WO2018000563A1 - 一种交直流混合电力系统及直流侧故障保护方法 - Google Patents

一种交直流混合电力系统及直流侧故障保护方法 Download PDF

Info

Publication number
WO2018000563A1
WO2018000563A1 PCT/CN2016/097243 CN2016097243W WO2018000563A1 WO 2018000563 A1 WO2018000563 A1 WO 2018000563A1 CN 2016097243 W CN2016097243 W CN 2016097243W WO 2018000563 A1 WO2018000563 A1 WO 2018000563A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
ground
current
switch
bidirectional switch
Prior art date
Application number
PCT/CN2016/097243
Other languages
English (en)
French (fr)
Inventor
尹昌新
李蕴
黄仁乐
姜田贵
谢晔源
王存平
张禄
杨楠
朱铭炼
连建阳
刘洪德
张中锋
Original Assignee
国网北京市电力公司
南京南瑞继保电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网北京市电力公司, 南京南瑞继保电气有限公司 filed Critical 国网北京市电力公司
Publication of WO2018000563A1 publication Critical patent/WO2018000563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil

Definitions

  • the invention relates to a DC side ground fault protection method for an AC/DC hybrid power system, and belongs to the technical field of AC/DC power supply.
  • the transmission and distribution technology of the AC grid is mature, and the control and protection mechanism is clear.
  • the DC grid can realize flexible control of transmission power and is suitable for DC power supply and DC load access, and can be used as an important supplement to the urban power supply system.
  • the construction of AC/DC hybrid power supply system in a specific area can provide higher quality power supply, better accept distributed power supply and DC load, improve power and voltage control capability of AC power distribution system, improve system safety and stability level and reduce loss. .
  • the voltage source type converter device can realize AC/DC DC conversion, and the active and reactive power can be independently decoupled and controlled, which is the core device for constructing the AC/DC hybrid power supply system.
  • the voltage source type converter device is connected to the AC grid by using a connection transformer.
  • the transformer can realize the fault isolation between the AC and DC systems.
  • the transformer can match the voltage of the AC system and the valve side voltage of the voltage source converter.
  • the urban power supply system has high requirements on the volume and land occupation of the power device. When the voltage source converter device is applied to the urban power supply system, a compact design is required. If the connection transformer of the converter device between the AC systems can be omitted, the overall investment and land occupation of the system can be reduced.
  • the urban power grid generally adopts the resonant grounding method, that is, at the neutral point.
  • Install an arc suppression coil When single-phase grounding occurs, the inductive current generated by the arc suppression coil compensates for the capacitive current at the fault point.
  • the arc suppression coil has obvious effects on suppressing the intermittent arc overvoltage and ferromagnetic resonance overvoltage, reducing the accidental trip rate of the line, reducing personal injury and damage and equipment damage.
  • the voltage source type converter device usually adopts a method of connecting a high-resistance ground on the variable valve side or a high-resistance ground on the DC side.
  • the converter unit can share the grounding system with the AC system.
  • the arc suppression coil is grounded.
  • the neutral point of the AC system will generate a DC bias voltage.
  • a fault current with offset is generated on the arc suppression coil. Even if the converter device is blocked, the three-phase AC voltage can be alternately turned on by the freewheeling diode of the inverter.
  • the object of the present invention is to provide a DC ground fault protection method for an AC/DC hybrid power system, which solves the DC ground fault isolation when the AC/DC converter device is directly connected to an AC system grounded by an arc extinguishing device without connecting a transformer. problem.
  • the solution of the present invention is:
  • a DC-side ground fault protection method for an AC/DC hybrid power system comprising an AC power source (01), an AC bus (02), an AC feeder (03), an AC switch (04), and an AC/DC a commutation device (05), an arc extinguishing device (06), a fault current damper device (07), a DC side positive bus (101) voltage measuring device (51), a DC side negative bus (102) voltage measuring device (52), Ground current measuring device (08), DC network (10); wherein the fault current damping device (07) includes at least one power resistor (71), a bidirectional switch (72) connected in parallel, and a bidirectional switch (72) Control unit;
  • the DC-side ground fault protection method for the AC/DC hybrid power system is characterized in that the method includes the following steps:
  • the DC side ground fault protection method of the AC/DC hybrid power system is characterized in that: when the ground current IGND is less than the fixed value 3, after the delay 2, the AC switch (04) is disconnected to realize the AC/DC converter device. (05) Fault isolation of DC side ground faults.
  • the DC-side ground fault protection method of the AC/DC hybrid power system is characterized in that: the bidirectional switch (72) is triggered when the DC side ground fault does not occur, and the arc extinguishing device can perform the fault current when the AC system is grounded. Compensation, the ground current flows through the bidirectional switch (72); after the DC ground fault occurs, the bidirectional switch (72) is quickly turned off by the bidirectional switch control unit (73), and the ground current flows through the power resistor (71) of the fault current damper.
  • the fault current damper device opens the bidirectional switch when the AC/DC converter device does not have a DC side ground fault.
  • the arc suppression coil can compensate the ground current, and suppress the intermittent arc overvoltage and ferromagnetic resonance. Overvoltage, reduce the accidental trip rate of the line, reduce the personal injury and damage and equipment damage have obvious effects, the fault current damping device does not affect the protection mechanism of the AC system failure.
  • the fault current damper device turns off the bidirectional switch when the AC/DC converter device has a DC-side ground fault, and the ground current flows through the power resistor of the fault current damper device to rapidly attenuate the fault current flowing through the arc-suppression coil and the grounding point. To achieve fast isolation of DC side ground faults.
  • the bidirectional switch can realize the breaking of the forward current and the reverse current, and ensure the breaking of the fault current under the two fault conditions of the DC side positive ground fault and the negative ground fault.
  • the present invention can widely use the existing urban power supply system to construct a compact AC/DC hybrid power system to better accommodate distributed power and DC loads.
  • FIG. 1 is a schematic diagram of an embodiment of an AC/DC hybrid power system according to the present invention.
  • Figure 2 is a schematic diagram of the ground current path when the bidirectional switch is turned on.
  • Figure 3 is a schematic diagram of the ground current path when the bidirectional switch is turned off.
  • the AC/DC hybrid power system includes a 10 kV AC power source (01), an AC bus (02), a 10 kV AC feeder (03), an AC switch (04), an AC/DC converter (05), and an arc extinguishing device (06). Fault current damper (07) and ground current measuring device (08), DC side positive bus (101) voltage measuring device (51) is configured on the DC side positive bus of AC/DC converter (05), and the converter DC is measured.
  • a grounding measuring device is arranged between the damping device and the grounding point to detect the grounding current IGND.
  • the AC feeder (03) shown in Figure 1 is used to supply AC load; the AC/DC converter (05) is used for AC/DC voltage conversion to realize power transmission of AC system and DC system, AC/DC converter
  • the AC voltage connector of the device (05) is connected to the AC switch (04), and the DC voltage connector of the AC/DC converter device (05) is connected to the DC load (10).
  • the inverter of the AC/DC converter device (05) in this embodiment employs a voltage source type inverter of a modular multi-level structure.
  • One end of the AC switch (04) is connected to the AC voltage terminal of the inverter, and the other end is connected to the 10kV AC bus (02). There is no connection transformer between the AC/DC converter device (05) and the AC power source (01).
  • the arc extinguishing device (06) includes a grounding transformer (061), an isolating switch (62), an arc suppression coil (63), an arc suppression coil damping resistor (64), and an arc suppression coil. Damping resistor protection unit (65) and other parts.
  • the grounding transformer of the arc extinguishing device (06) is connected to the three-phase AC power source, leads to the neutral point through the grounding transformer, and is connected to the arc suppression coil (63) through the isolating switch.
  • the grounding transformer (61) is connected to the AC power supply (01) by a Z-type wiring.
  • the grounding transformer (61) can have only the primary winding, or the secondary winding can be added as needed.
  • the arc suppression coil damping resistor (64) is used to limit the displacement voltage UN of the neutral point to less than 15% of the phase voltage when series resonance occurs in the system. When the system is single-phase grounded, a large current flows through the neutral point. At this time, the arc suppression coil damping resistor (64) is short-circuited by the arc suppression coil damping resistance protection unit (65).
  • the fault current damper (07) in the AC/DC hybrid power system shown in Fig. 1 includes at least one power resistor (71), a bidirectional switch (72) in parallel with the power resistor, and a control unit for controlling the bidirectional switch (72) ( 73).
  • One end of the fault current damper (07) is connected to the arc extinguishing device (06), and one end is grounded.
  • the bidirectional switch (72) is a semiconductor switch (Bimode Insulated Gate Transistor, BIGT) that can be reversed.
  • the bidirectional switch in parallel with the power resistor has a bidirectional current breaking capability, which can realize the breaking of the forward current and the reverse current, and ensure the breaking of the fault current under the two fault conditions of the DC side positive ground fault and the negative ground fault.
  • the bidirectional switch can also be a bidirectional switch with a bidirectional current breaking capability composed of a combination of controllable semiconductor devices.
  • FIG. 1 takes FIG. 1 as an example to illustrate the DC-side ground fault protection method for AC-DC hybrid power system:
  • the invention realizes that the bidirectional switch is turned on when no DC fault occurs, the ground current flows through the bidirectional switch (as shown in FIG. 2), the power resistor is bypassed by the bidirectional switch (72), and the arc extinguishing device can fault current when the AC system is grounded. Perform compensation; after the DC ground fault occurs, the bidirectional switch is quickly turned off by the bidirectional switch control unit (73), and the ground current flows through the power resistor (71) of the fault current damper device (Fig. 3). The fault current is quickly attenuated. After the fault current is rapidly attenuated, it is less than the AC input switch (04) breaking capacity, and the AC incoming line switch (04) is disconnected to achieve fast isolation of the DC side ground fault.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)

Abstract

一种交直流混合电力系统的直流侧接地故障保护方法,该系统包括交流电源(01)、交流母线(02)、交流馈线(03)、交流开关(04)、AC/DC换流装置(05)、消弧装置(06)、故障电流阻尼装置(07)、直流正极母线(101)电压测量装置(51)、直流负极母线(102)电压测量装置(52)和接地电流测量装置(08)。通过检测系统的直流电压和接地电流的大小判断确定交直流混合电力系统是否发生直流侧接地故障,在发生直流接地故障后分断故障电流阻尼装置双向开关,未发生直流接地故障时,通过双向开关将阻尼电阻旁路。消弧装置可以对交流系统接地故障进行补偿,故障电流阻尼装置不影响交流系统故障时的保护机理,提高系统运行的可靠性。

Description

一种交直流混合电力系统及直流侧故障保护方法 技术领域
本发明涉及一种交直流混合电力系统的直流侧接地故障保护方法,属于交直流供电技术领域。
背景技术
交流电网的输配电技术成熟,控制和保护机理清晰。直流电网可实现输送功率的灵活控制,适合于直流电源和直流负荷的接入,可作为城市供电系统的重要补充。在特定区域构建交直流混合供电系统,可以提供更高质量的供电,更好地接纳分布式电源和直流负荷,并改善交流配电系统的功率和电压控制能力,提高系统安全稳定水平并降低损耗。
电压源型换流装置可以实现AC/DC直流变换,其有功、无功功率可以独立解耦控制,是构建交直流混合供电系统的核心装置。电压源型换流装置多采用连接变压器与交流电网相连,一方面连接变压器可以实现交直流系统间的故障隔离,另一方面变压器可以实现交流系统电压与电压源换流装置阀侧电压的匹配。城市供电系统对电力装置的体积、占地具有较高的要求,电压源换流装置应用于城市供电系统时需要采用紧凑型设计方案。若可以省去换流装置于交流系统间的连接变压器,将可以减少系统的整体投资和占地。
为了解决城市交流配电系统对地电容电流大,单相接地后流经故障点的电流大,容易产生间隙性弧光接地过电压的问题,城市电网普遍采用了谐振接地方式,即在中性点装设消弧线圈。当发生单相接地时,由于消弧线圈产生的感性电流补偿了故障点的电容电流。消弧线圈对抑制间隙性弧光过电压和铁磁谐振过电压,降低线路的事故跳闸率,减少人身伤亡及设备的损坏都有明显的作用。
电压源型换流装置通常采用连接变阀侧高阻接地或直流侧高阻接地的方式。电压源型换流装置直接连接到交流系统时,换流装置可以与交流系统共用接地系统。对于交流系统采用消弧线圈接地,换流装置与交流系统共用接地时存在下述问题,即在换流装置直流侧发生接地故障后,交流系统的中性点将产生直流偏置电压,此时会在消弧线圈上产生带偏置的故障电流,即使换流装置闭锁,三相交流电压仍可通过换流器的续流二极管交替导通,此时会出现因相电流缺少过零点 而导致交流开关无法分断的情况,系统无法隔离换流装置的直流接地故障。消弧装置、换流装置以及交流线路中均会流过较大的故障电流,严重时将导致消弧线圈、换流装置等设备的损坏。因此,需要采取适当的措施来应对,提出合适的系统直流侧接地故障保护方法。
发明内容
本发明的目的,在于提供一种交直流混合电力系统的直流接地故障保护方法,解决AC/DC换流装置不通过连接变压器而直接连接到采用消弧装置接地的交流系统时的直流接地故障隔离难题。
为了达成上述目的,本发明的解决方案是:
一种交直流混合电力系统的直流侧接地故障保护方法,所述交直流混合电力系统包括交流电源(01)、交流母线(02)、交流馈线(03)、交流开关(04)、AC/DC换流装置(05)、消弧装置(06)、故障电流阻尼装置(07)、直流侧正极母线(101)电压测量装置(51)、直流侧负极母线(102)电压测量装置(52)、接地电流测量装置(08)、直流网络(10);其中所述故障电流阻尼装置(07)包括至少一个功率电阻(71)、与之并联的双向开关(72)和用于控制双向开关(72)的控制单元;
所述的交直流混合电力系统直流侧接地故障保护方法,其特征在于,所述方法包括如下步骤:
1)检测所述AC/DC换流装置直流侧正极性母线电压值UdcP、负极性母线电压值UdcN和接地电流IGND;
2)将UdcP与UdcN的差值的绝对值(|UdcP-UdcN|)与定值1进行比较,接地电流IGND与定值2进行比较,当|UdcP-UdcN|值大于定值1,和/或接地电流IGND大于定值2,经延时1后启动保护;
3)启动保护后,闭锁AC/DC换流装置(05),闭锁双向开关(72),使故障电流流过阻尼电阻支路,实现对流过消弧装置故障电流直流分量的衰减;
4)分断交流开关(04),实现对AC/DC换流装置(05)直流侧接地故障的故障隔离。
所述交直流混合电力系统的直流侧接地故障保护方法,其特征在于:当接地电流IGND小于定值3后,经延时2后,分断交流开关(04),实现对AC/DC换流装置(05)直流侧接地故障的故障隔离。
所述交直流混合电力系统的直流侧接地故障保护方法,其特征在于:未发生直流侧接地故障情况下触发导通双向开关(72),消弧装置可以对交流系统接地故障时的故障电流进行补偿,接地电流流过双向开关(72);在发生直流接地故障后通过双向开关控制单元(73)快速关断双向开关(72),接地电流流过故障电流阻尼装置的功率电阻(71)。
本发明采用以上技术方案取得的有益效果是:
1)故障电流阻尼装置在AC/DC换流装置未发生直流侧接地故障时,开通双向开关,在交流系统故障时,消弧线圈可以补偿接地电流,对抑制间隙性弧光过电压和铁磁谐振过电压,降低线路的事故跳闸率,减少人身伤亡及设备的损坏都有明显的作用,故障电流阻尼装置不影响交流系统故障时的保护机理。
2)故障电流阻尼装置在AC/DC换流装置发生直流侧接地故障时,关断双向开关,接地电流流过故障电流阻尼装置的功率电阻,快速衰减流过消弧线圈及接地点的故障电流,实现直流侧接地故障的快速隔离。
3)双向开关可以实现对正向电流和反向电流的分断,确保直流侧正极接地故障、负极接地故障两种故障情况下故障电流的分断。
4)本发明可以广泛应用现有的城市供电系统,构建一种紧凑型的交直流混合电力系统,更好地接纳分布式电源和直流负荷。
附图说明
图1本发明的一种交直流混合电力系统实施例示意图。
图2双向开关导通时的接地电流通路示意图。
图3双向开关关断时的接地电流通路示意图。
具体实施方式
以下结合附图来对本发明进行详细的说明。然而应当理解,附图的提供仅为了更好地理解本发明,它们不应该理解成对本发明的限制。
图1给出本发明的一种交直流混合电力系统实施例的示意图。该交直流混合电力系统包括10kV交流电源(01)、交流母线(02)、10kV交流馈线(03)、交流开关(04)、AC/DC换流装置(05)、消弧装置(06)、故障电流阻尼装置(07)和接地电流测量装置(08),在AC/DC换流装置(05)直流侧正极母线配置直流侧正极母线(101)电压测量装置(51),测量换流器直流侧正极母线对地电压UdcP;在AC/DC换流装置(05)直流侧负极母线配置直流侧负极母线(102)电压测量装置(52),测量换流器直流侧负极母线对地电压UdcN;在阻尼装置与接地点间配置接地测量装置,检测接地电流IGND。
图1中所示交流馈线(03)用于向交流负载供电;所述AC/DC换流装置(05)用于交直流电压变换,实现交流系统和直流系统的功率输送,AC/DC换流装置(05)的交流电压接头连接至交流开关(04),AC/DC换流装置(05)的直流电压接头连接至直流负载(10)。本实施例中AC/DC换流装置(05)的换流器采用模块化多电平结构的电压源型换流器。交流开关(04)的一端与换流器的交流电压端相连接,另一端与10kV交流母线(02)连接。所述AC/DC换流装置(05)与交流电源(01)间无连接变压器。
图1所示的交直流混合电力系统中,消弧装置(06)包含接地变压器(061)、隔离开关(62)、消弧线圈(63)、消弧线圈阻尼电阻(64)、消弧线圈阻尼电阻保护单元(65)等部分。消弧装置(06)的接地变压器连接至三相交流电源,通过接地变压器引出中性点,通过隔离开关连接至消弧线圈(63)。消弧线圈(63)一端连接至隔离开关,另一接线端连接到消弧线圈阻尼电阻(64),消弧线圈阻尼电阻保护单元(65)并联与消弧阻尼电阻(65)两端。接地变压器(61)与交流电源(01)相连的绕组采用Z型接线,接地变压器(61)可以只有初级绕组,也可以根据需要增加二次绕组。当交流电源(01)具有中性点时,消弧装置(06)不需要使用接地变压器,消弧线圈(63)直接连接到交流电源(01)中性点。消弧线圈阻尼电阻(64)用于当系统发生串联谐振时,限制中性点的位移电压UN小于15%相电压。当系统发生单相接地时,中性点流过很大的电流,这时通过消弧线圈阻尼电阻保护单元(65)将消弧线圈阻尼电阻(64)短接。
交流电源(01)与AC/DC换流装置(05)之间无连接变压器,在直流单极接地故障情况下,交流电源会通过换流器的续流二极管、消弧线圈构成故障电流通路,消弧线圈两端会出现直流偏置电压,交流开关(04)流过带直流偏置的故障电流, 超过交流开关(04)的分断能力,交流开关(04)无法正常分闸。消弧线圈上流过较大的故障电流,消弧线圈阻尼电阻保护单元(65)会将消弧线圈阻尼电阻(64)短接,此时故障回路阻尼较小,流过交流开关(04)的故障电流衰减时间较长。通过故障电流阻尼装置可以实现交流开关(04)的故障电流衰减。
图1所示的交直流混合电力系统中的故障电流阻尼装置(07)包括至少一个功率电阻(71)、与功率电阻并联的双向开关(72)和用于控制双向开关(72)控制单元(73)。故障电流阻尼装置(07)一端连接到消弧装置(06),一端接地。双向开关(72)采用能够反向导通的半导体开关(Bimode Insulated Gate Transistor,BIGT)。与功率电阻并联的双向开关具有双向电流分断能力,可以实现对正向电流和反向电流的分断,确保直流侧正极接地故障、负极接地故障两种故障情况下故障电流的分断。双向开关也可以是可控半导体器件组合构成的具有双向电流分断能力的双向开关。
下面以图1为例,说明交直流混合电力系统直流侧接地故障保护方法:
1)检测所述换流装置的正极性母线直流电压值UdcP、负极性母线直流电压值UdcN和接地电流IGND;
2)将UdcP与UdcN的差值的绝对值(|UdcP-UdcN|)与定值1进行比较,接地电流IGND与定值2进行比较,当UdcP与UdcN的差值大于定值1和/或接地电流IGND与定值2,经延时1后启动保护;例如某次AC/DC换流装置(05)的负极接地故障,|UdcP-UdcN|为20kV,IGND为100A,故障持续100ms;定值1为4kV,定值2为20A,延时1为10ms,则接地故障后10ms后保护动作;
3)启动保护后,闭锁AC/DC换流装置(05),闭锁双向开关(82),双向开关(82)闭锁后故障电流流过功率电阻支路,通过功率电阻对流过消弧装置的故障电流直流分量衰减。
4)当接地电流IGND小于定值3后,经延时2后,分断交流进线开关(04),实现对AC\DC换流装置(05)直流侧接地故障的故障隔离,交流系统部分可以继续运行。
本发明实施在未发生直流故障情况下双向开关导通,接地电流流过双向开关(如图2)功率电阻被双向开关(72)旁路,消弧装置可以对交流系统接地故障时的故障电流进行补偿;在发生直流接地故障后通过双向开关控制单元(73)快速关断双向开关,接地电流流过故障电流阻尼装置的功率电阻(71)(如图3), 使故障电流快速衰减。故障电流快速衰减后,小于交流进线开关(04)分断能力后,分断交流进线开关(04),实现直流侧接地故障的快速隔离。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (3)

  1. 一种交直流混合电力系统的直流侧接地故障保护方法,其特征在于,所述交直流混合电力系统包括交流电源(01)、交流母线(02)、交流馈线(03)、交流开关(04)、AC/DC换流装置(05)、消弧装置(06)、故障电流阻尼装置(07)、直流侧正极母线(101)电压测量装置(51)、直流侧负极母线(102)电压测量装置(52)、接地电流测量装置(08)、直流网络(10);其中所述故障电流阻尼装置(07)包括至少一个功率电阻(71)、与功率电阻并联的双向开关(72)和用于控制双向开关(72)的控制单元;
    所述的交直流混合电力系统直流侧接地故障保护方法包括如下步骤:
    1)检测所述AC/DC换流装置(05)直流侧正极性母线电压值UdcP、负极性母线电压值UdcN和接地电流IGND;
    2)将UdcP与UdcN的差值的绝对值|UdcP-UdcN|与定值1进行比较,接地电流IGND与定值2进行比较,当|UdcP-UdcN|值大于定值1,和/或接地电流IGND大于定值2,经延时1后启动保护;
    3)启动保护后,闭锁AC/DC换流装置(05),闭锁双向开关(82),使故障电流流过阻尼电阻支路,实现对流过消弧装置故障电流的衰减;
    4)分断交流开关(04),实现对AC/DC换流装置(05)直流侧接地故障的故障隔离。
  2. 如权利要求1所述交直流混合电力系统的直流侧接地故障保护方法,当接地电流IGND小于定值3后,经延时2后,分断交流开关(04),实现对AC/DC换流装置(05)直流侧接地故障的故障隔离。
  3. 如权利要求1所述交直流混合电力系统的直流侧接地故障保护方法,其特征在于:未发生直流侧接地故障情况下触发导通双向开关(72),消弧装置对交流系统接地故障时的故障电流进行补偿,接地电流流过双向开关(72);在发生直流接地故障后通过双向开关控制单元(73)快速关断双向开关(72),接地电流流过故障电流阻尼装置的功率电阻(71)。
PCT/CN2016/097243 2016-06-30 2016-08-29 一种交直流混合电力系统及直流侧故障保护方法 WO2018000563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610513154.X 2016-06-30
CN201610513154.XA CN107565539B (zh) 2016-06-30 2016-06-30 一种交直流混合电力系统及直流侧故障保护方法

Publications (1)

Publication Number Publication Date
WO2018000563A1 true WO2018000563A1 (zh) 2018-01-04

Family

ID=60785933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097243 WO2018000563A1 (zh) 2016-06-30 2016-08-29 一种交直流混合电力系统及直流侧故障保护方法

Country Status (2)

Country Link
CN (1) CN107565539B (zh)
WO (1) WO2018000563A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979098A (zh) * 2018-01-10 2018-05-01 重庆聚陆新能源有限公司 一种新型混合拓扑多功能电力电子配网装置及控制方法
CN109494703A (zh) * 2018-11-29 2019-03-19 李景禄 一种基于补偿阻尼方式的主动干预型保安消弧方法
CN111654049A (zh) * 2019-03-04 2020-09-11 国家电网有限公司 一种应用于柔性直流输电的能量耗散系统及其控制方法
CN112310953A (zh) * 2020-11-27 2021-02-02 芜湖科越电气有限公司 一种过电压综合控制及消弧线圈接地故障管理系统
CN112332397A (zh) * 2019-08-01 2021-02-05 李景禄 一种消弧线圈与主动干预消弧装置并联接地故障处理法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751645B (zh) * 2020-06-22 2023-05-12 北京国网富达科技发展有限责任公司 一种变压器直流偏磁监测方法、装置、设备及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2521811Y (zh) * 2002-01-24 2002-11-20 上海思源电气股份有限公司 并联电阻式自动跟踪消弧补偿及选线装置
CN201113427Y (zh) * 2007-07-05 2008-09-10 宋岩艳 无源快速阻尼电阻装置
CN202189094U (zh) * 2011-07-25 2012-04-11 河北工业大学 谐振接地电网脱谐度自动测量装置
CN105449660A (zh) * 2015-10-12 2016-03-30 国家电网公司 一种并联式消弧线圈自动补偿装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208788B (zh) * 2013-03-08 2015-11-04 李景禄 智能动态配电网中性点接地方法与成套装置
CN103887772B (zh) * 2013-09-11 2017-04-19 南京南瑞继保电气有限公司 柔性直流输电接地测量装置及保护方法
CN104009446B (zh) * 2014-02-27 2018-05-18 南京南瑞继保电气有限公司 一种直流输电保护装置、换流器及保护方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2521811Y (zh) * 2002-01-24 2002-11-20 上海思源电气股份有限公司 并联电阻式自动跟踪消弧补偿及选线装置
CN201113427Y (zh) * 2007-07-05 2008-09-10 宋岩艳 无源快速阻尼电阻装置
CN202189094U (zh) * 2011-07-25 2012-04-11 河北工业大学 谐振接地电网脱谐度自动测量装置
CN105449660A (zh) * 2015-10-12 2016-03-30 国家电网公司 一种并联式消弧线圈自动补偿装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG TIANGUI ET AL.: "Grounding fault analysis of flexible loop Network control device in neutral point grounding system with arc suppression coil", ELECTRIC POWER CONSTRUCTION, vol. 37, no. 5, 1 May 2016 (2016-05-01), pages 147 - 151, ISSN: 1000-7229 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979098A (zh) * 2018-01-10 2018-05-01 重庆聚陆新能源有限公司 一种新型混合拓扑多功能电力电子配网装置及控制方法
CN109494703A (zh) * 2018-11-29 2019-03-19 李景禄 一种基于补偿阻尼方式的主动干预型保安消弧方法
CN111654049A (zh) * 2019-03-04 2020-09-11 国家电网有限公司 一种应用于柔性直流输电的能量耗散系统及其控制方法
CN112332397A (zh) * 2019-08-01 2021-02-05 李景禄 一种消弧线圈与主动干预消弧装置并联接地故障处理法
CN112310953A (zh) * 2020-11-27 2021-02-02 芜湖科越电气有限公司 一种过电压综合控制及消弧线圈接地故障管理系统

Also Published As

Publication number Publication date
CN107565539A (zh) 2018-01-09
CN107565539B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2018000563A1 (zh) 一种交直流混合电力系统及直流侧故障保护方法
EP2856590B1 (en) Method of fault clearance
US8847430B2 (en) Power flow control in a meshed HVDC power transmission network
AU2018295936A1 (en) Safe processing method for active voltage reduction of ground fault phase of non-effective ground system
US8519572B2 (en) Self power-acquiring quick-responsive controllable reactor
CN106208112B (zh) 一种电力机车试验线平衡供电系统
CN202444249U (zh) 变压器中性点直流偏磁抑制装置
EP3036813B1 (en) Electric protection on ac side of hvdc
CN110544931B (zh) 一种自产供电相电源的接地故障电流补偿系统及方法
WO2020233180A1 (zh) 限流型可控避雷器、换流器、输电系统以及控制方法
US20200052483A1 (en) Short circuit fault current limiter
WO2015081615A1 (zh) 一种直流断路器
CN103441501A (zh) 用高压级联式svg实现消弧线圈功能的方法
CN204741270U (zh) 变压器中性点直流电流隔离装置
CN104931840B (zh) 一种变压器中性点直流电流抑制装置测试系统
CN108963988B (zh) 一种环网控制器及配电网
CN207381234U (zh) 一种配电变压器有载调压系统
Shao et al. Research and application of the control and protection strategy for the±500kV Xiluodu-Guangdong double bipole HVDC project
CN203674688U (zh) 统一电能质量控制器的保护系统
CN107785908A (zh) 一种具有短路电流限制功能的动态电压恢复器
CN106899023A (zh) 一种可调式串联补偿系统
CN102255595A (zh) 抑制变压器直流偏磁的方法
CN106711979A (zh) 一种用于直流输电系统换相失败的抑制方法及系统
CN108725216B (zh) 基于Scott接线牵引变压器的平衡供电系统及方法
Ganesh et al. High frequency power distribution unit (HFPDU) for MRI systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16906960

Country of ref document: EP

Kind code of ref document: A1