier of the SM is sent by the SM to the security function entity through the key request. .
  • the security function entity generates a second key of the SM according to the first key and the identifier of the SM.
  • the first key is a basic key
  • the second key of the SM is a key calculated by a specific algorithm in combination with the SM identifier on the basis of the first key.
  • the SM After the SM receives the second key of the SM, the SM generates a security key between the SM and the UE according to the second key of the SM.
  • the security key between the SM and the UE may include an integrity protection key and an encryption key. That is, the integrity protection key and the encryption key between the SM and the UE can be calculated by the second key of the SM.
  • FIG. 5 is an interaction flowchart of Embodiment 3 of the security negotiation method according to the embodiment of the present invention. As shown in FIG. 5, the method includes:
  • the UE sends a first request message to a core network element.
  • the core network element sends an authentication request to the security function entity.
  • the security function entity performs authentication and key agreement with the UE according to the authentication request, and generates a security parameter.
  • the security parameter includes a first key and first identification information.
  • the foregoing first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the foregoing first identifier information is used to identify the first security authentication between the UE and the security function entity, and the first identifier information includes the security function entity corresponding to the first security authentication. Address information.
  • the security function entity sends an authentication success response to the core network element.
  • the security function entity sends the first identifier information to the UE.
  • the security function entity sends the first identification information to the UE.
  • the security function entity can reuse the previous negotiation result without re-negoing the negotiation process.
  • the security function entity when it sends the first identifier information to the UE, it may be sent at any stage after the first identifier information is generated. That is, this step and the steps before and after it are not strictly sequential.
  • the security function entity can perform authentication and security negotiation with the UE. In the process, the first identification information is directly generated and the first identification information is sent to the UE. Alternatively, the security function entity may also send the first identifier information by using other messages after generating the first identifier information.
  • this step is an optional step, and the first identification information may be sent in this step, or may be sent when negotiating in S303.
  • the MM sends a key request to the security function entity.
  • the security function entity generates a security key between the MM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the MM according to the key request and the first key.
  • the security function entity sends a key response to the MM, where the key response includes the second key of the MM.
  • the MM generates a security key between the MM and the UE according to the second key of the MM.
  • the UE sends a second request message to the SM, where the first identifier information is included.
  • the UE may carry the first identifier information in the connection setup request message when the connection setup request message is sent.
  • S3011 The SM sends a key request to the security function entity, where the key request includes the first identifier information.
  • the security function entity generates a security key between the SM and the UE according to the first key and the first identification information.
  • the security function entity determines, according to the first identifier information, whether the SM has been authenticated successfully, and if yes, determines the first key, and determines the second key of the SM according to the first key.
  • the first identifier information is used to identify the first security authentication between the UE and the security function entity.
  • the security function entity and the UE complete the security and authentication negotiation, after obtaining the first identifier information, the security function entity An identification information is sent to the UE.
  • the first identifier information may be carried.
  • the security function entity can quickly generate the second key of the SM based on the previous authentication and negotiation result, thereby greatly improving the processing efficiency.
  • the security function entity sends a key response to the SM, where the key response includes the second key of the SM.
  • S3014 The SM generates a security key between the SM and the UE according to the second key of the SM.
  • the UE generates a security key between the core network element and the UE according to the first key.
  • the UE In this step, the UE generates a security key between the UE and each core network element for different core network elements.
  • the time for the UE to generate the security key of each core network element may be different.
  • the UE when the MM generates a security key between the MM and the UE, the UE also generates a security key between the MM and the UE accordingly.
  • the SM When the SM generates a security key between the SM and the UE, the UE also generates a security key between the SM and the UE accordingly.
  • the security key between the SM and the UE when the security key between the SM and the UE is generated in the foregoing step S3012, the security key between the SM and the UE may also be generated according to the first key, the first identification information, and the identifier of the SM.
  • the identifier of the SM is sent by the SM to the security function entity through a key request.
  • the security function entity generates a second key of the SM according to the first key, the first identification information, and the identifier of the SM.
  • FIG. 6 is a schematic flowchart of a UE generating a security key according to Embodiment 4 of the security negotiation method according to an embodiment of the present invention.
  • the UE generates a UE and a core network element.
  • the process of security key is:
  • the UE generates a second key of the core network element according to the first key.
  • the UE generates a security key between the UE and the core network element according to the second key.
  • FIG. 7 is a schematic diagram of a process for generating a security key by a UE according to Embodiment 5 of the security negotiation method according to an embodiment of the present invention. As shown in FIG. 7, in the foregoing steps S1013, S2014, and S3015, a UE generates a UE and a core network element. Another process for security keys is:
  • the UE generates a second key of the core network element according to the first key and the identifier of the core network element.
  • the UE generates the second key of the core network element based on the first key and the identifier of the core network element.
  • the UE may generate a second key of the MM according to the first key and the identifier of the MM.
  • the UE generates a security key between the UE and the core network element according to the second key.
  • FIG. 8 is a schematic flowchart of a first embodiment of a security negotiation method according to an embodiment of the present invention. The method is performed by a core network element, and the method includes:
  • the core network element receives the request message sent by the UE.
  • the request message can be, for example, a connection establishment request.
  • the core network element determines whether the UE needs to perform security authentication according to a preset policy.
  • a plurality of policies may be configured on the core network element, and may be used to specify information such as the credibility of the core network element connected to the UE.
  • the core network element performs security negotiation according to the judgment result, and obtains a security key between the core network element and the UE.
  • the core network element after receiving the request message of the UE, the core network element first determines whether the UE needs to perform security authentication, and ensures that the UE is connected to the trusted security function entity.
  • the foregoing request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the foregoing request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, and includes a security function entity corresponding to the first security authentication. Address information.
  • FIG. 9 is a schematic flowchart of Embodiment 2 of another security negotiation method according to an embodiment of the present invention.
  • the core network element determines that the security function entity corresponding to the first security authentication may be When trusting, the following processing is performed:
  • the core network element sends a key request to the security function entity corresponding to the first security authentication, so that the security function entity corresponding to the first security authentication generates the second key of the core network element according to the key request.
  • the core network element generates a security key between the core network element and the UE according to the second key of the core network element.
  • the security function entity corresponding to the first identifier information when the security function entity corresponding to the first identifier information is trusted, the security function entity corresponding to the first identifier information can be directly used to generate a security key between the UE and the core network element.
  • FIG. 10 is a flowchart of interaction when a security function entity in a second embodiment of the security negotiation method according to the embodiment of the present invention is trusted. As shown in FIG. 10, the method includes:
  • the UE sends a first request message to the core network element.
  • the core network element sends an authentication request to the security function entity.
  • the security function entity performs authentication and key agreement with the UE according to the authentication request, and generates a security parameter.
  • the security parameter includes a first key and first identification information.
  • the security function entity sends an authentication success response to the core network element.
  • the security function entity sends the first identifier information to the UE.
  • the security function entity when it sends the first identifier information to the UE, it may be sent at any stage after the first identifier information is generated. That is, this step and the steps before and after it are not strictly sequential.
  • the security function entity may directly generate the first identification information and send the first identification information to the UE in the process of performing authentication and security negotiation with the UE.
  • the security function entity may also send the first identifier information by using other messages after generating the first identifier information.
  • this step is an optional step, and the first identification information may be sent in this step, or may be issued when negotiating in S803.
  • the MM sends a key request to the security function entity.
  • the security function entity generates a security key between the MM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the MM according to the key request and the first key.
  • the security function entity sends a key response to the MM, where the key response includes a second key of the MM.
  • the MM generates a security key between the MM and the UE according to the second key of the MM.
  • the UE sends a second request message to the SM, where the first identifier information is included.
  • the UE may carry the first identifier information in the connection setup request message when the connection setup request message is sent.
  • S8011 The SM determines, according to the preset policy, that the security function entity corresponding to the first security authentication is trusted.
  • S8012 The SM sends a key request to the security function entity corresponding to the first security authentication, where the key request includes the first identifier information.
  • the security function entity generates a security key between the SM and the UE according to the first key and the first identifier information.
  • the security function entity determines, according to the first identifier information, whether the SM has been authenticated successfully, and if yes, determines the first key, and determines the second key of the SM according to the first key.
  • the security function entity sends a key response to the SM, where the key response includes the second key of the SM.
  • S8015 The SM generates a security key between the SM and the UE according to the second key of the SM.
  • the UE generates a security key between the core network element and the UE according to the first key.
  • FIG. 11 is a schematic flowchart of Embodiment 3 of another security negotiation method according to an embodiment of the present disclosure. As shown in FIG. 11, in the foregoing step S603, when the core network element determines that the security function entity corresponding to the first security authentication is untrustworthy, the following processing is performed:
  • the core network element sends an authentication request to the first security function entity, so that the first security function entity performs authentication and key agreement with the UE according to the authentication request.
  • the first security function entity is a security function entity that the core network element considers to be trusted.
  • the core network element sends a key request to the first security function entity, so that the first security function entity generates the second key of the core network element according to the key request.
  • the core network element generates a security key between the core network element and the UE according to the second key of the core network element.
  • FIG. 12 is a flowchart of interaction when the security function entity in the third embodiment of the security negotiation method is not trusted according to the embodiment of the present invention. As shown in FIG. 12, the method includes:
  • S1001 The UE sends a first request message to a core network element.
  • S1002 The core network element sends an authentication request to the security function entity.
  • the security function entity performs authentication and key agreement with the UE according to the authentication request, and generates a security parameter.
  • the security parameter includes a first key and first identification information.
  • S1004 The security function entity sends an authentication success response to the core network element.
  • the security function entity sends the first identifier information to the UE.
  • the security function entity when it sends the first identifier information to the UE, it may be sent at any stage after the first identifier information is generated. That is, this step and the steps before and after it are not strictly sequential.
  • the security function entity may directly generate the first identification information and send the first identification information to the UE in the process of performing authentication and security negotiation with the UE.
  • the security function entity may also send the first identifier information by using other messages after generating the first identifier information.
  • this step is an optional step, and the first identification information may be sent in this step, or may be sent in the negotiation in S1003.
  • S1006 The MM sends a key request to the security function entity.
  • the security function entity generates a security key between the MM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the MM according to the key request and the first key.
  • the security function entity sends a key response to the MM, where the key response includes the MM. Two keys.
  • the MM generates a security key between the MM and the UE according to the second key of the MM.
  • the UE sends a second request message to the SM, where the first identifier information is included.
  • the UE may carry the first identifier information in the connection setup request message when the connection setup request message is sent.
  • S1011 The SM determines, according to the preset policy, that the security function entity corresponding to the first security authentication is not trusted.
  • S1012 The SM sends an authentication request to the first security function entity.
  • the first security function entity is a security function entity that the SM considers to be trusted according to a preset policy.
  • the first security function entity performs authentication and key agreement with the UE according to the authentication request, and generates a security parameter.
  • the security parameter includes a first key and second identification information.
  • the second identifier information is used to identify the security authentication between the UE and the first security function entity.
  • S1014 The first security function entity sends an authentication success response to the SM.
  • the first security function entity sends the second identifier information to the UE.
  • the first security function entity when it sends the first identifier information to the UE, it may be sent at any stage after the second identifier information is generated. That is, this step and the steps before and after it are not strictly sequential.
  • the first security function entity may directly generate the second identity information and send the first identity information to the UE in the process of performing authentication and security negotiation with the UE.
  • the security function entity may also send the second identifier information by using other messages after generating the first identifier information.
  • this step is an optional step, and the second identification information may be sent in this step, or may be issued when negotiating in S1013.
  • S1016 The SM sends a key request to the first security function entity.
  • the first security function entity generates a security key between the SM and the UE according to the key request and the first key.
  • the security function entity generates a second key of the MM according to the key request and the first key.
  • the first security function entity sends a key response to the SM, where the key response includes the second key of the SM.
  • S1019 The SM generates a security key between the SM and the UE according to the second key of the SM.
  • S1020 The UE generates a security key between the core network element and the UE according to the first key.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 13 is a block diagram of a first embodiment of a security function entity according to an embodiment of the present invention. As shown in FIG. 13, the security function entity includes:
  • the receiving module 501 is configured to receive an authentication request sent by the core network element, where the authentication request is generated by the core network element according to the request message of the UE.
  • the processing module 502 is configured to perform authentication and key agreement with the UE according to the authentication request, and generate a security parameter, where the security parameter includes the first key.
  • the receiving module 501 is further configured to receive a key request sent by the core network element.
  • the processing module 502 is further configured to generate a security key between the core network element and the UE according to the key request and the first key.
  • the security function entity is used to implement the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the security parameter further includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the foregoing security parameter further includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, where the first identifier information includes the first security authentication.
  • the address information of the corresponding security function entity is used to identify a first security authentication between the UE and the security function entity.
  • FIG. 14 is a block diagram of a second embodiment of a security function entity according to an embodiment of the present invention. As shown in FIG. 14, the security function entity further includes:
  • the sending module 503 is configured to send the first identifier information to the UE.
  • processing module 502 is specifically configured to:
  • a security key between the MM and the UE is generated according to the first key.
  • processing module 502 is further specifically configured to:
  • FIG. 15 is a block diagram of a third embodiment of a security function entity according to an embodiment of the present invention.
  • the processing module 502 includes:
  • the first generating unit 5021 is configured to generate a second key of the MM.
  • the first sending unit 5022 is configured to send the second key of the MM to the MM, so that the MM generates a security key between the MM and the UE according to the second key of the MM.
  • processing module 502 is further specifically configured to:
  • a security key between the SM and the UE is generated according to the first key.
  • processing module 502 is further specifically configured to:
  • the receiving module 501 is specifically configured to:
  • processing module 502 is further specifically configured to:
  • processing module 502 is further specifically configured to:
  • FIG 16 is a block diagram of a fourth embodiment of a security function entity according to an embodiment of the present invention. As shown in Figure 16, the processing module 502 further includes:
  • the second generating unit 5023 is configured to generate a second key of the SM.
  • the second sending unit 5024 is configured to send the second key of the SM to the SM, so that the SM generates a security key between the SM and the UE according to the second key of the SM.
  • FIG. 17 is a block diagram of a core network element according to Embodiment 1 of the present invention. As shown in FIG. 17, the core network element includes:
  • the receiving module 601 is configured to receive a request message sent by the UE.
  • the processing module 602 is configured to determine, according to a preset policy, whether the UE needs to perform security authentication.
  • the processing module 602 is further configured to perform security negotiation according to the determination result, and obtain a security key between the core network element and the UE.
  • the request message includes first identifier information, where the first identifier information is used.
  • the first security authentication between the UE and the security function entity is identified.
  • the request message includes the first identifier information, where the first identifier information is used to identify the first security authentication between the UE and the security function entity, and includes the address of the security function entity corresponding to the first security authentication. information.
  • FIG. 18 is a block diagram of a second embodiment of a core network element according to an embodiment of the present invention. As shown in FIG. 18, the processing module 602 includes:
  • the first sending unit 6021 is configured to: when it is determined that the security function entity corresponding to the first security authentication is trusted, send a key request to the security function entity corresponding to the first security authentication, so that the security function entity corresponding to the first security authentication Generating a second key of the core network element according to the key request.
  • the first generating unit 6022 is configured to generate a security key between the core network element and the UE according to the second key of the core network element.
  • FIG. 19 is a block diagram of a third embodiment of a core network element according to an embodiment of the present invention. As shown in FIG. 19, the processing module 602 further includes:
  • the second sending unit 6023 is configured to: when it is determined that the security function entity corresponding to the first security authentication is untrustworthy, send an authentication request to the first security function entity, so that the first security function entity and the UE according to the authentication request Perform authentication and key negotiation.
  • the third sending unit 6024 is configured to send a key request to the first security function entity, so that the first security function entity generates the second key of the core network element according to the key request.
  • the second generating unit 6025 is configured to generate a security key between the core network element and the UE according to the second key of the core network element.
  • FIG. 20 is a block diagram of a first embodiment of a user equipment according to an embodiment of the present invention. As shown in FIG. 20, the user equipment includes:
  • the sending module 701 is configured to send a first request message to the core network element, where the first message is used by the core network element to send an authentication request to the security function entity according to the first request message.
  • the processing module 702 is configured to perform authentication and key negotiation with the security function entity to generate a security parameter, where the security parameter includes the first key.
  • the processing module 702 is further configured to generate a security key between the UE and the core network element according to the first key.
  • FIG 21 is a block diagram of a second embodiment of a user equipment according to an embodiment of the present invention. As shown in Figure 21, the user equipment further includes:
  • the receiving module 703 is configured to receive the first identifier information that is sent by the security function entity, where the first identifier information is generated by the security function entity when performing authentication and key agreement with the UE, where the first identifier information is used to identify the UE and the security function entity. The first safety certification between the two.
  • the sending module 701 is further configured to:
  • FIG 22 is a block diagram of a third embodiment of a user equipment according to an embodiment of the present invention.
  • the processing module 702 includes:
  • the first generating unit 7021 is configured to generate a second key of the core network element according to the first key.
  • the second generating unit 7022 is configured to generate a security key between the UE and the core network element according to the second key.
  • FIG. 23 is a block diagram of a fourth embodiment of a user equipment according to an embodiment of the present invention. As shown in FIG. 23, the processing module 702 further includes:
  • the third generating unit 7023 is configured to generate a second key of the core network element according to the first key and the identifier of the core network element.
  • the fourth generating unit 7024 is configured to generate a security key between the UE and the core network element according to the second key.
  • FIG 24 is a block diagram of a fifth embodiment of a security function entity according to an embodiment of the present invention.
  • the security function entity includes:
  • the memory 801 is used to store program instructions, and the processor 802 is configured to call program instructions in the memory to perform the following methods:
  • the security parameter further includes first identification information, where the first identification letter The information is used to identify the first security authentication between the UE and the security function entity.
  • the security parameter further includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, where the first identifier information includes the The address information of the security function entity corresponding to the first security authentication.
  • the processor 802 is further configured to: send the first identifier information to the UE.
  • the processor 802 is further configured to: generate a security key between the MM and the UE according to the first key.
  • the processor 802 is further configured to: generate a security key between the MM and the UE according to the first key and the identifier of the MM, where the identifier of the MM is used by the MM The key request is sent to the security function entity.
  • the processor 802 is further configured to: generate a second key of the MM; send the second key of the MM to the MM, so that the MM generates according to the second key of the MM A security key between the MM and the UE.
  • the processor 802 is further configured to: generate a security key between the SM and the UE according to the first key.
  • the processor 802 is further configured to: generate a security key between the SM and the UE according to the first key and the identifier of the SM, where the identifier of the SM is used by the SM The key request is sent to the security function entity.
  • the processor 802 is further configured to: receive a key request sent by the SM, where the key request includes the first identifier information, where the first identifier information is sent by the UE to the SM.
  • the processor 802 is further configured to: generate a security key between the SM and the UE according to the first key and the first identifier information.
  • the processor 802 is further configured to: generate a security key between the SM and the UE according to the first key, the first identifier information, and an identifier of the SM, where The identity of the SM is sent by the SM to the security function entity via the key request.
  • the processor 802 is further configured to: generate a second key of the SM; send the second key of the SM to the SM, so that the SM generates according to the second key of the SM A security key between the SM and the UE.
  • FIG. 25 is a block diagram of a fourth embodiment of a core network element according to an embodiment of the present invention, such as As shown in FIG. 25, the core network element includes:
  • the memory 901 is configured to store program instructions, and the processor 902 is configured to call program instructions in the memory to perform the following methods:
  • the preset policy it is determined whether the UE needs to be securely authenticated.
  • the request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the request message includes first identifier information, where the first identifier information is used to identify a first security authentication between the UE and the security function entity, and includes a security function entity corresponding to the first security authentication. Address information.
  • processor 902 is further configured to: if the core network element determines that the security function entity corresponding to the first security authentication is trusted, then:
  • the core network element sends a key request to the security function entity corresponding to the first security authentication, so that the security function entity corresponding to the first security authentication generates the core network element according to the key request.
  • the core network element generates a security key between the core network element and the UE according to the second key of the core network element.
  • processor 902 is further configured to: if the core network element determines that the security function entity corresponding to the first security authentication is untrustworthy, then:
  • the core network element sends an authentication request to the first security function entity, so that the first security function entity performs authentication and key agreement with the UE according to the authentication request.
  • the core network element sends a key request to the first security function entity, so that the first security function entity generates a second key of the core network element according to the key request;
  • the core network element generates a security key between the core network element and the UE according to the second key of the core network element.
  • Figure 26 is a block diagram of a fifth embodiment of a user equipment according to an embodiment of the present invention. As shown in Figure 26, the user equipment includes:
  • the memory 1001 is configured to store program instructions, and the processor 1002 is configured to call program instructions in the memory to perform the following methods:
  • the processor 1002 is further configured to: receive first identifier information that is sent by the security function entity, where the first identifier information is generated by the security function entity when performing authentication and key agreement with the UE, where The first identifier information is used to identify a first security authentication between the UE and the security function entity.
  • the processor 1002 is further configured to: send a second request message to the core network element, where the second request message includes the first identifier information, so that the core network element is according to the An identification information sends a key request to the security function entity.
  • the processor 1002 is further configured to: generate a second key of the core network element according to the first key; generate the UE and the core network element according to the second key The security key between.
  • the processor 1002 is further configured to: generate, according to the first key and the identifier of the core network element, a second key of the core network element; the UE according to the second key And generating a security key between the UE and the core network element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种安全协商方法、安全功能实体、核心网网元及用户设备,该方法包括:安全功能实体接收核心网网元发送的认证请求,所述认证请求为所述核心网网元根据用户设备UE的请求消息生成的;所述安全功能实体根据所述认证请求,与所述UE进行认证和和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;所述安全功能实体接收所述核心网网元发送的密钥请求;所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥。该方法能够协商出针对5G网络架构的NAS安全,从而满足5G网络的安全需要。

Description

安全协商方法、安全功能实体、核心网网元及用户设备 技术领域
本发明涉及通信技术,尤其涉及一种安全协商方法、安全功能实体、核心网网元及用户设备。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)网络中,附着是用户设备(User Equipment,简称UE)进行业务前在网络中注册的过程,UE只有在附着成功后才能接收来自网络的服务。附着主要完成安全流程、资源清理和注册更新及默认承载建立等过程。其中,安全流程主要包括接入认证和密钥协商(Authentication and Key Agreement,简称AKA)和算法协商。UE和网络之间通过AKA过程协商出一个基础密钥Kamse,再根据该基础Kasme和特定的算法标识完成算法协商,从而协商出完整性保护密钥和加密密钥。在此之后,UE和网络之间进行交互的信令都会通过协商出的完整性保护密钥和加密密钥分别进行完整性保护和加密保护。
在4G长期演进(Long Term Evolution,简称LTE)系统中,UE和网络之间的AKA和算法协商具体是通过UE和移动性管理实体(Mobility Management Entity,简称MME)之间进行协商。MME主要负责用户及会话管理的所有控制平面功能,包括非接入层(Non-access Stratum,简称NAS)信令及安全,跟踪区管理,网关选择等。即,MME既负责移动性管理,又负责会话管理,因此,在4G网络中,UE和网络之间的信令交互都终结在MME,因此,UE和网络之间的AKA和算法协商仅需要UE和MME之间进行协商,因此仅需要协商出一套AKA和算法协商结果即可。
而在5G网络中,原MME所具有的移动性管理功能和会话功能被不同的网络实体来实现。具体地,5G网络被抽象为不同的网络切片,每个网络切片中都包括移动性管理功能实体(Mobility Management,简称MM)和会话管理(Session Management,简称SM)功能实体等控制面功能实体(Control  Plane Function,简称CPF),以及用户面功能实体(User Plane Function,简称UPF)。由于在5G网络中包括了多个网络切片,多个网络切片之间是相互独立的,并且每个网络切片中的MM和SM都是独立的,因此,在5G网络中,不同的网络切片之间、以及每个网络切片的MM和SM之间都需要进行安全隔离,使用各自的AKA和算法协商结果。其中,5G网络中的AKA与4G网络中可能不同。
现有技术中的AKA和算法协商结果是基于UE和MME之间的一套协商结果,因此,现有技术的AKA和算法协商方法并不能满足5G网络的需要。
发明内容
本发明实施例提供一种安全协商方法、安全功能实体、核心网网元及用户设备,以解决现有技术的问题。
本发明第一方面提供一种安全协商方法,包括:
安全功能实体接收核心网网元发送的认证请求,所述认证请求为所述核心网网元根据用户设备UE的请求消息生成的;
所述安全功能实体根据所述认证请求,与所述UE进行认证和和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
所述安全功能实体接收所述核心网网元发送的密钥请求;
所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥。
在一种可能的设计中,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
在一种可能的设计中,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识UE与所述安全功能实体之间的第一安全认证,所述第一标识信息中包含所述第一安全认证对应的安全功能实体的地址信息。
在一种可能的设计中,还包括:
所述安全功能实体将所述第一标识信息发送给所述UE。
在一种可能的设计中,所述核心网网元包括移动性管理MM实体、会话管理SM实体、非接入层NAS代理节点、切片选择功能SSF或核心网节点,其中,所述核心网节点支持MM功能和SM功能。
在一种可能的设计中,所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥,包括:
所述安全功能实体根据所述第一密钥,生成所述MM和所述UE之间的安全密钥。
在一种可能的设计中,所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥,包括:
所述安全功能实体根据所述第一密钥以及所述MM的标识,生成所述MM和所述UE之间的安全密钥,其中,所述MM的标识由所述MM通过所述密钥请求发送给所述安全功能实体。
在一种可能的设计中,所述生成所述MM和所述UE之间的安全密钥,包括:
所述安全功能实体生成所述MM的第二密钥;
所述安全功能实体将所述MM的第二密钥发送给所述MM,以使所述MM根据所述MM的第二密钥生成所述MM和所述UE之间的安全密钥。
在一种可能的设计中,所述安全功能实体根据所述第一密钥,生成所述SM和所述UE之间的安全密钥。
在一种可能的设计中,所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥,包括:
所述安全功能实体根据所述第一密钥以及所述SM的标识,生成所述SM和所述UE之间的安全密钥,其中,所述SM的标识由所述SM通过所述密钥请求发送给所述安全功能实体。
在一种可能的设计中,所述安全功能实体接收所述核心网网元发送的密钥请求,包括:
所述安全功能实体接收所述SM发送的密钥请求,所述密钥请求中包括所述第一标识信息,所述第一标识信息由所述UE发送给所述SM。
在一种可能的设计中,所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥,包括:
所述安全功能实体根据所述第一密钥和所述第一标识信息,生成所述SM和所述UE之间的安全密钥。
在一种可能的设计中,所述安全功能实体根据所述密钥请求以及所述第 一密钥,生成所述核心网网元和所述UE之间的安全密钥,包括:
所述安全功能实体根据所述第一密钥、所述第一标识信息以及所述SM的标识,生成所述SM和所述UE之间的安全密钥,其中,所述SM的标识由所述SM通过所述密钥请求发送给所述安全功能实体。
在一种可能的设计中,所述生成所述SM和所述UE之间的安全密钥,包括:
所述安全功能实体生成所述SM的第二密钥;
所述安全功能实体将所述SM的第二密钥发送给所述SM,以使所述SM根据所述SM的第二密钥生成所述SM和所述UE之间的安全密钥。
本发明第二方面提供一种安全协商方法,包括:
核心网网元接收用户设备UE发送的请求消息;
所述核心网网元根据预设的策略,判断是否需要对所述UE进行安全认证;
所述核心网网元根据判断结果进行安全协商,获取所述核心网网元与所述UE之间的安全密钥。
在一种可能的设计中,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证。
在一种可能的设计中,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并包含所述第一安全认证对应的安全功能实体的地址信息。
在一种可能的设计中,所述核心网网元包括移动性管理MM实体、会话管理SM实体、非接入层NAS代理节点、切片选择功能SSF或核心网节点,其中,所述核心网节点支持MM功能和SM功能。
在一种可能的设计中,所述核心网网元根据判断结果进行安全协商,获取所述核心网网元与所述UE之间的安全密钥,包括:
若所述核心网网元判断出所述第一安全认证对应的安全功能实体可信任,则:
所述核心网网元向所述第一安全认证对应的安全功能实体发送密钥请求,以使所述第一安全认证对应的安全功能实体根据所述密钥请求生成所述核心网网元的第二密钥;
所述核心网网元根据所述核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
在一种可能的设计中,所述核心网网元根据判断结果进行安全协商,获取所述核心网网元与所述UE之间的安全密钥,包括:
若所述核心网网元判断出所述第一安全认证对应的安全功能实体不可信任,则:
所述核心网网元向第一安全功能实体发送认证请求,以使所述第一安全功能实体根据所述认证请求与所述UE进行认证和密钥协商;
所述核心网网元向第一安全功能实体发送密钥请求,以使所述第一安全功能实体根据所述密钥请求生成所述核心网网元的第二密钥;
所述核心网网元根据所述核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
本发明第三方面提供一种安全协商方法,包括:
用户设备UE向核心网网元发送第一请求消息,所述第一消息用于所述核心网网元根据所述第一请求消息向安全功能实体发送认证请求;
所述UE与所述安全功能实体进行认证和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
所述UE根据所述第一密钥,生成所述UE和所述核心网网元之间的安全密钥。
在一种可能的设计中,还包括:
所述UE接收所述安全功能实体发送的第一标识信息,所述第一标识信息由所述安全功能实体在同所述UE进行认证和密钥协商时生成,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
在一种可能的设计中,还包括:
所述UE向所述核心网网元发送第二请求消息,所述第二请求消息中包括所述第一标识信息,以使所述核心网网元根据所述第一标识信息向所述安全功能实体发送密钥请求。
在一种可能的设计中,所述UE根据所述第一密钥生成所述UE和所述核心网网元之间的安全密钥,包括:
所述UE根据所述第一密钥,生成所述核心网网元的第二密钥;
所述UE根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
在一种可能的设计中,所述UE根据所述第一密钥生成所述UE和所述核心网网元之间的安全密钥,包括:
所述UE根据所述第一密钥以及所述核心网网元的标识,生成所述核心网网元的第二密钥;
所述UE根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
在一种可能的设计中,所述核心网网元包括移动性管理MM实体、会话管理SM实体、非接入层NAS代理节点、切片选择功能SSF或核心网节点,其中,所述核心网节点支持MM功能和SM功能。
本发明第四方面提供一种安全功能实体,包括:
接收模块,用于接收核心网网元发送的认证请求,所述认证请求为所述核心网网元根据用户设备UE的请求消息生成的;
处理模块,用于根据所述认证请求,与所述UE进行认证和和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
所述接收模块,还用于接收所述核心网网元发送的密钥请求;
所述处理模块,还用于根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥。
在一种可能的设计中,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
在一种可能的设计中,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识UE与所述安全功能实体之间的第一安全认证,所述第一标识信息中包含所述第一安全认证对应的安全功能实体的地址信息。
在一种可能的设计中,还包括:
发送模块,用于将所述第一标识信息发送给所述UE。
在一种可能的设计中,所述核心网网元包括移动性管理MM实体、会话管理SM实体、非接入层NAS代理节点、切片选择功能SSF或核心网节点,其中,所述核心网节点支持MM功能和SM功能。
在一种可能的设计中,所述处理模块具体用于:
根据所述第一密钥,生成所述MM和所述UE之间的安全密钥。
在一种可能的设计中,所述处理模块具体还用于:
根据所述第一密钥以及所述MM的标识,生成所述MM和所述UE之间的安全密钥,其中,所述MM的标识由所述MM通过所述密钥请求发送给所述安全功能实体。
在一种可能的设计中,所述处理模块包括:
第一生成单元,用于生成所述MM的第二密钥;
第一发送单元,用于将所述MM的第二密钥发送给所述MM,以使所述MM根据所述MM的第二密钥生成所述MM和所述UE之间的安全密钥。
在一种可能的设计中,所述处理模块具体还用于:
根据所述第一密钥,生成所述SM和所述UE之间的安全密钥。
在一种可能的设计中,所述处理模块具体还用于:
根据所述第一密钥以及所述SM的标识,生成所述SM和所述UE之间的安全密钥,其中,所述SM的标识由所述SM通过所述密钥请求发送给所述安全功能实体。
在一种可能的设计中,接收所述SM发送的密钥请求,所述密钥请求中包括所述第一标识信息,所述第一标识信息由所述UE发送给所述SM。
在一种可能的设计中,根据所述第一密钥和所述第一标识信息,生成所述SM和所述UE之间的安全密钥。
在一种可能的设计中,所述处理模块具体还用于:
根据所述第一密钥、所述第一标识信息以及所述SM的标识,生成所述SM和所述UE之间的安全密钥,其中,所述SM的标识由所述SM通过所述密钥请求发送给所述安全功能实体。
在一种可能的设计中,所述处理模块还包括:
第二生成单元,用于生成所述SM的第二密钥;
第二发送单元,用于将所述SM的第二密钥发送给所述SM,以使所述SM根据所述SM的第二密钥生成所述SM和所述UE之间的安全密钥。
本发明第五方面提供一种核心网网元,包括:
接收模块,用于接收用户设备UE发送的请求消息;
处理模块,用于根据预设的策略,判断是否需要对所述UE进行安全认 证;
所述处理模块,还用于根据判断结果进行安全协商,获取所述核心网网元与所述UE之间的安全密钥。
在一种可能的设计中,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证。
在一种可能的设计中,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并包含所述第一安全认证对应的安全功能实体的地址信息。
在一种可能的设计中,所述核心网网元包括移动性管理MM实体、会话管理SM实体、非接入层NAS代理节点、切片选择功能SSF或核心网节点,其中,所述核心网节点支持MM功能和SM功能。
在一种可能的设计中,所述处理模块包括:
第一发送单元,用于在判断出所述第一安全认证对应的安全功能实体可信任时,向所述第一安全认证对应的安全功能实体发送密钥请求,以使所述第一安全认证对应的安全功能实体根据所述密钥请求生成所述核心网网元的第二密钥;
第一生成单元,用于根据所述核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
在一种可能的设计中,所述处理模块还包括:
第二发送单元,用于在判断出所述第一安全认证对应的安全功能实体不可信任时,向第一安全功能实体发送认证请求,以使所述第一安全功能实体根据所述认证请求与所述UE进行认证和密钥协商;
第三发送单元,用于向第一安全功能实体发送密钥请求,以使所述第一安全功能实体根据所述密钥请求生成所述核心网网元的第二密钥;
第二生成单元,用于根据所述核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
本发明第六方面提供一种用户设备,包括:
发送模块,用于向核心网网元发送第一请求消息,所述第一消息用于所述核心网网元根据所述第一请求消息向安全功能实体发送认证请求;
处理模块,用于与所述安全功能实体进行认证和密钥协商,生成安全参 数,其中,所述安全参数包括第一密钥;
所述处理模块,还用于根据所述第一密钥,生成所述UE和所述核心网网元之间的安全密钥。
在一种可能的设计中,还包括:
接收模块,用于接收所述安全功能实体发送的第一标识信息,所述第一标识信息由所述安全功能实体在同所述UE进行认证和密钥协商时生成,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
在一种可能的设计中,所述发送模块还用于:
向所述核心网网元发送第二请求消息,所述第二请求消息中包括所述第一标识信息,以使所述核心网网元根据所述第一标识信息向所述安全功能实体发送密钥请求。
在一种可能的设计中,所述处理模块包括:
第一生成单元,用于根据所述第一密钥,生成所述核心网网元的第二密钥;
第二生成单元,用于根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
在一种可能的设计中,所述处理模块还包括:
第三生成单元,用于根据所述第一密钥以及所述核心网网元的标识,生成所述核心网网元的第二密钥;
第四生成单元,用于根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
在一种可能的设计中,所述核心网网元包括移动性管理MM实体、会话管理SM实体、非接入层NAS代理节点、切片选择功能SSF或核心网节点,其中,所述核心网节点支持MM功能和SM功能。
本发明第七方面提供一种安全功能实体,包括:
存储器和处理器。
存储器用于存储程序指令,处理器用于调用存储器中的程序指令,执行下述方法:
接收核心网网元发送的认证请求,所述认证请求为所述核心网网元根据用户设备UE的请求消息生成的;
根据所述认证请求,与所述UE进行认证和和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
接收所述核心网网元发送的密钥请求;
根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥。
本发明第八方面提供一种核心网网元,包括:
存储器和处理器。
存储器用于存储程序指令,处理器用于调用存储器中的程序指令,执行下述方法:
接收UE发送的请求消息。
根据预设的策略,判断是否需要对所述UE进行安全认证。
根据判断结果进行安全协商,获取所述核心网网元与所述UE之间的安全密钥。
本发明第九方面提供一种用户设备,包括:
存储器和处理器。存储器用于存储程序指令,处理器用于调用存储器中的程序指令,执行下述方法:
向核心网网元发送第一请求消息,所述第一消息用于所述核心网网元根据所述第一请求消息向安全功能实体发送认证请求;
与所述安全功能实体进行认证和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
根据所述第一密钥,生成所述UE和所述核心网网元之间的安全密钥。
本发明实施例的方案能够协商出针对5G网络架构的NAS安全,从而满足5G网络的安全需要。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所应用的一种系统架构图;
图2为发明实施例所应用的另一种系统架构图;
图3为本发明实施例提供的安全协商方法实施例一的交互流程图;
图4为本发明实施例提供的安全协商方法实施例二的交互流程图;
图5为本发明实施例提供的安全协商方法实施例三的交互流程图;
图6为本发明实施例提供的安全协商方法实施例四的UE生成安全密钥流程示意图;
图7为本发明实施例提供的安全协商方法实施例五的UE生成安全密钥流程示意图;
图8为本发明实施例提供的另一种安全协商方法实施例一的流程示意图;
图9为本发明实施例提供的另一种安全协商方法实施例二的流程示意图;
图10为本发明实施例提供的另一种安全协商方法实施例二的安全功能实体可信任时的交互流程图;
图11为本发明实施例提供的另一种安全协商方法实施例三的流程示意图;
图12为本发明实施例提供的另一种安全协商方法实施例三的安全功能实体不可信任时的交互流程图;
图13为本发明实施例提供的一种安全功能实体实施例一的模块结构图;
图14为本发明实施例提供的一种安全功能实体实施例二的模块结构图;
图15为本发明实施例提供的一种安全功能实体实施例三的模块结构图;
图16为本发明实施例提供的一种安全功能实体实施例四的模块结构图;
图17为本发明实施例提供的一种核心网网元实施例一的模块结构图;
图18为本发明实施例提供的一种核心网网元实施例二的模块结构图;
图19为本发明实施例提供的一种核心网网元实施例三的模块结构图;
图20为本发明实施例提供的一种用户设备实施例一的模块结构图;
图21为本发明实施例提供的一种用户设备实施例二的模块结构图;
图22为本发明实施例提供的一种用户设备实施例三的模块结构图;
图23为本发明实施例提供的一种用户设备实施例四的模块结构图;
图24为本发明实施例提供的一种安全功能实体实施例五的模块结构图;
图25为本发明实施例提供的一种核心网网元实施例四的模块结构图;
图26为本发明实施例提供的一种用户设备实施例五的模块结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图1为本发明实施例所应用的一种系统架构图,图2为发明实施例所应用的另一种系统架构图。如图1所示,每个网络切片有单独的CPF实体和UPF实体,即图1中的网络切片1和网络切片2拥有各自的MM功能实体、SM功能实体以及UPF功能实体。如图2所示,多个网络切片仅共享部分特定的CPF实体(如MM功能实体),同时每个网络切片有独立的部分CPF实体(如SM功能实体)和独立的UPF实体。即图2中的网络切片1和网络切片2共享一个通用MM,同时,网络切片1和网络切片2拥有各自的SM功能实体以及UPF功能实体。
本发明实施例所提供的方法可以应用于上述系统架构中的任意一种,即无论对于哪种系统架构,都可以通过本发明实施例所提供的方法实现UE同核心网之间的安全协商。
本发明以下所述的核心网网元,具体可以为MM、SM、NAS代理节点、切片选择功能(Slice Selection Function,简称SSF)或核心网节点,其中,核心网节点支持MM功能和SM功能。
本发明所述的安全功能实体,专门用于实现安全功能,其也属于核心网中的网元。
图3为本发明实施例提供的安全协商方法实施例一的交互流程图,如图3所示,该方法包括:
S101、UE向核心网网元发送第一请求消息。
需要说明的是,本实施例中的是以MM和SM为例来说明安全协商,本实施例中的MM和SM也可以替换为前述的其他核心网网元。
该消息可能先发给SSF,再发给安全功能实体。该消息还可以直接发给安全功能实体,而无需任何中间的核心网功能实体处理或者不经过任何中间的核心网功能实体。
其中,第一请求消息例如可以是附着请求消息,或者,该消息还可以是UE和核心网网元之间的其他NAS消息,例如MM消息、SM消息或认证消息。
S102、核心网网元向安全功能实体发送认证请求。
其中,认证请求可以为上述的第一请求消息,也可以为对第一请求消息进行处理之后所生成的新的消息。即,核心网网元可以直接将第一请求消息透传给安全功能实体,也可以对第一请求消息进行处理后生成认证请求并发送给安全功能实体。
S103、安全功能实体根据认证请求,与UE之间进行认证和密钥协商,生成安全参数。其中,安全参数中包括第一密钥。
其中,安全功能实体也可以合并到MM中,则MM和安全功能实体之间的交互为内部交互。安全功能实体也可以合并到SM中,则SM和安全功能实体之间的交互为内部交互。
可选地,安全功能实体包括两部分:认证模块和密钥管理模块。这两个模块可以相互独立,即认证模块为一个独立实体,密钥管理模块则可以合并到用户数据实体中。
S104、安全功能实体向核心网网元发送认证成功响应。
S105、MM向安全功能实体发送密钥请求。
S106、安全功能实体根据密钥请求以及第一密钥,生成MM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成MM的第二密钥。
S107、安全功能实体向MM发送密钥响应,该密钥响应中包括MM的第二密钥。
S108、MM根据MM的第二密钥,生成MM和UE之间的安全密钥。
S109、SM向安全功能实体发送密钥请求。
S1010、安全功能实体根据密钥请求以及第一密钥,生成SM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成SM的第二密钥。
S1011、安全功能实体向SM发送密钥响应,该密钥响应中包括SM的第二密钥。
S1012、SM根据SM的第二密钥,生成SM和UE之间的安全密钥。
S1013、UE根据第一密钥,生成核心网网元和UE之间的安全密钥。
本步骤中,UE会针对不同的核心网网元分别生成UE和每个核心网网元之间的安全密钥。
例如,当MM生成MM和UE之间的安全密钥时,UE会根据第一密钥,生成MM的第二密钥,并根据MM的第二密钥,生成UE和MM之间的安全密钥。
当SM生成SM和UE之间的安全密钥时,UE会根据第一密钥,生成SM的第二密钥,并根据SM的第二密钥,生成UE和SM之间的安全密钥。
本实施例中,可以协商出针对5G网络架构的NAS安全,从而满足5G网络的安全需要。
图4为本发明实施例提供的安全协商方法实施例二的交互流程图,如图4所示,包括:
S201、UE向核心网网元发送第一请求消息。
S202、核心网网元向安全功能实体发送认证请求。
S203、安全功能实体根据认证请求,与UE之间进行认证和密钥协商,生成安全参数。其中,安全参数中包括第一密钥以及第一标识信息。
在一种可选的实施方式中,上述第一标识信息用于标识UE和安全功能实体之间的第一安全认证。
在另一种可选的实施方式中,上述第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并且,第一标识信息中包含第一安全认证对应的安全功能实体的地址信息。
S204、安全功能实体向核心网网元发送认证成功响应。
S205、安全功能实体将第一标识信息发送给UE。
安全功能实体将第一标识信息发送给UE,当UE再次发出请求消息而需 要进行安全协商时,安全功能实体就可以使用重用前次的协商结果,而不需要重新再次进行协商处理。
需要说明的是,安全功能实体向UE发送第一标识信息时,可以在生成第一标识信息之后的任意一个阶段发送。即,本步骤和其前后各步骤并没有严格的先后顺序。例如,安全功能实体可以在与UE进行认证与安全协商的过程中,就直接生成第一标识信息并将第一标识信息发送给UE。或者,安全功能实体也可以在生成第一标识信息之后,使用其他消息发送第一标识信息。即,本步骤为可选步骤,第一标识信息可以在本步骤中发出,也可以在S203中协商时发出。
S206、MM向安全功能实体发送密钥请求。
S207、安全功能实体根据密钥请求以及第一密钥,生成MM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成MM的第二密钥。
S208、安全功能实体向MM发送密钥响应,该密钥响应中包括MM的第二密钥。
S209、MM根据MM的第二密钥,生成MM和UE之间的安全密钥。
S2010、SM向安全功能实体发送密钥请求。
S2011、安全功能实体根据密钥请求以及第一密钥,生成SM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成SM的第二密钥。
S2012、安全功能实体向SM发送密钥响应,该密钥响应中包括SM的第二密钥。
S2013、SM根据SM的第二密钥,生成SM和UE之间的安全密钥。
S2014、UE根据第一密钥,生成核心网网元和UE之间的安全密钥。
本步骤中,UE会针对不同的核心网网元分别生成UE和每个核心网网元之间的安全密钥。
并且,UE生成各核心网网元安全密钥的时间可以不同。优选地,当MM生成MM和UE之间的安全密钥时,UE也相应生成MM和UE之间的安全密钥。当SM生成SM和UE之间的安全密钥时,UE也相应地生成SM和UE之间的安全 密钥。
在上述实施例中,安全功能实体根据密钥请求以及第一密钥,生成MM和UE之间的安全密钥时,可以通过以下两种可选方式来进行。
在第一种可选方式中,安全功能实体根据第一密钥,生成MM和UE之间的安全密钥。
具体地,安全功能实体根据第一密钥,会生成MM的第二密钥。
其中,第一密钥为基础密钥,而MM的第二密钥为在第一密钥的基础上,通过特定算法计算出的密钥。
进而,当MM接收到MM的第二密钥后,会根据MM的第二密钥生成MM和UE之间的安全密钥。其中,MM和UE之间的安全密钥可以包括完整性保护密钥和加密密钥。即,可以通过MM的第二密钥计算出MM和UE之间的完整性保护密钥和加密密钥。
示例性地,MM的完整性保护密钥的算法的一个示例为:
NAS_int_MM=HMAC-SHA256(Kasme_MM,integrity key label,Alg_int ID)
其中,Kasme_MM为MM的第二密钥,integrity key label表示该算法用于计算完整性保护密钥,Alg_int ID为完整性保护算法标识。
示例性地,MM的加密密钥的算法的一个示例为:
NAS_enc_MM=HMAC-SHA256(Kasme_MM,confidentiality key label,Alg_enc ID)
其中,Kasme_MM为MM的第二密钥,confidentiality key label表示该算法用于计算加密密钥,Alg_enc ID为加密算法标识。
在第二种可选的方式中,安全功能实体根据第一密钥以及MM的标识,生成MM和UE之间的安全密钥,其中,MM的标识由MM通过密钥请求发送给安全功能实体。
具体地,安全功能实体根据第一密钥以及MM的标识,会生成MM的第二密钥。
其中,第一密钥为基础密钥,而MM的第二密钥为在第一密钥的基础上, 结合MM标识通过特定算法计算出的密钥。例如,可以通过下述算法来计算MM的第二密钥:
Kasme_MM=HMAC-SHA256(Kasme,MM ID)
其中,Kasme为第一密钥,MM ID为MM标识。
进而,当MM接收到MM的第二密钥后,会根据MM的第二密钥生成MM和UE之间的安全密钥。其中,MM和UE之间的安全密钥可以包括完整性保护密钥和加密密钥。即,可以通过MM的第二密钥计算出MM和UE之间的完整性保护密钥和加密密钥。
示例性地,MM的完整性保护密钥的算法的一个示例为:
NAS_int_MM=HMAC-SHA256(Kasme_MM,integrity key label,Alg_int ID)
其中,Kasme_MM为MM的第二密钥,integrity key label表示该算法用于计算完整性保护密钥,Alg_int ID为完整性保护算法标识。
MM的加密密钥的算法的一个示例为:
NAS_enc_MM=HMAC-SHA256(Kasme_MM,confidentiality key label,Alg_enc ID)
其中,Kasme_MM为MM的第二密钥,confidentiality key label表示该算法用于计算加密密钥,Alg_enc ID为加密算法标识。
在上述实施例中,安全功能实体根据密钥请求以及第一密钥,生成SM和UE之间的安全密钥时,可以通过以下两种可选方式来进行。
在第一种可选方式中,安全功能实体根据第一密钥,生成SM和UE之间的安全密钥。
具体地,安全功能实体根据第一密钥,会生成SM的第二密钥。
其中,第一密钥为基础密钥,而SM的第二密钥为在第一密钥的基础上,通过特定算法计算出的密钥。
进而,当SM接收到SM的第二密钥后,会根据SM的第二密钥生成SM和UE之间的安全密钥。其中,SM和UE之间的安全密钥可以包括完整性保护密钥和加密密钥。即,可以通过SM的第二密钥计算出SM和UE之间的完整性保护密钥和加密密钥。
在第二种可选的方式中,安全功能实体根据第一密钥以及SM的标识,生成SM和UE之间的安全密钥,其中,SM的标识由SM通过密钥请求发送给安全功能实体。
具体地,安全功能实体根据第一密钥以及SM的标识,会生成SM的第二密钥。
其中,第一密钥为基础密钥,而SM的第二密钥为在第一密钥的基础上,结合SM标识通过特定算法计算出的密钥。
进而,当SM接收到SM的第二密钥后,会根据SM的第二密钥生成SM和UE之间的安全密钥。其中,SM和UE之间的安全密钥可以包括完整性保护密钥和加密密钥。即,可以通过SM的第二密钥计算出SM和UE之间的完整性保护密钥和加密密钥。
图5为本发明实施例提供的安全协商方法实施例三的交互流程图,如图5所示,包括:
S301、UE向核心网网元发送第一请求消息。
S302、核心网网元向安全功能实体发送认证请求。
S303、安全功能实体根据认证请求,与UE之间进行认证和密钥协商,生成安全参数。其中,安全参数中包括第一密钥以及第一标识信息。
在一种可选的实施方式中,上述第一标识信息用于标识UE和安全功能实体之间的第一安全认证。
在另一种可选的实施方式中,上述第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并且,第一标识信息中包含第一安全认证对应的安全功能实体的地址信息。
S304、安全功能实体向核心网网元发送认证成功响应。
S305、安全功能实体将第一标识信息发送给UE。
安全功能实体将第一标识信息发送给UE,当UE再次发出请求消息而需要进行安全协商时,安全功能实体就可以使用重用前次的协商结果,而不需要重新再次进行协商处理。
需要说明的是,安全功能实体向UE发送第一标识信息时,可以在生成第一标识信息之后的任意一个阶段发送。即,本步骤和其前后各步骤并没有严格的先后顺序。例如,安全功能实体可以在与UE进行认证与安全协商的 过程中,就直接生成第一标识信息并将第一标识信息发送给UE。或者,安全功能实体也可以在生成第一标识信息之后,使用其他消息发送第一标识信息。
即,本步骤为可选步骤,第一标识信息可以在本步骤中发出,也可以在S303中协商时发出。
S306、MM向安全功能实体发送密钥请求。
S307、安全功能实体根据密钥请求以及第一密钥,生成MM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成MM的第二密钥。
S308、安全功能实体向MM发送密钥响应,该密钥响应中包括MM的第二密钥。
S309、MM根据MM的第二密钥,生成MM和UE之间的安全密钥。
S3010、UE向SM发送第二请求消息,其中包括第一标识信息。
其中,UE可以在连接建立请求消息时,在连接建立请求消息中携带第一标识信息。
S3011、SM向安全功能实体发送密钥请求,该密钥请求中包括第一标识信息。
S3012、安全功能实体根据第一密钥以及第一标识信息,生成SM和UE之间的安全密钥。
具体地,安全功能实体根据第一标识信息,确定SM此前是否已经认证成功,若是,则确定第一密钥,并根据第一密钥确定SM的第二密钥。
如前所述,第一标识信息用于标识UE与安全功能实体之间的第一安全认证,当安全功能实体和UE完成安全和认证协商,获取到第一标识信息之后,安全功能实体将第一标识信息发送给UE。当UE再次发起建立连接请求等消息时,可以携带该第一标识信息。安全功能实体根据该第一标识信息,可以基于前次的认证和协商结果,快速生成SM的第二密钥,从而极大提升了处理效率。
S3013、安全功能实体向SM发送密钥响应,该密钥响应中包括SM的第二密钥。
S3014、SM根据SM的第二密钥,生成SM和UE之间的安全密钥。
S3015、UE根据第一密钥,生成核心网网元和UE之间的安全密钥。
本步骤中,UE会针对不同的核心网网元分别生成UE和每个核心网网元之间的安全密钥。
并且,UE生成各核心网网元安全密钥的时间可以不同。优选地,当MM生成MM和UE之间的安全密钥时,UE也相应生成MM和UE之间的安全密钥。当SM生成SM和UE之间的安全密钥时,UE也相应地生成SM和UE之间的安全密钥。
另一实施例中,上述步骤S3012中生成SM和UE之间的安全密钥时,也可以根据第一密钥、第一标识信息以及SM的标识来生成SM和UE之间的安全密钥,其中,SM的标识由SM通过密钥请求发送给安全功能实体。
具体地,安全功能实体根据第一密钥、第一标识信息以及SM的标识,生成SM的第二密钥。
图6为本发明实施例提供的安全协商方法实施例四的UE生成安全密钥流程示意图,如图6所示,在上述步骤S1013、S2014、S3015中,UE生成UE和核心网网元之间安全密钥的过程为:
S401、UE根据第一密钥,生成核心网网元的第二密钥。
S402、UE根据第二密钥,生成UE和核心网网元之间的安全密钥。
图7为本发明实施例提供的安全协商方法实施例五的UE生成安全密钥流程示意图,如图7所示,在上述步骤S1013、S2014、S3015中,UE生成UE和核心网网元之间安全密钥的另一种过程为:
S501、UE根据第一密钥以及核心网网元的标识,生成核心网网元的第二密钥。
即,UE不仅基于第一密钥,同时还要根据核心网网元的标识,来生成核心网网元的第二密钥。
例如,UE可以根据第一密钥以及MM的标识,来生成MM的第二密钥。
S502、UE根据第二密钥,生成UE和核心网网元之间的安全密钥。
图8为本发明实施例提供的另一种安全协商方法实施例一的流程示意图,该方法的执行主体为核心网网元,该方法包括:
S601、核心网网元接收UE发送的请求消息。
该请求消息例如可以是连接建立请求。
S602、核心网网元根据预设的策略,判断是否需要对UE进行安全认证。
其中,在核心网网元上可以配置多个策略,可以用于指定UE所连接的核心网网元的可信度等信息。
S603、核心网网元根据判断结果进行安全协商,获取核心网网元与UE之间的安全密钥。
本实施例中,核心网网元在接收到UE的请求消息后,首先判断是否需要对UE进行安全认证,可以保证UE连接到可信的安全功能实体上。
在一种可选方案中,上述请求消息中包括第一标识信息,该第一标识信息用于标识UE与安全功能实体之间的第一安全认证。
在一种可选方案中,上述请求消息中包括第一标识信息,该第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并包含第一安全认证对应的安全功能实体的地址信息。
图9为本发明实施例提供的另一种安全协商方法实施例二的流程示意图,如图9所示,上述步骤S603中,当核心网网元判断出第一安全认证对应的安全功能实体可信任时,则执行下述处理:
S701、核心网网元向第一安全认证对应的安全功能实体发送密钥请求,以使第一安全认证对应的安全功能实体根据该密钥请求生成核心网网元的第二密钥。
S702、核心网网元根据核心网网元的第二密钥生成核心网网元和UE之间的安全密钥。
即,当第一标识信息对应的安全功能实体可信时,可以直接使用第一标识信息对应的安全功能实体生成UE和核心网网元之间的安全密钥。
图10为本发明实施例提供的另一种安全协商方法实施例二的安全功能实体可信任时的交互流程图,如图10所示,包括:
S801、UE向核心网网元发送第一请求消息。
S802、核心网网元向安全功能实体发送认证请求。
S803、安全功能实体根据认证请求,与UE之间进行认证和密钥协商,生成安全参数。其中,安全参数中包括第一密钥以及第一标识信息。
S804、安全功能实体向核心网网元发送认证成功响应。
S805、安全功能实体将第一标识信息发送给UE。
需要说明的是,安全功能实体向UE发送第一标识信息时,可以在生成第一标识信息之后的任意一个阶段发送。即,本步骤和其前后各步骤并没有严格的先后顺序。例如,安全功能实体可以在与UE进行认证与安全协商的过程中,就直接生成第一标识信息并将第一标识信息发送给UE。或者,安全功能实体也可以在生成第一标识信息之后,使用其他消息发送第一标识信息。
即,本步骤为可选步骤,第一标识信息可以在本步骤中发出,也可以在S803中协商时发出。S806、MM向安全功能实体发送密钥请求。
S807、安全功能实体根据密钥请求以及第一密钥,生成MM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成MM的第二密钥。
S808、安全功能实体向MM发送密钥响应,该密钥响应中包括MM的第二密钥。
S809、MM根据MM的第二密钥,生成MM和UE之间的安全密钥。
S8010、UE向SM发送第二请求消息,其中包括第一标识信息。
其中,UE可以在连接建立请求消息时,在连接建立请求消息中携带第一标识信息。
S8011、SM根据预设策略,判断出第一安全认证对应的安全功能实体可信。
S8012、SM向第一安全认证对应的安全功能实体发送密钥请求,该密钥请求中包括第一标识信息。
S8013、安全功能实体根据第一密钥以及第一标识信息,生成SM和UE之间的安全密钥。
具体地,安全功能实体根据第一标识信息,确定SM此前是否已经认证成功,若是,则确定第一密钥,并根据第一密钥确定SM的第二密钥。
S8014、安全功能实体向SM发送密钥响应,该密钥响应中包括SM的第二密钥。
S8015、SM根据SM的第二密钥,生成SM和UE之间的安全密钥。
S8016、UE根据第一密钥,生成核心网网元和UE之间的安全密钥。
图11为本发明实施例提供的另一种安全协商方法实施例三的流程示意 图,如图11所示,上述步骤S603中,当核心网网元判断出第一安全认证对应的安全功能实体不可信任时,则执行下述处理:
S901、核心网网元向第一安全功能实体发送认证请求,以使第一安全功能实体根据认证请求与UE进行认证和密钥协商。
其中,第一安全功能实体是核心网网元认为可信任的安全功能实体。
S902、核心网网元向第一安全功能实体发送密钥请求,以使第一安全功能实体根据密钥请求生成核心网网元的第二密钥。
S903、核心网网元根据核心网网元的第二密钥生成核心网网元和UE之间的安全密钥。
图12为本发明实施例提供的另一种安全协商方法实施例三的安全功能实体不可信任时的交互流程图,如图12所示,包括:
S1001、UE向核心网网元发送第一请求消息。
S1002、核心网网元向安全功能实体发送认证请求。
S1003、安全功能实体根据认证请求,与UE之间进行认证和密钥协商,生成安全参数。其中,安全参数中包括第一密钥以及第一标识信息。
S1004、安全功能实体向核心网网元发送认证成功响应。
S1005、安全功能实体将第一标识信息发送给UE。
需要说明的是,安全功能实体向UE发送第一标识信息时,可以在生成第一标识信息之后的任意一个阶段发送。即,本步骤和其前后各步骤并没有严格的先后顺序。例如,安全功能实体可以在与UE进行认证与安全协商的过程中,就直接生成第一标识信息并将第一标识信息发送给UE。或者,安全功能实体也可以在生成第一标识信息之后,使用其他消息发送第一标识信息。
即,本步骤为可选步骤,第一标识信息可以在本步骤中发出,也可以在S1003中协商时发出。
S1006、MM向安全功能实体发送密钥请求。
S1007、安全功能实体根据密钥请求以及第一密钥,生成MM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成MM的第二密钥。
S1008、安全功能实体向MM发送密钥响应,该密钥响应中包括MM的第 二密钥。
S1009、MM根据MM的第二密钥,生成MM和UE之间的安全密钥。
S1010、UE向SM发送第二请求消息,其中包括第一标识信息。
其中,UE可以在连接建立请求消息时,在连接建立请求消息中携带第一标识信息。
S1011、SM根据预设策略,判断出第一安全认证对应的安全功能实体不可信。
S1012、SM向第一安全功能实体发送认证请求。
其中,第一安全功能实体是SM根据预设策略,认为可信的安全功能实体。
S1013、第一安全功能实体根据认证请求,与UE之间进行认证和密钥协商,生成安全参数。其中,安全参数中包括第一密钥以及第二标识信息。
其中,第二标识信息用于标识UE与第一安全功能实体之间的安全认证。
S1014、第一安全功能实体向SM发送认证成功响应。
S1015、第一安全功能实体将第二标识信息发送给UE。
需要说明的是,第一安全功能实体向UE发送第一标识信息时,可以在生成第二标识信息之后的任意一个阶段发送。即,本步骤和其前后各步骤并没有严格的先后顺序。例如,第一安全功能实体可以在与UE进行认证与安全协商的过程中,就直接生成第二标识信息并将第一标识信息发送给UE。或者,安全功能实体也可以在生成第一标识信息之后,使用其他消息发送第二标识信息。
即,本步骤为可选步骤,第二标识信息可以在本步骤中发出,也可以在S1013中协商时发出。
S1016、SM向第一安全功能实体发送密钥请求。
S1017、第一安全功能实体根据密钥请求以及第一密钥,生成SM和UE之间的安全密钥。
具体地,安全功能实体根据密钥请求以及第一密钥,生成MM的第二密钥。
S1018、第一安全功能实体向SM发送密钥响应,该密钥响应中包括SM的第二密钥。
S1019、SM根据SM的第二密钥,生成SM和UE之间的安全密钥。
S1020、UE根据第一密钥,生成核心网网元和UE之间的安全密钥。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图13为本发明实施例提供的一种安全功能实体实施例一的模块结构图,如图13所示,该安全功能实体包括:
接收模块501,用于接收核心网网元发送的认证请求,该认证请求为核心网网元根据UE的请求消息生成的。
处理模块502,用于根据认证请求,与UE进行认证和和密钥协商,生成安全参数,其中,安全参数包括第一密钥。
接收模块501,还用于接收核心网网元发送的密钥请求。
处理模块502,还用于根据密钥请求以及第一密钥,生成核心网网元和UE之间的安全密钥。
该安全功能实体用于实现前述的方法实施例,其实现原理和技术效果类似,此处不再赘述。
另一实施例中,上述安全参数还包括第一标识信息,其中,该第一标识信息用于标识UE和安全功能实体之间的第一安全认证。
另一实施例中,上述安全参数还包括第一标识信息,其中,该第一标识信息用于标识UE与安全功能实体之间的第一安全认证,该第一标识信息中包含第一安全认证对应的安全功能实体的地址信息。
图14为本发明实施例提供的一种安全功能实体实施例二的模块结构图,如图14所示,该安全功能实体还包括:
发送模块503,用于将第一标识信息发送给UE。
另一实施例中,处理模块502具体用于:
根据第一密钥,生成MM和UE之间的安全密钥。
另一实施例中,处理模块502具体还用于:
根据第一密钥以及MM的标识,生成MM和UE之间的安全密钥,其中,MM的标识由MM通过密钥请求发送给安全功能实体。
图15为本发明实施例提供的一种安全功能实体实施例三的模块结构图,如图15所示,处理模块502包括:
第一生成单元5021,用于生成MM的第二密钥。
第一发送单元5022,用于将MM的第二密钥发送给MM,以使MM根据MM的第二密钥生成MM和UE之间的安全密钥。
另一实施例中,处理模块502具体还用于:
根据第一密钥,生成SM和UE之间的安全密钥。
另一实施例中,处理模块502具体还用于:
根据第一密钥以及SM的标识,生成SM和UE之间的安全密钥,其中,SM的标识由SM通过密钥请求发送给安全功能实体。
另一实施例中,接收模块501具体用于:
接收SM发送的密钥请求,该密钥请求中包括第一标识信息,第一标识信息由UE发送给SM。
另一实施例中,处理模块502具体还用于:
根据第一密钥和第一标识信息,生成SM和UE之间的安全密钥。
另一实施例中,处理模块502具体还用于:
根据第一密钥、第一标识信息以及SM的标识,生成SM和UE之间的安全密钥,其中,SM的标识由SM通过密钥请求发送给安全功能实体。
图16为本发明实施例提供的一种安全功能实体实施例四的模块结构图,如图16所示,处理模块502还包括:
第二生成单元5023,用于生成SM的第二密钥。
第二发送单元5024,用于将SM的第二密钥发送给SM,以使SM根据SM的第二密钥生成SM和UE之间的安全密钥。
图17为本发明实施例提供的一种核心网网元实施例一的模块结构图,如图17所示,该核心网网元包括:
接收模块601,用于接收UE发送的请求消息。
处理模块602,用于根据预设的策略,判断是否需要对UE进行安全认证。
处理模块602,还用于根据判断结果进行安全协商,获取核心网网元与UE之间的安全密钥。
另一实施例中,上述请求消息中包括第一标识信息,该第一标识信息用 于标识UE与安全功能实体之间的第一安全认证。
另一实施例中,上述请求消息中包括第一标识信息,该第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并包含第一安全认证对应的安全功能实体的地址信息。
图18为本发明实施例提供的一种核心网网元实施例二的模块结构图,如图18所示,处理模块602包括:
第一发送单元6021,用于在判断出第一安全认证对应的安全功能实体可信任时,向第一安全认证对应的安全功能实体发送密钥请求,以使第一安全认证对应的安全功能实体根据密钥请求生成核心网网元的第二密钥。
第一生成单元6022,用于根据核心网网元的第二密钥生成核心网网元和UE之间的安全密钥。
图19为本发明实施例提供的一种核心网网元实施例三的模块结构图,如图19所示,处理模块602还包括:
第二发送单元6023,用于在判断出第一安全认证对应的安全功能实体不可信任时,向第一安全功能实体发送认证请求,以使第一安全功能实体根据所述认证请求与所述UE进行认证和密钥协商。
第三发送单元6024,用于向第一安全功能实体发送密钥请求,以使第一安全功能实体根据密钥请求生成核心网网元的第二密钥。
第二生成单元6025,用于根据核心网网元的第二密钥生成核心网网元和UE之间的安全密钥。
图20为本发明实施例提供的一种用户设备实施例一的模块结构图,如图20所示,该用户设备包括:
发送模块701,用于向核心网网元发送第一请求消息,该第一消息用于核心网网元根据第一请求消息向安全功能实体发送认证请求。
处理模块702,用于与安全功能实体进行认证和密钥协商,生成安全参数,其中,安全参数包括第一密钥。
处理模块702,还用于根据第一密钥,生成UE和核心网网元之间的安全密钥。
图21为本发明实施例提供的一种用户设备实施例二的模块结构图,如图21所示,该用户设备还包括:
接收模块703,用于接收安全功能实体发送的第一标识信息,第一标识信息由安全功能实体在同UE进行认证和密钥协商时生成,第一标识信息用于标识UE和安全功能实体之间的第一安全认证。
另一实施例中,发送模块701还用于:
向核心网网元发送第二请求消息,第二请求消息中包括第一标识信息,以使核心网网元根据第一标识信息向安全功能实体发送密钥请求。
图22为本发明实施例提供的一种用户设备实施例三的模块结构图,如图22所示,处理模块702包括:
第一生成单元7021,用于根据第一密钥,生成核心网网元的第二密钥。
第二生成单元7022,用于根据第二密钥,生成UE和核心网网元之间的安全密钥。
图23为本发明实施例提供的一种用户设备实施例四的模块结构图,如图23所示,处理模块702还包括:
第三生成单元7023,用于根据所述第一密钥以及所述核心网网元的标识,生成所述核心网网元的第二密钥;
第四生成单元7024,用于根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
图24为本发明实施例提供的一种安全功能实体实施例五的模块结构图,如图23所示,该安全功能实体包括:
存储器801和处理器802。
存储器801用于存储程序指令,处理器802用于调用存储器中的程序指令,执行下述方法:
接收核心网网元发送的认证请求,所述认证请求为所述核心网网元根据用户设备UE的请求消息生成的;
根据所述认证请求,与所述UE进行认证和和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
接收所述核心网网元发送的密钥请求;
根据所述密钥请求以及所述第一密钥,生成所述核心网网元和所述UE之间的安全密钥。
进一步地,所述安全参数还包括第一标识信息,其中,所述第一标识信 息用于标识所述UE和所述安全功能实体之间的第一安全认证。
进一步地,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识UE与所述安全功能实体之间的第一安全认证,所述第一标识信息中包含所述第一安全认证对应的安全功能实体的地址信息。
进一步地,处理器802还用于:将所述第一标识信息发送给所述UE。
进一步地,处理器802还用于:根据所述第一密钥,生成所述MM和所述UE之间的安全密钥。
进一步地,处理器802还用于:根据所述第一密钥以及所述MM的标识,生成所述MM和所述UE之间的安全密钥,其中,所述MM的标识由所述MM通过所述密钥请求发送给所述安全功能实体。
进一步地,处理器802还用于:生成所述MM的第二密钥;将所述MM的第二密钥发送给所述MM,以使所述MM根据所述MM的第二密钥生成所述MM和所述UE之间的安全密钥。
进一步地,处理器802还用于:根据所述第一密钥,生成所述SM和所述UE之间的安全密钥。
进一步地,处理器802还用于:根据所述第一密钥以及所述SM的标识,生成所述SM和所述UE之间的安全密钥,其中,所述SM的标识由所述SM通过所述密钥请求发送给所述安全功能实体。
进一步地,处理器802还用于:接收所述SM发送的密钥请求,所述密钥请求中包括所述第一标识信息,所述第一标识信息由所述UE发送给所述SM。
进一步地,处理器802还用于:根据所述第一密钥和所述第一标识信息,生成所述SM和所述UE之间的安全密钥。
进一步地,处理器802还用于:根据所述第一密钥、所述第一标识信息以及所述SM的标识,生成所述SM和所述UE之间的安全密钥,其中,所述SM的标识由所述SM通过所述密钥请求发送给所述安全功能实体。
进一步地,处理器802还用于:生成所述SM的第二密钥;将所述SM的第二密钥发送给所述SM,以使所述SM根据所述SM的第二密钥生成所述SM和所述UE之间的安全密钥。
图25为本发明实施例提供的一种核心网网元实施例四的模块结构图,如 图25所示,该核心网网元包括:
存储器901和处理器902。
存储器901用于存储程序指令,处理器902用于调用存储器中的程序指令,执行下述方法:
接收UE发送的请求消息。
根据预设的策略,判断是否需要对所述UE进行安全认证。
根据判断结果进行安全协商,获取所述核心网网元与所述UE之间的安全密钥。
进一步地,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证。
进一步地,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证,并包含所述第一安全认证对应的安全功能实体的地址信息。
进一步地,处理器902还用于:若所述核心网网元判断出所述第一安全认证对应的安全功能实体可信任,则:
所述核心网网元向所述第一安全认证对应的安全功能实体发送密钥请求,以使所述第一安全认证对应的安全功能实体根据所述密钥请求生成所述核心网网元的第二密钥;
所述核心网网元根据所述核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
进一步地,处理器902还用于:若所述核心网网元判断出所述第一安全认证对应的安全功能实体不可信任,则:
所述核心网网元向第一安全功能实体发送认证请求,以使所述第一安全功能实体根据所述认证请求与所述UE进行认证和密钥协商;
所述核心网网元向第一安全功能实体发送密钥请求,以使所述第一安全功能实体根据所述密钥请求生成所述核心网网元的第二密钥;
所述核心网网元根据所述核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
图26为本发明实施例提供的一种用户设备实施例五的模块结构图,如图26所示,该用户设备包括:
存储器1001和处理器1002。
存储器1001用于存储程序指令,处理器1002用于调用存储器中的程序指令,执行下述方法:
向核心网网元发送第一请求消息,所述第一消息用于所述核心网网元根据所述第一请求消息向安全功能实体发送认证请求;
与所述安全功能实体进行认证和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
根据所述第一密钥,生成所述UE和所述核心网网元之间的安全密钥。
进一步地,处理器1002还用于:接收所述安全功能实体发送的第一标识信息,所述第一标识信息由所述安全功能实体在同所述UE进行认证和密钥协商时生成,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
进一步地,处理器1002还用于:向所述核心网网元发送第二请求消息,所述第二请求消息中包括所述第一标识信息,以使所述核心网网元根据所述第一标识信息向所述安全功能实体发送密钥请求。
进一步地,处理器1002还用于:根据所述第一密钥,生成所述核心网网元的第二密钥;根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
进一步地,处理器1002还用于:根据所述第一密钥以及所述核心网网元的标识,生成所述核心网网元的第二密钥;所述UE根据所述第二密钥,生成所述UE和所述核心网网元之间的安全密钥。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (29)

  1. 一种安全协商方法,其特征在于,包括:
    安全功能实体接收第一核心网网元发送的认证请求,所述认证请求为所述第一核心网网元根据用户设备UE的请求消息生成的;
    所述安全功能实体根据所述认证请求,与所述UE进行认证和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
    所述安全功能实体接收第二核心网网元发送的密钥请求;
    所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述第二核心网网元和所述UE之间的安全密钥。
  2. 根据权利要求1所述的方法,其特征在于,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
  3. 根据权利要求2所述的方法,其特征在于,所述第一标识信息中包含所述第一安全认证对应的安全功能实体的地址信息。
  4. 根据权利要求2或3所述的方法,其特征在于,还包括:
    所述安全功能实体将所述第一标识信息发送给所述UE。
  5. 根据权利要求1所述的方法,其特征在于,所述安全功能实体根据所述密钥请求以及所述第一密钥,生成所述第二核心网网元和所述UE之间的安全密钥,包括:
    所述安全功能实体根据所述第一密钥以及所述第二核心网网元的标识,生成所述第二核心网网元和所述UE之间的安全密钥,其中,所述第二核心网网元的标识由所述第二核心网网元通过所述密钥请求发送给所述安全功能实体。
  6. 根据权利要求1所述的方法,其特征在于,所述生成所述第二核心网网元和所述UE之间的安全密钥,包括:
    所述安全功能实体生成所述第二核心网网元和所述UE之间的第二密钥;
    所述安全功能实体将所述第二核心网网元的第二密钥发送给所述第二核心网网元,以使所述第二核心网网元根据所述第二核心网网元的第二密钥生成所述第二核心网网元和所述UE之间的安全密钥。
  7. 根据权利要求5或6所述的方法,其特征在于:
    所述第一核心网网元是切片选择功能SSF,所述第二核心网网元是移动性管理实体MM;或者,
    所述第一核心网网元是MM,所述第二核心网网元是会话管理SM;
  8. 根据权利要求1所述的方法,其特征在于,所述第一核心网网元和第二核心网网元为相同的网元。
  9. 一种安全协商方法,其特征在于,包括:
    第一核心网网元接收用户设备UE发送的请求消息;
    所述第一核心网网元根据预设的策略,判断是否需要对所述UE进行安全认证;
    所述第二核心网网元根据判断结果进行安全协商,获取所述第二核心网网元与所述UE之间的安全密钥。
  10. 根据权利要求9所述方法,其特征在于,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证。
  11. 根据权利要求10所述方法,其特征在于,所述第一标识信息包含所述第一安全认证对应的安全功能实体的地址信息。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述第二核心网网元根据判断结果进行安全协商,获取所述第二核心网网元与所述UE之间的安全密钥,包括:
    若所述第一核心网网元判断出所述第一安全认证对应的安全功能实体可信任,则:
    所述第二核心网网元向所述第一安全认证对应的安全功能实体发送密钥请求,以使所述第一安全认证对应的安全功能实体根据所述密钥请求生成所述第二核心网网元的第二密钥;
    所述第二核心网网元根据所述第二核心网网元的第二密钥生成所述第二核心网网元和所述UE之间的安全密钥。
  13. 根据权利要求9至11任一项所述的方法,其特征在于,所述第二核心网网元根据判断结果进行安全协商,获取所述第二核心网网元与所述UE之间的安全密钥,包括:
    若所述第一核心网网元判断出所述第一安全认证对应的安全功能实体不 可信任,则:
    所述第一核心网网元向第一安全功能实体发送认证请求,以使所述第一安全功能实体根据所述认证请求与所述UE进行认证和密钥协商;
    所述第二核心网网元向第一安全功能实体发送密钥请求,以使所述第一安全功能实体根据所述密钥请求生成所述第二核心网网元的第二密钥;
    所述第二核心网网元根据所述第二核心网网元的第二密钥生成所述核心网网元和所述UE之间的安全密钥。
  14. 一种安全协商方法,其特征在于,包括:
    用户设备UE向第一核心网网元发送第一请求消息,所述第一消息用于所述第一核心网网元根据所述第一请求消息向安全功能实体发送认证请求;
    所述UE与所述安全功能实体进行认证和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
    所述UE根据所述第一密钥,生成所述UE和所述第二核心网网元之间的安全密钥。
  15. 根据权利要求14所述的方法,其特征在于,还包括:
    所述UE接收所述安全功能实体发送的第一标识信息,所述第一标识信息由所述安全功能实体在同所述UE进行认证和密钥协商时生成,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    所述UE向所述第二核心网网元发送第二请求消息,所述第二请求消息中包括所述第一标识信息,以使所述第二核心网网元根据所述第一标识信息向所述安全功能实体发送密钥请求。
  17. 根据权利要求14到16任一项所述的方法,其特征在于,所述UE根据所述第一密钥生成所述UE和所述第二核心网网元之间的安全密钥,包括:
    所述UE根据所述第一密钥,生成所述第二核心网网元的第二密钥;
    所述UE根据所述第二密钥,生成所述UE和所述第二核心网网元之间的安全密钥。
  18. 根据权利要求14到17任一项所述的方法,其特征在于,所述UE根据所述第一密钥生成所述UE和所述第二核心网网元之间的安全密钥,包 括:
    所述UE根据所述第一密钥以及所述第二核心网网元的标识,生成所述第二核心网网元的第二密钥;
    所述UE根据所述第二密钥,生成所述UE和所述第二核心网网元之间的安全密钥。
  19. 一种安全功能实体,其特征在于,包括:
    接收模块,用于接收第一核心网网元发送的认证请求,所述认证请求为所述第一核心网网元根据用户设备UE的请求消息生成的;
    处理模块,用于根据所述认证请求,与所述UE进行认证和和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
    所述接收模块,还用于接收所述二核心网网元发送的密钥请求;
    所述处理模块,还用于根据所述密钥请求以及所述第一密钥,生成所述第二核心网网元和所述UE之间的安全密钥。
  20. 根据权利要求19所述的安全功能实体,其特征在于,所述安全参数还包括第一标识信息,其中,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
  21. 根据权利要求20所述的安全功能实体,其特征在于,所述第一标识信息中包含所述第一安全认证对应的安全功能实体的地址信息。
  22. 根据权利要求20或21所述的安全功能实体,其特征在于,还包括:
    发送模块,用于将所述第一标识信息发送给所述UE。
  23. 根据权利要求19所述的安全功能实体,其特征在于,所述处理模块具体还用于:
    根据所述第一密钥以及所述第二核心网网元的标识,生成所述第二核心网网元和所述UE之间的安全密钥,其中,所述MM的标识由所述MM通过所述密钥请求发送给所述安全功能实体。
  24. 根据权利要求19所述的安全功能实体,其特征在于,所述处理模块包括:
    第一生成单元,用于生成所述第二核心网网元的第二密钥;
    第一发送单元,用于将所述第二核心网网元的第二密钥发送给所述第二核心网网元,以使所述第二核心网网元根据所述第二核心网网元的第二密钥 生成所述第二核心网网元和所述UE之间的安全密钥。
  25. 一种核心网网元,其特征在于,包括:
    接收模块,用于接收用户设备UE发送的请求消息;
    处理模块,用于根据预设的策略,判断是否需要对所述UE进行安全认证;
    所述处理模块,还用于根据判断结果进行安全协商,获取所述第二核心网网元与所述UE之间的安全密钥。
  26. 根据权利要求25所述的核心网网元,其特征在于,所述请求消息中包括第一标识信息,所述第一标识信息用于标识UE与安全功能实体之间的第一安全认证。
  27. 一种用户设备,其特征在于,包括:
    发送模块,用于向第一核心网网元发送第一请求消息,所述第一消息用于所述第一核心网网元根据所述第一请求消息向安全功能实体发送认证请求;
    处理模块,用于与所述安全功能实体进行认证和密钥协商,生成安全参数,其中,所述安全参数包括第一密钥;
    所述处理模块,还用于根据所述第一密钥,生成所述UE和所述第二核心网网元之间的安全密钥。
  28. 根据权利要求27所述的用户设备,其特征在于,还包括:
    接收模块,用于接收所述安全功能实体发送的第一标识信息,所述第一标识信息由所述安全功能实体在同所述UE进行认证和密钥协商时生成,所述第一标识信息用于标识所述UE和所述安全功能实体之间的第一安全认证。
  29. 根据权利要求27或28所述的用户设备,其特征在于,所述处理模块包括:
    第一生成单元,用于根据所述第一密钥,生成所述第二核心网网元的第二密钥;
    第二生成单元,用于根据所述第二密钥,生成所述UE和所述第二核心网网元之间的安全密钥。
PCT/CN2016/099398 2016-07-01 2016-09-19 安全协商方法、安全功能实体、核心网网元及用户设备 WO2018000590A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16906986.1A EP3468241B1 (en) 2016-07-01 2016-09-19 Security negotiation method, security functional entity, core network element, and user equipment
CN201680086587.XA CN109314860B (zh) 2016-07-01 2016-09-19 安全协商方法、安全功能实体、核心网网元及用户设备
US16/233,938 US10880744B2 (en) 2016-07-01 2018-12-27 Security negotiation method, security function entity, core network element, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2016/088237 2016-07-01
CN2016088237 2016-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/233,938 Continuation US10880744B2 (en) 2016-07-01 2018-12-27 Security negotiation method, security function entity, core network element, and user equipment

Publications (1)

Publication Number Publication Date
WO2018000590A1 true WO2018000590A1 (zh) 2018-01-04

Family

ID=60785618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099398 WO2018000590A1 (zh) 2016-07-01 2016-09-19 安全协商方法、安全功能实体、核心网网元及用户设备

Country Status (4)

Country Link
US (1) US10880744B2 (zh)
EP (1) EP3468241B1 (zh)
CN (2) CN109981273A (zh)
WO (1) WO2018000590A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978421B2 (ja) * 2016-09-30 2021-12-08 株式会社Nttドコモ 移動体通信システム
CN112399409A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种安全加密的方法及装置
CN112492584B (zh) * 2019-08-23 2022-07-22 华为技术有限公司 终端设备和用户面网元之间的安全通信方法、装置及系统
CN110913394B (zh) * 2019-11-27 2022-09-06 成都西加云杉科技有限公司 一种业务访问的方法、装置、设备及可读存储介质
US11652646B2 (en) 2020-12-11 2023-05-16 Huawei Technologies Co., Ltd. System and a method for securing and distributing keys in a 3GPP system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083839A (zh) * 2007-06-29 2007-12-05 中兴通讯股份有限公司 在不同移动接入系统中切换时的密钥处理方法
CN101102600A (zh) * 2007-06-29 2008-01-09 中兴通讯股份有限公司 在不同移动接入系统中切换时的密钥处理方法
CN104935426A (zh) * 2014-03-21 2015-09-23 华为技术有限公司 密钥协商方法、用户设备和近距离通信控制网元
WO2016036296A1 (en) * 2014-09-05 2016-03-10 Telefonaktiebolaget L M Ericsson (Publ) Interworking and integration of different radio access networks

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237444B (zh) 2007-01-31 2013-04-17 华为技术有限公司 密钥处理方法、系统和设备
CN101426190A (zh) 2007-11-01 2009-05-06 华为技术有限公司 一种服务访问认证方法和系统
CN101946536B (zh) * 2008-02-15 2015-07-15 艾利森电话股份有限公司 演进网络中的应用特定的主密钥选择
CN101257723A (zh) * 2008-04-08 2008-09-03 中兴通讯股份有限公司 密钥生成方法、装置及系统
US8385549B2 (en) 2009-08-21 2013-02-26 Industrial Technology Research Institute Fast authentication between heterogeneous wireless networks
CN102299797A (zh) 2010-06-23 2011-12-28 财团法人工业技术研究院 认证方法、密钥分配方法及认证与密钥分配方法
CN101977378B (zh) * 2010-09-30 2015-08-12 中兴通讯股份有限公司 信息传输方法、网络侧及中继节点
US8977855B2 (en) * 2012-07-31 2015-03-10 Alcatel Lucent Secure function evaluation between semi-honest parties
US8811363B2 (en) 2012-09-11 2014-08-19 Wavemax Corp. Next generation network services for 3G/4G mobile data offload in a network of shared protected/locked Wi-Fi access points
KR101961301B1 (ko) * 2015-06-05 2019-03-25 콘비다 와이어리스, 엘엘씨 통합된 스몰 셀 및 wi-fi 네트워크를 위한 통합 인증
US9883385B2 (en) * 2015-09-15 2018-01-30 Qualcomm Incorporated Apparatus and method for mobility procedure involving mobility management entity relocation
US10129235B2 (en) * 2015-10-16 2018-11-13 Qualcomm Incorporated Key hierarchy for network slicing
WO2017121482A1 (en) * 2016-01-14 2017-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods, nodes and communication device for establishing a key related to at least two network instances
EP3573357A4 (en) * 2017-01-17 2019-11-27 Nec Corporation COMMUNICATION SYSTEM, COMMUNICATION TERMINAL, AMF UNIT AND COMMUNICATION PROCESS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083839A (zh) * 2007-06-29 2007-12-05 中兴通讯股份有限公司 在不同移动接入系统中切换时的密钥处理方法
CN101102600A (zh) * 2007-06-29 2008-01-09 中兴通讯股份有限公司 在不同移动接入系统中切换时的密钥处理方法
CN104935426A (zh) * 2014-03-21 2015-09-23 华为技术有限公司 密钥协商方法、用户设备和近距离通信控制网元
WO2016036296A1 (en) * 2014-09-05 2016-03-10 Telefonaktiebolaget L M Ericsson (Publ) Interworking and integration of different radio access networks

Also Published As

Publication number Publication date
CN109314860B (zh) 2023-11-03
US20190132735A1 (en) 2019-05-02
EP3468241A4 (en) 2019-05-08
EP3468241A1 (en) 2019-04-10
CN109314860A (zh) 2019-02-05
EP3468241B1 (en) 2021-08-25
US10880744B2 (en) 2020-12-29
CN109981273A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2018000590A1 (zh) 安全协商方法、安全功能实体、核心网网元及用户设备
EP3668042B1 (en) Registration method and apparatus based on service-oriented architecture
EP3051744B1 (en) Key configuration method and apparatus
EP1811744B1 (en) Method, system and centre for authenticating in End-to-End communications based on a mobile network
WO2017114123A1 (zh) 一种密钥配置方法及密钥管理中心、网元
CN101176295B (zh) 无线便携式因特网系统中的验证方法和密钥生成方法
US20160269176A1 (en) Key Configuration Method, System, and Apparatus
US11044084B2 (en) Method for unified network and service authentication based on ID-based cryptography
EP2767029B1 (en) Secure communication
WO2018201398A1 (zh) 获取密钥的方法、设备和通信系统
JP5575922B2 (ja) マルチメディア通信システムにおけるセキュリティ保護された通信のための階層鍵管理
KR20070120176A (ko) 키 머티리얼의 교환
US10411886B1 (en) Authenticating secure channel establishment messages based on shared-secret
WO2020020007A1 (zh) 网络接入方法、装置、终端、基站和可读存储介质
WO2013123891A1 (zh) 建立安全上下文的方法、装置及系统
WO2008006312A1 (en) A realizing method for push service of gaa and a device
CN110808834B (zh) 量子密钥分发方法和量子密钥分发系统
WO2021244569A1 (zh) 数据传输方法、系统、电子设备、存储介质
JP2013517688A5 (zh)
WO2023020164A1 (zh) 管理通信信道的方法和装置
US10320917B2 (en) Key negotiation processing method and apparatus
WO2018076298A1 (zh) 一种安全能力协商方法及相关设备
CA3190801A1 (en) Key management method and communication apparatus
Kalpana et al. Authentication based on blind signature and ring signature algorithms during vertical handover in heterogeneous wireless networks
Songshen et al. Hash-Based Signature for Flexibility Authentication of IoT Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016906986

Country of ref document: EP

Effective date: 20190103