WO2018000540A1 - 无人船载维修夹具 - Google Patents

无人船载维修夹具 Download PDF

Info

Publication number
WO2018000540A1
WO2018000540A1 PCT/CN2016/095106 CN2016095106W WO2018000540A1 WO 2018000540 A1 WO2018000540 A1 WO 2018000540A1 CN 2016095106 W CN2016095106 W CN 2016095106W WO 2018000540 A1 WO2018000540 A1 WO 2018000540A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
fixture
seal
flange
annular
Prior art date
Application number
PCT/CN2016/095106
Other languages
English (en)
French (fr)
Inventor
杨越
Original Assignee
杨越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨越 filed Critical 杨越
Publication of WO2018000540A1 publication Critical patent/WO2018000540A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/168Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/06Joints with sleeve or socket with a divided sleeve or ring clamping around the pipe-ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/168Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe
    • F16L55/17Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe by means of rings, bands or sleeves pressed against the outside surface of the pipe or hose

Definitions

  • the invention relates to a maintenance tool, in particular to a pipeline maintenance fixture carried by an unmanned ship in maintenance of a submarine oil and gas pipeline.
  • Fixture repair is to install fasteners-clamps outside the pipeline at the leaking site to achieve the purpose of repairing pipeline leaks.
  • the fixture repair technology is now mature in the maintenance of land and submarine oil and gas pipelines, according to the fixture maintenance technology in the submarine oil and gas pipelines.
  • the most critical component in current maintenance technology is the subsea plumbing fixture.
  • Most of the clamps are made in two halves and are fixed to the pipe by bolting or welding, so they can be divided into welded and bolted. Welded clamps improve repair reliability and bolted connections are more convenient.
  • the current method is to install and repair underwater submersibles in Repulse Bay.
  • the submarine pipelines are referred to the working vessels, and the pipeline damages are pretreated directly on the working vessels. Fix the fixture to the pipe.
  • the above two methods have obvious drawbacks. Due to the need to arrange support ships, personnel, maintenance equipment and other auxiliary equipment to the maintenance site, and after the operation is completed, support ships, personnel, maintenance equipment and The recovery of other auxiliary equipment is therefore costly and economical.
  • the fixtures of domestic manufacturers are mainly used in terrestrial oil and gas pipelines. When used for temporary maintenance, the oil and gas pipelines can be normally sealed for 2-3 months to ensure that oil and gas are not leaked at the seals around the clamps. For permanent maintenance, the fixtures can be used. The pipes are welded together in one piece. Domestic manufacturers have not yet produced equipment for submarine oil and gas pipeline fixtures. The technology of home equipment for foreign submarine oil and gas pipelines is relatively mature. With the rapid development of unmanned ship technology, the development of some special structure fixtures is carried on unmanned ships. In the case of staffing, the repair of the submarine pipeline can be completed by using unmanned ships and maintenance fixtures and appropriate auxiliary equipment, without the need to lift the pipeline to the unmanned ship for pre-treatment, saving time and economic costs. In addition, the reasonable structure and components are used to effectively support the sealing during the installation process, and the sealing member is not limited to fill the cracks on the surface of the pipe during use, and the replacement of the sealing member is a problem to be considered.
  • an unmanned ship-mounted maintenance fixture comprising: two complementary clamp elements that are designed to be clamped together in a pipe section to form a complete clamp, each clamp element having an inner flange a surface, generally semi-circular; the clamp assembly has a plurality of flange surfaces, each having a pair of circular sealing grooves extending axially spaced apart from each other in a circumferential direction, wherein the annular seal is disposed; only one clamp member has a pair a longitudinal sealing groove extending in the annular direction and extending in the axial direction, the longitudinal sealing groove being at opposite ends of the circular sealing groove in the annular direction, thereby forming a clamp member, each sealing groove having a placement therein a longitudinal seal; a four-way joint region formed by a longitudinal seal and an annular seal; a clamp flange or a fastening flange disposed at opposite ends of the two flanges in the annular direction, the flange being used for The clamp elements are fastened
  • more than two suitably shaped clamp elements can also be used to form a complete clamp.
  • the inner surface of the clamp member is defined by the inner edge of the flange extending inwardly, wherein the flanges are axially spaced from each other to define a recess between the flanges.
  • each flange has a plurality of bolt holes or bolts for placing bolts or nuts to clamp the clamp members together.
  • the flange has a base surface.
  • the base surface of the clamp member has a longitudinal sealing groove.
  • the longitudinal seal is used in conjunction with the base surface of the clamp member and the base surface of the clamp member.
  • each of the clamp members has a curved outer wall surface and a curved inner wall surface between the flanges, each flange having a bolt face.
  • the clamp assembly is clamped together by suitable bolts, using a hexagon socket head cap screw with a hexagonal stud head as a screw, and a hex nut for use with the bolt.
  • the clamp member includes a retaining member that connects the longitudinal seal and the annular seal at the four corner attachment regions for securing the longitudinal seal and the annular seal to the clamp member.
  • each retaining element includes a self-tapping screw extending through a bore in the flange and through the annular seal into the axial seal.
  • the clamp member includes an additional retaining member that also extends through the aperture in the flange and penetrates the annular seal within the attachment region to connect the annular seal to the clamp member within the attachment region.
  • the additional retaining elements are distributed at intervals along the length of the annular seal, the spacing being spaced according to the diameter of the clamp, providing receiving holes in the flange at appropriate intervals to accommodate the free ends of the retaining members, The free end passes through the annular seal.
  • Figure 1 shows a three-dimensional view of a preferred embodiment of a repair clip for forming a seal on a pipe section with the clamp in its disassembled state
  • Figure 2 is an end elevational view of the preferred embodiment of the repair clip shown in Figure 1 in the axial direction of the partially integral partially disassembled state, in a completed or assembled state on the pipe section or on some of the hollow tubular members;
  • Figure 3 is a cross-sectional view showing the dimensionally enlarged jig of Figure 2 taken along line III-III;
  • Figure 4 is a cross-sectional view showing the dimensionally enlarged jig of Figure 2 taken along line IV-IV;
  • Figure 5 shows a discontinuous top view of a jig having a corner sealing element in accordance with the present invention
  • Figure 6 is a cross-sectional side view of the clamp member of Figure 5 taken along line VI-VI of Figure 5;
  • Figure 7 shows a cross-sectional side view of an alternative embodiment of the clamp of Figures 1-6 in the axial direction, in the form of a water split saddle or splitter clip.
  • Figure 8 is a plan view showing a prior art jig in the axial direction, wherein the arrows indicate the biasing direction of the clip-specific extensible load;
  • Figure 9 is a cross-sectional view of the clamp showing zero offset between the centerline of the wall and the center of the force of the bolt;
  • Figure 10 is a cross-sectional plan view showing the preferred embodiment of the repair clip produced in accordance with the present invention in the axial direction, demonstrating the presence of optimized offset and non-circular clamp holes;
  • Figure 11 is a graph showing the change in the weight of the jig by changing the bias of the center line of the force applied, especially demonstrating the existence of the case where the minimum grip weight is obtained with the optimum offset value;
  • Figure 12 illustrates a data processing logic or flow diagram for minimizing fixture weight.
  • reference numeral 10 generally refers to a preferred embodiment of a clamp for forming a seal on a pipeline unit in accordance with the present invention.
  • the clamp 10 is in the form of a repair clip for repairing the high pressure pipe section to organize the leaking hair. Born or repair defects.
  • the clamp 10 includes two complementary clamp elements 12.1 and 12.2 that are designed to be clamped together in a pipe section to form a complete clamp 10.
  • Each clamp element 12 (i.e., 12.1 and 12.2) has an inner flange surface 12, typically a semi-circular shape.
  • the clamp element 12 is generally semi-circular in that the two clamp elements 12 are used to form a complete clamp 10. However, it should be understood that more than two suitably shaped clamp elements 12 can also be used to form a complete clamp 10. However, a pair of clamp elements is a preferred configuration here.
  • Each flange surface 14 of the clamp assembly 12 has a pair of circular seal grooves 16 that are axially spaced apart from each other in a circumferential direction, wherein an annular seal 18 is disposed.
  • the annular seals 18 of each clamp element 12 are thus spaced apart from each other in the axial direction and extend in the annular direction. These seals are all inside the inner flange surface 14.
  • clamp member 12.2 has a pair of longitudinal seal grooves 20 which are spaced apart from each other in the annular direction and extend in the axial direction.
  • the longitudinal seal grooves 20 are at opposite ends of the annular seal groove 16 in the annular direction, thereby forming the clamp member 12.2.
  • Each sealing groove 20 has a longitudinal seal 22 placed therein.
  • the longitudinal seal 22 is in contact with the annular seal 18 to form a four-way joint region 24.
  • the inner surface of the clamp member 12 is defined by the inner edge along the inwardly extending flange 26, wherein the flanges 26 are axially spaced from one another to define a recess between the flanges 26.
  • Each clamp element 12 has a clamp flange or fastening flange 30.1 (for clamp element 12.1) and 30.2 (for clamp element 12.2), the opposite ends of the two flanges in the annular direction.
  • Flange 30 is used to secure clamp elements 12 together to form a complete clamp 10.
  • Each flange 30 has a plurality of bolt holes or bolts 32 for holding the bolts or nuts so that the clamp members 12 are clamped together.
  • Each flange 30 has a base face 34.
  • the base face of the clamp element 12.2 has a longitudinal sealing groove 20 placed therein.
  • the longitudinal seal 22 is used in conjunction with the base face of the clamp element 12.2 and the base surface 34 of the clamp element 12.1.
  • Each clamp element 12 has a curved outer wall surface 6 and a curved inner wall surface 38 between the flanges 26.
  • Each flange 30 has a bolt face 40.
  • the clamp assembly 12 is clamped together by suitable bolts.
  • a hexagon socket head cap screw 42 having a hexagonal stud head is used as a screw.
  • a hex nut 46 is used along with the bolt.
  • the six-leg screw 42 is fixed using the protruding drive key, it is not necessary to provide an excessive price space around the screw head 44. Therefore, the screws can be closer to each other and closer to the outer wall surface 36 of the clamp member 12. This will cause a sharp decrease in the size of the flange 0 of the jig 10.
  • the flange 30 is typically fabricated to match the angle formed by the intersection of the nut 46 with the bolt surface 40 and the outer wall surface 36, thereby placing the nut 46 in place. It does not rotate during installation. Therefore, it is not necessary to use an auxiliary wrench during bolt torsion.
  • the preferred screw 42 herein conforms to ANSI B18.3, which is a material specified in accordance with ASTM A-574.
  • the material specification specifies a minimum deviation of 0.2% resulting in a strength of 153,000 psi and a minimum ultimate tensile strength of 170,000 psi.
  • the minimum elongation of the material (before breakage) of 8% is also specified. Due to the higher strength, the length of the compressed pipe section may increase without the use of larger bolts or screws 42. Alternatively, the same compression length or seal length requires a smaller screw. This is important because the increase in the size of the screw also increases the size and weight of the clamp 10.
  • the cumulative weight savings are also due to the use of high-strength hex screws, the weight of the screw 42 and the possible small size of the screw flange 30 and the presence of a smaller bending load on the clamp body, which are all from According to the optimized design of the present invention, the weight savings that can be provided are typically from about 15% to up to 40% in some cases.
  • the clamp element 12.2 comprises a retaining element 48.1 which connects the longitudinal seal 22 and the annular seal 18 in a four-corner connection region 24. At the same time, the retaining element 48.1 is used to secure the longitudinal seal 22 and the annular seal 18 to the clamping element 12.2.
  • Each retaining element 48.1 includes a self-tapping screw 48.1 that extends through an aperture 50 in the flange 26 and passes through the annular seal 18 into the axial seal 22 (see in particular in Figure 4).
  • Each retaining element, or self-tightening screw 48.1 can secure the annular seal 18 to the longitudinal seal 22 in the attachment region 24 while at the same time positioning the attachment region 24 on the clamp member 12.2.
  • the clamp element 12 includes an additional retaining element 48.2 that also extends through the aperture 50 in the flange 26 and penetrates the annular seal 18 in the attachment region to connect the annular seal 18 to the clamp member 12 in the aforementioned attachment region stand up.
  • the further retaining elements 48.2 are distributed at intervals along the length of the annular seal 18, the spacing being dependent on the diameter of the clamp 10.
  • a receiving aperture is provided in the flange 26 at appropriate intervals to accommodate the free end of the retaining member 48.2, which passes through the annular seal 18.
  • FIG. 1-4 illustrates the advantage of the present solution in that the retaining member 48 positions the annular seal 18 in a highly efficient manner and is positioned within the sealing recess 16 of the clamp member 12.
  • the retaining member 48.1 secures the ends of the annular seal 18 and the longitudinal seal 22 together, both of which are secured to the critical attachment zone 24 to improve sealing performance in this region while simultaneously providing the annular seal 18 and the longitudinal seal 22 The ends are fixed in these connection areas.
  • the seal retaining member 48 effectively supports the seal during installation and does not limit the seal from filling the cracks or the like of the pipe surface during use. In addition, the sealing retaining element allows the seal to be easily replaced.
  • the retaining element 48 has several advantages in accordance with certain aspects of the present invention described with reference to the preferred embodiment of Figures 1-4.
  • the device is simple. Traditional spin screws are used to penetrate the seal and are dense The seal provides a strong support.
  • the self-tapping screws of the holding element 48.1 at each corner of the joint 24 are provided for two purposes, one for positioning the seal while keeping the number of screws to a minimum.
  • the installation of the seal is simplified. The ease of replacement reduces production costs and reduces shipping time due to the labor required to install the seals and the use of retaining screws.
  • retaining elements in the form of self-tapping or self-tapping screws can also be used for the disclosed purposes. Applicants believe that such a screw would weaken the function of the seal and would have a greater tendency to leak at the point of penetration.
  • seals made of elastomeric material produce a tight seal along the retaining element 48 and have been tested to indicate that these areas are less likely to leak.
  • the retaining element 488.1 creates an effective seal at the intersection of the annular and longitudinal seals, thus inhibiting sealing within the corner joint region 24.
  • the retaining element 48.1 enhances the tendency to leak or the sealing function within the connecting region 24 and does not have any detrimental effect on the sealing characteristics of the seal.
  • Each of the clamping elements 12 further has a circumferentially extending thermal protection groove 52 that is internal to the inner surface of the flange.
  • a heat protection groove 52 extending in the circumferential direction is positioned between the annular groove 16 and the axial end of the clamping member 12. Thermal protection grooves are clearly seen in Figures 3 and 4.
  • thermal protection recess 52 The purpose and function of the thermal protection recess 52 can be verified with particular reference to the drawings.
  • the repair clip of the present invention once installed in place, is typically welded to the pipe section. At the same time the clamping elements 12 are also welded together. Thus the clamp 10 becomes a permanent component welded on a pipe section. The sealing reliability of the repair clips is no longer dependent on the sealing performance of the elastomeric seals 18 and 22.
  • a typical weld 54 is shown in FIG. 3 to weld the axial end of the clamp member 12 to the high pressure conduit section 56.
  • Heat is generated during the welding operation. If heat is accumulated in the direction of the flange 26 like the annular seal 18, the sealing performance of the seal 18 may be small during the welding process. During the welding process, fluid flow in line 56 carries away the heat generated during the welding process. Deterioration of the seal 18 is also undesirable, and it is also detrimental if degradation occurs during the welding process. Of course, it is also dangerous if the combustibles propagate within the pipe section 56.
  • the thermal protection groove 52 interrupts the heat flow path, thus defining the heat generated from the weld region 54 to the annular seal 18 during the welding process.
  • the thermal protection groove 52 typically has a width of approximately ⁇ " and the depth generally corresponds to the depth of the annular sealing groove 16.
  • the thermal protection groove 52 provides an advantage over prior art systems in that the width of the flange 26 is increased by about 3 inches to absorb the heat generated thereby protecting the seal.
  • the heat protection recess 52 does not increase the weight of the clamp 10 and provides a more effective protective barrier to heat transfer than other materials within the clamp element 12.
  • the clamp 10 includes a plurality of angle seals 58.
  • An angle seal is described in detail as shown in Figures 5 and 6.
  • the corner seal 58 is omitted from Figure 1 and Figure 4.
  • corner seals are on the clamp element 12.2 in the four corner joint region 24.
  • the corner seal 58 is placed within a suitable slit 60 in the sealing surface 34.
  • the slits 60 communicate with respective adjacent annular seal grooves 16 and axial seal grooves 20.
  • Each corner seal 58 is shaped to be positioned within the slot 16 and encircles the adjacent annular seal 18 and the longitudinal seal 22, wherein the two are joined together within the angular attachment region 24.
  • the angular seal 58 is positioned such that the retaining element or self-tapping screw 48.1 can also pass through the angle seal 58 and then through the longitudinal seal 22 before penetrating and passing through the annular seal 18.
  • the retaining element 48.1 is thus additionally used to position the corner seals 58 and secure them to the seals 18 and 22.
  • the attachment area 24 is the area most sensitive to seal reliability within the repair clip. These areas are the areas where leakage is most likely to occur because the longitudinal seals are adjacent to the annular seal in these areas. In addition, in these connection areas, the seal-to-seal contact can occur during use, as opposed to the seal-to-metal contact.
  • the design of the clamp element 12 is particularly useful for providing seal-to-metal contact in most areas. This is why the longitudinal seal 22 is only placed on the clamping element 12.2 so that it can interact with the sealing surface 34 of the clamping element 12.1.
  • the corner seal 58 does not eliminate the seal-to-seal contact, but undoubtedly completely surrounds the area where the metal contacts the seal.
  • the corner seal 58 thus provides a relatively reliable sealing geometry as A backup or secondary sealing system, which is relative to the primary seal provided by seals 18 and 22.
  • the angular seals 58 are typically mounted as annular gaskets within the slit 60 and are cut so that they do not exceed the sealing grooves 16 or 20 in the attachment region 24.
  • the longitudinal seal 22 and the annular seal 18 may extend a distance of approximately ⁇ " or protrude above the surface of the clamp member.
  • the slit 60 is typically fabricated to withstand proper compression during use.
  • the angle seal is approximately thirty to forty percent compressed than the original height.
  • reference numeral 62 generally designates an embodiment of another clamp in accordance with the present invention for forming a seal for a pipe section.
  • the clamp 62 is substantially equivalent to the clamp 10 of Figures 1-6. Therefore, the corresponding elements are also given the same reference numerals.
  • the clamp 62 is in the form of a water diversion saddle or a split wire clamp that can be used to provide a valve into the pipe section or to provide the valve when repair is required.
  • the clamp element 12.1 of the clamp 62 has a line branch 64 extending therefrom.
  • the clamp 62 includes an annular spacer 66 located inside the clamp member 12.1 closest to the inner edge of the pipeline 64 for providing engagement with the conduit section 56 in use, as shown in FIG.
  • the clamp 62 further includes a sealable test port 68 located within the clamp element 12.1.
  • the annular gasket 66 is preferably made of the same material as the longitudinal and annular seals 22 and 18 discussed in detail above. This gasket is easily tortuous and can be insensitive to the size of the pipe and to withstand the surface imperfections of the pipe section.
  • the gasket is located within an annular gasket slit 70 along the inner surface of the clamp member 12.1.
  • the annular gasket 66 will closely surround the gasket space, and the fluid entering through the pipeline and flowing outside the pipe section 56 is restricted by a small surrounding gasket hole 72. Area. The outer surface of the line section 56 is thus protected from the annular gasket so that it is not subject to any erosion by the line fluid.
  • the clamp 62 provides a more important role in allowing the clamp 62 to be tested prior to the actual opening of the pipe section 56 to test the integrity of its seal.
  • test port 68 in spacer 66 and the traditional ring A hydrostatic force is applied between the shape and the axial seal to enable testing of the seal and confirmation of the effectiveness of the seal. This actually ensures that no leaks will occur when the pipe segment is switched on.
  • annular gasket 66 of the clamp 62 it is generally only possible to determine whether the conventional seal is effective when the gasket hole 72 is formed and the pressurized fluid enters the interior of the clamp 62. If a leak is detected at this stage, the gasket hole can be formed at this time, which is very disadvantageous.
  • the clamp 62 provides a further advantage in that if a leak occurs within the clamp 62 after installation, the test hole 68 can be used to inject a suitable sealant into the outer edge of the gasket, the longitudinal seal 22 and the outer edge of the annular seal 18 define a slot. Inside. This makes it possible to repair the leak without having to stop the line. This is almost impossible without the annular gasket 66 because the sealant will flow into the bore of the pipe and will not work for seal leakage.
  • Figure 8 shows a basic body shape of a conventional repair clip 70. It is noted that the clamp body bore 72.8 of the clamp 70 is substantially annular. The dotted line drawn there indicates the center line 74.8 of the main path of the tensile load of the wall. It should be noted that there is a large distance between the bolt strength center line 42.8 and the wall center line 74.8, and 74.8 is located at the jig seam 76.8 defined by the base surface 34.8. The arrow (78.8) represents the offset distance 70.8 between the wall centerline 74.8 and the bolt centerline 42.8.
  • the offset distance 78.8 and the tensile load product value along the bolt centerline 42.8 are the bending moments generated within the clamp housing.
  • the bending moment is constant and continuous from one end to the other end of the outer casing. Therefore, since the offset distance 78.8 is a relatively large value, the bending moment is also a large value.
  • Such large bending moment values are undesirable because these loads must be specifically carried by the clips, thus resulting in an increase in the specific wall thickness of the clip or the use of more expensive reinforcing ribs.
  • the clamp does not tilt much without losing the proper sealing load.
  • the designed fixture meets three criteria. That is, the fixture must meet the wall thickness, Acceptable criteria for the minimum bending stress and minimum bending stress of the bolt.
  • the jig has a more satisfactory bending moment and a smaller weight.
  • the wall thickness minimization criteria can be calculated based on acceptable or standard codes, such as an ASME code or a cylindrical container equivalent to a material of the same diameter and the same clamp.
  • AMSE, Unit 8, Part 2 gives additional criteria for safe bending stress levels.
  • the basic standards established under these rules allow the use of any material.
  • the usable level of the sum of the film (tensile) stress and the usable level of the bending stress are 1.5 times the basic usable stress.
  • the bolt material typically has a different available stress definition than the clip, and the method of calculating the basic usable limits of the bolt and container material is different, as the materials used are different.
  • the bending criteria and tensile stress criteria can be used.
  • Figure 9 shows a clamp 80 having an offset distance between the wall load center line 74.9 and the bolt strength center line 42.9.
  • the clamp consists of clamp elements 12.9 and 12.10 opposite each other. Since the offset distance 78.9 is equal to 0, then the bending load or bending moment is also equal to 0 because the bending moment is equal to the offset distance and the strength of the bolt. Although the bending load has been eliminated in the clamp 80, this configuration is not the least likely because the distance between the two sides of the bolt flanges 30.9 and 30.10 must be greatly increased to provide the necessary distance between the bolts. Therefore, some bending moments are better than no bending moments.
  • the edge flange 30 may become shorter to accommodate the fixture wall 36, thus resulting in a reduction in the weight of the clamp, however, as the offset distance 78 increases, the bending load becomes variable. It is getting bigger and bigger and the required wall thickness is also greater to resist bending loads. Therefore, the offset distance 78 must be optimized to achieve the minimum fixture weight.
  • the fixture can be designed step by step using data processing in the form of a computer program. This data processing method will be described in more detail later.
  • FIG. 10 shows a typical clamp 82 made in accordance with the present invention.
  • the clamp has a pair of complementary clamping members 12.11 and 12.12 that are clamped together to form a complete clamp, each clamp member 12 having a clamp wall 38.11 and 84.12 defining an outer wall surface 86 and a curved inner wall surface 38.10.
  • Fixture wall 84.12 defines a wall centerline 74.10 that projects along the radius path and extends from a midpoint between the inner surface 38.10 and the outer surface 86.
  • the midpoint referred to herein need not necessarily be the midpoint of the geometry, and may also be referred to herein as the midpoint of the force within the clamp wall 84.
  • the wall load centerline 74 will follow a path in the radial direction that generally corresponds to the curvature of the curved inner wall surface 38.
  • Bolts or side flanges 30.11 and 30.12 are radially spaced apart on opposite sides of the clamp wall 84 for clamping the clamping members 12.1 and 12.12 together to form a complete pipe clamp 82.
  • Each bolt flange 30 has at least one bolt hole 32 for receiving a bolt 40, and a bolt hole 32 defines a bolt example center line 42, wherein the distance between the bolt force center line 42 and the wall center line 84 represents the center line offset distance 78.
  • non-annular apertures 72.10 and 72.9 can be obtained.
  • Such non-annular apertures 72.10 are generally characterized by opposing curved inner wall surfaces 38.10 and 38.11 and opposing flat curved inner wall surfaces 88.10 and 88.11.
  • the inner wall faces 88.10 and 88.11 do not necessarily have to be flat. Therefore, such inner wall surface 88 is more often defined as inner flange wall surface 88.
  • the prior art is defined by the manner in which the cross-sectional shape of the specific hole 72 is defined, and the generally non-annular shape represents the optimum shape of the clip. Further, the shape may be further defined by reference to the distance between the inner wall surfaces 88.10 and 88.11 of the opposing jigs relative to the distance between the inner surfaces 38.10 and 38.11 of the opposite curved surface, usually the diameter of the inner wall of the curved surface is larger than the diameter between the flat surfaces, or may be replaced , larger than the inner wall surface of the flange 88.10 and 88.11.
  • the distance between the opposing curved inner wall faces 38.10 and 38.11 is at least 1% greater than the distance between the opposing inner wall flange faces 88.10 and 88.11.
  • a more preferred embodiment can be achieved by providing a difference of up to 25% between the diameter of the inner flange and the diameter of the inner wall of the opposite curved surface. It has been found that the difference between these distances in the optimal body shape for smaller flanges is greater than the difference between these distances for large flanges. For example, a 2" flange (that is, a flange designed for a 2" pipe) has a 25% internal parasitic difference. In addition, the 16" flange has the same parasitic 10% difference and the 48" flange proves only a 3% difference. However, the optimal flanges produced are also different for different applications.
  • the radius of the centerline 74 of the generally circular wall and the opposite flange inner wall surface 88.10 and The radius of the distance between 88.11 can similarly define a pipe clamp made in accordance with the present invention.
  • the wall midline radius can be determined by the radius of the annular wall force centerline 74.10.
  • the flange radius is less than 5% of the wall midline radius.
  • the flange radius can be 25% smaller than the wall midline radius.
  • Figure 11 illustrates a chart for demonstrating the achievable advantages. Shown here is a graph showing the change in the weight of the clamp (along the Y-axis) relative to the change in offset distance (along the X-axis).
  • the offset distance is zero, which causes the weight of the clamp to be larger than the weight of the clamp when the offset distance is optimal.
  • the entire circular body of the conventional repair clip gives a high-weight grip that has a weight that is relatively large in both the relative offset distance and the zero offset distance.
  • Figure 12 illustrates a logic circuit for minimizing the weight of the fixture.
  • the logic circuitry is suitable for use by those skilled in the art within the framework of computer software programs. However, there is no need to utilize computer software at all, and unlike stress, the calculation of deflection and physical size can use non-software related methods, such as manual calculations. Those skilled in the art will generally recognize that computer software has many advantages, that time consumption is much smaller and potentially more accurate, and that a more appropriate optimized fixture size can be obtained.
  • the logic circuit of Figure 12 designs a fixture step by step. Designed to start a program without an offset (ie, an offset equal to zero). The logic calculates all appropriate fixture design parameters and then calculates the weight. Then the program increments in a small step to increase the offset and complete the entire process again. After each design phase is completed, the next weight is compared to the weight calculated in the previous step. As long as the weight is continuously reduced, the process can be repeated. The minimum fixture weight can be found after a sufficient number of times.
  • step-by-step logic can be used to prove that a unique offset that does exist can be found, and can be "smoothed" by the logic to approach the optimal value (ie, the weight caused by small changes in the offset range) Changes in the radial direction are not observed). These conditions can all be met and these steps can be effectively implemented for any given fixture design requirement at the stage of finding the optimal geometry.
  • the logic of Figure 12 begins with input module 90, inputting a pipe size 92 (using the pipe outer diameter parameter) and a seal length 94, the seal length being the minimum distance between the side-spaced annular seals 18.
  • the seal 18 needs to be adapted to, for example, a hole in the pipeline that requires repair.
  • Other inputs include the pressure level of the fixture produced and the number of bolts 98.
  • the number of bolts is typically based on a determined bolt area requirement and can be determined by the designer's preference. In practical applications, a reasonable number of bolts can be selected.
  • the minimum weight is determined, the number of bolts can be changed or the diameter of a single bolt can be changed. This will change the position of the center line of the bolt.
  • the minimum weight can be determined again until an optimal number of bolts are obtained to give a determined optimum weight.
  • the print key is set to 0 as its initial count.
  • the logic circuit After inputting the four variable inputs mentioned above, the logic circuit then processes the logic box 100 to calculate the distance between the inner wall surface 14 of the sealing flange and the pipe to be repaired.
  • a 4" tube is typically 3/16" inches in pitch.
  • these pitch data can be generated using a formula that considers potential pipe expansion and non-uniformity, and can also be calculated using formulas well known to those skilled in the art of fixture builders.
  • the spacing is set to the maximum acceptable range of the pipe. In a preferred embodiment, it is arduously set to twice the maximum acceptable tolerance range value.
  • the next logical step 102 includes placing the axial seal along the base face 34 of the clamp member 12, consistent with the end position of the annular seal 18.
  • logic circuit box 104 determines the pressure applied to the fixture, reference to the American Social Mechanical Engineer (ASME) code.
  • ASME American Social Mechanical Engineer
  • the shim holding load must be large enough to create sufficient compressive force on the seal to maintain the pressure.
  • the pressure applied to the rectangular region defined by the section of the clamp bearing groove ie, the sealed interface region is determined by the axial and annular outer edges of the annular seal) determines the total load. The load is thus determined and this is also determined as a pressure load.
  • the section bolt size necessary to counteract the pressure load is determined by the allowable tension because the bolt material is determined by the pressure loading information within the logic box 104. This is typically a standard calculation procedure known to those skilled in the art.
  • the logic circuit box 108 positions the bolt centerline 42 with the inner edge of the bolt hole placed outside of the longitudinal seal.
  • the logic circuit box 110 sets the centerline of the body casing 74 equal to the bolt centerline 42 (thus setting the offset distance equal to zero).
  • the logic circuit boxes 112-120 need to meet the criteria for fixture wall thickness, bending stress, and bolt bending stress.
  • the wall thickness of the casing is calculated according to the standard of the wall thickness of the jig, and it is required to satisfy a specific pressure load condition.
  • Unit 8 of the ASME code, Part 1 specifies the general rule relating to the wall thickness of a pressure vessel.
  • bin 104 calculates the fixture physical size calculation with the selected offset and the wall thickness of the outer casing. Such physical size calculations include. For example, consider the implementation of the bolt nut 46 that would typically be squeezed into the outer clip portion 36 to achieve the greatest advantages of the present invention.
  • the logic circuit box 116 calculates the internal pressure and deflection of the fixture having the physical dimensions determined above. This includes, for example, the tension on the body due to pressure.
  • the bending stress on the body is determined by dividing the moment of the clamp housing (the product of the load and the offset) by the section modulus of the clamp, where the example sentence is equal to the pressure load of each of the clamping elements 12.
  • the curved section modulus is a common calculation in which the outer casing can be thought of as a beam.
  • the allowable internal tension can be determined by reference to the ASME code. Section 8, Part 2 specifies more detailed operational criteria. With reference to the allowable tension determined by these codes, the sum of the tensile and bending stresses can be 1.5 times. Therefore, regardless of the stress allowed by the main film of the material, 1.5 times the sum of the tensile and bending stresses can be used. These standards are used for bending stresses in bolts and bending stresses in the body.
  • the appropriate ASME code is also the code currently preferred for determining a particular standard.
  • the stresses and deflections calculated in the tank 116 are again checked according to the ASME standard, and if no inspection is performed, the wall thickness in the tank 120 is gradually increased and the calculation of the tanks 114-118 is repeated.
  • the weight of the composite jig will be calculated in bin 122.
  • the logic box is a print key test that is initiated only when the fixture is getting the minimum weight.
  • the quality of the fixture obtained at this stage is used to compare with the quality of the fixture obtained in the next stage.
  • the offset distance is successively incremented at the logical box 130 and then the next hierarchical calculation is started.
  • the hierarchical calculation continues until the resulting fixture has a greater weight value than the previous one (determined at bin 126). When this occurs, the logic returns to the previous order, the generated fixture has a reduced weight and has a reduced offset distance relative to the previous value of the logic box 130 (where the print key is set to 1). During the final tilting process, the print key test at bin 124 is performed and the design data is printed at bin 132.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Clamps And Clips (AREA)

Abstract

一种无人船载维修夹具(10),其特征在于包括:两个互补夹具元件(12.1,12.2),经过设计可以在在管道段互相夹持在一起形成完整的夹具(10),每个夹具元件(12.1,12.2)都具有内法兰表面,通常为半圆形;夹具组件(12)具有多个法兰表面(14),每个所述具有一对轴向互相间隔圆周方向延伸的圆形密封凹槽(16),其中布置环形密封件(18);仅有一个夹具元件(12.2)具有一对环形方向上相互间隔,轴线方向上延伸的纵向密封凹槽(20),所述纵向密封凹槽(20)处于圆形密封凹槽(16)沿环形方向上相对的两端,进而形成夹具元件(12.2),每个密封凹槽(20)都具有其中放置的纵向密封件(22);四路结合区域(24),由所述纵向密封件(22)与环形密封件(18)相接形成;夹具法兰或者紧固法兰(30.1,30.2),布置在两个法兰在环形方向上相对的两端,所述法兰(30)用于将夹具元件(12)紧固在一起形成完整的夹具(10)。

Description

无人船载维修夹具 技术领域
本发明涉及维修用具,特别是海底油气管线维修中由无人船搭载的管线维修夹具。
背景技术
夹具维修是在泄漏部位的管道外安装紧固件-夹具,达到维修管道泄漏的目的,夹具维修技术目前已经成熟的应用在陆地和海底油气管道维修作业中,根据夹具维修技术在海底油气管道的应用情况,目前维修技术中最关键的部件就是海底管道夹具。夹具大多制成两半状,使用时用螺栓连接法或焊接法固定到管道上,因此可以分为焊接式和螺栓连接式。焊接式夹具可以提高修复可靠性,螺栓连接式更方便。
对于我国广大海域海底管道维修,目前采用的方法是针对浅水湾进行水下人工潜水安装维修,而对于深水地区,是将海底管道提到工作船上,在工作船上对管道损害部位进行预处理后直接对管道进行夹具修复安装。然而对于水域浑浊能见度极低的情况,以上两种方法弊端明显,由于需要安排支持船、人员、维修设备及其他辅助设备到维修现场,并且在完成操作后需要进行支持船、人员、维修设备及其他辅助设备的复原工作,因此需要耗费的时间和经济成本很高。
国内生产厂家的夹具设备主要应用于陆地油气管道,用作临时维修时可以正常封堵油气管道2-3个月,保证油气在夹具四周密封处不泄漏,用作永久维修时,可以把夹具与管道整体焊接在一起。国内生产厂家目前还没有生产用于海底油气管道夹具设备的,国外海底油气管道家居设备技术比较成熟,随着无人船技术的快速发展,开发一些特殊结构的夹具搭载到无人船上,在无需人员配备的情况下,采用无人船和维修夹具以及适当的辅助设备就可以完成海底管线的修复工作,无需将管线提升至无人船上进行预处理,节约时间和经济成本。另外,采用合理的结构和元件有效的支持安装过程中的密封,并且并不限制密封件在使用过程中将管道表面的瑕疵裂缝等填充,同时使得密封件能够便捷的更换是需要考虑的问题。
发明内容
因此本发明的目的在于提供一种无人船载维修夹具,包括:两个互补夹具元件,经过设计可以在在管道段互相夹持在一起形成完整的夹具,每个夹具元件都具有内法兰表面,通常为半圆形;夹具组件具有多个法兰表面,每个具有一对轴向互相间隔圆周方向延伸的圆形密封凹槽,其中布置环形密封件;仅有一个夹具元件具有一对环形方向上相互间隔,轴线方向上延伸的纵向密封凹槽,纵向密封凹槽处于圆形密封凹槽沿环形方向上相对的两端,进而形成夹具元件,每个密封凹槽都具有其中放置的纵向密封件;四路结合区域,由纵向密封件与环形密封件相接形成;夹具法兰或者紧固法兰,布置在两个法兰在环形方向上相对的两端,法兰用于将夹具元件紧固在一起形成完整的夹具。
优选的,多于两个的适当形状的夹具元件也可以用于形成一个完整的夹具。
优选的,夹具元件的内表面是由沿着向内延伸的法兰的内边缘确定的,其中法兰互相之间沿着轴向间隔从而确定法兰之间的凹缝。
优选的,每个法兰都具有若干个螺栓孔或者螺栓,用于放置螺栓或者螺母来将夹具元件夹持在一起。
优选的,法兰具有基座面。
优选的,夹具元件的基座面上具有纵向密封凹槽,当管道段上完成夹具的制作后,纵向密封件与夹具元件的基座面以及夹具元件的基座表面配合使用。
优选的,每个夹具元件具有弯曲的外壁面以及弯曲的内壁面,位于法兰之间,每个法兰具有一个螺栓面。
优选的,夹具组件通过适当的螺栓夹持在一起,使用具有六角螺柱头的内六角螺钉作为螺钉使用,连同螺栓使用六角螺母。
优选的,夹具元件包括保持元件,将纵向密封件和环形密封件在四角连接区域连接起来,保持元件用于将纵向密封件和环形密封件固定在夹持元件上。
优选的,每个保持元件包括一个自攻螺丝,穿过法兰内的孔延伸,穿过环形密封件后进入轴向密封件。
优选的,夹具元件包括另外的保持元件,同样延伸穿过法兰上的孔,并且穿透连接区域内的环形密封件,从而将上述连接区域内将环形密封件与夹具元件连接起来。
优选的,另外的保持元件沿着环形密封件的长度方向上以一定间隔的分布,间隔的大小依据夹具的直径,以适当的间隔在法兰内提供接收孔从而容纳保持元件的自由端,该自由端穿过环形密封件。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。本发明的目标及特征考虑到如下 结合附图的描述将更加明显,附图中:
附图1表示一个修理夹的优选实施例三维图,该修理夹用于形成管道段上的密封,其中夹具处于其拆解的状态;
附图2表示部分整体部分拆解状态下轴线方向上附图1表示的修理夹优选实施例的端视图,处于管道段或者某些中空管件上的完整或者组装状态下;
附图3表示附图2中经过尺寸放大的夹具不连续截面视图,该视图沿着其中的线III-III;
附图4表示附图2中经过尺寸放大的夹具不连续截面视图,该视图沿着其中的线IV-IV;
附图5表示根据本发明具有拐角密封元件的夹具的不连续俯视图;
附图6表示沿着附图5的VI-VI线,附图5中夹具元件的截面侧视图;
附图7表示轴向方向上,附图1-6所示夹具的可替换实施例的截面侧视图,该实施例采用分水鞍或者分线线夹的形式。
附图8表示轴向方向上典型的现有技术中夹具的俯视图,其中箭头表示夹具体可伸长负载的偏置方向;
附图9表示壁中线和螺栓力中心之间零偏置的夹具截面图;
附图10表示根据本发明生产的修理夹优选实施例轴线方向上的截面俯视图,证明存在优化的偏置以及非圆形的夹具孔;
附图11为通过改变施力中线偏置而使夹具重量发生变化的图表显示,尤其证明了最优偏置值情况下取得最小夹具重量这种情况的存在;
附图12说明了用于最小化夹具重量的数据处理逻辑电路或者流程图。
具体实施方式
参考附图1-4,附图标记10通常指的是根据本发明的一个用于形成管线单元上密封的夹具优选实施例。
夹具10采用修理夹的形式,用于在高压管道段进行修理从而组织泄漏的发 生或者修复缺陷。
夹具10包括两个互补夹具元件12.1和12.2,经过设计可以在在管道段互相夹持在一起形成完整的夹具10。
每个夹具元件12(也就是12.1和12.2)都具有内法兰表面12,通常为半圆形。
夹具元件12通常为半圆形,因为两个夹具元件12用于形成一个完整的夹具10。然而,应当理解多于两个的适当形状的夹具元件12也可以用于形成一个完整的夹具10。然而一对夹具元件在这里是优选的配置。
夹具组件12的每个法兰表面14具有一对轴向互相间隔圆周方向延伸的圆形密封凹槽16,其中布置环形密封件18。因此每个夹具元件12的这些环形密封件18沿轴向方向上互相间隔并且在环形方向上延伸。这些密封件都在内法兰表面14内部。
夹具元件中只有一个,即夹具元件12.2具有一对环形方向上相互间隔,轴线方向上延伸的纵向密封凹槽20。
纵向密封凹槽20处于环形密封凹槽16沿环形方向上相对的两端,进而形成夹具元件12.2。
每个密封凹槽20都具有其中放置的纵向密封件22。
纵向密封件22与环形密封件18相接形成一个四路结合区域24。
夹具元件12的内表面是由沿着向内延伸的法兰26的内边缘确定的,其中法兰26互相之间沿着轴向间隔从而定义法兰26之间的凹缝。
每个夹具元件12都具有夹具法兰或者紧固法兰30.1(对于夹具元件12.1)以及30.2(对于夹具元件12.2),两个法兰在环形方向上相对的两端。法兰30用于将夹具元件12紧固在一起形成完整的夹具10。
每个法兰30都具有若干个螺栓孔或者螺栓32,用于放置螺栓或者螺母来讲夹具元件12夹持在一起。
每个法兰30具有基座面34。
夹具元件12.2的基座面具有纵向密封凹槽20放置在其中。因此当管道段上完成夹具10的制作后,纵向密封件22与夹具元件12.2的基座面以及夹具元件12.1的基座表面34配合使用。
每个夹具元件12具有弯曲的外壁面6以及弯曲的内壁面38,位于法兰26之间。每个法兰30具有一个螺栓面40。
使用过程中,夹具组件12通过适当的螺栓夹持在一起。优选实施例中说明附图中,使用具有六角螺柱头的内六角螺钉42作为螺钉使用。连同螺栓使用六角螺母46。
由于使用突出驱动密钥固定六脚螺钉42,因此没有必要在螺钉头44周围提供过量的价格空间。因此螺钉可以互相之间距离更近,距离夹具元件12的外壁面36也更近。这样会使得夹具10的法兰0尺寸上的锐减。
螺钉或者有头螺栓42中线与夹具主体的中线之间的偏差由于同样的原因而被最小化,导致了夹具主体上更小的弯曲负荷。
由于螺钉头44的直径小于螺母46平坦部分的宽度,所以法兰30通常所制造的形状能够使螺母46与螺栓表面40的交点和外壁面36之间形成的角配合使用,从而放置螺母46在安装过程中不会转动。因此螺栓扭剪过程中没有必要使用辅助扳手。
由于任何传统材料制成的六角螺钉都可以使用,这里优选的螺钉42符合ANSI B18.3,即根据ASTM A-574规定了材料。材料规格规定最小偏差0.2%产生153,000psi的强度以及最小极限抗张强度为170,000psi。材料的最小延长率(断裂前)为8%也同样规定了。由于更高的强度,没有使用更大的螺栓或者螺钉42情况下压缩的管道段长度可能增加。可替换的,同样的压缩长度或者密封长度需要使用的螺钉更小。这一点很重要因为螺钉尺寸的增加也会增加夹具10的尺寸和重量。
累计重量节约也由于使用了高强度六角螺钉,螺钉42的重量和可能的螺钉法兰30的尺寸较小以及同时存在的夹具主体上更小的弯曲负载,这些都是来自 根据本发明的最优化设计,可以提供的重量节省通常从大约15%到某些情况下高达40%。
夹具元件12.2包括保持元件48.1,将纵向密封件22和环形密封件18在四角连接区域24连接起来。同时,保持元件48.1用于将纵向密封件22和环形密封件18固定在夹持元件12.2上。
每个保持元件48.1包括一个自攻螺丝48.1,穿过法兰26内的孔50延伸,穿过环形密封件18后进入轴向密封件22(在附图4中尤其可以看到)
每个保持元件,或者自紧螺钉48.1能够将环形密封件18固定到连接区域24内的纵向密封件22上,而同时可以将连接区域24正向定位在夹具元件12.2上。
夹具元件12包括另外的保持元件48.2,同样延伸穿过法兰26上的孔50,并且穿透连接区域内的环形密封件18,从而将上述连接区域内将环形密封件18与夹具元件12连接起来。
另外的保持元件48.2沿着环形密封件18的长度方向上以一定间隔的分布,间隔的大小依据夹具10的直径。以适当的间隔在法兰26内提供接收孔从而容纳保留元件48.2的自由端,该自由端穿过环形密封件18。
附图1-4所说明的本发明实施例说明了本方案的优点在于保持元件48高效率的将环形密封件18进行定位,定位在夹具元件12的密封凹槽16内。另外,保持元件48.1将环形密封件18和纵向密封件22的末端固定在一起,都固定在重要的连接区24从而改善该区域内的密封性能,而同时将环形密封件18和纵向密封件22的末端固定在这些连接区域内。
密封保持元件48有效的支持安装过程中的密封,并且并不限制密封件在使用过程中将管道表面的瑕疵裂缝等填充。另外,密封保持元件使得密封件能够便捷的更换。
根据本发明参考附图1-4的优选实施例描述的某些方面,保持元件48具有几个优点。一方面是装置简单化。传统的自旋式螺钉用于穿透密封件并为密 封件提供一个坚固的支持力。保持元件48.1每个角的连接点24处含有一个的自攻螺丝,用于两个目的,一是将密封件定位,同时保持螺钉的数目最小。密封件的安装简单化了。由于密封件安装便捷所接生的劳动力以及保持螺钉的使用,更换的便捷都减少了生产成本并且减少了运送时间。
申请人惊奇的发现以自攻或者自攻螺钉形式的保持元件也可以用于所公开的目的。申请人认为这样的螺丝会减弱密封件的功能并且在穿透点处发生泄漏的倾向会更大。令人惊奇的是,弹性材料制成的密封件会沿着保持元件48产生紧密的密封性能并且经过测试表示这些区域不大可能发生泄漏。另外,保持元件48.1在环形和纵向密封件的相交区域会产生有效的密封,因此抑制了角接区域24内的密封。实际上保持元件48.1加强了易发生泄漏角或者连接区域24内的密封功能,并且并不会对密封件的密封特性产生任何有害的效果。
每个夹持元件12进一步具有一个圆周方向上延伸的热保护凹槽52,该凹槽在法兰的内表面内部。
圆周方向上延伸的热保护凹槽52位置在环形凹槽16和夹持元件12的轴向端之间。热保护凹槽在附图3和4中可以很清楚的看到。
热保护凹槽52的目的和功能尤其参考附图可得以验证。
本发明的修理夹一旦安装到位,通常会焊接到管道段。同时夹持元件12也焊接在一起。因此夹具10成为一个管道段上焊接的永久部件。修理夹的密封可靠性不再依赖弹性密封建18和22的密封性能。
附图3中所示为典型的焊接54,将夹具元件12的轴向端焊接到高压管道段56。
焊接操作过程中会产生热量。如果热量沿着法兰26方向像环形密封件18聚集而变得过量时,密封件18的密封效能会在焊接过程中小时。焊接过程中,流体在管线56内流动将焊接过程中产生的热量带走。密封件18的劣化也是不期望的,如果焊接过程中发生劣化也是有害的。当然如果可燃物在管道段56内传播也是很危险的。
热保护凹槽52中断热流路径,因此限定了焊接过程中从焊接区域54到环形密封件18产生的热量。
热保护凹槽52通常具有的宽度大约为φ”,并且深度通常与环形密封凹槽16的深度相应。
热保护凹槽52提供了超越现有技术系统的优点,在于增加了法兰26的宽度大约3英寸来吸收产生的热量从而保护了密封件。热量保护凹槽52没有增加夹具10的重量并且相比夹具元件12内的其他材料来说提供了热量转移更有效的保护壁垒。
夹具10包括多个角密封件58。如图5和6所示详细的描述了角密封件。为了清楚起见,角密封件58从附图1和附图4略去。
特别参考附图5和附图6,四个角密封件在四角连接区域24内的夹具元件12.2上。角密封件58放在密封面34内的适当狭缝60内。狭缝60与各自临近的环形密封凹槽16以及轴向密封凹槽20进行通讯。
每个角密封件58的形状设计使其位于狭缝16内,并且环抱临近的环形密封件18以及纵向密封件22,其中两者在角连接区域24内连接在一起。
角密封件58的位置使得保持元件或者自攻螺钉48.1也可以在穿透并穿过环形密封件18之前穿过角密封件58,然后穿透纵向密封件22。因此保持元件48.1另外用于将角密封件58定位,并且将他们固定到密封件18和22上。
连接区域24是对于修理夹内对密封可靠性最敏感的区域。这些区域是泄漏最容易发生的区域,因为纵向密封件与环形密封件在这些区域内相邻。另外,这些连接区域内,密封件到密封件的接触会在使用中发生,与密封件到金属的接触相反。夹具元件12的设计尤其用于提供大多数区域中密封件到金属的接触。这就是为什么只在夹持元件12.2上放置纵向密封件22的原因,这样就可以与夹持元件12.1的密封面34共同作用。
角密封件58没有消除密封件到密封件的接触,但是无疑完全包围了金属到密封件接触的区域。因此角密封件58提供了一个相对可靠的密封几何形状作为 后备或者次级密封系统,这是相对密封件18和22提供的初级密封而言的。
角密封件58通常作为环形垫片安装,位于狭缝60内并且被切割以便它们不会超过连接区域24内的密封凹槽16或者20。
实际应用中,平均状况下,纵向密封件22和环形密封件18会伸出大约φ”的距离或者伸出到夹具元件的表面上方。因此狭缝60的制作通常能够在使用过程中承当适当压缩,角密封件大约比原始高度压缩了百分之三十到四十。
参考附图7,附图标记62通常表示根据本发明的另一个夹具的实施例,用来形成管道段的密封。
夹具62与附图1-6的夹具10大致相当。因此相应的元件也采用了相同的附图标记。
夹具62采用分水鞍或者分线线夹的形式,使用该形式可以提供进入管道段的阀门,或者用于在需要修理的时候提供该阀门。
夹具62的夹具元件12.1具有从其伸出的管线支路64。
夹具62包括环形垫片66,其位于距离管线之路64内边沿最近的夹具元件12.1内部,用于使用中提供与管道段56之间的啮合,如图7所示。
夹具62进一步包括一个可密封测试端口68,位于夹具元件12.1内。
环形垫片66优选由与前面特定讨论的纵向密封件和环形密封件22以及18相同的材料制成。这样垫片容易曲折并且可以对管路尺寸不敏感并承受管道段表面瑕疵。
垫片位于沿着夹具元件12.1的内表面的一个环形垫片狭缝70内。
由于一旦已经在管道段56内形成垫片孔72,环形垫片66会紧密的环绕垫片空间,通过管线进入并流到管道段56外部的流体被限制道一个很小的环绕垫片孔72的区域。因此管线段56的外表面收到环形垫片的保护,使其不受到管线流体的任何侵蚀。
夹具62提供了更重要的作用在于允许在管道段56真正的接通前对夹具62进行测试,测试其密封的完整性。通过使用测试端口68,在垫片66和传统的环 形以及轴向密封件之间施加流体静力,从而能够测试密封件并确认密封件的有效性。这实际上确保管道段接通的时候不会发生泄漏。没有夹具62的环形垫片66,通常只有可能在垫片孔72形成并且加压后的流体进入夹具62的内部时才能确定常规的密封件是否有效。如果这一阶段检测出发生泄漏,可此时垫片孔已经成型,这是非常不利的。
夹具62提供了进一步优势在于如果在安装后发现夹具62内发生泄漏,测试孔68可用于喷射适当的密封剂进入垫片的外缘,纵向密封件22和环形密封件18的外缘确定的槽内。因此可以不必将管线停止工作就可以修复泄漏。如果没有环形垫片66这几乎是不可能的,因为密封剂会流到管道的孔内,对于密封泄漏不会起作用。
现在参考附图8-10,这里表示了不同种修理夹的截面图。附图8表示了传统修理夹70的一个基本体形状。注意到夹具70的夹具主体孔72.8基本上是环形的。那里所画的点划线表示壁的拉伸载荷主路径的中线74.8。应当注意在螺栓强度中线42.8和壁中线74.8之间存在很大的距离,74.8位于由基座面34.8确定的夹具缝76.8处。箭头(78.8)表示壁中线74.8和螺栓中线42.8之间的偏移距离70.8。
应当理解偏移距离78.8和沿着螺栓中线42.8的拉伸载荷乘积值为夹具外壳内产生的弯矩。另外,该弯矩为常量并且从外壳的一端到另一端是连续的。所以,由于偏移距离78.8是一个比较大的值,那么弯矩也是一个较大的值。如此大的弯矩值是不期望的,因为这些载荷必须由夹具体承担因此会导致夹具体壁厚的增加或者可替换的使用较贵的加强肋。另外,不损失适当的密封载荷情况下夹具不会很大的倾斜。另外,可能设计出这样的夹具,高弯曲载荷导致的应力是可接受的,而高度弯曲导致的倾斜会引起夹具的泄漏。过量倾斜夹具体也会在螺栓内产生很大的弯曲应力。由于螺栓通常放在法兰的一侧,螺栓内的高弯曲应力会使得随着夹具曲率挠度的增加而是螺栓环状切协。
因此通常期望的是设计的夹具满足三个标准。也就是,夹具必须满足壁厚, 夹具体弯曲应力和螺栓弯曲应力最小的可接受标准。根据现有发明通过调整偏移距离78和壁厚达到上述目的,夹具具有更满意的弯矩和更小的重量。
大体上,壁厚的最小化标准可以根据可接受的或者标准代码计算出来,例如ASME码或者等同于直径相等材料与夹具体相同的圆柱形容器来进行计算。AMSE,第8单元,第2部分给出了安全弯曲应力水平的附加标准。这些规则下建立的基本标准允许使用任何材料。另外,薄膜(拉伸)应力总和的可用水平以及弯曲应力的可用水平是基本可用应力的1.5倍。应当理解螺栓材料通常具有与夹具体不同的可用应力限定,因为所使用的材料不同,计算螺栓和容器材料的基本可用限制的方法也是不同的。
一旦建立基本可用应力,可用弯曲标准和拉伸应力标准就会产生。
附图9表示在壁载荷中线74.9和螺栓强度中线42.9之间具有偏置距离的夹具80。夹具由彼此相对的夹具元件12.9和12.10组成。因为偏移距离78.9等于0,然后弯曲负载或者弯矩也等于0,因为弯矩等于偏移距离和螺栓强度的成绩。尽管弯曲载荷已经在夹具80中消除了,该配置并不是最不可能的因为螺栓法兰30.9和30.10两边之间的距离必须大幅增加从而提供螺栓之间必要的距离。因此有一些弯矩比没有弯矩更好。随着螺栓法兰30移出壁中心线74的位置,边法兰30可能会变短从而适应夹具壁36,所以导致夹具重量的减小,然而,随着偏移距离78的增加,弯曲载荷变得越来越大并且所要求的壁厚也更大以抵抗弯曲载荷。所以,偏移距离78必须优化从而获得最小的夹具重量。
应当理解即使全面最小化(最小)夹具重量是通常优选的技术方案,然而在某些应用当中希望提供的夹具是部分最小化重量(即,部分最优偏移)。
为了确定最优几何形状(最轻重量),可以利用计算机程序形式的数据处理逐阶设计夹具。该数据处理方法将会在后面更详细的介绍。
附图10表示一个根据本发明制造的典型夹具82。夹具具有一对互补夹持元件12.11和12.12,互相夹持在一起构成一个完整的夹具,每个夹持元件12具有一个夹具壁38.11和84.12,从而定义了外壁面86和弯曲内壁面38.10。夹具壁 84.12定义了一条壁中线74.10沿着半径路径突出,并从内表面38.10和外表面86之间的中点开始延伸。本领域技术人员应该理解这里所说的中点并不必一定是几何的中点,这里也可以指夹具壁84内的施力中点。然而,壁载荷中线74会沿着半径方向的路径,该路径通常与弯曲内壁表面38的曲率对应。
螺栓或者边法兰30.11和30.12在夹具壁84的环形相对的两侧径向间隔分布,用于将夹持元件12.1和12.12夹持在一起形成一个完整的管道夹具82。每个螺栓法兰30具有至少一个螺栓孔32用于容纳螺栓40,螺栓孔32定义了一条螺栓实例中线42,其中螺栓施力中线42和壁中线84之间的距离表示中线偏移距离78。
应当理解通过减少偏移距离78,可以获得非环形孔72.10和72.9。这样的非环形孔72.10通常的特征在于相对的曲面内壁表面38.10和38.11以及相对的平坦曲线内壁表面88.10和88.11。然而,内壁面88.10和88.11不一定必须是平面。所以这样的内壁面88更多的时候定义为内法兰壁表面88。
所以,应当理解现有发明采用夹具体孔72的截面形状方式进行定义,通常为非环形的形状表示了最优夹具体形状。另外该形状进一步可以参考相对的夹具体内壁表面88.10和88.11之间的距离相对于相对的曲面内壁面38.10和38.11之间的距离定义,通常曲面内壁直径大于平坦表面之间的直径,或者可替换的,大于法兰内壁表面88.10和88.11。
在优选实施例中,相对的曲面内壁面38.10和38.11之间的距离壁相对的内壁法兰面88.10和88.11之间的距离大至少1%。提供相对内法兰直径和相对曲面内壁直径之间高达25%之间的差异可以实现更优选实施例。已经发现对于较小法兰的最优主体形状中这些距离之间的差异比较大法兰的这些距离之间的差异更大。例如,2”法兰(也就是说,法兰设计用于2”管道)内部寄生25%的差异。另外,16”法兰同样的配置下寄生10%的差异而48”法兰证明仅仅有3%的差异。然而,所制作的最优法兰对于不同的应用也是不同的。
通过比较通常为圆形的壁施力中线74的半径和相对法兰内壁表面88.10和 88.11之间的距离的半径可以类似的定义根据本发明制作的管道夹具。相应地,壁中线半径可以有环形壁施力中线74.10的半径确定。因此,本发明的优点可以通过保持相对法兰内壁表面88.10和88.11之间的距离的半径在一个固定的小于壁中线半径值来实现。
优选实施例中,法兰半径相比壁中线半径小的范围在5%内。
在更优选实施例中,法兰半径可以相比壁中线半径小25%。
从前述本发明的重要方面应当理解夹具重量的优化是通过改变伸展负载偏移78来取得的。
附图11说明一个用于证明可实现优点的图表。这里所示的为夹具重量的变化(沿着Y轴)相对偏移距离的变化(沿着X轴)的图表显示。尤其值得注意的是,并且特别令人惊奇的是,一种特殊优化偏移范围的存在。正如所述的偏移距离为零会导致夹具的重量相比偏移距离为最优值时的夹具重量大一些。传统的修理夹的整个圆形体(参见附图8的实例)给出了一个高重量的夹具,该夹具的重量相对最优偏移距离和零偏移距离两种情况下的重量都大。
为了产生最优数据,如图11所示,最好利用数据处理,优选采用计算机软件程序的方式。
附图12说明了一个用于最小化夹具重量的逻辑电路。本领域技术人员应当认识到该逻辑电路适用于由本领域技术人员在计算机软件程序的框架内执行。然而,完全没有必要利用计算机软件,和应力不同,挠度和物理尺寸的计算可以使用非软件相关方法,例如手动计算。本领域技术人员通常应当知道计算机软件具有很多优点,时间消耗小得多并且潜在更准确,能够获得更适当的优化夹具尺寸。
最通常的方式,附图12的逻辑电路逐阶设计一个夹具。没有偏移(即,偏移等于零)的情况下进行设计来启动一个程序。逻辑电路计算所有适当的夹具设计参数然后计算重量。然后程序小步递增的方式增加偏移量并再次完成整个过程。每个设计阶段完成后,下一个重量与上一个步骤中计算的重量进行比较。 只要重量是持续减小的,过程就可以重复。足够多的次数后就可以找到最小的夹具重量。这样的逐阶逻辑电路可以用于证明可以找到确实存在的独一无二的最优偏移量,并且可以通过逻辑电路“平滑”的接近该最优值(即,在偏移范围内微小变化导致的重量半径方向上的变化不会被观测到)。这些条件都可以满足并且对于任何给定的夹具设计要求在寻找最优几何形状的阶段这些步骤都可以有效实施。
特别的,附图12的逻辑电路从输入模块90开始,将管道尺寸92(采用管道外径这一参数)以及密封长度94输入,密封长度是侧面互相间隔的环形密封件18之间的最小距离,密封件18需要与,例如,需要修理的管线内的孔相适应。其它的输入包括所生产夹具的压力等级以及螺栓98的数量。螺栓的数量通常基于确定的螺栓面积要求并且可由设计者的喜好确定。实际应用中,可以选择合理的螺栓数量。一旦确定最小的重量,可以改变螺栓数量或者改变单个螺栓的直径。这将会改变螺栓中线的位置。最小重量可以再次确定直到获得最优数量的螺栓进而给出确定的最优重量。打印键设定为0作为其初始计数。
将上面提到的四个变量输入输进去后,逻辑电路接下来处理逻辑箱100,用来计算密封法兰内壁表面14和需要修理的管道之间的距离。通常,例如对于一个4”管来说通常为3/16”英寸的间距。然而,可以使用考虑潜在的管道膨胀和不均匀性的公式来产生这些间距数据,并且也可以使用夹具制造者领域的技术人员公知的公式进行计算。一般来说,间距会设定到管道可接受的承受范围的最大值。在优选实施例中,艰巨设定到最大可接受的承受范围值的两倍。
接下来的逻辑步骤102包括将轴向密封件沿着夹具元件12的基座面34放置,与环形密封件18的末端位置是一致的。
接下来,逻辑电路箱104,确定施加到夹具上的压力,参考美国社会机械工程师(ASME)代码。尤其,垫片保持载荷必须足够大从而在密封件上产生足够的压紧力来保持压力大小。因此施加到由夹具承重凹槽的截面确定的矩形区域的压力(即,密封的界面区域由轴向和环形密封件的外边沿确定)决定了总的载 荷并且因此确定了螺栓负载,这同样作为压力载荷也是可以确定的。
逻辑箱106中,必要地与抵消压力载荷的截面螺栓尺寸由允许的张力确定,因为螺栓材料是由逻辑箱104内的压力加载信息确定的。这通常是本领域技术人员公知的标准计算程序。
逻辑电路箱108定位螺栓中线42,其中螺栓孔的内边沿就放置在纵向密封件的外侧。
逻辑电路箱110设定主体外壳74的中线与螺栓中线42相等(从而设定偏移距离等于0)。
逻辑电路箱112-120关于计算夹具的物理尺寸,需要符合夹具壁厚,弯曲应力以及螺栓弯曲应力最小的标准。在箱102中,外壳壁厚根据夹具壁厚的标准计算,需要满足特定的压力载荷条件下进行。例如,ASME代码的第8单元,第1部分具体说明了与压力容器的壁厚相关的通用法则。然而,也可以参考其他适当的参数规格。相应地,箱104计算具有选定偏移量和外壳壁厚的夹具物理尺寸计算。这样的物理尺寸计算包括。例如,考虑螺栓螺帽46通常会挤入到外侧夹具体36的实施,从而取得本发明最大的优点。
逻辑电路箱116计算具有上述确定的物理尺寸的夹具的内部压力和偏斜。这包括,例如,由于压力产生的体上的张力。体上的弯曲应力通过将夹具外壳的力矩(载荷和偏移的乘积)除以夹具的剖面模数来确定,其中例句等于每个夹持元件12的压力负载。弯曲的剖面模数是一个常用计算,其中可以将外壳设想成梁。
允许的体内张力可以参考ASME代码确定,第8单元,第2部分具体规定了更详细的操作标准。参考这些代码所确定的允许张力不管是什么,张力和弯曲应力之和可以是1.5倍。所以,不管材料的主薄膜允许应力是多少,都可以使用张力和弯曲应力之和的1.5倍。这些标准用于螺栓内的弯曲应力和体内的弯曲应力。
适当的ASME码同样也是目前优选用于确定具体标准的代码。
在逻辑箱118,箱116中计算的应力和挠度根据ASME标准再次检查,并且如果没有进行检查,箱120中壁厚会逐渐增加并且重复箱114-118的计算。
一旦满足特定最小要求的夹具由箱112-120产生,合成夹具的重量会在箱122中计算。逻辑箱为打印键测试,仅仅当夹具获得最小重量的情况下启动该测试。
在逻辑箱126中,执行进一步测试来确定目前这一阶所产生夹具的重量是否比上一阶获得的夹具重量小。基本上,该测试要求连续计算直到获得夹具的最小重量。
逻辑箱128处,这一阶获得的夹具质量保存用于和下一阶获得的夹具质量进行比较。在逻辑箱130处偏移距离逐次递增然后开始下一次递阶计算。
递阶计算连续进行直到所产生的夹具具有比前一个更大的重量值(在箱126处确定)。当这种情况发生时,逻辑电路回到先前的阶次,所生成的夹具具有减小的重量并且相对逻辑箱130的前一个值具有减小的偏差距离(其中打印键设定为1)。在最终的倾斜过程中,执行箱124处的打印键测试并且设计数据在箱132处被打印出来。
虽然本发明已经参考特定的说明性实施例进行了描述,但是不会受到这些实施例的限定而仅仅受到附加权利要求的限定。本领域技术人员应当理解可以在不偏离本发明的保护范围和精神的情况下对本发明的实施例能够进行改动和修改。

Claims (10)

  1. 一种无人船载维修夹具(10),其特征在于包括:
    两个互补夹具元件(12.1,12.2),经过设计可以在在管道段互相夹持在一起形成完整的夹具(10),每个夹具元件(12.1,12.2)都具有内法兰表面,通常为半圆形;
    夹具组件(12)具有多个法兰表面(14),每个所述具有一对轴向互相间隔圆周方向延伸的圆形密封凹槽(16),其中布置环形密封件(18);
    仅有一个夹具元件(12.2)具有一对环形方向上相互间隔,轴线方向上延伸的纵向密封凹槽(20),所述纵向密封凹槽(20)处于圆形密封凹槽(16)沿环形方向上相对的两端,进而形成夹具元件(12.2),每个密封凹槽(20)都具有其中放置的纵向密封件(22);
    四路结合区域(24),由所述纵向密封件(22)与环形密封件(18)相接形成;
    夹具法兰或者紧固法兰(30.1,30.2),布置在两个法兰在环形方向上相对的两端,所述法兰(30)用于将夹具元件(12)紧固在一起形成完整的夹具(10)。
  2. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:多于两个的适当形状的夹具元件(12)也可以用于形成一个完整的夹具(10)。
  3. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:所述夹具元件(12)的内表面是由沿着向内延伸的法兰(26)的内边缘确定的,其中法兰(26)互相之间沿着轴向间隔从而确定法兰(26)之间的凹缝。
  4. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:每个法兰(30)都具有若干个螺栓孔或者螺栓(32),用于放置螺栓或者螺母来将夹具元件(12)夹持在一起。
  5. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:所述法兰(30)具有基座面(34)。
  6. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:所述夹具元件(12.2)的基座面上具有纵向密封凹槽(20),当管道段上完成夹具(10)的制作后,纵向密封件(22)与夹具元件(12.2)的基座面以及夹具元件(12.1)的基座表面(34)配合使用。
  7. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:每个夹具元件(12)具有弯曲的外壁面(6)以及弯曲的内壁面(38),位于法兰(26)之间,每个法兰(30)具有一个螺栓面(40)。
  8. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:所述夹具组件(12)通过适当的螺栓夹持在一起,使用具有六角螺柱头的内六角螺钉(42)作为螺钉使用,连同螺栓使用六角螺母(46)。
  9. 根据权利要求1所述的一种无人船载维修夹具(10),其特征在于:所述夹具元件(12.2)包括保持元件(48.1),将纵向密封件(22)和环形密封件(18)在四角连接区域(24)连接起来,保持元件(48.1)用于将纵向密封件(22)和环形密封件(18)固定在夹持元件(12.2)上。
  10. 根据权利要求9所述的一种无人船载维修夹具(10),其特征在于:每个保持元件(48.1)包括一个自攻螺丝,穿过法兰(26)内的孔(50)延伸,穿过环形密封件(18)后进入轴向密封件(22)。
PCT/CN2016/095106 2016-06-26 2016-08-14 无人船载维修夹具 WO2018000540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610479174.XA CN106065982A (zh) 2016-06-26 2016-06-26 无人船载维修夹具
CN201610479174.X 2016-06-26

Publications (1)

Publication Number Publication Date
WO2018000540A1 true WO2018000540A1 (zh) 2018-01-04

Family

ID=57420616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095106 WO2018000540A1 (zh) 2016-06-26 2016-08-14 无人船载维修夹具

Country Status (2)

Country Link
CN (1) CN106065982A (zh)
WO (1) WO2018000540A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898737B (zh) * 2020-06-22 2023-11-03 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 一种可拆的分体式真空管道

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899984A (en) * 1959-08-18 Gaffin
US3396753A (en) * 1965-02-01 1968-08-13 Nooter Corp Pipe repair device
US4895397A (en) * 1986-03-14 1990-01-23 International Clamp Company Clamp
CN200949730Y (zh) * 2006-02-15 2007-09-19 北京华油天然气有限责任公司 注环氧树脂方法修复管道的夹具
CN101514776A (zh) * 2008-02-19 2009-08-26 北京安科管道工程科技有限公司 永久性带压堵漏的方法
CN204114463U (zh) * 2014-09-09 2015-01-21 贵州赤天化正泰工程有限责任公司 一种法兰堵漏夹具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004275A (en) * 1986-03-14 1991-04-02 International Clamp Company Clamp
CN2132909Y (zh) * 1992-06-08 1993-05-12 俞伯兴 大管径气液输送管道快速堵漏装置
CN2139207Y (zh) * 1992-11-19 1993-07-28 无锡县管道附件厂 管道快速堵漏装置
DE4408743C2 (de) * 1993-12-02 1995-11-02 Peter Ilesic Dichtvorrichtung zum Abdichten von Rohrleitungen
DE102008059062A1 (de) * 2008-11-26 2010-05-27 Rosen Swiss Ag Wartungsvorrichtung und Verfahren zur Herstellung eines Wartungszugangs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899984A (en) * 1959-08-18 Gaffin
US3396753A (en) * 1965-02-01 1968-08-13 Nooter Corp Pipe repair device
US4895397A (en) * 1986-03-14 1990-01-23 International Clamp Company Clamp
CN200949730Y (zh) * 2006-02-15 2007-09-19 北京华油天然气有限责任公司 注环氧树脂方法修复管道的夹具
CN101514776A (zh) * 2008-02-19 2009-08-26 北京安科管道工程科技有限公司 永久性带压堵漏的方法
CN204114463U (zh) * 2014-09-09 2015-01-21 贵州赤天化正泰工程有限责任公司 一种法兰堵漏夹具

Also Published As

Publication number Publication date
CN106065982A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
US5004275A (en) Clamp
US5066053A (en) Clamp with pipe branch
US4790058A (en) Clamp
US6601437B2 (en) Apparatus for testing or isolating a segment of pipe
US11105175B2 (en) Adjustable frac flow line
US5950683A (en) Pipe repair assembly
CN203979698U (zh) 一种管道接头
WO2018000538A1 (zh) 无人船载管线维修夹具
US8424925B2 (en) Split fitting for pipe
US8117724B2 (en) Method for joining together steel pipes for conveying fluids under pressure
US4895397A (en) Clamp
WO2018000539A1 (zh) 无人船载管线连接器
US4620731A (en) Apparatus for sealing pipe flanges
WO2018000540A1 (zh) 无人船载维修夹具
CN107701834A (zh) 一种密封力可调式水下法兰
US6244630B1 (en) Method and apparatus for non-intrusive on-line leak sealing of flanged piping connections
KR20090082325A (ko) 파이프 연결용 분리형 플랜지
CN106337982A (zh) 一种高压自紧式法兰
US20110241342A1 (en) Pipe Repair Clamp with Self Pressurizing Seal
EP2584229B1 (en) O-ring shield system and method
JP2019120379A (ja) 漏洩補修構造及び漏洩補修具
WO2018000543A1 (zh) 无人船载管线维修套筒组件
KR20180124665A (ko) 무용접 배관 플랜지 구조물
CN107830288B (zh) 一种管道快速连接法兰
CN206973111U (zh) 一种高压自紧式法兰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906937

Country of ref document: EP

Kind code of ref document: A1